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Abstract 
_________________________________________ 
 

Emerging quantum technologies are currently limited by the development of robust 

hardware components to create, distribute, and readout quantum information. Single photon 

emitters are among the most fundamental components for most quantum information 

technologies. Among the most promising single photon sources are atom-like systems such as 

defects in solid-state materials, which can produce on-demand streams of single photons, are 

suitable for on-chip integration, and offer efficient spin-photon interfaces. As a result, materials 

such as diamond and silicon carbide have been intensely studied due to their bright and 

photostable emission, however, efficient integration methods remain a critical challenge.  

An intriguing alternative is the use of atomically thin materials which lack dangling 

bonds allowing for facile integration with nanophotonic components, display extremely 

efficient light-matter interactions, and be utilized to produce designer quantum states such as 

by stacking into van der Waals heterostructures. Here I study the 2D material hexagonal boron 

nitride (hBN) which can host ultra-bright single photon emission arising from point defects in 

the lattice.  

In this thesis I study the bottom-up fabrication of single photon emitters in hBN in great 

detail, demonstrating the incorporation of bright and optically stable emitters in large scale 

films comprised of only a few atomic layers. It is demonstrated that during growth we can 

reduce the inhomogeneous distribution of emission energies by over an order of magnitude and 

simultaneously control the density of incorporated single photon emitters. The smooth few 

layer nature of the films enables facile integration with nanophotonic components and with van 

der Waals heterostructures. I perform emission tuning studies on hBN thin films utilizing both 

Stark and strain methods, demonstrating record shift magnitudes for a 2D quantum light source, 

and revealing critical information on the level structure of the emissive defect. Finally, I study 

the structural nature of the defect finding a carbon based center is likely, a central question 

which has been debated since their initial discovery in 2015 and demonstrate optically detected 

magnetic resonance from these defects at room temperature for the first time. 
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