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ABSTRACT  

The starting point for this research was the emergence of physiological data as a source 

of information that can help us understand how our interactions with the urban 

environment affect the human body. There is significant potential in extending existing 

methods for physiological data analysis in the urban domain in a way that maximises 

the benefits at the individual and the city scale. Physiological data could be used to 

identify the least stressful route, but there is currently a lack of research on their 

incorporation in pathfinding studies. The area of prediction of physiological responses 

during outdoor walking has also been understudied.  

This study aims to address these issues by designing a methodology for collection and 

analysis of physiological data in the urban space. The methodology incorporates three 

components: (1) the collection and analysis of physiological data at an individual level, 

(2) the hotspot analysis of physiological responses at a city scale, and (3) the utilisation 

of the collected data in models for prediction of physiological responses, and 

pathfinding methods for the identification of the least stressful route. The methods and 

algorithms for each component of the methodology are calibrated using data collected 

in Sydney from experiments organised by the author, and publicly available data from a 

previous study conducted in Zürich.  

The study acts as a pilot project that will pave the way towards large-scale experiments 

in this area. Its main contribution is that it supports the construction of tools for 

individuals who want to understand how different routes might affect their 

physiological responses, and have a calm experience while walking in the urban 

environment. It can also help researchers identify which parts of the city are associated 

with an increased intensity of physiological responses, possibly indicating increased 

stress levels. The construction of a theoretical and conceptual framework supporting 

the construction of the methodology also enriches current research on the links 

between urban environment, activity and physiological responses. Other 

methodological and practical contributions include the development of methods for 

analysing how movement may influence physiological responses as a physical stressor, 

and their incorporation in the designed methodology; also, the development of 
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methods for identifying physical and psychological stressors from contextual data, 

based on freely available OpenStreetMap and Point of Interest data, as an alternative to 

image-based analysis which was used in previous studies.
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1 
INTRODUCTION 

1 | INTRODUCTION 

1.1. CONTEXT 

As a recent report by the United Nations shows, the world population might increase by 

2 billion in 2050 (DESA/UN 2019), a growth which is expected to be absorbed by cities. 

There is thus increasing concern regarding the ability of urban areas to handle this 

challenge while retaining a healthy environment.  

One research area related to this challenge is urban health, which has an explicit focus 

on the urban environment and its impact on population health (Galea & Vlahov 2005). 

The advancement of urban health requires knowledge of how different places perform 

in terms of the identified factors. This knowledge can be provided by traditional data 

collection sources, such as surveys, but these are usually conducted with low frequency 

and cannot capture the dynamic nature of urban phenomena.  In the last decade, 

sensor-based networks and big data have brought a new perspective in the analysis of 

urban dynamics (Kitchin 2013). The availability of large-scale geo-tagged data sets, 

generated with high frequency, such as mobile phone data, has enabled new ways of 

analysing human activity patterns and their spatial output (Calabrese et al. 2013). 

Crowdsourced data which have relevance to health and physical activity have also 

evolved. Fitness applications such as Strava offer a vast collection of GPS tracks, which 

can provide us with a crowdsourced mapping of walking and cycling activity (Heesch & 

Langdon 2016). In the context of urban health, this information is largely assistive in the 

identification of places which attract physical activity.  
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Physiological data from consumer activity trackers is another example of such data, next 

to geotagged physical activity and environmental exposure data. As this study will show, 

these data sources have the potential to assist in the transition towards smarter and 

healthier cities. Current guidelines towards urban planning strategies for the 

enhancement of urban health include the mitigation of the following factors: air 

pollution, traffic, noise, social isolation, crime, prolonged sitting and unhealthy diet 

(Giles Corti et al. 2016). The promotion of walking through interventions in terms of 

accessibility, land use density and diversity and other parameters, is an essential 

component for mitigating many of these risk exposures. The enhancement of active 

transport, for instance, is essential for the reduction of traffic. Since traffic is a 

significant source of air pollution and noise, these two risk exposures would also be 

mitigated with the promotion of outdoor walking. 

For these reasons, it is essential for urban planning authorities to collect information 

regarding current local trends in pedestrian activity, and identify potential clashes with 

traffic, environmental exposures and other factors that affect health. Smart 

technologies, such as GPS trackers, already play a significant role in this effort, 

according to a literature review conducted on this topic (Dritsa & Biloria 2018). As the 

review showed, the studies that address key risk exposures related to urban health, and 

harvested data at a population level, can be grouped in the following manner:  

• studies which examine physical activity in relation to the urban environment 

• studies which monitor environmental quality.  

The first category includes studies which examine neighbourhood walkability (Rundle et 

al. 2016; Sallis et al. 2016), and the association of built environment characteristics with 

physical activity (Lachowycz et al. 2012; Wang et al. 2017). Studies which examine 

cycling route choice with the acquisition of GPS tracks can also be added here since they 

examine the same GIS data sets (e.g., Broach et al. 2012; Hood et al. 2011; Menghini et 

al. 2010).  

The second category contains studies which map air pollution (Al-Ali et al. 2010; Dutta 

et al. 2009; Hasenfratz et al. 2015; Liu et al. 2011) and noise (Garcia Marti et al. 2012; 

Kanjo 2012; Maisonneuve et al. 2009; Rana et al. 2010). 
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The review indicated that the most commonly analysed data sets at the urban level, 

which also have an association with the guidelines for the advancement of urban 

health, are GPS tracks, air quality, weather and noise.  The acquisition of GPS tracks has 

been largely helpful in studies which determine which features of the built environment 

enhance walkability, and is usually assessed in relation to data such as the presence of 

green, parameters related to land use, and street network data. Air quality data are 

usually acquired next to meteorological data, in order to extract their association for 

predictive models, apart from spatially mapping their concentration levels. Noise 

monitoring systems are usually participatory and are commonly derived for mapping 

purposes, without examining any interaction with other data sets. 

Thus, movement mapping systems enhance our knowledge in terms of where people 

walk in a city and why they choose particular routes. Environmental sensing systems 

assist in mapping risk exposures in a city and identifying hotspots. What is currently 

lacking is information on user experience, and more specifically on the immediate effect 

that urban and environmental features such as traffic, air pollution and noise have on 

the human body, at a high spatiotemporal resolution. The investigation of this aspect is 

essential, as the user experience defines if an outdoor walk will be enjoyable or not. 

The wide commercialisation of consumer activity trackers such as FitBit brings the 

emergence of physiological data as a new source of information that could potentially 

bridge this gap. Fitbit and other similar consumer activity trackers are examples of 

internet-connected devices that emerged in the past few years for applications such as 

building performance control, environmental quality assessment and personal health 

monitoring. The ‘Internet of Things’ (IoT) has become popular as a term that describes 

the larger ecosystem of such devices (Swan 2012); the term typically refers to everyday 

objects that commonly include sensing capabilities and can be connected to the 

Internet, while also communicating with other devices in some cases. Consumer activity 

trackers, also known as smartwatches (Swan 2012) include sensors for the 

measurement of movement and potentially also physiological data, such as heart rate. 

They are usually connected with a smartphone, and may include some functions such as 

notification of calls and messages. The term ‘wearable technologies’ or ‘wearables’ is 
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commonly used as an umbrella term that describes such devices and technologies that 

can be worn (Gilmore 2016).  

These devices collect a multitude of information related to the daily habits of the user, 

such as the step count and the duration and quality of sleep. This information is 

collected through self-tracking, which makes it distinct from covert monitoring or other 

types of collection of information where access is not given to the users that generate 

the data (Lupton 2016). The transformation of dimensions of everyday life to data acts 

as a prompt for the users of such devices to self-reflect on their habits, changing the 

way that they conduct their daily activities. This phenomenon emerged when the 

practice of self-tracking for self-knowledge and improvement started gaining traction, 

and led to the generation of the movement of the ‘quantified self’ (Lupton 2016). The 

increasing availability of information acquired through self-tracking also brought forth 

new research opportunities in several disciplines. The emergence of consumer activity 

trackers has revolutionised the measurement of physical activity and other aspects 

related to health. There is much interest in using this data as health records that can 

help in the development of clinical applications (Shull et al. 2014).  

The increasing availability of physiological data from these devices has also brought 

forth new opportunities for researchers in the field of spatial sciences, as it is possible 

now to map bodily reactions while the user is moving in the urban space, with 

equipment that is wireless, widely available and relatively easy to use. As it will be 

shown in section 1.2, physiological responses are used as an indicator of stress and 

emotions. Physiological data from consumer activity trackers has thus the potential to 

add a new information layer that can enhance current research on urban health and 

wellbeing, by providing evidence in terms of how the body reacts during interaction 

with different urban and environmental parameters. In the context of urban health, the 

use of physiological data monitoring would be especially beneficial in the study of bodily 

experience during outdoor walks. As the promotion of walking is a significant 

component of strategies for the mitigation of risk exposures and the advancement of 

urban health, physiological data monitoring in the urban domain can assist in these 

efforts. Physiological data monitoring could be used by urban planning authorities to 
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make informed decisions regarding what kind of changes in infrastructure or land use 

need to be undertaken to mitigate stress or negative emotions. The analysis of the 

variations of the perceived experience during an outdoor walk is also key for 

understanding why pedestrians choose particular routes and how the urban 

environment should be designed to provide a meaningful experience while mitigating 

exposure to stressors. 

While there is large potential in this research area, this is still a relatively new field. 

More research is needed on methods for collecting and analysing physiological 

responses and understanding the parameters of the urban environment that may be 

linked to them. The review presented in section 1.2 will show that there are theoretical, 

methodological and technical issues in the previous studies in this area which need to 

be addressed. 

In this context, this thesis focuses on the investigation of methods for the collection and 

analysis of physiological data in the urban space, aiming to enrich our knowledge on 

how our interactions with the urban environment affect the human body. The 

combination of these methods formulates a methodology for the analysis of 

physiological data, which can be used for the benefit of multiple stakeholders at the 

user and the city scale.   

After presenting the broader research context, the rest of this chapter is devoted to the 

detailed presentation of the specific gaps that the designed methodology seeks to 

answer. A review of past studies on physiological data mapping in the urban 

environment is first presented; this review is the first in this area, as there has been no 

systematic mapping of the existing studies. The review leads to the research questions, 

aims and objectives (section 1.3) which drive the construction of the methodology.  
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1.2. MAPPING PHYSIOLOGICAL RESPONSES IN THE URBAN 
ENVIRONMENT USING CONTINUOUS MONITORING: OVERVIEW OF 
PAST STUDIES  

The review presented in this section outlines the common themes that were discovered 

during the analysis of past studies on physiological data collection and analysis in the 

urban environment1. The review starts with outlining the general study characteristics, 

and progresses with the presentation of trends in the collection of physiological, 

movement and contextual data and methods of data analysis. Future prospects and 

current issues and challenges are then identified. 

1.2.1. METHODS FOR STUDY SELECTION 

Studies focusing on the following four criteria were identified via search in Google 

Scholar and Scopus:  

(1) Usage of a portable monitoring system for physiological data monitoring 

(2) Continuous monitoring of physiological data 

(3) Focus on the outdoor environment 

(4) Collection of contextual data related to spatial, urban or environmental parameters 

43 studies which met these requirements were identified and were included in the 

review (Figure 1.1). While most of the reviewed studies include physiological data 

collected with wristbands, it was also decided to include a few studies where 

physiological data are collected with other portable recording devices, such as chest 

bands.  

Studies which focus on stress or emotion detection without mentioning spatial or 

environmental contextual parameters were excluded, in order to focus on the unique 

challenges posed in the analysis of urban contextual data. 

 
1 The review presented in section 1.2 has been published in a slightly modified version in the journal 
Archnet-IJAR (Dritsa, D. & Biloria, N. 2021, ‘Mapping the urban environment using real-time physiological 
monitoring’, Archnet-IJAR, Vol. ahead-of-print No. ahead-of-print, https://doi.org/10.1108/ARCH-02-
2021-0041).  
This article is © Emerald Publishing Limited and permission has been granted for this version to appear 
here [https://www.lib.uts.edu.au/]. Emerald does not grant permission for this article to be further 
copied/distributed or hosted elsewhere without the express permission from Emerald Publishing Limited. 

https://www.emerald.com/insight/search?q=Dimitra%20Dritsa
https://www.emerald.com/insight/search?q=Nimish%20Biloria
https://www.emerald.com/insight/publication/issn/2631-6862
https://doi.org/10.1108/ARCH-02-2021-0041
https://doi.org/10.1108/ARCH-02-2021-0041
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Figure 1.1. An overview of the reviewed studies 

The analysis of the selected studies focused on the following points:  

1. The general study characteristics (study objective, sample size, characteristics of the 

performed activities) 
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2. The data collection process for physiological, movement and contextual data; the 

instruments used for collection and the theoretical background which supported the 

contextual data selection 

3. The data analysis process (data processing, data fusion, spatial aggregation and 

inferential or predictive analysis) 

1.2.2. DESCRIPTION AND METHODOLOGICAL OVERVIEW OF REVIEWED 

STUDIES 

1.2.2.1. GENERAL STUDY CHARACTERISTICS 

The first study which involved continuous geotagged physiological data collection in the 

urban environment was the ‘Bio Mapping’ project (Nold 2009). Today this field is still in 

development, with most of the studies published in the past two years. The topic has 

attracted the interest of researchers in different fields, such as architecture, urban 

planning and design, urban health, geography, environmental psychology and affective 

computing. The study objective is most frequently to understand how the environment 

influences physiological responses, which are usually interpreted as stress (n=17) or 

emotions (n=15). Initially, most studies were connected to emotions, but in the recent 

two years, there has been a shift towards stress-related research (Figure 1.1, Figure 

1.2). Some studies had a focus on a specific theme, such as thermal comfort and heat 

stress (Flutura et al. 2019; Nakayoshi et al. 2015), safety (De Silva et al. 2017), or the 

effect of crowding density (Engelniederhammer et al. 2019) and isovist properties 

(Hijazi et al. 2016; Xiang & Papastefanou 2019) on emotions. An isovist is the area which 

is visible from a given point in space. This factor is, thus, related to the visual field of the 

pedestrian. Other studies had a focus on a specific population, such as visually impaired 

adults (Massot et al. 2012; Saitis & Kalimeri 2018), middle-aged hypertensive adults 

(Song et al. 2015a) and older adults (Lee et al. 2020; Neale et al. 2017; Tilley et al. 

2017). 
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Figure 1.2. Upper: The increase in studies on physiological mapping in the urban space in the past years. 

Bottom: The frequency of appearance of different physiological data in studies.  

It was observed that the number of participants was usually small (median=18). Most 

studies included measuring the participants' physiological responses while following a 

predefined path; very few studies have included free exploration (n=4). The data 

collection is almost always conducted for one day, with few exceptions (Komori et al. 

2017; Lee et al. 2014; Lee et al. 2020; Roe et al. 2019; Song et al. 2015a; South et al. 

2015). A group of researchers also repeated their experiment in different seasons (Song 

et al. 2013; Song et al. 2014; Song et al. 2015b). The application of the proposed 

methodologies under uncontrolled circumstances is thus usually not examined. The 
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mode of exploration was most commonly walking (n=37) followed by cycling (n=7). 

Studies on cycling were mostly focused on stress (n=5), whereas studies on walking 

were more balanced in terms of theme. The outdoor walking activity lasted from 15 to 

45 minutes, with few exceptions (Flutura et al. 2019; Komori et al. 2017). Only 4 studies 

complemented the outdoor data collection with a controlled experiment in the 

laboratory (Engelniederhammer et al. 2019; Hogertz et al. 2010; Kyriakou et al. 2019; 

Osborne & Jones 2017). 

1.2.2.2. DATA COLLECTION 

1.2.2.2.1. PHYSIOLOGICAL DATA  

The most commonly tracked physiological measures were electrodermal activity (EDA) 

(n=28) and heart rate (HR; n=18). These measures are related to the activity of the 

autonomic nervous system, which regulates the bodily responses when the body is 

under stress, among other functions. 

EDA (or galvanic skin response, GSR) refers to the changes in skin resistance which are 

caused by the sweat glands (Boucsein 2012).  It is a typical physiological response to 

changes in psychological and emotional states, while it is also strongly involved in the 

thermoregulation of the body. It is one of the most widely used measures of 

sympathetic activation in response to external stimuli (Dawson et al. 2007).  

In continuous HR monitoring, measurement is conducted with electrocardiogram (ECG) 

technology in the case of chest straps, and with photoplethysmography (PPG) in the 

case of wristbands.  PPG utilises photodetectors for the identification of variations in 

light intensity due to changes in the blood volume (Allen 2007). PPG-based HR 

monitoring systems have been criticised, as they can exhibit inaccuracies due to 

movement. ECG is still considered as the most well-established and accurate method. 

Despite these issues, PPG has also become popular lately due to its simplicity and 

convenience, and it is the method that the consumer activity trackers use for tracking 

heart rate (Hwang et al. 2016).  

Skin temperature (ST) is also measured in many studies (n=18), as an indicator of stress 

together with electrodermal activity. Other much less frequently used measures are 
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blood volume pulse (BVP, heart rate variability (HRV), electroencephalography (EEG), 

respiration (RA) and blood pressure (BP) (Figure 1.2). 

The most frequently used instruments for physiological data collection were the 

Empatica E4 (n=12) and the SmartBand by Bodymonitor (n=9), most commonly for EDA 

measurement. The sensors, in this case, are embedded in wristbands. As for HR and 

HRV measurement, the frequently used instruments include the Empatica E4 or the 

SmartBand (n=5), other portable data recording devices (n=7), other wristbands (n=4) 

and chest straps (n=2).  The studies that mapped EEG used the Emotiv headset. A few 

studies also included custom made systems with sensors attached to fingers (De Silva et 

al. 2017; Massot et al. 2012) 

1.2.2.2.2. LOCATION/MOVEMENT DATA:  

More than half of the studies incorporated GPS tracking (n=33), with a separate GPS 

tracker, a smartphone or a GPS sensor built in the physiological data monitoring system. 

The collected data is used for the calculation of position. The properties of the 

movement of the participant are rarely considered, except for Benita and Tunçer (2019) 

and De Silva et al. (2017) who included speed in the physiological data analysis and Kim 

et al. (2020) who analysed gait patterns. Accelerometer data is rarely used in the 

analysis, except for Nuñez et al. (2018) who used it to collect vibration data while 

cycling and Lee et al. (2014) who used it for the assessment of energy expenditure while 

walking. 

1.2.2.2.3. CONTEXTUAL DATA  

Figure 1.3. Frequency of appearance of concepts and theories related to stress and emotions in the 

studies. 
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The identification of contextual features is usually connected to theories and concepts 

related to stress, emotions and affect, as well as environmental and spatial psychology 

(Figure 1.3).  In connection to the acute stress response, some researchers (Birenboim 

et al. 2019; Kyriakou et al. 2019) refer to the concept of ‘fight or flight’ (Cannon 1929), 

or the ‘allostatic load’. These concepts will be analysed in detail in Chapter 3. Models of 

emotions, such as the circumplex model of affect (Russel 1980) were also used in some 

studies to categorise emotions in two dimensions, defined by the degree of valence and 

arousal (e.g., Li et al. 2016).  

In terms of theories related to stress or emotions and space, the Attention Restoration 

Theory by Kaplan and Kaplan (1989) and the Psycho-Evolutionary Theory of Stress 

Reduction of Ulrich et al. (1991), were the most frequently mentioned. The prospect-

refuge theory by Appleton (1975) was used in two studies, examining safety (De Silva et 

al. 2017) and the connection between isovist properties and emotional responses 

(Xiang & Papastefanou 2019). Space syntax (Hillier & Hanson 1984) was also used as a 

framework for studies that included isovist or accessibility analysis. Space syntax is a set 

of concepts and methods for the analysis of spatial properties and their effect on 

human behaviour; isovist and accessibility analysis are among the measures that are 

typically employed in space syntax analysis to understand properties of space, such as 

visibility and privacy, or investigate how the structure of the urban fabric affects 

pedestrian flow. The proxemic theory (Hall 1966) was also used in a study on the effect 

of crowding density on emotions (Engelniederhammer et al. 2019). 

Almost all studies stressed the importance of collecting contextual data since only the 

acquisition of physiological data could not reveal what triggers each response. Urban 

features were measured or mentioned in most of the studies (n=37); the most 

commonly mentioned features were green, isovist properties, traffic, road surface 

condition, intersection, bike lane, and the number of passing cars (Figure 1.4). More 

than half of the studies (n=23) used video or photos collected by the participants or the 

researchers, for identification of relevant urban features; other data sources which 

were used in very few studies include satellite image data (n=1), OpenStreetMap data 

(n=3) or data from governmental sources (n=4). Some studies also examined zones 
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rather than features; most commonly urban versus green zones (n=9). In this case, 

there was no fine-grained identification of more specific features. Some researchers 

also conducted an exploratory visual analysis of the maps after collecting the data, 

instead of systematic measurement of specific urban features. 

 

Figure 1.4. Frequency of appearance of different environmental data (left) and urban features (right) in 

the studies.  
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Environmental data were much less frequently included (n=8); the data collection was 

conducted by carrying a custom monitoring system in a box or a backpack. Noise data 

was sometimes monitored with a smartphone (Benita & Tunçer 2019; Kanjo et al. 

2018b). The most frequently measured environmental data were temperature, 

humidity and noise (Figure 1.4). 

The contextual data collection also included information regarding the perception of 

experience in selected locations. The studies utilised most commonly (n=30) a mixed-

method approach to cover this gap, with a survey, questionnaire or interview with the 

participants. Shoval et al. (2018) and other researchers (n=8), for instance, used an app 

where the participants could rate in real-time the qualities of the built environment or 

specify their emotions concerning a particular location. Hogertz (2010) and Paül i Agustí 

et al. (2019) asked the participants to draw a map depicting their emotions during the 

walk. Other studies (n=18) used a questionnaire or an interview after the walk, where 

the participants could provide general feedback or rank their experience during 

different points or segments of the walk.  

The subjective evaluation of the experience was then used in combination with the 

other contextual data. Zeile et al. (2016), for instance, used an app as a diary for self-

reporting impressions and observations, asking the users to classify their feelings when 

a stress event was identified. The app complemented the analysis of video footage, 

which was studied in order to identify which features triggered emotional arousal. 

Osborne and Jones (2017) suggested a mixed-methods approach, which involved 

accompanying the mapping of the physiological data with material from qualitative 

personal interviews and video footage from a GoPro camera. This material was used 

then to examine the physical characteristics of the route and identify which features 

were related to moments of arousal. The video footage analysis, combined with the 

material from the personal interviews, enabled a rich contextualisation of the acquired 

physiological data. 

1.2.2.3. DATA ANALYSIS 

After data collection, the workflow usually incorporates one or more of the following 

steps (Figure 1.5):  
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(1) data processing and data fusion,  

(2) geospatial mapping, sometimes including cluster or hotspot identification 

(3) inferential analysis or prediction.  

 

 

Figure 1.5. The steps of the workflow followed in the reviewed studies. 

Step (1) involves processing the different data streams and combining all streams using 

a custom data fusion scheme, based on synchronisation of the timestamps. Step (2) 

involves methods for visualisation of the spatial distribution of the physiological 

responses, and in some cases, identification of areas which have statistically significant 

hotspots of responses. Some studies end at step (2), while other proceed to step (3) by 

using the collected data for inferential analysis. The goal here is usually to examine if 

the selected set of urban or environmental features influences physiological responses 

(or stress and emotions). Very few studies have also used physiological data in 

predictive analysis; an example here is the study of Kanjo et al. (2018b), who 

investigated the ability of different machine learning models to classify emotions based 

on collected physiological, movement and contextual data.  

1.2.3. FINDINGS OF PAST STUDIES  

This section builds on the descriptive analysis of section 1.2.2 and examines the findings 

of past studies. This examination aims to show the potential contribution of this strand 

of research to different areas.  
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1.2.3.1. UNDERSTANDING THE LINK BETWEEN URBAN ENVIRONMENT AND 

PHYSIOLOGICAL RESPONSES 

The most significant contribution of this strand of research at the city scale is the 

identification of urban and environmental characteristics which have a negative effect 

on the organism by causing distress and negative emotions. Most of the reviewed 

studies focused on this problem, using regression models and tests that compare 

locations with different characteristics (t-test and ANOVA) for hypothesis testing.  

One parameter that was included in many studies is the effect of green of physiological 

responses. These studies include mostly EEG and HR measurements. Aspinall et al. 

(2015) collected EEG data from 12 students during a walk in urban and green areas in 

Edinburgh and found that the green areas were associated with higher levels of 

meditation and less frustration, engagement and arousal. The study of Neale et al. 

(2017) had a similar setup but a much higher sample size (95 participants) and was 

focused on the experience of the elderly. This study showed that the ‘engagement’ 

levels were higher in the green areas when compared to quiet urban areas. Urban busy 

areas were associated with higher excitement in this study and were not connected to 

higher frustration levels. As for studies on the connection between HR and green, while 

walking, the analysis of Song et al. (2015a) showed that the average HR was lower when 

walking in an urban park, in comparison to walking in a city area. This analysis was 

based on data collected from young university students, and the experiment was 

conducted in Japan, in two environments with similar environmental conditions. 

Another study (Song et al. 2015b), which used data collected from middle-aged 

hypertensive individuals in central Japan, found that the HR of the participants was 

significantly lower when walking in the forest, in comparison to walking in the urban 

area. They noted that the two environments were significantly different in terms of 

environmental conditions such as temperature and humidity and that this may be one 

of the factors that influenced the result. The study of South et al. (2015) also suggested 

a connection between green spaces and HR. This study was conducted in spring and 

summer, in Philadelphia, Pennsylvania, and contained data from 12 participants. The 

findings showed that the exposure to green vacant lots during outdoor walking resulted 

in a lower HR compared to exposure to non-greened vacant lots. 
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While these findings suggest a connection between green and physiological responses, 

there are some concerns regarding the results of studies that include HR 

measurements. In these studies, the reported changes are sometimes in a range of 1 to 

3 bpm. While the conducted tests show that the changes are statistically significant, 

their effect is very small, and since the experiments were in ambulatory conditions, 

there are many factors such as movement changes that may have influenced the 

results. 

The effect of other features on physiological responses, such as land use and traffic-

related parameters, is much less studied in comparison to the effect of green. 

Chrisinger and King (2018) examined the effect of various urban environment features 

on EDA during a 20-minute walk in California. The data collection was conducted in 

summer and autumn, and in some cases, the participants were walking in groups. There 

was a statistically significant increase in the EDA data in areas of mixed or residential 

land use, while the proximity to traffic, vacant lots and office buildings had the opposite 

effect. Saitis and Kalimeri (2018) collected data from 12 visually impaired pedestrians in 

Reykjavik and showed that the blind participants had significantly higher HR when 

crossing an intersection, in comparison to severely impaired individuals. The same 

finding was identified for walking in a shopping street. Birenboim et al. (2019) also 

conducted a study with 15 participants in Utrecht. They found that for most 

participants, crossing the main street without a traffic light was a significantly more 

stressful condition in terms of EDA responses, in comparison to a more neutral walking 

environment. 

Finally, the few studies that focused on isovist parameters had conflicting results that 

could be attributed to differences in context. Hijazi et al. (2016) developed a regression 

model to determine the contribution of isovist properties in emotional responses. The 

study was conducted in Zürich, Switzerland, during autumn, with a sample size of 13 

participants. While their results did not indicate a very strong relationship, it was noted 

that the studied spatial properties had a larger impact on negative emotions in 

comparison to the positive. The most critical isovist parameters in this model were 

occlusivity and perimeter. Occlusivity is connected to the degree of enclosure of space 
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(Xiang & Papastefanou 2019), and it has been connected to feelings of safety and 

security. The study of Li et al. (2016), which was conducted in the same city and during 

the same period, had similar findings. Xiang and Papastefanou (2019), who conducted a 

similar experiment in Hong Kong in springtime, noted that the results were different in 

their local context. The strong association between occlusivity and negative emotions, 

which was found in the studies of Hijazi et al. (2016) and Li et al. (2016), was not 

observed in the study of Xiang and Papastefanou (2019). The isovist area and maximum 

radial line were also significantly correlated with positive emotions in Hong Kong. An 

important finding of the study of Xiang and Papastefanou (2019) was that the 

transformation of isovist parameters might be a better predictor than the raw 

parameters.  

As shown in this section, the broader research question which most studies have tried 

to answer up to now is related to the effect of different urban and environmental 

characteristics on physiological responses. This question is still far from being answered 

and requires research with a larger population sample. While some of the features used 

as inputs in the presented studies had good predictive power, it is difficult to identify if 

there is an agreement between the findings, due to the considerable variation in the 

feature set. More studies need to be conducted, considering differences in the local 

context. The influence of some features may vary across different cities and countries, 

due to differences in the climate and the urban fabric of the city, or cultural aspects. 

More research also needs to be conducted towards identifying the role of some 

understudied parameters, such as traffic and land use characteristics. It was also noted 

that some studies used models that were not appropriate for the statistical analysis of 

multiple data points generated from the same participants. They also did not mention 

any check for the effect of spatial autocorrelation, despite the fact that the presented 

maps of the spatial distribution of physiological responses sometimes suggested its 

presence. The analysis of spatial autocorrelation checks if the dataset has 

geographically close points with similar characteristics; if spatial autocorrelation is 

found, the results of inferential analysis may be skewed and the researchers have to 

choose statistical models which take this factor into account, such as spatial regression 

models (Anselin 2009).  
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1.2.3.2. SPATIAL ANALYSIS OF PHYSIOLOGICAL RESPONSES FOR 

UNDERSTANDING STRESS AND EMOTION PATTERNS IN THE URBAN 

FABRIC OF A CITY  

The reviewed studies also showed that the collection and analysis of physiological 

responses in the urban space can be beneficial for understanding spatial patterns of 

stress and emotions in a local area. This analysis was conducted with methods for 

aggregation and clustering that allow the identification of hotspots.  

The aggregation was most frequently conducted by averaging the responses over grid 

cells, points, zones or segments. Among the various methods, only the Getis Ord Gi* 

method allows identifying statistically significant clusters. The others are still useful, 

though, for visualising the variations in the spatial distribution of responses. These 

methods were commonly used for providing a visualisation of the responses in the 

studied area. The visual presentation of the hotspots was usually accompanied by a 

qualitative description of the contextual parameters of areas with intense stress or 

emotion responses. Many studies had as an objective the identification of features 

which influence physiological responses, and in those cases, the hotspot analysis was 

conducted for exploratory analysis and supported the hypothesis testing. For instance, 

Benita and Tunçer (2019) conducted hotspot analysis for the identification of stress 

hotspots. Then, they examined the distribution of the urban and environmental 

features in the hotspot and non-hotspot areas, to identify associations between 

features and stress responses. Shoval et al. (2018) constructed a map which was divided 

into grid cells, and each cell contained the average EDA data of all participants that 

walked through it. The researchers then conducted a qualitative analysis of the resulting 

visualisation by grouping the area in sites with different characteristics. Hijazi et al. 

(2016) used the Getis Ord Gi* method to identify hotspots of positive and negative 

emotional arousal. Then, they used photos describing the contextual characteristics of 

each cluster to understand which spatial conditions may be connected to positive or 

negative responses.  
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1.2.4. FUTURE PROSPECTS 

As it was shown in sections 1.2.2 and 1.2.3, previous research on physiological 

responses in the urban space using continuous real-time monitoring has been primarily 

focused on testing theories of environmental psychology, or developing new theoretical 

models. The systematic analysis of the studies conducted in this area showed that for 

most of the reviewed studies, the broader research question was how the urban 

environment influences physiological responses. Further research in this area is 

undoubtedly significant, as it has the potential to bring considerable changes in the way 

that the urban environment is designed.   

There are also some other potential contributions of this research field, which have not 

been investigated in previous studies, and can be identified at the local community level 

or the user scale. Given that there is a growing population with consumer activity 

trackers that sense physiological signals, we can imagine a future scenario where this 

data will be connected to a common platform for analysis, providing information to the 

local urban planning authorities in an anonymised manner. There is already a well-

established presence of fitness tracking applications where users register their walking, 

running or cycling activity, using the GPS sensors of their smartphones or activity 

trackers. Endomondo, MapMyRide and Strava are among the most popular of such 

applications; the total number of uploaded activities in the case of Strava reached one 

billion in 2017, and two billion by the end of 2018 (Strava 2018). Strava has released 

Strava Metro as a service for urban planners and transportation analysts, offering 

anonymised, aggregated mobility data for a specified area in a bulk format. The 

utilisation of aggregated location data from fitness applications is already popular in a 

research context (Romanillos et al. 2015). Such data fall under the category of “user-

generated health data”, and their emergence has been discussed as a democratising 

force which challenges the traditional dynamics between health providers and citizens 

(Ostherr et al. 2017). Due to the rapidly increasing popularity of consumer activity 

trackers that enable physiological data tracking, this type of service could be offered in 

the future for physiological data as well. It could also be a part of local urban sensing 

initiatives, similar to crowdsourcing noise or air pollution data.  
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In this scenario, the analysis of physiological data at the urban scale would allow 

identifying local neighbourhood characteristics that have a positive effect on 

cardiovascular activity by encouraging activity and increasing aerobic exercise, or a 

negative effect by causing distress and anxiety. As mentioned in section 1.2.3.2, some of 

the studies which were included in the review included methods for the identification of 

hotspots of physiological responses; these methods can be used there to show which 

places are stressful or trigger negative emotional responses. In this way, the 

information derived from the analysis of physiological responses becomes actionable in 

the local context, as it allows the identification of local spots which need intervention. 

At the same time, the localised analysis can still be used to enrich the findings 

presented in the reviewed studies, which are more related to broader research 

questions. One issue that was identified in the literature review is that most of the 

existing studies base their results on data gathered from a small population sample. The 

crowdsourcing scenario could assist in solving this issue by using data collected from a 

much larger and more diverse group, which can lead to more generalisable models. 

The collection and analysis of physiological data in the urban space can also contribute 

to the advancement of health at a user level. Current methods for stress detection for 

individual use ignore the effect of urban space and have considerable difficulties in 

identifying the potential sources of stress when the user is moving outdoors. The 

methods used for the analysis of physiological data in the studies reviewed in this 

chapter are in the right direction towards covering this gap, as they consider the urban 

and environmental stimuli. A future prospect for this research strand at the user level 

could, therefore, be the implementation of the data analysis methods for creating a 

personalised tool for the participants. This tool could operate as an application that 

shows participants how different elements of their routes affect their personal stress 

levels. This task could be approached as a machine learning task for the prediction of 

physiological responses or stress from contextual data. As the literature review in this 

chapter shows (see also Figure 1.1), very few studies have worked towards this 

direction (Kanjo et al. 2018b; Ojha et al. 2019; Yates et al. 2017), since most studies 

focus on inferential and not predictive analysis. 
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Some studies have also referred to the potential of using the collected physiological 

responses to find the least stressful route for walking (Saitis & Kalimeri, 2018) or cycling 

(Werner et al. 2019), but this concept has not been further developed. The use of digital 

tools for pathfinding is well integrated into everyday life; the most popular route 

planning tools, though, take into account a very limited number of criteria, usually 

focusing on the shortest distance. The prospect of incorporating factors that can create 

a more pleasant and less stressful route is therefore very promising. It also provides a 

direct path for using the knowledge derived from the analysis of physiological data in a 

way that can have immediate benefits for the user. The redesign of urban spaces that 

are identified as potentially stressful is costly and requires considerable time and effort 

from the local authorities. The provision of route options that involve less exposure to 

urban stressors could, therefore, improve the experience of outdoor walking with 

minimal resources, in parallel to the long-term urban interventions. 

The identified prospects for future research have the potential to act for the benefit of 

multiple stakeholders. The potential connections between the described steps and the 

different stakeholders are presented in Figure 1.6. The methods for identifying hotspots 

of stress or negative emotions will be most helpful at the city level, for the local urban 

planning committee. Methods for individual stress prediction and pathfinding for 

reduction of exposure to stressors will be most beneficial at a user level. The same data 

that is collected for these purposes can also be used to complement the broader 

research on the link between the urban environment and physiological responses.  

 



 

24 
   

 

Figure 1.6. The connections between future applications and relevant stakeholders. 

1.2.5. ISSUES AND CHALLENGES 

A significant gap that was identified in terms of the overall approach in the past studies 

is the lack of progress in making the derived information more actionable for different 

stakeholders, at the city and the user scale. Section 1.2.4 outlined some scenarios for 

utilising and extending existing methods for physiological data analysis in the urban 

domain in a way that maximises the benefits at multiple scales.  
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There is currently lack of a methodology for collection and analysis of physiological data 

at the urban scale which combines all methods that will be useful at the city and 

individual level, in and out of a research context. The methodological analysis of 

previous studies in section 1.2.2 showed that some conceptual steps are generally 

followed in most studies. The stages of data collection, processing and fusion are 

necessary regardless of the goal of each study. There are some differences in the 

execution of these steps and the choice of relevant algorithms and tools, following the 

variation in the studied features. However, the most commonly followed steps do not 

cover the prospects that were identified in section 1.2.4. The area of prediction of 

physiological responses is especially understudied; the inclusion of both prediction and 

cluster identification was also very rare. The prospect of integrating this field of 

research with route optimisation studies for finding the least stressful or more 

comfortable route has also been identified but not further developed. A methodology 

for the collection and analysis of physiological responses in the urban environment, 

which maximises the impact of analysis by including all these aspects, is thus still 

needed. 

Some other issues were also identified, related to several aspects of the study design 

and the methodology for data analysis followed in most studies. These issues can be 

grouped into two categories: issues related to the broader research question, and 

problems related to the scalability of the methods for data collection and analysis.  

1.2.5.1. THEORETICAL, CONCEPTUAL AND METHODOLOGICAL ISSUES 

1.2.5.1.1. LACK OF A CONCEPTUAL AND THEORETICAL FRAMEWORK 

DESCRIBING THE LINK BETWEEN URBAN ENVIRONMENT, ACTIVITY 

AND PHYSIOLOGICAL RESPONSES 

Many different variables have been used as contextual data in the different studies, but 

there is still no consensus in terms of which of them influence physiological responses 

and how. Also, in some studies there is lack of a strong explanation regarding the 

selection of the studied features. Furthermore, the theories from the field of 

environmental psychology that were used have been almost exclusively supported until 

now by studies which examine physiological responses of participants that are sitting. It 
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is uncertain if the urban and environmental features have the same effects during 

sitting and movement. These issues should be covered with a theoretical and 

conceptual framework, which would draw connections among the relevant theories, 

and situate within them the urban and environmental characteristics. The possible 

effects of movement should also be included there.  

1.2.5.1.2. OVERLAP BETWEEN STRESS, EMOTIONS AND AROUSAL 

Another issue is the overlap which exists between stress, emotions and arousal. 

Sometimes these terms are used interchangeably, especially when the grouping of 

negative and positive emotions is used instead of discrete emotions. Due to this issue, 

some of the reviewed studies may be measuring the same thing while giving it a 

different label. This issue is further complicated by the differences between reported 

and measured stress and emotions, which were found in several studies where the 

participants were asked to report their emotions or perceived stress levels for different 

locations (e.g., Shoval et al. 2018; Werner et al. 2019).  

1.2.5.1.3. LACK OF ANALYSIS OF PHYSIOLOGICAL RESPONSES IN DIFFERENT 

CONTEXTS AND DURING FREE-LIVING ACTIVITIES  

Another set of points which should be improved involves the study design that was used 

in most studies. 

As shown in section 1.2.3, all the reviewed studies were focused on a specific context. It 

is difficult to say if the findings of each study are applicable in other environments, as 

there has not been any comparative study that would take the differences in contextual 

parameters into account. The only exception is the study of Xiang and Papastefanou 

(2019), who mentioned the possible cultural differences between the studied Asian and 

European environments in their analysis.  

The vast majority of the reviewed studies also included data collected during a 

predefined walk. This study design creates an environment with similar circumstances 

for all participants; this choice is understandable, as the control of some variables is 

desirable in statistical analysis. At the same time, this setup cannot capture the wide 

range of contextual parameters within a city and the different activities that 
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characterise the daily living. More research has to be conducted in this direction, using 

a study design that includes data collected during free-living activities. In this way, the 

collected data will capture a more accurate image of the contextual diversity found in 

daily outdoor walks. 

1.2.5.1.4. LACK OF INCORPORATION OF THE EFFECT OF MOVEMENT  

Another significant issue is the lack of inclusion of the effect of movement on 

physiological responses. The need to collect information regarding the activity has been 

mentioned in a few studies (Birenboim et al. 2019; Kyriakou et al. 2019; Werner et al. 

2019). A recent study (Bielik et al. 2019), which compared physiological responses 

collected in the urban environment with responses collected during replications of the 

same walk in a controlled virtual reality setting, showed that the physiological arousal 

elicited from just viewing the urban form was lower than the same experience in the 

field. Some studies also reported a gradual increase of EDA along the route (Birenboim 

et al. 2019; Fathullah & Willis 2018, Griego et al. 2017; Osborne & Jones, 2017), and 

physical exertion might have played a role there. Up to now, this aspect has not been 

considered, and GPS data have been used mainly for geolocation of the responses. In 

parallel, movement analysis can be useful in the broader context of urban health, as it 

can be used to understand and promote physical activity in relation to the environment. 

There is thus another potential gain in the incorporation of movement analysis in the 

data fusion scheme, which should be considered in future studies. In this way, the 

collected data can be used simultaneously for stress mitigation and the promotion of 

physical activity. 

1.2.5.1.5. LACK OF INCORPORATION OF NETWORK ANALYSIS DATA 

There is also no integration of topological road network data (apart from Werner et al. 

2019). The future inclusion of this data in the data fusion schemes will be essential for 

connection with route optimisation studies. It will also be useful for the identification of 

intersections. Many studies mentioned the observation of a possible link between 

physiological responses and intersections or traffic, in the context of walking (Bergner et 

al. 2013; Birenboim et al. 2019; Chen et al. 2018; Fathullah & Willis 2018; Hogertz 2010) 

and cycling (Caviedes & Figliozzi 2018; Nuñez et al. 2018; Zeile et al. 2016) but these 
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were identified usually through video or visual examination of a map, apart from 

Chrisinger and King (2018) who used GIS. Topological road network data could be thus 

helpful for covering this gap.  

1.2.5.2. ISSUES RELATED TO SCALABILITY  

1.2.5.2.1. HEAVY RELIANCE ON PHOTOS AND VIDEOS AS SOURCES OF 

CONTEXTUAL DATA 

Finally, there are some issues which affect the prospect of scaling up the study to 

include a large population sample, with data collected during unconstrained activities. 

One such issue is the heavy reliance on the use of video and photos as sources of 

contextual data. While the data collected from these sources is invaluable, the vast 

majority of studies that used these data sources examined the footage manually, which 

delays the process of analysis significantly. This issue can be handled in small scale 

studies, but it will become more amplified in the analysis of a large dataset, collected 

over many days and covering a large area. There are also questions regarding the 

ethical aspect of using this form of data collection.  

1.2.5.2.2. AFFORDABILITY 

While EDA data analysis has significant value for this research field, there is currently a 

lack of a low-cost consumer activity tracker that measures this signal. Affordability 

could, therefore, become an issue in a large-scale study. It would be of great value to 

explore more systematically what can be derived from affordable devices, which only 

track HR.  

1.2.5.2.3.  LACK OF A STREAMLINED, SCALABLE AND COMPUTATIONALLY 

EFFICIENT APPROACH THAT CAN BE APPLIED TO LARGE-SCALE 

STUDIES WITHOUT REQUIRING SIGNIFICANT MANUAL EFFORT 

Another problem is the lack of a specialised platform or tool that can handle all the 

aspects of the collection and analysis of the different data streams. Most of the 

reviewed studies used at least two or more tools or platforms to cover all the required 
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tasks. The overall process is still not fully streamlined and automated, as its nature is 

experimental in many studies. 

The analysis of large sets of point data collected in an area with undefined boundaries 

will also have different computational challenges compared to the analysis of points of a 

predefined path. If we take spatial aggregation as an example, the area of grid cells or 

the length of the segment used for averaging the physiological responses are choices 

that affect the resolution of the analysis.  

1.2.5.3. ACCURACY ISSUES 

Another concern is the accuracy of the consumer activity trackers in comparison to 

clinical equipment. The Empatica E4 wristband, which was one of the most popular 

choices for EDA tracking, is considered as a device comparable to clinical equipment in 

terms of its power to identify stress-related events (Ollander et al. 2016). In terms of HR 

tracking equipment, some validation studies conducted in the past few years show the 

potential of using HR data from consumer wearable devices for research purposes (Lim 

et al. 2018; Shcherbina et al. 2017; Stahl et al. 2016; Xie et al. 2018). Shcherbina et al. 

(2017) compared HR data from Apple Watch, Basis Peak, Fitbit Surge, Microsoft Band, 

Mio Alpha 2, PulseOn, and Samsung Gear S2, with HR data from electrocardiographic 

monitoring, and found that most devices estimated HR within less than 10% error rate 

for all devices. Stahl et al. (2016) evaluated Scosche Rhythm, Mio Alpha, Fitbit Charge 

HR, TomTom Runner Cardio, Microsoft Band and Basis Peak. They reported that the 

correlation between the data from the consumer activity trackers and the criterion 

measure was high (0.87-0.96). 

Other researchers though pose concerns (e.g., Wang et al. 2017b). At least two studies 

have shown that the measurement errors are higher during light exercise and 

minimised at high speeds (Dooley et al. 2017; Stahl et al. 2016).  Apple Watch has lower 

error rates than other trackers (Dooley et al. 2017; Shcherbina et al. 2017; Wang et al. 

2017b), but at least in one study, it produced significant errors during light and 

moderate activity (Dooley et al. 2017).  Gorny et al. (2017) conducted a study for the 

validation of FitBit Charge HR which involved participant tracking for a month and found 

significant errors in HR reporting, which led to the misidentification of activity zones. 

https://www.mdpi.com/search?authors=Anna%20Shcherbina&orcid=0000-0002-5080-5494
https://www.mdpi.com/search?authors=Anna%20Shcherbina&orcid=0000-0002-5080-5494
https://www.mdpi.com/search?authors=Anna%20Shcherbina&orcid=0000-0002-5080-5494
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The study of Bent et al. (2020) also showed that the reporting of the HR data from the 

Empatica E4 can differ by approximately 12bpm from the actual HR during activity. The 

study of Benedetto et al. (2018), which involved a comparison of measurements from a 

FitBit Charge 2 and ECG data while the participants were cycling, suggested that there 

may be significant errors in individual measurements of the FitBit Charge 2. However, 

the mean error was small (-5.9 bpm). In another study, the accuracy of the FitBit Charge 

was higher during moderate activity and lower during light and vigorous activity (Dooley 

et al. 2017).   

Gradl et al. (2019) provide a comprehensive review of fitness trackers and the signals 

they measure, as well as a rating of their potential ability to measure stress based on 

these signals.  

While these studies point out that these devices cannot replace ECG technology at the 

moment, it is expected that at the accuracy issues will be eventually solved, on the basis 

that there is already a smartwatch in the market that has excellent results in terms of 

validity of heart rate variability during exercise at a very high intensity (Caminal et al. 

2018).  

1.2.5.4. ETHICAL CONSIDERATIONS  

Finally, one issue that needs to be addressed is the disproportionate inclusion of 

population which is not disadvantaged from a socioeconomic or health perspective. 

Very few studies have focused on visually impaired people or elderly, and more 

research is needed on that front, also addressing the issues of people with other bodily 

or mental conditions. The inclusion of a qualitative data collection component along 

with the quantitative mapping is essential here, to gain a better understanding of spatial 

issues which may be more amplified in these cases.  

A summary of the current challenges and future prospects is provided in Figure 1.7. 



 

31 
   

 

Figure 1.7. Current challenges and prospects. 

 

1.3. RESEARCH AIMS AND OBJECTIVES 

As shown in section 1.2, the collection and analysis of physiological data in the urban 

space can contribute significantly to the advancement of urban health. The review 

showed that future work in this area will be undoubtedly beneficial if conducted in a 

considerate manner. It will allow us to obtain a fine-grained understanding of how 

different environments generate different reactions at an individual or city level, 

because of urban stimuli or environmental factors. There is untapped potential in 

utilising physiological data collected in the urban space for the benefit of the local 

community and the users that generate the data.  
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The review also identified many issues in the existing methods for the analysis of 

physiological data, which hinder further research in this area. The lack of research into 

methods that could be used to extract useful information from the physiological data 

analysis and distribute it to different stakeholders, at the city and the user scale, is a 

significant gap in this research area. Other urban sensing initiatives related to urban 

health have managed to create much more direct links with the community; for 

instance, the visualisation of maps in a public dashboard, showing the hotspots of air 

pollution in a city (Badii et al. 2020), allows the city residents to plan their trips in a way 

that avoids exposure to pollutants. Urban sensing enriched with physiological data 

mapping has the potential to operate similarly and provide many benefits at the local 

community scale and the individual level. Currently, there is a lack of any effort towards 

this direction. 

At the same time, research on the link between the urban environment and 

physiological responses is still in its early stages. There are still many issues hindering its 

progress; these are presented in detail in section 1.2.5. The research methods published 

to date for physiological data collection and analysis are designed primarily for use in a 

research context, in small areas and during predefined activities. These different 

domains can be bridged by creating methods for physiological data collection and 

analysis that address these issues and are scalable for future use beyond a research 

context. 

Following the presented analysis, the research is linked to the following broader 

research question: How does the urban environment affect physiological responses, and 

what is the role of different urban and environmental characteristics and activity in this 

process? 

Within this broader research question, which acts as the main driver for this study, the 

research will have a more specific focus on the generation of tools and methods that 

can assist in the provision of answers in the long term. Specifically, the research will 

explore the utilisation of computational methods, as these can be used in practical 

applications to link the physiological responses directly together with other relevant 

urban data and extract useful information, without requiring input from an expert. The 
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research will thus investigate methods for the acquisition and analysis of physiological 

data in the urban space which can inform our understanding of the impact of the urban 

environment on health, and promote urban and individual health and wellbeing. 

While the review in section 1.2 showed that some previous studies have also sought to 

answer the same broader research question, this study adopts a novel approach by 

attempting to cover the following gaps identified in section 1.2.5:  

- Lack of a methodology for collection and analysis of physiological data that can 

act for the benefit of multiple stakeholders at the user and city level 

- Lack of research on methods for individual stress prediction during outdoor 

walking and pathfinding for reduction of exposure to stressors 

- Lack of a theoretical and conceptual framework describing the possible links 

between urban environment, activity and physiological responses  

- Lack of analysis of physiological responses in different contexts and during free-

living activities  

- Lack of incorporation of the effect of movement in the analysis of physiological 

data in the outdoor space 

- Lack of efficient methods for the collection of contextual data 

The primary aim of this study is the construction of a methodology for the analysis of 

physiological responses in the urban space. The methodology seeks to inform and assist 

not only urban planners but also the citizens that generate the data. It should be 

applicable in a research context as well as a real-world setting and respond to different 

needs at the city and individual level. The focus will be on physiological data generated 

from wearables such as wristbands. 

The study will attempt to address the following objectives to allow the synergy between 

the different stakeholders: 

(1) To integrate the user-generated physiological data with other geotagged open 

data related to urban health, using scalable methods 

(2) To establish methods for deriving patterns of physiological data responses and 

interpreting them at a user and a city level  
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(3) To identify how the acquired information can be linked to computational models 

that can promote urban and individual health and wellbeing 

As defined in section 1.1, the study operates in the context of urban health. It attempts 

to enrich our understanding of the geospatial dimension of health by approaching it as a 

concept which should act simultaneously towards the benefit of both the user and the 

city. The primary focus will be on interpreting physiological responses in relation to 

stress, as this approach is more relevant in the urban health context. The research thus 

focuses on a specific area within the broader agenda of urban health; namely, the 

identification of methods for capturing and analysing physiological responses to urban 

stressors. The emotion-oriented approach will not be explored in this thesis, but this 

choice does not diminish its importance, as emotions encompass the subjective 

dimensions of experience, that are useful for understanding the interactions between 

people and space.  

The computational methods that will be examined are relevant to the potential future 

applications presented in section 1.2.4. At the city scale, the aggregation of 

physiological responses can assist in identifying clusters of stress that may need 

intervention. At the individual level, physiological data collection and analysis can be 

used to provide a personalised analysis of the impact of context on stress and emotions, 

identify the least stressful route, and predict physiological responses based on spatial 

and environmental data. The computational methods that will be considered will be 

thus focused on hotspot and cluster analysis of physiological responses, individual stress 

analysis and prediction, and pathfinding for reduction of exposure to stressors, 

following the points discussed in section 1.2.4. 

The study acts as a pilot project that will pave the way towards large-scale experiments 

in this area. It focuses on developing the conceptual and technical aspects of the 

components of the methodology and tests them in small-scale experiments. 

Its main contribution is that it supports the construction of tools for individuals who 

want to understand how different routes might affect their physiological responses, and 

have a calm experience while walking in the urban environment. It can also help 

researchers identify which parts of the city are associated with an increased intensity of 
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physiological responses, possibly indicating increased stress levels. The construction of a 

theoretical and conceptual framework supporting the construction of the methodology 

also enriches current research on the links between urban environment, activity and 

physiological responses. The research also involves the organisation of experiments for 

data collection (as it will be explained in detail in the next chapter, section 2.4) which 

generate new knowledge related to the broader research question. Other 

methodological and practical contributions include the development of methods for 

analysing how movement may influence physiological responses as a physical stressor, 

and their incorporation in the designed methodology; also, the development of 

methods for identifying physical and psychological stressors from contextual data, 

based on freely available OpenStreetMap and Point of Interest data, as an alternative to 

image-based analysis which was used in previous studies. A detailed presentation of the 

contributions is presented in Chapter 10 (section 10.3). 

The design and testing of each component of the methodology also involved the 

development of scripts in Python. The scripts for each component can be found in the 

repository2 created for this thesis in GitHub by the author. 

1.4. THESIS STRUCTURE 

The thesis is organised in two parts; The first part provides the necessary theoretical 

background and paves the way towards the construction of the methodology. The 

second part, starting from Chapter 5, presents the methods related to each component 

of the proposed methodology. More specifically, Chapter 5 outlines the methods for the 

analysis of physiological responses at an individual level. Chapter 6 moves the focus to 

the city scale, showing the results of the analysis of data collected in a series of outdoor 

experiments. The relationship between the contextual and activity data and 

physiological responses will be investigated in this chapter. Chapter 7 proposes 

methods for spatial analysis of physiological responses. Chapter 8 shifts the discussion 

back to the individual level, proposing methods for predicting physiological responses 

based on contextual and activity data. Chapter 9 proposes methods for route 

 
2 https://github.com/ddritsa/PhD-Thesis-repository 
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optimisation for minimisation of exposure to stressors. The presented models can 

embed physiological responses from one or more users, if available. Finally, Chapter 10 

concludes the presented work by discussing the findings and suggesting further 

research directions. 

A more detailed presentation of the content of each chapter follows below, starting 

from Chapter 2. 

⎯ Chapter 2 presents the proposed methodology for collection and analysis of 

physiological data based on urban and contextual data. The methodology 

incorporates three components: (1) the analysis of physiological data at an 

individual level, (2) the hotspot analysis of physiological responses at a city scale, 

and (3) the utilisation of the collected data in models for prediction of 

physiological responses, and pathfinding methods for the identification of the 

least stressful route. The research design is then outlined, presenting the steps 

taken to address the identified objectives and the experiments designed for data 

collection.  

 

⎯ Chapter 3 starts from a discussion of fundamental physiological functions 

related to daily activities, aiming to understand the connections between 

different concepts and functions such as information processing, stress, and 

physical activity. The physiological signals discussed in this study are also 

introduced here. 

After that, the focus shifts from the body to the urban environment, to 

understand which urban characteristics may affect physiological responses by 

encouraging different kinds of physical activity or acting as psychological 

stressors. Urban theories on neighbourhood vitality, stimulation and restoration 

are discussed, showing how the urban domain becomes a vessel for the 

expression of the fundamental physiological concepts outlined at the beginning 

of the chapter. The chapter ends with the presentation of a theoretical and 

conceptual framework for the selection of contextual and activity-related 

features that may influence physiological responses. The features which are 
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identified here as significant in relation to physiological responses will be later 

used as input in the data analysis model. 

 

⎯ Chapter 4 outlines appropriate methods for the analysis of temporal and spatial 

data. The primary focus is on time-series and spatial data which are used in this 

research, such as speed, accelerometer, heart rate, electrodermal activity, street 

network and Point of Interest (POI) data. This chapter provides the necessary 

background in terms of algorithmic approaches related to the research and 

outlines a conceptual scheme for physiological, movement and spatial data 

fusion. This scheme is the basis for the methods presented in Chapter 5.  

 

⎯ Chapter 5 describes the methods related to the first component of the 

methodology presented in Chapter 2. The outlined methods involve the data 

collection, the analysis of movement, physiological and contextual data, and 

their fusion based on the literature reviewed in Chapter 4. An essential part of 

this process is the construction of the spatial database used for contextual data 

extraction, based on POI and OpenStreetMap (OSM) data. The features which 

were identified as relevant in the conceptual framework of Chapter 3 are 

extracted and incorporated in the analysis.  A method is also proposed for the 

classification of physiological responses based on the underlying contextual and 

activity data. The method is based on classifying the underlying parameters as 

potential physical or psychological stressors.  

The method is, then, demonstrated using data collected during one of the 

experiments conducted in Sydney. Data from selected users are analysed, 

mapping the physiological responses occurring over a route and the built and 

environmental features which the user encountered. The physiological 

responses are matched to different contextual stimuli or changes in activity and 

other features and discussed accordingly. This part of the research will assist 

individuals in understanding how different parameters may affect their 

physiological responses. Researchers can also use the presented methods 
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(particularly the data fusion model) to analyse physiological responses collected 

in the context of outdoor experiments. 

 

⎯ Chapter 6 extends the work presented in the previous chapter by using the data 

fusion model described in Chapter 5 for the analysis of the data collected during 

outdoor experiments in Sydney and Zürich. While the data fusion scheme also 

includes heart rate analysis methods, the focus will be on electrodermal activity 

data analysis from this chapter and onwards. The chapter first outlines the 

characteristics of the data collected in the different experiments. Then, it applies 

statistical analysis methods to investigate the relationship between the 

physiological responses and the movement-related and contextual features 

used in the data fusion scheme. This analysis enriches the presented 

methodology by providing evidence regarding the relationships between the 

different features and shows that the conceptual framework presented in 

Chapter 3 was in the right direction. The chapter also demonstrates that the 

data fusion scheme presented in Chapter 5 is applicable in different contexts.  

 

⎯ Chapter 7 presents the methods related to the second component of the 

proposed methodology. The presented work builds on previous studies that 

used hotspot analysis to identify clusters of physiological responses. It extends 

previous approaches by adding methods for separation of the derived hotspots 

of physiological responses into clusters. Methods for analysis of the importance 

of each cluster are also added, and for the extraction of its properties. This part 

of the research will help urban planners and researchers identify which parts of 

the city are associated with an increased intensity of physiological responses, 

possibly indicating increased stress levels. 

 

⎯ Chapter 8 presents methods related to the third component of the proposed 

methodology. This part of the work explores algorithms for predicting the 

physiological responses during a route based on the underlying contextual and 

activity-related parameters. Different machine learning models are tested 
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against performance metrics related to the accuracy of the prediction. Data 

collected in Sydney and Zürich are used to train and test the models. The 

proposed methods can be used by individual users who want to understand how 

different routes might affect their physiological responses but do not have the 

required equipment. 

 

⎯ Chapter 9 presents methods for route optimisation towards finding the least 

stressful route. The conceptual framework proposed in Chapter 3 is used to 

select relevant features that may affect physiological responses. Network 

analysis is used for finding paths that satisfy the selected criteria. The spatial 

database described in Chapter 5 is used to extract the features and incorporate 

them into the network.  Existing hotspots of physiological responses are also 

inserted in the network. Different options are explored for finding the optimal 

route and compared against the benchmark (the shortest route based on travel 

time) in terms of the exposure to stressors. Individuals can use these methods to 

minimise their encounters with potentially stressful urban features and have a 

calmer experience while walking in the urban environment.  

 

⎯ Chapter 10 discusses the overall work by revisiting the research question and 

evaluating how the findings of each chapter contributed to responding to the 

defined objectives. After elaborating on the research contributions and 

limitations, the thesis concludes with outlining future research directions.  
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2 
RESEARCH DESIGN 

2 | RESEARCH DESIGN 

2.1. INTRODUCTION 

The previous chapter discussed the emergence of wireless activity trackers that collect 

physiological data as an example of smart technologies that can promote individual and 

urban health. The chapter showed that there is potential in extending existing methods 

for physiological data analysis in the urban domain in a way that maximises the benefits 

at the individual and the city scale. The review also identified several issues related to 

theoretical, methodological and practical aspects.  

This chapter presents a methodology for collection and analysis of physiological data in 

the urban environment. The methodology is designed to address the aforementioned 

research objectives and the identified issues. The research design is subsequently 

described by outlining the experiments developed for data collection. 

2.2. THE METHODOLOGY FOR COLLECTION AND ANALYSIS OF 
PHYSIOLOGICAL DATA IN THE URBAN SPACE  

Following the research aims and objectives presented in section 1.3, a conceptual 

methodology is proposed for the collection and analysis of physiological data in the 

urban environment (Figure 2.1).  
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Figure 2.1. The components of the proposed methodology 

The methodology is composed of the following three components: 

(1) Collection and analysis of geotagged physiological data at a user level:  
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a. Analysis and classification of acquired physiological responses, based on 

the extraction of movement patterns of individuals in the urban 

environment and analysis of urban and environmental features. 

(2) Analysis of geotagged physiological data at a city scale: Identification of spatial 

clusters which generate similar physiological responses, indicating stressful areas 

where intervention is needed.  

(3) Utilisation of the collected data in route optimisation and predictive analysis at a 

user level: 

a. for individual route optimisation  

b. for prediction of physiological responses based on contextual 

characteristics  

Component 1 involves collecting individual physiological data, followed by their 

integration in a database composed of other geotagged data sets (movement, urban 

and environmental data), and analysis at an individual level. This stage includes a data 

fusion scheme for the different data sets and leads to a classification of physiological 

states (i.e., high/low physiological arousal or stress) accompanied by information on 

movement and the presence of different urban or environmental features at each state. 

Particular emphasis here is on identifying different movement phases which may be 

related to physiological responses and classifying them accordingly. This step will cover 

the gap identified in the previous chapter regarding the lack of incorporation of the 

effect of movement in the analysis of physiological responses. 

Component 2 involves examining the routes at a city scale for the identification of 

clusters of intense physiological responses. The workflow shall involve hotspot analysis, 

cluster separation, identification of cluster significance and analysis of the properties of 

each cluster. This component will assist in understanding which clusters of the city are 

creating different physiological responses, and organising interventions based on that.  

Component 3 involves utilising the analysed information at an individual level by 

identifying the least stressful route and predicting physiological responses based on 

spatial and environmental data. 
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In terms of the connections between components and different stakeholders, 

component 1 will be assistive at a city scale by being the primary input for component 

2; at the same time, it can be used for individual analysis of physiological responses 

based on contextual data, assisting single users in understanding how their interaction 

with the urban environment affects their physiological responses. Component 2 is 

relevant for researchers and local planning authorities, while component 3 is beneficial 

for individual users. 

2.3. LINKING THE PROPOSED METHODOLOGY WITH THE IDENTIFIED ISSUES  

While the primary aim of this work is the design of the methodology for collection and 

analysis of physiological data in the urban environment, this research is still connected 

to the broader research question of how does the urban environment affect 

physiological responses. More specifically, the proposed methodology will incorporate 

solutions to some of the issues related to the broader research question, as identified in 

Chapter 1 (section 1.3). A summary of these issues is presented below: 

(1) Lack of a theoretical and conceptual framework describing the possible links 

between urban environment, activity and physiological responses  

(2) Lack of analysis of physiological responses in different contexts and during free-

living activities  

(3) Lack of incorporation of the effect of movement in the analysis  

These points are relevant for the objective of this work and will inform the design of the 

methodology. The construction of the theoretical and conceptual framework is 

necessary for understanding which urban, environmental and movement-related 

features should be included as contextual parameters in the model. The organisation of 

experiments during free-living activities and in different contexts is also necessary for 

testing if these features have the same effect in different circumstances, and taking this 

into account in the designed methodology. The possible effects of movement also must 

be understood, before constructing a model for classification and interpretation of 

physiological responses according to their source. The investigation of these points is 

essential for ensuring that the designed methods are generalisable to a certain degree.  
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The design of all methods will be shaped having in mind the issues related to scalability 

that were identified in Chapter 1 (section 1.2.5.2). These issues are summarised below: 

(1) Heavy reliance on photos and videos as sources of contextual data 

(2) Lack of a streamlined, scalable and computationally efficient approach that can 

be applied to large-scale studies without requiring significant manual effort 

This study will attempt to solve these issues by exploring the potential use of existing 

spatial databases such as OpenStreetMap (OSM) and Point of Interest (POI) data as an 

alternative to image-based analysis. The utilisation of POIs and OSM network data in the 

analysis of physiological data, without the inclusion of any other source for the 

provision of contextual data, is a novel approach. The choice of POI and OSM data for 

this purpose is based on their online availability and nearly global coverage. These 

characteristics will ensure the scalability and applicability of the methodology in 

different environments, in a way that would not be possible with image-based analysis. 

The inclusion of OSM data will involve the integration of topological street network 

data. This information will be essential for the construction of pathfinding models in 

component 3, and other parts of this research. 

The conceptual design of the methodology will be followed by testing and refining the 

different methods with the help of practical experiments, which will be presented in the 

next section. A programming language (Python) will be used for the construction of all 

the methods, following a componential logic. This solution allows arranging the 

execution of all the necessary tasks as components of a streamlined process.  

2.4. RESEARCH DESIGN 

2.4.1. OVERVIEW OF RESEARCH STRATEGY 

The research strategy for addressing the research aims and objectives involves tackling 

different components of the methodology. The strategy is organised in three main steps 

(points 1-3 in the scheme presented below): (1) literature review, (2) experiment design 

and analysis of the collected data, and (3) construction of the components of the 

methodology. As the research is primarily focused on constructing a new methodology, 
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the main objective of the designed experiments is to test and refine the methodology 

by collecting data from multiple users. The second aim is the investigation of some 

parameters linked to the construction of the methodology. The scheme presented 

below outlines the actions related to each step of the research strategy: 

1) Literature review 

a) The first part of the literature review (Chapter 3) will be dedicated to identifying 

possible links between urban environment, activity and physiological responses. 

The product of this phase will be a theoretical and conceptual framework that 

will act as the backbone of this research. 

b) The second part of the literature review (Chapter 4) will lead to the 

identification of appropriate methods for the analysis of the multiple data 

streams. The product of this phase will be the creation of the data fusion 

scheme. 

2) Experiment design and analysis of data collected during different activities for the 

following purposes: 

a) Primary goal: To build the designed methodology  

The research will utilise the data collected during the different experiments to 

support the design and calibration of algorithms for different steps of the 

methodology. Most of the tasks of this step require the construction of a 

ground-truth dataset for the application of supervised machine learning 

algorithms. The required tasks are the following: 

i) Construct the activity and EDA artefact classification algorithms that will be 

used in the data fusion model 

(1) Collect labelled activity data for training the activity classification model  

(2) Collect EDA data and use them for training an EDA artefact classification 

model  

ii) Collect data for the development of the cluster identification algorithm 

iii) Collect data for training the machine learning model for prediction of 

physiological data 

b) Secondary goal: To test the assumptions of the conceptual framework: 
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This part of the research will involve inferential analysis (Chapter 6) for the 

investigation of the relationship between features of the urban environment, 

activity and physiological responses, based on the conceptual framework 

presented in Chapter 3.  

Chapter 3 will show that there is strong evidence to support the presented links. 

However, some effects may manifest differently during unrestricted outdoor 

movement and under specific circumstances, or have a different magnitude 

based on the context. The inferential analysis in this step will, therefore, assist in 

obtaining a better understanding of these relationships in real-world 

circumstances. This analysis will also be highly significant in the context of the 

broader research question. It will be used to build and refine the model for 

classification of physiological responses in component 1 and the pathfinding 

model of component 3.  

This phase also involves testing the assumption that POI data can be used as an 

indicator of the stimulus-related complexity of an environment. Chapter 3 will 

provide the necessary theoretical background for this argument. This analysis is 

presented in Appendix A, and it acts as a supportive step for this research. 

3) Construction of the components of the methodology  

This is the final step of the research, where the developed theoretical and 

conceptual framework and the collected data will be used for the following 

tasks:  

a) Construction of the data fusion model and the scheme for classification of 

physiological responses according to different stressors (component 1 of the 

methodology) 

b) Construction of a workflow for cluster analysis of physiological responses 

(component 2 of the methodology) 

c) Construction of a machine learning model for prediction of physiological 

responses based on contextual and movement data (component 3 of the 

methodology) 

d) Construction of a pathfinding model, for finding a route that minimises exposure 

to stressors (component 3 of the methodology) 
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e) Demonstration of the applicability of the designed methods in different contexts  

The overall research strategy is presented in Figure 2.2.  

 

Figure 2.2. The research strategy 
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The following section will elaborate on the experiments that were designed to support 

the outlined research strategy. 

2.4.2. EXPERIMENT DESIGN 

The research involved a combination of controlled, semi-controlled and uncontrolled 

experiments for data collection. This definition is based on the degree of control over 

the parameters that can affect the studied variable (Kircher et al. 2017). The semi-

controlled experiment is a hybrid between the two other setups; in this study, it 

involved asking the participants to walk on a predefined outdoor route.  

The inclusion of the three different setups was necessary due to the different 

requirements of each task in the research strategy. A set of experiments was organised 

accordingly. These experiments were conducted in Sydney after obtaining ethics 

approval (UTS HREC REF NO. ETH19-3752). Secondary data were also used from an 

existing database with publicly available data. This database included data collected in 

Zürich in the context of a similar project (ESUM 2018). The dataset was used after 

obtaining ethics approval (UTS HREC REF NO. ETH20-5253). The letters of approval for 

the two ethics applications are provided in Appendix D (section D.1 and D.2). Figure 2.3 

presents the different datasets, classifying them according to the setup and 

demonstrating the relationships between the studied populations. The same data were 

used for different purposes, such as inferential analysis, prediction of physiological 

responses, hotspot analysis and other tasks, as it will be explained in Chapters 5 to 9. 

The experiments conducted in Sydney involved two phases (A and B). Phase A involved 

a controlled and a semi-controlled experiment, and Phase B involved an uncontrolled 

experiment. All participants in Sydney completed Phase A; most of them also completed 

Phase B. The primary targets for recruitment were people affiliated with UTS 

(research/master students, working staff, and their family members and friends).  



 

49 
   

 

Figure 2.3. Presentation of the datasets used in this study.  

A brief description of the conducted experiments follows below.  

 

⎯ Phase A involved indoor and outdoor tests. This phase started with an indoor 

experiment where all participants were given two wristbands (FitBit Charge 2, 

Empatica E4) and were asked to perform the same set of activities (moving, 

sitting, standing, talking) for a specific time. The indoor test was followed by an 

outdoor experiment where all participants walked on a predefined route around 

UTS, for approximately 40 minutes. A map of the route is presented in Figure 

2.4. After that, the indoor test was repeated. The data collection was organised 

separately for each participant at their convenience. After each test, the users 

were asked to complete a questionnaire regarding their perceived experience 

during the test, using the PANAS scale to measure the affect (Watson et al. 

1988). The questionnaire is presented in Appendix D (section D.4). The total 

time needed to complete all the activities of Phase A (controlled indoor and 

semi-controlled outdoor activities) was approximately 1.5 hrs. 
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⎯ Phase B involved uncontrolled data collection during the participants' daily 

routine. The participants were asked to use the two wristbands and their 

smartphone for data collection while walking outside. This phase lasted seven 

days. A questionnaire and a note-taking component in the form of a journal was 

also used for qualitative data collection.  

As for the data collected in Zürich (Ojha et al. 2019), the setup was very similar to the 

outdoor test of Phase A in Sydney. The participants were again following a predefined 

route in a local neighbourhood.  

 

Figure 2.4. The predefined route for the outdoor test in Phase A of data collection 

A more detailed description of Phase A (focused on the outdoor route) and B of the 

experiments in Sydney will be provided in Chapter 6. The protocol followed in the 

indoor tests in Phase A is outlined in detail in Appendix C (section C.1.1). The participant 

information sheet, which was used to explain the procedure to the prospective 

participants, is provided in Appendix D (section D.3). 

The note-taking component in Phase B was used as a form of self-reporting during the 

free-living activities. The participants were asked to keep short notes at the end of each 

day regarding the places that they encounter during their routes. The inclusion of these 

observations and notes was primarily designed for identifying any unexpected incidents 
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that might influence the results. The notes were also inspected for the identification of 

any useful information regarding the user experience. The guide given to the 

participants for using the equipment and keeping notes during the free-living activities 

is presented in Appendix D (section D.5). 

The two wristbands (FitBit Charge 2, Empatica E4) which were used in the experiments 

conducted in Sydney can be viewed in Figure 2.5. They were chosen based on the 

following parameters: the data that they capture, the cost, the ease of measurement 

and use by the participants, and the ease of accessing the captured data. The FitBit 

Charge 2 was chosen as an example of an affordable consumer activity tracker which 

captures HR data. It can also be connected to Strava, which is a third-party application 

that captures the movement of its users using GPS data, and allows the integration of 

different consumer activity trackers. The fact that this device can be connected to 

Strava eases the process of collecting the captured data automatically, using only the 

user credentials (email and password), as explained in Chapter 5 (section 5.2.2). 

However, the FitBit Charge 2 does not capture EDA data, which can offer more 

information regarding the changes in stress levels compared to having only the HR data. 

The Empatica E4 was chosen as a device offering the measurement of EDA and 

accelerometer data with high accuracy (see section 1.2.5.3) while also capturing heart 

rate data. However, its cost is much higher, thus lowering its market reach. The two 

devices do not capture GPS data, but this step can be easily covered in both cases by 

using the smartphone of the participant. 

 

Figure 2.5. The wristbands used in the study (left: FitBit Charge 2; right: Empatica E4) 
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Due to these reasons, it was initially decided to use both wristbands in order to capture 

all the desired parameters (HR, EDA, GPS, accelerometer data) and test the capacity of 

the algorithms to be used by devices of different degrees of affordability. The 

participants were asked to wear the two wristbands simultaneously, one on each hand.   

As for the role of each experiment in the overall research plan, the indoor tests in Phase 

A were primarily designed to support the construction of the EDA artefact recognition 

and activity classification algorithms in step 2a of the research strategy presented in 

section 2.4.1. These required the collection of data during a designed sequence of 

activities, to act as ground truth data. A controlled experiment was the most 

appropriate design for this case, as the performed activities had to be timed and 

labelled.  

All the outdoor data from Sydney and Zürich were used for the calibration of the cluster 

analysis methods. Semi-controlled and uncontrolled experiments were the most 

suitable for this purpose, as the designed methods had to be constructed based on data 

collected in the urban space. They also had to be applicable in real-life circumstances. 

The same applies to the collection of data for the prediction of physiological responses. 

The inferential analysis related to the conceptual framework (step 2b of the research 

strategy) included the analysis of all the available data, to study the effect of different 

features on physiological responses under diverse circumstances. The primary focus 

was on the data collected in the urban space, but the data from the indoor experiments 

were analysed as well, with the results presented in Appendix C. The inclusion of data 

from two different contexts was invaluable for the inferential analysis, but also for 

ensuring that the designed methodology is not only applicable in a specific setting. 

The data collection for the experiment in Sydney was conducted between July and 

November 2019. 18 participants completed the indoor and outdoor controlled and 

semi-controlled activities. From this group, 15 also participated in the uncontrolled data 

collection during free-living activities. One participant was excluded from the data 

analysis, as they exhibited very low activity in terms of EDA responses, producing very 

few responses above the 0.05μS threshold during several hours of data collection. The 

final sample size for the data collected in Sydney was thus 17 for the controlled and 
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semi-controlled activities and 14 for the uncontrolled activities (Figure 2.3). The dataset 

collected in Zürich contained data from 30 participants; among those, 20 generated 

usable data without artefacts (Figure 2.3). Figure 2.6 displays the demographic 

characteristics (age and gender) for the data collected in Sydney. The figure does not 

include the same information for the data collected in Zürich, as there was no available 

gender data. The table with the age data for Zürich (named ‘Pre_Post Survey’ in the 

ESUM repository; ESUM 2018) also had some errors (two participants had the same ID 

but different demographic information and one participant ID was missing). Therefore, 

it was decided not to report detailed information for the age data for the Zürich 

dataset. However, all the participants in the Zürich dataset were between 20 and 51 

years old, according to the table mentioned above, with most of them aged 20 to 39 

years. The selected participants in the Zürich dataset are a subset of this age group. 

 

Figure 2.6. Demographic characteristics for the data collected in Sydney 

While the sample size is small in each of the analysed datasets, the previous chapter 

showed that studies that measure physiological responses in the urban environment 

usually have a small number of participants (median=18). From those studies, those 

that included inferential analysis had a similar sample size (median=20). Only four 

studies had more than forty participants.  
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The sample size of this study is, therefore, similar to other studies related to 

physiological responses in the urban environment. The scope is limited to studying a 

relatively small number of participants, and the results will reflect the characteristics of 

the studied population. The inferential analysis presented in Chapter 6 may be 

vulnerable to the type II error, and the collected data cannot cover all the possible 

situations in terms of context and diversity in the participants. The limitations regarding 

the external validity of the study will be considered in the interpretation of the results. 

However, the primary focus of the study was on the construction of the methodology, 

and not on the inferential analysis. The results will still be helpful despite the known 

limitations and reflective of similar contexts. They will also be very assistive towards the 

future organisation of collaborative studies among different countries. The study will 

act as a pilot project that provides a proof of concept and showcases its potential. The 

scope of the project is limited to testing the viability of the developed methods and 

solving the existing challenges. These steps are essential for confirming that the overall 

concept is sound before moving to experiments on a larger scale.  

Another issue which should be discussed here concerns the difficulty to collect data 

with the FitBit Charge 2. After the experiment commenced, it was discovered that the 

smartphones of some participants could not connect to the FitBit Charge 2 wristband. 

This was due to a recent upgrade in the smartphones’ Android software. Due to this 

issue, the HR data from the FitBit devices of approximately half of the participants could 

not be accessed. The connectivity issues of the FitBit Charge 2 wristband, and the 

choice of using data from two wristbands, have some repercussions. First, some 

components of the designed algorithms are more useful for users of the Empatica E4, as 

the FitBit Charge 2 lacks some data layers (specifically EDA data). However, most FitBit 

devices also collect accelerometer data, which can be accessed using the FitBit API, and 

then used to predict the EDA data (which is currently unavailable in FitBit devices and 

some other commercial activity trackers). Chapter 8 is devoted to the presentation of 

methods for this type of predictive analysis in detail. Second, the algorithms for HR 

analysis were tested using the HR data from the Empatica E4 and any available data 

from the FitBit devices. The methods involving HR analysis need more calibration, as 

explained in Chapter 5 and 10. The inferential analysis was also conducted using only 
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EDA data from the Empatica E4 wristband, as explained in Chapter 6. These issues are 

discussed in detail in the next chapters and in section 10.4, which presents the research 

limitations.  

2.5. CONCLUSION 

This chapter presented a methodology for collection and analysis of physiological data 

in the urban environment. The methodology was designed as a response to the main 

challenges and prospects identified in Chapter 1, and it was presented at a conceptual 

level. 

The research design was then described, consisting of literature review on topics 

relevant to the construction of the methodology, analysis of data collected during 

experiments, and construction of the methods related to each component of the 

methodology. A series of experiments in Sydney were designed to support the research. 

The experiments involved data collection during a controlled indoor setup, a semi-

controlled setup (walking on a predefined route) and an uncontrolled setup (data 

collection during free-living activities). Publicly available data collected in Zürich were 

also acquired.  

The next chapters (Chapter 3 and 4) will present the results of the specialised literature 

review, paving the way for the detailed presentation of each component of the 

methodology from Chapter 5 and onwards.  
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3 
UNDERSTANDING THE CONNECTION BETWEEN URBAN FEATURES 
AND PHYSIOLOGICAL RESPONSES: A REVIEW 

3 | UNDERSTANDING THE CONNECTION BETWEEN URBAN AND ENVIRONMENTAL 

FEATURES AND PHYSIOLOGICAL RESPONSES: A REVIEW 

3.1. INTRODUCTION 

As shown in Chapter 2, the links between urban environment, movement and 

physiological responses are not well understood. Most studies up to now analysed the 

effect of green on physiological responses. For this research, it is essential to identify 

contextual features which may affect physiological responses, and map them.  

Furthermore, existing theories from the field of environmental psychology, which 

connect environmental parameters to stress and emotions (Kaplan & Kaplan 1989; 

Ulrich et al. 1991) are mostly focused on the analysis of the restorative capabilities of 

the environment while sitting. Since this research is focused on the measurement of 

physiological responses during outdoor walking, it is essential to understand the 

potential effects of movement on physiological responses, and include them in the 

analysis.  

This chapter aims to cover these gaps by providing a theoretical background on the 

process of generation of physiological responses. As explained in the previous chapter, 

this chapter outlines the theoretical background which supports the design of the 

proposed methodology. This work primarily supports component 1 (Figure 3.1).   
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Figure 3.1. The aim of the chapter and the connection with the conceptual methodology. 

The chapter is organised as follows: section 3.2 situates physiological responses within 

broad concepts related to health. This part of the review examines the underlying 

bodily mechanisms related to physiological arousal, stress and physical activity. Section 

3.3. describes the impact of stress, physical activity and other factors on the examined 

physiological signals (HR and EDA). The focus then shifts to the study of the urban 

environment (section 3.4) and its role in modulating physiological responses.  

After outlining relevant theories from studies on physiological arousal, stress research 

and environmental psychology, a theoretical framework is presented in section 3.5. The 

theoretical framework assists in categorising features of the urban environment in 

terms of their potential effect on physiological responses. A conceptual framework is 

then presented, outlining the specific urban and movement-related features that this 

work will examine, and the possible links between these features and physiological 

responses. The chapter ends with a discussion of the presented work and the future 

steps in section 3.6.  
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3.2. INFORMATION PROCESSING, STRESS AND PHYSICAL ACTIVITY  

This section commences with a brief review of fundamental bodily processes associated 

with physiological responses (Figure 3.2). The concepts which will be examined involve 

information processing, stress and physical activity. 

 

Figure 3.2. Schematic diagram situating the topics explored in section 3.2 in relation to the proposed 

methodology 

3.2.1. SENSORY PROCESSING, PHYSIOLOGICAL AROUSAL AND THE 

AUTONOMIC NERVOUS SYSTEM 

The autonomic nervous system (ANS) plays a significant part in the regulation of various 

bodily functions. The ANS consists of the sympathetic and the parasympathetic system. 

The sympathetic system mobilises the system to prepare it before action, while the 

parasympathetic system assists in restoration from stressful activity (Ulrich et al. 1991), 

among other functions. To decide which system should dominate, the body analyses 
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endogenous and exogenous information received in the form of sensory input. When 

humans interact with the environment, they receive such information from various 

sources of stimulation, such as light, sound or tactile vibration. These are perceived by 

the organism through systems which process sensory information, such as vision and 

proprioception (Kleckner et al. 2017). 

The functions of the autonomic nervous system are intertwined with daily activities. A 

route to a nearby park, for instance, involves walking, looking at street signs and shop 

windows and noticing attractive or aversive smells, while paying attention to cars, 

pedestrians passing by and traffic lights. During this experience, the brain tries to 

allocate resources optimally, responding to the various occurring changes in bodily and 

environmental state. This process includes various steps, such as perception, 

information processing, and the behavioural outcome. This experience is accompanied 

by changes in various physiological signals, such as HR and EDA.  

The sympathetic nervous system plays a significant role in modulating these changes, 

responding with short-term, reflex-like responses, or long-lasting variations. The 

excitation of the central nervous system facilitates these operations, from perception to 

behavioural outcome (Boucsein & Backs 2009). Studies refer to this phenomenon as 

arousal. This term has been used to describe experiences which might be perceived in a 

positive, neutral or negative way. Such experiences involve situations that create 

excitement, activation, enhanced attention, threat and stress, or ‘freezing’ when facing 

unexpected circumstances.  

Early approaches to this topic approached arousal as a unidimensional phenomenon, 

where similar situations are expected to elicit similar changes in the physiological 

markers associated with it. According to Duffy (1951), for instance, physiological arousal 

is the mobilisation of energy which is stored in the tissues to be used in cognitive 

processes and movement. Duffy theorized that this energy is related to the perceived 

effort required to prepare and complete a task; also, that it affects the reaction to 

stimulation in terms of time and sensitivity. The concept of a unitary (or unidimensional) 

arousal though elicited doubts (Boucsein 2012), because measures of physiological 

arousal (such as EDA and HR) seemed to have different behaviour in different 
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circumstances of activation, and low correlation, changing in different directions (Taylor 

& Epstein 1967). Following these concerns, more complex theories replaced the 

concept of a unitary arousal model. These have been analysed in detail in a recent 

review of unidimensional and multidimensional arousal theories (Boucsein 2012). 

Boucsein proposed a model which builds on previous approaches and suggests the 

existence of the following four arousal systems: The affect arousal system, which is 

activated when there is a change in stimulation, or if a stressful or emotionally 

significant situation occurs, and triggers orienting and defensive responses; The 

preparatory activation system, which prepares the body for intended movement; The 

effort system, which can be activated in situations requiring increased attention or 

cognitive load; and the general arousal system, which reflects the generalised state of 

activation and is associated with mostly physical strain.   

The ability to understand physiological changes is known as interoception.  The 

physiological changes related to arousal may be associated with positive or negative 

emotional states, or may not be perceived by an individual. Self-reports of experiences 

of arousal do not always coincide with physiological markers of arousal, and a measure 

of interoceptive ability is the correspondence between objective physiological changes 

and subjective self-reports of experiences of arousal (Kleckner et al. 2017). The link 

between physiological measures and behavioural, cognitive and emotional changes is 

the subject of the domain of psychophysiology (Boucsein & Backs 2009). In this domain, 

physiological responses are grouped under two categories: responses to stimulus-

related events, and indicators of a change in the general state of the organism 

(Boucsein 2012). Examples of stimulus-related events are the concepts of orienting, 

habituation and conditioning, while the generalised states involve states of general 

arousal, emotion and stress. 

The following sections will provide a brief description of concepts and states related to 

physiological arousal, starting from the response of the organism to stimulus-related 

events (the orienting response). The discussion will then move to stress theory; physical 

activity will also be discussed in the end in relation to the other concepts. 
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3.2.2. THE ORIENTING AND DEFENSIVE RESPONSE  

The immediate response of the organism to changes of stimuli is known as the 

‘orienting response’ (Boucsein 2012). Humans find themselves in this situation in many 

circumstances; for instance, the perception of a sudden noise coming from a bus is an 

event that can capture the attention of a pedestrian and cause an orienting response. 

The investigations of Sokolov (1963) have been influential in studies on the orienting 

response. According to the comparator theory of Sokolov, information from the stimuli 

is processed and compared with stimulus patterns that are already known to the 

organism. Novel information elicits an orienting response, which is diminished as this 

stimulation pattern is repeated; an effect which is known as habituation. 

The orienting response is a part of the complex mechanisms involved in information 

processing, and it is associated with an attentional shift which may be voluntary or 

reflexive (Huertas et al. 2011). The attentional system evaluates environmental stimuli 

in order to determine if they have a positive or negative value. When a situation is 

evaluated as threatening, attention is shifted towards important stimuli, and irrelevant 

features are filtered out. This process is known as selective attention (Pilgrim et al. 

2010). Orienting responses can appear when the organism perceives any change in the 

environment. When the presented information is perceived as threatening, this 

generates a physiological reaction known as the defensive response. Defensive 

responses are associated with an observed increase in response measures after 

repeated stimulation, known as sensitisation instead of habituation.  

After habituation, an individual may experience an orienting response again, if there is 

any change in various factors related to the stimulus, such as novelty, intensity, 

modality, sequence, frequency or complexity (Boucsein 2012). 
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3.2.3. STRESS 

3.2.3.1. DEFINING STRESS 

The concept of ‘fight or flight’ has been used to describe stress since it was popularised 

by Cannon (1929, 1939).  The evolution of theoretical models of stress began with 

Cannon’s concept of ‘homeostasis’. This term was used to describe the idea that the 

body has a set of acceptable values for physiological variables such as core 

temperature. In this model, deviations from the acceptable values are viewed as a 

threat to bodily stability (homeostasis). This concept later evolved, leading to the 

generation of the currently well-established ‘allostatic load’ model, proposed by 

McEwen and Stellar (1993). The model is based on the concept of ‘allostasis’. This term 

was proposed by Sterling and Eyer (1988) instead of ‘homeostasis’, to describe that 

rather than one set of physiological variables associated with a stable state, there are 

many ‘steady states’ associated with different functions, such as movement or 

digestion. A change from one state to another means an alteration in the expected set 

of physiological variables. Stress-related mechanisms anticipate and respond to the 

demands generated by a change in state.  

Acute stress generates a complex chain of responses, which happen in the brain and the 

sympathoadrenal and hypothalamic-pituitary-adrenal axes, as well as the autonomic 

nervous system. The activation of these systems regulates the release of hormones 

(epinephrine, nonepinephrine, cortisol). Cardiovascular activity is also increased 

through the activation of the sympathetic nervous system in order to prepare the 

organism to face the challenging situation.  

Stress has been frequently described as ‘high general arousal with a negative emotional 

tone’ (Boucsein & Backs 2009). While the term stress is most usually associated with 

distress, the concept of positive stress for the organism also exists, and it has been 

conceptualised as ‘eustress’. Another issue here related to inconsistencies in the 

terminology is that stress has been used as a term that describes the overall experience, 

the physiological reactions, the psychological interpretations of the bodily reactions, the 

behavioural outcomes, or different combinations of these aspects (Le Fevre et al. 2003).  
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The theme of eustress has been largely overlooked (Kupriyanov & Zhdanov 2014), 

which leads to an incomplete view regarding the positive contribution of stress 

mechanisms to health. The different approaches towards the definition of eustress can 

be separated in two streams: one which defines eustress as a physiological response, 

and one which states that the distinction between eustress and distress relies on the 

cognitive perception of the physiological functions, which is evaluated as positive or 

negative (Kupriyanov & Zhdanov 2014). 

3.2.3.2. TYPES OF STRESSORS, INTERACTIONS BETWEEN STRESSORS AND 

FACTORS WHICH AFFECT STRESS RESPONSE 

A stressor can be any activity or situation that generates stress (Hackney 2006). There 

have been indications that the brain recognises at least two different types of stressors: 

physical or physiological, and psychological or emotional (Dayas et al. 2001). 

Physiological stress is associated with conditions which are perceived as a bodily threat, 

such as extreme heat, pain and physical trauma, infection, sleep deprivation or 

exposure to cold. Psychological stress is generated by experiencing or anticipating a 

threat, including social conflicts and environmental stressors such as noise. This 

categorisation is focused on the pathways of neural activation associated with each 

stressor. Other approaches, such as that of Ulrich et al. (1991) identify three types of 

stressors: bodily reactions, elicited emotions, and behavioural responses.  

Positive or neutral experiences, such as physical activity, or listening to loud music in a 

pleasant setting with friends, can also act as stressors, generating physiological 

responses related to stress without being perceived negatively, or having a necessarily 

negative impact on the body. The increase in intensity or duration (or their 

combination) of the stressor appears to play a role in determining the switch from 

eustress to distress (Kupriyanov & Zhdanov 2014). Le Fevre et al. (2003) also state that 

the impact of the stressor is determined by the timing, the source, the perceived 

control over the stressor and the perceived desirability of the stressor. This view 

demonstrates that a stressor can have a different impact on different individuals, 

resulting in a positive or negative perception of the experience.   
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Overstimulation and understimulation have also been studied as psychological 

stressors, and it has been found that both conditions can induce the release of stress 

hormones (Frankenhaeuser et al. 1971). The first situation refers to exposure to intense 

sensorial input, while the second condition refers to its reduction.  

There has also been evidence that multiple stressors can act synergistically and 

generate a greater response than the response to each stressor. Some researchers have 

tested this hypothesis with the combination of physical and mental stressors (Webb et 

al. 2017; Rousselle et al. 1995). Other studies though, do not find this synergistic effect 

(Wasmund et al. 2002). 

The magnitudes of response also vary among individuals in the case of exposure to 

psychological stressors. There are medical conditions that can lead to a reduced 

reactivity to stress, such as the denervation of the heart which occurs in heart 

transplant patients (Gorman & Sloan 2000). Differences also occur in the absence of 

medical conditions. (Gliner et al. 1982; Manuck and Schaefer 1978; Manuck and 

Garland 1980). 

One question that has not yet received a clear answer is when stress responses become 

harmful for the organism. According to McEwen (1998), the acute effects of stress 

responses result from the adaptation of the organism to the presented challenge, and 

are reversible. However, prolonged stress and the chronic repetition of stress responses 

can have an effect of ‘wear and tear’, leading to ill effects on the body. The anticipation 

of stressful events is also likely to add to this effect. McEwen (1998) identifies three 

types of responses related to ‘allostatic load’. Type 1 includes the accumulation of 

responses, whose effect is related to their frequency and magnitude. Type 2 includes 

sustained responses which fail to shut down, and type 3 includes the failure of the 

organism to respond to a challenging situation. One hypothesis presented in that paper 

was that the repetition of stress responses (related to Type 1) leads to the other two 

types of allostatic load, where there is a failure to respond or shut off the response.  

Brosschot et al. (2005) also proposed a prolonged activation model, where the 

accumulation of physiological responses to stressors over time is regarded as the 

primary factor that leads to a pathogenic state in the long term. The inclusion of stress 
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responses that might occur while anticipating a stressor, or after its disappearance, is a 

key element in this model. 

Another view on this topic was proposed by Ursin and Eriksen (2010), who disagreed 

with the link between repeated acute stress responses and ill effects on the organism, 

as presented by McEwen's allostatic load model (1998). According to the cognitive 

activation theory of stress (CATS) (Ursin & Eriksen 2004; Ursin & Eriksen 2010), the 

adverse effects arise in cases of a sustained state of high physiological arousal, related 

to a challenge that cannot be resolved by the individual. This theory thus relates 

negative effects to the concept of ‘coping’.  

Despite their differences, the presented theories generally agree that the chronic 

repetition of stressful responses, especially of sustained duration, can become harmful 

for the organism. Studies have shown that chronic exposure to stressors increases the 

ratio of sympathetic versus parasympathetic activity in the autonomic nervous system, 

which leads to a higher risk of cardiovascular morbidity and mortality (Gorman & Sloan 

2000).  

3.2.4. PHYSICAL ACTIVITY AND EXERCISE  

Physical activity, and particularly exercise (a purposeful, structured activity; WHO 2020) 

is considered a physical stressor (Hackney 2006; Rousselle et al. 1995), as it is a 

condition where the sympathetic nervous system takes control. There has been plenty 

of evidence showing that exercise is a state which is accompanied by high physiological 

arousal (e.g., Lambourne & Tomporowski 2010). Exercise has been used extensively as a 

physical stress trigger, with several variations in duration and intensity (e.g.,  Wasmund 

et al. 2002; Webb et al. 2017). Intense exercise to the point of exhaustion triggers the 

release of the same hormones (catecholamines) as a stressful interview (Oleshansky & 

Mayerhoff 1992).  

There is though plenty of evidence that exercise alone does not have adverse health 

effects, apart from situations of overtraining or high-intensity training for individuals 

that cannot cope with it. On the contrary, catecholamines enhance physical 

performance during exercise, as they participate in the transportation of oxygen to 
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active muscles (Zouhal et al. 2008). Studies have shown that exercise is a physical 

stressor to which the body can adapt over time (Huang et al. 2013b; Sanchis-Gomar et 

al. 2012), as it is resolved through coping mechanisms. There have been several 

suggestions that chronic exercise improves coping with stress (e.g., Puterman et al. 

2010). Exercise, therefore, appears to be a physical stressor that causes high general 

arousal associated with positive emotion, or in other words, a kind of ‘eustress’ (e.g., 

Sanchis-Gomar et al. 2012).  

Walking and cycling are examples of dynamic exercise (Laughlin 1999). In dynamic 

exercise, there is an increase in oxygen uptake at the beginning of the exercise, and 

then the oxygen uptake stabilizes at each intensity (Fletcher et al. 1995). If the intensity 

of physical activity does not increase, the individual that performs the exercise reaches 

a state defined as the ‘steady state’. In the context of walking, this is a state where the 

individual keeps walking at the same pace until stopping the exercise.  

Duration and intensity are factors which affect the experience of exercise as a stressor. 

Physical activity which lasts longer than 60 minutes or is at great intensity triggers the 

release of stress-related hormones, as the organism tries to adapt to the increased 

physiological demands of the stressor (Acevedo et al. 2007). This experience might be 

perceived initially as an emotional state of a high degree of activation or engagement, 

shifting closer to the negative affect when the activity becomes laborious. The physical 

effort related to exercise intensity is also dependent on the physical fitness of the 

individual. Sedentary people or elderly might find moderate exercise more challenging 

in terms of energetic demands (Lee et al. 2003). 
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3.2.5. SUMMARY AND CONCLUSIONS 

 

Figure 3.3. The relationship between the autonomic nervous system, stressors and sympathetic arousal 

The reviewed literature showed that understanding the functions of the sympathetic 

nervous system is critical for understanding many of the physiological changes 
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experienced in the various facets of daily life. The activation of the sympathetic nervous 

system is connected with responses to stimulation, physical activity and other kinds of 

physical and psychological stress, and may manifest as a physiological response in 

measures such as HR and EDA. The parasympathetic nervous system also modulates 

physiological responses and in particular HR, but this happens mostly during the ‘rest 

and digest’ state; this is why the emphasis has been given on the ‘fight or flight’ 

activities which are modulated by the sympathetic nervous system. A summary of these 

phenomena is presented in Figure 3.3. 

As it was shown in the short review presented in sections 3.2.1. to 3.2.4, there are links 

between the different concepts and states that were discussed. Stress could be seen as 

a broader category, which can include physical or psychological stressors related to 

changes in the state of the organism or the surroundings. Defensive responses could be 

situated in this broader category as examples of stimulus-related events related to an 

unexpected change in the surroundings. This change acts as a psychological stressor 

and creates an alarming state for the organism. Defensive responses typically have a 

very short duration. The excessive presence of stimuli, or their absence, can also act as 

a psychological stressor, causing overstimulation.  

Stress can also be linked to physical stressors. Environmental parameters, such as 

temperature, belong to this category and can affect physiological responses. Physical 

activity is also considered a physical stressor and affects physiological responses. 

Changes in posture and spontaneous movements may cause a physiological response 

with a short duration, due to the change in state; physical activity for an extended 

duration can also affect physiological responses, as it can cause a sustained increase in 

sympathetic arousal. A significant difference between physical activity and the other 

stressors is that this stressor is not perceived negatively, and it has been linked with 

positive health outcomes in the long term.   

Following the reviewed literature, this work will refer to stress as a concept related to 

an increase in physiological arousal, associated with a change in the state of the 

organism, or an unexpected change in the surroundings. The definition of stress that 

will be adopted here follows the allostatic load model and shall include changes in 
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movement, changes in the stimulation levels in the surroundings, and other 

environmental stressors such as heat. The physiological responses that can be classified 

as stress under this definition may be accompanied by negative or positive feelings, 

according to each individual's capability to cope with each stressor. Physical activity will 

also be incorporated into the adopted approach as a stressor, but it will be given a 

different label and separated from stimulus-related responses. 

Based on the presented review, we could group the contextual and movement-related 

features of the urban environment to physical and psychological stressors which can 

affect sympathetic arousal and elicit physiological responses. Psychological stressors 

primarily include auditory and visual stimulation, which can be linked to orienting and 

defensive responses or overstimulation. Physical stressors include temperature and 

physical activity. This categorisation is based on the reviewed definitions of stress as a 

state that is not necessarily perceived negatively, especially in the case of physical 

activity. 

 

Figure 3.4. A categorisation of stressors related to physiological responses based on the factors that 

initiate the arousal. 

These two categories (Figure 3.4) are conceptual and focus on factors that have 

importance in urban design and planning. The two categories describe the potential of 
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the activity or a contextual factor leading to a physiological response. This 

conceptualisation aims to highlight that both activity and contextual factors affect 

sympathetic arousal, and thus physiological responses. At the same time, the source of 

physiological responses is different in each of the two categories. The subcategory of 

movement-related events was created to emphasise the strong links between activity 

and physiological responses, while recognising that its effect may be positive, in 

contrast to the other stressors.  

3.3. THE EFFECT OF DIFFERENT PARAMETERS ON MEASURES OF 
PHYSIOLOGICAL RESPONSES 

After identifying some states and conditions associated with alterations of physiological 

data, this section introduces the physiological signals that will be analysed in this 

research. The possible effects of stress (focused on stimulation and movement-related 

effects) will be outlined for each signal.  

 

Figure 3.5. Schematic diagram situating the topics explored in section 3.3 in relation to the proposed 

methodology 
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The aim is to identify how other studies have used the analysis of these signals to 

measure physiological arousal in different conditions. The review will refer to 

parameters such as the expected time of appearance of a physiological response after 

the presentation of a stimulus. These parameters will be necessary for the construction 

of the algorithms for analysis of physiological responses. This part of the review will, 

therefore, assist in designing the methods for the physiological data analysis in 

component 1 of the designed methodology, as shown in Figure 3.5. 

HR is affected by both systems of the autonomic nervous system and reflects their 

activity (Shaffer et al. 2014). The sympathetic system increases HR, while the 

parasympathetic system brings it down (Ulrich et al. 1991).  

EDA, on the other hand, is not influenced by the parasympathetic system, and it is 

frequently used as a marker of sympathetic activity (Visnovcova et al. 2013).  

The EDA signal is composed of two components: the tonic and the phasic component 

(Figure 3.6). The tonic component (tonic EDA) is a smooth curve representing the slow 

changes in electrodermal activity over time. The phasic component (phasic EDA, or 

electrodermal response, EDR) is connected to the immediate reaction to external 

stimuli, as reflected in the EDA signal. 

These reactions have the shape of a peak and are superposed on the slowly changing 

component (tonic EDA). Peaks can also occur without a stimulus; such a peak is called a 

‘Nonspecific skin conductance response’ (NS.SCR) (Boucsein 2012). EDRs are generated 

1-2 seconds after the stimulus, and typically have a steep rise and a longer decay (Sibley 

et al. 2008). An example of stimulus-related EDRs and NS.SCRs can be seen in Figure 3.6. 

Figure 3.7 displays the measures typically used to evaluate an EDR (amplitude, recovery 

time/2, rise time, latency). 

While HR, EDA and their measures exhibit fluctuations that can correlate, this 

relationship varies and is dependent on the exact circumstances. Early studies have 

warned against trying to find strong correlations between the two signals as time series, 

and suggest that correlations may be found potentially in fragments, but they should be 
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seen as different physiological measures that cannot be used interchangeably (Taylor & 

Epstein 1967).  

 

Figure 3.6. Upper: The tonic and the phasic components of EDA. Bottom: EDRs and NS.SCRs elicited after 

stimulation (acquired from Boucsein 2012).  

 

Figure 3.7. A typical EDR and its measures (acquired from Boucsein 2012) 
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The rest of this section discusses how the physiological signals which will be analysed in 

this research are usually affected by different parameters.  

3.3.1. STRESS AND PHYSIOLOGICAL RESPONSES 

EDA measurement is a well-established method in stress research. Both tonic and 

phasic EDA measures have been used in this context (Boucsein 2012). In the case of 

tonic EDA, a rise in the EDA levels indicates a rise in stress levels. The frequency of 

NS.SCRs has also been used as a measure of tonic EDA activity (Boucsein 2012). Various 

researchers have used this as the primary measure of assessing stress arousal. Tulen et 

al. (1989), for instance, measured changes in tonic EDA during the Stroop Color Word 

Test, which has been extensively used as a method for inducing conditions of stress and 

anxiety in laboratory conditions. They found a significant increase in tonic EDA levels, 

while also noting that a high EDA level before the stimulation resulted in a smaller 

increase. Wang et al. (2016) used the changes in tonic EDA to measure the ability of 

urban park scenes to lower stress. They found that viewing scenes with green brought 

the highest reduction of tonic EDA, while the lowest reduction was during viewing 

urban roadway scenes. Zeile et al. (2016), in their study on mapping urban emotions 

with wearable sensors, also used the increase in tonic EDA as a stress identifier, 

combined with a decrease in skin temperature.  

This method, though, does not capture the instantaneous stress response to a stimulus 

and depicts the slower changes over time. Phasic EDA measures, on the other hand, can 

be used to study the immediate stress reaction. These include the number of EDRs in a 

specified time window, as well as their amplitude, latency and area under the EDA 

curve. The EDR amplitude is the most frequently used measure (Boucsein 2012).  The 

experience of stress elicits the generation of a higher number of EDRs compared to a 

relaxed state, and with a higher amplitude.   

Both phasic and tonic measures of EDA can be used in ambulatory conditions, 

depending on the phenomenon that is studied. Several researchers have combined 

tonic and phasic measures; a classic example in ambulatory stress measurement is that 

of Healey and Picard (2005) who used tonic and phasic measures (tonic level, number of 
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EDRs, the sum of EDR amplitudes, the sum of EDR durations and sum of EDR areas in a 

segment) as a part of a model for stress assessment during driving.   The only difficulty 

lies in the measurement of latency, as it is necessary to know the exact second when a 

stimulus occurs, in order to measure the response time.  

3.3.2. STIMULATION AND PHYSIOLOGICAL RESPONSES  

For a more detailed analysis of the acute physiological effects of stimulation, the 

relevant literature on orienting and defensive responses can be consulted. Tests for the 

analysis of physiological measures during the orienting response typically involve the 

presentation of a series of stimuli that have a short duration (i.e., 1-5 seconds) and are 

repeated for some times (e.g., 10-20) with a short interval (Boucsein 2012). EDRs are 

the most typically studied measure, as they are connected to the stimulus and reflect a 

short-term change in the sensitivity of systems used to analyse the stimulus properties. 

The changes in EDR amplitude can be used for measuring habituation to a stimulus 

(Boucsein & Backs 2009). Tonic responses can also be attributed to the appearance of a 

stimulus, and they reflect slower changes in the sensitivity of the receptor systems. The 

change in tonic EDA may be retained after the end of habituation to the stimulus, while 

initially it may also be influenced by the level of general arousal (Boucsein 2012). The 

response may also contain an increase in both tonic and phasic measures. Phasic EDA 

measures (and particularly the EDR amplitude) exhibit a clearer relation to stimulus 

intensity. If the stimulus signifies a start of a cognitive or motor action, the impact in the 

strength of the orienting response may be more significant. This phenomenon is 

described as the effect of ‘significance’ (Boucsein 2012); it could occur, for instance, if 

the users know that they must move immediately after a sound is heard. 

Regarding differences between orienting and defensive responses, it is difficult to 

distinguish the two only by the EDA measures, though the amplitude of EDRs in 

defensive responses may increase compared to orienting. The observation of phasic HR 

changes may provide clarification, as the orienting response tends to cause a 

deceleration of HR, while the defensive response causes its increase, preparing the 

body to move in order to face the ‘fight or flight’ situation (Boucsein 2012).  
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3.3.3. MOVEMENT AND PHYSIOLOGICAL RESPONSES  

HR rises at the beginning of any muscular activity in order to adapt to the new 

physiological state of the organism. This increase can be attributed to the concept of 

‘allostasis’ which was introduced before. The HR continues rising as the intensity of 

exercise increases (Dourado et al. 2010) or does not fluctuate much if the intensity is 

steady. The ability of HR to decrease after exercise and return to its normal rates within 

a specific time is a signifier of a healthy cardiovascular system. This phase is known as 

HR recovery. The phases of increase at the start and decrease at the end of the exercise 

last one minute or less (Cole et al. 1999; Whipp et al. 1982). 

As for changes in EDA in relation to exercise, there have been studies that suggest an 

incremental increase of EDA with the increase in exercise intensity (Boettger et al. 2010; 

Turaçlar et al. 1999). In the studies of Posada-Quintero (2018) and Schumm et al. 

(2008), it was shown than when the walking speed increased, it was accompanied by an 

increase in the phasic EDA, even without the existence of a startling event. These peaks 

were, therefore, NS.SCRs. Schumm et al. (2008) observed that at the fastest walking 

speed (6 km/h), the NS.SCRs tended to have a uniform distribution; the peaks 

generated after startling events were still detectable. 

This effect has been observed since early studies on EDA in ambulatory conditions (e.g., 

Blank 1946). However, a consistent relationship between physical activity and 

electrodermal measures has not been established yet. In cases where it has been 

observed, it has been attributed to the gradual increase of the functioning of the sweat 

glands during exercise or the emotional arousal as an outcome of the activity (Doberenz 

et al. 2011). 

Apart from the effects related to the activity of an extended duration, spontaneous 

movements can also affect physiological responses. The transition from one posture to 

another, as well as handgrips and head-tilts, can cause an acute HR increase which can 

have significant magnitude and is attributed to a brief contraction of muscles. (Borst et 

al. 1982). 
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The transition from a posture to another may also be responsible for a change in EDA. 

This change may be more significant when the individual perceives this as a situation 

where they have to maintain their balance. Potential postural instability can be 

perceived as a threat, related to fear of fall, and generates a response in the autonomic 

nervous system (Sibley et al. 2008). Situations such as floor perturbations can have this 

effect, even if they are predictable, as Sibley et al. (2008) showed. 

Finally, small movements of the skin under the electrodes used for measurement may 

cause artefacts in the EDA signal (Boucsein 2012). These artefacts can usually be 

identified by the irregular shape of the resulting signal. 

3.3.4. PERSONAL FACTORS, CONTEXT AND INTERACTION BETWEEN 

STRESSORS 

The effects outlined in sections 3.3.1 to 3.3.3 can be influenced by personal factors and 

each experiment's specific circumstances. 

In terms of personal factors, many studies have mentioned that the outlined effects of 

exercise on HR can be affected from interpersonal differences, such as hereditary 

factors, environment and sex (Sato et al. 2000). Age and fitness level may also play a 

role; for instance, the HR increase at the onset of exercise is still observed but at a 

slower rate in the case of elderly (Ishida et al. 2000) and trained individuals (Sato et al. 

2004). Some studies have also identified a HR increase at a slower rate (Sato et al. 2004) 

and a less intense reaction to psychological stressors (Acevedo et al. 2006) in trained 

individuals.  

A significant factor that should be considered is the existing sympathetic arousal at the 

beginning of a measurement. In terms of external circumstances, environmental 

variables, such as heat or cold and humidity, can also act as independent stressors 

which cause physical stress on the organism. When this happens during exercise, it 

triggers an increase in HR, which is not accompanied by increased energy expenditure 

(Freedson & Miller 2000).  The sequence of stressors also appears to play a role in the 

case of interaction between exercise and temperature as physical stressors.  When 

there is already a stressor before the exercise, the HR may have already been affected 
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by that. In this case, the exercise might not elicit the increase in HR that would happen 

otherwise. In the experiments of Craig and Cummings (1963), for instance, the increase 

was observed when the subjects were in a cool environment (18 °C). In higher 

temperatures (21 °C and 38 °C) there was already an accelerated standing HR, and the 

increase in walking HR was not observed. A psychological stressor that appears during 

exercise may also cause an additional increase in HR that is not due to metabolic 

demands; Szabo et al. (1994), for instance, showed that a mental arithmetic stressor 

applied during cycling at low and moderate intensities elicited a change in HR that was 

larger than 10bpm. Other researchers also have similar findings (e.g., Rousselle et al. 

1995);  

Finally, some additional factors which may affect physiological responses are speech 

and breathing patterns. Speech can affect physiological responses due to the high 

variation that it creates in the respiratory patterns (Schubert et al. 2009). In the recent 

study of Mackersie et al. (2016), it was shown that both normal and fast speech brought 

a significant rise in tonic EDA, in comparison to baseline levels.  

3.3.5. SUMMARY AND CONCLUSIONS 

As shown in this section, there are many similarities between the physiological 

responses to different conditions. For instance, the acute HR increase is a typical 

response to a sudden movement, as well as to the presentation of a threatening 

stimulus. These similarities are related to the overlapping between the concepts of 

stress, and responses to movement and stimulation changes. While the literature was 

reviewed and presented separately for each condition, the links between the different 

conditions or concepts are evident.  

Figure 3.8 presents a summary of the described movement-related and stimulus-related 

effects on physiological responses. Apart from the orienting response, the other states 

described in the figure can be considered stress responses (or stress-related states) 

under the reviewed definitions of stress.  
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Figure 3.8: A summary of typical physiological (EDA and HR) responses to stimulation and movement 

3.4. PHYSIOLOGICAL RESPONSES DURING INTERACTIONS WITH THE URBAN 
ENVIRONMENT  

There has been much theoretical debate on which characteristics are necessary for the 

achievement of high-quality urban life. Qualities such as neighbourhood vibrancy 
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became the focal point of urban design and planning after the criticism of Jacobs (1961) 

regarding the lack of vitality in communities designed following the modernist dogma. 

One of the most influential theorists in this domain after Jacobs, Montgomery (1998), 

identifies the following as the “physical conditions for making a city”: development 

intensity, mixed-use, fine grain (number and proportion of small enterprises), 

adaptability, human scale, city blocks and permeability, contact and visibility, public 

realm, movement, green space and water space, landmarks, visual stimulation and 

attention to detail, and architectural style as image. 

Some of those characteristics also play an essential role in creating urban environments 

that promote urban health. Mixed-use and high density, for instance, have been 

identified as necessary ingredients for the creation of walkable environments, while 

green spaces encourage physical activity, and have benefits for mental health (Giles 

Corti et al. 2016).  

While these effects are well known, they are usually described in the discourse on 

urban health from a policy-oriented perspective, and the emphasis is on long-term 

effects on health and quality of life. As the focus of this research is on the instantaneous 

physiological effects that occur through interaction with different places and spaces, 

the following section examines spatial qualities from this aspect, reviewing relevant 

theories from the domain of environmental psychology. 

This part of the chapter is organised following the identification of movement and 

stimulation as significant parameters that affect physiological responses. These factors 

will be now examined in connection to urban space. The review will commence with 

discussing which urban environment features may influence movement patterns. The 

focus will then shift to urban features can act as psychological stressors or generate a 

stimulating or restorative experience.  

The relationship between this part of the research and the proposed methodology is 

described in Figure 3.9. The following review shall inform the design of component 1 by 

providing the theoretical background for selecting urban features that can act as 

physical or psychological stressors. These features will be later used as contextual 
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parameters that may influence physiological responses, in the methods for analysis of 

physiological data.  

 

Figure 3.9. The topics explored in this section in relation to component 1 of the proposed methodology 

3.4.1. PARAMETERS THAT AFFECT THE EXPERIENCE OF WALKING IN THE 

URBAN ENVIRONMENT  

Walking as a form of physical activity has been studied extensively from a medical and 

biomechanical perspective, regarding various parameters such as gait patterns and 

cardiovascular activity. The experience of walking during various daily activities is much 

less studied, due to the difficulty in controlling the various encountered conditions. 

While walking in the gym or the park is often at a steady pace, walking in the urban 

environment for leisure, commuting or any other purpose is an activity which is 

intermittent and affected by various factors at different scales. Such factors are the 

shape and dimensions of the urban network, the land-use patterns which determine the 
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distance from work and other destinations, the environmental parameters such as 

weather, and the static and moving obstacles which impose frequent slow-downs, stops 

and turns.   

To study movement in the urban space, it is necessary to first understand movement as 

a natural act of the body in an abstract space, without a particular purpose or context. 

Some studies have investigated the natural, unconstrained movement of humans, in 

situations where nothing is dictating or imposing a pace. These studies show that the 

pace which is adopted naturally by the body is that which minimises the physical effort 

required for the movement (Selinger et al. 2015). Some studies have suggested that the 

perception of distance affects speed, resulting in the adoption of a slower pace in the 

case of covering very short distances (Seethapathi & Srinivasan 2015). Individual factors, 

such as the age and the stride length, can also affect speed; the stride length is a factor 

that can explain some differences identified in the walking speeds among males and 

females (Blessey et al. 1976), while age can affect speed due to reduced functioning in 

terms of vision, reaction time and musculoskeletal activity (Iosa et al. 2014). 

Apart from these individual factors which affect the characteristics of walking, the urban 

environment also influences the walking pattern. A significant parameter which 

influences movement is the presence of obstacles. Non-flat surfaces such as stairs and 

slopes create physical challenges and reduce the walking pace because they require 

more effort for their traversal (McIntosh et al. 2006). Apart from the gradient, the 

terrain surface and vegetation can also reduce the speed and affect the intensity of the 

exercise. Running through deep vegetation, for instance, elicits an increase in 

magnitude and variability in the energetic demands, as it involves the activation of 

many more muscles in comparison to running on flat terrain (Creagh et al. 1998). 

Obstacles are also any objects or places which cause an unintended stop or slowed 

pace; such cases are places with increased pedestrian density. 

Some obstacles are more challenging for people with difficulties in moving, such as 

crossings. There, they must synchronise their gait speed with the traffic lights, and this 

requires the adoption of a speed which may exceed their capabilities. This situation 

leads to an increased risk of falling (Iosa et al. 2014; Duim et al. 2017), as well as more 
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significant physical effort, due to the constant accelerations and decelerations. The 

study of Sellers et al. (2012) was one of the first to address the issue of obstacles as 

factors which limit the quantity and quality of physical activity within the urban 

environment; their study measured the effects of a park and urban environment on a 

30-minute brisk walk, finding that due to the lack of interruptions, the participants were 

able to achieve higher activity intensity in the park than in the urban environment.  

From the literature reviewed in the former sections, we can make the following 

assumptions regarding the relation between urban characteristics and associated 

changes in speed and activity intensity (summarised in Figure 3.10): Environments 

without obstacles make it easier to retain a steady walking speed, and therefore a 

steady activity intensity (Case A in Figure 3.10), or a ‘steady state’ for the organism, 

following the allostatic model of stress which was explained in section 3.2.3. 

Physiological responses may appear (or increase in intensity) in this case when there is a 

change from a steady state to another, or when the duration of the activity is high. 

 On the other hand, environments which contain many obstacles may be related to 

many changes in activity intensity due to the many accelerations and decelerations 

caused during the interactions with the obstacles (Cases C and D in Figure 3.10). The 

activity intensity also increases during walking uphill on a non-flat surface (see Cases B 

and D in Figure 3.10). Non-flat surfaces also cause a high fall risk, as they cause a 

significantly different walking pattern than that of walking on a level surface, with a 

more significant variation in speed, step length and step width, parameters which have 

been associated with greater instability (Sheehan & Gottschall, 2012). More 

physiological responses may be observed in this case (and especially in Case D), due to 

the high presence of factors which change the activity intensity and increase the 

physical effort.   
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Figure 3.10: Urban characteristics and associated changes in speed and activity intensity  

Obstacles, slope and surface conditions are, therefore, parameters which might affect 

the movement pattern. Due to the links between movement and physiological 

responses, these parameters also have the potential to influence physiological 

responses. Other spatial parameters, such as road length and surface area, can also be 

included here. Steps can also be considered as a condition with an effect similar to that 

of a slope.  
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Figure 3.11: Spatial parameters which have the potential to act as physical stressors 

Following the categorisation presented in section 3.2.5 (Figure 3.4), the study suggests 

the grouping of spatial characteristics that influence movement under the name 

‘Physical stressors’. This conceptual grouping is presented in Figure 3.11. While this 

section has focused more on the relationship between movement, physical activity and 

space, the temperature is also a physical stressor. It can thus be included in the 
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category of physical stressors, along with the spatial characteristics which affect it (e.g., 

presence of green canopy). The term ‘physical stressor potential’ is used to highlight 

that the presence of these urban features does not automatically mean that 

physiological responses will be elicited whenever a pedestrian encounters them; this 

potential may be actualised or not, and the resulting experience may vary between 

individuals or at different times of the day.  

3.4.2. SENSORY STIMULATION, PSYCHOLOGICAL STRESSORS AND 

RESTORATION IN THE URBAN SPACE  

Urban space is composed of elements which emit many sensory cues, such as visual, 

auditory and olfactory stimuli. These cues are processed by humans during their 

interaction with the environment, shaping their experience. This experience can be 

perceived as a combination of states that fall in the two dimensions of activation and 

affect. The encounter of an architecturally interesting church, for instance, can elicit 

excitement for a tourist that sees it for the first time; this can be described as a state of 

high activation and positive affect. In emotion theory, the dimensions of activation and 

affect are used to depict the intensity of the emotion and the degree of pleasantness, 

respectively (Boucsein 2012). In the example stated above, the encounter of the new 

stimulus could be accompanied by physiological changes, such as small changes in the 

HR and EDA. The perception of this experience could be described as a state of 

engagement or excitement. 

The sensory experience is significantly affected by the complexity and novelty of the 

stimuli surrounding an individual (Geller 1980). Urban stimuli operate as any other 

stimulus which can induce orienting and defensive responses, depending on factors 

such as complexity and novelty (Berlyne 1960) among others, as it was explained in 

section 3.2.2. and 3.2.3. These parameters induce curiosity, create motivation towards 

exploration in the urban environment, and affect a subject's emotion or arousal as it 

interacts with a stimulus over time. Complexity is defined as the degree of diversity and 

variety in the stimulus. As for the novelty factor, this is unique for each individual (Geller 

1980). 
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The presence of stimuli, though, does not necessarily lead to a pleasant experience. 

Noise, for instance, is a stimulus which might be perceived negatively by the human 

body, acting as a psychological stressor. The number and complexity of stimuli which 

shape the experience are important factors, as excessive sensory input can lead to 

overstimulation. The experience of this effect in the urban space gained significant 

interest after Milgram conceptualised it as the theory of sensory overload (Milgram 

1970) in the context of urban life. Milgram based this theory on the capability of 

humans to perceive information. When the amount of information presented to an 

individual becomes too high, it may be difficult to process it. The perception of 

experience also changes over time, and during repeated interactions with the same 

stimulus. Berlyne (1960) argues that stimuli with high complexity might seem 

overwhelming and initially induce a negative response in terms of affect, especially 

when many complex stimuli are encountered together. With repeated exposure, the 

arousal is increased, as the information is processed, until the novelty effect wears off 

and the positive affect decreases. According to Berlyne, simple stimuli with a low 

degree of complexity are more appreciated in the first interactions. After that, the 

positive affect is reduced. 

Urban space also contains elements which can lower stress. This ability in connection to 

the natural and urban environment is commonly discussed as restoration. Two major 

theories have dominated this discussion: the Psycho-Evolutionary Theory of Stress 

Reduction of Ulrich et al. (1991) and the Attention Restoration Theory by Kaplan and 

Kaplan (1989). Ulrich et al. (1991) also outline other theories that have been influential 

in the shaping of the two aforementioned; for instance, the theory that restoration 

from stress is easier in environments of low intensity and arousal, and the overload 

perspective that excessive external stimulation requires larger processing time and 

therefore slows down restoration. Attention Restoration Theory views restoration as 

the process of recovering from cognitive fatigue, generated by information processing, 

while the Psycho-Evolutionary Theory of Stress Reduction focuses on the emotional 

rather than mental state as the source of fatigue.  
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These theoretical concepts will be further discussed in the following sections, in 

connection to specific urban and natural elements which are related to stimulation and 

may trigger or lower physiological responses. 

3.4.2.1. URBAN CHARACTERISTICS THAT CAN ACT AS PSYCHOLOGICAL 

STRESSORS 

3.4.2.1.1. NOISE 

One of the most commonly studied psychological stressors is noise. The primary source 

of noise for the general population is traffic; a significant factor that determines noise 

exposure is, therefore, proximity to traffic nodes and arteries (Babisch 2011). Several 

studies have confirmed that exposure to noise generates acute physiological effects 

which are not associated to the possible damage of the hearing organ but are more 

related to the activation of stress mechanisms through the autonomic nervous system 

(Babisch 2011; Basner et al. 2014; Lusk et al. 2004; Stansfeld & Matheson 2003). Most 

commonly, the studied subjects have increased blood pressure, while HR is also 

affected (Babisch 2011; Basner et al. 2014; Lusk et al. 2004; Stansfeld & Matheson 

2003). Stress hormones can also be elevated (Babisch 2011; Basner et al. 2014).  

The field studies which investigate immediate cardiovascular effects of noise during 

everyday activities are few (e.g., Huang et al. 2013a; Kraus et al. 2013) and commonly 

measure one or more of the following parameters: blood pressure, HR and heart rate 

variability. Blood pressure and HR responses might be mediated by different 

mechanisms. Blood pressure is affected by overall noise exposure, and HR immediately 

increases in elevated noise exposure (Kraus et al. 2013) and especially sudden noise 

peaks (Lusk et al. 2004). Mahmood et al. (2006) also studied the effect of noise on HR, 

but in laboratory conditions, and with noise levels of 90 dB, much higher than the two 

studies mentioned above (Huang et al. 2013a; Kraus et al. 2013). They found that HR 

was elevated in most subjects, taking from 2 to 5 minutes to return to normal levels for 

most subjects. Regarding short-term effects of noise exposure during commuting, one 

study found that cycling was associated with more exposure to higher noise levels than 

other commuting modes, as there is no protective structure around cyclists for noise 

mitigation. Finally, recent studies have also included EDA measurement to assess the 
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sympathetic stress reaction to noise. In the study of Notbohm et al. (2013), who 

measured the EDA of subjects exposed to traffic noise in a laboratory setting, EDA 

increased in all subjects.  

A significant factor which determines the magnitude of disturbance is the time of the 

day and activity conducted during the exposure. The activity that is disturbed because 

of noise exposure is significant for the estimation of the impact. The acute physiological 

effects are most intense during activities that require concentration and attention 

(Babisch 2011).  

In line with other studies on combinations of stressors that were discussed in section 

3.3.4, there has also been evidence that noise acts synergistically when it interacts with 

other stressors, and the overall effect of the stressors on the organism is increased 

(Stansfeld & Matheson 2003; Huang et al. 2013a).  

3.4.2.1.2. MIXED-USE, DENSITY AND SENSORY STIMULATION 

As it has been suggested by Jacobs (1961) and Montgomery (1998) among others, 

mixed-use is a necessary ingredient for the creation of vibrant urban environments. 

Many theorists have, though, pointed out that the implementation of mixed-use is 

necessary but not enough (e.g., Montgomery 1998; Yue et al. 2016). The definition of 

mixed-use is complicated, according to Grant (2002), as the term can be used for very 

different conditions, such as mixing the intensity of different land uses, increasing the 

diversity of uses, but also integrating currently segregated uses. The latter case shows 

us that mixing uses is not good by definition, as, for instance, industrial use is separated 

from other uses for good reason, due to environmental concerns. How much 

integration and diversity of land use is needed to fuel the creation of a vibrant 

neighbourhood remains, therefore a question. Density has also been discussed in the 

urban planning discourse as a necessary ingredient for enhancing physical activity (Giles 

Corti et al. 2016), and an essential condition for neighbourhood vitality (Montgomery 

1998).  

There has not been any research connecting explicitly mixed-use with stress levels or 

physiological responses. However, mixed-use development is connected with some 
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factors which are related to increased levels of information input and psychological 

stress. Mixed-use and commercial development may be connected to an increased 

presence of signs, diverse colours and sounds, in comparison to residential land use. For 

instance, King et al. (2012) found that the noise levels were much higher in a mixed-use 

area than a residential area. While these factors are affected by traffic, architectural 

style and other features, one factor that is generally associated with commercial and 

mixed-use regardless of other parameters is the increased presence of human activity 

(McConville et al. 2011; Moreno & Fernandes 2011; Rodríguez et al. 2009). The feeling 

of crowding, which has also been associated with high-density development apart from 

mixed- and commercial use, may act as a psychological stressor (Chu et al. 2004). This 

effect might be caused by other additional factors apart from overstimulation, such as 

the perception of control over personal space (Stokols 1976). Engelniederhammer et al. 

(2019) tested the effect of crowding on physiological responses using sensors capturing 

EDA and the presence of other humans, among others. They found alterations in 

aversion and excitement indicators associated with the number of intrusions of 

personal space, though more research is needed in order to extract more concrete 

results.  

The increased presence of stimuli may also lead to increased activity in terms of 

information processing, without necessarily leading to a negative experience. The study 

of Neale et al. (2017), which used EEG monitoring to compare the effect of urban areas 

with different qualities on older adults, showed that urban busy areas were associated 

with higher excitement in comparison to urban green areas. Stimulation is necessary for 

generating feelings such as excitement, and its lack may create negative perceptions for 

the urban web. Places which may be of historical or cultural importance, for instance, 

are significant elements of the urban web from a psychophysiological point of view, as 

they can act as sources of sensory stimulation (Brebner et al. 1976). There is a 

considerable body of literature on landmarks and their role in terms of visual 

stimulation (e.g., Montgomery 1998) and their capability to act as reference points that 

allow an individual to create a city's mental map (Lynch 1960). According to Kevin Lynch 

(1960), the presence of many landmarks joined by known streets is a factor which 

signifies a good city, as it is “imageable”, in contrast to a dull city, where the residents 
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are not able to recognise a large proportion of its urban web and associate it with a 

familiar symbol. The experience of a stimulus also depends on the rate at which 

information is perceived; therefore, pedestrians can process the sensorial 

characteristics of their surroundings at their own pace, while drivers or cyclists are 

engaged at another cognitively complex task at the same time, which limits their 

capabilities (Geller 1980). There is thus no recipe for deciding how much complexity (in 

terms of the available stimuli) is good, as personal experiences differ and change over 

time.  

3.4.2.1.3. NATURAL ENVIRONMENTS AND URBAN SPACES AS RESTORATIVE 

PLACES  

The two dominating theories in the field of stress restoration have generated a set of 

guidelines in terms of spatial qualities which determine the restorative capabilities of a 

place. In the Attention Restoration Theory, these characteristics are the feeling of 

“being away” (the psychological distance from activities of daily life), the extent or 

richness and organisation of surroundings, the fascination or presence of aesthetic and 

captivating qualities which can capture the involuntary attention of the individual, and 

the compatibility between the environment and the individual’s needs and intentions. 

In the Psycho-Evolutionary Theory of Stress Reduction, the defining characteristics are 

the openness and depth of the place, the presence of a medium degree of complexity in 

terms of stimuli, the high presence of natural elements (water, trees) and the absence 

of threatening circumstances.   

In terms of which spaces have these characteristics, there has been plenty of evidence 

that exposure to parks and forests elicit feelings of stress reduction and lower related 

physiological markers. Recent studies highlight the positive psychological responses to 

interaction with green environments as compared to urban environments, while also 

suggesting that they do not need a long time to take effect. Park et al. (2011) show that 

even a short exposure to natural environments (15 minutes) yielded much less tension, 

anxiety, confusion and fatigue than the same acts in urban areas. 

There has also been evidence that even viewing a natural environment can assist in 

stress restoration. Lee et al. (2009) found an improvement in several physiological 
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markers related to stress. In the study of Ulrich et al. (1991), all subjects reported much 

higher levels of positive affect and lower rates of anger and fear when viewing a video 

of natural environment after exposure to a stressful movie, as opposed to when viewing 

sounds and imagery of an urban environment after being exposed to the same stressor. 

Their evaluation included continuous monitoring of HR, muscle tension and EDA levels 

during the experiment. The physiological indicators suggested a more significant 

decrease of autonomic arousal and faster return to baseline conditions in the case of 

exposure to a natural environment, compared to the exposure to an urban 

environment. 

Recent studies, though, have identified potential bias in the overpromotion of natural 

environments (Weber & Trojan 2018). This view is supported by arguments such as the 

fact that the urban environments which usually feature in the studies that promote the 

healing effects of natural environments are urban streets with transportation as their 

primary activity, while the chosen natural environments are always those of 

recreational character (Staats et al. 2016). Since this criticism first emerged, there have 

been studies which show that urban settings might also have restorative capabilities; for 

instance, San Juan et al. (2017) found that sitting and walking in two urban squares for 

30 minutes had a restorative effect and a decrease in negative affect. The selected 

squares also fulfilled the criteria in terms of spatial qualities necessary for restoration, 

according to the Attention Restoration Theory and the Psycho-Evolutionary Theory of 

Stress Reduction. 

In a literature review on the restorative capabilities of urban environments, Weber and 

Trojan (2018) showed that the restorative capabilities of everyday urban environments 

are understudied. The few existing studies demonstrate that the perception that urban 

environment is in principle, not restorative is wrong. The presence or proximity to 

natural elements (including vegetation such as trees in urban streets) was associated 

with positive results. This finding was in line with the suggestion of Psycho-Evolutionary 

Theory of Stress Reduction that a high number of natural elements is a good predictor 

of high restorative capabilities of a place. Weber and Trojan (2018) also found that 

cultural-historical places, art galleries, museums and churches had a positive restorative 



 

92 
   

effect, while residential areas were identified as the least restorative when compared 

with recreational and cultural-historical areas. It was also shown that apart from the 

place itself, the activity that the place hosts is of equal importance; for instance, 

shopping in a mall, visiting a park and sitting in a café were all rated positively as 

restorative activities, while walking was the least restorative in comparison to the other 

three. Architectural features also raised the fascination of subjects, as it was found in 

another study, increasing the restorative effect, while building height had a negative 

effect, possibly due to an increased feeling of enclosure. The low level of social stimuli 

was also evaluated positively in the context of restoration in some studies. Finally, it was 

found that intercultural and age differences also play a role; for instance, it was found in 

two studies that adolescents preferred coffee shops and video arcades for their 

restorative potential, while elderly rated higher a café targeted to seniors.  

One common theme that emerged was that two of the criteria set in the Attention 

Restoration Theory had particular importance: the ability of space to fascinate the 

subjects and generate an effect of “being away”. One other point which emerged from 

recent studies is the difference between physiological measurements of stress relief 

and reported psychological benefits. For instance, Tyrväinen et al. (2014) showed that 

while a visit to an urban park and urban woodland had more positive effects in 

perceived stress relief in comparison to a visit to the urban centre, physiological 

measurements (salivary cortisol concentration) suggested similar bodily reaction to 

stress in all three environments.  

Another point which has to be considered is that the therapeutic effects of a place are 

not related only to its visual properties and that the full sensory experience has to be 

considered. In the case of green, for instance, recent studies (e.g., Wooller et al. 2015) 

have suggested that multiple sensory inputs, including sounds and smell, contribute to 

its potential therapeutic effects of green. Weber and Trojan (2018) also stressed the 

need to consider this aspect in future research on the restorative capabilities of urban 

spaces.  

https://www.sciencedirect.com/science/article/pii/S0272494413000959#!
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Figure 3.12. The relationship between urban stimulus characteristics and physiological effects in the 

urban environment.  

The literature presented in section 3.4.2 is summarised in the conceptual scheme 

presented in Figure 3.12. The figure demonstrates that the relationship between 
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stimulus characteristics and physiological effects, which was described in detail in 

section 3.2 and 3.3, is also applicable in the urban space. It seems thus appropriate to 

select and organise urban features for the construction of the spatial database based on 

stimulation properties (intensity, duration, novelty, complexity), while also considering 

the interaction between stimuli. Novelty is not a relevant factor in traffic and land use 

density, but intensity plays a large role. Novelty and complexity are significant 

parameters in the case of landmarks, cultural spaces and architectural features. 

Additionally, intensity and complexity may be assessed by evaluating the patterns of 

spatial concentration of many stimuli together and how these patterns change in space.  

The duration of stressor will be later assessed by examining the pattern of interaction of 

the user with space. 

Finally, similar to the identification of urban features which can act as physical stressors, 

the study proposes here the stimulation-based categorisation of urban features and 

their grouping under the name ‘Psychological stressors’, following the categorisation 

proposed in section 3.2.5.  

3.5. PRESENTATION OF THE THEORETICAL AND CONCEPTUAL FRAMEWORK  

As this review showed, the study of fundamental bodily processes is essential for 

understanding the psychophysiological experience in the urban environment. This 

experience is affected by physical and psychological factors. Based on the reviewed 

literature, stress is the physiological response of the organism to a change in state or 

the surroundings. Stimulation is connected with the concept of stress; the appearance 

of a stimulus or a change in the stimulation pattern may capture the attention of the 

individual, who then processes this information to decide if it is threatening or not. 

These concepts are at the centre of urban theories related to psychophysiological 

experience, such as Milgram’s theory of sensory overload, as well as the Attention 

Restoration Theory and the Psycho-Evolutionary Theory of Stress Reduction. The way 

that the urban and physical environment is structured around us plays a significant role 

in shaping our daily experiences. Urban stimuli operate as any kind of stimulus, which 

can attract our attention or even lead to overstimulation when the intensity or 
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complexity of the stimuli is high. Noise also acts as a potential psychological stressor, 

with different effects depending on the duration and intensity of the stimulus.  

Movement is also an integral part of our interactions with the urban environment. 

Physical activity is related to the concept of stress and may generate sympathetic 

arousal comparable to the exposure to a psychological stressor. It is, though, mediated 

through different pathways than sympathetic arousal elicited from immediate changes 

in stimulation, and usually it does not initiate negative emotions unless the intensity 

and duration lead to high physical strain. Its effect is also beneficial for the organism. 

The movement pattern, and thus the physiological effects associated with it, is 

influenced by the structure of our environment. At a small scale, anything that causes 

muscular movement is related to physiological bodily effects. A change in posture, for 

instance, causes a change from a steady state to another, and this can generate a 

physiological response. Parameters related to the structure of the surroundings, such as 

the presence of obstacles, can affect physiological responses as they generate different 

movement patterns. The terrain condition is also a significant factor, increasing the 

activity intensity in cases of slope or irregular surfaces.  

There is also a complex interplay between space, movement, social interaction and 

psychophysiological experience; apart from the changes in sympathetic arousal which 

may occur during due to changes in excitation or stress levels, talking also changes the 

breathing pattern, which may cause artefacts in electrodermal activity recordings. 

Furthermore, social interaction during walking might affect the movement pattern, as it 

can become challenging to keep a steady rhythm during a conversation. 

Our experience during interactions with the urban environment can thus be seen as a 

sequence of physiological events, which affect our perception of this experience and 

are dependent on the following factors: intention (which affects the rhythm of 

movement and the psychological state), personal factors (age, level of physical training, 

medical history, and past experiences which shape our perception of stimuli as 

threatening or exciting) and interaction with physical and psychological stressors. The 

reviewed studies in Chapter 1 showed that there has been some progress in mapping 

the perception of experience, but these efforts have suffered from possible 
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misinterpretations of sympathetic arousal as stress which is necessarily negative. The 

health benefits from physical activity have also been overlooked in these studies. In 

order to assist future research in analysing urban experience through physiological data 

from a health-oriented perspective, we need to understand the interactions between 

activity and context and analyse changes in sympathetic arousal from this perspective. 

The urban experience is, in this context, the effect of interaction between changing 

levels of stressors, with changing levels of intensity, duration, novelty and complexity.  

The analysis of urban parameters which affect physiological responses led to the 

identification of ‘physical stressors’ as a category of urban features which affect 

movement (see section 3.4.1), and ‘psychological stressors’ as features related to visual 

and auditory stimulation (see section 3.4.2). The temperature could also be included in 

the category of physical stressors, but it should be separated from movement-related 

effects for better conceptual categorisation. As shown in Figure 3.13, these features 

suggest an increased potential for eliciting physiological changes associated to each 

category. The personal factors, as well as the characteristics of interaction with space, 

are the parameters that determine the chances of activating the ‘stressor potential’, as 

it is called here. The scheme presented in Figure 3.13 summarises these points and will 

act as the theoretical framework of this study.  

Figure 3.14 provides a more dynamic representation of the framework, illustrating the 

main ideas from the perspective of a user moving in space. As shown in the figure, each 

instance of interaction with space is affected by the characteristics of stimulation. The 

urban stimuli may have a different significance for each user according to their traits 

and their history of encounters with this place. Additionally, the user activity before 

visiting this space creates a state of high sympathetic arousal, which may affect the 

responses.  
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Figure 3.13. The theoretical framework 
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Figure 3.14. A presentation of the theoretical framework from the perspective of a user moving in the 

urban space 

The theoretical framework, which was designed based on the reviewed literature, led to 

the identification of specific features or the urban environment that could be related to 

physiological responses. Traffic and the presence of mixed-use were selected as 

significant features which are connected to stimulation levels and can potentially act as 

psychological stressors when their presence is intense. Traffic was selected due to its 

link to noise, which is a psychological stressor. The inclusion of the density of mixed-use 

was based on the logic that higher levels of this feature would be connected to higher 

stimulus intensity and complexity, due to a higher presence of signs and other diverse 
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visual elements. Additionally, this feature can act as an indicator of the levels of 

crowding, which is linked to an increased presence of moving stimuli which a person has 

to avoid while walking, and has been associated with psychological stress. It was also 

decided to focus on features associated with a high intensity of physiological responses. 

From this perspective, the inclusion of the presence of green would not be necessary. 

The inclusion of traffic and mixed-use is enough to separate places of high levels of 

stimulus complexity from less complex environments for the scope of this research. 

Future work could involve a reconsideration of this point and include green as a 

significant feature if needed. 

In terms of physical stressors, terrain conditions and slope may increase the intensity of 

physical activity, while temperature also plays an important role, especially when there 

are intense temperature changes. Traffic lights were also included as features that may 

affect movement, while also being possibly connected with increased stimulation levels 

due to the high concentration of people and cars that they can create. For this reason, it 

was decided to include traffic lights as a feature that may act as a possible physical and 

psychological stressor.  

As for movement-related features, it was decided to include the activity intensity, the 

duration of the activity, the change in activity and the presence of steady-state activity 

as features that represent different aspects of activity related to physical stress.  

It should also be noted that the features which were identified as potential 

psychological stressors could, sometimes, act as physical stressors as well, affecting 

movement. For instance, crowding may lead to deviations from following a straight 

walking path, causing small accelerations or decelerations when encountering others in 

the street. The same applies to interactions with traffic and traffic lights, as these 

parameters may alter the speed of walking in order to avoid any accidents. These 

features will be kept in the category of psychological stressors due to their links with 

stimulation levels, but their capacity to act as physical stressors should be kept in mind 

as a possibility. 
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Figure 3.15. The conceptual framework linking urban and movement-related features to physiological 

responses. 

Figure 3.15 illustrates the possible links between the selected features and physiological 

responses. This scheme was derived from the reviewed literature and the designed 

theoretical framework and shall act as the conceptual framework of this research. All 

the spatial features will be derived from the analysis of OpenStreetMap (OSM) and 

Point of Interest (POI) data, and they will act as representations of the estimated 

potential of a space to elicit physiological responses. OSM data will be used for the 

extraction of variables related to traffic and other physical stressors. POI data will be 

used for the representation of mixed-use. The movement-related features will be 
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unique for each individual, and they will be derived from the analysis of time-series 

movement data (speed and accelerometer). 

To confirm that the use of POIs for the representation of mixed-use is justified in the 

context of this research, an analysis was conducted using POI data and exploring its 

relationship with stimulus complexity. The only studied context for this analysis was 

Sydney; however, its urban fabric has enough diversity to cover various levels of POI 

density and complexity.  

The analysis showed that POI density has a moderate but significant association with 

the complexity of the environment and its predictors as identified by Ewing and 

Clemente (2013). These predictors included different variables that are related to 

stimulation levels, such as the number of buildings, the number of dominant building 

colours, the number of accent colours (colours of other objects or surfaces which have 

a significant presence in the view), the number of pedestrians, the presence of outdoor 

dining and the presence of public art. The associations between these predictors and 

POI density were also analysed, finding a strong and significant relationship between 

POI density and two predictors (pedestrian activity and outdoor dining). The overall 

findings show that POI density can be used as an indicator of stimulus complexity in lack 

of more accurate image-based data sources. Its capability to capture the differences in 

the degree of pedestrian activity is highly significant in the context of this study, as 

crowding is a significant factor that can act as a stressor and affect physiological 

responses. The analysis is presented in detail in Appendix A.  

It was decided not to include a separate indicator for the parameter visual properties in 

the conceptual framework, as this parameter is connected to the other parameters 

related to stimulation. It is assumed that a higher presence of mixed-use and traffic is 

connected to a higher presence of variations in colour, form and movement in the 

visual field of the pedestrian. Apart from the previously discussed link between POI 

density and pedestrian activity (which is related to movement in terms of visual 

properties), the analysis presented in Appendix A showed that POI density was also 

related to the number of buildings and the number of accent colours in some of the 

tested models. It was thus decided that the other parameters related to stimulation can 
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also act as a representation of the differences in visual properties for the scope of this 

research. 

The final step of this phase was the construction of a conceptual scheme for the 

analysis of physiological responses, based on the reviewed literature. Considering that 

movement and contextual factors act as the two groups of stressors based on the 

presented framework, we need to identify changes in states in these stressors and 

analyse physiological responses from this perspective. The review also showed that 

while exercise is a stressor, its effect in the long term is positive for the organism. In the 

context of this research, this suggests that it would be of use to identify and study 

separately physical stressors (and especially the effects of movement) from stimulus-

related events.  

A conceptual scheme (Figure 3.16) was thus designed for the analysis of physiological 

responses from this perspective, including the following steps: 

1. Movement analysis for identification of: 

a. Phases of similar activity intensity, duration of each phase, and overall 

duration of the activity 

b. Changes between steady states or phases of similar activity intensity  

2. Physiological data analysis for identification of tonic and phasic physiological 

states and responses 

3. Contextual analysis for identification of: 

a. Parameters related to stimulation: stimulus type, intensity, duration and 

frequency of appearance, stimulus novelty and complexity 

b. Changes in the stimulus (or the overall stimulation levels) 

4. Synthesis of movement, physiological and contextual analysis, for: 

a. Classification of physiological responses based on their possible sources 

(physical, psychological or both types of stressors) 

These steps, which are depicted in Figure 3.16, will drive the construction of the data 

fusion model for the analysis of the different data sources related to this research. 
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Figure 3.16. A conceptual scheme for analysis and interpretation of physiological data in the urban 

domain, based on analysis of movement and context 

Finally, Figure 3.17 shows that each part of component 1 of the proposed methodology 

is connected with one step of the designed scheme for analysing physiological 

responses in the urban environment. 
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Figure 3.17. Connection of the designed scheme for the analysis of different data with component 1 of 

the methodology 

3.6. DISCUSSION 

The literature which was reviewed in this chapter started from a thorough analysis of 

different concepts related to physiological responses. The impact of different 

parameters, such as physical activity or changes in stimulation, were also discussed in 

relation to the physiological signals which will be analysed in this research (HR and EDA). 

Then, the discussion shifted to the urban environment. Theories from environmental 

psychology were reviewed in order to position this research in the context of relevant 

theoretical discourse focused on the urban space. The combination of relevant theories 

from different domains led to the identification of movement and stimulation as two 

significant sources of physiological responses in the urban space. These two factors are 

related to physical and psychological stress, respectively, following relevant literature 

from stress theory. Based on this categorisation, it was decided to group the urban and 
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movement-related features in two categories (physical and psychological stressors) 

based on their capacity to affect movement or auditory and visual stimulation levels and 

thus elicit physiological responses. Environmental factors (mainly temperature) also fit 

in this categorisation, being classified as a physical stressor. The review of relevant 

literature from stress theory also showed that different stressors can interact with each 

other. This finding included the interactions between exercise and other psychological 

stressors.  

Based on these findings from the literature review and their translation in urban space, 

a theoretical framework was designed. The theoretical framework adopts existing 

theories related to stress and physiological arousal and describes how different 

elements of the urban environment may act as physical or psychological stressors while 

also considering the presence of activity as a physical stressor. It contributes to current 

research on the links between urban environment and physiological responses by 

situating movement in the context of stress theory and thus covering a gap that was 

identified in Chapter 1. It is also a useful tool for analysing the properties of different 

urban features concerning the impact that they can have on information processing and 

movement. The grouping of different features in two categories helps understand the 

combined effect that these features can have on physiological responses.  

After constructing the theoretical framework, a conceptual framework was created 

(Figure 3.15). This framework was designed after considering which urban features 

should be the focus of this research. The feature selection was based on assessing each 

feature's possible impact on physiological responses based on existing literature; there 

is already evidence linking, for instance, noise and physiological responses, and the 

same applies to crowding. Traffic and density of mixed-use were thus selected as 

representations of these factors (and indicators of differences in stimulation levels) in 

urban space.  The next step of this work (Chapter 4) shall focus on methods for 

analysing these features from a data-driven perspective.  

The next step was the presentation of a scheme for the analysis of physiological 

responses was presented (Figure 3.16) based on the presence of physical or 

psychological stressors, or both. This scheme will be the ending point of the data fusion 
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model presented in Chapter 5. The responses which are analysed in this way could be 

interpreted as indicators of acute stress, based on the reviewed literature. This 

interpretation includes changes in movement and other cases that are recognised as a 

change in state from the organism, but they may not be perceived as a negative 

experience from the individual. This research shall refer to the adopted scheme as a 

‘model for the analysis of physiological responses’, to avoid any confusion with other 

studies which consider stress as a state with a negative emotional tone. Based on the 

reviewed literature, responses related to physical activity and movement changes are 

expected to be perceived as a neutral or positive experience (‘eustress’), unless the 

duration or intensity of activity becomes too high. Responses during stimulation from 

auditory or visual sources could be associated with a shift of attention or excitement in 

the case of the orienting response, or distress in the case of repeated responses that do 

not habituate soon. The different types of responses are most likely attributed to 

different arousal systems, following the multidimensional model of arousal proposed by 

Boucsein (2012) that was presented in section 3.2.1. This scheme was devised for 

analysis of responses in the urban space and is thus more focused on physiological 

responses that can be attributed to movement or spatial and environmental factors 

encountered during outdoor walking. Other psychological stressors, such as work or 

family-related factors, are not included in this scheme, as it focuses on the effects of 

urban space. 

Future work could involve an extension of the conceptual framework towards the 

inclusion of more features. Another factor that may be included in a future extension of 

this research is the link between physiological responses, space and emotions. A brief 

theoretical background on mood and emotion assessment in relation to the bodily 

responses that are examined in this research is provided in Appendix F. It was decided 

to stop at this brief review and narrow down the scope of this research by focusing on 

the physiological responses and not on their perception for the time being. The future 

identification of the emotions that a place or a set of circumstances can elicit could still 

be of value. The acquired knowledge would add information regarding how an 

individual evaluates and perceives the changes in bodily functions elicited by a place. 

This information is significant, as a negative emotional state in connection to a place 
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might cause the individual to avoid revisiting this place, while positive emotional states 

may attract more people. At the same time, it is uncertain whether one place will elicit 

the same emotion in different people. Studies that investigate the connections between 

autonomic responses and emotions rely on an individual's ability to perceive changes in 

bodily functions and connect them to an emotional state. This ability is related to the 

individual's cognitive complexity and emotional awareness, which develop through a 

person’s interactions with the external world and evolve through life. The same bodily 

reaction to an external stimulus might be perceived differently in different individuals. 

All these factors shall be considered in the possibility of extending this work in the 

future.  
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4 
DATA MINING METHODS FOR MOVEMENT-RELATED, CONTEXTUAL 
AND PHYSIOLOGICAL DATA: A REVIEW 

4 | DATA MINING METHODS FOR MOVEMENT-RELATED, CONTEXTUAL AND 

PHYSIOLOGICAL DATA: A REVIEW 

4.1. INTRODUCTION 

The literature review presented in the previous chapter led to the design of a 

theoretical framework describing the links between activity, urban environment and 

physiological responses. A conceptual framework was also designed, identifying 

contextual and movement-related features which might be related to physiological 

responses. This chapter extends this work by providing sufficient background on data 

analysis methods which can be used to materialise this framework. As explained in 

Chapter 2, the work presented in this chapter is a preparatory step for the design of the 

methodology for the collection and analysis of physiological data in the urban space.  

The chapter is organised as follows: section 4.2 discusses concepts related to the data 

mining methods which are going to be used in this research. General data mining 

methods and techniques are first introduced, and then the discussion shifts to methods 

relevant for time series and spatial data. Section 4.3 goes a step further by discussing 

data analysis methods related to the specific data that will be used in this research. This 

review will involve methods related to processing speed and accelerometer data for the 

analysis of activity (section 4.3.1), HR and EDA data processing (section 4.3.2) and POI 

and OSM data processing (section 4.3.3). Section 4.4 presents a scheme for fusion of 

the examined data. The data fusion model will be the backbone of component 1 of the 
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methodology presented in Chapter 2, and it will be used as the first step for analysis 

leading to the other two components. Finally, section 4.5 concludes the chapter by 

reflecting on the examined methods and describing the next steps. 

4.2. DATA MINING METHODS AND TECHNIQUES 

4.2.1. DATA PREPARATION  

General-purpose data mining tasks commonly include data preparation or pre-

processing (such as data cleaning, data transformation, feature selection and 

extraction) and data analysis (such as clustering, classification and prediction). 

Data preparation or pre-processing includes handling of missing data, correction of 

errors and noise reduction in the data. Data transformation includes preparatory steps 

that give an appropriate form or scale to the data before the analysis. Such a step is 

normalisation, which is the process of scaling the data to a specified range.  

Data reduction is necessary when the data set has a large size, thus requiring a long 

time for the computations. Segmentation may also be performed using binning or 

histograms for data reduction (Han & Kamber 2006). Feature extraction is also 

frequently applied at the pre-processing stage, towards the creation of new variables 

that reveal different trends in the data. Measures such as the mean, variance and 

standard deviation (STD) are usually calculated; the mean represents the average or 

centre of a set of values, while the variance and STD show the dispersion of the data 

(Han & Kamber 2006). 

4.2.2. MACHINE LEARNING  

Machine learning (ML) was first introduced as a term in 1959, referring to a computer 

program that can learn from existing data a pattern of behaviour that may be unknown 

or unpredictable by its programmer (Joshi 2020).  

There are different types of machine learning methods, based on how the pattern of 

behaviour is inferred from the existing data. These methods are typically classified into 

three groups: supervised learning, unsupervised learning and reinforcement learning. 
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The methods which will be used in some parts of this research involve supervised and 

unsupervised learning; hence, these two methods will be briefly introduced here. 

Supervised learning involves the extraction of a pattern based on a feedback 

mechanism that uses existing labelled data or continuous values as the ground truth 

data, and aims at minimising the error of the prediction based on different performance 

metrics. Unsupervised learning is used when there are no available ground truth data 

that can guide the process of knowledge extraction, and the behaviour or pattern in the 

data is inferred in other ways, such as separating the data in groups based on their 

similarity.  

4.2.2.1. UNSUPERVISED MACHINE LEARNING: CLUSTERING 

Clustering is a method frequently deployed for exploratory data grouping when there is 

no prior knowledge of the possible classes where a data object might belong (Han & 

Kamber 2006).  Grouping is a task which can be employed for various purposes in the 

context of data analysis, including data segmentation and identification of hidden 

relationships (Myatt 2007). The decision is based on the similarity between the different 

data points, which can be evaluated using measures such as the Euclidean distance 

(Myatt 2007). 

Grouping, in its simplest form, may be performed by identifying all objects that share 

the same class or value or fall within a range of values (Myatt 2007). While this method 

is the most straightforward and does not require advanced computational techniques, it 

requires a level of prior knowledge or instinct about possible existing groups within the 

dataset. Its application also requires an approach of trial and error in terms of different 

combinations of values. This approach may lead to an exhaustive search until an 

appropriate recipe is found.  

Clustering is considered an unsupervised machine learning task and is defined as the 

identification of similar objects and their subsequent grouping in clusters (Zolhavarieh 

et al. 2014). Popular methods for data clustering include partitioning, hierarchical, 

density-based, grid-based and model-based (Han & Kamber 2006).  
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Hierarchical clustering starts with examining all the data points as potential clusters. At 

each step, the clusters are examined to decide if they can be merged. The number of 

clusters is reduced at each step, and the merging continues, forming a tree-like cluster 

structure, called a dendrogram, until a criterion is met. This approach is computationally 

expensive compared to others, but it has the advantage that the number of clusters 

does not have to be known in advance (Keogh & Kasetty 2003). 

An example of clustering by partitioning is the K-means clustering algorithm. In this 

approach, the centres of the clusters are first randomly chosen. Then, after evaluating 

similarity, each data point is assigned a class based on its nearest centre. After that, the 

clusters' centres are re-estimated, by finding the average centre in each of the clusters. 

This step is repeated until the centres of the clusters do not need to change. This 

approach is widely used due to its simplicity and the small processing speed. However, 

the number of clusters must be known beforehand. The choice of the initial centres can 

also affect the result significantly (Han & Kamber 2006). 

Density-based clustering is based on growing a neighbourhood around data points by 

evaluating if the density in the distribution of the points is above a set threshold. A 

popular density-based clustering algorithm is DBSCAN (Ester et al. 1996). 

Clustering is frequently used in the context of exploratory analysis, to discover classes 

or categories in a data set, and can lead to interesting discoveries and trends. The main 

problem concerning the larger group of unsupervised methods is the evaluation of the 

result, which often relies on the subjective opinion of the analyst. As a general rule, 

clustering is considered successful when the resulting data groups have high 

homogeneity and a large separation from each other. Several measures have been 

proposed for this evaluation, such as calculating the distance between cluster centres.  

The proposed methodology will involve clustering methods for the identification of 

hotspots of physiological responses and their separation in distinct groups of points 

(clusters). These methods will be described in detail in Chapter 7.  
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4.2.2.2. SUPERVISED MACHINE LEARNING: CLASSIFICATION AND PREDICTION  

In data mining, classification and prediction describe the process of predicting the 

values or the class of an object, based on a model or function derived from an existing 

dataset. Classification and prediction tasks are usually based on pattern identification 

using existing ground truth values. They are thus considered as supervised machine 

learning tasks. The existing dataset is used as training data in order to identify the 

underlying structure behind objects and classes or values. This approach can be used to 

predict discrete classes or labels, as well as values, as happens in predicting daily 

fluctuations in the stock market (Han & Kamber 2006). The prediction of classes or 

labels is known as classification, and regression refers to predicting continuous values. 

This section will present different machine learning algorithms commonly used for 

regression and classification. These algorithms are going to be used in two parts of the 

research: in Chapter 5 and Appendix E, for activity classification during the processing of 

the movement data and artefact identification during the processing of the EDA data, 

and in Chapter 8, for prediction of physiological responses based on movement and 

contextual characteristics. The different approaches and methods are only described 

here briefly, to provide background knowledge regarding models and terms which shall 

be used later on. 

One of the simplest and most commonly used models for the prediction of continuous 

values is linear regression. This model is usually based on minimising the mean square 

error between the actual and the predicted values. While it has broad applicability, it 

has the drawback that it is suitable for linear relationships between the input and 

output features, and is not applicable for relationships of higher complexity. 

Another relatively simple algorithm used for both classification and regression is the ‘k-

nearest neighbors’ (k-NN) algorithm. When the objective is to identify the most 

appropriate value or label of a test point, the k-NN algorithm analyses the points 

contained in the training set, finds the k most similar data points and averages the value 

of those points. The algorithm does not assume any specific relationship between the 

data points and can be used to approximate linear or more complex functions (Faul 

2019; Joshi 2020).   
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The decision tree (DT) algorithm is based on constructing a tree-like structure of nodes, 

branches and leaves, where the nodes represent rules used to separate the input data 

in different branches according to their properties or attributes, and eventually 

determine the most appropriate labels or values. One advantage of the DT algorithm is 

that it is interpretable. It is thus frequently used when there is interest in understanding 

the underlying mechanism behind the data generation (Joshi 2020).  

The support vector machine (SVM) algorithm is also suitable for linear and non-linear 

models and involves creating a ‘hyperplane’ for the separation of the data points in 

categories with clear boundaries (in the classification task). The SVM algorithm was 

initially created for classification problems, but its use was later extended to regression 

tasks (Joshi 2020). 

Another approach involves the construction of ensemble algorithms based on the 

combination of many weak learners.  Ensemble algorithms include bagging and 

boosting techniques, based on the way that the models are trained. Bagging involves 

splitting the dataset into several sets and training different decision trees in a setup 

where each tree uses data from a different set; then, the output is determined by 

methods such as voting in classification tasks and averaging for regression tasks. 

Random forests (RF) is a popular ensemble algorithm based on creating multiple 

decision trees, using a method similar to the bagging technique. The RF algorithm also 

uses a subset of the features for each training set, apart from splitting the overall 

dataset into smaller sets. This method creates more variation in the decision trees used 

for the ensemble, and reduces overfitting, resulting in better handling of noise in the 

data (Joshi 2020). In boosting techniques, the weak learners are trained sequentially 

and not in parallel, as in bagging. A popular ensemble algorithm based on boosting is 

the XGBoost algorithm (Chen & Guestrin 2016). 

Another family of models includes neural networks and deep learning methods. Neural 

networks were conceptually inspired by the structure of the brain, and are composed of 

neurons or nodes, and connections between nodes, or synapses. There are three types 

of nodes; the input nodes (referring to input features), the hidden nodes, which contain 

the functions that build the predictor, and the output nodes, that contain the predicted 
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outcome. The connections between the nodes contain weights, which are generated 

randomly or sampled from a predefined distribution in the beginning, and updated as 

the algorithm progresses. The training of the network involves updating the weights by 

calculating the error between the actual and the predicted values in each round, and 

‘backpropagating’ the errors in order to change the weights in a direction that 

minimises the error. 

Deep learning refers to neural networks which have more hidden layers. Some 

subclasses of deep learning models have become popular lately in association with 

specific problems, such as speech recognition, object detection and time series analysis. 

These models are the convolutional neural networks (CNN), the recurrent neural 

networks (RNN) and the long-short term memory networks (LSTM).  

CNN models incorporate convolution functions that run through the dataset and are 

applied on small sections of the data, creating new features that help highlight some 

properties of the original data. The convolutional layer can be more than one, and is 

commonly followed by pooling layers for dimensionality reduction, and then by one or 

more fully connected hidden layers. CNN models have been very successful in image 

analysis for object recognition; one of the most famous examples is the work of 

Krizhevsky et al. (2012), who used a CNN model for the classification of a dataset 

containing more than 15 million images in 22000 categories.  

RNN models were primarily created for time series data modelling but suffered from 

the vanishing gradient problem. LSTM models were developed later and overcame the 

limitations of the RNN models (Hochreiter & Schmidhuber 1997). The LSTM model 

contains a series of blocks that operate as gates and decide which information of the 

network's previous state should be kept or forgotten. Due to this feature, they can 

retain past information from the model wherever appropriate, and use it to determine 

the output of the prediction. LSTM models have been used successfully in problems 

which involve complex sequences, such as natural language processing tasks (Cheng et 

al. 2016). A recent development involves the combination of CNN and LSTM models 

(e.g., Karim et al. 2018), an approach can be used for harvesting the advantages of both 

models. This combination has been popular in complex tasks that have a temporal 



 

115 
   

structure, such as emotion classification in outdoor routes (Kanjo et al. 2018b), or video 

classification based on identifying human actions (Wu et al. 2015). 

Usually, the experimentation for a regression or classification task involves testing 

multiple different models, tuning the hyperparameters using techniques such as grid 

search, and determining the most appropriate for the given task based on performance 

metrics such as the mean squared error (MSE) and the mean absolute error (MAE) for 

regression problems, and the accuracy score, or other metrics (precision, recall and F1 

score) for classification problems. The method of cross-validation is commonly used for 

understanding how the model performs in different variations of the training and 

testing dataset. One of the most commonly used cross-validation methods is k-fold 

cross-validation, where the dataset is split into k sets, and k versions of training and 

testing datasets are created. Each set is used only once as the testing dataset, and the 

rest of the data form the training dataset each time. The process is repeated k times, 

and the performance metrics from the k folds are averaged to determine the final score 

(Faul 2019).  

4.2.3. DATA MINING METHODS FOR SPATIAL AND TEMPORAL DATA  

While the methods described above are generally applicable and can serve as a 

guideline in terms of possible steps suitable for different tasks, their implementation in 

a real-world task requires some modifications and considerations, especially when the 

data is multidimensional and heterogeneous.  

The data sets which will be analysed in this project (GPS, accelerometer, HR, EDA, skin 

temperature, OpenStreetMap (OSM) data, Point of Interest (POI) data) have very 

different properties as they belong in different categories. They can be separated in 

temporal data, which have the form of time series (accelerometer, HR, speed, EDA, skin 

temperature) and spatial, static data (OSM, POI data), while the OSM data also have a 

graph structure. Some datasets also have both temporal and spatial dimensions (GPS 

data). As these data sets are heterogeneous, data cleaning and indexing require a 

combination of approaches to enable smooth access and data query during the analysis 

(Zheng et al. 2014). Additionally, some common data mining techniques have to be 
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explored in connection with domain-specific knowledge; such a case is the estimation of 

physical activity intensity. Furthermore, POI and OSM data contain semantic 

information apart from latitude and longitude data. This information has to be retrieved 

and organised in ways that are useful in the context of this research.  

The following sections will provide a background on data analysis methods for each data 

type and domain of research and then propose a method for data fusion to support the 

specific objectives as stated in the framework. 

4.2.3.1. DATA TYPES: TIME SERIES 

Accelerometer data, speed, and the physiological signals examined here (HR, EDA, skin 

temperature) are composed of numerical values which are collected over time and form 

a continuous set of observations. This data type is known as time-series data (Fu 2011).  

Before proceeding with data analysis, it should be examined whether the data is 

stationary or not. Time series data is stationary when the behaviour of its statistical 

properties is not significantly affected by the change of time. Many types of time series 

data exhibit non-stationary behaviour, including physiological data (Fukuda et al. 2004). 

In such cases, it should be considered if non-stationarity must be removed by removing 

the slow changes in the mean, with methods such as differencing. 

A common pre-processing step in time series data is the reduction of data points by 

techniques such as sampling, or segmenting the time series and interpolating the mean 

value of each segment (Fu 2011). A time-series object can also be segmented in smaller 

objects, with a window with fixed or varying length, thus allowing the detection of 

patterns and periodic trends (Fu 2011). Several features are then extracted from each 

window in the time or frequency domain (e.g., mean, STD) for its representation. 

4.2.3.2. DATA TYPES: SPATIAL DATA 

Spatial data can include raster and vector data and can contain spatial and non-spatial 

attributes. Spatial attributes may include latitude, longitude and other properties 

related to geographical location, such as elevation, while non-spatial attributes contain 

information such as the name of an area and population (Shekhar et al. 2011). Spatial 
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data mining is a field with unique challenges and processes in terms of both 

management and analysis, compared to traditional data mining techniques. One of the 

most frequently mentioned properties of spatial data is spatial autocorrelation: while 

traditional data mining techniques may assume an independent identical distribution of 

values, in spatial datasets, geographically close points often have similar characteristics, 

and this has to be taken into account in the analysis (Shekhar et al. 2011). 

Spatial relationships between data points can be represented in various ways, including 

set-based, topological, directional or metric representations. In set-based 

representation, data points are analysed as members of sets which have properties 

such as union and intersection. A form of topological representation is the exploration 

of space as a network where edges form relationships of connectivity between nodes. 

Other models of analysis of spatial relationships explore relationships of coordinates in 

terms of properties such as distance (Shekhar et al. 2011). 

These relationships are also often depicted in choices regarding the indexing and 

structure of spatial data in the formulation of spatial databases. In the case of temporal 

data, time-series data points can be ordered by sorting the timestamps. If we want to 

find a neighbourhood of data points that are temporally close to a specified point, these 

points' indices will be within close range of the index of the specified point and thus 

easily accessible. An example would be to make a query for the segment surrounding an 

intense peak in one hour of HR measurements. This type of sorting and indexing is not 

so explicit in spatial datasets. However, allowing easy retrieval of neighbourhoods of 

data points is still very important, as this type of query is very frequent in tasks such as 

looking for the nearest neighbours of a point in terms of spatial proximity. Popular 

solutions for this problem involve spatial partitioning and data partitioning techniques, 

such as k-d trees, quadtrees, R-trees and their variations, and grid-based spatial division 

(Eldawy et al. 2015).  

Spatial clustering is a popular procedure in spatial data mining, as it can be used to 

detect areas where a phenomenon has a more intense appearance. Hierarchical and 

partitioning clustering algorithms have been used for this purpose. A widely used 

density-based algorithm is the density-based spatial clustering of application with noise 
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(DBSCAN) proposed by Ester et al. (1996). The algorithm offers a good alternative to the 

K-means algorithm for spatial applications, as it focuses on the discovery of areas which 

have points above a specified density threshold. It is thus a very popular algorithm in 

the context of analysing spatial datasets which might include areas with very few, 

scattered points, with low densities, which do not belong to any cluster (Ester et al. 

1996). Hotspot analysis is a special category of spatial clustering. It is based on the 

evaluation of similarity between neighbouring data points, and it is commonly used in 

crime mapping, analysis of the spread of diseases and other fields. Common methods 

here include the application of local indicators of spatial association (LISA), among 

others (Shekhar et al. 2011). 

4.3. MINING MOVEMENT, PHYSIOLOGICAL AND SPATIAL URBAN DATA: 
TRENDS AND CHALLENGES 

4.3.1. MOVEMENT DATA 

4.3.1.1. SPEED AND GPS DATA 

GPS data analysis has emerged as an alternative to traditional travel survey methods in 

transport research (Schuessler & Axhausen, 2009). Methods for GPS data post-

processing have been used for different facets of travel behaviour analysis, such as 

travel mode identification (Schuessler & Axhausen, 2009) and trajectory analysis. Data 

pre-processing commonly includes speed calculation and typical data cleaning 

procedures, while data analysis usually employs data grouping methods towards the 

detection of trips and stops. 

The data pre-processing step mostly involves data cleaning. The obtained GPS tracks 

might contain errors due to poor indoor signal reception, signal reflection by building 

surfaces and roads, and distortions during travelling by public transport (Schuessler & 

Axhausen, 2009). Sometimes there are also strong positional jumps which are 

realistically not possible. Therefore, data cleaning commonly includes identifying points 

with unrealistic values, and deletion or another manipulation of points following a large 

temporal or spatial gap, to handle cases of signal loss (Hwang et al. 2013). Smoothing 

might also be applied for the reduction of errors. After that, the speed can be calculated 
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as the first-order derivative of the GPS points in relation to time, while the acceleration 

is the second derivative (Schuessler & Axhausen, 2009). 

Data grouping methods may be applied for activity detection or separation of data to 

different sessions. This task can be conducted by analysing if the gap between 

subsequent timestamps exceeds a threshold (e.g., 45s to 900s in Schuessler & 

Axhausen, 2009). 

After that, data partitioning is again applied for each session, for the detection of stops 

and periods of movement. Filters based on speed values can be used for this purpose. 

Papandrea et al. (2013), for instance, use a speed threshold of 1.3m/s for the detection 

of stops.  

Another way to identify possible stop points is by spatial clustering. Hwang et al. (2013) 

have implemented this step in their method for extraction of mobility measures; first, 

they identify possible stop points by a kernel density estimation (KDE) analysis of point 

density. These points are then used as seeds for a DBSCAN algorithm, which identifies 

points which cluster around stop locations. Temporal filtering is applied after that, to 

identify if the points which belong to a spatial cluster are also continuous. A majority 

filter is also applied to take care of misclassified points. This filter is based on calculating 

the most common value among temporal neighbours. At the final step, different 

attributes are assigned to trips and stops, based on parameters such as time of arrival, 

speed and trip duration. 

After separating trips from stops, some studies extract information regarding the 

purpose or mode of the trip. Schuessler and Axhausen (2009) for instance, propose a 

fuzzy logic approach which takes as input the speed and acceleration during the 

extracted activities and calculates the maximum likelihood of mode. They also use the 

assumption that the transition to a new travel mode is preceded and followed by a 

short phase of walking; therefore, if these phases are not detected, the activity in 

question can be joined with its neighbouring activities. 

This research area has also benefited from the emergence of POI data, which allow the 

semantic analysis of GPS trajectories, towards the extraction of information regarding 
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the context of movement and personal preferences in terms of visiting places. An 

example here is the study of Yan et al. (2011) who propose a framework for the 

semantic analysis of GPS trajectories, which analyses the characteristics of the 

movement of users and uses the POI data to estimate the context of their movements 

and stops. Papandrea et al. (2013) also use a combination of POI and GPS trajectory 

analysis to analyse POIs that humans visit in their daily routes. In this case, the research 

aims to identify the places where users spend a considerable amount of time. To 

identify the “stay-locations”, they apply a DBSCAN clustering algorithm to identify 

possible regions of interest. They also extract semantic information from the tag labels 

to categorise the stop and also use as a POI measure the ‘relevance’, which refers to the 

history of visits that the user has paid to this particular POI. 

GPS data can also be used to predict metabolic energy cost (and thus physical activity 

intensity) in the context of walking, after the extraction of speed. The most widely used 

formula is that of Pandolf et al. (1977), which relates the metabolic energy cost to the 

weight of the individual, the carried load, the speed and the terrain slope. New, more 

accurate alternatives to this formula have been established in recent years, such as the 

model of Ludlow and Weyand (2016). 

Figure 5.1. provides a summary of the outlined methods, while situating them within 

component 1 of the conceptual methodology. 
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Figure 4.1. Common approaches to the analysis of speed data 

4.3.1.2. ACCELEROMETER DATA 

Acceleration refers to the change of speed in relation to time, and its unit is the 

gravitational acceleration g (1 g = 9.8m∙s2) (Chen & Basset 2005). The acceleration 

values recorded with an accelerometer contain information regarding the acceleration 

generated by bodily motion and gravitational acceleration. Other factors also can 

contribute to the accelerometer output, such as external movements from vehicles or 

other machinery which produces vibration, or accidental movements of the sensor 

(Bouten et al. 1997). A triaxial accelerometer contains information regarding the 
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movement in the vertical axis (z) and the horizontal axes (x,y). During human 

locomotion, the most significant increase in magnitude is found in the vertical axis (z), 

and the increase in movement is reflected as an increase in magnitude and frequency 

(Bouten et al. 1997). Accelerometer data acquired from smartphones may differ from 

data from wristbands, as wristbands capture hand movements under all circumstances, 

while smartphones might be held in a pocket instead of the hand in some cases 

(Dobbins & Rawassizadeh 2018). 

The usage of accelerometer data can assist in two areas: in physical activity intensity 

estimation, and activity classification. The two tasks are related, as activity classification 

may involve the separation of phases of sitting, walking, running, and other states with 

different activity intensity. A difference here is that activity intensity estimation returns 

an assessment in the form of a numerical scale, while activity classification partitions 

the data in discrete classes, which are then used to infer the context during some user 

actions.  

Regarding intensity estimation, triaxial accelerometers can estimate the energy 

expenditure of a subject reasonably. Uniaxial accelerometers do not provide such an 

accurate estimation but can demonstrate well the differences in physical activity among 

different subjects (Levine 2005). Activity intensity estimation models are based on the 

principle that the energy expenditure is significantly related to the accelerometer signal 

(Bouten et al. 1997), and especially to the integral of the modulus of the accelerometer 

values. 

There have been some concerns regarding the loss of accuracy during graded walking 

(Terrier et al. 2001). For outdoor movement, GPS analysis and open amplitude API can 

compensate here by providing information regarding the altitude change. Moreover, 

different individuals might respond differently to the same task, and such variations 

cannot be captured by the sole usage of accelerometers (Yang et al. 2019). 

The data pre-processing stage may include a low-pass or high-pass (Chen & Basset 

2005) filtering.  Feature extraction depends on the context of the study. The estimation 

of activity intensity usually involves the extraction of accelerometer counts, a procedure 

which includes converting the negative values to positive ones with full-wave or half-
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wave rectification, and integration with a specified time window, such as 1-minute 

(Chen and Basset, 2005). The integration of the signal has the disadvantage that it might 

average activities with two different intensities if both of them fall in the same time 

window.  

Feature extraction for activity classification commonly involves the calculation of mean, 

median, STD, root mean square and variance values from the time domain, and energy, 

or entropy and mean frequency from the frequency domain (Dobbins & Rawassizadeh 

2018). These features are calculated in a sliding window. Some studies also recommend 

a combination of data from all channels in one vector (e.g., Kanjo et al. 2018a). 

The data analysis step here involves using the extracted features to estimate activity 

intensity or activity classification. For the estimation of activity intensity, studies 

frequently use cut points (thresholds) in the accelerometer counts for the separation of 

sedentary, moderate and vigorous activity, and then measure the time that the user 

spent in each category (Troiano et al. 2014). Some studies have also explored the 

combination of HR monitoring with kinematic measurements (accelerometry and 

occasionally GPS monitoring) for the assessment of activity intensity. The obtained data 

are used for various purposes. Costa et al. (2015), for instance, used GPS together with 

accelerometers and HR monitoring in order to determine stops during the participants’ 

journey and exclude them from the data processing. The energy expenditure was 

calculated from HR combined with accelerometer data, following the branched 

equation model of Brage et al. (2004). De Müllenheim et al. (2018) also used GPS, 

accelerometers and HR monitoring to determine which combination is best for physical 

activity assessment. GPS was used for the calculation of speed, from which the activity 

intensity was estimated. In that study, the combination of methods did not yield better 

results than physical activity estimation through GPS monitoring alone. They suggest, 

though that in the absence of GPS monitoring, the combination of accelerometry and 

HR monitoring produced better estimations than accelerometry alone. Another 

example is that of Romero-Ugalde et al. (2017), who propose a piecewise model which 

simplifies the model of Brage et al. (2004) by using a linear combination of HR and 

accelerometer counts for energy measurement when the subject is conducting a light 
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activity, and HR for moderate and vigorous activity. Dowd et al. (2018) show that the 

number of such studies is still small and does not allow comparison of results between 

studies. There is currently no consensus in terms of which method is better for the 

measurement of activity intensity. 

As for data analysis methods for activity classification, Godfrey et al. (2008) provide a 

comprehensive review of techniques applied for this purpose, using data from 

accelerometer signals. The earliest techniques for accelerometer signal analysis 

involved the separation of static from dynamic activity with the application of 

thresholds. Veltink et al. (1996), for instance, used first a threshold for separation of 

static and dynamic activities, and then the mean and STD values for distinguishing 

different kinds of dynamic activities (walking, climbing stairs, cycling). Lyons et al. (2005) 

also used a similar approach utilising thresholds, with a 1-second moving window, and 

added a posture detection method for further separation of static activities to sitting, 

standing, and lying. Mathie et al. (2002) also proposed a model for separating sedentary 

from active behaviour, which computes the integral of the raw accelerometer data in 

segments using a non-overlapping moving window (essentially extracting the 

‘accelerometer counts’ which were mentioned above) and uses a threshold for 

separating dynamic from static activity. Figo et al. (2010) provide an extensive review of 

features from both time and frequency domains, evaluating their performance as 

metrics in simple classification tasks with 2 or 3 activity classes. Their experiment 

suggested that the metrics which were the most powerful predictors in the time 

domain were the difference between consecutive values and the minimum values, 

leading to very high accuracy, while the tested frequency domain measures also had a 

very good performance. 

Supervised and unsupervised machine learning methods have also been explored for 

activity classification from accelerometer data. Kwon et al. (2014) provide sufficient 

background regarding studies that have used supervised learning. Several classifiers 

have been used, such as RF, Naïve Bayes, SVM and K-NN (Erdaş et al. 2016) This method 

though requires the generation of a training data set of adequate size, which is a time-

consuming task (Kwon et al. 2014). Furthermore, the data labelling process suffers from 
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problems related to inaccuracies in the reports, such as overestimating time spent 

during different activities or underestimating momentary activities (Dobbins & 

Rawassizadeh 2018). Some recent studies attempted to tackle this problem by 

approaching activity classification as an unsupervised learning task, where there is no 

labelled dataset for training the algorithm. 

As an alternative, unsupervised partitioning methods have also been explored with 

success in activity classification. As Kwon et al. (2014) state, the basic set of activities 

used in classification tasks (walking, running, sitting, standing, lying down) have 

significantly different profiles in terms of accelerometer data: the energetic activities 

(walking, running) exhibit significant variations at all channels (x,y,z), with this effect 

more prominent in the case of running. Sitting, standing and lying down have much 

lower variations at all channels, close to constant, while when the subject is sitting or 

lying, the z values are also higher than the others. In terms of appropriate statistical 

measures, these differences can be captured by extracting the mean and STD values 

from windows with a small length and a 50% overlap. Their experiments showed that 

the Gaussian method was the most successful, while hierarchical clustering and 

DBSCAN also performed well. Dobbins and Rawassizadeh (2018) compared the 

performance of different clustering algorithms after feature selection, and hierarchical 

clustering produced the most well-separated clusters, while in that case, DBSCAN had 

the worst performance.  

The approaches to accelerometer data processing which were outlined here have been 

summarised in Figure 4.2.  
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Figure 4.2. Common steps in the analysis of accelerometer data 

4.3.2. PHYSIOLOGICAL DATA  

4.3.2.1. HR DATA ANALYSIS 

Jennings et al. (1981) define three classes of variables related to HR analysis: sustained 

HR, heart rate variability (HRV) and event-related HR. Sustained changes reflect the 

tonic response of the HR to an ongoing situation, and last more than 30 seconds, while 

event-related responses are the immediate responses to changes in stimulation and 

typically last less than 30 seconds. The sustained HR response can be measured by 

extraction of the mean and variance.  
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A category of studies examines HR as a measure of activity intensity due to its 

significant relationship with oxygen consumption during exercise (Colberg et al. 2003; 

Strath et al. 2000). For the assessment of physical activity intensity, some features that 

have been used as measures are the mean HR, the difference between HR during rest 

and activity (activity HR -resting HR) and the number of minutes above a certain per 

cent of maximal HR. Other frequently used procedures for the estimation of the activity 

intensity involve the comparison of HR at peak exercise to the estimated maximal HR 

(HRmax) (Levine 2005), the calculation of the estimated per cent HR reserve (Strath et al. 

2000) or the summated-heart-rate-zones method (Edwards 1993). The relationship 

between HR and energy expenditure is, though, not linear, and has large inter-individual 

variations (Levine 2005). Romero-Ugalde et al. (2017) suggest that this relationship is 

weaker during lower intensity exercise. Chapter 3 also showed that HR is not only 

activated during physical activity but also in other circumstances which cause 

psychological or physical stress and increased need for information processing.  

HRV has also been used extensively for the assessment of autonomic activity. The input 

here is RR-intervals (R corresponds to the peak of a beat, and RR-intervals are the 

intervals between consecutive beats in the electrocardiogram). This signal depicts, 

therefore, the variations in RR intervals (Figure 4.3). In terms of HRV features, the 

following are standard measures of autonomic activity in the time domain: RMSSD, the 

root mean square of the successive differences, is considered a measure of 

parasympathetic nervous activity. The natural log of RMSSD is also frequently 

calculated. SDNN is the standard deviation of RR intervals. NN50 is the number of pairs 

of consecutive RR intervals with a difference larger than 50 ms, and PNN50 is the NN50 

divided by the total number of RR intervals.  

 

Figure 4.3. Heart rate variability (HRV): The variation in successive RR-intervals 
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In the frequency domain, spectral analysis can be conducted for HRV analysis, by 

methods such as the fast Fourier transform (FFT), producing components in three 

different bands. The low-frequency component has been connected with sympathetic 

stimulation, while the high-frequency component shows the influence of respiration. 

The ratio of low frequency to high frequency (LF/HF) has also been used as an indicator 

of sympathetic modulation (Acharya et al. 2004).  This analysis should though be 

conducted in periods where the signal is stationary, excluding posture changes (Jorna 

1992). This measurement becomes difficult during exercise, as then the data becomes 

non-stationary (Tulppo et al. 1996).  

Data partitioning may be applied for separating phases where there is a change in 

environmental conditions and removing the non-stationarity of the HR data.  Bernaola-

Galván et al. (2001) proposed a method for HR data partitioning for this purpose, which 

divides a dataset recursively by evaluating the similarity between each point and its 

neighbouring subsets based on extracted statistical features. Clustering methods have 

also used for partitioning HR data; Yun et al. (2018), for instance, used spectral 

clustering and Gaussian mixture for dividing HR datasets into clusters.  

A task which is essential for this research is the analysis of HR changes in a way that 

separates changes due to movement from event-based fluctuations, caused by 

emotional events or changes in the environmental stimuli. A popular approach here is 

that of Myrtek (2004), who proposed an algorithm for detecting HR changes due to 

emotion in conditions when the subject is moving. The algorithm, called Additional 

Heart Rate (AHR), involves monitoring the subject's movement with an accelerometer, 

to distinguish emotional from physical activity. The algorithm computes the mean HR in 

segments of 60 seconds and compares it to the average HR of the previous 3 minutes. If 

there is a change in HR larger than 3bpm, and there is no intense activity detected in 

the accelerometer data, the segment is classified as an instance of emotional activation. 

Kusserow et al. (2013) noted that Myrtek’s algorithm is based only on activity intensity 

and does not consider postural changes, which can affect HR, as shown in Chapter 3. 

They proposed thus a refined version which includes the detection of primitive activity 
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classes (‘sit’, ‘stand’, ‘walk’) and the transition between activities. Then they segmented 

the data in order to extract the duration and intensity of the stress activation phases.  

A summary of the outlined methods is shown in Figure 4.4. 

 

Figure 4.4. Common approaches to HR and HRV data analysis 

4.3.2.2. EDA DATA ANALYSIS 

As discussed in the previous chapter, the EDA signal can be described as the outcome of 

the convolution of two signals: the tonic EDA, which contains information regarding the 

slow changes in the signal, and the phasic EDA, which contains the peaks (EDRs).  
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In terms of data cleaning procedures, smoothing can be applied to eliminate noise, in a 

frequency that does not affect the EDR shape; Alexander et al. (2005), for instance, 

smooth the signal over a 300ms window.  

For the identification of EDRs, a peak recognition algorithm is usually employed, by 

finding local minima and maxima around points that have a zero derivative or excluding 

curves that cannot be fitted to a modelled response, such as a polynomial function 

(Alexander et al. 2005; Healey & Picard, 2005; Storm et al. 2000). The tonic signal is 

then extracted by removing the peak points, sampling them at a lower frequency and 

interpolating them. A phenomenon which requires special attention for peak 

identification is the fact that EDRs can overlap (Alexander et al. 2005; Boucsein 2012). 

Some examples of overlapping EDRs can be seen in Figure 4.5. In that case, there might 

not be a point where the derivative is zero, which reduces the accuracy of derivative-

based approaches to peak identification. As an alternative to former models based on 

signal deconvolution, Green et al. (2014) propose a model for EDR identification that 

labels data segments according to the positive or negative tendencies in the second-

order derivative and identifies an EDR positively if the segments form an acceptable 

pattern. 

 

Figure 4.5. Types of overlapping EDR responses (figure acquired from Boucsein 2012) 

The algorithms designed for EDR recognition also implement filters to detect if the 

identified peak conforms to the typical characteristics of an EDR. A threshold of 0.02-
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0.05μS is usually defined before the extraction of the phasic responses. Only the 

responses which exceed this threshold are considered as valid (Valenza & Scilingo 

2014). The time between EDR onset and peak is also expected to be between 0.5 and 5s 

(Green et al. 2014).   

 

Figure 4.6. Types of artefacts in EDA measurement (figure acquired from Boucsein 2012) 

EDA fluctuations which do not conform to these expectations may be artefacts and 

noise due to excessive hand movements and loss of contact between the electrode and 

the skin. A steep increase or decrease of the signal is also a typical characteristic of an 

EDA artefact (Figure 4.6). 

Cleaning the signal from artefacts is a crucial part of the EDA data processing, as they 

might be wrongly interpreted as EDRs if this step is omitted. Ojha et al. (2019) applied a 

one-level Haar wavelet transformation (WT) for artefact removal. The guide of 

Braithwaite et al. (2013) proposed down-sampling the signal; some studies also apply a 

low-pass filter for smoothing. Taylor et al. (2015) provide a review of some techniques 

which have been applied for artefact removal, such as the application of a low-pass 

filter or exponential smoothing, the definition of thresholds for minimum and maximum 

EDA (Kleckner et al. 2018), and thresholds for slope, amplitude and width of the phasic 

response. They have also proposed a method for automatic classification of errors, 

using a supervised machine learning model.  

After separating the tonic and the phasic EDRs, their characteristics are analysed in a 

chosen time window, and the following features may be extracted: Number and mean 
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amplitude of EDRs, number of NS.SCRs, mean levels of tonic EDA and sum of EDR 

amplitudes (Boucsein 2012). If there is a timestamp for the origin of a stimulus, the 

latency from stimulus onset to the appearance of the EDR can also be calculated.  

In terms of data transformations, a log transformation may be applied to improve the 

distribution of the EDA tonic levels and EDR amplitudes. Zero responses must be 

corrected before the transformation in this case. Square root transformation may also 

be applied. Data normalisation is also necessary, to take account of the interindividual 

variations in the minimum and maximum values of the EDA signal. EDA measurement is 

more accurate when the EDA recordings can capture the minimum and maximum 

arousal levels of the individual (Boucsein 2012). 

 

Figure 4.7. Common methods implemented in the analysis of EDA data 
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A summary of the reviewed methods for EDA data analysis is provided in Figure 4.7. 

4.3.2.3. EDA AND HR DATA FUSION 

After data pre-processing, the extracted features from HR and EDA are frequently 

combined to be used as input for classification tasks such as analysis and prediction of 

stress and emotion or mood. 

These two areas overlap in terms of the usage of physiological data but differ in the 

states which are predicted. In the prediction of emotions, the subjects report their 

subjective emotions as discrete entities or describe them in a two-dimensional space by 

reporting the valence and arousal levels. The participants may be asked to report their 

emotions while being exposed to situations known for eliciting specific emotions, such 

as viewing slides with emotionally heavy content. Other studies which focus on emotion 

recognition in outdoor circumstances instruct the participants to walk on a route (Kanjo 

et al. 2018a) or report their mood and emotions for a week or longer, while they follow 

their daily activities. In stress recognition, the subjects usually perform a set of stress-

inducing tasks, such as mental arithmetic or a public speaking test, followed by a 

relaxation period (e.g., Sun et al. 2012). The objective is, then, to analyse the data and 

determine if the extracted features correspond to a stressful situation or not.  

As for the models used for analysis, moods and emotions are considered a sequence of 

events and the chosen models for analysis reflect that. Earlier approaches suggested 

the Hidden Markov Model (HMM) as a suitable approach. Recent studies used the LSTM 

neural network (LSTM), often combined with a CNN, to model more accurately the 

dependence on previous emotional states (Huu Son 2017; Kanjo et al. 2018b; Ringeval 

et al. 2015). Such an example is the study of Kanjo et al. (2018a) on predicting emotions 

based on environmental, physiological and activity data.  

For stress analysis, proposed approaches include different classifiers such as decision 

trees, Naïve Bayesian classifiers (Zhai & Barreto 2006), linear discriminant analysis 

(Minguillon et al. 2018) and SVM (Sun et al. 2012).  HMM have also been used when 

speech data act as the input (e.g., Zhou et al. 2002). Some researchers have also 
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proposed Artificial Neural Networks (ANN) as a suitable model (e.g., Sharma & Gedeon 

2011; Alić et al. 2016).  

In the studies on physiological data mapping in the urban environment that were 

reviewed in Chapter 1, it was observed that there is still a lack of consensus regarding 

an appropriate method for stress detection in outdoor studies. Some studies (Benita & 

Tunçer 2019; Kyriakou et al. 2019; Nuñez et al. 2018; Werner et al. 2019; Zeile et al. 

2016) use the combination of EDA and skin temperature for the identification of stress. 

A time window is classified as a stress moment when an increase of EDA coexists with a 

decrease with skin temperature within a very short time window. This approach has 

been one of the most popular in outdoor stress mapping using continuous physiological 

data. More rules may be added, considering the slope of increase of EDA, the moment 

when the skin temperature starts decreasing, and the number of responses in a 10-

second window.  

Other studies have used different approaches; Kim et al. (2020), for instance, propose 

the segmentation of physiological and movement data in portions which are 

significantly different from their neighbouring segments. This method is based on the 

identification of change points. Lee et al. (2020) use the STD of EDR as the measure of 

individual stress. They separate the study area using a 10x10m grid and then extract the 

intensity and the frequency of this metric in each grid cell. The samples are divided into 

high-stress and low-stress indicators by setting a threshold based on the distribution of 

the number and intensity of responses.  

One issue that appeared in most studies on automatic stress recognition is the 

acquisition of ground truth data. This process commonly involves exposing the subjects 

to a series of situations known for inducing stress, usually in a controlled, indoor setup, 

and it is automatically assumed that the subjects are in a physiological state of stress 

during these situations. All kinds of sympathetic arousal are grouped under the label of 

stress, interpreted as distress. Some studies also include a phase where the subjects 

report their perceived stress levels (e.g., Choi et al. 2012). Perceived stress levels, 

though, only report the perception of phenomena related to sympathetic arousal, and 

may differ from the actual change in physiological markers, as the correspondence 

https://ieeexplore.ieee.org/author/37085865202
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between physiological changes and self-reported stress depends on the interoceptive 

ability of the individual to understand such changes (Kleckner et al. 2017). This 

phenomenon has to be considered in the design of stress recognition algorithms, as it 

may distort the classification accuracy. Gjoreski et al. (2017) describe this problem in 

detail and address the difficulty of determining the starting and ending time of a 

perceived stressful situation and the issues that this causes in stress classification tasks. 

Furthermore, studies often focus on mental stress detection and do not include other 

stressors which occur in typical daily conditions, such as physical activity. This problem 

is a source of concern (e.g., Sun et al. 2012; Wijsman et al. 2011) also for general stress 

detection models apart from the studies focused on stress responses in the urban 

space, which were reviewed in Chapter 1. More research is required towards a model 

which takes into account multiple stressors. Sun et al. (2012) have attempted to 

incorporate physical activity in a stress detection model, by including accelerometer 

data. The duration and intensity of activity though may not be enough to elicit stress 

responses which might mask the responses to psychological stressors. Can et al. (2019) 

also identify this problem, but they chose to discard the portions of data where the 

participant was conducting an intense activity. This choice depends on the context of 

the study. It is also affected by the theoretical definition of stress that the researchers 

choose. Accelerometer data are helpful here as they provide more information and 

allow the detection of artefacts caused by a high degree of movement. If the context of 

the study does not involve intense movements, then the portions of intense movement 

can be automatically discarded. However, there are cases where intense movement is 

the reason for the increased EDA or a significant symptom related to a specific situation 

(Boucsein 2012; Taylor et al. 2015). If this information is valuable in the context of the 

research, the portions of intense movement should be kept for analysis, though 

artefacts should still be detected.  

Another issue is the period of exposure to the stressor, and the choice of window size 

for data analysis. Some researchers have suggested that a window length between 10 

and 17.5-minutes yields better classification results (Can et al. 2019). This approach 

seems appropriate for recognition of fluctuation of general stress levels during the day, 
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but in some cases, it may cause information loss regarding events which elicit 

instantaneous responses that last less than a minute. When the focus is on examining 

the effect of the urban environment on physiological experience, it might be more 

appropriate to think what is the rate of change in the surrounding circumstances and 

choose a window length that reflects the time of transitioning from a set of contextual 

variables to another (for instance, the time needed to walk on a street segment).  

4.3.3. POI AND OSM DATA 

4.3.3.1. POI DATA  

Points of Interest (POIs) have been utilised in urban computing as proxies of land use 

data, as they contain spatiotemporal information regarding the usage of space. Land 

use data from official sources, such as governmental institutions, are often outdated 

and have a low spatial resolution (Liu & Long 2015). Remote sensing has been largely 

assistive for the extraction of land use patterns, using image analysis (Liu & Long 2015; 

Yao et al. 2016) but the extracted land cover data have low-level semantic features (Yao 

et al. 2016); it is also difficult to maintain an updated database which keeps up with 

rapidly changing urban environments. POIs have emerged in the past ten years as an 

alternative data source that can cover these knowledge gaps and provide new insights 

into land use analysis. Apart from the high spatiotemporal resolution, they have the 

advantage of online availability and nearly global coverage (Liu & Long 2015), 

characteristics which explain their increasing popularity, as they allow the creation of 

data acquisition and utilisation models which can be used potentially anywhere. 

POI data are a form of spatial data and include both spatial and non-spatial attributes. 

The spatial attributes are geographical coordinates (latitude, longitude), while the non-

spatial attributes are the several tags (e.g., ‘park’) which accompany them.  

A POI is created when people identify a location as interesting or useful and post this 

information online. POIs are, therefore, classified as volunteered geographic 

information, or VGI (Goodchild 2007). As Jiang et al. (2015) point out, anybody can 

create a POI, and this information is not checked by any authority; therefore, 

inaccuracies are possible. There is also no compulsory structure in terms of the data 
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provided for each POI. Most commonly the information entered includes name, 

geolocation (in the form of coordinates or address) and a set of categories or tags which 

give descriptive information regarding the POI (e.g., ‘Chinese restaurant’, ‘children-

friendly’). Areas of Interest (AOI) have also emerged as an extension of the concept of 

Points of Interest and refer to areas with a large density of POIs and are therefore 

considered attractive and recommended for tourists (Laptev et al. 2014). Skoutas et al. 

(2016) have also proposed the term Streets of Interest (SOI), suggesting that there is 

need to identify spatial aggregations of POIs in a way that relates them more explicitly 

to the street network. 

The incorporation of POI analysis in urban studies has been rapidly growing in the past 

ten years. POIs have been used in spatial analysis with the following goals: Fine-grained 

and disaggregated analysis of land use or employment characteristics (Jiang et al. 2015; 

Liu & Long 2015; Wang et al. 2018; Zeng & Lin 2016), identification of regions or areas 

with similar functions, assessment of point or area attractiveness (Laptev et al. 2014) in 

the context of recommendations for tourists, assessment of neighbourhood vibrancy 

and vitality (Humphrey et al. 2019; Wu et al. 2018; Yue et al. 2016; Yue et al. 2019; Zeng 

et al. 2018), and trajectory analysis (Yan et al. 2011).  

There have been concerns regarding potential gaps between the POI information 

available online and the actual situation (Jiang et al. 2015). However, the rapid 

development of user-content platforms that allow POI publishing is expected to 

minimise this problem. Another issue is the difficulty to estimate the size of each POI; 

this can also be tackled if the analysis is accompanied by the analysis of POI-related 

content from social media or other online information.  

To analyse the non-spatial attributes, data pre-processing here may include string 

manipulation for extracting the information contained in the tags. This process is 

commonly followed by grouping the tags using a scheme of common land use 

categories. The scheme could be a hierarchical structure constructed by the authors or 

following an existing taxonomy. Some studies have one subclass of 15-20 categories 

connected with a higher level of 3-5 categories (Wang et al. 2018); other studies have 

only one level with less than ten categories (Liu & Long 2015). The choice of this 
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scheme is crucial as it affects the extracted measures of POI diversity. The algorithmic 

approach used for this classification is unclear in the majority of studies. Jiang et al. 

(2015) proposed a model for automatic classification of POIs in different categories, 

following the NAICS (North American Industry Classification System) taxonomy. In that 

case, there was an existing database of POIs with assigned labels, which was used for 

training the model. 

In terms of feature extraction, POI information can contribute in data analysis in two 

ways: the spatial attributes give information regarding the density of POIs in an area, 

and the non-spatial attributes reveal differences in the patterns of use (e.g., diversity in 

land use and expected time of use). This analysis scheme is supported by the features 

extracted during data pre-processing, which include spatial density estimation (Wang et 

al. 2019), and diversity estimation (Yue et al. 2016).  

For the calculation of POI density, a simple approach is to measure the number of POIs 

per area, (Zeng & Lin 2016) or per population number (Yue et al. 2019). A limitation of 

this approach is that it cannot be directly applied when the analysed region is one area, 

without any indication of the existence of subregions within this area. In this case, one 

approach is to segregate the space in order to measure the ratio of POIs per area. Some 

well-established methods to do this include quadrat analysis and Voronoi-based 

analysis, where space is divided into equal-sized quadrat and Voronoi cells, respectively. 

The density is, then, calculated as the number of points which fall into each cell (Yu et 

al. 2015). The main limitation of these methods is that they do not reflect well the 

density variations at a neighbourhood of each point, and there is a larger probability for 

false estimation for points that are close to the boundaries of the cells. For this reason, 

Kernel density estimation (KDE) is preferred over quadrat and Voronoi-based analysis, 

as it takes into consideration the cell neighbours. KDE though requires the computation 

of distances for all pairs of the point grid, which results in increased computational cost 

(Laptev et al. 2014).  

KDE for networks also needs a different treatment than that simple 2-dimensional KDE, 

as Okabe et al. (2009) explain; this is particularly important for the case of urban 

networks, where the distribution of functions and the effect of their intensity is closely 
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related to the topological layout of the streets (Yu et al. 2015). Okabe et al. (2009) and 

Yu et al. (2015) thus propose an alternative method for KDE for networks. In that case, 

each point is projected on the nearest network segment, and the search space is 

defined by evaluating the distances on network terms. This calculation is based on 

finding the neighbouring network segments within the specified distance, which is 

calculated as shortest-path distance. Yu et al. (2015) have also proposed an alternative 

way of finding network segments within the search radius that do not require 

computation of the shortest path, to make the process less computationally intensive.   

Apart from spatial density, the distribution of POIs can be assessed from the perspective 

of diversity, using information extracted from the POI tags. A widely used way to 

calculate the degree of diversity is by using the Shannon entropy formula (Yue et al. 

2016), a measure which has also been adopted for POI analysis and has become popular 

recently as an indicator of the level of mixed-use (Yue et al. 2019; Zeng et al. 2018). 

Most frequently, this feature is used in the context of assessing neighbourhood vibrancy 

and vitality.   

After data pre-processing, the features extracted from the POI data (density, diversity) 

are used as representations of land-use types, land use density or degree of mixed-use, 

and they are analysed next to other data sets for different purposes. 

One category of studies compares POI density and diversity in different areas by using 

descriptive statistics to study how land-use patterns change in different zones, or if they 

are related to other measures. Zeng and Lin (2016), for instance, used POI density, 

degree of POI concentration (POIs within 500m/POIs within 2000m) and entropy as 

measures of land use characteristics around an urban rail transit zone.  Wang et al. 

(2018) also used POIs as proxies of land use for the examination of the relationship 

between land use intensities and the structure of the urban network; by examining the 

centrality indicators of the urban street network, they found a significant correlation 

between the two, especially regarding the closeness and straightness centralities. Wang 

et al. (2019) also used POI density as a measure of spatial distribution patterns of 

‘commerce-tourism’ and studied its relationship with crowd clustering characteristics 

extracted from Baidu heatmaps.  
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Other studies use features extracted from POIs for the automatic classification of the 

land use type. An example is the study of Liu and Long (2015), who used a combination 

of POIs and street network data for this purpose; the street network data was used for 

the extraction of land parcels, and the POI density (the density of POIs within each 

parcel) was used to determine for each parcel the possibility of being urban, using a 

cellular automata model. After that, the POI entropy was used to determine the degree 

of mixed-use, and the dominant POI type was extracted to identify each parcel's use 

function.  

Other studies use POI density and especially diversity to assess neighbourhood vibrancy 

and vitality, as mentioned above. In this case, the features extracted from POIs are 

combined with other indicators of vitality; Zeng et al. (2018), for instance, combined 

population density, accessibility (the distance of POIs from hospitals, shops and tourist 

attractions), livelihood (number of banks, food services, leisure and recreation and 

other services) and POI diversity, in order to extract the degree of vitality in different 

areas. Humphrey et al. (2019) also measured vibrancy in the context of street safety, by 

calculating the number of POIs for each POI category, and the number of extra hours 

each POI is open in relation to the opening hours of its category.  As Yue et al. (2016) 

point out, there is still lack of consensus in terms of appropriate measures for mixed-

use and vitality; there have been though recent efforts towards a framework for the 

measurement of vitality, such as the one proposed by Yue et al. (2019).  

POIs have also been used as proxies of land use in studies where the goal is to discover 

geographic boundaries of areas with similar characteristics. There is often a need to 

segregate space in ways that do not necessarily conform with the administrative 

boundaries; such an example is the identification of hotspots of human activity, which 

are not spread uniformly across areas prescribed in administrative boundaries. Spatial 

clustering may be performed for this purpose, with algorithms such as DBSCAN (Vu & 

Shin 2015).  

As an alternative to DBSCAN, Laptev et al. (2014) suggest an algorithm for discovering 

‘Areas of interest (AOI)’ which returns clustered areas based on local point density 

ranking. The algorithm pays special attention to the identification of small, walkable 
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clusters, as it is created in the context of Areas of Interest which should be walkable by 

tourists within a reasonable time. Skoutas et al. (2016) also proposed a method for 

identifying Streets of Interest, which also implements street network data and is based 

on ranking streets according to the number of POIs that are close to them. A notable 

approach is that of Yuan et al. (2015), who proposed a framework called Discover 

Regions of different Functions. Their proposed method combines semantic analysis of 

POI tags with region clustering based on raster analysis of road network and human 

mobility data based on GPS trajectories from taxicabs.  

In the past ten years, POI analysis has also been explored at a user level, in the context 

of analysing GPS trajectories and finding users with similar location history. An example 

here is the study of Xiao et al. (2010) who propose a method for semantic analysis of 

location history. The users' trajectories are first analysed for the extraction of stops, and 

the closest POI is found for each stay point. Hierarchical clustering is then applied for 

the identification of POI groups, to build a tree structure which represents categories of 

locations with different levels of similarity. After that, the user’s GPS trajectory is 

abstracted by replacing the stay points with semantic locations corresponding to the 

tree levels. The travels become then sequences of semantic locations, which can be 

assessed in terms of similarity by finding subsets which match in terms of visited 

locations and travel time and then calculating a similarity score based on factors such as 

the hierarchical level at which the locations are similar, and the number and length of 

matches. The identification of patterns in user activities is part and parcel of 

applications which incorporate any sort of recommendations.  

Finally, Figure 4.8 summarises the POI analysis methods outlined in this section, 

connecting them to the conceptual methodology.  
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Figure 4.8.  A summary of methods commonly used in POI data analysis. 

4.3.3.2. OSM DATA  

OpenStreetMap (OSM) is an open database created from volunteered information and 

data from trusted official sources (Jilani et al. 2014). OSM data is a form of spatial data, 

with street network data as its main feature. Geographical information is stored in the 

form of nodes, which have coordinates in terms of spatial attributes. The database also 

contains information regarding the topological connectivity between nodes (Haklay & 

Weber 2008). Each street segment is stored as a link which connects a pair of nodes. In 
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terms of non-spatial attributes, the database contains semantic information regarding 

the characteristics of each link and node, which is usually stored following a tagging 

schema. The schema includes classes for frequently used features (Haklay & Weber 

2008), stored as key-value pairs. There is no restriction regarding the use of tags, and 

the tagging schema operates more as a guide. 

Street and node data can be analysed in terms of geometrical, topological and semantic 

properties. Each category involves the extraction of different features, which can be 

used to infer the role of a street segment in the overall network and the spatial qualities 

associated with this role. The computed features are often combined with POI data (Liu 

& Long 2015; Skoutas et al. 2016; Wang et al. 2018) for spatial analysis. 

Geometrical properties involve characteristics such as the road length, width and 

number of lanes; these features can be easily extracted at a segment level. Data pre-

processing steps here may include string processing for extraction of useful features in a 

consistent format. It may also be of use to extract features at a street level, by joining 

continuous street segments. A street is cognitively recognised by humans as a unique 

entity with its own name and has properties such as straightness and number of 

intersections, which affect mobility patterns according to the space syntax theory 

(Hillier & Hanson, 1984). Street straightness can be computed by measures that assess a 

curve's linearity, such as those described in Žunić and Rosin (2011). 

The analysis of topological features is mainly used for predicting pedestrian or traffic 

flow based on the structure of the street network. Topological properties include the 

extraction of features used in network analysis, such as node centrality measures (node 

degree, closeness and betweenness). As above, it is important to decide if the analysis 

should be conducted by considering street segments alone or joined. The space syntax 

theorists suggested using axial lines, which are street segments alone or joined based 

on their straightness so that they form ‘the longest visibility line’. Some researchers 

have also proposed street-based topological representations, where street segments 

are joined when they have the same name, or on the basis that they form good 

continuity (Jiang & Liu 2009).  
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If a semantic analysis is included, data pre-processing may include a method for sorting 

and filtering the tags. The analysis of the keys and tags depends on the nature of the 

project; for instance, the key ‘highway’ contains the primary descriptors of a road, and 

has a wide range of possible values (e.g., ‘motorway’, ‘residential’ 3). The analysis of 

these tags allows the extraction of information related to traffic volume. A scheme is 

usually employed at this stage in order to determine the relationships between the tags. 

For instance, the Open Transport Map project (Open Transport Map 2020) utilises a 

scheme for the analysis of traffic volume, which identifies 6 levels of traffic intensity 

based on the values of the ‘highway’ key.  

Sometimes the subset of the OSM dataset used for analysis contains so many tags that 

it becomes difficult to inspect them manually. Some researchers have proposed 

methods for solving these issues with an automatic assessment of semantic similarity 

between tags; Ballatore et al. (2013), for instance, set up a web crawler for extracting 

keys, tags and their relationship from the OSM website, in the form of a graph. Then 

they computed a similarity score based on their topological relationship in the graph. 

One issue that should be considered before using OSM data is the assessment of the 

data quality. Studies have shown that the levels of accuracy and completeness vary, 

with improvements needed in the poorer and less populated areas (Pullar & Hayes 

2017). Ground truth datasets from trusted sources can be used for this purpose, but 

these are usually difficult to obtain and not freely available to the public (Barron et al. 

2014). Barron et al. (2014) have provided a framework for quality assessment based on 

parameters such as the evolution of OSM features over time, the number of 

contributors in the area, the mapping activity of different contributors, the 

‘currentness’ of data, the logical consistency of the road network in terms of topological 

connectivity, and the quantity and number of POI tags. Other methods for automatic 

quality assessment have also been explored, focusing on specific classes of the OSM 

data; Jilani et al. (2014), for example, devised a supervised learning method for 

measuring the accuracy of the ‘highway’ key, based on geographical and topological 

 
3 https://wiki.openstreetmap.org/wiki/Key:highway 

https://wiki.openstreetmap.org/wiki/Key:highway
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road characteristics associated with different semantic subclasses belonging to the 

‘highway’ class (e.g., ‘footway’, ‘residential’, ‘pedestrian’).  

 

Figure 4.9. A summary of methods commonly used in OSM data analysis. 

The methods outlined in this section are summarised in Figure 4.9. 
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4.4. THE PROPOSED SCHEME FOR DATA ANALYSIS  

Based on the reviewed methods of data analysis, the following scheme has been 

devised for the analysis of movement, physiological and spatial data for the purposes of 

this project (Figure 4.10):  

 

Figure 4.10. A schematic depiction of the proposed data fusion model for the analysis of physiological 

responses  
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A. Construction of a spatial database, with feature extraction from POI and OSM 

(street network) data. This stage shall involve the following components for the 

identification of contextual physical and psychological stressors: 

- POI analysis: extraction of POI density as a measure of complexity and 

intensity of stimulation 

- OSM (street network) analysis: extraction of geometrical and topological 

features, and semantic analysis for the extraction of physical stressors 

(surface conditions, slope) and psychological stressors (traffic levels, 

feeling of safety)  

- Fusion of POI and OSM data: transference of POI features to their closest 

street nodes 

B. Movement data processing for the identification of movement changes:  

- Accelerometer data analysis for activity classification (threshold-based, 

supervised or unsupervised data partition task) and identification of 

changes in activity intensity  

- Speed analysis for the extraction of additional data related to activity 

intensity  

C. Physiological data processing for the identification of changes in sympathetic 

arousal:  

- EDA processing: separation of tonic and phasic signal (with a peak 

detection algorithm) 

- HR processing: Identification of changes in HR (using a peak recognition 

algorithm, or the AHR method) 

- Fusion of the processed activity data and the EDA and HR data for the 

identification of possible movement artefacts (physiological responses 

during short-lasting changes in movement) 

D. Spatial, movement and physiological data fusion  

- Extraction of relevant spatial characteristics for each GPS point of the 

movement and physiological data 

- Extraction of physiological responses by extracting the EDA peaks (and 

other relevant features) and the changes in HR 
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- Classification of physiological responses based on the underlying 

contextual circumstances during the physiological responses. This step 

will be based on extracting the activity class or the activity change, and 

the level of physical and psychological stressors from spatial data. 

As shown in Figure 4.10, the scheme also contains a placeholder for the possibility of 

adding other data related to this research.  

4.5. DISCUSSION 

This chapter reviewed typical methods and procedures related to the data that will be 

analysed as a part of this work. This review was primarily conducted for the 

identification of data analysis methods which are relevant for this work. Different 

approaches for each task were outlined, and the benefits and limitations of each 

method were discussed.  

The review led to the construction of a data fusion model (presented in section 4.4) 

which will be the basis for building the methods for component 1. The next chapter 

(Chapter 5) shall outline these methods in detail. All the steps of the data fusion model 

were designed based on the literature review presented here. For instance, the data 

fusion model includes the task of activity classification. Experiments were conducted to 

assess the performance of the different approaches that were outlined here for this 

task, including supervised and threshold-based approaches, and the best-performing 

method was selected. The methods which will be used for EDA analysis, including peak 

recognition and identification of artefacts, were also designed based on the literature 

reviewed in this section.  

The other two components will also utilise some of the methods which were outlined in 

this chapter. The methods for analysis at the city scale (component 2 of the 

methodology), presented in Chapter 7, will utilise the spatial clustering and hotspot 

analysis methods. The analysis of topological features retrieved from the OSM data will 

also be included in the workflow of cluster analysis, for the prediction of pedestrian flow 

and its analysis in relation to the clusters. 
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The methods presented in Chapter 8 for prediction of physiological responses will also 

involve testing the machine learning models presented in section 4.2 of this chapter, in 

relation to component 3 of the methodology. The history of physiological responses for 

each user will be used together with a vector composed of the analysed activity classes 

and the spatial information (physical and psychological stressors) to investigate if it is 

possible to predict physiological responses based on a sequence of points for visitation 

and knowledge of their spatial characteristics. Some of the models which were tested in 

the context of similar tasks (predicting emotions in the urban space), based on the 

literature reviewed in this chapter, will be compared to other models presented in this 

chapter.  

The second reason for conducting this review was to identify possibilities for improving 

this work in the future, based on the identified methods. For instance, the work which 

will be presented in the next chapters shall involve only the analysis of POI density, in 

terms of POI data processing. It was decided to focus on this feature due to time 

constraints. However, a future version might benefit from involving semantic POI 

analysis to identify POI categories that may act restoratively (green, water) or act as 

landmarks, capturing the attention of the pedestrian. This task could be conducted as a 

simple data grouping task for a small sample of POIs; otherwise, it can be investigated 

as a supervised machine learning task for the assessment of semantic similarity. 

Another step that could be added in the future involves analysing past trajectories for 

route comparison and identification of novelty of the stimuli which the user encounters. 

This step could be conducted using methods for the semantic abstraction of trajectory 

and identification of the degree of similarity, such as those described in Xiao et al. 

(2010).  

This chapter was the last preparatory step that paved the way towards constructing the 

methodology proposed in Chapter 2. From the next chapter and onwards, the methods 

related to each component of the methodology will be presented and discussed in 

detail.  
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5 
METHODS FOR ANALYSIS AND CLASSIFICATION OF PHYSIOLOGICAL 
RESPONSES BASED ON MOVEMENT ANALYSIS AND CONTEXTUAL 
FEATURES 

5 | A METHOD FOR ANALYSIS AND CLASSIFICATION OF PHYSIOLOGICAL RESPONSES BASED 

ON MOVEMENT  

5.1. INTRODUCTION 

After presenting the theoretical and conceptual framework in Chapter 3, the previous 

chapter discussed methods for analysing the different data sources related to this work. 

A scheme for data fusion was outlined, focused on the extraction of the variables 

included in the conceptual framework.  

This chapter builds on the presented literature and shows how it is utilised to construct 

the main product of this research, the methodology for the collection and analysis of 

the physiological data. The chapter presents component 1 of the proposed 

methodology (Figure 5.1).  This component involves the data fusion scheme and the 

proposed model for classification of physiological responses based on movement and 

contextual data. The main novelties of the method are the incorporation of movement 

analysis and the incorporation of spatial data for inferring the contextual circumstances 

during each response without image-based methods.  

The data fusion model is based on the scheme presented in the previous chapter. Each 

step is analysed in depth in section 5.2. The methods for classification of physiological 

responses based on movement and contextual data are also presented there. Section 

5.3 demonstrates the use of the methods related to component 1 with the help of data 
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collected from two participants during free-living activities. Finally, section 5.4 reflects 

on the presented examples and discusses limitations and future directions. The code 

related to this component can be found in the repository created for this thesis in 

GitHub4. 

 

Figure 5.1. The aim of the chapter and the connection with the conceptual methodology. 

5.2. THE PROPOSED METHOD FOR DATA COLLECTION AND ANALYSIS  

This section presents the methods used for data collection, analysis and fusion, leading 

to the scheme used to classify physiological responses.  

5.2.1. SETTING UP THE SPATIAL DATABASE: PREPARATION OF POI AND OSM 

DATA 

5.2.1.1. POI DATA ACQUISITION:  

The construction of the spatial database starts with the acquisition of POI data. The 

osmnx Python library (Boeing 2017a) was used to acquire POI data. The POI database 

for Sydney was constructed using the coordinates of the Central Station in Sydney as 

the central point for the query, and as parameters a 25km radius. This procedure led to 

 
4 https://github.com/ddritsa/PhD-Thesis-repository/tree/main/1st%20component 
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the construction of a dataframe which contains POI names, coordinates, and any other 

available tags. 

5.2.1.2. STREET NETWORK DATA ACQUISITION  

The second step for the construction of the spatial database involves the acquisition of 

street network data. This step should be conducted in a preparatory stage, and the 

database should be updated frequently in the case of long-lasting projects, to keep up 

with changes. Platforms such as Google Maps and OSM can be considered potential 

data providers; the choice depends on budgetary constraints (as the APIs of Google 

Maps are not available for free), spatial coverage, and quality. For the purposes of this 

project, the OSM platform was chosen, on the basis that there is already a significantly 

high number of contributors and edits in Sydney (Pullar & Hayes 2017).  

The Python library osmnx was used for OSM data acquisition, defining a bounding box 

with Central Station as its centre. The request for OSM data returns a dataframe with 

two branches; one for the nodes and one for the ‘ways’ (links between nodes).  

5.2.1.3. URBAN AND POI DATA PRE-PROCESSING  

After collecting the spatial data, the POI and OSM data must be indexed based on their 

spatial proximity, allowing fast nearest neighbour queries. The chosen approach among 

the methods presented in section 4.2.3.2 was to construct a k-d tree. Euclidean 

distance was chosen as a metric for the k-d tree as it led to significantly faster 

calculations, but for larger areas, the Haversine distance should be preferred. Two 

separate k-d trees are constructed: one for the POI data (which will be referred to as 

the ’POI k-d tree’) and one for the OSM nodes (‘OSM k-d tree’). The overall process is 

depicted in Figure 5.2. 
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Figure 5.2.  OSM and POI data acquisition, analysis and fusion 

5.2.1.3.1. EXTRACTION OF TRAFFIC INTENSITY LEVELS AND TRAFFIC LIGHTS 

FROM OSM DATA 

A particularly important component in the OSM data pre-processing is the semantic 

analysis of the tags.  The tags associated with each geometrical entity (node or link) are 

grouped in categories reflecting different classes and levels of physical and 

psychological stressors. For each node or link, a script is applied for tag processing to 
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extract the dominant categories. These categories are stored in a different column as 

properties. 

The main psychological stressors that can be assessed here are associated with traffic. 

The increase in road traffic intensity elicits higher levels of noise intensity, which is a 

psychological stressor, as shown in the literature review. While navigating in this 

environment, the user might also be more alert than usual, due to the high number of 

moving objects which act as auditory and visual stimuli and may cause an increased load 

in terms of information processing. In the OSM database, traffic intensity can be 

inferred from the semantic analysis of the ‘highway’ tags, as mentioned in Chapter 4 

(section 4.3.3.2). The adopted approach here is to extract information relevant to traffic 

and create a ranking system that reflects the increase in intensity. The scheme for the 

assessment of traffic intensity is devised as follows. 

Level 0 includes tags associated with very low traffic, including tags related to 

pedestrian activity. The tags ‘tertiary’, ‘secondary’ and ‘primary’, included in levels 1 to 

3, represent a hierarchy from lower to heavier traffic. According to the OSM tagging 

guidelines for Australia (OpenStreetMap: Australian Tagging Guidelines 2020), the 

‘tertiary’ tag corresponds to ‘minor through roads within a local area’. The ‘secondary’ 

tag refers to ‘major through roads within a local area’, while the ‘primary’ tag refers to 

arterial routes. 

 Level 4 contains roads with the highest traffic intensity and includes the tags 

‘motorway5’ and ’trunk6’. The tag ‘motorway’ is used for roads with high performance, 

according to the OSM tagging scheme, including national highways and expressways. In 

Australia, this tag is used for the metropolitan motorway network, for ‘M’ classified 

roads, while the ‘trunk’ tag is used for ‘A’ classified roads (OpenStreetMap: Australian 

Tagging Guidelines 2020), The tags which have the notation ‘_link’ next to a road type 

(e.g., ‘motorway_link’) indicate the presence of a road that leads to this road type.  This 

scheme is very similar to that used in the Open Transport Map site (Open Transport 

 
5 https://wiki.openstreetmap.org/wiki/Tag:highway%3Dmotorway 
6 https://wiki.openstreetmap.org/wiki/Tag:highway%3Dtrunk_link 
 

https://wiki.openstreetmap.org/wiki/Tag:highway%3Dmotorway
https://wiki.openstreetmap.org/wiki/Tag:highway%3Dtrunk_link
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Map 2020), which was previously mentioned in Chapter 4. The only difference is that 

the two lowest levels of traffic volume are merged in one here.  

The study of Novack et al. (2018) also shows that the adopted hierarchy reflects a 

gradual increase in noise levels, as the traffic levels increase from 0 to 4. Their study 

assessed the noise levels found in streets with different OSM ‘highway’ tags. They found 

that most of the streets with the ‘residential’ tag (positioned in level 0 in the hierarchy 

adopted here) were associated with the lowest noise levels (50 dB). Streets with the 

‘tertiary’, ‘secondary’ and ‘primary’ tag generated higher noise levels (60, 65 and 70 dB, 

respectively). The streets with the ‘motorway’ tag had the highest noise levels (75 dB). 

The adopted hierarchy thus reflects the differences in the noise levels based on the 

street type, as intended. 

 

Figure 5.3. The scheme used for the analysis of OSM tags  

This hierarchy has been constructed manually for this project, by extracting and 

cleaning the tags, building a tree with lists of tags contained at each class, and then 

querying each OSM node and link in terms of the class membership of each tag. The 

scheme is depicted in Figure 5.3. Figure 5.4 presents an example of the assessment of 

traffic intensity (volume) in Sydney CBD, using the scheme. 
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Figure 5.4. Application of the scheme for assessment of traffic intensity in Sydney 

The ‘traffic_signals’ tag is also used to identify the presence of traffic lights. The nodes 

associated with traffic lights are added to the categories of both physical and 

psychological stressors, following the conceptual framework created in Chapter 3. 

In terms of topological features, node centrality measures are extracted and stored for 

each OSM node. This data will be later used in Chapter 7 for the estimation of 

pedestrian activity, as a part of the method for analysing the significance of clusters of 

physiological responses. 

Information regarding possible psychological stressors is also extracted from the POI 

data. As discussed in Chapter 3, POI density is used as an indicator of factors related to 

stimulus intensity and the complexity of the environment. The logic behind this choice 

was that a densely built environment with many shops, businesses and cafes has a 

larger possibility of containing more auditory and visual information than a residential 

environment, while also attracting more people. The process of decoding all this 

information and navigating in the crowd may require the allocation of more mental 

resources, and it is hypothesised that this might affect differently physiological 

responses in comparison to an area with low POI density. The expected direction of the 
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effect is an increase of physiological responses in number, intensity or both, in areas 

with high POI density. 

5.2.1.3.2. CALCULATION OF POI DENSITY 

Figure 5.5. The spatial distribution of POI density at different scales. 

POI density is calculated by querying the k-d tree for the number of POIs within 100m of 

each POI. The k-d tree allows very fast access to the closest points in terms of proximity. 

This method allows identifying differences in density at a very fine scale, and avoids the 

smoothing effect that would occur if alternative methods were to be used (see section 

4.3.3.1), while still displaying large-scale trends (see Figure 5.5).  
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5.2.1.3.3. POI AND OSM DATA FUSION 

After calculating POI density, the closest POI is identified for each node from the OSM 

database, using the k-d tree. The following features are extracted from this operation: 

closest POI density and closest POI distance. This allows us to combine information from 

the POI and OSM databases and project information of mixed-use density on the street 

network data. In areas with a low overall POI density though, the closest POI from a 

street network node may be located far away, while having a high POI density. In this 

case, it would be misleading to infer that this node has a high POI density.  Instead of 

directly using the closest POI density as a density metric for the node, the following 

metric is used:  

Node POI density = closest POI density/ [ln(closest POI distance +1)]2 

 

Figure 5.6. The outcome of combining POI density data with OSM nodes.  

With the application of this equation, the POI density metric is exponentially decreased 

in relation to the distance between the node and the POI, providing a more accurate 

representation of the actual conditions. The category of the closest POI is stored only if 

the POI is within 50 m of the node. The index of the closest POI is also stored in the 
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OSM database for future use. The outcome of this phase is shown in Figure 5.6. Figure 

5.7 outlines the contents of the spatial database.  

 

Figure 5.7. The contents of the spatial database 

5.2.2. MOVEMENT AND PHYSIOLOGICAL DATA COLLECTION  

The main goal for this phase was to reduce the workload involved in collecting and pre-

processing the data. It was also important to ensure that the devised methods are 

flexible and allow integrating different devices.    

For this reason, it was decided to connect the different activity trackers with a third-

party application (Strava) that allows the integration of different brands. This approach 

covers many popular activity trackers (e.g., FitBit, Garmin, Apple Watch). It does not 

work for the Empatica E4 tracker, though, as the Empatica E4 only allows downloading 

manually the data from a web interface. 

Two components were thus designed, to ensure flexibility and cover all these cases: one 

for collecting data from consumer activity trackers that can be connected to Strava, and 

one for the Empatica E4 tracker.  

The component designed for automatic extraction of the data from Strava uses a web 

crawler designed using the Python library Beautiful Soup (Beautiful Soup documentation 

2020). The web crawler goes through the HTML tags of each user's webpage and 
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extracts their activities by fetching a series of download links. The activity files are then 

extracted from the download links (without actually downloading the files). The 

information is returned in the form of a dataframe, containing the following data 

columns: timestamp, latitude, longitude, altitude, HR. The sampling rate is 1 sample per 

second.  

The second component includes a set of scripts designed for dealing with the collection 

and pre-processing of data derived from the Empatica E4 wristband. The 

accelerometer, EDA and skin temperature data collected with the Empatica E4 

wristband are initially sampled at different rates (32 samples/sec for the accelerometer 

data, and 15 samples/sec for the EDA and skin temperature data). Each session is 

downloaded as a zipped folder, which contains a separate CSV file for each dataset. 

Pre-processing steps here involve automatic processing of the CSV files and 

synchronisation of all the datasets in one dataframe.  

After that, the dataframe containing all the activities is separated in activity sessions, by 

calculating the time difference between the last timestamp of each activity and the first 

timestamp of the next activity. If this difference exceeds a threshold (here defined as 15 

minutes), the two activities are considered as separate; otherwise, they are merged. 

This step is necessary for separating different trips of the same user. It also assists in 

merging sessions which are part of the same trip (this happens when the users 

accidentally start and stop the activity tracking many times during one session) 

The designed algorithms for this part were focused on the tested devices (FitBit and 

Empatica E4), but can be easily modified to include data from other devices, as long as 

they lead to a common structure in the end. The overall process of data collection is 

depicted in Figure 5.8.  
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Figure 5.8. The physiological data collection protocol 

 

 

 

 



 

162 
   

5.2.3. SPEED AND ACCELEROMETER DATA PRE-PROCESSING  

5.2.3.1. ANALYSIS OF SPEED DATA 

 

Figure 5.9. The analysis of speed and altitude data 
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The GPS data is processed in this phase for the extraction of speed data. This data is not 

used in the scheme for the classification of physiological responses, but it will be useful 

for other parts of the analysis. 

The speed is calculated from the combined analysis of the GPS data and the 

timestamps. If the time difference exceeds 10 seconds, a local smoothing is applied by 

averaging the distances in the neighbourhood of data points. A Savitzky-Golay filter is 

also applied for smoothing the data. 

After that, the speed data are resampled at 1 sample/sec, and the first order derivative 

is extracted. The mean and STD values are also extracted for data segments derived 

using a non-overlapping 30-second window.  

As for altitude data, the first order derivative is used to identify if there is a slope. The 

data is classified accordingly, and two features are extracted (slope and duration of the 

change in terrain conditions). As mentioned in section 5.2.2, the altitude data is derived 

from Strava. 

This component leads to the construction of a dataframe for each user, containing the 

features extracted from speed and altitude data. The process is depicted in Figure 5.9. 

5.2.3.2. PROCESSING THE ACCELEROMETER DATA FOR ACTIVITY 

CLASSIFICATION 

The analysis of the accelerometer data is primarily conducted for analysis of the activity. 

This task is necessary for identifying the different phases of activity intensity.  

This component is heavily based on the utilisation of a model for activity classification. 

The construction of this model was an integral part of this research, and it was based on 

the different algorithmic approaches presented in relation to this task in Chapter 4. The 

data collected in the indoor activities was used to construct a supervised ML model, 

which was able to label three different activities (‘sitting’, ’walking’ and ‘intense 

movement’) with very high precision. Different ML models were tested for this purpose, 

and a deep neural network (DNN) model was determined as the best performing one, 

achieving 97% accuracy. This model was also compared to a threshold-based model, 
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which was based on filtering different features of the accelerometer data. The best 

performing version of the threshold-based model achieved 89% accuracy. Based on 

these experiments, the best-performing supervised ML model was selected as the most 

suitable option. The overall experimentation is presented in Appendix E. 

The tasks related to this component are designed as follows:  

5.2.3.2.1. CREATION OF THE ‘ACTIVITY INTENSITY’ FEATURE 

The accelerometer data from the Empatica E4 sensor is first processed with the 

selected activity classification model (the DNN model with the 6 hidden layers), leading 

to the identification of three phases of activity intensity. The feature ‘activity intensity’ 

is created in this way. 

5.2.3.2.2. CREATION OF THE ‘CHANGE IN ACTIVITY’ FEATURE  

The extracted phases of activity intensity are further processed towards the 

identification of the changes in activity intensity. The classes of the ‘activity intensity’ 

feature, derived from the activity classification system, are recoded using a numerical 

scale (1-3) representing the activity intensity.  

Then, the first order derivative of the ‘activity’ class is extracted. The data points 

between two points where the derivative is not zero are marked as points with the 

same activity intensity. In this way, the data is split into segments. Consecutive points 

which have the same activity intensity are grouped and separated from neighbouring 

points with a different activity intensity.   

Each point of change in activity is evaluated by calculating the duration of the previous 

segment of activity intensity. The data within a window starting 5 seconds before the 

change in activity, and ending a few seconds after the change in activity (determined by 

an adaptive buffer), is marked as a ‘change in activity’.  

The adaptive buffer is determined by the characteristics of the change in activity. The 

principle that guided the creation of the adaptive buffer was that the impact of a 

change in activity on physiological responses might be related to the duration of the 

change, and the presence of a steady state of activity before the change.  
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The duration of each buffer was decided following the literature review and after 

extensive experimentation. The literature reviewed in Chapter 3 (section 3.3.3) suggests 

that changes in HR are expected within one minute from the onset or end of the 

exercise, while postural changes can bring an HR increase within seconds. The 

information for EDA data was less concise; therefore, the accelerometer and EDA data 

collected in the indoor experiment were examined. The visual analysis of the data 

showed that an EDR sometimes appeared within 5 to 10 seconds from a very short 

change in activity. It was observed that as the duration of the previous activity and the 

activity changes increased, the time window within which one or more EDRs appeared 

after the change also increased. The buffers were thus determined experimentally by 

monitoring the time of appearance of EDRs after different types of activity changes. 

Very short changes in activity (less than 3 seconds) have the shortest buffer (10 

seconds). Changes of a larger duration have a larger buffer (20 seconds). The largest 

buffer (1 minute) is when the change in activity follows a steady state. The same buffers 

were adopted for both EDA and HR data analysis, but more research is needed to 

calibrate them for HR data analysis.  

5.2.3.2.3. DURATION OF ACTIVITY  

The ‘duration of activity’ feature is constructed by calculating for each data point the 

seconds passed from the beginning of the activity. This feature is later used to identify 

data points where the duration of activity is above a predefined threshold.  

5.2.3.2.4. OTHER FEATURES RELATED TO ACTIVITY 

The two features introduced until now (‘activity intensity’ and ‘change in activity’ are 

the main features related to activity. Some other features were also extracted to assist 

in constructing the adaptive buffer in the ‘change in activity’ feature. They were 

constructed to allow the analysis of the changes in activity at a finer level in the 

inferential analysis presented in Chapter 6. These features are the following:  

- ‘steady state’ (indicating the presence of steady-state activity) 

- ‘change in activity state’ 

- ‘spontaneous movement’ 
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The ‘steady state’ feature is created to allow the construction of the ‘change in activity 

state’ feature. It contains data points with no change in the ‘activity intensity’ feature 

for two minutes or more.  

The ‘change in activity state’ feature was created to store the most significant changes 

in activity. It is a subclass of the ‘change in activity’ feature, and contains the data points 

within one minute after the end of a ‘steady state’. Based on the literature reviewed in 

Chapter 3, the change from a state to another is considered a stressor; this feature may 

be, therefore, associated with a higher impact on physiological responses in comparison 

to other changes in activity.  

The ‘spontaneous movement’ feature is another subclass of the ‘change in activity’ 

feature. It contains the changes in activity which have a very short duration (less than 3 

seconds). This feature was created to assist future researchers in removing all 

responses that are created during very short-lasting movements and may be movement 

artefacts. This step is optional and should be decided at a case-by-case basis.  
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Figure 5.10. Activity analysis after the application of the activity classification model. 

The overall process is depicted in Figure 5.10. 

Figure 5.11 illustrates the process of extracting classes of activity intensity from the 

accelerometer data of one user. It also demonstrates the difference between the 

classification of the ‘spontaneous movement’ and ‘change in activity state’ class. 
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Figure 5.11. The extraction of different features from the analysis of activity 

5.2.4. EDA, HR AND SKIN TEMPERATURE DATA PRE-PROCESSING 

5.2.4.1. EDA DATA PRE-PROCESSING 

5.2.4.1.1. EXTRACTION OF EDRS 

For EDA data processing, the EDA signal is resampled at the original frequency of the 

EDA data. The EDA signal is separated in its tonic and phasic components. The phasic 

components are identified by applying a peak recognition algorithm based on the 

signal's first order derivative, following the relevant literature from Chapter 4.  

5.2.4.1.2. IDENTIFICATION OF EDA ARTEFACTS 

After that, a ML model for artefact recognition is applied to identify artefacts in the 

signal. This model was built using data collected from the indoor activities. The 

approach was similar to that followed for the selection of the most appropriate 

algorithm for activity classification. Different ML models were tested and compared. 
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The best-performing model was again the DNN model, achieving 96% accuracy. The 

approach was similar to that followed in Taylor et al. (2015). A detailed presentation of 

the experiments conducted for constructing the artefact recognition algorithm is 

provided in Appendix E. 

After applying the artefact recognition model and removing the peaks containing 

artefacts, the remaining peaks are further evaluated to ensure that they fall within the 

acceptable criteria set for EDR identification in other studies. The main criterion is the 

minimum threshold for EDR amplitude (set to 0.05μS). A query in terms of the 

movement characteristics is also applied in a window including 10 seconds before each 

possible peak, as well as during its onset; if the activity label of these points is 

‘spontaneous movement’, these points are labelled as possible artefacts in terms of 

EDA measurement. 

5.2.4.1.3. CALCULATION OF THE TONIC EDA 

 

Figure 5.12. EDA signal processing: artefact removal, extraction of tonic EDA and peak identification for 

extraction of EDRs  

Finally, the tonic EDA is calculated by interpolating each peak's starting and ending 

point and connecting the rest of the signal with the interpolated segments (Figure 5.12). 

The tonic EDA signal is also smoothed by down-sampling it at 20 seconds. The EDA 

measures are also normalised after identifying the minimum and maximum EDR 

amplitude and tonic EDA from all the collected data for this participant. The overall 

process for analysis of EDA data is presented in Figure 5.13. 
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Figure 5.13. The analysis of EDA data 

5.2.4.2. PRE-PROCESSING HR DATA 

As for the HR data, pre-processing involves smoothing and cleaning by fast Fourier 

transform. Then, the first order derivative is extracted to be used in peak identification. 
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Figure 5.14. The analysis of HR data 

5.2.4.2.1. IDENTIFICATION OF CHANGES IN THE HR SIGNAL 

Two methods were designed for identifying changes in HR. The first method is the AHR 

method, proposed by Myrtek (2004) (see section 4.3.2.1). A modified version of this 

method is adopted here, following the work of Kusserow et al. (2013). The mean HR 

data (extracted from a 60-second window) is assessed in comparison to the mean HR of 

the previous 3 minutes. Previous models considered a change larger than 3bpm as a 

candidate for further inspection. However, this threshold might be low in the context of 

movement, especially when using devices without high accuracy.  
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The second method is to process the HR signal by applying a peak recognition 

algorithm. This algorithm follows the same logic as the one applied for peak 

identification in the EDA signal. It is again based on identifying the points where the 

first-order derivative of the signal is zero. An example of the application of the two 

methods is presented in Figure 5.15.   

 

Figure 5.15. Presentation of the two methods for the analysis of changes in the HR data.  

The advantage of the peak identification method is that it identifies the change in HR 

activity as an event with start and end. With the modified AHR method, the 

characteristics of the whole phase of change cannot be extracted. In both cases, 

though, the aim is to identify significant changes in HR activity, and both methods 

achieve this goal. In the next phases, these changes will be assessed by pulling the 

activity classes from the speed and accelerometer data, as well as the physical and 

psychological stressors from the spatial database.  This interpretation follows the 
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approach of Myrtek (2004) and Kusserow et al. (2013), adding the spatial elements as 

well.  

HRV analysis was not included in the current version of the model, due to the lack of 

sufficient data for experimentation, but it could be added in the future. 

5.2.4.2.2. FUSION OF THE FEATURES EXTRACTED FROM THE PHYSIOLOGICAL 

DATA 

 

Figure 5.16. An example of the extraction of different features from EDA data 

This component ends with a dataframe which contains the following features: 

timestamp, EDRs, EDR amplitude, EDR frequency (number of EDRs in 1-min windows), 

the sum of EDR amplitudes in 1-min windows, tonic EDA, mean tonic EDA in 1-min 

windows, and HR features (amplitude and duration of HR peaks, or change in HR based 
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on the modified AHR method). Figure 5.16 shows an example of the extraction of the 

different features from the EDA data. The mean skin temperature and its first order 

derivative are also added. The dataframe is resampled at a sampling rate of 1 value per 

second, matching the sampling rate of the speed data derived from the consumer 

activity tracker.  

5.2.5. SPATIAL, PHYSIOLOGICAL AND MOVEMENT DATA FUSION FOR 

INDIVIDUAL ANALYSIS  

This stage involves relating the analysed movement and physiological data for each user 

to the spatial database (containing the processed POI and street network data). The 

process is depicted in Figure 5.17. 

5.2.5.1. DATA FUSION 

After importing the movement and physiological data, the closest street network node 

is found for each GPS stamp, by querying the OSM k-d tree constructed during the 

initial setup of the spatial database in section 5.2.1. This step allows the identification of 

spatial characteristics around each GPS point of a route. The properties of the closest 

node, including POI density, traffic levels, surface conditions) are extracted from the 

OSM database and inserted in the user database, next to each data point.  

This part of the data fusion scheme also includes the fusion of physiological and 

movement data with ambient temperature data. The assumption of this research is that 

the setup does not involve any dedicated instrument for collecting this data as a time-

series. Therefore, the inclusion of this data is based on accessing historical data for the 

specified location, which is usually available for download from local governmental 

sources (e.g., Australian Government Bureau of Meteorology, 2020). The timestamp of 

the physiological and movement data is used to find the temperature at an hourly 

resolution (or daily, if the hourly resolution is not available). Many sites also contain 

historical weather data which is accessible using APIs (e.g., AccuWeather APIs 2020). 

This option could be considered an alternative that enables access to historical 

temperature data for a specific date and time. If there is availability of temperature data 
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with a higher resolution from a dedicated portable sensor, this data can also be fused 

with the physiological and movement data using the timestamps.  

 

Figure 5.17. The scheme for spatial, physiological and movement data fusion at the final stage of the 

individual data analysis 

5.2.5.2. CALCULATION OF PHYSICAL AND PSYCHOLOGICAL STRESSORS 

The calculation of the psychological and physical stressors is conducted by assessing the 

intensity of the underlying physical and psychological stressors, as well as the change in 

stressors. For the assessment of changes in activity, this evaluation is conducted for the 

data points within a buffer starting one minute before the appearance of the response. 

In these cases, it is possible to know the exact second that these changes happen. 

However, contextual changes may happen more gradually, and their assessment is 
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based on a rough approximation rather than an accurate estimation. For instance, a 

pedestrian approaching an intersection with intense traffic levels may perceive changes 

in the qualities of the surrounding, such as an increase of noise, before reaching this 

point. Due to these reasons, the buffer for the assessment of psychological stressors is 

extended to also include the relevant contextual parameters in the minute after the 

appearance of the response.  

The change in stressors is also calculated by splitting the data into 1-minute segments, 

extracting the mean levels of stressors in each segment and finding the absolute 

difference between the stressor levels of each segment and its previous one. If the 

difference exceeds a threshold, the change is marked as significant.  

Figure 5.18 shows an example of the extraction of the level of psychological stressors 

following this process.   

The following filters are used to assess the level of psychological stressors: 

⎯ POI density larger than 15, or a significant change in POI density  

⎯ traffic levels higher than level 2, or a significant change in traffic  

⎯ high proximity to a traffic light 

For each of these conditions that are satisfied, the level of psychological stressors is 

increased by 1. The thresholds were determined after iterative experiments and 

analysis of the distribution of the data in Sydney and Zürich. The data distribution for 

the data collected in each city and the combined dataset is shown in Figures 6.2a and 

6.2b. The threshold for identifying significant changes in POI density was set to 5 (one 

half of a standard deviation); for traffic, it was set to 1 (approximately one standard 

deviation). Subclasses of the category ‘Psychological stressors’ were also created to 

store the specific contextual conditions for each point (e.g., ‘Psychological stressors: 

Change in POI density’).  
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Figure 5.18. The calculation of the level of psychological stressors based on the different contextual 

features. The changes in the traffic and POI density are also added later to this calculation. 

The following filters are used for the classification of physical stressors: 

⎯ Change in activity 

⎯ Duration of activity > 15 minutes 

⎯ Sustained presence (> 1 minute) of activity of high intensity  

⎯ Presence of slope (calculated from altitude data processing) 

⎯ Presence of traffic light 
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Figure 5.19. Extraction of the physical stressors based on the analysis of activity 

For each of the conditions that were satisfied, the level of physical stressors was 

increased by 1. Figure 5.19 shows an example of this process. The kind of physical 

stressor was also stored in a subclass (e.g., ‘Physical stressors: Change in activity’).  
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5.2.5.3. CLASSIFICATION OF PHYSIOLOGICAL RESPONSES BASED ON THE 

UNDERLYING STRESSORS 

The next step of analysis at the user level is the classification of physiological responses. 

Four main classes are used:  

⎯ Physiological responses concurrent only with physical stressors  

⎯ Physiological responses concurrent only with psychological stressors  

⎯ Physiological responses concurrent with physical and psychological stressors 

⎯ Physiological responses with no identifiable source  

The class that includes physical stressors includes the subclasses ‘duration of activity’ 

and ‘change in activity’; therefore, the individual who reads the results can see the 

specific event classified as a physical stressor. 

This classification does not imply that the identified stressors are necessarily the source 

of the physiological responses. It only suggests that there is a high probability that the 

changes in sympathetic arousal are related to the identified stressors. 

After classifying the physiological responses according to the contextual information, 

the route can be analysed to calculate the percentage of physical and psychological 

stressors. Each data point is also geotagged; therefore, the resulting information can be 

plotted on a map for the identification of places with a high concentration of physical or 

psychological responses. Examples of this feature will be presented in the next section. 

The workflow which will be presented in Chapter 7 can also be used for hotspot 

identification and cluster analysis. 

5.3. DEMONSTRATION OF THE METHOD USING DATA FROM 2 USERS  

This section illustrates how the method for physiological data collection and analysis 

works for individual users. The data belongs to two users from the free-living activities 

dataset (the Phase B of the data collection experiment conducted in Sydney; see section 

2.4.2 in Chapter 2). 

The presented examples involve graphs and maps showing the spatial concentration of 

physiological responses and other features. The analysis presented here will focus on 
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EDA data. For each route that will be analysed, graphs showing the results of the HR 

analysis will be presented in Appendix G. 

The measure used to estimate the intensity of physiological responses based on EDA 

analysis will be the sum of EDR amplitudes. This feature (sum of EDR amplitudes) is 

extracted by splitting the data into 1-minute segments and finding the sum of the 

amplitudes of all the phasic EDA responses (the EDRs) in the segment. The resulting sum 

of responses is thus used as a measure that reflects both the number and intensity of 

EDRs. The 1-minute resolution is also appropriate for the purposes of this study, as it 

matches the level of detail in the contextual data.  

The analysis is complemented by photos from spots which were associated with 

important findings. Relevant information from the notes of the participants is also 

presented.  

5.3.1. USER A 

User A is a 30-year-old female. She conducted 21 trips in the period of the data 

collection (September 2019). Most of her routes took place between 11:00 - 14:00 and 

lasted more than 20 minutes, with very few exceptions.  

The trips of this user which were selected for demonstration of the method and 

discussion of the findings involve a pair of two routes. The routes have the same 

starting point and destination, and some common segments. Figure 5.20 displays the 

spatial distribution of the physiological responses for both routes, and the concurrent 

physical and psychological stressors.  
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Figure 5.20. The spatial distribution of physiological responses (sum of EDR amplitudes) in routes 2 and 5 

for User A.  

 

Figure 5.21. A place which was characterised as a space with a low level of psychological stressors in 

Route 2 of User A 



 

182 
   

 

Figure 5.22. Analysis of the physical and psychological stressors for Route 2.  

The analysis of Route 2 (Figures 5.20, 5.22 and 5.23) shows that, for the first 15 

minutes, the places which the user encounters involve a very low overall presence of 

psychological and physical stressors, apart from a small cluster of both stressors around 

the 7th minute. Then, there is an intense increase in both stressors in the middle of the 

route, between the 15th and the 21st minute. The detailed presentation of the stressors 

in Figure 5.23 shows the presence of high levels of traffic and POI density during these 

minutes; a traffic light also appears within this cluster, and there are some changes in 

activity and the presence of a slope.  Then, there is a transition to a tranquil place, 

presented in Figure 5.21.  There are no physiological responses until the 25th minute. 
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From that point of the initial increase and onwards, the intensity of the physiological 

responses remains high, with some fluctuations that will be analysed later. 

 

Figure 5.23. The upper graph presents a detailed analysis of the contextual and activity-related stressors.  

After the first analysis of the selected measure of physiological responses (the sum of 

the EDR amplitudes), the change in this measure was also analysed, to find the 

moments of a significant increase in the intensity of responses. The bottom graph in 

Figure 5.23 presents the results of this analysis. The significant responses are the ones 

marked as R1 to R4. The threshold for identifying a significant increase was set at one 
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half of the STD of the measure (based on the data collected from all participants; see 

Figures 6.2a and 6.2b in Chapter 6). The bars that cross the orange horizontal line in 

Figure 5.23 show the moments of increase in the intensity of responses which are 

above this threshold. The blue horizontal line represents one STD of the measure; the 

bars above this line indicate an even more intense increase in the intensity of 

responses.  

The first two significant increases in the intensity of responses (R1 and R2 in Figure 

5.23) happen at a quiet place, with low traffic and POI density. The only concurrent 

stressors are physical (the duration of the activity and the presence of a slope). The low 

levels of density and traffic that were identified from the analysis are confirmed in a 

photo of the location (Photo 2A in Figure 5.24). The other two responses are concurrent 

with both physical and psychological stressors; R3 is concurrent with a change in traffic, 

as the user is approaching a place of high traffic levels. Figure 5.24 (Photo 2B) shows the 

characteristics of this place. R4 is concurrent with an increase in POI density, while 

there is also a change in activity and a slope, apart from the high duration of activity.  

 

Figure 5.24. Photo 2A shows the place where the responses first started appearing in Route 2, for user A.  

In the analysis of Route 5 (Figure 5.25), the overall trend of increase in the physiological 

responses is more visibly connected to the underlying stressors. The first segment of 

the route is the same as before; this is also reflected in the middle graph in Figure 5.25, 

which shows the general presence of psychological stressors in this route. There is, 

again, this small cluster of psychological and physical stressors that was present at the 

beginning of the other route. This time, there is a physiological response concurrent 

with this cluster (in the 7th minute of the route). The detailed analysis of responses in 
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Figure 5.26 shows that this physiological response happened close to a traffic light, 

when the user first encountered an increase in the traffic levels after the start of the 

route. Photo 5A (Figure 5.27) shows the intense presence of stimuli in this place. After 

that, the user followed a different path before reaching the same destination as in 

Route 2.  

 

Figure 5.25. Analysis of the physical and psychological stressors for Route 5. 

The comparison of the two routes showed that in Route 5, there was a higher overall 

presence of psychological stressors. The physiological responses were also elevated for 

more time in that route (21 minutes in Route 5, as opposed to 13 minutes in Route 2). 

The analysis of the physiological responses after applying the classification scheme 
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showed that Route 2 involved a high percentage of physiological responses generated 

during physical stressors (40%, as opposed to 12% in route 5). In other words, the main 

stressors identified from the analysis were related to movement. Route 5, on the other 

hand, involved a higher percentage of physiological responses generated during 

exposure to combined physiological and physical stressors (73%, as opposed to 59% in 

route 2). The higher presence of psychological stressors in route 5 is also confirmed in 

the maps presented in Figure 5.20.  

An interesting finding was that, despite the differences in the physiological responses 

that were revealed from the analysis, the experience was characterised by the 

participant as ‘active and exciting’ for both routes, according to their notes. 
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Figure 5.26. A detailed analysis of the contextual and movement-related stressors, in parallel to the 

analysis of the change in the physiological responses. 

The analysis of the moments of a significant increase in the intensity of physiological 

responses for Route 5 (Figure 5.23) showed that the most significant responses (R1 to 

R4 in Figure 5.26) were concurrent with both types of stressors. The first significant 

increases in the intensity of responses (R1 and R2 in Figure 5.26) happened when the 

user entered an area with high POI density and traffic. There was also a change in 

activity, possibly associated with a traffic light that was nearby. Photo 5B (Figure 5.27) 

shows the high presence of stimuli in this area.  In the third significant response (R3), 
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the underlying physical stressor was only the duration of the activity. In the last 

significant response (R4), there was a change in activity and a change in density. The 

presence of high POI density levels stopped in the minute before this response, and 

there was no presence of traffic, indicating a transition to a less busy place.   

 

Figure 5.27. Two of the places with high levels of psychological stressors that User A encountered during 

Route 5. Photo 5A is taken from Google Street View (15 Broadway street)  
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5.3.2. USER B 

User B is a 35-year-old male. He conducted 11 trips in October 2019. The route 

presented here (Figure 5.28) was described as a leisure visit to Rushcutters Bay park for 

running. 

  

Figure 5.28. Analysis of the physical and psychological stressors for Route 9. 

In this route, the spatial characteristics involved mostly residential land use (resulting in 

very low POI density for a significant portion of the route) and high proximity to nature. 

Here, physical activity alone was the main underlying factor influencing physiological 
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responses for more than one half of the route. Figure 5.28 shows the significant 

presence of physical stressors in the first part of the route; in this portion, the 

physiological responses were most likely elicited due to the exercise. The detailed 

analysis of the significant changes in the intensity of responses confirms that (Figure 

5.29). 

 

Figure 5.29. A detailed analysis of the contextual and movement-related stressors for Route 9, in parallel 

to the analysis of the change in the physiological responses. 
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All the moments of a significant increase in the intensity of responses (R1 to R5 in Figure 

5.29) are connected to physical stressors (the duration and change of activity). The 

absence of psychological stressors is also visible in Figure 5.30, which shows that they 

are concentrated in an area and only occupy a small part of the route.  

 

Figure 5.30. The spatial distribution of physiological responses (sum of EDR amplitudes) in route 9 for 

User B. 

The described experience of the user also indicates more physical rather than 

psychological stress. The overall experience is perceived positively and incorporates a 

degree of fascination, as well as a recognition of the effect of exercise: ‘The grass feels 

good beneath my feet (..). In the end of the first/second jogging felt a bit exhausted, 
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hadn't warmed up yet. Then more jogging/running, found more or less a rhythm. Felt 

hot after the 2 last runs. Leaving the area feels nice, first park (lots of people but not 

annoyingly so), then an area that seems like Malibu or something, palms and large 

empty streets and big houses. Then, from William street onward feels like neighborhood, 

the area loses this air of exotic holidays. Calm and cosy still.’ 

 

Figure 5.31. William Street-Kings Cross.  

 

Figure 5.32. Rushcutters Bay 

There was also a small part of the route where there was a combination of 

psychological and physical stressors, concurrent with the route's most intense 

physiological responses. The corresponding response is marked as R8 in Figure 5.29, 
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showing the presence of high POI density, a change in activity and a slope in parallel to 

the significant increase of physiological arousal. The location is shown in Figure 5.31. 

Figure 5.32 shows the contextual characteristics of Rushcutters Bay park for 

comparison.  

The places shown in Figures 5.31 and 5.32 have significant differences in their 

character, yet they both elicited intense physiological responses. The proposed 

classification scheme was able to identify differences in the possible underlying 

stressors. A significant percentage (61%) of physiological responses was concurrent only 

with physical stressors, while combined psychological and physical stressors were 

present in 38% of the responses. Without this classification, the intense physiological 

responses during activity might have been misinterpreted as psychological stress. 

5.4. DISCUSSION 

The proposed scheme includes physiological responses derived from both HR and EDA 

analysis. The current work was based on tests conducted with two wristbands (FitBit 

Charge 2, Empatica E4) and relevant information from the literature presented in 

Chapter 3. The EDA sensor of the Empatica E4 has high accuracy, but the HR 

measurements of both wristbands were sometimes inaccurate during activity, agreeing 

with the findings of the literature presented in Chapter 1 (section 1.2.5.3). For these 

reasons, it was decided to focus on the EDA signal analysis for the demonstration of the 

method in section 5.3, and specifically on the sum of amplitude of EDRs as the main 

source of physiological responses. The methods involving HR analysis need more 

calibration, especially regarding the threshold for detecting significant changes in the 

HR signal. A more detailed analysis of phasic EDA could also be provided using shorter 

time windows if more detailed contextual data are included in the scheme at a high 

resolution. Such data could be noise or other environmental data, coming from portable 

sensing systems. The presented methods were designed following a componential logic, 

and each component can be modified or extended to cover specific needs.  

As shown in section 5.3, the presented model for the analysis of contextual, movement 

and physiological data was able to identify different qualities in the circumstances 
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surrounding the physiological responses. After extracting detailed data at a high 

resolution, such as the POI density, the traffic levels and the traffic lights, the qualities 

of the routes were grouped in physical and psychological stressors. The analysis of the 

routes of the two participants in section 5.3, and especially the last example, showed 

that this categorisation was useful for understanding why physiological responses may 

occur in places where there is the absence of obvious psychological stressors related to 

space. 

The comparative analysis between similar routes of the same participant also has 

potential at the user and the city level. The analysis of different instances of the same 

route of an individual can show if there are spots where the physical space causes 

repeatedly intense physiological responses. This analysis could take place as a part of an 

application where the user submits their data for analysis and identifies spaces 

associated with more intense responses, and their characteristics. For individuals who 

are more sensitive to external stimuli due to health conditions, this analysis could help 

identify places during their routes that may affect them negatively. The identification of 

physical stressors during a route could also be helpful for individuals with kinetic 

problems. This analysis could be applied in that case to calculate the overall exposure to 

physical stressors during different routes and select the most comfortable ones. 

Chapter 7 will later demonstrate methods for analysing the results at a city level; 

Chapter 9 will also provide methods that can be used proactively for avoiding places 

with high levels of physical or psychological stressors. 

The inclusion of the activity in the analysis of physiological data was one of the most 

important parts of the presented work in this chapter. Two notable studies which acted 

as a significant influence concerning this aspect was the activity-aware stress 

recognition model of Sun et al. (2012) and the model for stress arousal monitoring in 

the wild of Kusserow et al. (2013). This study has a different aim compared to the work 

of Sun et al. (2012), as their model results to a classification of the stress versus the 

baseline condition, while the work presented here results to a classification of possible 

physical or psychological stressors in parallel to the identified physiological responses. 

In this aspect, the work is closer to the overall approach of Kusserow et al. (2013). 
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However, that study only presented a very brief mention of the process of the analysis 

of activity. It was also operating in a different context, as it focused more on different 

daily-life conditions such as indoor public speaking, or stress events during a musical 

performance. This study included, for the first time, a structured analysis of all aspects 

related to the effects of activity, and it was more focused on the urban environment, as 

opposed to the two studies mentioned above. 

The main limitation of this approach is that the model evaluates the levels of 

stimulation of the surroundings, but these are based on estimations and not on analysis 

of continuous data describing the actual fluctuations in stimulation levels during the 

route. For instance, the model can recognise that the user is passing from an area 

expected to have a high pedestrian activity or high traffic, but it cannot identify the 

exact moments that the user encountered a car or other pedestrians in the street. An 

analysis of such events would require video feedback or at least continuous noise 

measurement.  

Furthermore, the model can only identify a list of different movement-related and 

contextual conditions that describe the circumstances while a physiological response 

occurs. It is difficult to say which element among these is responsible for any resulting 

physiological responses. For this reason, it was decided to calculate the exposure to 

possible stressors and classify the contextual conditions accordingly, without claiming 

that the physiological responses are necessarily generated from these factors. In this 

way, the proposed classification model only outlines some possible factors that may 

have affected physiological responses without establishing causality. 

While it would be very difficult to pinpoint the exact source of physiological responses, 

it is still possible to analyse them and try to find meaningful patterns. The repetition of a 

pattern of responses at the same place might indicate that some conditions related to 

this place are responsible for this pattern. This analysis could be complemented by 

requesting feedback from the users. This gap was covered in this study by the notes 

that the participants were asked to keep. They were specifically asked to include 

anything significant that happened during their routes, including frightening or exciting 

incidents. The notes were very helpful for understanding how the participants 



 

196 
   

perceived their experience. They also assisted in excluding the presence of other 

psychological stressors related to family, work or other issues. Future iterations of the 

designed methods could involve an app for covering this gap by asking the participants 

to give feedback or rate specific places and experiences.  

A factor that needs to be more researched is the selection of the appropriate temporal 

threshold for the identification of relevant contextual parameters. At the moment, the 

model is evaluating contextual parameters or factors that appeared within one minute 

before each response. If there is a significant change in the POI density or traffic, for 

instance, within that minute, this parameter will appear as a possible event that might 

have affected a physiological response generated during that minute. However, the 

inspection of the graphs of the participants showed that, sometimes, the pattern of 

generation of physiological responses seemed to be more related to a chain of events 

or changes in activity and context that happen over a few minutes, rather than events 

happening only in the last minute before the response. Future research will look into 

these patterns and re-examine the temporal threshold for detecting relevant events if 

needed. 

Another parameter that needs more consideration concerns the incorporation of traffic 

lights in the scheme for the analysis of the encountered contextual parameters. The 

designed algorithm currently identifies if there is a traffic light nearby. This information 

becomes available in the detailed context analysis, indicating the presence of a possible 

physical and psychological stressor. However, due to the resolution of the OSM data, 

and the lack of consistency in the quality of reporting sufficient information regarding 

pedestrian pathways, it is sometimes possible that the identified traffic light is on the 

other side of the road, and the user may not be affected by its presence. While this is a 

limitation that has to be considered in the interpretation of the contextual analysis, it is 

partially compensated by the movement analysis of the user, provided by the analysis of 

the accelerometer data. The movement analysis shows the changes of activity in the 

movement pattern in parallel to the context; this information can, therefore, be used to 

confirm if the user stopped very close to a traffic light or not, limiting the possibilities of 

a wrong interpretation.  
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The current role of ambient temperature in the data fusion scheme should also be 

discussed here. The temperature was included in the scheme because it is a necessary 

feature for other components of the methodology (component 3 for the prediction of 

physiological responses). It is currently not included in the classification of physical and 

psychological stressors in component 1, because the available data during the 

experimentation with the algorithms was at a low resolution. Therefore, temperature 

could only be added in this version of the scheme as a general underlying stressor that 

affects the overall levels of sympathetic arousal. Future research could include a more 

active inclusion of this factor in the scheme. 

Another limitation is that the model currently does not recognise if the user is walking 

alone or has company. As stated in Chapter 3, social interaction may affect the 

psychological state of the user; talking can also influence physiological responses. This 

study attempted to gather relevant data by asking users to note down if they are alone 

or with company during their routes. Future analysis could involve using the collected 

data towards the construction of the model for the identification of social interaction.  

Future work should also re-examine the threshold set for identifying the duration of 

activity as a physical stressor. The inclusion of this factor was based on the presented 

literature in Chapter 3; however, it was not clear if this factor affects both signals. The 

experiments conducted in the context of this research suggest that this factor has a 

strong influence on EDRs. Relevant evidence will be presented in Chapter 6, showing 

that after 15 minutes, there was a small to medium effect of the duration of activity on 

the sum of EDR amplitudes. A more appropriate solution, though, might be the 

adoption of an adaptive threshold. The current threshold can be kept as an indicator, 

while more research is conducted in this direction. As for the relevance of this factor for 

HR analysis, it was not possible to investigate this point due to the lack of high-quality 

HR measurement sensors. It was thus decided to mark this factor as mainly relevant for 

the EDA analysis for the time being. 

The threshold set for identifying high POI density (and significant changes in this 

stressor) in section 5.2.5.1 should also be re-examined after the collection of data from 

more participants and different contexts. The analysis which will be presented in 
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Chapter 6 will show that an increase of 15 units in POI density was connected to a 

medium increase in the sum of EDR amplitudes for one of the datasets (the predefined 

route in Sydney; see section 6.4). However, the effect was smaller in the combined 

dataset (see section 6.4 and the discussion in section 6.5). The value of 15 units in the 

POI density variable represents the presence of 15 POIs within 100m; this value is close 

to one half of the maximum POI density identified in the collected data. This value was 

used as the threshold for the identification of high POI density in section 5.2.5.1. Future 

research will include collecting and analysing more data, and the proposed threshold 

will be modified accordingly if needed. 

Another point which needs to be considered is that some of the analysed parameters 

may have a stronger effect on physiological responses than others. The next chapters 

and the appendix present evidence that the following parameters had a stronger 

relationship with measures of electrodermal activity: duration of activity, change in 

activity, and POI density, with the activity-related features having the strongest effects. 

Chapter 10 (section 10.2.2) presents an overview of the related findings. More evidence 

is needed to solidify the identified trends; if this happens, the scheme for analysis could 

be modified so that the effect of the more influential parameters is emphasised.  

The scheme for the analysis of OSM tags may also be revisited in the future after more 

experimentations. An earlier version of the scheme presented in section 5.2.1.3.1. 

contained some tags which may be associated with a higher physical effort during 

walking (e.g., ‘steps’) in the category of physical stressors. The number of lanes in the 

streets and the maximum speed limits were also used as additional information for the 

extraction of the traffic levels in this earlier version. The adopted principle was that a 

higher number of lanes and the maximum speed limit would indicate a higher level of 

traffic intensity. However, few nodes had these tags in the analysed OSM data. It was 

thus decided to adopt a simpler version of the scheme, based on similar existing work, 

until more experiments are conducted. Since the OSM tagging system is not always 

followed strictly and may change in the future, a point for further development could 

also be to include a component for automatic classification of the tags, by evaluating 

the semantic similarity of new tags with the tags contained in the existing hierarchy. 
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Another point that has not been studied yet is the novelty factor during interactions 

with stimuli. A future addition could, therefore, be a component for analysis of the 

similarity between trajectories (following the approach of Xiao et al. 2010, outlined in 

Chapter 4, section 4.3.3.1) towards the separation of routes which are conducted 

frequently or places which are visited a lot, from less visited places. Semantic analysis of 

the POI data could also be included in the future, to better understand the 

characteristics of the places that the users encounter and the purpose of visit. Future 

work could also involve adding a component for the detection of travel mode and 

purpose of the route, based on the combination of speed, accelerometer and HR data.  

To conclude, the presented model for the analysis of contextual information and 

separation of physical and psychological stressors is a significant step towards 

understanding the links between urban space, activity and physiological responses. The 

work presented in the next chapter will present work directed towards this aim. The 

methods outlined in this chapter are especially useful for promoting physical activity 

and separating its effects on physiological responses from those of other stressors. 

Sympathetic arousal due to physical activity is a state of the organism which has 

potential benefits in the long term.  At the same time, the combination of physical 

activity and overstimulation may create a conflict between beneficial and potentially 

harmful effects of stressors. Our understanding is still limited in terms of long-term 

effects of such interactions, but in any case, this research is a significant step towards 

understanding where and when these interactions take place.  
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6 
EXAMINING THE CONNECTION BETWEEN MOVEMENT, CONTEXTUAL 
PARAMETERS AND PHYSIOLOGICAL RESPONSES IN THE URBAN 
ENVIRONMENT IN SYDNEY AND ZURICH 

6 | EXAMINING THE CONNECTION BETWEEN MOVEMENT, CONTEXTUAL PARAMETERS AND 

PHYSIOLOGICAL RESPONSES IN THE URBAN ENVIRONMENT IN SYDNEY AND ZURICH  

6.1. INTRODUCTION  

The previous chapter examined methods for analysing physiological responses of 

individual users, based on the collection of movement and contextual features. This 

chapter extends this work by utilising the data fusion model presented in the previous 

chapter to analyse data collected in Sydney and Zürich.  

 

Figure 6.1. The aim of the chapter and the connection with the conceptual methodology. 
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The aim is to enrich the proposed methodology by investigating some assumptions used 

to construct the classification scheme in the previous chapter (Figure 6.1).  

These assumptions were based on the conceptual framework created in Chapter 3. 

While the literature presented in Chapter 3 indicates possible connections between 

physiological responses, activity, temperature, stimulus intensity and complexity, and 

other parameters, this literature was based mostly on laboratory experiments. The 

separate and combined effect of these factors has not been studied in real-world 

experiments and different contexts. 

The chapter does not question if the examined features generally affect physiological 

responses, as the evidence presented in Chapter 3 showed that they are connected to 

fundamental bodily processes linked to physiological responses. The focus is, instead, 

on examining the applicability of the same factors in different conditions.  

The datasets that will be examined for this purpose include all the data collected during 

outdoor routes in Sydney. This includes the outdoor predefined route from Phase A of 

the designed experiments, as described in Chapter 2, and the free-living activities from 

Phase B (see section 2.4.2 in Chapter 2). The predefined route data collected in Zürich 

by the research team of Ojha et al. (2019) are also included. 

The data collected during a predefined route in Sydney and Zürich come from semi-

controlled experiments and are similar in their setup. The free-living activities dataset 

reflects the participants' physiological responses in a setting where there is no control 

or influence from a research team and is thus as close as possible to a typical scenario 

of exposure to stressors during daily activities.  

The three datasets will be analysed separately and together, to expand our knowledge 

of the links between context, movement, and physiological responses in different ways.  

The rest of the chapter is organised as follows: section 6.2 analyses the datasets in 

terms of their contextual and activity-related characteristics, showing their differences 

and similarities. The main comparison is conducted for the two datasets collected in 

Sydney and Zürich, while the participants were walking on a predefined route. The same 

parameters are also analysed for the free-living activities dataset collected in Sydney, 



 

202 
   

although they are presented separately. Section 6.3 elaborates on the methods used for 

knowledge extraction and the statistical analysis plan. Section 6.4 presents the results, 

and section 6.5 elaborates on the implications of the findings. 

6.2. DATASET CHARACTERISTICS AND CONTEXT ANALYSIS  

6.2.1. DESCRIPTION OF THE EXPERIMENT SETUP IN SYDNEY AND ZÜRICH 

As mentioned in Chapter 2, the dataset collected in Sydney contained data from 18 

users (age = 31.3 ± 5.3 yrs.)  that participated in the predefined route experiment. From 

those, 15 also took part in the free-living activities experiment. One user was a non-

responder, exhibiting very low values of tonic and phasic EDA, and their data were not 

used.  

Each participant conducted the predefined outdoor route in Sydney alone, around 5 to 

10 minutes after completing the first 10-minute indoor test (see the description of 

Phase A in Chapter 2, section 2.4.2). The protocol of the indoor test is described in 

detail in Appendix C (section C.1.1.). The length of the route was approximately 2 km. 

The route lasted 40 minutes. The participants were given a short overview of the route 

and a map with directions, and they were asked to come back to the same room when 

they finished the trip. The route was designed as a sequence of street segments which 

expose the participants to different spatial characteristics. The first part involved 

approaching the Central Park tower from Broadway street, and going to the backyard of 

the building, where the users were asked to sit for 5 minutes. This segment reflects the 

transition from a noisy environment with a significant presence of mixed-use and 

intense traffic conditions, to a place with high presence of natural characteristics. Then, 

the users passed through a pedestrianised segment, where construction works were 

undertaken until approximately the end of August 2019; after that, a segment with 

relatively low traffic followed, containing some traffic lights and intersections with busy 

roads. The users then reached the Goods Line, a popular local example of an activated 

urban space with appealing architectural features. The final segment involved passing 

through the Central Station tunnel, climbing a small slope and returning to UTS after 

passing by the Railway Square on Broadway street.  
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As stated in Chapter 2, the participants were also asked to complete a questionnaire 

concerning their experience during the predefined route in Sydney, based on a variation 

of the PANAS test for measurement of the affect. A template of the questionnaire is 

presented in Appendix D. The results are briefly reported in this chapter (section 6.4.1), 

and in Appendix B (section 3.1.5), where the results of the predefined route in Sydney 

are discussed in detail. 

For the data collection during free-living activities in Sydney, one Empatica E4 wristband 

was given to each participant for tracking EDA data along with accelerometer data, skin 

temperature, and HR data. Only EDA data were analysed in this study. The participants 

were asked to wear the wristband each time they went out of the house for any 

purpose, and take it off when they reached their destination. The data collection was 

thus conducted only during outdoor walks for commuting, exercising, or visiting a place 

for leisurely purposes. GPS data were collected with the smartphones of the 

participants. The participants were asked to return the equipment after 7 to 10 days 

according to their schedule.  

The dataset collected in Zürich contained data from 30 users. The mean age was 28.8 

years (± 7.5).  From those, only 20 users generated usable data. The rest of the derived 

datasets were excluded due to the high percentage of artefacts. The data collection was 

conducted while the participants were following a predefined route in a local 

neighbourhood. The route’s length was 1.3km, and it involved places of different urban 

characteristics in terms of street width, noise and presence of green. The experiment 

was conducted during the springtime. The data collection was spread among different 

days, and in each day, multiple participants conducted the experiment separately, in a 

sequential manner.  

The final sample sizes were thus the following:  

a) Separate sample size for each dataset: 

- N = 17 for the predefined route in Sydney 

- N = 14 for the free-living activities in Sydney (a subset of the 17 participants 

from the predefined route in Sydney) 

- N = 20 for the predefined route in Zürich 
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b) Sample size for the combined dataset, including Zürich and Sydney data: 

- N = 37  

6.2.2. DATA COLLECTION AND ANALYSIS  

The collection of movement and contextual data in Sydney was conducted with the 

methods described in Chapter 5 for these tasks. The physiological, movement and 

environmental data in Zürich had already been collected by the authors of that study 

(Ojha et al. 2019) and uploaded to the publicly available repository of the ESUM project 

(ESUM 2018). They were thus acquired from the ESUM repository to be used in this 

study.  

The collection of the physiological data and the accelerometer data was conducted with 

the same instrument (Empatica E4) in Sydney and Zürich. The only difference was that a 

dedicated GPS sensor was used instead of GPS tracking with a smartphone in Zürich. 

Environmental sensors were also used in Zürich for the continuous collection of 

environmental data at a high resolution. The data from the environmental sensors was 

not analysed in this study, apart from the ambient temperature. The authors of the 

study in Zürich provide further details regarding their approach in terms of data 

collection and analysis in Ojha et al. (2019).  

The analysis of the physiological, movement and contextual parameters for the Sydney 

and Zürich data was conducted using the methods described in Chapter 5. The 

physiological variable which was examined was the sum of EDR amplitudes extracted 

from 1-minute windows. The approach was the same as in the demonstration of the 

data from different users in section 5.3 of Chapter 5.  

One difference between this study and the study of Ojha et al. (2019) was the choice of 

an appropriate threshold for the detection of EDR responses. The threshold was set at 

0.05μS here, as opposed to 0.01μS in the study of Ojha et al. (2019). The choice of the 

lower threshold instead of the selected one would not have a significant impact on the 

results, as both thresholds are still much lower than the highest values that were 

observed in this study.  
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Figure 6.2a. Feature description for the datasets collected in Sydney 



 

206 
   

 

Figure 6.2b. Feature description for the dataset collected in Zürich and the combined dataset 

Figures 6.2a and 6.2b show the variables which were included in the statistical analysis. 

Some of the variables included in the table (steady-state activity, traffic light, change in 

activity state) were initially coded as categorical variables, based on the data fusion 

scheme in Chapter 5. Traffic was also coded as an ordinal variable. The categorical 

variables had two possible values; the value of 0 indicated no presence of this feature, 

while 1 indicated its presence. The statistical analysis that will be presented in this 

chapter (section 6.4) involved experimentations with these variables in their initial 

(ordinal or categorical) form, as well as after transforming them to continuous ones. 

This transformation was conducted by splitting the data in time windows lasting 120 

seconds and extracting their mean values for each time window. The result was a 

representation of the degree of presence of each feature in each time window. For 

instance, the ‘traffic light’ feature had values between 0 and 1 after its transformation 
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to a continuous feature. A value of 0.3 would indicate the presence of a traffic light for 

30% of the time window. Figures 6.2a and 6.2b present the distribution of these 

variables in their continuous form. A presentation of the frequencies for each level of 

the same variables coded as categorical is included in Figures H1 and H2 in Appendix H. 

6.2.3.  ANALYSIS OF CONTEXTUAL AND ACTIVITY-RELATED CHARACTERISTICS 

FOR THE PREDEFINED ROUTE IN SYDNEY AND ZÜRICH  

This section focuses on the data collected during walking on a predefined route in 

Sydney and Zürich and presents a descriptive analysis of the differences and similarities 

between the two study areas. The two cities are perceived as very different 

environments from many aspects; Sydney is a city of extremities regarding the spatial 

distribution of its population, considering the differences between the CBD, which is 

populated by skyscrapers and the low-density suburbs. While its architectural history 

does not span more than two centuries, the city is rich in terms of different 

architectural styles, including typical two- to four-story suburban buildings, juxtaposed 

with Federation houses, Victorian and neo-Gothic examples, and skyscrapers. The study 

area is located at the heart of the city centre, which is buzzing with life and acts as a 

significant attractor of human activity due to the vibrant presence of commercial and 

retail use.  

Zürich, on the other hand, is much less populated and does not have such intense 

differences in the concentrations of residential density. The city is composed of a small 

number of districts or neighbourhoods, with different degrees of historical character 

and concentration of activities. The study area is located in Wiedikon, a residential area 

with an increasing presence of shops and cafes in the past few years. The city is 

characterised by a broader diversity in the age and architectural style of the buildings, 

which include examples from the medieval period, intertwined with modern buildings. 

Zürich thus generates the feeling of a much older city to the eyes of the pedestrian, 

compared to Sydney.  

These differences affect the perception of the urban fabric and the diversity of 

observed elements during a walk. The most striking difference is in the sense of 
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continuity in the skyline that characterises the study area in Zürich, as opposed to its 

counterpart in Sydney. There is larger homogeneity in various elements of the urban 

fabric in the study area Zürich, most notably in the scale, while the volumetric 

differences in the Sydney CBD are much more intense in comparison.  

Another critical difference between the two cities is the weather. The climate is 

generally colder in Zürich than Sydney; Sydney has a humid subtropical climate, with 

warm summers and mild winters, while Zürich has an oceanic climate, with colder 

summers and temperatures close to zero in the winter. The maximum temperature 

based on historical data between 1981 and 2010 was 24oC (Meteoswiss 2014). 

These parameters shall be further discussed in the following sections from a 

quantitative perspective, based on the collected data from the two cities. Additionally, 

the activities conducted in the two contexts shall be analysed in terms of parameters 

related to movement. This analysis is guided by the theoretical and conceptual 

framework presented in Chapter 3. 

6.2.3.1.  CLIMATE CONDITIONS: TEMPERATURE 

As mentioned in section 6.2.2, temperature data were already included in the Zürich 

dataset, measured by a custom sensor. The temperature data introduced in the data 

fusion model for Sydney were historical weather data from a local weather station 

(Australian Government Bureau of Meteorology 2020).  

 

Figure 6.3. Mean temperature data for each participant, for the predefined routes in Zürich and Sydney.  
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The data collection in Zürich was conducted during springtime, with a mean 

temperature of 17 °C (min=10, max=26). The data collection in Sydney captured the 

transition from winter to summer, with a mean temperature of 21 °C (Figure 6.2a). 

Figure 6.3 shows the mean temperature during the route of each participant.  

6.2.3.2. URBAN PARAMETERS: POI DENSITY AND TRAFFIC 

 

Figure 6.4. Poi density data in the studied areas in Zürich and Sydney.  

The studied route in Zürich is mostly populated by residential buildings with five floors, 

with some instances of mixed-use frequently populating the ground floor (Figure 6.5). 
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According to the POI density map for Zürich (Figure 6.4) and the observation of photos 

taken from Google Street View (Figure 6.5), points 3, 6, 8, 9 and 10 appear to be places 

which are more populated with shops, cafes and other elements which attract human 

activity. 

 

Figure 6.5. Photos from the route in Zürich. The photos were obtained from Google Street View (Google 

Maps 2020).  
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 Some notable places in terms of their contextual qualities are Idaplatz, a small square 

with cafes and high presence of green (Point 3 in the map; Photo 3 in Figure 6.5); also 

Point 9 which is a relatively busy area, and a critical intersection where many streets 

meet, with a high presence of mixed-use and wide views. Point 5 is a local example of a 

place with lower POI density, belonging to a mostly quiet residential part of the 

neighbourhood.   

As shown in Figure 6.6, there is much more diversity in the building heights in the route 

in Sydney. The photos from points 2,4 and 10 are taken from Broadway street, which is 

very close to the Central Station and is one of the busiest streets in Sydney. As the 

photos show, this street contains buildings of medium height, with 4 to 6 floors, and 

skyscrapers. These points, along with point 7, are also places where the traffic levels are 

relatively high, as shown from the number of lanes in the photos. Points 3,5 and 6 are 

relatively quieter environments; Point 3 is a green area at the back of the Central Park 

skyscraper, and points 5 and 6 represent a transition to a more residential area of the 

neighbourhood, with buildings of a lower height and relatively higher presence of 

green. Points 8 and 9 are on the Goods Line, an urban park which was formerly a rail 

corridor. A segment-wise analysis of the POI density and traffic levels for the predefined 

route in Sydney is also presented in Appendix B (section 3.1.1.). 
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Figure 6.6. Photos from the route in Sydney. Photos 8 and 9 were taken by the author; the rest were 

obtained from Google Street View (Google Maps 2020) 
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Figure 6.7. POI density time-series data for one user in Zürich and another user in Sydney. 

As shown in Figures 6.2a and 6.2b, the mean and STD values of POI density are similar 

for the predefined route in Sydney and Zürich. The time-series graphs in Figure 6.7 

show the different levels of POI density experienced in different parts of the route. The 

overall POI density pattern has a similar trend in both cases, as shown in Figure 6.7. The 

route starts with medium POI density, towards the middle of the route the POI density 

is lowered (more significantly in the case of the Sydney route, and less intensely in the 

Zürich route) and towards the end the POI density levels become high. However, as the 

photos showed, the transitions seem to be more intense in the case of Sydney. The 

differences in the structure and the degree of diversity in the building size in the two 

cities become apparent in Figures 6.8 and 6.9. 
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Figure 6.8. Screenshots from a 3-dimensional model of the studied area in Sydney (3d city models of 

Sydney 2017).  
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Figure 6.9. Screenshots of the studied area in Zürich (Bing maps 2020).  
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Figure 6.10. Traffic time-series data for one user in Zürich and another user in Sydney. 

As for the traffic levels, the route in Sydney involves some short encounters with high 

traffic intensity, in the start, middle and end of the route (Figure 6.10). Between these 

points, there are also parts with low traffic levels. In Zürich, on the other hand, the 

traffic levels encountered during the route appear to be relatively lower, with a small 

increase towards the end. 

6.2.3.3. ACTIVITY 

As Figures 6.11 and 6.12 show, the two datasets collected during a predefined route in 

Sydney and Zürich are very different in terms of the participants’ movement pattern. 

The walk in Sydney was continuous, apart from one point where the participants were 

asked to sit for 5 minutes, and a few times that they had to stop due to a traffic light. A 

segment-wise analysis of the activity for the predefined route in Sydney is also 

presented in Appendix B (section 3.1.1.).  

The walk in Zürich was a sequence of multiple small bouts of walk and stops, each 

lasting 1-2 minutes. It was also slightly shorter in terms of duration, lasting 

approximately 30 minutes while the predefined walk in Sydney had a mean duration of 

40 minutes.  
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Figure 6.11. Example of the activity intensity data collected during walking on a predefined route in Zürich 

and Sydney.  

 

Figure 6.12. Steady-state walking (time series) data for one user in Zürich and another user in Sydney.  

There was thus a different sequence of bouts of walking and stopping, and a different 

presence of steady-state walking in the two routes. The steady-state walking feature 

was extracted by filtering the ‘steady state’ feature and selecting the data points where 

the activity intensity was 2 (corresponding to the ‘walk’ class). In the predefined route 

in Sydney, the participants were in the steady-state walking phase for an average of 17 
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minutes (adding the corresponding minutes for each separate bout of steady-state 

walking), as opposed to an average of 5 minutes in the walk in Zürich.  

Since the duration and intensity of exercise may affect its influence as a stressor, the 

identified differences in the qualities of movement may create different patterns in the 

generation of physiological responses.  

6.2.3.4. PHYSIOLOGICAL DATA 

 

Figure 6.13. Raw EDA data from all users in Zürich and Sydney. 

The visual inspection of the raw EDA data for the predefined route in Zürich and Sydney 

showed that the raw EDA values were generally lower in the data collected in Zürich, 

compared to Sydney. It might not be appropriate to examine the differences in the raw 

EDA values between the two cities, due to the significant interindividual differences 

generally found in the range of values in this signal. The main physiological measure 

examined in this chapter (the sum of EDR amplitudes) can be compared, as it is 

generated after normalisation of the values. The descriptive analysis conducted for the 

sum of EDR amplitudes showed that the trend identified in the raw EDA data was also 

found there (mean = 0.4, std = 0.8 for Zürich; mean = 0.9, std = 1 for Sydney).  
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6.2.4. ANALYSIS OF CONTEXTUAL CHARACTERISTICS FOR THE FREE -LIVING 

ACTIVITIES DATASET IN SYDNEY  

 

Figure 6.14. The movement-related and contextual characteristics of the free-living activities dataset.  
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The free-living activities dataset contains data from 160 sessions (separate trips) that 

were recorded in Sydney. Figure 6.14 shows the characteristics of several contextual 

and movement-related factors, averaged for each route. Each point in the graph 

represents one route, and the sessions are arranged in the X-axis with respect to time, 

progressing from winter to summer. The ‘duration of activity’ feature in this graph 

corresponds to the maximum duration of each route. 

As Figure 6.14 shows, almost half of the recorded sessions (n=70) lasted less than 21 

minutes. The temperature was less than 21oC for around half of the sessions. More than 

half sessions had lower median POI density than that of the predefined route in Sydney. 

Approximately one-third of the sessions had a median POI density less than 5, which is 

typical for residential neighbourhoods and streets with low levels of human activity. 

Most sessions had low average traffic values, corresponding to streets which do not 

have high-speed limits or many traffic lanes. Almost two-thirds of the sessions also 

contained less than 15 minutes of steady-state walking. The presence of changes in 

activity was generally comparable to that observed in the predefined route in Sydney, 

and much smaller than that in the predefined route in Zürich.  

6.3. METHODS 

The statistical analysis plan that was followed investigates the research question of this 

chapter; if a generalisable model can be created to describe the link between urban and 

environmental features, movement and physiological responses. This question will be 

explored using a linear mixed model for examining the relationship between the target 

physiological variable (sum of EDR amplitudes) and the features related to contextual 

and movement parameters. The utilisation of the different datasets in the statistical 

analysis is visualised in Figure 6.15.  

Since the dataset contains multiple data points generated by the same participant, 

there are dependencies in the independent variable of interest that had to be taken 

into account in the chosen inferential model for this part of the statistical analysis. The 

difference in the overall context of the experiment (Sydney versus Zürich) also had to be 

taken into account. For these reasons, the linear mixed model was used here, as it takes 
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into account the user-related interdependencies between samples, including their 

possible organisations in different groups. 

Four models were constructed; one for Zürich, one for the dataset collected in Sydney 

while the participants were following a predefined route, one for the dataset collected 

in Sydney during free-living activities, and one for all the datasets combined. The main 

reason for adopting this strategy was to allow the examination of the results separately 

for each dataset.  

 

Figure 6.15. The statistical analysis approach followed in this chapter 
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In the first three models, where the datasets are separated according to place and 

context of activities, the parameters related to movement and context were used as 

fixed effects, and the subject’s ID was used as a random effect. The participants' age 

was initially included as a random effect, but after experimentation, it was decided to 

omit it, since its inclusion did not improve the model fit, and there were accuracy 

concerns regarding this variable in the Zürich data (as explained in Chapter 2). The sex 

of the participants was initially included as a random effect only for the Sydney data, as 

it was not known for the Zürich data. In the end, it was also excluded for the same 

reasons as in the ‘age’ variable.   

In the final model which contained the combined datasets, the place (Sydney and 

Zürich) was also added as a random effect. The datasets were resampled at 120 

seconds for this analysis. The transformation of categorical or ordinal variables to 

continuous ones (as described in section 6.2.2) was conducted by extracting their mean 

values for each time window of 120 seconds. 

The experiments with linear mixed models were also repeated at a different resampling 

(60 and 30 seconds) with very similar results.  

The Moran’s I test was also conducted to check for spatial autocorrelation in the data. 

The test indicated that there was a statistically significant presence of hotspots of the 

measured variable. Spatial autocorrelation was also found in the analysis of the 

residuals in the initial application of the linear mixed models. This finding would 

normally lead to the application of a spatial regression model (Anselin 2009), but this 

approach could not be followed here, since the dependencies between the data of the 

same participants have also to be taken into account. It was, thus, decided to use the 

linear mixed model, while also including a spatially lagged variable for the sum of EDR 

amplitudes as a predictor, to account for the spatial autocorrelation in the dataset. This 

variable was calculated by constructing a matrix with the spatial weights, describing the 

spatial relations between points based on their proximity. 

The experimentation also showed that the initial model for free-living activities in 

Sydney did not satisfy the assumption of normality of the errors. For this reason, a 

square root transformation was applied to the dependent variable (sum of EDR 
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amplitudes). This transformation is usual in the context of analysis of EDA, according to 

Boucsein (2012). Since this choice had a vast improvement on the residuals of the free-

living activities model, the square root transformation was consequently used for all 

models for a more consistent approach.  

As for the features used as dependent variables, all the features presented in Figures 

6.2a and 6.2b were initially considered as possible candidates. Different combinations 

were tested after making sure that there was no issue of multicollinearity by checking 

the variance inflation factor. The general formula had the following form:  

Yi = β0 + β1X1 + β2X2+ … + βx Xx +γ01 

where Yi was the dependent variable (the square root transformed sum of EDR 

amplitudes) and the parameters Χ1  to Χx were the other parameters included in Figure 

6.2a and 6.2b, as well as the spatially lagged variable (Xx = sum of EDR amplitudes_lag). 

The variable γ01 corresponds to the random intercept for each subject.  

The presented results are based on a set of features that produced an acceptable result 

for all cases. The features which did not have an effect on the studied variable or bring 

any improvement to the model fit when added (e.g., traffic lights) were omitted. The 

statistical tests were conducted using R. 

6.4. RESULTS 

The parameter combination that led to an acceptable result for all models was the 

following: lagged sum of EDR amplitudes, POI density, duration of activity, change in 

activity state, speed, traffic, temperature.  

The following sections show the coefficients for each separate model, and their 

statistical significance, ending with the model that was fitted to the combined dataset 

for both cities.  

The tests showed that the models had a better performance when the change in 

activity state was coded as a categorical feature. Therefore, the coefficients presented 

for this feature in Figures 6.16 – 6.21 refer to it as a categorical one (with ‘1’ indicating 

its presence, as mentioned before).  
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6.4.1. SYDNEY: PREDEFINED ROUTE 

 

Figure 6.16. The parameters of the selected linear mixed model for the predefined route in Sydney.  

In the linear mixed model that was fitted for the predefined route in Sydney, the 

features which were important in terms of statistical significance were POI density 

(β=0.011; p=0.005), duration of activity (β=0.022; p<0.00001) and speed (β=0.029; 

p=0.0082). The ambient temperature was also marginally significant (β=0.03; p=0.08). 

These coefficients correspond to the effect of each parameter on the transformed 

variable. Section 6.5 will involve a discussion of the effects of all the models after 

reversing the square root transformation. 

This dataset was also analysed in more detail compared to the others, by breaking the 

route in different segments and analysing the transitions between pairs of consecutive 

segments. The results are presented in detail in Appendix B (section 3.1.1.). The most 

notable finding was that the two statistically significant increases in the sum of EDR 

amplitudes happened in parallel to increases in the traffic and POI density, after the 

participants had been walking for some time in a quiet segment with low levels of 

stimulus intensity and complexity. In one of the two steep increases, there was also a 

transition from a bout of steady-state walking to a traffic light, which created a 

significant change in activity. Hotspot analysis was also conducted for this route, 
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presented in Appendix B (section 3.1.2.). The results showed that the clusters of change 

in the EDA measures coincided with changes in POI density, traffic, or activity. 

As stated in section 6.2, the participants were also asked to report their experience 

during each segment of the route, using the template of the PANAS test for the 

measurement of the affect. The results (Appendix B, section 3.1.5) showed a gradual 

increase in the negative affect, in parallel to the time passed since the beginning of the 

activity. There were no significant changes in the positive affect; however, there was a 

notable trend of increase when the participants entered the segment with the lowest 

values in terms of POI density.  

6.4.2. ZÜRICH: PREDEFINED ROUTE 

 

Figure 6.17. The parameters of the selected linear mixed model for the predefined route in Zürich. 

The significant features in the linear mixed model which was fitted for the predefined 

route in Zürich (Figure 6.17) were the duration of activity (β=0.016; p<0.00001) and the 

ambient temperature (β=0.056; p<0.00001). 
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6.4.3. SYDNEY: FREE-LIVING ACTIVITIES 

 

Figure 6.18. The parameters of the selected linear mixed model for the free-living activities in Sydney. 

For the dataset containing the data collected during free-living activities in Sydney, the 

parameters which had a significant effect on the sum of EDR amplitudes data were the 

following (Figure 6.18): duration of activity (β=0.0006, p=0.0023), change in activity 

state (β=0.097, p<0.00001), speed (β=0.0241, p<0.00001) and temperature (β=0.0292, 

p<0.00001).  

6.4.4. COMBINED DATA FROM SYDNEY AND ZÜRICH 

 

Figure 6.19. The parameters of the selected linear mixed model for the combined dataset from Sydney 

and Zürich. 
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In the combined dataset, which contained data from Sydney and Zürich, all parameters 

presented in Figure 6.19 were statistically significant at p<0.05, apart from traffic. 

6.5. DISCUSSION  

This part of the research aimed to investigate how differences in contextual 

circumstances affect physiological responses, and what is the role of each urban or 

movement-related feature in modulating physiological responses. 

A visual and descriptive analysis of the different datasets was presented in section 6.2. 

The analysis of the two predefined routes (section 6.2.3). showed considerable 

differences in many contextual and activity-related parameters. Similar differences 

were also found among routes from different users, in the free-living activities study in 

Sydney (section 6.2.4). 

 

Figure 6.20. The coefficients of the significant features for all models. 

The statistical analysis presented in section 6.4 was conducted first separately for each 

dataset, and then for the combined data. Since most of the data points in the final 

model were from the free-living activities dataset in Sydney, the results of the final 

model may be more reflective of the trends in that dataset. The specific trends for each 

context can be identified by examining the coefficients of the different models in Figure 

6.20. The coefficients are pulled from the figures displayed in section 6.4.  
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The coefficients in Figure 6.20 correspond to the effects on the transformed variable. 

Additional experiments were conducted to understand the effects on the actual 

variable by generating predictions using the models presented in section 6.4 and 

inversing the square root transformation. The results are shown in Figure 6.21, 

presenting each parameter's effect on the sum of EDR amplitude values. The 

predictions were generated by changing only one parameter each time and keeping all 

the other parameters stable. 

 

Figure 6.21. Analysis of the effect size for each parameter 

Instead of calculating the effect of the change of one unit in each parameter, it was 

decided to study the effect of the change from low to moderate, and from moderate to 

high values of each parameter on the sum of EDR amplitudes. This approach was 

followed since the square root transformation is not linear, and the calculation of the 

change per unit would be misleading. Another reason for adopting this approach was to 
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analyse the effect of significant contextual or movement-related changes which might 

be observed in typical outdoor activities. For instance, the effect of temperature was 

analysed by considering how the sum of EDR amplitudes value is affected by three 

different situations: a relatively cold environment (15oC), compared to a comfortable 

(21oC) and a relatively hotter one (27oC). The effect of POI density was analysed by 

considering an environment without any POIs nearby, compared to an environment 

with 15 POIs within 100m (equal to half of the highest POI density found in the 

predefined routes in Sydney and Zürich) and an environment with 30 POIs within 100m 

(the highest POI density in the predefined routes in Sydney and Zürich). The effect of 

exposure to traffic intensity levels was analysed by having as input the lowest level, as 

well as the maximum and one half of the maximum level. The effect of a change in 

activity state was also included; as for the effect of speed, three different speeds were 

considered, corresponding to very slow movement (1 m/s), moderate walking pace (3.5 

m/s) and fast walking pace (6 m/s). The calculation of the effect size was calculated 

separately for each dataset (Figure 6.22), based on the standard deviation values of the 

sum of EDR amplitude variable, extracted from Figures 6.2a and 6.2b. 

 

Figure 6.22. Calculation of effect size based on the std values for the sum of EDR amplitude data 

As shown in Figures 6.20 and 6.21, some common trends emerged across different 

models. Most notably, the overall duration of activity was a significant feature in all the 

models. Chapter 3 showed that physical activity is considered a stressor, and the 
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findings here are in line with these suggestions. Figure 6.21 shows that the effect of this 

parameter was small for the combined dataset and the free-living activities dataset, and 

medium to strong in the two predefined routes in Sydney and Zürich. The differences in 

the size of the effect are also reflected in the coefficients presented in Figure 6.20 for 

this variable. The coefficients are similar for the two predefined routes in Sydney and 

Zürich, and higher than the coefficients for the combined dataset and the free-living 

activities. 

The ambient temperature was also a crucial feature for all models. Temperature is again 

a physical stressor which influences sympathetic activity, based on the literature 

presented in Chapter 3. The analysis presented in Figure 6.21 shows a small effect of 

this variable when comparing a relatively cold (15oC) to a comfortable environment 

(21oC) and a small to medium effect when comparing a comfortable environment to a 

hotter one (27 oC). The coefficients presented in Figure 6.20 are similar among the 

different datasets, being slightly higher in Zürich and the combined dataset. The 

interpretation of this study's findings is that ambient temperature can act as a 

modulating factor that generally creates more intense responses in amplitude and 

frequency in mild to hot conditions compared to colder ones. It is also important to 

note that this research did not involve very cold conditions, walking during rain, or 

abrupt transitions from a high to a low temperature, and these conditions should also 

be covered in future research. 

 In terms of contextual features, traffic was not statistically significant in any model. POI 

density was significant in the predefined route in Sydney and the combined dataset. 

Based on the analysis presented in Figure 6.21, the impact of very small changes in POI 

density would be trivial. The effect was small when comparing the exposure to an 

environment without any POI and an environment with medium POI density (15 POIs 

within 100m). The same applied when comparing an environment with medium POI 

density and one with high (30 POIs within 100m). The effect size was slightly larger in 

the predefined route in Sydney.  

Speed was an essential feature for all models that contained data collected in Sydney. 

This feature is related to the activity intensity. Its effect on the sum of EDR amplitudes 
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was small, based on the analysis presented in Figure 6.21. The change in activity state 

was significant in the free-living activities and the combined dataset; the effect was also 

small in this case, for all the designed models. Τhe other similar variable which was 

sometimes tested (‘change in activity’), was also statistically significant in some of the 

additional experiments that were not reported in the tables presented here. It is 

unclear if the most critical feature between these two is the general change in activity 

intensity or the change from a steady state to another activity intensity. According to 

the literature presented in Chapter 3, the transition from a steady state to another fits 

the definition of a stressor. The analysis of the indoor experiments, presented in 

Appendix C, showed that the change in activity had a particularly strong impact on the 

sum of EDR amplitudes when there was a change from steady-state walking to standing. 

However, this was observed only in the second indoor experiment, when the 

participants' sympathetic activity was already elevated from the outdoor activity. The 

reactions to the same parameter were very low, or even non-existent in some cases, in 

the indoor test before the outdoor activity. The effects of the change in activity (or the 

change in activity state) on physiological responses may, therefore, be amplified during 

the existence of other parameters which act as stressors, such as a high duration of the 

activity. This interpretation is in line with the theory of the synergistic effect of multiple 

stressors (presented in Chapter 3). 

Similar reasons might explain why the POI density had a larger impact on the predefined 

route in Sydney. This route lasted for a longer time and contained more bouts of 

steady-state walking than the predefined route in Zürich, as shown in section 6.2. 

Similarly, in the free-living activities dataset in Sydney, there was high variation in the 

duration of the bouts of steady-state walking, and some routes had short overall 

duration, as shown in Figure 6.14. One possibility is that the combination of the overall 

time of activity and the presence of many or long bouts of steady-state walking might 

create higher levels of sympathetic activation. When a route of a participant satisfies 

these conditions and some time has passed since the beginning of the activity, a change 

in activity or stimulation may have a higher impact at that point, than at the beginning 

of the activity. Furthermore, in the predefined route in Sydney, there were more 

extreme variations in POI density, including places with very high and very low POI 
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density, while in Zürich the differences were relatively smaller. Since there are links 

between POI density and stimulus complexity (following the analysis presented in 

Appendix A), this suggests that the predefined route in Sydney might have contained 

more marked differences in the complexity of the environment. These differences in 

complexity may be one of the reasons that the positive relationship with POI density 

was identified in this route and not in the others.  

One limitation was that the statistical analysis used each route's average ambient 

temperature and did not take into account any differences in the local microclimate, 

which might influence the result. This parameter should be added in future studies. 

Another limitation was that the presence of slope was not included in the models, 

because the two predefined routes in the two cities were mostly flat. It was, therefore, 

decided to exclude this variable from the analysis and focus on all the other variables 

which had a presence in all datasets. Future work shall involve more dedicated analysis 

of the influence of this variable as well.  

Another point for future improvement should be the investigation of other ways of 

modelling and analysing the variables. The relationship between the variables examined 

here, and physiological responses might be better described as a more complex 

sequence or pattern of parameters that have to coexist in order to provoke 

physiological responses. One such variable that may not have been sufficiently 

described in the linear mixed models is the ‘steady state’ variable. The results of the 

cluster analysis in section 6.4.1 and the findings of the analysis of the indoor data 

(presented in Appendix C) suggest the existence of a possible link between the overall 

duration of the activity, duration of steady-state walking and physiological responses. 

The variable created for the representation of ‘steady state’ in the dataset was not 

identified as significant in the linear mixed model analysis, but this could have to do 

with the modelling of this variable. Alternative representations for future experiments 

could include a lagged variable describing the past existence of a steady state, or the 

minutes of steady-state walking in the current bout of activity, and the total bouts of 

steady-state walking until each time point. 
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In conclusion, the presented results suggest that some of the features (most notably, 

the overall duration of activity and the ambient temperature) which were identified as 

significant in the context of Sydney do not have this behaviour exclusively in this local 

environment, but have similar effects at least in one other context.  The combined 

findings from the three phases of the analysis suggest that there are multiple 

parameters in different scales that play a role in the generation of physiological 

responses. While the large-scale contextual differences (mainly ambient temperature in 

this study) may affect physiological responses to a certain extent, small-scale 

differences may also be found within different neighbourhoods of the same broader 

context. These differences may also be modulated by the movement pattern and 

several factors related to that. When there is also diversity in the yearly weather 

pattern of a city, apart from diversity in the urban fabric, there may be large-scale 

seasonal effects on the physiological responses, apart from small-scale spatiotemporal 

patterns, within the same city.  

These findings expand our existing knowledge on the link between urban environment, 

activity and responses. They also suggest that the conceptual framework which was 

proposed in Chapter 3 is in the right direction. The presented results provide evidence 

that supports the choice of some of the features which were used as physical and 

psychological stressors in the data fusion model presented in Chapter 5. The 

significance of the features related to activity was highlighted.  

This chapter also played another role apart from the presentation of the statistical 

analysis and the examination of the role of different features. The analysis of the 

datasets (section 6.2), showed that the datasets utilised in this research capture a wide 

range of contextual circumstances and activity-related differences. The chapter also 

demonstrated that the methods of component 1 of the methodology (used here for 

data collection and analysis) are applicable in more than one context.  

The work presented in this chapter concludes the presentation of material related to 

component 1 of the methodology for the collection and analysis of physiological data in 

the urban space. The remaining chapters shall present the methods related to the two 

other components. 
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7 
METHODS FOR SPATIAL ANALYSIS OF PHYSIOLOGICAL RESPONSES IN 
THE URBAN ENVIRONMENT 

7 | METHODS FOR SPATIAL ANALYSIS OF PHYSIOLOGICAL RESPONSES IN THE 

URBAN ENVIRONMENT 

7.1. INTRODUCTION  

 

Figure 7.1. Flowchart outlining the aim of the chapter and the connection with the conceptual 

methodology. 

After presenting the methods related to component 1 of the methodology in Chapter 5, 

and providing evidence that supports these methods in Chapter 6, this chapter shifts 

the focus on component 2 of the methodology for collection and analysis of 
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physiological data in the urban environment (Figure 7.1). This component contains 

methods for spatial analysis of physiological responses.  

The extrapolation of spatial patterns of physiological responses is an essential step of 

the analysis of physiological data. Some methods that have been used for this purpose 

include averaging the physiological responses in grid cells or segments (Shoval et al. 

2018), constructing heatmaps based on the density of physiological responses (Zeile et 

al. 2016), or identifying hotspots with the Getis-Ord Gi* method (Kyriakou & Resch 

2019). Among these methods, the latter has the advantage of examining the statistical 

significance of the emerging clusters so that the researchers can filter the results 

accordingly. As these projects showed, the identification of spatial patterns in the 

physiological responses is one of the most significant parts of the analysis, as it enables 

the identification of areas which have a higher or lower intensity of responses than 

others. In EDA analysis, high intensity of EDA responses is connected to high 

sympathetic arousal, which may indicate physical or psychological stress, as shown in 

Chapter 3. For this reason, past studies have used the identification of spatial 

concentrations of EDA responses of high intensity as a way of understanding the spatial 

dimension of stress and physiological arousal in the urban environment.  

While past studies have been successful in demonstrating the beneficial aspects of 

spatial analysis of physiological responses, the main output of this stage was usually a 

visualisation of the hotspots. The hotspots were not separated into different clusters, 

which would be the logical next step. Without this information, it is difficult to include a 

quantitative analysis of each cluster's contextual circumstances. There are many 

precedents of algorithms used for spatial cluster identification (e.g., Hwang et al. 2013). 

The application of such algorithms, though, requires the calibration of many 

parameters. These parameters affect cluster separation and their interpretation in 

terms of their role in the urban fabric. The same algorithm can result in clusters with 

the size of a neighbourhood or a small urban square, just by altering some parameters. 

Therefore, some experiments need to be conducted to define how cluster separation 

can be integrated as the next step after hotspot analysis in the workflow of spatial 

analysis of physiological data. This part of the analysis is necessary for understanding if 
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there are differences in each cluster and what kind of circumstances may be behind the 

physiological responses. The lack of this step hinders the connection of hotspot analysis 

with further inferential analysis and decision-making processes at an urban planning 

level. If there is no understanding of each cluster's specific conditions, no actions can be 

taken to mitigate stress hotspots in the urban space. 

Furthermore, when it comes to clusters of stressful responses in a large study area, it 

would be difficult for the local governmental agencies to take action simultaneously at 

all spots, in a scenario where many such clusters are identified. One obstacle in the 

process of decision making is thus the lack of measures to analyse the importance of 

each cluster of physiological responses in the context of the urban network. If the area 

of analysis is small, it is easy to conduct a visual assessment of the clusters emerging 

from the analysis, for an analyst that has knowledge of the area. However, as the area 

of analysis and the number of clusters increase, this process becomes complicated.  

One possible solution to this problem could be to add a step after the creation of 

clusters of physiological reactions, for ranking them according to different metrics. One 

such metric could be the intensity of responses in the cluster or the number of users 

who experienced a strong response. Another idea could be an assessment based on the 

cluster's significance in the urban network in terms of pedestrian activity. The last two 

metrics are based on the idea that a cluster of physiological reactions may have a more 

significant impact if it is expected to affect a larger population compared to other 

clusters. Some studies have already incorporated similar steps that suggest that the 

user-based assessment method has significance in the urban context. Hijazi et al. (2016) 

included a manual analysis of each cluster's data points to ensure that the physiological 

responses were generated from different people. Shoval et al. (2018b) incorporated 

user analysis in a visualisation of the physiological responses in the form of grid cells, 

which had different heights according to the number of users in each cell. 

While the calculation of the two first metrics is explicit, the third metric requires local 

knowledge of the mobility patterns of the city, for its practical implementation. While in 

small cities it might be easy for the local planning officers to visually assess a map with 

the emerged clusters and pinpoint areas are most prone to be visited, this becomes 
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much more difficult as the area of analysis increases. One alternative way would, 

therefore, be to integrate into the tools of spatial analysis either the actual pedestrian 

activity data if they exist, or a method for predicting pedestrian mobility. In this way, the 

actual or estimated mobility data would be analysed, and the most visited areas would 

be automatically inferred and combined with the cluster analysis. A method that could 

be used for this assessment is the estimation of pedestrian mobility from urban network 

analysis. This method of analysis is considered a well-established approach for 

predicting spatial interactions in the urban domain (Batty 2004).  

In this context, this chapter investigates methods for analysis and knowledge extraction 

from the spatial concentrations of physiological responses at a city scale. A method for 

spatial analysis of physiological responses shall be presented, starting with hotspot 

analysis, and proceeding with cluster ranking for the identification of clusters which may 

have a more significant impact at a city scale, in terms of urban health and wellbeing. 

The ranking step is followed by the analysis of the contextual attributes of each cluster. 

The cluster ranking methods shall include user-based and pedestrian activity-based 

ranking methods. The proposed methods are tested on the free-living activities dataset 

collected in Sydney, and the dataset collected in Zürich.  These two datasets exemplify 

how this method can be incorporated in different contextual circumstances, including 

the size of the study area, the size of the dataset and the diversity in the conducted 

activities. The focus is on constructing a workflow that can be applied by future 

practitioners in this area. 

The chapter starts with a brief description of the dataset and the methods used for 

hotspot analysis and prediction of mobility patterns based on network analysis (section 

7.2). Section 7.3 demonstrates the results of this method in the context of Sydney and 

Zürich and discusses the findings in the local context. Finally, section 7.4 elaborates on 

the benefits and limitations of the proposed method and discusses future directions. 

The code created for the execution of the methods designed for this component can be 

found in GitHub7. 

 
7 https://github.com/ddritsa/PhD-Thesis-repository/tree/main/2nd%20component 
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7.2. METHODS 

7.2.1. DATASET CHARACTERISTICS  

The datasets that were analysed to demonstrate the described methods are the free-

living activities dataset from Sydney and the dataset collected in Zürich from Ojha et al. 

(2019) during a predefined route. The two datasets show the applicability of the 

methods in two different setups: a semi-controlled experiment on a predefined route, 

where the study area is small, and its boundaries are known to the research team, and 

in a completely uncontrolled scenario where the only prior knowledge is the city where 

the experiment is conducted. In the constrained route, all participants face the same 

obstacles that affect movement; therefore, there is some control over the activity 

pattern. Previous studies have focused only on this setup (except Lee et al. 2020).  

The dataset characteristics are the same as presented in Chapter 6 (Figure 6.2a and 

6.2b). The variable which will be analysed as an indicator of physiological responses is 

the sum of EDR amplitudes, and its change (mentioned as ‘change in the sum of EDR 

amplitudes’). All features are extracted before this step with the data fusion model of 

Chapter 5. 

7.2.2. NETWORK ANALYSIS 

This section provides a brief background on network analysis in the urban context. This 

background is necessary for understanding the network-based cluster ranking method 

that will be outlined in section 7.2.3.3. 

The application of network analysis in urban networks is based on graph theory 

principles. The urban network is treated as a graph, composed of streets and 

intersections, which act as the graph links and nodes respectively. The streets can also 

be analysed as nodes and the junctions as links, using the dual graph approach, as 

proposed in the space syntax theory (Hillier & Hanson 1984). Node centrality measures 

are then used as metrics of the performance for different nodes and links of the 

network. This approach allows the identification of nodes which are essential for the 

network and facilitate connectivity between its components; for this reason, node 
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centrality measures have been used extensively for defining which nodes play a central 

role in the network and what is the number of trips expected between them. Urban 

network analysis has been integral for various types of studies of socio-spatial 

phenomena, such as the spatial analysis of the rate of crime, or the prediction of cycling 

and walking flows (Baran et al. 2008; Jiang & Claramunt 2004; Klarqvist 1993; Nourian 

et al. 2018).  

This study uses betweenness centrality as a measure which expresses the potential level 

of pedestrian activity at each network node (Sevtsuk & Mekonnen 2012). In network 

analysis, the betweenness centrality of a node is calculated by extracting the shortest 

paths between pairs of nodes and estimating the number of times each node is 

included on a shortest path, in relation to the overall number of shortest paths in the 

network (Freeman 1977). In the context of street network analysis, the ‘shortest path’ 

analysis usually incorporates the actual length of the streets as a weight which affects 

the calculation on top of the topological characteristics of the network. Other attributes 

can also be incorporated, such as land use, the path's straightness, or other urban 

characteristics. The ‘shortest path’ thus expresses the path which a pedestrian is 

expected to take when travelling from one point of the city to another, taking into 

account the time needed to reach the destination as a minimum criterion for selecting 

their route. If a node has high betweenness centrality, many ‘shortest paths’ are 

expected to pass from this node. 

The area which was selected for analysis in this chapter had the Central Station, Sydney 

as its centre and contained the street network nodes within 4km of this point. The 

majority of the data points of the free-living activities dataset in Sydney were contained 

in these boundaries. The selected area for network analysis in Zürich was slightly 

smaller, containing all street network nodes within 2km of the route's middle point. The 

network analysis was conducted with the python module osmnx (Boeing 2017a). The 

derived betweenness values were integrated into the spatial database that was 

previously created with the methods presented in Chapter 5 since the spatial database 

was also generated by analysing the same OSM data. This process was repeated for 
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each city. A visual demonstration of the resulting betweenness centrality values for 

Sydney is provided in Figure 7.2. 

 

Figure 7.2. The results of betweenness centrality analysis for the studied area in Sydney.  

7.2.3. THE PROPOSED METHOD FOR HOTSPOT IDENTIFICATION, CLUSTER 

SEPARATION AND USER RANKING 

The proposed method can be applied to a dataset containing the processed 

physiological responses and geolocation information for each data point. The applied 

node centrality metric (node betweenness) also has to be calculated beforehand for the 

city's street network. The overall workflow is presented in Figure 7.3.  
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Figure 7.3. The proposed workflow for spatial analysis of physiological responses 

7.2.3.1. HOTSPOT IDENTIFICATION 

The identification of hotspots in the methods designed for component 2 is based on the 

extraction of the Local Moran’s I value for each point. This index is a measure of local 

spatial autocorrelation, and it examines the degree of similarity between the 

neighbouring samples of a dataset (Anselin 1995). It has been widely used for hotspot 

identification in various studies, including identifying air pollution hotspots (Zhang et al. 

2008) and virus outbreaks (Sugumaran et al. 2009). 
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The Local Moran’s I index results in identifying four kinds of clusters; points of high 

values that are concentrated together, points of low values that are concentrated 

together, points of low values gathered around points of high values and the opposite. 

The statistical significance is also calculated for each value, allowing the identification of 

clusters which are not a result of noise in the data. In this case, the focus was on the 

concentration of high values close to other high values; in other words, on hotspots 

where points of intense physiological responses (or significant change of responses) 

were clustered together.  

7.2.3.2. CLUSTER SEPARATION WITH THE DBSCAN ALGORITHM 

The previous step allows the extraction of hotspots of physiological responses which are 

statistically significant. While the local Moran’s I value signifies the presence of points 

which have similarly high values and are proximal, there is still no specific identifier for 

each separate cluster. It is crucial to mark each hotspot's spatial boundaries, as, without 

this step, it is not possible to extract any metric with regards to the spatial 

characteristics of the different hotspots.  

For this purpose, the DBSCAN algorithm (introduced in Chapter 4) is applied to separate 

the points in clusters based on the density in the spatial distribution of the points. 

Another approach would be to use the DBSCAN algorithm from the beginning, instead 

of the local Moran’s I value, but in that case, it would not be possible to have the values 

of statistical significance for each cluster that the local Moran’s I index provides. 

7.2.3.3. CLUSTER RANKING  

The different methods for cluster ranking that are proposed, are based on analysing the 

impact of each cluster based on two metrics: the number of users that were impacted 

during the study, and the expected degree of pedestrian activity in the area, based on 

the cluster’s position in the urban fabric. The resulting rankings are referred to in the 

rest of the chapter as the user based ranking, and the betweenness centrality based 

ranking. 

The calculation of the user based ranking is conducted by measuring for each cluster 

the number of unique participants whose physiological responses are contained in the 
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cluster. Only the physiological responses with relatively high values are included, as 

these calculations are based on the subset of points that had high values next to other 

high values, as identified by the Local Moran’s I analysis.  

The betweenness centrality based ranking estimates the expected degree of pedestrian 

activity for each point in the hotspots. It is calculated by extracting the betweenness 

centrality metric for each node. For this purpose, a k-d tree (see Chapter 4, section 

4.2.3) is constructed, containing information regarding the spatial distribution of the 

street network nodes based on proximity. The k-d tree is then queried for each point 

belonging to a hotspot of physiological responses. The purpose is to find the five closest 

nodes for each point and get the betweenness centrality value of these nodes. The 

average betweenness centrality for these five nodes is then calculated, and the 

resulting value is assigned to the cluster.  

Each ranking results in the assignment of weights based on the position of the cluster 

on a scale. The scale is based on the minimum and the maximum values for this ranking.  

7.2.3.4. PARAMETER CALIBRATION 

The general workflow, as presented until now, is composed of a series of simple steps. 

Many parameters have to be specified, though, during the analysis, such as the 

parameters related to the DBSCAN algorithm. Small changes in the choice of values for 

each parameter may have significant differences in the result.  

One question here is if the focus should be on the signal of interest (sum of EDR 

amplitudes in the experiments described in this chapter) or the changes in the signal, or 

both.  

Another parameter is the identification of an appropriate resampling rate for the target 

signal. If no resampling is applied, the time of processing becomes high in large 

datasets, such as the free-living activities dataset in Sydney; at the same time, a 

resampling at a rate of more than 1 or 2 minutes may result to the loss of valuable 

information. For studies at a city scale, an appropriate rate or range of rates has to be 

specified to allow fast processing and assure that no information will be lost. 
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Another question is if some methods for outlier correction and data transformation 

should be applied in order to ensure that the result would not be skewed by a few data 

points with very high values of physiological responses. For this purpose, a cut-off could 

be applied based on the mean and standard deviation values or using the 3rd upper 

quartile of the values as a threshold.  

Finally, the DBSCAN algorithm requires the specification of a maximum distance for the 

identification of neighbouring points. This choice affects the resulting number of 

clusters and the number of data points in each cluster and influences how the results 

are interpreted in the urban context. For instance, a large distance may result to the 

creation of clusters that correspond to a whole street or a neighbourhood, while a small 

distance results to the emergence of clusters that correspond to an urban network 

node. 

Various experimentations were conducted to test all these parameters for both Zürich 

and Sydney. The results are presented in section 7.3. 

7.2.3.5. EXTRACTION OF CONTEXTUAL INFORMATION  

The final stage of the methods for spatial analysis of physiological responses includes 

the extraction of contextual information for each cluster, for understanding differences 

and similarities between the clusters. 

7.3. RESULTS 

This section demonstrates the results of the application of the algorithms for the two 

datasets, first for the predefined route in Zürich, and then for the free-living activities 

dataset in Sydney. 

7.3.1. SPATIAL ANALYSIS OF PHYSIOLOGICAL RESPONSES IN ZÜRICH  

The first phase of the experimentation with the Zürich dataset involved the calibration 

of two parameters: the resampling rate and the cut-off value. The cut-off value was a 

threshold that was defined with the purpose to detect and reduce any data points 

which may have abnormally high values of the target signal. The cut-off was applied to 

the physiological response data. The experimentations for the resampling rates were 
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conducted for the following rates: 10, 30 and 60 seconds. The different cut-off values 

that were tested were based on standard deviations above the mean. 

 

Figure 7.4. The results of the hotspot identification based on the Local Moran’s I values for the Zürich 

dataset.  

Figures 7.4 and 7.5 show the results of the experimentation with different resampling 

rates and cut-off values for two cases: In the first case (Figure 7.4), the sum of EDR 
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amplitudes signal is analysed, but in the second case (Figure 7.5), the change in the 

signal is analysed instead. 

As Figure 7.4 shows, there is not much difference in the results of the different 

experiments and the resulting number of clusters for the sum of EDR amplitudes data. 

The only difference is that the data points become fewer than before, and the minimum 

number of samples needed for the detection of a cluster in the DBSCAN algorithm has 

to be adjusted accordingly. 

 

Figure 7.5. Experimentation with different resampling rates and cut-off values for the change in the sum 

of EDR amplitudes data.  
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Figure 7.5 shows though that the results are different for the change in the sum of the 

EDR amplitudes data. Here there is some small variation in the resulting number of 

clusters, as in the more conservative resampling rate (10 seconds), some clusters are 

not visible in the last row of images, where the resampling is at 60 seconds. The 

application of the cut-off values for improving the distribution of the data was also 

preferable compared to the data without cut-off, as it made more prominent the 

existence of some clusters that would be otherwise not detected, particularly in the 

higher resampling rates. The locations of the most prominent clusters are also very 

close for the two analysed signals (the sum of the EDR amplitudes data, and the change 

in the sum of the EDR amplitudes). 

After calibrating the algorithm for the detection of statistically significant hotspots using 

the data from the predefined route in Zürich, the algorithm was applied for hotspot 

analysis in the predefined route in Sydney. The results are presented in Appendix B 

(section 3.1.2).  

The next phase of the experimentation with the Zürich dataset involved the calibration 

of the maximum distance threshold for detecting clusters in the DBSCAN algorithm. For 

this experimentation, the change in the sum of the EDR amplitudes data was used as the 

studied variable. The same method can still be applied for the analysis of the other 

signal. 

For the application of this algorithm in the context of studying urban space and its 

effect on physiological responses, it is essential to think what is the rate of change in 

contextual parameters that can affect physiological responses, and how this rate is 

expressed in the urban fabric, in terms of distance metrics. For instance, two points that 

belong to the same street segment will be perceived as parts of the same environment 

when traversing this street segment as a pedestrian. This behaviour applies to the 

variables which are studied here, such as the levels of POI density, traffic intensity and 

presence of traffic lights. These points should be included in the same cluster, as they 

have similar contextual parameters. It is unlikely that these parameters will undergo a 

meaningful change within the same street segment, but in distances above that, factors 
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such as traffic may change. In that case, it would make sense to assign these points in 

different clusters as parts of environments with different contextual circumstances.  

 

 

Figure 7.6. The results of parameter testing for the cluster separation phase with the DBSCAN algorithm 

applied to the Zürich dataset. 

A range of different distances was tested with these principles kept in mind, and the 

results are presented in Figure 7.6. As shown in the figure, the distance thresholds 

within a range of 0.0001-0.0002 resulted in the identification of too many clusters 

(n=18). The clusters were also sometimes very close to each other. The distance 

threshold set at 0.0004 also seemed to work oppositely, grouping together some points 

which belong to different street segments and may have different contextual 

parameters. The selected option was that with the distance threshold set at 0.0003. 
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This threshold still resulted in too many clusters (n=11), but the ranking methods which 

were applied afterwards were able to filter out the redundant information and highlight 

the most significant clusters. As shown in Figure 7.7, clusters A and B were the ones 

which had the most significant impact in terms of the number of users that experienced 

an intense response. The locations of the clusters are presented in Figure 7.8, and 

indicative photos from each location are shown in Figure 7.9. 

 

Figure 7.7. Application of cluster ranking methods on the route in Zürich 

Cluster A is located in an area with high POI density in the route, located close to 

Goldbrunnenplatz. Cluster B is located towards the end of the route and is also close to 

shops and amenities. Cluster C is located in a quieter street and was closer to the start 

of the route than the others.  

The clusters which were identified as most important in terms of high betweenness 

centrality were clusters 1 and 2 in Figure 7.7. Cluster 1 is the same as cluster A, which 

means that this is a place with a significant role in the urban fabric, where many users 

had relatively intense responses.  
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Figure 7.8. The locations of the most important clusters in Zürich.  

 

Figure 7.9. Photos of the locations corresponding to the critical clusters in Zürich. The photos are taken 

from Google Street View (Google Maps 2020) 
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7.3.2. SPATIAL ANALYSIS OF PHYSIOLOGICAL RESPONSES IN SYDNEY  

This section presents the results of the application of the clustering and ranking 

methods for the free-living activities dataset in Sydney.  

 

Figure 7.10. The results of the hotspot identification with Local Moran’s I values for the free-living 

activities dataset in Sydney.  
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After the documentation of the experiments in Zürich, the parameters that were 

adopted were a resampling rate of 10 seconds, a cut-off set at one standard deviation 

above the mean, and a maximum distance threshold of 0.0003 for the DBSCAN 

algorithm. The results of resampling at 30 seconds are shown in Figure 7.10 for 

comparison. 

As Figure 7.10 shows, the analysis of the sum of EDR amplitudes data resulted in the 

identification of continuous street segments as hotspots, while the analysis of the 

changes in the sum of EDR amplitudes data highlighted clusters at a street node scale. 

Both kinds of analysis are of interest, but the first is more applicable for analysing and 

comparing street segments rather than street network nodes. 

 

Figure 7.11. Result of the DBSCAN algorithm applied on the sum of EDR amplitudes, with user-based 

ranking applied.  

The problem created by analysing the raw signal, instead of the change in the signal, 

becomes very obvious in Figure 7.11. The figure shows the results of the DBSCAN 

algorithm applied for the sum of EDR amplitudes data. In this case, the DBSCAN 

algorithm groups together route segments, and the resulting clusters resemble paths as 

opposed to more circular shapes. The most probable reason for this grouping is the 

temporal and spatial autocorrelation in the signal. This analysis shows that, due to this 
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effect, in some cases, it would be preferable to focus on the study of the changes of the 

signal, where there is more contrast in the neighbouring data points of each user, as 

opposed to using the signal itself.  

 

Figure 7.12. The proposed workflow for spatial analysis applied to the change in the sum of EDR 

amplitudes data collected in Sydney.  
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The results of the analysis of the change in the signal (sum of EDR amplitudes) are 

presented in Figure 7.12. It is visible that the clusters are more meaningful here. The 

figure also presents the results of the different ranking methods that were applied for 

the extracted clusters in Sydney. As shown in the figure, a large number of clusters were 

initially identified from the hotspot identification and the DBSCAN algorithm, but the 

ranking methods were able to highlight a few that are of higher significance. The 

clusters containing data from only one or two users are visualised with a smaller radius 

in the user based ranking map (Figure 7.12), to highlight the clusters with more users.  

Figure 7.13 shows the locations of the most significant clusters for each ranking 

method.  

 

Figure 7.13. The locations of the most important clusters in the studied area in Sydney.  

As the participants were affiliated with the local university, it was expected that their 

paths would converge at some points. Clusters A, D and C, are on quite busy spots in 

terms of pedestrian activity; cluster A is on the Goods Line, and very close to the exit of 

the tunnel leading to the Central Station of Sydney. It was expected that many 

participants would visit this spot as a part of their daily commuting. Cluster B is on 
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Broadway Street, and cluster C is on Ultimo Rd and Quay St, close to the library and the 

buildings of the local university. 

 

Figure 7.14. Photos depicting the contextual circumstances in the significant clusters. In Sydney. The 

photos are taken from Google Street View (Google Maps 2020), apart from photos A and 3 that were 

taken by the author. 
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The three clusters with the highest ranking in terms of betweenness centrality are 

located on Broadway Street (cluster 1), George Street (cluster 3) and Harris Street 

(cluster 2). These streets are indeed among the busiest in terms of pedestrian activity in 

the studied area. Figure 7.14 shows the contextual circumstances for all the locations 

identified as significant. The clusters that were highlighted with this ranking method are 

not the same as the clusters identified as significant with the user based ranking; the 

highlighted clusters from the user-based ranking in Figure 7.12 have 6 to 11 users, while 

the significant clusters from the betweenness centrality-based ranking have 3 to 4 

users. These differences are expected, as the user-based ranking is a measure reflecting 

the responses of the studied population, while the betweenness centrality-based 

ranking reflects the potential future impact. 

Figure 7.15 shows the results of the extraction of contextual information for each 

cluster. In this case, the contextual analysis of each cluster is supported by quantitative 

data that assist the researchers in extracting patterns in the spatial behaviour of 

physiological responses. Until now, this analysis had to be conducted manually by 

finding photos for each cluster. The quantitative analysis was rare and involved 

comparing all hotspots with all non-hotspots, without extracting unique information for 

each cluster. This part of the analysis is thus one of the most valuable features enabled 

with the cluster separation with the DBSCAN algorithm, as it allows the abstraction of 

meaningful contextual information for each cluster and the comparison of this 

information between different clusters. 

The information presented in the figure shows that clusters A, C and D are similar in all 

the presented parameters (POI density, traffic, activity, changes in activity, changes in 

traffic, changes in density). The changes in activity, traffic and POI density are at a low 

level for all parameters; the traffic is at low to medium levels, and the POI density is at 

medium levels. This observation suggests that among the studied parameters, the 

possible contextual stressors at these three clusters were the POI density levels. Cluster 

D also has very high traffic levels, which is an additional potential stressor in that case. 

These characteristics can be confirmed from the photos shown in Figure 7.14. 
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Figure 7.15. Extraction of contextual parameters for each cluster.  

Clusters B, E and F, are characterised by lower POI density and traffic (apart from F 

which has slightly higher traffic). In these three clusters there are more profound 

changes in activity compared to the other three clusters (A, C and D). In clusters B and 

F, there are also significant changes in traffic, meaning that the participants’ routes 

contained some points with very different traffic levels before arriving at that cluster. 

Cluster B is also characterised by intense changes in activity and POI density. As shown 

in Figure 7.14, cluster B is located on a quiet street with a high presence of vegetation. 

This street is surrounded by places with high traffic, pedestrian activity and presence of 

cafes and retail, and these factors explain the significant changes in POI density that 
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were identified from the analysis of this cluster, as the users have to traverse the highly 

busy points before arriving at the quiet area in cluster B.  

Clusters A, C and D thus seem to be possible sources of overstimulation due to their 

high degree of mixed-use, as captured by POI density levels. In these cases, some 

possible interventions could include enhancing the green space, redesigning the urban 

space in a way that reduces the visual complexity and intensity of stimulation, or 

lowering the intensity of retail and commercial use in the area. Clusters B and E, on the 

other hand, contain lower levels of sources of stimulation but are characterised by 

more changes in activity and stimulation levels compared to the other three clusters. In 

these clusters, the physiological responses may be more related to changes in activity 

that occur either due to nearby urban factors such as traffic lights or personal factors 

and decisions. 

7.4. DISCUSSION 

The methods for spatial analysis of physiological responses which were analysed in this 

chapter compose component 2 of the designed methodology. As demonstrated with 

the two examples presented in this chapter, the proposed methods for cluster 

identification and spatial analysis helped extract meaningful knowledge from the 

provided data. The cluster separation and ranking methods were very assistive for 

filtering out redundant information; this was particularly important for the Sydney 

dataset, which contained a high volume of data that was sometimes only reflective of 

the activities of one or two users.  The contextual analysis based on each cluster's 

attributes was also able to integrate activity recognition in the cluster analysis. 

The ranking measures that were used for cluster importance analysis have a different 

interpretation when the study is conducted in a predefined route, as opposed to an 

unconstrained setting where the participants follow their daily routines in different 

parts of the city. In the predefined route setting, the user based ranking is, in this case, 

a good indicator of impact among the studied group, as there are no differences in the 

paths of the participants. The betweenness centrality based ranking was not of high 

importance there, as the study area was small, and it was easy to identify which areas 
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have higher pedestrian activity with some research of local sources. The calculation of a 

response intensity-based ranking could be added as a third measure here.  

In the second scenario of the free-living activities setting, the user based ranking tended 

to prioritise points where there is a convergence of users. In studies focused on people 

who belong to the same organisation, the clusters with most users are expected to be 

found around this environment. This effect should be taken into account in order to 

avoid any misinterpretation of the results. As for the betweenness centrality based 

ranking, this method is more meaningful in this scenario than the predefined route 

setup, as in the free-living activities scenario there is a high volume of data points and 

many emerging clusters. The betweenness centrality based ranking can help identify 

which clusters are positioned in a critical place in the urban fabric, and if combined with 

the other rankings, it can be a useful filter for selecting the most important clusters 

from all aspects. The combination of rankings is the most meaningful approach for 

identifying which places would be in the most urgent need for intervention. Finally, the 

response intensity-based ranking that was proposed before in the context of the 

predefined route study should not be trusted in the free-living activities scenario. In this 

case, the duration of activity and the ambient temperature may influence the 

responses, as shown in Chapter 6. Clusters with a less intense average response thus 

could be the result of an activity that does not involve the same exertion levels, or that 

was recorded during a less hot day. For this reason, the response intensity-based 

ranking was not implemented in this chapter, but its application is relatively 

straightforward and can be considered for studies where it makes sense. 

One advantage of this method is that it is closely connected to network analysis 

methods. This link creates future opportunities for using the derived information and 

embedding the cluster locations in the street network data to enrich network analysis. 

This integration could be conducted by finding the closest cluster for each network link 

or node and embedding in the network data the information of the cluster (such as the 

intensity of the physiological responses) as additional attributes of the corresponding 

link or node. This information can be then used in multiple ways; for instance, in 

studying if network centrality metrics are related to physiological responses, or 
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selecting the optimal route based on avoiding stress hotspots and minimising stress 

levels. Chapter 9, which focuses on pathfinding methods, provides an example of route 

optimisation, which includes integrating physiological responses into network analysis. 

Future experiments could involve the calibration of the proposed methods so that they 

can be used for the analysis of other physiological data, such as HR. Another point for 

further development is the inclusion of more urban features as attributes in the 

calculation of betweenness centrality. Other centrality measures could also be added or 

considered as alternatives. Another approach could be to include other forms of 

estimation of pedestrian activity, such as an analysis based on social media data (Beiró 

et al. 2016). The actual pedestrian activity data can also be used if it can be retrieved 

from providers such as Google or local authorities. These possible improvements can 

happen without affecting the other cluster analysis methods. 

Finally, it should be pointed out that the chosen values for several of the parameters 

that were considered for the calibration of the clustering and ranking methods are 

based on the characteristics of the studied data. For best results, some brief 

experiments for recalibration should be conducted before applying these methods in a 

different scenario. This study was able to show the different results that each range of 

parameters may create, and give some guidelines in terms of matters that need to be 

considered in future experimentations. Some other parameters or choices in terms of 

algorithms were held constant for the time being, and future experimentation should 

also cover these aspects. For instance, the identification of hotspots was based on the 

extraction of the Local Moran’s I values, but the Getis Ord Gi* method could also be 

used for this purpose. The choice of the number of minimum samples for the 

identification of a cluster in the DBSCAN algorithm should also be finetuned in studies 

which contain massive datasets and more users. Future experiments shall extend the 

current work and cover these aspects wherever possible. 

After concluding the presentation of methods related to component 2 of the proposed 

methodology for collection and analysis of physiological responses in the urban 

environment, the next chapter shall present work related to component 3.  
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8 
MACHINE LEARNING METHODS FOR PREDICTION OF PHYSIOLOGICAL 
RESPONSES IN THE URBAN ENVIRONMENT  

8 | MACHINE LEARNING METHODS FOR PREDICTION OF PHYSIOLOGICAL RESPONSES IN 

THE URBAN ENVIRONMENT 

8.1. INTRODUCTION 

The previous chapter presented work related to the spatial analysis of physiological 

responses, connected to component 2 of the proposed methodology for collection and 

analysis of physiological data. The methods presented in that chapter are most useful 

for analysing data collected from multiple users, although they can also be used to 

analyse data from an individual, after small modification.  

 

 Figure 8.1. The aim of the chapter and the connection with the conceptual methodology. 
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This chapter moves the focus to the user scale by exploring methods for predicting 

physiological responses during individual routes based on movement and contextual 

features. The contribution of this chapter to the proposed methodology is related to 

component 3 (Figure 8.1). The methods for prediction of physiological responses which 

will be presented here compose one strand of this component. The other strand, which 

is related to pathfinding methods, will be presented in the next chapter. 

As discussed in Chapter 1, most studies on physiological responses collected with 

wearable technologies in the urban space used the collected data to infer which urban 

or environmental features may affect physiological or affective responses. Chapter 6 

also adopted a similar approach; the goal there was to identify if there is any 

relationship between urban context, activity and physiological responses, following the 

conceptual framework presented in Chapter 3. As explained in the research 

methodology (Chapter 2), this information helps understand how the urban 

environment influences the human body. 

This chapter explores similar grounds but uses a different framing of the problem. The 

task at hand here is to identify if it is possible to obtain a satisfactory prediction of 

physiological responses, given a set of urban and contextual variables. The focus this 

time is on producing a model that everyday users can use to analyse how they interact 

with their environment, and estimate their physiological responses based on their 

activity data, intertwined with contextual information. The term prediction, in this 

context, does not refer to forecasting future physiological responses, but to estimating 

physiological responses from data obtained in routes conducted in the past. In a real-

world application, this type of analysis would allow a user to know how intense were 

the estimated physiological responses of a user during a walk outside, based on the 

different qualities of the urban environment and other features. 

The focus of this chapter will be on the prediction of the sum of the EDR amplitudes. 

This feature is used as an indicator of the intensity of physiological responses. It was 

also used in the inferential analysis in the previous chapter, and in the demonstration of 

the methods of component 1 using data from two users in Chapter 5. The term 

‘physiological responses’ in this chapter will be used referring to this feature.  
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Since EDA features are widely used indicators of stress levels, the knowledge of their 

intensity levels during different environments and activities is essential for 

understanding how different circumstances affect our bodies. This knowledge would be 

particularly useful for individuals who suffer from stress or anxiety-related disorders and 

would like to avoid circumstances which make their experience stressful. The 

percentage of the population that owns an EDA tracking wristband is though currently 

small. Thus, it would be of use if this gap could be covered by a model that would 

indicate the intensity of physiological responses without having any physiological data in 

its input features. The question is, therefore, if there exists an underlying structure 

between contextual characteristics, activity and physiological responses, and if it can be 

captured adequately by a predictive model.  

While it is evident that predictive modelling has a lot to offer from the perspective of 

predicting stress, emotions or physiological arousal based on the context, very few 

studies have incorporated predictive analysis of physiological responses in the outdoor 

environment. Most of these studies approached this as a classification problem towards 

predicting physiological arousal (Ojha et al. 2019; Yates et al. 2017), and emotions 

(Kanjo et al. 2018b; Flutura et al. 2019). Benita and Tunçer (2019) also framed it as a 

regression problem for the prediction of physiological measures. EDA was used in all 

these studies as an indicator of stress or emotional or physiological arousal. The 

contextual features which were most commonly used were noise, temperature and 

other environmental data, which were collected as time series data in parallel to 

movement and physiological data monitoring. Ojha et al. (2019), for instance, used 

environmental features as input for the prediction of physiological arousal and achieved 

high accuracy. Benita and Tunçer (2019) used urban and environmental features, and 

their results were promising with moderate predictive power. Air temperature 

appeared to be particularly important, highlighting the importance of shading and green 

space. Kanjo et al. (2018b) experimented with different modalities (physiological, 

environmental and location data) for the prediction of emotions. In their study, the 

combination of all modalities led to significantly better accuracy compared to using only 

one of the data categories. In Yates et al. (2017), the best results for the prediction of 

arousal were obtained by using physiological and movement data.  
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In this context, the paper explores different models for predicting physiological 

responses in the outdoor environment, using a multimodal dataset which combines 

movement and contextual data. The main focus is on machine learning (ML) models, as 

the few previous studies that incorporated predictive analysis indicated that ML 

approaches were the most suitable for handling the complexity of the task at hand.  

It is also important to note that the predictive analysis conducted in this chapter is not 

mutually exclusive with the inferential analysis conducted in Chapter 6. On the contrary, 

the previous inferential analysis and the current predictive analysis are seen as two 

pieces belonging to the same puzzle and complement each other, while being able to 

operate independently for different purposes. The goal of the inferential analysis 

presented in Chapter 6 was to understand the relationship between different features 

and physiological responses. The aim of the predictive analysis presented in this chapter 

is to predict physiological responses based on a combination of the input features, 

having as a goal the maximisation of the accuracy of the model. In the case of predictive 

analysis, there is more freedom in terms of experimentation with different 

combinations of variables without having to fix issues of multicollinearity. The 

relationship between the variables and the output is sometimes examined, but it is not 

the primary focus. Predictive modelling techniques often include 'black box' models that 

involve unexplainable functions. These models may increase the predictive ability, but 

they cannot be used for understanding the underlying process that drives the 

phenomenon. The inferential analysis of the previous chapter was, thus, more focused 

on the relationship between the variables, while the predictive analysis of this chapter 

aims at the construction of a model with satisfactory predictive power. 

The rest of the chapter is organised as follows: section 8.2 elaborates on the dataset 

characteristics, the methods used for feature preparation, the separation of the initial 

problem in a classification and regression task, and the ML models which were used. 

Since the focus was on constructing a model with a good predictive performance and 

not on inferential analysis, the study was not constrained by the use of interpretable 

models, but a feature importance analysis component was also added for the models 

that allowed it. Section 8.3 presents the results of the classification and the regression 
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tasks, comparing the performance of the different models and elaborating on the 

outcome of the feature importance analysis. Finally, section 8.4 discusses the overall 

findings and presents conclusions and future directions. The code related to the 

methods designed for this component can be found in GitHub8.  

8.2. METHODS 

8.2.1. DATASET 

The dataset which was used for the predictive analysis in this chapter was the combined 

dataset, containing all the available data from Sydney and Zürich, from 37 users in total. 

This dataset contains the data collected in Sydney during a predefined route and free-

living activities, and the data collected in Zürich from the team of Ojha et al. (2019), 

during a predefined route. The combined dataset thus includes data which correspond 

to the same route conducted multiple times, as well as different completely unrelated 

routes.  

Some sessions which mostly contained data collected while the participants were sitting 

while using public transport were omitted. After removing these sessions and 

combining the data from the free-living activities and the predefined walking routes, 

and resampling at 1 second, the combined dataset had 490711 samples. From those 

samples, 34658 data points belonged to data collected in Zürich; 41971 belonged to 

data collected in Sydney during the predefined route experiment, and the rest were 

collected during free-living activities in Sydney. The majority of the data points thus 

come from the free-living activities dataset in Sydney. 

8.2.2. DATA ANALYSIS  

The predictive task that was the objective of this study was approached in two different 

ways: as a classification and a regression problem. In the regression problem, the aim 

was to predict the sum of EDR amplitudes. As explained in the previous chapters, this 

 
8 https://github.com/ddritsa/PhD-Thesis-repository/tree/main/3rd%20component/Prediction 
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feature provides a combined description of the frequency and intensity of EDRs, as it is 

based on the summation of all EDR amplitudes in 1-minute time windows. 

In the classification problem, the task was to predict if the sum of EDR amplitudes 

would be above zero or not in each data segment. If the sum of EDR amplitudes was 

above zero, this meant that there was at least one EDR in this segment, thus suggesting 

the presence of a physiological response.  

The dataset contained physiological, movement and contextual data. The input and 

target variables were extracted using the data fusion model described in Chapter 5. The 

methods described in this chapter, therefore, presuppose the application of the 

methods described in Chapter 5 (excluding the final step of the classification of 

physiological responses, presented in section 5.2.5.3). The data fusion was conducted 

separately for the data collected in Sydney and Zürich, and then the two datasets were 

combined.  

For the regression task, the target feature (‘sum of EDR amplitudes’) was log-

transformed and normalised. Before the log transformation, a constant value (1) was 

added to the data to avoid having zero values. The regression task was split into two 

approaches that were tested sequentially. The first approach that was followed did not 

include any biometric data in the input features. The second approach involved the 

prediction of the sum of EDR amplitudes feature as the first step, using a time window 

size of 240 seconds, and then the utilisation of the predicted sum of EDR amplitudes of 

the previous three minutes as an additional input feature for the final prediction.  

For the binary classification task, two classes were created; one class (‘class 0’) for the 

segments where the mean value of the target feature (‘sum of EDR amplitudes’) was at 

zero levels, and one (‘class 1’) for the segments where the mean value of the target 

feature was greater than zero. This classification was used to identify any segment 

where there was an EDR amplitude. Class 0, therefore, indicated the absence of a 

physiological response, and Class 1 indicated its presence. The two classes were 

relatively balanced (48-52% presence in each class) in all the classification experiments 

presented here. 
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A non-overlapping window was used for the segmentation of the time series. The 

window size ranged from 10 to 240 seconds in the experiments conducted for the 

classification task and 60 to 360 seconds for the regression task. The lower and upper 

bounds of the time window size were chosen experimentally for each task, after 

determining that there would be no improvement if these limits changed significantly.  

Some additional features were also computed during this segmentation. This included 

some other features describing the distribution of the ‘POI density’ variable (mean POI 

density, STD of POI density) and some lagged features (previous activity intensity, 

previous POI density, previous traffic light). The new features related to POI density 

were constructed by extracting descriptive statistics for POI density (mean, minimum, 

STD) for each time window. Then they were log-transformed. The lagged features were 

constructed by extracting the values of each feature from the previous time window. 

For instance, the ‘previous activity intensity’ feature for a time window contained the 

values of the ‘activity intensity’ feature of the previous window. 

Two features related to change in POI density and traffic (POI density change, traffic 

change) were also added. These features were calculated by splitting the data into 1-

minute segments and finding the absolute difference between the feature in each 

segment and its previous one. Binary coding (0,1) was used to indicate the presence of 

a change. If the change was significant (exceeding one STD based on the values 

presented in Figure 6.2a and 6.2b), the feature was given the value of 1. The same 

procedure was followed in Chapter 5 for the calculation of significant changes in 

physical and psychological stressors (section 5.2.5.2). 

Other transformations which were applied specifically for the predictive models 

included raising the ‘duration of activity’ feature (which expressed the minutes since 

the activity started; see section 5.2.3.2.3 in Chapter 5) to the power of four, and then 

applying a log transformation. Normalisation was also applied to all the features. These 

transformations were applied to the data only for the predictive modelling methods in 

this chapter. They were selected after multiple experiments for finetuning each 

parameter and were added to achieve better predictive performance. Nineteen 

features were selected as input variables. These features can be organised in two 
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modalities (movement and contextual data). Each modality contained the following 

features: 

- Movement data: Duration of activity, activity intensity, change in activity, 

change in activity state, speed, steady-state, derivative of steady-state, 

derivative of activity intensity, previous activity intensity, previous speed. 

- Contextual data:  mean POI density, traffic, traffic change, POI density 

change, previous POI density, STD of POI density, traffic light, previous traffic 

light, ambient temperature. 

 

Figure 8.2. Description of the workflow adopted for the prediction of the target variable 
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The characteristics of the features are reported in Figure 6.2a and 6.2b in Chapter 6. 

The characteristics of the lagged features are not reported there, but they are the same 

as in the features from which they originated. 

The overall workflow is presented in Figure 8.2. 

Figure 8.3 provides further clarification of the two scenarios that were tested in the 

regression task and the underlying assumptions regarding the context of the prediction.  

 

Figure 8.3. Presentation of the two approaches that were followed in the regression task. 



 

270 
   

The idea behind the second approach in the regression task was based on some initial 

experiments, where the problem was framed as a one-step-ahead forecast scenario. 

These experiments showed that the inclusion of a time-lagged feature (describing the 

sum of EDR amplitudes value in the previous two or three minutes before the moment 

of the actual prediction) resulted in a tremendous improvement in the prediction, with 

very small mean squared error values. In real-world circumstances, this kind of 

prediction would be a part of a different scenario, where the user has an instrument 

that collects EDA data, and while they are walking, this algorithm would take the 

current EDA data and use that as input for the prediction of the target feature in the 

next minute. This setup would thus be a prediction on-route, like a scenario where a 

user wants to predict their physiological responses in a few minutes from now, based 

on the current physiological responses. An example is given in Figure 8.4.   

 

 

Figure 8.4. An alternative problem framing that can be considered in the future. 

In this study though, the aim was to predict the target feature (sum of EDR amplitudes) 

without having any EDA data, apart from those collected during routes conducted in the 

past, from other users. The scenario presented in Figure 8.4 was thus not explored 

further. The framing of the problem which was adopted (presented in Figure 8.3) was 

chosen since the wristbands that track EDA are not as widely used as those that track 

HR, and an algorithm that would make an on-the-spot prediction of future values based 
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on current EDA features would be less applicable than an algorithm without any EDA 

features. The other scenario can be certainly considered in the future when the 

wearable EDA trackers will become more popular and affordable. 

8.2.3. MACHINE LEARNING METHODS 

Six supervised ML algorithms were tested for each of the predictive modelling tasks; 

support vector machine (SVM), k-nearest neighbors (k-NN), random forests (RF), 

convolutional neural network (CNN) and long-short term memory network (LSTM). The 

models were introduced in Chapter 4 (section 4.2.2.2). RF and XGBoost are ensemble 

methods, while the CNN and LSTM models are classes of deep neural networks.  

The rest of this section provides a brief description of the architecture and 

hyperparameters of the models. For the SVM, RF, k-NN and XGBoost models, the 

hyperparameters were tuned with randomised grid search. 

In the SVM models for regression and classification, the radial basis function (RBF) was 

used in terms of the kernel parameter. In the SVM regressor, the gamma was also set to 

0.0005. In the k-NN regressor and the k-NN classifier models, the number of neighbours 

was set to 10. In the RF regressor, the number of trees was set to 300, the maximum 

depth of the tree was 4, and the minimum samples for the leaf nodes were 5. The RF 

classifier used the same setup. In the XGBoost regressor, the number of trees was 1000, 

the maximum depth of the tree was 6, the L1 regularisation parameter was set to 0.01, 

the gamma parameter was set to 3, and the learning rate was 0.01. The 

hyperparameters for the XGBoost classifier were as follows: the number of trees was 

set to 100, the maximum depth of the tree was set to 6, the L1 regularisation parameter 

was set to 0.01, the gamma parameter was set to 10, and the learning rate was 0.1. 

For the two deep learning models (CNN and LSTM), the initial experiments involved 

models of different depth and width, until the selection of the best-performing ones. 

The selected structure of the CNN model contains two convolutional layers, each 

followed by a max-pooling layer of size (2,) and a dropout layer (0.2). The first 

convolutional layer has 256 filters, and the second has 64. A dense layer of 64 neurons 

follows, then another dropout layer (0.5) and an output layer of one neuron. This setup 
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(shown in Figure 8.5) was followed for both tasks, with the only modification being the 

addition of another neuron in the output layer for the classification task.  

 

Figure 8.5. CNN architecture  

The LSTM model selected for comparison with the other models consists of an LSTM 

layer of 256 units, followed by a dense layer with 64 neurons, and an output layer with 

one neuron (or two neurons in the classification task). The state of the network was 

manually reset after each training epoch. The online training method was used, with 

each batch containing data from a single time window. The model architecture is 

presented in Figure 8.6. 

 

Figure 8.6. LSTM architecture 

The scikit-learn Python library was used for the RF, SVM and XGBoost models, and the 

Keras Python library was used for the LSTM and CNN models, with Tensorflow as 

backend. The ADAM algorithm was used for optimisation. The mean squared error 
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(MSE) loss function and the binary cross-entropy function were used as the loss 

function in the regression and the classification task, respectively. 

The predictive performance of the models was assessed with 4-fold and 5-fold cross-

validation in the classification and regression tasks, respectively. The 80:20 ratio was 

used for the creation of the training and testing dataset. Each time, data from 29 to 31 

different participants were used to develop a predictive model, and new data from 6 to 

8 users were used to test the model's performance. This variation in the number of 

users in each fold was adopted since some users generated more data than others, and 

the 80:20 ratio had to be kept. Finally, the metrics used for performance assessment of 

the classification models were the accuracy, precision, recall and F1 score. 

8.2.4. FEATURE IMPORTANCE IDENTIFICATION  

The selection of significant features for the best-performing algorithms was conducted 

with the feature importance module of the scikit-learn API. The algorithm was applied 

to the most successful algorithm for each task if the algorithm allowed it, and the 

process was repeated for different window sizes, from 60 seconds to 360 seconds. A 

rank was given to each feature based on its score in that window size, reflecting its 

importance.  The rank was based on the number of standard deviations above the mean 

value of the extracted array of feature importance values; the rank 0.5 was given to 

features that had a score that was higher than 0.5 STD above the mean, and so on, with 

the maximum rank being 5 (equal to 5 STD above the mean).  

8.3. RESULTS 

8.3.1. CLASSIFICATION  

8.3.1.1. MODEL COMPARISON 

As Figures 8.7 and 8.8 show, the model which had the best performance was the RF 

classifier, achieving 72.5% to 73% accuracy for all the studied window sizes. The 

XGBoost classifier achieved the second-best performance. The other models had 

accuracy between 60% and 70% for all window sizes, with the CNN model achieving 63-

67% accuracy and the LSTM and k-NN models achieving between 60-63% accuracy.  
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Figure 8.7. Presentation of different metrics for all models at three window sizes 

 

Figure 8.8. Comparison of accuracy levels for all models 

Furthermore, as shown in Figures 8.7 and 8.9, the RF and the XGBoost classifiers had 

the most consistent performance in the different metrics, having similar scores for the 

recall values at all time window sizes, while the other models showed considerable 

differences in the recall values of the two classes. The LSTM model, for instance, had a 
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particularly bad performance in the recall values when the window size was 90 seconds, 

with the recall score being 0.88 for Class 0 and 0.3 for Class 1 (Figure 8.7).  

 

Figure 8.9. Performance metrics at different time windows for all models 

After identifying the RF classifier as the most successful for the tested time window 

sizes, more experiments were conducted with this model, using the same setup in 

terms of hyperparameters, and a higher range of time window sizes. 4-fold cross-

validation was used for testing the performance of the algorithm in different user 

groups. 

 

Figure 8.10. Accuracy score of the RF classifier for different time windows 

As Figure 8.10 shows, the performance was similar for the majority of the tested time 

window sizes. User groups 3 and 4 had slightly better scores than user groups 1 and 2, 

but these differences were expected as there was significant diversity in the parameters 

of the activities that the user groups were performing. The average accuracy score from 

all user groups for each window size ranged from 0.71 (at a time window size of 150 

seconds) to 0.7325 (at a time window size of 60 seconds).  
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Figure 8.11. Results of feature ranking according to their importance in different time windows 

8.3.1.2. FEATURE IMPORTANCE ANALYSIS FOR THE CLASSIFICATION TASK 

The final step in the classification task was the identification of features which had the 

highest importance in terms of predictive value. The RF classifier was used again, with 

the same hyperparameters as before. One test was conducted for each window size, 

and the features were ranked according to their score. The average and sum values of 

the scores for all window sizes for each feature reflect its importance among all window 

sizes. As shown in Figures 8.11 and 8.12, the most important features were the 

following: current activity intensity, duration of activity, previous activity intensity (the 

array of activity intensity values of the previous time window), previous speed (the array 

of speed values of the previous time window), temperature and speed. Figure 8.13 

shows the feature importance ranking separate for each time window size, visualising 

the data presented in Figure 8.11. As shown in the figure, current activity intensity and 

the duration of activity were significant for all window sizes.  

The lagged features (previous activity intensity and previous speed) were more 

significant in time windows of size 180 and 360 seconds, and speed was more important 

in time windows of a size larger than 240 seconds. Some contextual features (traffic 
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change, mean POI density, traffic light, traffic) were also crucial in time windows larger 

than 180 seconds.  

 

Figure 8.12. The sum of importance scores for each feature, based on the scores presented in Figure 

8.11. 

 

Figure 8.13. Detailed importance score for each feature. 

8.3.2. REGRESSION 

8.3.2.1. MODEL COMPARISON 

This section elaborates on the results of the experiments related to the regression task. 

As shown in Figures 8.14 and 8.15, the tested algorithms had similar performance in 

terms of the obtained mean squared error (MSE) values. These results reflect the 
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average performance from all five user groups together, obtained from the 5-fold cross-

validation. The only exceptions were the performance of the SVM model at 180s 

window size, and of the CNN model at 360s window size; these two scores were much 

higher than the others (indicating worse performance), as shown in Figure 8.15. 

 

Figure 8.14. Presentation of the MSE scores for each model. 

 

Figure 8.15. Presentation of the MSE scores for each model, at different window sizes. 

The XGBoost model had the best performance, with average mean squared error equal 

to 0.031 and mean absolute error (MAE) equal to 0.12. The XGBoost model was 

followed by the k-NN model (MSE=0.034, MAE=0.143), the RF model (MSE =0.039, 

MAE=0.149), the SVM model (MSE =0.039, MAE=0.141) and the CNN model (MSE = 

0.042, MAE=0.151).  
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Figure 8.16. The actual and predicted values from the different models that were tested.  

The ability of the tested models to predict the variations in physiological responses was 

also evaluated by observing the visual relationship between the actual and the 

predicted data. Figure 8.16 shows an example of this relationship using time windows of 

120 seconds for one user group (containing data from 9 users). The graphs in Figure 

8.16 were obtained during cross-validation, and show the performance of the models 

on unseen data, from the test dataset. Each data point in the figure presents the mean 

sum of EDR amplitudes data obtained from a single time window for one user. As shown 

in the figure, the models were able to capture the main underlying trends in the 

physiological responses and identify moments where the signals were elevated.  

 

Figure 8.17. The MSE scores for each user group, using the XGBoost model, at different window sizes.  

Based on these results, the XGBoost model was selected for further experimentation. 

The next phase of experiments involved testing the second approach that was 

introduced in section 8.2.2. The second approach had as its first step the construction 

of a model (‘Model A’) for predicting the target variable (sum of EDR amplitudes) using 
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time windows of 240 seconds. Model A was then used during the preparation of the 

input features, for predicting the target value of the previous 240 seconds, and then 

using it as a lagged value and adding it to the input features. A new XGBoost model 

(Model B) was then constructed for the final prediction; the new model had, therefore, 

20 features, as it included the new lagged value as predicted from Model A, and it was 

constructed using the same range of window sizes as before. The results of this 

approach are presented in Figure 8.17, next to the results of the model without the 

predicted lag feature.  

As shown in the figure, the results of the different user groups in the 5-fold validation 

for the XGBoost algorithm vary. Groups 1,3, and 5 have a lower error in comparison to 

the other two groups. These slight differences were expected, and this method of cross-

validation was used to identify such variations and test the behaviour of the algorithm 

in different groups that may have different contextual circumstances and varying 

intensities of physiological responses. 

The second approach, with the introduction of the predicted physiological responses of 

the previous minute as a lagged variable, yielded better results for the majority of the 

predictions and was able to lower the average MSE of the two user groups that had 

slightly higher errors. More specifically, the second approach resulted in average 0.027 

MSE compared to 0.031 MSE error without the lag feature. At the same time, the 

exploration of the second approach was experimental and there are concerns regarding 

the possibility of increased error in the final prediction, when there is significant error in 

the predicted lag feature. It could be considered as an option in studies on predictive 

modelling for physiological responses, but more experimentation is needed. 

Figure 8.18 shows the performance of the selected XGBoost model against the actual 

(log-transformed and normalised) sum of EDR amplitudes values, confirming the 

model’s ability to capture the significant trends.  
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Figure 8.18. Comparison of the actual and predicted values for the selected XGBoost model. 

8.3.2.2. FEATURE IMPORTANCE ANALYSIS FOR THE REGRESSION TASK 

Finally, the process described in section 8.2.4 for feature importance identification was 

followed to understand which movement-related and contextual variables were the 

most crucial components in the process of generation of physiological responses, 

according to the selected XGBoost model. 

The results of feature importance identification for the regression task are shown in 

Figure 8.19 and visualised in Figure 8.20. Figure 8.21 shows the sum of ranks for each 

feature, which indicates how important is this feature for all window sizes. 

 

Figure 8.19. Feature importance analysis for the regression task, for each time window  
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Figure 8.20. Visualisation of feature importance ranking for the regression task  

 

Figure 8.21. Visualisation of feature importance ranking for the regression task: The sum of ranks for each 

feature, based on Figure 8.19. 

As shown in Figure 8.21, the most significant features according to this analysis were 

mostly parameters related to the activity (current activity intensity, duration of activity, 

previous activity intensity, previous speed and change in activity intensity). The ambient 

temperature was also a feature of high importance, and POI density (specifically the 

previous POI density, the lag feature describing POI density values in the previous time 

window) was the most critical feature in terms of contextual parameters.  
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It is also interesting to look at the influence of different time window sizes on the 

identification of significant features. The parameters current activity intensity, duration 

of activity and previous activity intensity were identified as the most important for all 

the tested time window sizes, and temperature, as well as speed, were among the most 

important for most of the tested time window sizes. The change in activity intensity and 

the previous POI density were most important in time window sizes between 180 and 

360 seconds. Other contextual parameters describing stimulation intensity levels or 

changes in stimulation (i.e., STD of POI density, traffic change, mean POI density, POI 

density change, traffic light, previous traffic light) were of lesser importance. They had 

only a small influence in time window sizes between 180 and 360 seconds. The same 

applied to some other features related to movement (speed, steady-state, derivative of 

activity intensity, change of activity state).  

8.4. DISCUSSION 

The methods for prediction of physiological responses that were presented in this 

chapter form one strand of component 3 of the designed methodology. The combined 

findings from the regression and the classification task show that the best performing 

models in both tasks were able to identify an underlying structure in the way that the 

physiological responses are generated during interactions with the urban environment. 

One of the most important contributions of this study is thus the finding that the 

generation of physiological responses is predictable to a certain extent, given a set of 

primarily movement-related, and secondarily urban contextual features.  

The setup of the study is also unique concerning the combination of data from two 

cities and the incorporation of a very diverse dataset. The majority of the data came 

from free-living activities that were not related to each other. The data used in previous 

studies were from activities that were conducted in the same city and on the same 

route. The predictive models created with this study are an important step towards 

making more generalisable models in terms of applicability in different contexts and 

during outdoor activities of different qualities. 
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The majority of the tested models in the regression task, and particularly the selected 

XGBoost model, were able to provide a prediction of the physiological responses which 

followed the main trends. While the classification model also identifies portions where 

the responses are not zero, the regression model also estimates the magnitude of the 

response, with a level of error that is acceptable in the context of this study. The model 

thus satisfies its primary purpose. There is certainly room for improvement, but at the 

same time, it would be almost impossible for a model to be able to predict the 

physiological responses at any circumstances without any error. There are always 

random events that cannot be captured easily or expected beforehand. The addition of 

a component for extraction of stressors from live camera feed could be a solution that 

would provide more sophisticated analysis. However, in that scenario, the privacy issues 

would prohibit a large-scale implementation of such a monitoring system. The setup 

used in this study is preferable from this perspective, as it forms a minimal and 

unobtrusive sensing system.  

The results of the feature importance analysis for both tasks are also meaningful in the 

context of understanding the link between urban and movement parameters and 

physiological responses. The main focus of this chapter was on investigating if the 

physiological responses can be predicted from the given set of features, and not on the 

detailed contribution of each feature. However, the implemented algorithms for feature 

importance analysis expanded our previous knowledge also on this aspect. The 

identification of duration of activity, speed and temperature as significant features, is in 

line with the results of the linear mixed models presented in Chapter 6. The activity 

intensity calculated from the accelerometer data, as well as the activity intensity of the 

previous time window, were also among the most important features for both the 

classification and regression tasks. These features had high predictive power for all the 

tested window sizes.  

The contextual features related to POI density, traffic and traffic lights, played a 

secondary role in comparison to the movement-related features, but they were still 

able to add value to the selected regression model. This finding suggests that the 

collection of this information, combined with the movement data, is valuable in the 
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context of predicting the intensity of physiological responses in outdoor routes. Their 

predictive power was higher in window sizes between 240 and 260 seconds, suggesting 

that these features might be more related to slower rather than rapid changes in 

physiological responses.  

Additionally, the features which were used as input here can be easily collected with 

devices that are already widely used. Speed and accelerometer data can be easily 

tracked with smartphone sensors, and the other features are based on OSM data which 

are freely available for any part of the world. Other previous studies used 

environmental parameters tracked with special sensing equipment, or physiological 

parameters from expensive wristbands. This distinction is important for the 

implementation of a predictive model in a real-world scenario; models which use data 

that are readily available from sensors and devices that are widely used will have 

broader applicability as more individuals will be able to use them.  

While this study was able to create a model that had a good fit on the different user 

groups for both the regression and the classification tasks, more experiments need to 

be conducted in more diverse contextual circumstances. In the future, the final models 

could be possibly implemented in activity tracking applications that already collect and 

analyse movement data, and offer an estimation of physiological responses in the 

analysis of data from past routes. For the time being, the models presented here are 

more applicable for contexts similar to Zürich and Sydney, and only after repeated 

testing and improvement should any generated predictive models be deployed. The 

next steps should involve the inclusion of data from more users and places with much 

lower or higher temperatures than the tested ones. The models which were selected as 

the best performing in this chapter may also be outperformed by the deep learning 

models, if the described experiments are repeated using a much larger dataset. Further 

experiments shall, therefore, be conducted if a larger dataset becomes available. 

After elaborating on methods for predicting physiological responses in this chapter, the 

next chapter shall conclude the presentation of the designed methodology by proposing 

methods for finding the best route for minimising exposure to stressors. 
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9 
LINKING PHYSIOLOGICAL RESPONSES IN THE URBAN SPACE TO 
PATHFINDING: ALGORITHMIC METHODS FOR IDENTIFYING THE LEAST 
STRESSFUL ROUTE 

9 | LINKING PHYSIOLOGICAL RESPONSES IN THE URBAN SPACE TO PATHFINDING: 

ALGORITHMIC METHODS FOR IDENTIFYING THE LEAST STRESSFUL ROUTE  

9.1. INTRODUCTION  

The previous chapters addressed multiple issues related to physiological responses in 

the urban space, at multiple scales. Chapter 6 examined the links between urban 

features, activity and physiological responses; Chapter 7 demonstrated methods for 

component 2 of the proposed methodology, related to the spatial analysis of 

physiological responses at a city scale. Chapter 8 proposed models for component 3 of 

the methodology, related to the prediction of physiological responses based on 

contextual and movement-based attributes. In the last chapter, there was a shift from a 

city-oriented approach to a user-based one, as the predictive models which were 

described in that chapter were primarily applicable for individuals who can use them to 

understand the intensity of physiological responses during their routes. 

This chapter operates in similar lines and follows a user-oriented approach; this time 

focused on pathfinding. The methods presented in this chapter compose the second 

strand of component 3 in the proposed methodology (Figure 9.1).  
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 Figure 9.1. Flowchart outlining the aim of the chapter and the connection with the conceptual 

methodology. 

Algorithmically assisted pathfinding is usually approached as a route optimisation 

problem. The objective is to find the ‘shortest path’, which is the optimal path according 

to one or more criteria. The main criterion usually is the identification of the shortest 

route in terms of trip time. Some studies have proposed the ‘simplest’ path, which 

minimises the complexity of instructions instead of the route distance (Duckham and 

Kulik 2003). Other approaches involve the computation of the number of turns, scenic 

features and interactions between bicycle and car (Hochmair & Fu 2009), or the 

cognitive complexity of instructions, the slope angle and the degree of familiarity with 

the area (Nourian et al. 2015). Very few studies have incorporated environmental 

parameters connected to urban health as criteria, though there are exceptions such as 

the study of Su et al. (2010) who have included the minimisation of exposure to air 

pollution. There have also been lately a few studies that address route optimisation 

from a health-oriented perspective; for instance, Sharker et al. (2012) have presented a 

route selection model which identifies the ‘health-optimal route’. The model 

incporporates environmental and urban variables, such as walkability, segment 

complexity and street safety in terms of crime, as well as individual variables (BMI, 

calorie target, walking speed and time constraint).  
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These studies show that significant steps were taken in the past few years towards the 

construction of pathfinding models that can enrich pedestrians' experience in many 

aspects. However, there is still no link with the parallel advances in physiological 

response mapping in the urban environment. This gap was first presented in the 

literature review presented in Chapter 1. The physiological responses act as an indicator 

of how the body perceives the environment and reacts to different stressors. Since 

physiological responses are an indicator of physical or psychological stress, the 

minimisation of the intensity of responses could be used as the main objective in a 

pathfinding algorithm for the identification of the least stressful route. This approach 

towards pathfinding would add new knowledge in existing approaches to route 

selection, which currently ignore affective criteria. Some studies propose the 

incorporation of criteria that are related to stress in the urban environment, though 

their link to stress is not explicitly mentioned. For instance, Nourian et al. (2015) 

propose the inclusion of slope as a criterion related to comfort. Su et al. (2010) include 

the minimisation of exposure to air pollution as a criterion, along with increasing 

proximity to green space. Russig and Bruns (2017) propose a model for minimisation of 

heat stress. The pedestrian comfort model of Dang et al. (2013) also takes into account 

heat stress and pedestrian discomfort due to congestion. The interactive pathfinding 

system of Novack et al. (2018) allows pedestrians to select their preferences among a 

few criteria that include greenness, presence of human activity, and noise. All these 

criteria have links to physiological responses according to the literature presented in 

Chapter 3. A few studies also have incorporated a personalised and experience-based 

approach; Huang et al. (2014), for instance, addressed the need to incorporate people’s 

affective responses in route planning services. Their proposed method uses subjective 

self-reported data, employing a mobile application which gathers crowdsourced 

geotagged data on people’s perceived level of comfort in relation to urban space. 

Jonietz (2016) has also pointed out the need to consider the varying physical and 

cognitive abilities that affect pedestrian movement. Their study proposed a method for 

assessing the capability of the user from prior trajectory data. Up to now, these studies 

have not been taking into account physiological data. This chapter thus aims to cover 
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this gap by linking physiological response mapping to algorithmic methods for 

pathfinding.  

In this context, this chapter aims to demonstrate a method for pathfinding from a 

physiological response-based approach, for the identification of the least stressful 

route. The main objective is the minimisation of exposure to stressors. The method 

builds on the literature presented in Chapter 3 and the knowledge inferred in Chapter 6 

and 8, regarding the links between urban features, activity and physiological responses. 

Multiple scenarios are tested, regarding the importance of urban features, the inclusion 

of time as an influencing factor and the incorporation of existing hotspots of 

physiological responses. The scope of this chapter is limited to the demonstration of 

these scenarios in artificial examples situated in Sydney. The analysis of the benefits and 

drawbacks of each scenario includes a quantitative comparison of exposure to stressors 

in each case. The observation of the contextual qualities is also included in each 

example. The rest of the chapter is organised as follows: section 9.2 elaborates on the 

adopted method for pathfinding, provides reasoning for the selection of relevant 

features in the context of stress mitigation, and describes the process of incorporating 

the selected features in the algorithm. Section 9.3 demonstrates how these methods 

would work in the context of Sydney and examines multiple routes generated between 

random pairs of points in Sydney. Section 9.4 elaborates on the results and discusses 

the limitations and future considerations. The code related to the methods designed for 

this component can be found in GitHub9. 

9.2. METHODS 

9.2.1. TYPICAL APPROACHES TO PATHFINDING IN THE URBAN SPACE  

The route optimisation problem is typically approached in relevant literature by 

conducting network analysis and finding the shortest path in a graph G = (V, E) with 

weighted edges. The streets and junctions of the studied urban network are again 

transformed to nodes (V) and edges (E) of a graph (as in the calculation of betweenness 

 
9 https://github.com/ddritsa/PhD-Thesis-
repository/tree/main/3rd%20component/Route%20Optimisation 
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centrality in Chapter 7), and each of the graph edges has a weight wi. The edge weights 

are any relevant criteria in the context of walking routes, such as the duration of the 

route, the number of turns, the aesthetic attributes, or the path straightness. The 

weights act as a penalty or a cost; for instance, if the objective is to find a route that 

minimises exposure to traffic, the highest cost (weight value) is assigned to edges that 

are proximal to high traffic levels, and edges with low traffic levels get a weight value 

close to 0. The final edge weight is constructed by accumulating the values of the 

different features. The values may also be modified with a multiplier according to their 

relative importance or the preferences of the individual that selects the route.  

The objective is, then, to find a path between the starting and the ending node, which 

has the minimum accumulated weight of edges.  

 

Figure 9.2. The procedure typically followed for solving pathfinding problems in the urban space.  
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This procedure (illustrated in Figure 9.2) is the backbone of algorithmic approaches for 

pathfinding problems in the urban space (e.g., Novack et al. 2018; Russig & Bruns 2017). 

The contextual parameters presented in Figure 9.2 (traffic, POI density, traffic lights) are 

related to the context of this study but can be replaced with any other attributes. 

9.2.2. INCORPORATING URBAN AND ACTIVITY-RELATED FEATURES AS 

ATTRIBUTES  

As shown in the previous chapters, the most influential features (regarding their 

relation to physiological responses) in the two studied cities were the duration of the 

activity and the activity intensity (or speed), as well as the change in activity intensity 

and state. The ambient temperature was of high importance as well. POI density and 

traffic, acting as indicators of stimulus intensity and complexity, were of lesser 

importance, but they still influenced physiological responses sometimes.  

The experiments presented in the previous chapters were focused on the EDA signal 

and did not involve an examination of HR. However, at least some of these parameters 

(traffic, activity intensity, and change in activity intensity) also have well-documented 

effects on the HR signal, based on the literature presented in Chapter 3.  

From those features, the ones that can be most explicitly associated with the properties 

of the urban fabric, and related to existing features from the spatial database, are the 

following: duration of activity, POI density and traffic. The duration of activity is related 

to the length of the path. It is also determined by the purpose of the route, but this is a 

characteristic defined by the individual and cannot be modelled in relation to the urban 

fabric. The length of the paths and the other two features (POI density and traffic) are 

already contained in the spatial database that was constructed in Chapter 5.  

As for the rest of the features, the urban environment elements that affect movement 

and are primarily associated with an undesired change in activity intensity are traffic 

lights. This feature is also included in the spatial database.  

Figure 9.3 describes the process of feature selection and groups the attributes in the 

category of physical and psychological stressors according to the literature presented in 

Chapter 3.  
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Figure 9.3. The selection of relevant attributes for the pathfinding algorithm, and their grouping in two 

categories.  

It should be mentioned here that physical activity is a stressor which can be beneficial 

for the organism in the long term; from this perspective, the inclusion of features could 

have focused only on the psychological stressors. However, the ‘route length’ attribute, 

(related to the duration of activity) could not be removed, since the length of the trip is 

one of the most significant parameters in general route optimisation models, as 

discussed in the introduction. The parameter related to the change in activity intensity 

(the traffic lights) is also related to psychological stressors. It was, therefore, decided to 

keep both parameters related to physical stressors. However, the algorithmic approach, 

which is will be presented in section 9.2.4. incorporates multipliers which define the 

relative importance of each parameter, and allows removing or minimising the 

influence of the parameters related to physical stressors, if there is interest in focusing 

only on the psychological stressors.  
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9.2.3. POSSIBLE APPROACHES TO THE PATHFINDING PROBLEM  

The incorporation of physiological responses in pathfinding is a concept that can be 

approached in many ways. The different approaches can be divided into two groups, 

based on how the attributes are calculated in the network representing the urban 

fabric; in the first group of approaches, there is no incorporation of actual physiological 

data, and the model can be based on existing theoretical knowledge. The second group, 

on the other hand, involves the collection and incorporation of physiological responses 

as additional information. 

Figure 9.4 illustrates some scenarios from both groups. Scenario A belongs to the first 

group, scenarios B and C belong to the second group, while scenario D can be used in 

combination with all the other scenarios.  

More specifically, scenario A is based on assessing the presence of urban features that 

may affect physiological responses and incorporating the results in pathfinding 

algorithms.  

Scenario B can be imagined as a future setup, where there are already multiple users of 

EDA tracking equipment in a city. The algorithmic approach in this scenario could be 

based solely on avoiding stress hotspots derived from the data of other users. 

Alternatively, the stress hotspots could be included as an additional attribute on top of 

the existing urban features (extending Scenario A).  

Scenario C operates on similar lines and involves a user who has EDA tracking 

equipment. In this case, it could be possible to add a layer of personalisation by 

incorporating existing individual stress hotspots. These hotspots would indicate how the 

body of this specific user responds to a route, apart from general trends.  

Finally, scenario D is a modification of scenario A, with the difference that it 

incorporates a higher penalty for attributes that act as stressors if they are placed 

towards the end of the route, since the duration of activity may act synergistically with 

the other stressors and create a more intense combined effect there. 
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Figure 9.4. The different scenarios for pathfinding for the identification of the least stressful route 

All these approaches should be considered, as they have different strengths and 

applicability. Scenario A can be thought of as the generalised approach, which relies on 

theory and does not require any EDA tracking equipment; Scenario D is one possible 

extension of scenario A, and scenarios B and C add new evidence-based information, 

which is more relevant to specific contexts or people.  

The next section will start from scenario A and then explain how this approach can be 

extended to scenario D, by adding a time-based transformation of the features, and 
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then modified to create scenario B, by adding existing stress hotspots from already 

collected physiological data as attributes.  

The algorithmic approach to scenario C is the same as that followed in scenario B. The 

only difference is that the personal stress hotspots would be included as attributes with 

higher weights in the algorithm in that case. This scenario will not be demonstrated 

with an example here and shall be investigated in the future.  

9.2.4. DESCRIPTION OF EACH ALGORITHMIC APPROACH  

9.2.4.1. SCENARIO A: THE GENERALISED APPROACH 

As described in section 9.2.3, scenario A is a typical approach to a pathfinding problem, 

where the weights of the network are static. The features used as edge weights for the 

network analysis are the following: (street segment) length, POI density, traffic, and 

presence of traffic light.  The features are retrieved from the spatial database that was 

constructed in Chapter 5. The steps for constructing the spatial database in the data 

fusion scheme, described in section 5.2.1. of Chapter 5, are thus prerequisites for this 

part of the pathfinding algorithm. These features were indexed in the relational spatial 

database for each network node; therefore, their values are transferred to the network 

edges by finding the two neighbouring nodes for each edge and averaging their values. 

The next step is the normalisation and accumulation of all features. The final weight for 

each edge of the network, representing a street segment, is the following: 

 Wi = l × wLi + d × wDi + t× wTi + s× wSi (1) 

The terms wL, wD, wt and ws, are the normalised values of the segment for length, POI 

density, traffic and traffic light, respectively. The terms l, d, t and s, are multipliers used 

to control the influence of each attribute. The experiments conducted here involved 

many iterations of this algorithm. In the first iteration, the same multiplier (1) was used 

for all attributes. Another version included focusing only on one feature and setting the 

multipliers of the other features to 0. The other iterations followed similar lines. Finally, 

the calculation of the shortest path is conducted with the Dijkstra algorithm (Dijkstra 

1959).  
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Figure 9.5. An example of Scenario A applied to a network constructed for demonstration purposes.  

An example of the application of Scenario A on an artificial network is given in Figure 

9.5. As shown in the figure, the route with the lowest amount of accumulated weights 

according to all the criteria is A. This route is the shortest, but it involves exposure to all 

kinds of stressors. Route C involves the lowest exposure to stressors, but it is much 

longer. As this example demonstrates, there is a trade-off between route qualities and 

time, which should be considered when finetuning the multipliers in equation 1.   
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9.2.4.2. SCENARIO B: INTEGRATION OF STRESS HOTSPOTS AS ATTRIBUTES  

Scenario B is very similar to scenario B, with the only difference being the addition of 

the stress hotspots in the calculation of the edge weights.  

The stress hotspots are derived from the analysis of EDA data of other users in the same 

city, following the methods described in Chapter 7. Each hotspot contains a set of 

geotagged points which resemble intense physiological responses in this area. The first 

step in this scenario is connecting the hotspot data to the network nodes and edges. 

Since the network nodes have geographical coordinates, the closest network node can 

be identified for each geotagged hotspot point. A k-d tree is used for the identification 

of the closest node. This procedure leads to the identification of nodes that are 

contained in hotspots. A new attribute is created for describing node proximity to 

hotspots. The nodes belonging to a hotspot are given the highest value (1) for this 

attribute, and the other nodes are given the lowest value (0). In this way, the algorithm 

penalises points contained in existing hotspots and will try to avoid them. 

Equation 1 is slightly transformed in order to incorporate the new attribute, leading to 

equation 2, which describes the accumulation of weights for each edge in a hotspot-

based scenario: 

 Wi = l × wLi + d × wDi + t × wTi + s × wSi + h × wHi   (2) 

The term wH is the new ‘hotspot’ attribute for each edge, and the term h is a multiplier 

used to describe the relative influence of this attribute compared to the others. A high 

value in this multiplier will assist in maximising the chances of avoiding these spots. In a 

future scenario where there is rich existing information in terms of stress hotspots from 

other users, the other parameters could even be omitted, leaving only the length and 

the hotspot attributes as the ones that control the pathfinding process. Finally, the 

calculation of the shortest path is conducted in the same way as before.  

The same steps would be followed for the addition of the personal stress hotspots in 

scenario C. 
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9.2.4.3. SCENARIO D: INTEGRATION OF A PENALTY DEPENDENT ON TIME 

(ISOCHRONE-BASED APPROACH) 

Scenario D was created following the findings of the analysis presented in Appendix C, 

which indicated that the duration of activity might affect the intensity of physiological 

responses during exposure to other stressors. The controlled experiments in the 

laboratory, presented in Appendix C, showed that the applied stressors (particularly the 

change in activity intensity) had a more significant impact on physiological responses 

when the participants had already spent some time exercising. In contrast, the 

responses were much less intense, or even not existing, at the start of the experiment. 

The hotspot analysis of the predefined route in Sydney (presented in Appendix B, 

section 3.1.2.) also showed that the contextual stressors had a more considerable 

impact towards the end of the outdoor route.  

Scenario D thus aims to implement these findings in the algorithmic methods for 

pathfinding, by incorporating a numerical transformation of the features based on the 

time needed to reach each node. For this purpose, the network attributes need to be 

enriched with information which is relative to the characteristics of each route, 

describing how far each node is from the starting point of the route in question.  

The first step is the calculation of the time needed to reach each edge of the network 

from the starting point. This process involves calculating travel time isochrones that 

describe which nodes are reachable within a given time. An example of the procedure 

followed for the generation of isochrones is given in the study of Allen (2018). At the 

end of this process, all nodes and edges are given a ‘time’ attribute, reflecting the 

different route times. The ‘time’ attribute takes a value between 5 minutes and the 

time needed to reach the most distant nodes. The values are successively increasing 

with a step of 5 minutes.  
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Figure 9.6. An example of nodes coloured according to the generated isochrones.  

The ‘time’ attribute is a temporary feature, different for each route, and reflects only 

the relationship between the starting point of this specific route and the other network 

nodes. Figure 9.6 shows an example of network nodes coloured according to the 

temporary ‘time’ attribute, generated from network isochrones using a random starting 

point as their centre. It should be noted that the circles drawn on the figure show an 

approximation of the area which is reachable within each time band (5, 10, 15 minutes 

and so on). The actual reachable area within each isochrone does not have a perfect 

concentric circle as its boundary, as it is determined by the road distance and not the 

Euclidean distance. This is also visible in Figure 9.6, where it is shown that while each 

circle ring has a dominant node colour, a few nodes within each ring are coloured 

differently.  

The next step is the extraction of the weights for each network edge, which are 

calculated with the following equation:  

Wi = li×wLi + di × wDi × Ti
2 + ti × wT i× Ti

2 + si × wS i×Ti
2 (3) 

  

Equation 3 is very similar to (1). All the urban features (length, POI density, traffic, traffic 

light) are again included. They are multiplied by the unique ‘time’ attribute (Ti) of each 
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edge, raised to the power of 2. The ‘length’ attribute is excluded from this 

multiplication. This process amplifies the accumulated weights of edges with many 

stressors when they are located far away from the route's starting point. The multipliers 

(l, d, t, s) can have the same or different value, as explained in section 9.2.4.1.   

This scenario can also be combined with scenario B, for the simultaneous inclusion of 

existing stress hotspots and isochrone-based penalty. Equation 4 describes the 

calculation of weights for this case, extending equations 2 and 3:  

Wi = li × wLi + di × wDi × Ti
2 + ti × wT i × Ti

2 + si × wS i × Ti
2 + h × wHi× Ti

2
   (4) 

  

Finally, the calculation of the shortest path is conducted in the same way as in scenario 

A. 

9.2.5. EVALUATION OF THE EXPERIMENTS  

The different methods were first compared with a qualitative analysis of an example of 

their application. The example was used to illustrate the strengths and weaknesses of 

each method. Each of the tested scenarios was applied to the same randomly selected 

pair of nodes and resulted in a different route. The simulation was conducted using the 

urban network of Sydney. The qualities of the generated routes were examined as 

indicators of their performance.  The tested scenarios were the following: A, B, D, and 

B-D combined. The results are presented in sections 9.3.1 to 9.3.3.  

After that, the different approaches were systematically compared based on their 

performance concerning the selected criteria. One thousand random pairs of starting 

and ending nodes were selected from the spatial database constructed for Sydney, as 

described in Chapter 5. The pairs that resulted in routes lasting more than two hours 

were excluded. The final set had 896 pairs of starting and ending nodes. Then, the 

different methods were applied on each pair for the generation of routes, having as an 

objective the minimisation of exposure to stressors. The scenarios that were tested 

were the following: Scenario A (the generalised approach, using Equation 1), scenario B 

(the hotspot-based scenario), scenario D (the isochrone-based scenario, using Equation 

3) and scenario B+D (a combination of the isochrone- and the hotspot-based scenario, 
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using Equation 4). The following multipliers were used: 3 for the length criterion, and 2 

for the other criteria. These values were chosen following the results of the analysis 

conducted in Chapters 6 and 8, which showed that the duration of the activity had a 

stronger influence on the sum of EDR amplitudes than the other parameters. Therefore, 

it was decided to prioritise the length attribute (WL), while still taking into account the 

other parameters. 

Then, the percentage of exposure to stressors was calculated for each of the generated 

routes. The routes generated by the shortest path algorithm were used as a benchmark. 

This evaluation method has been used before in similar studies (e.g., Russig & Bruns 

2017). The results are presented in section 9.3.4. 

9.3. SIMULATION ANALYSIS FOR DEMONSTRATION OF THE PROPOSED 

METHODS  

9.3.1. SIMULATIONS FOR SCENARIO A 

Figure 9.7 demonstrates the results of applying scenario A (the generalised approach) 

on a pair of nodes randomly selected from the street network of Sydney. Four different 

iterations are shown in the figure; in each iteration, one feature is chosen as the 

dominant feature, and the multipliers of the other features are set to 0. The iterative 

testing helps in identifying if the algorithm performs well for one feature at a time, 

focusing only on one aspect of the route, before combining all features.  

As shown in the figure, all iterations resulted in routes with a low presence of the 

selected stressor. The POI density-based optimisation resulted in a route that passes 

from two local parks to avoid places with higher concentrations of POIs (and thus higher 

visual complexity and crowding). The traffic-based optimisation resulted in a path that 

avoided one of the busiest street segments in terms of traffic levels and selected a 

much quieter road instead. The traffic light-based optimisation resulted in a route with 

only three traffic lights, while all the other routes had more. The route that had the 

highest number of traffic lights was the route created by the length-based optimisation.  
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Figure 9.7. Comparison between the baseline model and three applications of Scenario A for a random 

pair of nodes in Sydney 

At the same time, all iterations of the algorithm (apart from the length-based one) 

resulted in longer trips compared to the shortest one. The route from the length-based 

optimisation, which was the shortest, would take 33 minutes. The traffic light-based 

one was the second shortest, with an expected duration of 43 minutes. The traffic-

based one would take 47 minutes, and the POI density-based one was the longest with 
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an expected duration of 50 minutes. Finally, Figure 9.8 overlays all the different options 

and presents the route created from the combination of all criteria. This route is 12 

minutes longer than the shortest one and does not incorporate the positive elements of 

the previous experiments (where the features were handled separately), in terms of 

avoiding stressors. 

 

Figure 9.8. The image shows all the routes from Figure 9.7 together. A route generated by incorporating 

all four criteria from equation 1 is also presented for comparison. 

9.3.2. SIMULATIONS FOR SCENARIO D, AND COMPARISON WITH SCENARIO A  

The next simulation involved applying the isochrone-based scenario (D) on the same 

pair of starting and ending nodes. This was the scenario which put a higher penalty on 

stressors when they were at a greater distance from the starting point, compared to the 

presence of stressors in network edges which were closer to the start. The generalised 

scenario (A) was again applied to the same pair of nodes for comparison. Figure 9.9 

presents the results for both scenarios. 
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Figure 9.9. Comparison between Scenario A and Scenario D (the isochrone-based approach) applied to 

the selected pair of starting and ending nodes.  

As shown in the figure, the isochrone-based scenario (scenario D) selected a much 

quieter set of street segments towards the end of the route, compared to scenario A. 

The application of a higher penalty in the stressors based on the time passed since the 

beginning of the activity was thus a good strategy for avoiding stressful places when the 

user may already be slightly exhausted and possibly more susceptible to physical and 

psychological stressors. 

 Figure 9.10 illustrates the difference between the two scenarios by showing the 

contextual circumstances in places belonging to the route generated with each 

scenario. Point A belongs to the route generated by the isochrone-based approach and 

is a part of a segment with a lower intensity of stressors. The segment belongs to 

Campbell Street, a typical residential street with low traffic levels and two-storey 

houses. Point B belongs to the route generated by scenario A which does not consider 

the effect of time on physiological responses. Point B is on Elizabeth Street, one of the 

busiest in Sydney CBD in terms of traffic, pedestrian activity and concentration of 

commercial activities.  

These two places were close to the end of their respective route. A user who would 

follow these routes would encounter them when their sympathetic activity would be 

already high from the physical activity. The reactions to any stressors might be, 
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therefore, more intense, due to the high sympathetic activity. Walking through the 

busier environment presented in Point B could result in the generation of more intense 

responses, compared to Point A, during this state of high sympathetic activity.  

 

Figure 9.10. Two places which are included in the route with- and without the isochrone-based (time 

correction) penalty (Google Maps 2020) 

9.3.3. SIMULATIONS FOR SCENARIO B, AND COMPARISON WITH SCENARIO D  

The final simulation was conducted to test the approach that involves integrating 

existing stress hotspots in the pathfinding algorithm (Scenario B). This approach was 

tested against Scenario D, as it was the most successful between the two previously 

tested scenarios. The algorithm for scenario B, which was tested here, was based on 
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equation 4, which also incorporated isochrone analysis apart from stress hotspots. 

Figure 9.11 presents the generated routes.  

 

Figure 9.11. Comparison of the results of the isochrone-based scenario D, with and without the 

integration of stress hotspots (scenario B).  

Since both approaches incorporated isochrone analysis to take into account the 

synergistic effects of the combination of time with the other stressors, the route 

generated from scenario B was very similar to the route generated from scenario D. At 

the same time, the algorithm served its purpose in terms of avoiding two stress 

hotspots, as shown in Figure 9.11.  

9.3.4. QUANTITATIVE EVALUATION OF THE PROPOSED MODELS 

This section discusses the results of the systematic evaluation of the models based on 

the comparison of multiple randomly generated paths, as explained in section 9.2.5. 

Figure 9.12 presents the results of the evaluation. 
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Figure 9.12. Comparison of the results of the different scenarios.  

The comparison is conducted between the 896 paths generated by the proposed 

algorithms with the aim of minimising exposure to urban stressors, and the shortest 

paths generated by the Dijkstra algorithm. The shortest paths were used for 

benchmarking, and do not incorporate any other optimisation criterion apart from the 

route length. As shown in Figure 9.12, the paths generated by the proposed algorithms 

managed to reduce the accumulated exposure to stressors. The generalised scenario 

(A) and the hotspot-based scenario (B) had a similar performance, with a median 

reduction rate of 29%. The isochrone-based scenario (D) and the combination of the 

isochrone- and the hotspot-based scenario (B+D) had a slightly lower reduction rate of 

24%. Figure 9.13 demonstrates the accumulated index of exposure to stressors for a 

subset of the routes. As the figure shows, the exposure is indeed much higher in most 

cases for the shortest path routes, and the optimised routes perform much better. 

At the same time, the optimised paths were considerably longer according to Figure 

9.12, resulting in a median increase of travel time by 32% for the generalised scenario 

(A) and the hotspot-based scenario (B), and an increase of 47% and 43% for the 

isochrone-based scenario (D) and the combined scenario (B+D) respectively. 
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Figure 9.13. The comparison of exposure to stressors for 50 simulated routes.  

9.4. DISCUSSION 

The methods presented in this chapter were constructed for component 3 in the 

designed methodology. This component was designed to facilitate a connection 

between the analysis of physiological responses and computational pathfinding 

methods for the reduction of exposure to urban stressors. 

As demonstrated in section 9.3, the presented methods managed to incorporate 

several qualities of the urban environment that may be associated with physical and 

psychological stress. The qualitative analysis of the routes generated with the proposed 

algorithms in sections 9.3.1 to 9.3.3, showed that each algorithm fulfilled its purpose in 

terms of reducing exposure to one or more stressors. The quantitative analysis of the 

algorithms showed a considerable improvement in terms of reducing exposure to 

stressors compared to the benchmark.  

A significant contribution of the study was the incorporation of the effect of time in the 

isochrone-based scenario, as a factor that may affect the perception of the other 
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stressors when it increases. The algorithm has slightly worse performance than the 

other models in terms of overall exposure to stressors. However, the analysis presented 

in section 9.3.2 and 9.3.3 showed that the algorithm managed to reduce exposure to 

stressors in the last section of the route as planned.  

The inclusion of relevant urban features was based on the analysis of the previous 

chapters, which was conducted on data derived by a small multicultural population 

sample, aged between 20 and 45 years, with university education (at least in the case of 

the study in Sydney). Their identified effects may differ among other groups, and they 

may be more intense for some population groups that are more sensitive to stimulation 

or activity changes. For instance, older adults with dementia can be negatively affected 

by excessive environmental stimulation (Kovach et al. 2000). The avoidance of obstacles 

which affect activities, such as traffic lights, may also be of higher importance for people 

with difficulties in moving. For this reason, it was decided to include all the relevant 

urban features in the proposed models, while leaving unspecified the multiplier that 

determines the relative importance of each feature. The experiments presented in 

section 9.3 included a predefined multiplier, but the designed methods allow the user 

to modify this number and prioritise some of the criteria according to their preferences. 

The character of the route plays an important role when defining the multipliers, 

especially concerning the criterion that controls the travel time. As the results of the 

evaluation in section 9.3.4 showed, the proposed models resulted in a significant 

increase in trip time. When the pathfinding is conducted in the context of a leisure trip, 

the user may prefer to select a longer route with less exposure to stressors, but when 

the user is looking for a commuting route, the trip time is an important criterion. The 

balance between the different objectives can be easily controlled by modifying the 

multiplier that controls the relative importance of the criterion related to route length, 

in comparison to the multipliers of the other features. In any case, the proposed models 

can be integrated into an interface that allows customisation of these parameters by 

the user, as in the interactive pathfinding system proposed by Novack et al. (2018). In 

this interface, the user should be able to see different route options generated by 

modifying the multipliers and compare them based on each route's characteristics, 

including route time and time of exposure to each stressor. 
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The proposed models should also be finetuned based on local contextual parameters, 

before their application in other cities and countries. Some factors that were omitted 

here need to be considered in future extensions of this study.  One such parameter that 

should be integrated in the future is the presence of slope as a physical stressor that 

affects the activity intensity. The methods described in Chapter 5 (section 5.2.2) for 

collecting movement data for each participant only allow the acquisition of altitude data 

from Strava, for each GPS point of their trajectory. It is possible to integrate elevation 

data in the spatial database using the osmnx Python library (Boeing 2017b), but the 

process requires acquiring an API key for using the Google Maps Elevation API. It was 

decided not to include this feature in the spatial database for now, as this data is not 

freely available. Future work will include the addition of this feature if other open APIs 

for elevation data are identified. 

Another parameter that could be included in the future in the spatial database is the 

ambient temperature. As it was shown in the previous chapters, the temperature is an 

important parameter that influences the intensity of physiological responses. The 

temperature could be added as a multiplier that increases the intensity of the stressor-

related attributes. Another variable could be added in the model to take into account 

the local differences in microclimate. Real-time data could be used for this purpose if 

there is a local sensor network that gives temperature data at a high spatiotemporal 

resolution. Alternatively, some built environment features, such as the presence of 

green and water around a node, could be used as indicators of temperature differences. 

Future work on the presented algorithms could involve incorporating the proximity to 

these elements as an attribute in the network data.  

It should also be mentioned that POI density (and mixed-use) is an attribute that has 

both positive and negative interpretations in the context of pathfinding. As shown in the 

analysis presented in Appendix A (the analysis of the relationship between POI density 

and complexity), environments with high POI density might be associated with higher 

complexity and intensity in terms of stimulation, as well as a higher degree of human 

activity. These attributes are related to experiences of overstimulation and crowding, 

which can act as psychological stressors. At the same time, the presence of shops, cafes 
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and other elements that attract social life may make a walk more pleasurable (Brown et 

al. 2007). The increased presence of human activity may also increase the feeling of 

safety while walking at night. For these reasons, it should be possible to allow the users 

to select the desired level of incorporation of mixed-use in the user interface, in order 

to cover all the scenarios mentioned above. More experiments also need to be 

conducted for the scenario of walking at night. The safety aspect should have a more 

substantial presence there. 

The integration of existing stress hotspots in the pathfinding process is a novel element 

that will be very useful in the future if EDA tracking wristbands become more affordable 

and gain popularity. Other kinds of spatiotemporal data related to stress could also be 

integrated into the pathfinding algorithms in the same way. Recent developments in 

sentiment and stress analysis in natural language processing allow identifying 

psychological stress levels from social media data (Lin et al. 2014). This analysis could be 

combined with an analysis for the identification of spatial stress patterns, and 

incorporated in the pathfinding algorithm in the same way as in Scenario B. 

A critical matter for consideration here is that the existing stress hotspots are an 

information layer with accuracy relative to the number of users that generated this 

data. When the sample is small, the identified hotspots may reflect the personal traits 

of users or preferences in their routes, and should not be taken at face value. It must 

also be ensured that the tracks of the users cover the area of analysis adequately. Some 

methods that are useful for removing redundant information from this perspective, and 

keeping only the most significant hotspots, were presented in Chapter 7 and can be 

used in this case. Future work here should also involve methods for separating the data 

within existing stress hotspots according to the characteristics of the activities during 

the time of data collection. Since factors such the overall duration of the activity and 

temperature are influential in the process of generation of physiological responses, a 

model which uses existing data should be based on data points which have similar 

attributes; otherwise, the results may be misleading.  

Another point for future improvement is the incorporation of real-time traffic or noise 

data. Traffic was used as an indicator of noise levels since noise is a psychological 
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stressor. The OSM data that were used for the extraction of traffic levels were sufficient 

for the scope of this study, but the incorporation of real-time traffic data would be the 

best for a more accurate approximation of noise levels and their variations during the 

day. Real-time human activity data could also be added to enhance the capacity of the 

algorithm to reflect crowding levels with higher accuracy.  

Furthermore, there are vast differences in the structure of the urban fabric of different 

cities, which may render some of the parameters discussed here irrelevant. The 

intensities of mixed-use are very different if we compare mega-cities to smaller 

settlements. While cities such as Sydney have areas with high concentrations of 

multiple land uses, which might create an overwhelming effect under certain 

conditions, other cities have much smaller overall levels of mixed-use. The same applies 

to the intensity of traffic levels, as some cities have a very high presence of 

pedestrianised zones, and the inclusion of the traffic-related parameters is not of high 

importance there. In such environments, where the urban fabric is more homogeneous 

in aspects related to noise and visual complexity, the methods proposed here would not 

be of much use. At the same time, the application of the proposed methods would not 

lead to a worse solution in terms of the qualities of the encountered places. Most 

probably the result would be very similar to the shortest route generated by common 

pathfinding applications. 

Future research on the proposed methods should involve evaluating the different 

methods regarding their actual ability to produce less intense physiological responses 

compared to the shortest path. Since this study is focused on the identification of least 

stressful route, in terms of actual physiological responses, it would be appropriate to 

complement the tests presented in section 9.3.4, with the organisation of an outdoor 

experiment for collection and comparison of physiological responses during the 

different generated routes. It was not possible to include data collection for this aspect 

in the outdoor experiments organised in this study, as the participants already had to 

contribute a significant amount of their time for participation in the other data 

collection activities. Future work will complement the experiments presented in this 

chapter by collecting physiological data while walking on some of the generated routes. 
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A subjective evaluation should also be added to identify if the proposed routes are 

perceived as preferable for the participants. 

The work presented in this chapter was related to the last component of the proposed 

methodology for the analysis of physiological responses in the urban space. The next 

chapter concludes the thesis by evaluating the proposed methodology with respect to 

the research questions, discussing the research significance and elaborating on 

limitations and future directions. 
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10 
CONCLUSIONS AND FUTURE DIRECTIONS  

10 | CONCLUSIONS AND FUTURE DIRECTIONS 

10.1. INTRODUCTION 

The starting point for this research was the emergence of physiological data as a source 

of information that can help us understand how our interactions with the urban 

environment affect the human body. The literature review in Chapter 1 showed that 

there is significant potential in using physiological data to understand the links between 

different urban features and physiological responses; however, this research area is still 

not well developed. The review also showed potential in utilising physiological data in 

ways that could directly benefit the users of devices that collect this data. Physiological 

data analysis could be linked to pathfinding methods for identifying the least stressful 

route, or predicting the physiological responses during an activity based on movement 

and contextual data. These areas have been understudied until now. 

The lack of a methodology for the analysis of physiological responses that seeks to 

inform not only urban planners but also the citizens that generate the data, was thus 

identified as a crucial gap. The primary aim of this research was to address this gap by 

developing a methodology for the collection and analysis of physiological data in the 

urban environment.  

The literature review also identified other issues that should be addressed in order to 

increase the efficiency and scalability of the methods used for the analysis of 

physiological data in the urban space. The lack of inclusion of the effect of movement 

on physiological responses, the lack of a theoretical and conceptual framework for 
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feature selection, and the heavy reliance on image-based methods for contextual data 

analysis, among others were identified as issues which needed addressing. The research 

utilised these critical issues as secondary drivers for assisting in the design of different 

components of the methodology. 

After describing each component of the methodology in the previous chapters, this 

chapter revisits the primary research question, aim and objectives, and discusses the 

presented work in relation to the research goals that were established in Chapter 2.   

Section 10.2 revisits the research aims and questions and discusses the designed 

methodology with respect to each objective set in Chapter 2. The findings of the 

research are also discussed in section 10.2 in relation to the broader research question 

of how the urban environment affects physiological responses. Section 10.3 discusses 

the methodological, theoretical and practical research contributions. The limitations of 

the research are then discussed in Section 10.4. Section 10.5 elaborates on the 

implications of the findings for urban design and planning. Finally, section 10.6 closes 

the chapter by outlining possibilities for future work related to the research. 

10.2. REVISITING THE RESEARCH AIMS AND OBJECTIVES  

10.2.1. THE DESIGNED METHODOLOGY AS A RESPONSE TO THE PRIMARY 

OBJECTIVES 

The presented work was driven by the following overarching research question: 

How does the urban environment affect physiological responses, and what is the role of 

different urban and environmental characteristics and activity in this process? 

Following the broader research question, the research aim was to design a 

methodology for collection and analysis of physiological data in the urban space, which 

should act simultaneously for the benefit of the user and the city. The designed 

methodology incorporated three components and was first outlined in Chapter 2. The 

methods for each part were presented in detail in Chapters 5 (component 1), 7 

(component 2), 8 and 9 (component 3).  
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 Each of the three components of the methodology responds to one of the primary 

research objectives, as stated in Chapter 2: 

(1) To integrate the user-generated physiological data with other geotagged open 

data related to urban health, using scalable methods 

(2) To establish methods for deriving patterns of physiological data responses and 

interpreting them at a user and a city level  

(3) To identify how the acquired information can be linked to computational models 

that can promote urban and individual health and wellbeing 

Component 1 responds to the first objective by presenting a unique data fusion scheme 

which combines physiological, spatial and movement data. Within the broader agenda 

of urban health, the study focuses on identifying ways of capturing and analysing 

physiological responses to urban stressors. The data fusion scheme includes the analysis 

of activity, covering a gap that had been identified in previous studies. A machine 

learning model for the classification of activity was developed for this purpose after 

extensive experimentation. OSM and POI data are also analysed to extract the levels of 

traffic, the distribution of mixed-use represented by the POI density, and the presence 

of traffic signals. This component leads to the classification of physiological responses 

based on the underlying physical or psychological stressors.  It responds thus to the 

second objective as well, as it provides a method for identifying potential contextual 

and movement-related sources that may be responsible for the physiological responses. 

Component 2 (presented in Chapter 7) responds to the second objective by presenting 

methods for spatial analysis of physiological responses based on hotspot analysis and 

clustering methods. The physiological responses are first processed to identify 

statistically significant hotspots. Then, the hotspots are separated into clusters, and the 

clusters are analysed and ranked based on their possible impact.  

Component 3 responds to the third objective by including two strands. The first strand 

includes methods for predicting physiological responses based on collected 

physiological and contextual data. The experiments presented in Chapter 8 showed that 

the physiological responses could be predicted with an acceptable degree of accuracy 

using the proposed urban and movement-related features as input. The regression 
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model showed a considerable capacity to predict moments of increased levels of 

physiological arousal.  

The second strand of component 3 also responds to the third objective by focusing on 

pathfinding methods for the identification of routes that minimise exposure to 

stressors. The presented methods are based on network analysis and utilise common 

approaches to finding the shortest path between two network nodes based on some 

criteria. The proposed methods were tested in terms of exposure to stressors against a 

benchmark model that used only time as the primary criterion for pathfinding. The 

results showed that the proposed methods reduced exposure to stressors by 25 to 30%, 

but they also increased the trip time as expected. For some individuals, the benefits in 

terms of the reduced exposure to stressors may not be enough to counteract the cost 

in terms of time; however, this is something that can only be decided on a case-by-case 

basis.  

The three components are linked to each other, creating an efficient information flow 

that responds to different needs at the user and the city level. Component 1 can be 

used for individual analysis of physiological responses, while it also serves as the starting 

point for analysis at the city scale, as it contains the data fusion model. Component 2 

links the information derived from component 1 to hotspot analysis. It was designed 

primarily for use at a city scale, for the benefit of urban planners or researchers, but 

individual users can use these methods to find and analyse hotspots of their 

physiological responses. Component 3 links information derived primarily from 

component 1 (and optionally from component 2) to the pathfinding module and the 

predictive analysis. The pathfinding module can be used by individual users that want to 

find a route that avoids exposure to stressors. The predictive models can be used by 

users who want to find the stress levels of a past route, given geotagged activity data. 

The overall information flow thus creates a synergy between the individual and the city 

level, satisfying the research aim.  

The designed methodology was tested and refined using data collected from users in 

Sydney and Zürich. The methods designed for component 1 (presented in Chapter 5), 

and especially the construction of the spatial database and the data fusion model, were 
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first used to analyse the data of each participant. Then, the hotspot analysis and 

clustering methods were tested separately for each city, for calibrating several 

parameters of the algorithms. These experiments are presented in Chapter 7. Finally, 

the experiments on the prediction of physiological responses, which are related to 

component 3 and were described in Chapter 8, used combined data from both cities, in 

order to construct more generalisable models. The inclusion of data from Zürich came 

at a later phase of the project, but it was a significant step towards ensuring that the 

designed methods are not only applicable to Sydney. 

10.2.2. DISCUSSION OF THE FINDINGS OF THE STATISTICAL ANALYSIS FOR 

SYDNEY AND ZÜRICH: REVISITING THE CONCEPTUAL FRAMEWORK 

The review of existing studies also showed significant methodological issues in past 

studies that involved continuous measurement of physiological data in the urban 

domain. One of the most significant gaps that were identified was the lack of the 

incorporation of the effect of movement on physiological responses. Existing theories in 

the field of environmental psychology linking urban environment parameters and 

physiological responses were based on experiments conducted while sitting. Most of 

the past studies on physiological responses during outdoor movement also focused on 

comparing green and natural environments, and research on other features was sparse 

and unstructured. There was a lack of a theoretical and conceptual framework linking 

together urban features, movement and physiological responses.   

While it was not the primary aim of this research to solve this problem, the lack of 

progress in this area still affected this study. It was necessary for many parts of the 

methodology to understand which features might affect physiological responses. For 

instance, the construction of the pathfinding model presented in Chapter 9 required 

selecting relevant attributes of the urban environment that might act as stressors. The 

model for classification of physiological responses according to the underlying stressors, 

presented in Chapter 5, also required understanding which features act as stressors and 

what are their characteristics.  



 

319 
   

These gaps in knowledge were addressed by constructing a theoretical and conceptual 

framework linking contextual features, activity and physiological responses. The 

theoretical framework was based on identifying contextual parameters that can act as 

physical and psychological stressors. Its construction was based on relevant literature 

on stress theory and fundamental functions of the human body. The division to physical 

and psychological stressors is theoretically sound, as the links between parameters such 

as activity and stimulation, and physiological responses, have been well established. The 

framework presented in Chapter 3 is the first that situates urban features and 

parameters of movement in the urban space under these two categories. Most of the 

parameters of the outdoor environment can be positioned under one or the other 

category, or both. The conceptual framework was based on selecting the contextual 

and movement-related features that were identified as the most significant for this 

study based on the reviewed literature.  

After designing the theoretical and conceptual framework, much thought was given to 

deciding if it should be taken as a given that these features affect physiological 

responses, or if the research should treat this as a hypothesis to be tested. The position 

of this research, derived from the literature presented in Chapter 3, is that the effects 

of activity and stimulation on physiological are a part of fundamental processes of the 

organism, as past studies have shown through extensive experimentation in the 

laboratory. Based on the reviewed literature, it can be assumed that environments that 

affect activity and stimulation through their features might generally be associated with 

a higher chance of eliciting physiological responses in the urban environment. From this 

perspective, one might argue that it was not necessary to conduct the inferential 

analysis presented in Chapter 6.  

At the same time, urban space is a complex milieu, with multiple factors interacting 

simultaneously. The inclusion of a chapter dedicated to the inferential analysis of the 

collected data aimed, therefore, to enrich current knowledge on the interplay between 

different factors and combinations of circumstances, and not to prove that the assumed 

links exist in the first place. It was also decided that future studies would benefit from 
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presenting proof of the importance of the inclusion of movement in schemes for the 

analysis of physiological responses since this factor was ignored in previous studies. 

The experiments presented in Chapters 6 and 8 showed that the designed conceptual 

framework relating contextual features and activity with physiological responses was in 

the right direction. The designed experiments included many kinds of activities, with 

different degrees of control. Overall, the results of the statistical tests presented in 

Chapter 6 (and in Appendix C, containing the statistical analysis of the indoor 

experiments) emphasise the strong influence of activity on physiological responses. The 

feature importance analysis in the predictive models of Chapter 8 was also in line with 

the findings of the previous chapters. The duration of activity was a significant feature 

under all circumstances. The change in activity state was also a feature that had a small 

(but statistically significant) effect on physiological responses. The results of the 

controlled indoor experiments, presented in Appendix C, also showed that the effect of 

the change in activity on physiological responses was significant, especially when the 

organism had a high degree of activation. The effect size was medium to strong there. 

The results of these experiments confirm the position that was taken in Chapter 3, 

indicating that the examined parameters related to movement can have a substantial 

effect on physiological responses.  

The relationship between contextual features and physiological responses seems to be 

more complicated. The linear mixed model analysis showed that POI density was 

significant mainly in the predefined route experiment in Sydney. It was also significant in 

the combined model, which included all the collected data, but the effect was much 

smaller in that case. This study was the first to investigate the links between POI density 

(representing the density of mixed-use), and physiological responses; therefore, more 

research on the links between this feature and physiological responses in different 

contextual circumstances and activities will be beneficial. Traffic was not a significant 

feature in any model. However, the links between traffic, noise and psychological stress 

are well-established, based on Chapter 3, and there is no doubt that this variable should 

be included in the analysis. The inclusion of traffic lights in the linear mixed models also 

did not improve the model fit, and this feature was not identified as significant in this 
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phase of the analysis. A possible explanation for the lack of the identification of the 

expected effect here, especially with regards to traffic lights, was that the presence of 

this feature might have been found in fewer data points compared to other features. 

Another possible reason could be that the participants knew where to expect traffic 

lights during familiar routes, and the element of surprise, annoyance or alarm may have 

been not significant.  

The analysis of feature importance that was incorporated in the predictive models of 

Chapter 8 also showed that all the contextual features were important in the selected 

regression model for prediction of physiological responses. Their significance was lower 

compared to movement-related features, but they still played a role. Another reason 

that some features such as the presence of traffic lights and steady-state walking did 

not appear as significant in the mixed model analysis could be that some features might 

have a more complex relationship with physiological responses.  

Some notable characteristics of the inferential analysis presented in this study were 

related to its setup. The analysis included data collected during multiple different 

setups, including controlled, semi-controlled and uncontrolled experiments. Previous 

studies used data collected during a predefined walk, and this study is one of the very 

few that used data collected during free exploration in the urban space. This mode of 

monitoring had the advantage of being as close to the actual circumstances as possible, 

with no intervening or direction from the research team apart from the instruction to 

use the equipment. The research also included data from two different contexts, which 

was a first for studies in this research domain, as all previous studies included only data 

from one area. Chapter 6 included a thorough analysis of the data collected in Zürich 

and Sydney, during indoor activities, outdoor activities on a predefined route, and free-

living activities. The analysis allowed the identification of similarities and differences 

between different contexts, and various models were created to allow the comparison 

between the results in different circumstances. The results from the presented models 

were interpreted by considering the differences in the circumstances and elaborating 

on how these might have influenced the effect of different factors on physiological 

responses. For instance, the fact that the contextual stressors did not significantly affect 
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physiological responses during the predefined route in Zürich could be attributed to the 

shorter duration of the activity and the generally lower temperature. 

As a concluding remark in this section, the knowledge gained by reviewing the 

inferential analysis results was invaluable, especially concerning the effects of physical 

stressors. Apart from their contribution to the existing knowledge on the links between 

urban environment, activity, and physiological responses, the findings shall also help 

design future experiments. The experiments showed that the duration of the activity 

and the temperature are decisive factors, as they significantly affected the physiological 

responses in all models. These parameters should, therefore, be considered in the 

design of studies in this area. Section 10.5.2. will include further elaboration on this 

topic. The investigation of links between some features of the conceptual framework 

that were not significant or not examined (traffic, traffic light, slope) and physiological 

responses should be included in future research with a larger population sample and 

inclusion of different contexts. The visual analysis of the data also showed that some 

effects of urban and movement-related features might be amplified in moderate to hot 

climates during long-lasting activities, while not appearing at all in colder conditions and 

during relatively short walks. The inclusion of interactions between duration of activity, 

temperature and the other features did not improve the linear mixed model analysis, 

but future studies can consider this point. 

10.3. RESEARCH CONTRIBUTIONS  

10.3.1. METHODOLOGICAL AND PRACTICAL CONTRIBUTIONS 

10.3.1.1. DESIGN OF A METHODOLOGY FOR THE ANALYSIS OF 

PHYSIOLOGICAL RESPONSES IN URBAN SPACE 

The primary contribution of this research is the designed methodology, which enriches 

current research on physiological responses in the urban space from a methodological 

perspective. As discussed in Chapter 1, the synergy between the user and the city level 

covers many existing gaps, such as the utilisation of physiological data in predictive and 

pathfinding models, and paves the path towards more efficient future research in this 

area. The designed components can be used in different combinations and contexts. 
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For instance, components 1 and 2, which involve methods for construction of the data 

fusion scheme and spatial analysis of responses, could be used by a research team for 

the analysis of data from multiple users. Individual users could use all components for 

analysis of their personal physiological responses, identification of personal hotspots of 

intense responses, route finding and prediction of responses based on past route data.  

Furthermore, all the necessary tasks were designed as components coded in a 

programming language (Python). This approach was chosen as a response to previous 

issues related to efficiency and the lack of a streamlined approach. Most of the tasks 

can be executed automatically using this approach, as a part of a structured workflow, 

instead of having to use special software which requires domain knowledge for 

different tasks. The effort required for the execution of many time-consuming tasks is 

thus significantly reduced.  

The second reason for using a code-based approach for the design of the components 

was the possibility of using this work to build a dedicated application or web platform 

for the analysis of physiological data in the future. In this way, the designed 

components could be used as the basis for the construction of a data visualisation 

dashboard open to the public, connected with an application for collection of and 

analysis of personal data. There is still much work to be conducted towards this 

purpose, but this step will be critical for allowing the methodology to operate optimally 

at the individual and urban scale and serve different stakeholders. 

10.3.1.2. INCLUSION OF MOVEMENT ANALYSIS IN PHYSIOLOGICAL DATA 

ANALYSIS 

Some parts of the components of the methodology are also original contributions to 

existing research related to their respective domains. One of the most significant steps 

was the inclusion of movement effects in the physiological data analysis in the urban 

space. The work presented here is among the few, if not the first, that included a 

thorough analysis of activity-related events in the context of urban space. Only a recent 

study (Benita & Tunçer 2019) included speed as a possible explanatory feature. Past 

studies that ignored movement effects might have misclassified many physiological 

responses as the result of other parameters.  
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In this research, this module was used as a part of a broader classification system that 

includes a division to physical and psychological stressors. However, the method 

proposed for identification of movement-related responses in Chapter 5 does not have 

to be used necessarily in the context of this particular classification system. For 

instance, if a research team is focused only on stimulus-related responses, this method 

could be used for the exclusion of movement-related effects. Since the method uses 

accelerometer data for activity recognition, they can be used in indoor and outdoor 

environments.  

10.3.1.3. DESIGN OF METHODS FOR ROUTE OPTIMISATION FOR 

MINIMISATION OF EXPOSURE TO STRESSORS 

The development of algorithms for route optimisation from a stress-oriented 

perspective was another significant contribution that enriches current research on 

algorithmically assisted pathfinding methods. The incorporation of physiological data in 

route optimisation models, and the isochrone-based analysis for the incorporation of 

the effect of time on the other attributes, are novel approaches that have not been 

included in computational models for pathfinding up to now.  

The methods designed for this module (outlined in Chapter 9) could also be used out of 

the context of the proposed methodology, in navigation systems embedded in 

platforms such as Google Maps. The proposed methods could be easily implemented in 

an application dedicated to route finding. This part of component 3 includes approaches 

that are based on findings of past experiments and relevant literature, and do not 

require necessarily physiological data of a specific user. These approaches were 

included to make the methods applicable also for people who do not have any device 

for measuring physiological data. The approach that includes physiological data is, in 

this sense, an enhancement of the basic approach that is based only on the 

identification of spatial stressors according to relevant theory. As it was elaborated in 

Chapter 9, this part of the research could be used to create a navigation tool for people 

with high sensitivity to external stressors.  
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10.3.1.4. DESIGN OF METHODS FOR PREDICTION OF PHYSIOLOGICAL 

RESPONSES BASED ON ACTIVITY AND CONTEXTUAL DATA 

The design of the component for the prediction of physiological responses was a 

significant contribution connected to the application of machine learning algorithms for 

the analysis and prediction of physiological signals. This study is the first that presents a 

relatively successful model for prediction of responses based on data that is easily 

available using only accelerometer and GPS sensors, combined with freely available 

OSM and POI data. The significance of this part of the research is thus high, as very few 

studies have been conducted on this topic. There is certainly room for further 

development, but the presented models were an essential first step towards future 

research in this area. 

The models can also be used out of the context of the methodology. For instance, they 

could be incorporated in an application that tracks geotagged accelerometer data, 

connects it with contextual data using methods from Chapter 5, and predicts 

physiological responses for a user's past route using on the collected data. Individuals 

can use these models to estimate how different past route choices affect their body and 

inform future choices accordingly. The predictive analysis is not personalised, as it is 

based on samples generated from other users. However, its significance is high for users 

that cannot afford a sophisticated EDA tracker, as explained in Chapter 8.  

10.3.1.5. DESIGN OF METHODS FOR THE CONSTRUCTION OF A SPATIAL 

DATABASE OF THE IDENTIFICATION OF PHYSICAL AND 

PSYCHOLOGICAL STRESSORS IN SPACE, USING OSM AND POI DATA 

Another contribution of the research was the construction of a spatial database for the 

identification of physical and psychological spatial stressors, based on OSM and POI 

data. This part of the research was a significant step towards solving practical issues of 

past approaches and ensuring that the designed methods are scalable. Previous studies 

were heavily based on image analysis, while this approach is based on acquiring and 

processing data that is already available online for free for many cities. The inclusion of 

POI density for the representation of the stimulus complexity in the environment was 

also justified by the analysis between POI density and complexity (presented in 
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Appendix A). The same measure may also be connected to increased intensity of 

stimulation. The proposed methods for constructing the spatial database do not have 

the issues related to privacy and ethics that are commonly associated with image-based 

analysis. The overall approach requires constructing the spatial database only once for 

each city and uses point-based and text data that can be processed quickly. Another 

advantage of this method is that it incorporates a fusion of POIs with street network 

data. The resulting spatial database can, thus, be used for network analysis 

incorporating any attributes associated with OSM and POI data, such as traffic, presence 

of traffic lights, elevation, density and intensity of mixed-use, or detailed categories of 

land use. Data derived from image-based analysis could also be embedded next to the 

other data if required, as long as the photos are geotagged. 

The methods for the construction of the spatial database could also be used for any 

other project that requires an estimation of spatial concentrations of stimulus 

complexity. The analysis between POI density and complexity (presented in Appendix A) 

also showed strong links between POI density and predictors of imageability; therefore, 

the spatial database could be slightly modified to estimate this variable as well.  

10.3.2. CONTRIBUTIONS TO THE THEORETICAL FIELD OF INVESTIGATION  

Apart from the methodological and practical contributions stated in section 10.3.1, the 

presented work also involved constructing a theoretical and conceptual framework for 

the analysis of physiological responses in the urban environment. The findings of the 

experiments presented in Chapters 6 and 8 agreed with some variables of the 

conceptual framework and enriched our current understanding regarding the interplay 

between different contextual and movement-related factors and physiological 

responses. Apart from their importance in the context of this research, the presented 

framework and the findings of the experiments also constitute theoretical and 

conceptual contributions, as they enrich current research on the links between urban 

environment, activity and physiological responses. The developed conceptual 

framework needs undoubtedly more testing and refinement based on research in other 

environments involving a larger and more diverse population sample. The variables 

which were not identified as significant in the statistical analysis in Chapter 6 need to be 
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examined in future studies, as mentioned in section 10.2.2. At the same time, its 

current version managed to capture some aspects of the urban environment and 

activity that had not been studied until now and situate them under relevant stress and 

arousal theories.  

10.4. LIMITATIONS 

While every effort was put towards adhering to the principles of rigorous research, 

some limitations of the presented work should be mentioned. The technical issues and 

limitations related to specific parts of the methodology were explained in detail in the 

respective chapters. This section will thus focus on the limitations related to the overall 

study design. 

First of all, the study could only include some representative contextual features that 

capture the general conditions of a place. The contextual analysis of the routes is thus 

based on a limited set of factors which can influence physiological responses. There 

might be other factors which have a personal meaning for the participant but were not 

included in this analysis. The uncertainty of urban life cannot be fully described by the 

designed models, and it would not be possible to get a very detailed description of the 

actual circumstances and events during a route, without the addition of more hardware 

or the use of methods that would infringe the privacy of the users. At the same time, 

the accelerometer data describing the movement of the user are enough for the 

analysis of any activity-related information in detail.  

The inferential part of the research also had some limitations, mostly related to the 

characteristics of the studied sample. The studied groups were not representative of 

the diversity that can be found in the whole population. The studied cohort did not 

involve children or elderly, and the reported results may not reflect the physiological 

responses of people belonging to these age groups. These limitations also reduce the 

generalisability of the predictive models described in Chapter 8. Furthermore, the 

sample size was not big enough to guarantee statistical power for the inferential 

analysis. At the same time, most studies in this research area have had similar issues, 
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and the research design was in line with typical study setups in terms of sample size, as 

shown in the literature review presented in Chapter 1.  

Another issue was that the research could not include HR data in the inferential 

analysis, as the instruments which were available for testing had HR sensors that were 

not on par with high-quality instruments used in clinical research. It was thus decided to 

focus on the analysis of EDA data, starting from Chapter 6 and onwards, since the EDA 

sensors of the available instruments were highly reliable. Due to this issue, the 

proposed methods for analysing physiological responses in Chapter 5 were more 

rigorously tested using EDA data. The methods proposed for HR data analysis in Chapter 

5 are still reliable, as they are based on existing literature. The movement analysis 

presented in Chapter 5 can be applied without any change for identifying which 

changes in HR can be attributed to movement effects. Some parameters though need 

to be refined through rigorous testing, such as the identification of appropriate 

thresholds for attribution of an increase in HR to stressful events during movement. 

Some other parts of the research that involve analysis of physiological responses can 

still be used with HR data, after being modified appropriately and refined through 

dedicated testing. For instance, the hotspot analysis and cluster identification of 

physiological responses can still be conducted in the same way as with EDA data. The 

pathfinding module is also more based on the analysis of spatial attributes, and the 

inclusion of physiological responses is optional. Physiological responses derived from HR 

can be again included in the same way as it was demonstrated using EDA data. The only 

exception is the module for predicting physiological responses, which is currently built 

exclusively around the prediction of EDA data. In this case, the prediction of HR data is a 

task that would require a dedicated round of experiments focused on this purpose, 

leading to a separate machine learning model.  

Another limitation is that the benefits of this research might not prove to be of much 

relevance for vulnerable and underprivileged populations, since resultant interventions 

that come from aggregated datasets might become alienating for this group unless their 

perspective is considered. Future research efforts should thus give careful consideration 

towards becoming more inclusive and pay attention not to amplify inequities. 
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The final concern that will be discussed here is connected to issues of ethics and 

privacy. The presented methods for the analysis of physiological data include collecting 

GPS data, which need to be handled with special care to ensure the protection of 

privacy of the users. The analysis of the data in the context of this research included 

anonymisation before processing. Each user was given a unique, randomly generated 

ID, and all their data were connected to this anonymous identity. The users were also 

associated with the same organisation, and their paths frequently converged in the data 

collected during the free-living activities. It was not possible to identify a particular 

individual through their route, without knowing more personal information of the users. 

However, while the data collection methods do not include the collection of any private 

information, the perception of privacy is a factor that should be taken into account in 

future research. If the proposed models are implemented in the future in a digital 

platform or any other application that includes a public demonstration of the data, the 

users should be given the option to remove any data they consider sensitive. Such data 

could be, for instance, the trajectory points within a buffer around the location of their 

home or work. In this scenario, the detailed analysis of data from a single user should be 

an available option primarily for the user that generates the data. Access to this data 

should be given only after obtaining consent from the user. The data of multiple users 

should also be only displayed in an aggregated form to the public, as an extra security 

measure.  

10.5. RESEARCH IMPLICATIONS FOR DIFFERENT DOMAINS  

10.5.1. IMPLICATIONS FOR URBAN DESIGN AND PLANNING  

The presented work involved extensive discussions on the effects of urban parameters 

such as traffic and density of mixed-use on physiological responses. A question that 

naturally arises in this context is whether the presented analysis should lead to changes 

in the way that the urban space is planned and designed.  

The literature reviewed in Chapter 3 showed that excessive stimulation levels could act 

as a psychological stressor for the organism. Some of the urban features that were 

examined as parameters related to stimulation, such as traffic levels, are generally 
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regarded as factors that affect the experience of space negatively (Aletta et al. 2018). 

The reduction of exposure to traffic noise is already a part of contemporary strategies 

towards the promotion of urban health (Giles Corti et al. 2016). 

However, other urban features, such as mixed-use, are again connected to increased 

stimulation, but they are also essential ingredients for creating neighbourhoods with 

high vitality and walkability, as discussed in Chapter 3. A balance has to be retained so 

that the environment has enough complexity to attract the attention of the pedestrian 

and create a satisfying experience, without being overstimulating. The effect of 

parameters related to activity has also to be considered here. The visual analysis of the 

data analysed in this research suggested that some highly complex environments in 

terms of stimuli did not create intense physiological responses when the individual was 

in the start of their trip, and the general arousal of the organism was low. The most 

intense responses may occur when the organism is already under stress from an activity 

of extended duration or other stressors.  However, more research is needed in order to 

solidify these links.  

The most appropriate approach would be to consider the different sensitivity to 

stimulation of different population groups when designing an urban space or deciding 

on the appropriate level of mixed-use during the design of a masterplan. Measures for 

moderating stimulation levels and creating less stressful experiences would be more 

needed in areas such as aged care homes, hospitals and other places with a large 

concentration of individuals that may be more easily affected by these parameters. 

Furthermore, these design considerations should involve the transition between 

environments with different qualities. An abrupt transition from an environment very 

rich in stimulation to a tranquil space can also act as a stressor; therefore, the seams 

between spaces should be designed with care. 
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10.5.2. METHODOLOGICAL CONSIDERATIONS FOR FUTURE STUDIES ON 

CONTINUOUS PHYSIOLOGICAL DATA MONITORING IN THE URBAN 

ENVIRONMENT 

Another important parameter that was brought forth by this study was the significance 

of different aspects of the research design in studies on physiological responses in the 

urban environment.  

The organisation of experiments on a predefined route requires special consideration 

regarding the effect of the duration of activity on physiological responses. The same 

urban feature might have a different effect on physiological responses based on the 

general arousal of the organism, affected by this physical stressor. The experiments that 

are conducted using a predefined outdoor route for data collection should include 

exposure to the stressors of interest during conditions of both high and low arousal 

caused by the duration of the activity. Both conditions should be examined in order to 

have a complete picture of how a stressor affects the body under different 

circumstances. A selected group of participants should also follow the reversed route to 

include in the study the presence of any order effects.  

The ambient temperature should also be noted for comparison between studies, and if 

the climate and the sample size allow it, the experiments should be conducted multiple 

times under different temperatures, to take into account this effect as well.  

It may be challenging to cover all these aspects in one study while also having a large 

enough sample, but these points should be considered during the interpretation of the 

findings.  

10.6. FUTURE WORK  

This section discusses the possibilities for future research based on the presented work. 

Future improvements regarding each component of the methodology have already 

been discussed in the respective chapters; therefore, this section presents future 

possibilities related to the broader agenda of this research. 
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10.6.1. RESEARCH ON THE LINKS BETWEEN URBAN ENVIRONMENT 

FEATURES, ACTIVITY AND PHYSIOLOGICAL RESPONSES FOR 

DIFFERENT USER GROUPS 

The presented experiments for the identification of the effect of different features on 

physiological responses were based on two groups of young and middle-aged 

individuals. The research should be repeated with a larger sample and in different 

contexts in order to derive more concrete results. Future work should also examine the 

effects of the features analysed here on elderly and other population groups with a 

range of lived experiences that could include conditions that affect their perception and 

sensitivity. The continuation of the presented work in this direction will be highly 

significant for the advancement of research in environmental psychology and stress 

theory in the urban environment.  

10.6.2. INCORPORATION OF QUALITATIVE DATA RELATED TO USER 

EXPERIENCE  

One part of the research that could be improved in the future involves the analysis of 

qualitative data describing the experience of the users. The presented work used 

qualitative data from the participants for the predefined route and the free-living 

activities in Sydney.  

The incorporation of the PANAS scale for the measurement of the affect in the indoor 

experiment and the predefined route showed the value of the inclusion of tools for a 

structured measurement of the different dimensions of the perceived experience 

associated with different events. The analysis of the fluctuations in the positive and 

negative affect during the predefined route in Sydney was only briefly reported (in 

section 6.4.3. in Chapter 6, and section 3.1.5. in Appendix B). However, it revealed 

valuable information regarding the trends in the positive and negative affect in parallel 

to the trends in the studied EDA measures. 

The qualitative data collected during the free-living activities was unstructured, and 

some participants submitted limited information for some routes or did not submit any 

qualitative data. The review of the data assisted in understanding how the participants 
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perceived routes with differences in the stimulation levels or the activity pattern. It was 

also assistive for ruling out the possibility of unexpected events that might influence 

physiological responses. However, this was only possible in cases where the participants 

had provided a detailed description of the experience.   

The inclusion of structured and unstructured methods for collecting data related to the 

perceived experience was undoubtedly valuable for understanding how the users 

perceive the effect of different physical and psychological stressors. The conducted 

experiments showed that there is value in collecting information at three levels; the 

overall perceived experience, the experience in segments of the route which have 

differences in the contextual qualities, and the experience during specific moments of 

interest (such as recorded physiological responses of increased intensity). However, 

more research is needed regarding the best approach and tools for collecting this 

information. Some studies have used applications for self-reporting the user experience 

(e.g., Zeile et al. 2016) during the route. This method of recording the experience has 

the advantage that it is conducted in real-time while experiencing the different 

stressors, and each record is geotagged. At the same time, the participants may have to 

alter their movement to think and record their response. It would be, therefore, 

uncertain if the recorded physiological responses are a result of the experience or the 

actions related to its recording.  

An alternative option could be the design of an application for requesting information 

from the users on different parts of the route shortly after they finish their activity, 

based on their recollections. This step should first involve analysing their physiological 

responses so that the users can be asked information regarding the experience during 

specific responses. The manual review of notes could also be assisted by algorithmic 

methods that involve text processing, identification of clusters of significant themes and 

sentiment analysis.  
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10.6.3. PERSONALISATION OF THE MODELS FOR PREDICTION OF 

PHYSIOLOGICAL RESPONSES 

As mentioned in section 10.3.1.4, one limitation of the models for prediction of 

physiological responses (described in Chapter 8) is that they lack personalisation and 

cannot predict the unique responses that a specific user might have to a particular 

stressor or a sequence of stressors. Future work could involve the exploration of 

solutions for this issue; for instance, the customisation to each user’s traits could be 

facilitated by training a separate model for each user based on their past physiological 

responses. This option would only be useful for users that have EDA tracking 

equipment, but it can be explored in future research in this area. 

10.6.4. USE OF THE DEVELOPED METHODS FOR POST-OCCUPANCY 

EVALUATION 

One research direction that could be explored in the future is the utilisation of the 

developed methods as a tool for post-occupancy evaluation of urban areas. Since the 

methodology involves the collection of trajectory data, this data could be analysed to 

understand the patterns of user activity in selected urban open spaces. The analysis of 

physiological responses, combined with the collected contextual information, could be 

used on top of the analysis of space usage, to understand how users react to different 

spatial configurations. Such a tool could also help understand the differences in space 

usage before and after an urban intervention, or during different stages of an 

intervention, and compare the physiological reactions elicited during each stage.  

10.6.5. USE OF THE SPATIAL DATABASE TO IDENTIFY STRESSOR PATTERNS 

AT A CITY SCALE  

An alternative use of the proposed methods for creating the spatial database could be 

to use them to identify the distribution of physical and psychological stressors in an 

area, without adding physiological data from users. This analysis could lead to the 

development of a ranking tool that identifies differences in the patterns of stressors 

within one city or between different cities. For instance, the spatial database could be 

used to identify neighbourhoods where more psychological stressors are prevalent due 
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to the excessive presence of stimuli, or areas with more intense concentrations of 

physical stressors due to the presence of many obstacles. The identification of 

differences in temperature as a physical stressor can also be included in the ranking 

system, after adding functions for the analysis of parameters related to temperature 

(i.e., green and water) in the methods for building the spatial database. There is much 

potential in working towards this research direction in the future, as the analysis of this 

information could help researchers understand which areas in the city could be 

connected to more physical or psychological stress compared to others. 

10.6.6. ENRICHMENT OF THE SPATIAL DATABASE WITH SOCIOECONOMIC 

AND OTHER STRESSORS 

While the methods for building the spatial database described in Chapter 5 were 

focused on a limited number of parameters that can act as stressors, more information 

layers can be added if needed. This could involve environmental parameters that might 

affect physiological responses, such as air pollution, or social, economic and cultural 

factors that can act as psychological stressors. For instance, if there is available 

geotagged data regarding the spatiotemporal patterns of crime in a city, this 

information could be added in the spatial database as another potential psychological 

stressor. Future work could thus involve demonstrating how the addition of new 

information layers would work in practice. 

10.6.7. ADAPTABILITY AND RESPONSE TO THE CURRENT CIRCUMSTANCES  

Finally, another direction that will be considered for future research is the possible need 

to adapt this work in light of events that changed the global landscape in 2020. In the 

third year of this study, the world witnessed the development of a public health 

emergency which brought forth new considerations regarding the relations between 

people and public space. The social measures which were taken in various countries due 

to the COVID-19 pandemic included staying at home as much as possible, reducing 

physical interactions and keeping a physical distance of at least 1.5 metres from others 

(Zhang et al. 2020). Some early studies (e.g., Maugeri et al. 2020) indicated a significant 
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reduction in physical activity and a negative impact on psychological health and 

wellbeing for the populations of countries that took strong social distancing measures.  

The repercussions of the changes in the normal way of living that we are experiencing 

now are still unknown, as the global health emergency is still affecting the population. 

Some aspects of the presented research might acquire a different significance or 

meaning due to the current circumstances. At an individual level, the proximity to other 

people becomes an additional stressor, due to the possible danger of contracting the 

virus. At a city scale, the presence of mixed-use and elements of public space which 

usually attract human activity has now been associated with unwanted crowding. At the 

same time, trying to avoid interactions with other people results in reduced physical 

activity, which has adversary health effects, as it was shown.  

Some parts of the presented research could be modified to adapt to these 

circumstances and assist in providing solutions for enhancing active mobility in a way 

that responds to the needs of these times. For instance, the module for pathfinding 

towards reducing exposure to stressors already incorporates methods that are 

essentially built to avoid crowding, apart from traffic. These methods were initially 

designed in this way for other reasons, following the context of this research, but they 

could be used directly to assist people in finding routes that help them exercise while 

also avoiding increased possibilities of unwanted crowding. 

As a closing note, the presented work managed to solve many issues among those 

identified in the literature review in Chapter 1, but it was only a first step in this 

research area.  

Future work will be devoted to a more in-depth exploration of some of the topics 

presented in this research. The proposed theoretical and conceptual framework shall be 

a good start for future studies in this area and inspire new approaches. Hopefully, the 

presented work will help other practitioners to conduct research more efficiently in this 

area and enrich our knowledge on how the urban environment influences the body.  
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ABSTRACT 

The complexity of an environment is an important factor related to the quality of urban 
life, as it affects perception. Existing methods for estimating complexity from images or 
field visits are helpful but difficult to apply when the area of interest is large. This study 
identifies alternative ways of estimating the complexity of an environment, by analysing 
the density of Points of Interest (POI) of an area and using it as an indicator of mixed 
land use. Two case studies are explored, and spatial regression models are employed to 
test the association between POI density and complexity, and its predictors. 

Keywords: density, complexity, points of interest, mixed-use 

1. INTRODUCTION

The urban environment can be seen as a composition of elements which act as stimuli 
and may attract the attention of humans. Shopfronts, building facades, traffic noises 
and other elements of the surroundings have visual, auditory, tactile and other 
properties which are recognised by the human sensory system. Research has shown 
that the psychological and physiological responses to an environment are influenced by 
several stimuli and their properties (Berlyne et al. 1963).  

One such property which has been associated with psychophysiological effects is 
complexity. Attributes related to complexity include the number of distinguishable 
elements, as well as structure and order (Berlyne et al. 1963).  The notion of stimulus 
complexity has been associated with the rate of receiving and analysing information 
from the environment (Rapoport and Hawkes 1970). When individuals are faced with 
environments of high complexity, they may require a higher processing time to analyse 
this information. Studies have shown that the excessive presence or the deprivation of 
stimuli, known as overstimulation and understimulation respectively, can act as a 
stressor (Frankenhaeuser et al. 1971). There have also been studies which suggest the 
existence of a relationship between complexity and appraisal of a scene; Berlyne (1960) 
indicated the existence of a U-shaped relationship between complexity and appraisal, 
suggesting that scenes with a medium degree of complexity are preferable in 
comparison to environments with low or high complexity. However, the work of Berlyne 
was focused on the relationship between complexity and appraisal as a general 
phenomenon, and was not related specifically to the urban context. 

Understanding complexity in the context of urban space is important for urban planning 
and design, due to its connections with perception, cognitive load, preference and 
appraisal. While the work of Berlyne refers to the general effects of complexity, other 
subsequent studies have situated their research on complexity in the urban context. For 
instance, Ewing and Clemente (2013)  describe complexity in the urban environment as 
‘the visual richness of a place that depends on the variety of the physical environment, 
specifically the numbers and kinds of buildings, architectural diversity and 
ornamentation, landscape elements, street furniture, signage, and human activity’ 
(Ewing and Clemente 2013, 130). Rapoport and Hawkes (1970) suggested that 
complexity is a desirable property for the urban environment. Their proposal for the 
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definition of optimal complexity is based on the rate of usable information in an 
environment, as well as personal preferences and cultural differences. According to 
their definition, while an environment may rank very highly in terms of overall visual 
variety, it may be so chaotic that it is impossible to decode any useful meaning from it, 
in which case the complexity is not desirable, and the usable information is low. These 
ideas are close to the concept of ‘overload’, discussed by Milgram (1970). His theory 
was also based on information processing, and involved a critique on modern cities 
which may contain environments with an excessive input in terms of information 
available to city dwellers. He suggested that the difficulty to handle the excessive input 
might affect cognitive functioning and have a negative impact on different facets of 
urban experience and daily life.  

The notion of complexity has also been systematically appearing in the field of 
environmental psychology, in studies on stress recovery. Ulrich et al. (1991) provide a 
summary of studies related to arousal, which suggest that a lower complexity is 
preferred when an individual is under stress. Since the complexity of natural 
environments tend to be lower than that of urban settings, this argument has been 
used to support the hypothesis that natural environments may be more helpful for 
stress restoration, compared to urban environments. However, while a lower degree of 
complexity may assist in stress restoration, a moderate increase in complexity may be 
related to higher preference of an environment. Kaplan et al. (1972) showed that 
natural environments with a higher complexity were preferred over natural 
environments with lower complexity; the same positive association between complexity 
and preference was found when analysing urban environments with different degrees 
of complexity. In their study, the natural environments were also generally preferred 
over urban environments, regardless of the differences in complexity within each group. 

The main points which emerge from these studies are that complexity seems to be 
positively connected with higher appraisal and preference of an environment, but when 
it reaches excessive levels it may lead to a stressful or overwhelming experience. For 
similar reasons, the presence of lower complexity may be a better option compared to 
excessive stimulation when the objective is the restoration from stress. It is thus evident 
that stimulus complexity is an important factor which may affect the way that an 
individual perceives their environment, having the potential to make an interaction with 
this environment more pleasurable or more stressful. Understanding the complexity of 
the urban environment is important for multiple research domains, ranging from 
neuroscience to urban design and planning. There has though not been much effort 
towards the development of ways to capture the variations of this aspect of the 
environment and use this information to understand which environments need to be 
redesigned in order to be more pleasurable for their inhabitants. Previous studies on 
the identification and analysis of stimulus complexity and its psychophysiological 
effects, such as the experiments of Berlyne (1963) and Kaplan et al. (1972) have been 
largely based on images, such as cards or projection of slides. Some researchers in 
studies on psychophysiological responses in the built environment have incorporated an 
automated measurement of complexity, by using image processing tools for the 
extraction of properties such as visual clutter (i.e., Benita and Tunçer 2019). One of the 
most comprehensive works in this area is the toolkit which was developed recently by 



340 

Ewing and Clemente (2013) for the evaluation of urban scenes. This toolkit is based on 
measurable attributes; it was developed (Ewing and Handy 2009) and tested by rating 
images, and it was designed to be used as a walking audit instrument. A common 
element in all these approaches is that they require collecting a sufficient sample of 
images for the measurement of complexity. Some researchers such as Ewing and 
Clemente (2013) have made use of web imagery for this purpose, from platforms such 
as Google Street View, but this approach still required spending time to assess each 
photo. These obstacles hinder the measurement of this quality of the urban 
environment in areas larger than a neighbourhood.  

In this context, this study focuses on the problem of estimating the complexity of an 
environment in cases where visual assessment is not feasible. The approach which was 
investigated in this paper was the analysis of the relationship between complexity and 
the density of Points of Interest (POI). Points of Interest (POIs) have emerged as a data 
source which is widely available from providers such as Google and OpenStreetMap 
(OSM) and conveys information concerning land use characteristics of an area. POIs are 
a form of spatial data, which are created when a location is identified as interesting, and 
this information is posted online, accompanied by geographical coordinates. POIs 
usually represent points where the land use is not residential, and they have been used 
extensively in the past 10 years in the context of land use analysis (i.e., Jiang et al. 
2015). The analysis of POI data can give information with regards to land use density 
and diversity (i.e., Wang et al. 2019; Yue et al. 2016). POI density is used here as a term 
which describes the intensity of the spatial distribution of POIs, based on their spatial 
proximity. A place with high POI density in this context is a place where there are many 
POIs close to each other, signifying a concentration of points which have been identified 
as ‘of interest’ by the inhabitants or visitors of the area. 

The reason for selecting POI density as a possible indicator of the degree of complexity 
was that many of the factors that have been connected with complexity in the urban 
context seem to be also connected to POIs. The study of Ewing and Clemente (2013), 
which incorporated an exhaustive analysis of several urban environment characteristics 
which could be connected to complexity according to the theoretical background, 
identified the following factors as the most significant predictors of complexity: the 
number of buildings, building colours and accent colours, the number of people, the 
presence of outdoor dining and the number of street artworks. As POIs are commonly 
used as indicators of the presence of retail or mixed land use, it was expected that high 
POI density would be associated with higher pedestrian activity and a higher presence 
of signs, diverse colours and other visual elements. The link between pedestrian activity 
and POI density was expected to be particularly strong, due to the significant 
association between commercial land use and pedestrian volume. The model of 
Schneider et al. (2009), for instance, identifies the number of commercial retail 
properties within proximity of an intersection as a significant predictor of pedestrian 
volume. 

This study makes thus use of POIs as a proxy of mixed and commercial land use and 
examines the relationship between POI density and complexity. This relationship is 
tested by extracting the POI density from POI data and comparing it to the overall 
degree of complexity, as well as separate factors related to it, such as pedestrian 
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volume and number of colours. The aim is to explore this link in order to use this 
information in future studies, in order to estimate the degree of complexity of a place 
which can be applied without having to analyse a large volume of images or spend time 
and resources in field visits. The POIs are retrieved by freely available APIs, and the POI 
density is estimated by using the nodes of the street network, retrieved from OSM data 
which are also freely available and have worldwide coverage.  

The paper thus has a twofold contribution; firstly, it enriches current research on 
factors which predict complexity, by analysing the link between POI density (and thus 
commercial and mixed-use density) and complexity. At the same time, it showcases a 
novel methodological approach for identifying places where there is a probability of 
high complexity. This method is easily reproducible, computationally inexpensive and 
can be applied as a fully automated process wherever there is sufficient documentation 
of POIs.  

The paper starts by elaborating on the methods used for the extraction of POI density, 
the extraction of the degree of complexity from images, and the statistical methods 
used for their comparison. The results are then presented for two case studies, 
followed by a discussion on the findings. 

2. MATERIALS AND METHODS

Two case studies were designed in order to provide a sufficient understanding of the 
relation between POI density, complexity and its predictors. The first test involved the 
analysis of points sampled randomly from a 20x20 km bounding box, centred at the 
Central Station of Sydney. The second test involved a more focused analysis on points 
sampled from a selected 1.8 km walking route. 

In the first case study, the points were sampled from various areas with largely different 
degrees of density, including quiet suburban districts and urban green areas as well as 
the highly crowded Sydney CBD. The methods of analysis involved an analysis of 
features related to complexity, based on the study of Ewing and Clemente (2013),  and 
the statistical analysis of the relation between these features and the degree of POI 
density for the sampled points. The extraction of features related to complexity was 
conducted by accessing and rating images from Google Street View for the 
geocoordinates of each of the sampled nodes. The method for calculating POI density is 
outlined in section 2.1. 

A subsection of the first area of examination was selected for the second case study. 
This experiment aimed to examine the variations in complexity during a 30-minute 
route within the Sydney CBD.  The relations between POI density and factors related to 
complexity were explored here in a more fine-grained manner, by examining if the 
variations in complexity would parallel the variations in POI density during the route. 
Images from Google Street View were accessed again for each point of the route, for 
the extraction of features related to complexity, and the POI density was calculated 
with the same method as in the first test. Statistical analysis was then conducted for the 
examination of the relationship between complexity and POI density. The analysis was 
complemented by video footage which aimed to enrich the understanding of 
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spatiotemporal variations of complexity; one video was captured at each GPS point, 
lasting approximately 80 seconds. The videos were captured during one weekday in 
Spring 2019, with mild weather, between 2 and 4 pm.  

2.1. SPATIAL DATA PROCESSING: DATA ANALYSIS AND DATA FUSION 

POI data were obtained for free using the Triposo API. Street network data were 
acquired from the OSM database, using the python library osmnx. Two k-d trees were 
constructed for separate spatial indexing of the POI and the OSM data. The OSM data 
contained the geocoordinates of the nodes and links of the street network. The POI 
density was calculated by querying the k-d tree and detecting the number of POIs 
within 100m of each POI. The resulting metric thus depicted the relationship between 
the different POIs and reflected the varying densities in their spatial distribution. Figure 
A1 shows an example of the calculation of POI density for the Sydney CBD. 

 

Figure A1. Upper: The outcome of the calculation of POI density for the Sydney CBD. Lower: POI density in 
the area selected for Case Study 2 
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The fusion of OSM and POI data then followed by calculating the closest POI for each 
street network node of the OSM database. The closest POI was found using a nearest 
neighbor query, using the OSM k-d tree. The fusion of OSM and POI data was conducted 
in order to provide a representation of the whole street network in terms of variability 
of complexity, and not only the nodes which were associated with POIs. The nodes 
which were far from POIs were essentially marked with POI density close to zero. 

The resulting database contained 109117 nodes in total. The following features were 
extracted from the POI database and transferred to the OSM database: closest POI 
density, closest POI distance. The two metrics were then combined in the following 
manner, in order to take into account the effect of distance:  

 Node POI density = closest POI density/ [ln(closest POI distance +1)]2         (1) 

This formula (Equation 1) was constructed after conducting several experiments and 
fine-tuning the parameters so that the result would be as representative as possible of 
the real spatial relationship between a node and the spatial distribution of its closest 
POIs.  

2.2 MEASURING COMPLEXITY FROM THE SITE CHARACTERISTICS  

The measurement on complexity was based on the visual analysis of different 
environments, using street imagery from web pages (Google Street View) for the first 
case study, and a combination of web page imagery and videos taken in the field for the 
second case study. Each environment was analysed for the extraction of attributes 
which were identified as significant with respect to complexity in Ewing and Clemente 
(2013). The Google Street View images were assessed manually, while for the video 
analysis, an algorithm was built for the automatic extraction of frames, and the 
identification of pedestrians. The algorithm makes use of state of the art techniques for 
object recognition and computer vision using deep learning models, implemented in the 
Python library ImageAI. This analysis was conducted in order to extract additional 
information regarding the degree of change in pedestrian activity and traffic. 

The following attributes were extracted: number of buildings, number of people, 
number of dominant building colours, number of accent colours, presence of outdoor 
dining, number of public artworks. The variable extraction followed the guidelines of 
Ewing and Clemente (2013, 104-135). The variable ‘complexity’ was then calculated, 
using the coefficients which were found in Table 3.9 in Ewing and Clemente (2013, 50.).  

The images displayed in Figure A2 are examples of the environments which were 
assessed in terms of complexity. The degree of complexity, according to the ranked 
variables, increases progressively: the upper images have very low complexity and POI 
density, being typical examples of environments of low residential density. All the 
factors which contribute to the complexity ranking are very low for these two streets 
(Dunoon Avenue and Elizabeth Parade), as shown in Figure A3 there were no signs of 
pedestrian activity in the images which were assessed around these points, and there 
was a high homogeneity in terms of visual elements. The images in the middle have a 
medium degree of complexity and POI density, and represent typical suburban 
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scenarios with low to medium presence of mixed-use, usually found in the centre of the 
suburb. There is some pedestrian activity in The Seven Ways, but much fewer compared 
to York Street and George Street. The images in the bottom of Figure A2 rank highly in 
terms of complexity and POI density; there is a significant presence of skyscrapers and 
commercial activity, accompanied by intense pedestrian activity. The high ranking in 
these factors is also visible in Figure A3, where it is shown that the number of 
pedestrians and buildings is much higher for York Street and George Street in 
comparison to the other cases. 

 

Figure A2. Examples of the locations which were assessed in terms of complexity. Upper left: Dunoon Av. 
Upper right: Elizabeth Parade. Middle left: Hennesy St. Middle Right: The Seven Ways. Bottom Left: York 

St. Bottom Right: George St. Source: Google Street View  
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Figure A3. An example of the attributes extracted from the images in relation to complexity. The resulting 
degree of complexity is also displayed for each location, as well as the corresponding POI density. 

2.3. STATISTICAL ANALYSIS 

The first test involved the random selection of 600 nodes from the OSM street network 
data. Special attention was paid to ensure that the randomly selected points would 
represent all the different density levels of the studied area. The database was split into 
four bands according to the density levels of each point, and 150 points were then 
selected randomly from each band. The final dataset contained 512 points.  

The statistical analysis involved correlation analysis for the examination of the 
relationship between POI density and complexity. There was also interest in 
understanding the relationship between the parameters which were combined to 
construct the ‘complexity’ variable, and POI density; or in other words, to see which 
properties of a space related to complexity were most related to POI density in the 
studied site. The results of the Moran’s I test showed significant autocorrelation in the 
distribution of both variables, which would violate the assumptions of independence of 
the variables needed for Ordinary Least Squares (OLS) regression. Spatial 
autocorrelation was also identified in the residuals when an OLS regression test was 
conducted, suggesting that the resulting coefficients of this test would not be valid. 

For this reason, the main statistical analysis was conducted with a spatial regression 
model, which takes into account the spatial dependency of the variables. The data 
points were processed in the GEODA software, and a matrix of weights was extracted 
for weights based on contiguity as well as distance, describing the spatial relationship of 
the variables. The Lagrange Multiplier test diagnostics of the OLS regression produced 
very similar values for the spatial error and the spatial lag model; it was thus decided to 
proceed with both spatial error and spatial lag models, and compare the results to see 
which variables would emerge as significant in both versions. The models which are 
presented in section 3 were first checked to confirm that there was no spatial 
autocorrelation in the residuals. 

The second test examined a set of 27 GPS points obtained from the selected outdoor 
route close to the Central Station. The statistical analysis here involved correlation 
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analysis between POI density and complexity and visual examination of the graphs of 
the different variables. 

3. RESULTS 

3.1. CASE STUDY 1 

The correlation analysis between POI density and complexity suggested that there is a 
moderate to strong positive association between the two variables (Spearman’s rs=0.64, 
p<0.00001). A spatial regression model was also run for the examination of the 
association between POI density and complexity, with complexity as the dependent 
variable and POI density as the predictor. The model also showed that there was a 
moderate but statistically significant association between the two variables (r squared = 
0.43, p<0.00001), also showing that there was a significant presence of spatial error 
(p<0.00001). 

The results of the spatial regression models with POI density as the dependent variable 
and the other factors related to complexity as predictors showed that there was a 
statistically significant association (p<0.00001) between POI density and the number of 
pedestrians, as well as the presence of outdoor dining. This finding was consistent in all 
models (apart from one model where the association with the number of pedestrians 
was again significant but with a higher p-value). The most successful model, according 
to the Akaike Information Criterion (AIC) of the different models, had r2 = 0.70; the 
results were similar for the other models. The models are presented in Figure A4. 

 

Figure A4. The results of the spatial regression models. 

The fact that the coefficient was smaller for the number of pedestrians compared to 
other variables was expected due to the much higher range in this variable in 
comparison to the others; for instance, in some of the points with a high degree of 
complexity and POI density, there were more than 100 pedestrians, while in other areas 
there were none. The number of accent colours was also identified as statistically 
significant (p<0.01) in two models, and the number of buildings in one model. 
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3.2. CASE STUDY 2 

The correlation between POI density and complexity for the planned route was again 
moderate to strong, and statistically significant at p<0.05 (rs = 0.66, p=0.0001). In this 
case, though, the variables were not completely independent, as the points have spatial 
proximity. The result of the correlation analysis here is thus reported as an indication 
that the relation between POI density and complexity which was observed before is also 
holding true in this case, but it is significantly affected by the spatial distribution of the 
points. This spatial relationship is also visible in the graphs of POI density and complexity 
(Figure A5), where there is a tendency of parallel increases and decreases in the two 
variables. 

 

Figure A5. Left: Graphs presenting the calculated degree of complexity and POI density for each point. 
Right: A kernel density plot and a regression plot showing the two-dimensional relationship between the 

two variables. 
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Figure A6. Maps showing the spatial distribution of complexity, POI density and the separate predictors of 
complexity 

The maps shown in Figure A6 incorporate a fragmentation of the route points in 
segments from A to G; this segmentation was applied to allow a comparison of the 
variations in the studied variables, and it was conducted by splitting the route into parts 
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which had similar length in terms of walking distance, and similar contextual qualities 
according to the authors’ knowledge of the area.   

The visual inspection of the maps (Figure A6) also confirms the similarity between the 
degree of POI density and complexity. Segments A and G appear to have the highest 
complexity and density, as well as a high number of pedestrians, buildings and accent 
colours. Segment A has also points with a larger number of building colours. There were 
generally very few points with outdoor dining and public art in the selected sample; 
these characteristics were also found relatively less frequently in the first case study. 
The few points with outdoor dining were found in segment A, and public art appeared 
in segments B and C. 

 

Figure A7. Maps showing the variation in pedestrian activity and traffic. The points with highest variation 
are depicted with red colour, while low variations are depicted with light yellow. 

The analysis of the video segments showed that the most intense variations in 
pedestrian activity were in three points; one in the middle of segment A, one at the end 
of segment B and one in the middle of segment F (Figure A7). These points are very 
close to traffic lights, on one of the busiest streets of the Sydney CBD. The pedestrian 
volume is also high at these points; this means that there is intense crowding but also a 
rapid change of moving stimuli at these points. Figure A8 shows one of these points, 
contrasted with one point where there is low pedestrian volume, as well as low change 
in the number of pedestrians. The analysis of variations in traffic showed that there is a 
small degree of variation in the majority of the route, apart from two points, where 
there was an intense change in the volume of passing cars when the videos were taken.  



 

350 
   

 

Figure A8. Variations in the number of pedestrians in two selected spots.  

The visual inspection of photos from Google Street View and field visits also showed 
that while some places had similar values in terms of POI density and complexity, they 
had a very different character. For instance, segment D contained a residential street 
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segment and a small urban park. Segment B also contained an urban park, which 
attracted much higher activity as it was very close to a shopping mall. Both segments 
had similar POI density and complexity values, and a field visit showed that both places 
were generally calmer compared to other segments which had higher values in terms of 
POI density and complexity. At the same time, the two urban parks had a much higher 
presence of natural elements compared to the residential street segment, and were 
able to host a wide range of activities due to their design, while the residential street 
had a more transitional character. The two parks also differed in terms of factors such 
as the sense of enclosure due to the surroundings, or the degree of presence of water. 

These qualitative differences may be related to other parameters connected to the way 
that a place is perceived aside from the complexity factor.  

4. DISCUSSION 

The results of both case studies suggest that there is a positive association between POI 
density and complexity. Among the different predictors of complexity which were 
tested, the presence of people and outdoor dining were identified as the variables with 
the most significant association with POI density. This finding was also expected, 
especially concerning the link between POI density and presence of people: a denser 
concentration of POIs indicated a higher presence of mixed or commercial use and thus 
a higher degree of pedestrian activity. The significant association between POI density, 
pedestrian activity and outdoor dining also suggests that the same metric could be used 
as an indicator of the imageability of a place, as these variables were identified as 
important with respect to imageability in the models of Ewing and Clemente (2013). 

The inspection of the predicted and actual values in the models suggested a moderately 
good fit. The practical implications of the identification of this link between POI density 
and complexity are that street network nodes which have a high degree of POI density 
have a higher probability of being more complex environments in comparison to nodes 
with low POI density. Urban designers or planners could thus use maps which show the 
distribution of POI density as a tool for the rough identification of spatial variations of 
complexity, in combination with other modes of urban analysis. This information can be 
then used to find places which may need to become richer in terms of stimuli in order 
to provide a more satisfying sensorial experience. The same strategy could be followed 
to find areas where there is a lack of places that allow restoration from stress. This 
could happen in areas which have a very intense concentration of POIs may be too rich 
in stimuli of high intensity, to such an extent that the experience may become stressful 
for the pedestrians, according to the concept of sensory overload (Milgram 1970).  

Apart from confirming the relationship between POI density and complexity in the 
studied context of Sydney, this research also has an important contribution in terms of 
the methodological approach which was adopted here; due to the proposed fusion of 
POI data with street network data, the POI density, as well as the degree of complexity 
which can be inferred from it, can be studied in the future in relation to other metrics 
related to urban network analysis, such as node centrality measures (Jiang and 
Claramunt 2004).  
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Another novelty was the employment of state of the art methods for object recognition, 
for the extraction of variation in the human activity. This method, which was employed 
in the second case study, proved particularly useful for the identification of an 
additional dimension with respect to complexity: the degree of variation in the 
movement of people, or in other words the variation in surrounding circumstances and 
stimuli which have to be analysed during interactions with the surroundings.  This 
method can be adopted in future field studies where image-based techniques are 
applied for understanding and analysing complexity. Its applicability is currently 
constrained on small scale studies, as it requires the use of videos or images captured at 
the same place with a high frequency.  

The analysis presented in section 3 showed that the variations in the spatial distribution 
of POIs, measured by POI density, could be used as an indicator of complexity. However, 
there are some theoretical issues, as well as methodological and practical limitations 
which need to be addressed in future studies.  

The main issue which needs to be studied to strengthen the theoretical foundations of 
this research area is: how much complexity is necessary to stimulate pleasureable urban 
life without becoming overwhelming?. If we use POI density as a measure of 
complexity, this needs to be identified. Existing literature only contains general 
guidelines regarding the relationship between complexity and its effects on pedestrians. 
More evidence-based research is needed in order to support and refine such guidelines.  

The literature review presented in the introduction indicated a relationship between 
complexity and two other factors: appraisal or preference of an environment, and stress 
restoration. It was suggested that very high levels of complexity could have a negative 
effect for both factors. However, there is lack of quantitative and qualitative research 
that can help us define these limits. Future studies should thus be conducted to address 
this issue, involving mapping psychophysiological responses during exposure to 
environments with different degrees of complexity, coupled with a qualitative analysis 
of perceived experience. 

Another issue that should be considered is that user experience is also affected by other 
factors apart from complexity, such as imageability. This has to be kept in mind in the 
analysis of the qualities of the urban environment. The identified relation between POI 
density and complexity should also not be interpreted as an indication that the number 
of POIs and the resulting degree of complexity are the only factors that automatically 
guarantee the successful design of an environment. Multiple factors such as the 
functional program, context, the needs of the local residents and the size of the local 
economy at the urban planning level should be always be considered to make informed 
urban design decisions.  

The quality, structure and character of stimuli also affect other facets of the resulting 
experience, such as comfort and walkability. The links between the different 
parameters are also evident in the analysis of Ewing and Clemente (2013), which 
showed that some of the parameters that affect complexity, such as pedestrian volume 
and outdoor dining, also affect imageability. A high presence of these elements, and a 
sufficient integration of mixed-use which is related to them, is necessary in order to 
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stimulate urban life and achieve a successful and vibrant urban environment (Jacobs 
1961; Montgomery 1998). It is thus difficult to identify an ideal level of complexity in a 
way that ensures a good balance between complexity, imageability and other factors. 

It should also be noted that the absence of any ‘points of interest’ in an environment 
does not necessarily suggest the lack of ingredients that can capture the attention of 
the pedestrian. The personal experiences and preferences of each individual also play a 
role in the way that they analyse and interpret their surroundings. The actual response 
to the different levels of stimulation may vary from person to person. An individual who 
is used to living in an environment of very high density, for instance, may perceive 
differently an urban environment rich in stimulation in comparison to another person 
who is used to living in the countryside. The context and the history of encounters with 
the stimuli, as well as the intent of the visit also plays a role. The degree of novelty of an 
environment is a critical factor, as prior exposure to the same environment may affect 
the way that it is perceived. The surrounding stimuli may not attract the attention of 
people who are already familiar with them, compared to people that visit the same 
areas for the first time. For instance, the experience of encountering a landmark in a 
city from the perspective of a tourist may not be the same as a similar encounter from 
the perspective of a resident, despite the fact that the overall degree of information is 
the same. 

 A lower presence of stimuli is also not a necessarily negative quality, as it could assist 
the pedestrian in having a more reflective experience. Urban green areas are good 
examples of such places. Similarly, the exposure to excessive stimulation levels in cases 
where the complexity of the environment is very high may be interpreted as an exciting 
and memorable event for some people. This depends on their sensitivity in terms of 
sensory processing and their personal preferences. The urban fabric should thus be 
designed in a way that allows vibrant as well as restorative environments to coexist.  

One methodological limitation of this study was that all the material was reviewed by 
the same researcher, but another reviewer might have rated some variables slightly 
differently. This concern would be more applicable for two variables (number of 
building colours and accent colours), as the study of Ewing and Clemente (2013) 
showed that there was moderate inter-rater reliability for them, despite the adoption of 
common guidelines. Additionally, the images which were used for the assessment of 
pedestrian activity are only an indication of the gross variations in this variable, and 
cannot represent all the possible diurnal variations of pedestrian volume.  

Another limitation was that the route which was chosen for the second case study was 
not based on an entirely random selection of points. The points were sampled from the 
local area based on the presence of different degrees of complexity. The analysis 
showed that the extrapolated values of complexity and POI density had similar trends in 
the second case study. However, this finding may be affected by particular 
characteristics of the chosen route. The choice of another route might have yielded 
different results. At the same time, this part of the study was exploratory and the 
emphasis was on acquiring a better understanding of the differences between places 
with different degrees of complexity. The aim was to collect evidence regarding the way 
that the emerging similarities and differences between places with a different degree of 
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complexity would be reflected in the analysis of the POI density. The findings of the 
second case study were certainly illustrative from this perspective. They showed the 
need to complement the analysis of complexity with other data which can enrich our 
understanding of spatial qualities. This data could be provided by a combination of 
semantic analysis of POI data, street images and other material collected during field 
visits. 

To conclude, the analysis of POI density as was conducted in this research is more 
helpful as a tool which suggests areas that could need interventions, but this is only a 
first step which has to be followed by a more focused analysis, taking into account the 
input of local residents. The conducted analysis showed that POI density can be used as 
an indicator of complexity. The identified association between POI density and 
complexity should, however, be interpreted as a tendency rather than a rule. The 
findings of this study are representative of the context of Sydney, and more research is 
needed before generalising these findings in environments with another cultural 
background or other factors which may affect the perception of the environment. 
Future research in this area will be largely beneficial for understanding the multitude of 
urban planning and design elements which affect the quality of urban life. 
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ABSTRACT 

Understanding the way that the urban environment affects the human body is 
important for the advancement of health and wellbeing. Electrodermal activity (EDA) 
has been extensively used as an indicator of stress. The aim of this study is the analysis 
of urban features that can act as stressors by using wearable technologies that measure 
EDA. We analyze the physiological responses of walkers while navigating an outdoor 
route in Sydney, Australia. The analyzed parameters include contextual and movement-
related features. The results suggest that the duration and intensity of activity, as well 
as the density of mixed-use affect physiological responses significantly.  

KEYWORDS 

Wearable sensors, Physiological responses, Urban environment, Electrodermal activity, 
stressors 

1. INTRODUCTION

Electrodermal activity (EDA) is a physiological measure that reflects the changes in skin 
resistance due to the activity of the sweat gland. It is one of the most widely used 
measures of the activity of the sympathetic nervous system (Boucsein, 2012), a branch 
of the autonomic nervous system which mobilizes the body to prepare it for action. EDA 
measures are widely used as indicators of stress, due to the connection between stress 
and the sympathetic nervous system. 

According to the concept of allostasis (Sterling and Eyer, 1988), stress mechanisms are 
activated when there is a change from a stable body state (“steady state”) to another. 
These states may be associated with different conditions, such as a change from a 
sitting position to moving position, or a sudden drop in temperature. This model is an 
evolution of early conceptualizations of stress such as the “fight or flight“ concept 
(Cannon, 1929). The situations which may activate the stress response are called 
“stressors”. There is evidence that at least two types of stressors are recognized by the 
brain (Dayas et al., 2001): physical and psychological stressors. While stress is 
commonly used in studies as a term describing a condition that is negatively perceived 
by the individual that experiences it (Boucsein and Backs, 2009), some conditions may 
generate physiological stress responses without being associated with a negative 
experience. For instance, physical activity has been extensively studied as a physical 
stressor (Hackney 2006), which is usually associated with a positive emotion (Sanchis-
Gomar et al., 2012).  

While there is a large body of research on physiological responses to stressors in the 
laboratory, there is much less evidence of the impact of these stressors in the urban 
environment. The urban fabric incorporates factors such as temperature and noise, 
which can act as stressors. One such factor is the complexity and intensity of sensorial 
input; there has been evidence that overstimulation can act as a psychological stressor 
(Frankenhaeuser et al., 1971). Milgram (1970) referred to the phenomenon of sensory 
overload in connection to urban life.  
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According to the Psycho-Evolutionary Theory of Stress Reduction (Ulrich et al., 1991), 
environments with a high presence and intensity of stimuli may require a higher time of 
information processing, thus slowing down restoration from stress. Another 
psychological stressor with a high presence in urban life is noise; there is plenty of 
evidence that exposure to noise can generate stress responses (i.e., Babisch, 2011). 
Traffic is associated with this stressor, as it is one of the significant sources of noise in 
the urban fabric.  

In the past ten years, there have been several studies that use wearable sensors for the 
study of physiological responses in urban or natural environments. Most studies had as 
an objective the analysis of the effect of green areas on physiological responses; the 
examination of electroencephalography (EEG) data has been employed for this purpose, 
in studies which compare green with urban zones (Aspinall et al., 2015; Neale et al., 
2017). The findings of Aspinall et al. (2015) showed physiological patterns closer to 
meditation and with less frustration, engagement, and arousal, in the green areas 
compared to the urban setting.  

The effect of urban form on physiological responses has also been the focus of a few 
studies, where the analyzed parameters were isovist properties, and the physiological 
responses were further classified as emotions. An isovist is the area which is visible from 
a given point in space. This factor is, thus, related to the visual field of the pedestrian. 
The parameters of an isovist include properties such as the occlusivity (the amount of 
open edges) or the compactness of the visual field (Hijazi et al., 2016). The experiments 
of Hijazi et al. (2016) showed a relation between some of these properties and negative 
emotion arousal. Environmental parameters have also been included in a few studies.  
Benita and Tunçer (2019), for instance, studied the effect of environmental parameters 
and urban conditions on stress responses in Singapore. Their analysis indicated that the 
strongest relationship was between physiological responses and ambient temperature.  

Some recent studies have also used parameters related to traffic in their analysis of 
physiological responses during walking. The analysis of Chrisinger and King (2018), 
which involved 14 participants and was conducted during a 20-minute walk, showed 
that the EDA was significantly lower in streets with high traffic levels when compared to 
local streets, contrary to the expectations. Saitis and Kalimeri (2018) studied 12 visually 
impaired pedestrians, and found that the blind participants had higher heart rate while 
crossing an intersection, compared to individuals with severely impaired vision. The 
study of Birenboim et al. (2019), which involved 15 participants, also showed an 
increase in EDA responses when crossing a main street without a traffic light, compared 
to a neutral environment.  

A gap that has been identified in previous studies is the lack of research on the effect of 
movement on physiological responses. The mapping of physiological responses in the 
studies which were mentioned above was conducted while the participants were 
walking or cycling. While movement was included in the setup, it was not a part of the 
studied factors in the inferential analysis. The incorporation of this aspect currently 
lacks in studies in this research area. Studies that mention this gap typically consider the 
effects of movement as artefacts. This holds true for spontaneous movements which 
dislocate the equipment and produce sharp peaks and drops in EDA which cannot be 
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attributed to physiological changes (Boucsein, 2012). However, the fact that physical 
activity is a stressor, creates a new angle to this problem. The possibility that there are 
effects related to activity on physiological responses (which are not artefacts, based on 
the shape of the signal), requires study. This is of value in the context of research on 
stress and physiological arousal in the urban environment.  

In this context, the focus of this study is on the analysis of the relation between physical 
and psychological stressors related to movement and urban conditions, and 
physiological responses during walking in the urban environment. The study of physical 
stressors primarily involves parameters related to movement which could be related to 
an increase in stress levels. One such parameter is the change in activity state. Following 
the concept of allostasis by Sterling and Eyer (1988), a change from a state to another, 
such as a change from walking to standing, could act as a physical stressor. Two other 
parameters that could act as stressors are the duration of activity, and the activity 
intensity (Acevedo et al., 2007). Temperature is also considered as a physical stressor 
that can affect physiological responses (Benita and Tunçer, 2019).  

In terms of psychological stressors, the parameters studied are traffic, the presence of 
traffic lights and the density of mixed-use. The focus here is on parameters which affect 
stimulation, having the potential to cause information overload. Traffic is included as a 
parameter since other studies have shown a link between this factor and physiological 
responses. This parameter is related to stimulation levels as it is connected to noise. 
The presence of traffic lights is also studied for the same reason, and due to their 
potential ability to affect movement. The density of mixed-use, has not been studied 
adequately before in relation to physiological responses. In urban environments with a 
high presence of mixed-use, there is typically an increased diversity of colors and visual 
elements, as well as a higher presence of people, due to the higher presence of 
functions that attract human activity. These elements act as stimuli which attract the 
attention of the pedestrians. Points of Interest (POIs) are typically utilized to support 
this analysis. POIs have emerged in the past ten years as a source of information on land 
use characteristics, such as the density or diversity of land use types. Several studies 
have used POIs for the representation of variations in these parameters; Zeng and Lin 
(2016), for instance, used POIs to study the land use density, entropy and degree of 
concentration along an urban rail line. Following these studies, POI density will be used 
as a representation of the density of mixed-use.  

This paper acts as a pilot project addressing the following objectives: (1) test a 
methodology for collecting and mapping physiological responses in parallel to 
contextual and activity data, and (2) examine the relationship between the collected 
data. The effect of parameters related to the context and the movement of the 
participant on physiological responses are investigated after describing the 
methodology for data collection and analysis. The combination of these two objectives 
enhance current research on the impact of urban features on physiological responses. 
The main research question of the paper is the following: Do the selected contextual 
parameters (traffic, density of mixed-use, and traffic lights) and the studied 
characteristics of movement (duration of activity, activity intensity, change in activity 
state) affect physiological responses?  This question is investigated by collecting 
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physiological, contextual and movement-related data from 18 participants during an 
outdoor predefined walking route in Sydney. 

The paper is organized as follows; section 2 elaborates on the study design, the 
methods used for data collection and analysis, and the statistical approach. Section 3 
reports the results of the outdoor experiment. Section 4 discusses the findings and their 
implications and elaborates on limitations and future research directions. The 
conclusions are presented in section 5. 

2. MATERIALS AND METHODS 

2.1. STUDY DESIGN 

The studied parameters are examined by conducting an outdoor experiment where the 
participants are asked to walk on a predefined route. Before the outdoor experiment, 
all the participants completed a 10-minute sequence of activities (sitting, standing, 
walking) in an indoor environment with a temperature between 18-20°C. This ensured 
that they were exposed to the same circumstances before the outdoor experiment, and 
allowed them to familiarize with the equipment. 

In terms of physiological data monitoring, this study focuses on changes in EDA and 
measures stemming from it.  

Eighteen participants were recruited for this test (age = 31.3 ± 5.3 yrs.). The research 
project was advertised using posters at the university [name redacted for double-blind 
review] of the authors. The prospective participants had to be affiliated with the 
university to take part in the research. This requirement ensured that they would be 
somewhat familiar with the facilities of the university and the areas in which the 
outdoor route traversed. This familiarity helps in controlling the parameter of novelty, 
which can affect the physiological responses (Berlyne, 1960).   The protocol for the 
study design was approved by the University’s Human Research Ethics Committee 
(University name redacted for double-blind review HREC REF NO. ETH19-3752). All the 
participants provided informed written consent before the commencement of the 
experiment. One participant exhibited very low EDA and EDR responses during the 
indoor and outdoor experiments. This means that they had generally very low levels of 
EDA data, without any visible responses in the presence of stimulation or movement 
changes. The data from this participant was excluded. The final sample was, therefore, 
n=17 (nine females and eight males). 

The tests were conducted at an outdoor temperature of 21 ± 4 °C during the afternoon. 
The time needed for completing the route was approximately 40 minutes. The outdoor 
route was designed to include exposure to conditions of high and low mixed-use 
(represented by POI density), noise, traffic, and crowding, within a walkable distance 
from the starting point of the route.  
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Figure B1. The outdoor route. The image is based on a screenshot taken from Google maps (Google 
Maps, 2020). 

The statistical analysis of the data involved two types of analysis: the comparison of 
differences in the physiological responses during transitions between different 
segments of the route, and regression analysis. The first analysis involved splitting the 
route into seven segments that represented different contextual qualities. Figure B1 
presents a map of the route; The qualities of the segments are as follows: 

- Segment A is on Broadway Street, one of the busiest roads of Sydney in terms of 
pedestrian and car traffic, with a high presence of restaurants and retail stores.  

- Segment B starts at the entrance of the One Central Park tower, an iconic 
mixed-use building; the participants are asked to go through the part of the 
building which is open to pedestrians, towards a small lively park in the back of 
the building, and sit in the park for 5 minutes. After this, they return to 
Broadway Street through the park, completing segment B. At the end of 
segment B, there is a traffic light, which the participants have to cross to reach 
segment C; at this spot, there is an intense transition from a place with high 
presence of natural characteristics and human recreational activity, to intense 
noise, crowding and traffic conditions.  

- Segment C has low traffic levels and is characterized by medium to high levels of 
pedestrian activity, as it is positioned between two buildings of one of the local 
universities.  

- Segment D has lower pedestrian activity, very low traffic, and high levels of 
green, including a tree canopy which is covering the majority of the street, and a 
park.  

- Segment E marks a transition to higher levels of traffic and noise and a traffic 
light.  

- Segment F includes walking on an elevated urban park with high pedestrian 
activity. Towards the end of Segment F, the presence of mixed-use becomes 
much higher.  
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- Segment G involves walking in the Central Station tunnel. The tunnel includes 
some retail shops and cafes, and is characterized by high levels of crowding; 
finally, the participants finish the walk by visiting briefly the very noisy and 
crowded Broadway street.  

In addition to the measurements using the hardware, participants were asked to fill the 
PANAS scale questionnaire for each segment. The typical PANAS test includes twenty 
adjectives that describe different moods (Watson et al., 1988); ten moods are 
connected to the positive affect and the rest to the negative affect. The participants are 
usually asked to describe the extent to which they experienced each state by rating it 
on a scale of 1-5. In this study, it was important to understand the experience of the 
participants in different parts of the route, and track how it changed in parallel to the 
contextual changes. Therefore, the participants were asked to complete the test for 
each of the seven segments presented in Figure B1, and were asked to note the 
intensity with which they experienced each of the provided ten positive and ten 
negative states, by rating them on a scale of 1-5. The overall procedure was thus the 
same as in the typical PANAS questionnaire, with the only difference being the 
administration of the questionnaire seven times, one for each segment. 

The participants were also asked to note down anything that they considered significant 
during the outdoor route, in the form of an open question or comment. The inclusion of 
this observation allowed noting any unexpected factors that could have affected their 
experience during the measurements. The questionnaire for the outdoor route was 
given approximately 15 minutes after the participants returned from the outdoor route.  

2.2. DATA COLLECTION AND DATA FUSION  

2.2.1. PHYSIOLOGICAL DATA 

The participants were given an Empatica E4 wristband for the measurement of EDA and 
accelerometer data. This wristband has the size of a typical wrist watch. It has been 
used extensively in similar studies and provides a highly accurate measurement of EDA.  
The sampling rate was 4 Hz. In addition to this, GPS data was collected using 
smartphones of the participants, with a sampling rate of 1Hz. 

 

Figure B2. Demonstration of the application of the artefact recognition algorithm 
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The EDA data were cleaned from artifacts using an algorithm for artefact recognition 
(Figure B2), similar to that of Taylor et al. (2015). The EDA signal is typically processed 
for the extraction of tonic and phasic components. The tonic component (tonic EDA) is a 
smooth curve representing the slow changes in EDA over time. The phasic component 
(phasic EDA, or electrodermal responses, EDR) is connected to the immediate reaction 
to external stimuli. These reactions have the shape of a peak and are superposed on the 
slowly changing component (tonic EDA). 

The extraction of EDRs was conducted with a peak recognition algorithm based on the 
derivative of the signal.  

The measures that were extracted from the EDA data were the following: tonic EDA, 
mean EDR amplitude, EDR frequency, and sum of EDR amplitudes. The tonic EDA is the 
tonic component of the signal. The mean EDR amplitude is related to the amplitude of 
the peaks (the EDRs). It represents the intensity of physiological responses and the way 
that it changes based on the external input. The EDR frequency is the rate of 
appearance of physiological responses. The sum of EDR amplitudes is the result of the 
addition of the amplitudes of all the EDRs in a predefined time window. The resulting 
variable is thus a measure that reflects both the intensity and rate of appearance of 
physiological responses. 

The steps followed for the calculation of the variables are outlined below: 

- The calculation of tonic EDA involved interpolating the starting and ending point 
of each peak and connecting the rest of the signal with these interpolated 
segments. The signal was, then, smoothed by down-sampling it at 20 seconds. 

- The calculation of the mean EDR amplitude involved finding the mean value of 
the amplitudes of EDRs in 1-minute data segments.  

- The calculation of EDR frequency involved finding the number of EDRs in 1-
minute data segments.  

- The variable sum of EDR amplitudes was extracted by finding the sum of the 
amplitudes of the EDRs in 1-minute data segments.  

- The tonic EDA was normalized for each participant based on their maximum EDA 
(Boucsein, 2012). The EDR amplitude was also normalized for the calculation of 
the mean EDR amplitude.  

The main feature which was used as the dependent variable in the regression analysis 
was the sum of EDR amplitudes since it indicates both the number and intensity of the 
responses, as mentioned above. However, it was decided to include an analysis of the 
other EDA features (EDA frequency, tonic EDA, mean EDR amplitude) at least in the 
segment analysis. This analysis helps in understanding the fluctuations of each feature 
during the analyzed route in detail. Figure B3 presents an example of the extraction of 
the different features from the raw EDA signal. 
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Figure B3. An example of extraction of different features from EDA data. 

2.2.2. MOVEMENT-RELATED DATA 

An activity recognition algorithm was used for the analysis of accelerometer data and 
the identification of three conditions related to activity intensity: Still, Walking and 
Intense movement. The algorithm involved the application of a machine learning model, 
trained using the data collected during the indoor activities. The data was split into 
segments following the application of the algorithm. The features retrieved from this 
analysis were the following: activity intensity, steady-state walking (being in the 
“walking“ state for more than 2 minutes), duration of activity (minutes since the 
beginning of the walk), and change in activity state.  

- The “activity intensity“ feature was created using a numerical scale (1-3) which 
represents the activity intensity. Level 1 corresponds to sitting or standing; level 
2 to walking, and level 3 to more intense movements. Consecutive points which 
had the same activity intensity were grouped and labelled accordingly.   
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- The “duration of activity“ variable represented the time since the beginning of 
the outdoor walk, and it was calculated for each data point (initially in seconds 
and then transformed to minutes since the beginning).  

- The “change in activity state“ feature was calculated by processing the “activity 
intensity“ variable, and finding points where there was a change in activity 
intensity after the analysis of the first-order derivative of this feature. Binary 
coding was used to indicate the presence of a change in activity intensity (0=no 
change, 1=change). The focus for this analysis was on the changes from a 
steady-state to another (i.e., a change from walking for at least 2 minutes, to 
standing). Only these changes were coded with 1.  

- The “steady-state walking“ feature was calculated by measuring the duration of 
each group of points with similar activity intensity. Binary coding was used for 
this feature. If the activity was “walking“for at least two minutes, the “steady-
state walking“ variable was given the value of 1, and the rest of the points were 
given the value of 0.   

Speed was also computed from the GPS data as an alternative representation of activity 
intensity. This feature captures small fluctuations in walking speed that are not included 
in the other “activity intensity“ feature computed from the accelerometer data. At the 
same time, the “activity intensity“ feature from the accelerometer data includes hand 
movements that cannot be captured with the speed data. It was, thus, decided to test 
both in this pilot project. 

2.2.3. CONTEXTUAL DATA 

One methodological issue that this study attempts to address is the heavy reliance of 
previous studies on the use of video and photos as sources of contextual data. The 
collection of this type of data requires additional effort and hardware, while also raising 
questions of privacy. Furthermore, while the data collected from these sources is 
invaluable, most studies that used these data sources examined the footage manually, 
which delays the process of analysis significantly. This study thus investigates other 
options for understanding the context, based on the collection of freely available 
OpenStreetMap (OSM) data.  

The contextual data that were included in the analysis were the following: POI density, 
traffic levels, and the presence of traffic signals. The osmnx Python library was used for 
the collection of the street network and POI data for the studied area. POI density was 
computed as the number of POIs within 100m from each street network node (Figure 
B4). The traffic levels were calculated from the collected OSM data by analyzing the tags 
of each street network node and link. The information relevant to traffic was extracted 
and sorted in 5 zones, reflecting the gradual increase in the intensity of traffic levels. 
The lowest level was used for streets which only hosted pedestrian activity and the 
highest level was used for motorways. 
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Figure B4. Map displaying the POI density in the studied area, following the analysis of the contextual 
data.  

The presence of traffic lights was identified by parsing the tags of the nodes of the OSM 
data and finding the tag “traffic_signals. A binary coding scheme was used, marking the 
nodes that contained this tag with “1“ and the rest with “0“. 

Environmental data (ambient temperature) were also collected and included in the data 
fusion scheme. The data was collected by accessing historical data from local 
governmental sources (Australian Government Bureau of Meteorology 2020) at an 
hourly resolution for each session, for a nearby location (one km away). This data does 
not reflect the local variations in microclimate, but it is adequate for understanding 
coarse differences in the temperature.  

The data fusion model included first the fusion of physiological data with the movement 
features based on the timestamps, and then with the contextual features based on the 
GPS data. For each GPS point, the traffic, POI density, and traffic light data were 
computed by retrieving these features from the closest street network node. In this 
way, all data were able to be analyzed as synchronized time-series data. All features 
were resampled at 1Hz (1 value per second). Figure B5 presents some of the extracted 
features after their synchronization, corresponding to the route of one participant. The 
contextual characteristics of different parts of the route are displayed in Figure B6. 
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Figure B5. An example of the extraction and analysis of movement-related and contextual features for 
one route. 
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Figure B6. Photos from the route. The photos were obtained from Google Street View (Google Maps, 
2020), apart from points 8 and 9, for which there were no available data in Google Street View and 

images taken by the author were used.  

2.3. STATISTICAL ANALYSIS  

2.3.1. ANALYSIS OF PHYSIOLOGICAL DATA 

The statistical analysis for the outdoor activity included the following tests for 
comparison of EDA measures along with movement and contextual features: Wilcoxon 
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signed-rank tests on data aggregated at the segment level; Linear mixed model analysis 
with the sum of EDR amplitudes as the dependent variable; hotspot analysis on the 
changes in the EDA measures. A description of each stage follows below. 

As explained in section 2.1, the segment analysis included splitting the route into seven 
parts according to differences in the contextual characteristics. For each participant, the 
mean for each of the following parameters was calculated: sum of EDA amplitudes, 
tonic EDA, EDA frequency, mean EDA amplitude, density, traffic, activity intensity (based 
on the accelerometer data), steady-state walking, change in activity state, duration of 
activity, and traffic light. All the variables were continuous after the calculation of the 
means. Only the “change in activity state“ was kept as a categorical variable, as it 
resulted in a model with a better fit compared to the same variable in its continuous 
form. The portions of the data where there was any spontaneous movement (an 
intense movement lasting less than 2 seconds) were excluded. The Wilcoxon signed-
rank test was then applied on each pair of segments (A-B, B-C and so on) to identify if 
there were significant differences in the physiological measures for each pair.  

The linear mixed model analysis was selected for the regression analysis to handle the 
dependencies between the multiple data points from the same participants. A linear 
mixed model was fitted for the dependent variable (“sum of EDR amplitudes“). A square 
root transformation was applied to the variable to improve the distribution of the 
residuals. The Moran’s I test was also conducted using the GeoDa software, to check for 
spatial autocorrelation. The results suggested significant presence of spatial 
autocorrelation in the data as well as in the residuals of the linear mixed model. 
Therefore, it was decided to include a spatially lagged variable to account for the spatial 
dependencies in the distribution of the dependent variable. This variable described the 
spatial relations between points based on their proximity. It was created after 
constructing a matrix with spatial weights (Anselin 2009).  

As for the features which were used as independent variables, all the features 
presented in Figure B7 were initially considered as possible candidates. Different 
combinations and interactions were tested after ensuring that there was no issue of 
multicollinearity. The full model had the following form:  

Yi = β0 + β1X1 +…+ βi Xi +γ1 + γ2 + γ3 + εi, 

where the variables Χ1 to Χi represent the independent variables presented in Figure B7. 
The variables γ01, γ02 and γ03 correspond to random intercepts for each subject, age and 
sex.  

For this analysis, the data were resampled at 120 seconds. The variables were analyzed 
as continuous (apart from the “change in activity state“), after the calculation of the 
mean values in data segments of 120 seconds.  

Hotspot analysis was also conducted, for which the data were resampled at 10 seconds. 
This analysis used as input the sum of EDR amplitudes variable. A separate analysis was 
also conducted for the change in this measure, calculated between each minute and its 
previous one. The result thus reflected the spatial concentrations of the studied 
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measure and the changes in it. The analysis was accompanied by the presentation of 
the spatial concentration of the contextual and movement-related features. 

Finally, a stress score was calculated for each participant, based on the rules outlined in 
Kyriakou et al. (2019). After calculating the stress score, correlation analysis was applied 
for the change in the Sum of EDR amplitudes and the stress scores.  

 

Figure B7. A description of the features used in the analysis. 

2.3.2. QUESTIONNAIRE ANALYSIS 

The questionnaire was used to collect data regarding the perceived experience of the 
participants in each segment. The Wilcoxon signed-rank test was used for the statistical 
analysis of the results. The test was conducted by analyzing the transition from each 
segment to the next. The comparison was thus pairwise, and it was conducted 
separately for the positive and negative affect. The results aimed to show which 
transitions affected the positive and the negative affect significantly.  

All the statistical tests were conducted in R.  
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3. RESULTS 

3.1. ANALYSIS OF MEASURES DURING THE OUTDOOR ROUTE 

3.1.1. SEGMENT-BASED ANALYSIS 

 

Figure B8. Graphs describing the EDA measures and the contextual and movement variables at each 
segment, for all participants. 
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In the segment-based analysis of the outdoor route, there is a trend of small 
fluctuations in the first three segments (A-C). As the participants walk from segment D 
to segment G, they interface an increase in POI density, accompanied by a gradual 
increase in the EDA measures. The increase from C to D is most intense for EDR 
frequency (statistically significant at p=0.017). This is the point that the participants 
start a bout of steady-state walking (Figure B8). The presence of steady-state walking 
can be related to the increase in EDR frequency. For the other measures, the steepest 
increases are from E to F and from F to G. Segment E includes waiting at a traffic light, 
which created a change in activity for some participants; there is also a gradual increase 
in density. The increase of EDA measures for these transitions (E-F and F-G) is 
statistically significant (p<0.05) for all measures apart from EDR frequency for the 
transition E-F (p=0.12) and mean EDR amplitude for F-G (p=0.32). There were no other 
statistically significant transitions.  

3.1.2. HOTSPOT ANALYSIS 

The identified clusters of EDA measures were attained by calculating the Local Moran’s I 
values. This type of hotspot analysis shows places where there are points of high values 
of the studied measure, next to other high values. The analysis from this section and 
onwards was focused on the sum of EDR amplitudes. The hotspot analysis also involved 
the study of changes in the signal. Only the points where the results had statistical 
significance (p<.05) are shown in the maps.  

The visual inspection of the clusters (Figure B9) suggests that there is a spatial relation 
between POI density, traffic, and the clusters of the studied physiological measure (sum 
of EDR amplitudes). This relation is most visible in Segments F and G. 

The clusters of change in the studied physiological measure (sum of EDR amplitudes) 
are again at places of high POI density, in Segment F. A cluster of intense change is also 
found in segment E, coinciding with traffic, the presence of a traffic light and a cluster of 
changes in activity. Another cluster is found in Segment D, where there are only 
changes in activity.  
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Figure B9. The results of the hotspot analysis for the sum of EDR amplitudes and the changes in this 

measure, in parallel to contextual and movement-related parameters. 

3.1.3. STRESS SCORE ANALYSIS 

The comparison of the stress scores for each participant with the change in the Sum of 
EDR amplitudes showed a moderate but significant correlation (rs =0.49, p<0.00001). 
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This effect was prominent (ρ = 0.61, p<0.00001) for a subgroup of 11 participants who 
conducted the activities in lower temperatures (< 21oC) in comparison to the others.  

3.1.4. LINEAR MIXED MODELS 

 

Figure B10. The results of the linear mixed model analysis, with the sum of EDR amplitudes as the 
dependent variable. 

The results of the linear mixed model for the outdoor activity showed a significant 
association (β=0.022; p <0.00001) between the parameter “duration of activity“, 
signifying the minutes passed since the start of the outdoor activity, and the dependent 
variable (sum of EDR amplitudes) which represented the intensity of physiological 
responses. The parameters POI density (representing the density of mixed-use; 
β=0.011, p=0.0005) and speed (β=0.029; p=0.0082) also had a significant influence on 
the studied measure.   

The coefficients reported in Figure B10 show the effect of each variable on the 
transformed dependent variable. The resulting model was also used to create 
predictions for low, medium and high values of each parameter, and the square root 
transformation was reversed for each predicted value, to better understand the effect 
of each parameter on the actual dependent variable. This experimentation showed that 
the increase from 1 to 15 minutes in terms of duration of activity had a small to medium 
effect on the sum of EDR amplitudes (an increase of 0.21 ±  0.13μS). The increase from 
15 to 30 minutes had a medium to strong effect (0.62 ±  0.27μS/minute increase in sum 
of EDR amplitudes). An increase from 0 to 15 units in POI density had a small effect on 
the dependent variable (0.08 ±  0.07 μS/minute increase). This increase represented the 
transition from an environment without any POI to one with 15 POIs within 100m. An 
increase from 15 to 30 units in POI density had a more considerable effect (0.23 ±  0.14 
μS/minute increase). Finally, an increase from 1 m/s to 3.5m/s in terms of speed 
resulted to a very small increase in the sum of EDR amplitudes (0.02 ±  0.03μS increase). 
An increase from 3.5 to 6m/s had again a small effect (0.05 ±  0.06μS/minute increase). 
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3.1.5. ANALYSIS OF PERCEIVED EXPERIENCE 

The Wilcoxon signed-rank test showed that the positive affect was considerably lower 
after the outdoor test (p=0.0048), while the negative affect was not impacted. A few 
participants noted in the open comments section that the traffic noises were identified 
as annoying or surprising. 

The questionnaire analysis for the outdoor walk showed that the rating of the positive 
affect did not have significant differences in the pairwise comparison of the segments. 
The results are displayed in Figure B11. The negative affect shows a decreasing trend 
between segments A and D, a steep increase from D to E, and then an increasing trend 
until the end of the route. The mean values though remained very low. All transitions 
after segment B (B-C etc.) were statistically significant at p<0.05. 

 

Figure B11. Graphs showing the positive and negative affect score of all participants for each segment. 

4. DISCUSSION 

4.1. ELABORATION ON THE PRESENTED METHODOLOGY AND ANALYSIS 

OF THE FINDINGS 

This study presented a methodology for collection and analysis of physiological 
responses based on contextual and movement-related data. The methodological 
approach followed for the identification of contextual changes is a significant 
contribution to this research field. As POI and OSM data are freely available for many 
parts of the world, this method allows the automatic estimation of gross contextual 
changes. It only requires the addition of physiological and movement data in the case of 
replication. The calculation of all features related to movement and context, including 
those that were not statistically significant, gave valuable information that helped in 
understanding the underlying circumstances.  

Apart from testing the methodology, the study also involved the analysis of the 
relationship between physiological responses and the extracted features related to 
movement and context. The identified links between movement and physiological 
responses were among the most important findings of this research. The first significant 



 

375 
   

aspect of the movement was the overall time of exercise and its effect on the 
physiological responses. The inspection of the data showed a gradual increase in EDA 
and in the amplitude of the EDA responses in parallel to the time passed since the 
beginning of the activity. The statistical analysis presented in section 3.1.4 confirmed 
that the duration of activity was significantly related to the studied physiological 
measure (the sum of EDR amplitudes). The overall increase in EDA can be interpreted as 
the effect of sympathetic activation due to exercise acting as a stressor. 

The analysis also showed that speed was related to an increase in physiological 
responses. This feature is related to activity intensity, as a higher walking speed is 
connected to higher energy expenditure. The other features computed from the 
accelerometer data were not statistically significant in this study. Future studies will 
involve further investigation of these features.  

The analysis of the outdoor walk also showed that the density of mixed-use, 
represented by POI density, was a factor that had a significant effect on physiological 
responses. Some of the other factors which were studied were not identified as 
statistically significant in the linear mixed model analysis. However, the hotspot analysis 
showed that areas with an increased presence of the studied contextual parameters, 
sometimes combined with a change in activity state, were connected to a significant 
increase in the sum of EDR amplitudes. The links between these factors and the 
physiological responses might be based on complex interactions or patterns which 
might be more evident in the spatial analysis of the different factors. 

The visual inspection of the graphs also showed that the effect of the different 
parameters was more prominent towards the end of the activity for some participants. 
There is a large body of literature supporting the argument that the interaction of 
stressors may cause an amplification of the response which would follow the 
application of each separate stressor (i.e., Webb et al., 2017).  The inclusion of 
interactions between the duration of activity and the different parameters did not bring 
any improvement in the linear mixed model analysis in this study. However, this 
possibility should be more researched in the future.  

The identified increases in physiological responses could be associated with physical 
stress, psychological distress or an attention shift. Increases in the tonic and phasic EDA 
measures which were included in this analysis are generally regarded as signs of 
psychological distress. From this perspective, the increase which was observed in these 
measures in the last segments of the route could indicate distress. The extraction of 
stress scores based on analytical methods used in other studies also showed a 
moderate correlation between the sum of EDR amplitudes and the stress scores. These 
combined findings suggested that a considerable portion of the physiological responses 
would be interpreted as signs of distress, using the metrics of other similar studies.  

These findings were enriched by the analysis of the perceived experience, based on the 
questionnaire. The ratings of the participants showed a trend of increase in the negative 
affect in parallel to the increase in EDA towards the end of the route. The trend was not 
very intense, possibly because the situations which the participants encountered are a 
part of daily activity in the outdoor environment. The combined analysis of the 
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questionnaire and the physiological measures indicates a combination of physical and 
psychological stress, considering that there was also a presence of physical activity. 

4.2. IMPLICATIONS FOR URBAN DESIGN AND PLANNING  

The findings of this study, concerning the contextual parameters, suggest that the 
density of mixed-use (represented by POI density) may be associated with a higher 
presence of physiological reactions, which could be related to increased distress. 
However, the presence of mixed-use is integral for achieving a lively urban environment 
(Jacobs, 1961; Montgomery, 1998). The parameters that could create a state of 
overstimulation when found at high intensities are the same parameters that create a 
rich sensorial experience while walking. Gehl (2010) also emphasizes on the need to 
create streetscapes that allow the observation of human activities at close range, to 
create welcoming and stimulating environments. Large-scale buildings next to streets 
without human activity are, in contrast, impersonal and unwelcoming spaces. 

 The findings of this study should not be read as a suggestion to limit the presence of 
these positive characteristics in the streetscape. They could be used to stimulate a 
discussion on the possible links between mixed-use and stress but focused on cases 
where the mixed-use density is particularly high. Future research could involve the 
study of populations that might be more affected by intense stimulation levels, such as 
the elderly.   

4.3. LIMITATIONS 

One limitation of the study was the sample size and characteristics. The participants in 
this study were mostly university students between 20-40 years old. There was a lack of 
representation of other demographic categories. Future research in this area should 
involve extension of the adopted methods in a way that is more representative of the 
demographic and cultural differences. As for the sample size, the findings should be 
reviewed considering that this limitation has been an issue in most studies in this field. 
The findings are still valuable for suggesting the potential importance of some 
parameters that were ignored until now.  

Some other factors that could have influenced the results are related to the naturalistic 
setting of the study. For instance, not all participants had to wait in the traffic lights. 
Due to this difference, some participants might have experienced more changes in 
activity. The levels of crowding and the number of cars might also be slightly different in 
each measurement session. However, it would be impossible to control these 
parameters while retaining the naturalistic setting. Some participants might also find 
specific sounds or circumstances more stressful. This parameter could be investigated in 
future studies by creating different groups according to personal traits.  

5. CONCLUSION  

This paper presented the results of an outdoor experiment conducted in Sydney, where 
the physiological data of the participants was measured while they were walking on a 



 

377 
   

predefined route. Variables related to movement and context were considered as factors 
that could affect physiological responses. The following conclusions were derived from 
the analysis: 

(1) The duration of activity, and the speed affected the physiological responses 
significantly.  

(2) The density of mixed-use (analyzed as the POI density) was also significantly 
associated with an increase in the intensity of physiological responses. This was 
attributed to the increase in the complexity and intensity of stimuli. 

A vital contribution of this research is the presentation of the identified relationships 
between the examined urban and movement-related features, and physiological 
responses. The research also presents a replicable methodology for collection and 
analysis of physiological responses in the urban space, which does not rely on image-
based sources for analysis of the context, while also incorporating movement analysis. 
Future research by the authors shall build on the presented findings by applying the 
presented methodology for data collection and analysis in different designs of outdoor 
activities in Sydney as well as in other contexts. 
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APPENDIX C 
STATISTICAL ANALYSIS OF THE DATA COLLECTED 
IN THE INDOOR EXPERIMENTS IN SYDNEY 

APPENDIX C 

This appendix presents the results of statistical tests conducted using the data collected 
during the indoor experiment. These tests were conducted to understand the 
relationship between parameters related to movement (duration of activity, activity 
intensity, change in activity), stimulation and physiological responses in a controlled 
experiment. The analysis of these parameters was a critical step for ensuring that the 
theoretical and conceptual framework described in Chapter 3 is in the right direction. 

C.1. PROTOCOL AND STUDY DESIGN

A standardised protocol was designed for the indoor test in Phase A (see Section 2.4.2 
in Chapter 2), simulating series of actions which are commonly performed in the urban 
environment (sitting, standing, moving, carrying a bag). Some activities also included 
intense hand movements to provoke the generation of artefacts in the EDA 
measurement.  

18 participants took part in this test. These were the same participants that also 
completed the other part of Phase A (the predefined outdoor route in Sydney). Each 
participant completed the indoor test two times. The second application of the indoor 
test was conducted after the predefined outdoor route around UTS, aiming to capture a 
condition where the user has already high levels of sympathetic arousal due to the 
physical activity. The main aim of this test was to collect a ground truth dataset for 
calibrating the algorithms for activity classification (described in Appendix E). The 
secondary aim was to examine the effects of the physical and psychological stressor 
(noise and activity change) on physiological responses. The test was conducted two 
times to investigate if there would be any difference in the responses during the second 
time that the participants conducted the test. The hypothesis was that the sympathetic 
activity of the participants would be already elevated after the outdoor activity, and this 
might affect the responses.   
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During the indoor test, the participants were also exposed to sudden traffic noise using 
a video source. The presentation of the traffic noises was predesigned in terms of its 
time of appearance. The noise stimulus was applied two times in each round of 
activities. It started as background traffic noise of continuous intensity, and then some 
loud honks were added. The first application of the noise stimulus was after the first 4 
minutes, and its duration was one minute without the honks, and another minute with 
the honks; then, the same stimulation pattern was repeated once towards the end of 
the activity. 

Figure C1. Description of the indoor activities. 

The activities were designed as a sequence of states (sitting, standing, walking), with 
each state having a predetermined duration. Two activities of higher intensity and 
concentration (standing while putting a coat on and off for 45 seconds, and then 
walking while putting the coat again on and off) were only used for training the 
movement recognition algorithm for the identification of movements of higher 
intensity, which can cause artefacts. The participants were verbally notified each time 
they had to change their activity. The sequence of activities and the pattern of 
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application of the noise stressor is described in Figure C1. The ‘walk + bag’ and ‘walk + 
talk’ activities in the figure refer to walking while holding a bag and then walking while 
talking. The codes 0, 1 and 2 in the ‘Stimulus’ column refer to the silent state (0), the 
application of background traffic noise (1) and the combination of background traffic 
noise and honks (2).  

The overall duration of the indoor test was 10 minutes each time (before and after the 
outdoor walk). After completing each round, the participants were asked to report their 
experience using the PANAS questionnaire for the measurement of the affect. This 
report was a part of a more extensive questionnaire, as described in Chapter 2.  

One threat in terms of validity here was that the outcome of the comparison of 
physiological responses before and after the outdoor route could be affected by the 
repeated exposure to the same sequence of stressors. The effect of novelty could play a 
role, resulting in more intense responses in the first time that the participants 
conducted the indoor experiment. However, the indoor activities comprised only a 
small part of the collected data. The study also collected measurements that describe 
the reactions to similar stressors in outdoor circumstances, where there are no order 
effects. This threat was thus diminished since the evaluation of the results would not be 
based only on the indoor tests.  

The indoor tests were conducted in a quiet room, with a temperature between 18-20°C. 

C.2. STATISTICAL ANALYSIS APPROACH

The data collected from the indoor activities were analysed with the Wilcoxon signed-
rank test. This analysis was conducted to compare responses obtained before and after 
the outdoor activity. After that, it was used for the pairwise comparison of the 
consecutive stages of activities. The first comparison aimed to show the overall effect of 
the activity on the responses to the same stimuli and changes of activity. The second 
comparison aimed to identify if any of the movement changes and other transitions had 
a significant effect on the EDA measures. The EDA measures that were analysed with 
the Wilcoxon signed-rank test included the tonic EDA, the EDR frequency, the mean 
EDR amplitude and the sum of EDR amplitudes. The tonic EDA and the EDR amplitude 
values were normalised per participant, following the recommendations of Boucsein 
(2012). 

For the Wilcoxon signed-rank tests, the EDR frequency was calculated by dividing the 
number of EDR peaks with the duration of the activity in minutes. The resulting number 
thus reflected the number of EDR peaks per minute. The sum of EDR amplitudes was 
calculated in the same way, by adding the EDR amplitudes for each activity and dividing 
the result with the duration of the activity. 

Two segments (putting a coat on and off for 45 seconds, and then walking while putting 
the coat again on and off) were excluded from this analysis since they contained many 
artefacts. These segments are noted as ‘stand + wear coat’ and ‘walk + wear coat’ in 
Figure C1.  These segments were only included in the sequence of activities for training 
the artefact recognition and the movement recognition algorithm. 
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A mixed linear model was then fitted for the variable ‘sum of EDR amplitudes’, with the 
parameters related to activity and stimulation as fixed effects. A random intercept was 
included for each subject and the subject’s age, sex, and ambient outdoor temperature 
in the time when the activities were conducted. The input data for the linear mixed 
model were first resampled at 60 seconds. EDA artefacts had already been excluded 
from the analysis. For the linear mixed model analysis, the EDR frequency was 
calculated by extracting the number of EDR peaks per minute. The sum of EDR 
amplitudes was also calculated by finding the sum of EDR amplitudes per minute.  

The full formula which was used in the linear mixed model had the following form: 

Yi = β0 + β1X1 + β2X2+ β3X3 + β4 X4 + β5 X5 +γ01 + γ02 + γ03 + γ04 + εi 

where Χ1 = time, X2 = activity intensity, X3 = change in stimulation, X4 = change in 
activity, X5 = time: change in activity, and γ01, γ02, γ03, γ04 correspond to random 
intercepts for each subject, age, ambient outdoor temperature and sex. The ambient 
outdoor temperature referred to the outdoor temperature during the time of the 
experiment. The variables were coded as categorical variables in the following way: the 
‘time’ variable was coded with [0] and [1], corresponding to ‘before the outdoor 
activity’ and ‘after the outdoor activity’, respectively. The ‘activity intensity’ variable had 
three levels; [0] represented the lowest intensity (‘sit/stand’), [1] represented the 
intensity of walking and [2] represented higher intensities (‘intense move’). The ‘change 
in stimulation’ was coded with [0] representing the absence of any change in 
stimulation, and [1] representing the presence of a change. The ‘change in activity’ was 
coded with [0] representing the absence of a change in activity intensity and [1] 
representing the presence of a change. The ‘time: change in activity’ was a variable 
representing the interaction between the two variables that it contained. The subject 
and sex variables were also coded as categorical. 

Variations of this model were also used, where the interaction of two or more variables 
was included, or the following variables were added: stimulation, talk. Only the 
combinations of variables that did not create any multicollinearity issues according to 
the variance inflation factor were tested. The experimentation also involved coding the 
variables as ordinal, resulting in very small differences. 

For the analysis of the questionnaire, the Wilcoxon signed-rank test was conducted to 
compare the participants’ experience in the first and second indoor test. The aim was to 
identify how the outdoor activity affected the perceived experience in the indoor 
activity. The test was conducted separately for the positive and negative affect. 



 

382 
   

C.3. RESULTS 

 

 

Figure C2. Boxplots showing the tonic EDA and sum of EDR amplitudes for the indoor activities, before the 
outdoor activity (‘indoor A’) and after it (‘indoor B’). 

As shown in Figure C2, all EDA measures exhibit elevated values in the activities 
performed after the outdoor route (‘Indoor B’), compared to the same activities 
performed before it (‘Indoor A’). The increase is statistically significant or marginally 
statistically significant (p<0.05 and p<0.085, respectively) for almost all activities for all 
measures. Similar graphs for EDR frequency and amplitude, as well as for other 
physiological signals tracked during the experiment (HR and skin temperature) can be 
found in section C.1.5. (Figure C4). 

As the graphs show, in the first round of activities (‘Indoor A’) there is a small increase in 
all EDA measures when the participants start engaging in an activity which requires 
more coordination and intensity of movements (for instance ‘walk + wear coat’); this 
increase is retained until the end of this round of activities. In the second round of 
activities (‘Indoor B’), the values in almost all measures exhibit an increasing trend until 
the participants start engaging in more demanding movement and attention-related 
activities (such as ‘stand + wear coat’). This trend starts decreasing for mean EDR 
amplitude and tonic EDA. The values of tonic EDA are initially high when the 
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participants return from the outdoor activity. These values decrease when the 
participants are in the steady-state walking state without any stimulation. Then they 
follow the same increasing trend as in the other measures, each time the activity state 
changes. The only significant transitions in the pairwise comparison of activities are 
found in the transition from walking to standing, with the application of noise 
stimulation (statistically significant at p=0.015 for EDA tonic, and marginally statistically 
significant at p=0.084 for the sum of EDR amplitudes), and from standing to walking, 
again with noise stimulation (marginally statistically significant at p=0.052 for EDA 
tonic). 

 

Figure C3. The results of the linear mixed model with the best performance.  

The results of the linear mixed model also confirmed that the outdoor activity (marked 
as ‘Time’ in Figure C3) had a substantial impact on the EDA responses. This variable 
expresses the effect of the overall duration of the activity. The model shows a 
significant association between the sum of EDR amplitudes and this parameter 
(β=1.062, p<0.00001). This result shows that the sum of EDR amplitudes was 
significantly higher when the participants repeated the test after the outdoor activity. 

The activity intensity had a significant impact on the sum of EDR amplitudes (β=1.313, 
p<0.00001) when it was at the third level of intensity (corresponding to intense 
movement). The presence of a change in activity intensity also caused a significant 
increase (β=0.618, p<0.00001) in the sum of EDR amplitudes, but only after the outdoor 
activity. This parameter is expressed in the model with the interaction variable (‘Time 
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[1]: Change in activity [1]’). The parameters related to stimulation did not have any 
significant impact on the EDA responses. 

As for the results of the analysis of the questionnaire, the Wilcoxon signed-rank test 
showed that the positive affect was considerably lower after the outdoor test 
(p=0.0048), while the negative affect was not impacted. A few participants noted in the 
open comments section that the traffic noises were identified as annoying or surprising. 

 

 

Figure C4. The results of the PANAS questionnaire for each participant for the indoor test, before (‘_PRE’) 
and after (‘_POST’) the outdoor route. 
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C.4. GRAPHS OF THE OTHER PHYSIOLOGICAL MEASURES DURING THE 
INDOOR EXPERIMENTS 

 

 

Figure C5. The distribution of other physiological measures related to EDA (EDR frequency measured in 
peaks/minute; mean EDR amplitude before normalisation, measured in μS) during each activity stage in 

the indoor experiments 

The distribution of the other measures related to EDA and physiological signals which 
were measured is presented in Figures C5 and C6. The median and standard deviation 
values for each measure are also displayed in Figure C7. The separate presentation of 
the amplitude and frequency of EDRs helps understand how each of these measures 
contributed to the measure that was statistically analysed (the sum of EDR amplitudes).  
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Figure C6. The distribution of other physiological signals (heart rate (HR), skin temperature (ST)) during 
each activity stage in the indoor experiments 
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Figure C7. The median and standard deviation values for each measure during each activity
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APPENDIX D 
ETHICS APPLICATIONS 

APPENDIX D 

This appendix contains material related to the two ethics applications connected to this 
project. 

Section D1 contains the approval letter for the ethics application ETH19-3752. This 
application was lodged to obtain approval for conducting the experiments for data 
collection in Sydney (Phase A and B in Section 2.4.2 of Chapter 2). Section D2 contains 
the approval letter for the ethics application ETH20-5253. This application was lodged 
to obtain approval for using the publicly available data from the ESUM repository 
(ESUM 2018).  Section D3 contains the participant information sheet which was used to 
inform participants regarding the overall procedure followed in the data collection 
experiment in Sydney. The consent form which the participants were asked to sign if 
they wished to participate in this experiment is also included in this section.  

Section D4 presents the template of the questionnaire given to the participants that took 
part in Phase A of the data collection experiment in Sydney.  

Section D5 contains the guide which was given to the participants in the data collection 
experiment in Sydney. The guide outlines the following:  

- which devices are being used,
- what happens with the collected data,
- the protocol followed in Phase A of the experiment (see Section 2.4.2 of Chapter

2),
- the main duties of the participants regarding the data collection during the free-

living activities,
- a guideline for keeping notes regarding the experience in each route in the data

collection during the free-living activities.
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D.1. ETHICS APPROVAL LETTER: ETH19-3752
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D.2. ETHICS APPROVAL LETTER: ETH20-5253
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D.3. PARTICIPANT INFORMATION SHEET AND CONSENT FORM FOR THE
EXPERIMENTS IN SYDNEY 



394 



395 



396 



397 

D.4. QUESTIONNAIRE

The typical PANAS test includes twenty adjectives that describe different moods; ten 
moods are connected to the positive affect and the rest to the negative affect. The 
participants are usually asked to describe the extent to which they felt each state by 
rating it on a scale of 1-5. In this study, the participants were asked to complete this test 
for each of the three parts of Phase A of data collection. They were asked to complete 
sections 1 and 2 of the questionnaire directly after finishing the first indoor test. 
Sections 3 and 4 of the questionnaire were completed directly after finishing the second 
indoor test. 
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D.5. GUIDE GIVEN TO THE PARTICIPANTS EXPLAINING THE USE OF THE
EQUIPMENT 
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APPENDIX E 
CONSTRUCTION OF THE ALGORITHMS FOR THE 
ANALYSIS OF ACTIVITY AND ARTEFACT 
RECOGNITION 

APPENDIX E 

The algorithms presented in this appendix are used in the data fusion model presented 
in Chapter 5 (sections 5.2.3. and 5.2.4).  

E.1. ACCELEROMETER DATA ANALYSIS: ACTIVITY CLASSIFICATION

An essential part of the data fusion scheme presented in Chapter 5 for the analysis of 
physiological responses is the analysis of activity. Spontaneous, intense movements can 
generate false peaks in the EDA signal and should, therefore, be identified. The overall 
duration of the activity and the changes in activity intensity may also affect HR and EDA 
responses. Chapter 4 showed that both speed and accelerometer data could be used to 
analyse physical activity intensity. However, it was chosen to use only accelerometer 
data for this task, based on its higher resolution and accuracy compared to speed data 
from GPS sensors. This section will describe the tests which were conducted for activity 
classification. 

Two approaches were followed for the construction of the activity classification 
algorithm, based on relevant literature from Chapter 4 (section 4.3.1.2). The first 
approach (presented in section E.1.2.) involved a threshold-based algorithm for 
classification. The second approach (presented in section E.1.3.) involved testing 
different supervised ML algorithms for the same task. In the end, the best performing 
ML algorithm was compared with the threshold-based algorithm. Section E.1.4. 
presents the results. 

E.1.1. DESCRIPTION OF THE DATASET AND ASSIGNMENT OF THE GROUND
TRUTH LABELS

The dataset that was used for activity classification contained the labelled activity data 
from the indoor experiment (Figure E1; the experiment is a part of the Phase A 
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described in Chapter 2, section 2.4.2.). In this experiment, the participants (n=18) 
performed a series of timed activities in an indoor environment for 10 minutes. The 
activities are displayed in Appendix C (Figure C1). They were performed as a continuous, 
uninterrupted sequence. The accelerometer data from all participants were inspected, 
and no erroneous data were identified. 

Figure E1. The data used for the construction of the activity classification model 

The obtained data were labelled manually by partitioning the dataset according to the 
time log of the activities. Visual inspection of the graphs was performed to confirm the 
exact time of change from one activity to another.  

The performed activities were grouped into three categories in terms of activity 
intensity. The lowest intensity level (1) contained the state of sitting and standing; the 
medium intensity level (2) contained the state of walking, and the high intensity level (3) 
contained states where there was more intense movement than walking with normal 
pace. Some examples of this included running, climbing stairs, or a short-lasting hand 
movement.  

The task was framed as a multi-class classification problem for the detection of 3 
classes. An example of the three classes, using data of one participant collected during 
the indoor activity, is provided in Figure E2.  
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Figure E2. An example of labelled accelerometer data. 

The dataset contained 92088 samples before the segmentation in windows. The classes 
were not balanced, as most of the data points (64%) belonged to the second class 
(walking). The other two classes contained approximately equal data (17% in each 
class). 

Figure E3. The number of data belonging to each level of activity intensity 

E.1.2. A THRESHOLD-BASED METHOD FOR ACTIVITY CLASSIFICATION

The threshold-based approach involved segmentation of the data based on filters. The 
filters (thresholds) were empirically defined after iterative experimentation.  

In the threshold-based approach, the processing of the accelerometer data involved the 
following steps. First, the standard deviation (STD) of accelerometer values was 
calculated after resampling a copied instance of the data at 600ms. These values 
reflected the degree of change in activity intensity. Then, the first order derivative of 
the resampled STD dataset was calculated, followed by the extraction of its mean values 
using a window of 1000ms.  

These features were used for classifying the accelerometer data points in the three 
levels (classes) of activity intensity (‘still’, ‘walking’ and ‘intense movement’). Data 
points with high mean STD and high absolute derivative of STD are classified as ‘intense 
movement’, as these characteristics reflect intense changes in the movement pattern. 
Data points which have medium mean STD and low absolute derivative of STD are 
classified as ‘walking’, as they reflect a movement pattern which may contain small 
changes in intensity but is steady in overall. Finally, data points with low mean STD and 



413 

low absolute first grade difference of STD are classified in the ‘still’ category, as they 
reflect a movement pattern with very low intensity and no changes.  

 The classification process is based on averaging the changes in movement over 600ms 
and 1000ms, and the labels are only applied if at least 2 consecutive data points have 
the same label. This procedure is applied for each of the 3 axes; therefore, a vector of 3 
possible labels is generated for each timestamp. Then, the dominant label is extracted 
for each timestamp. This process is overridden if there is at least one ‘intense 
movement’ label; then, this label becomes dominant. If this process ends and some 
data points still do not have a label (as they may not fall in any of the filters used for 
data partitioning), then the statistical features of these data points are compared to the 
features of neighbouring data, and the label of the most similar neighbouring points is 
adopted. An example of the outcome of this process can be seen in Figure E4.  

Figure E4. Application of the threshold-based algorithm for activity recognition. 

E.1.3. SUPERVISED ML METHODS FOR ACTIVITY CLASSIFICATION

E.1.3.1. CLASSIFICATION APPROACH AND ML ALGORITHMS

The experimentation with supervised ML algorithms involved testing different 
algorithms for the identification of the best performing one. The data was randomised 
and partitioned using a 60/20/20% split to create training, validation and testing sets. 
The ML algorithms which were tested were the following: decision tree (DT), random 
forests (RF), k-nearest neighbors (k-NN), support vector machine (SVM), and deep 
neural networks (DNN). 

E.1.3.2. FEATURE EXTRACTION
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For this task, the data was resampled at 4 Hz (4 values per second). The data from each 
axis was normalised and split using a non-overlapping window. Different window sizes 
were tested. The sizes ranged from 4 to 40 values (equal to 1 to 10 seconds). The 
following features were extracted in each window from each axis: the normalised 
accelerometer values, as well as their STD and the first order derivative values in this 
window. 9 features were included in total.  

E.1.3.3. CLASSIFICATION APPROACH AND ML ALGORITHMS

Figure E5 shows the results of the experimentation with the different models using 
various window sizes.  

Figure E5. Accuracy scores for each model for the activity classification task 

As Figure E5 shows, most of the models have good performance (above 85% accuracy) 
for all the tested window sizes, apart from the k-NN model, which has very low scores in 
larger window sizes. Figure E6 also shows that there is high inconsistency in the recall, 
precision and f1 metrics for the SVM and the k-NN models. These results suggest that 
the SVM and the k-NN models were not so successful in identifying all the relevant 
members of each label correctly. 

The best results from the first round of experiments were obtained using the DNN 
model, with a window size of 40 values (10 seconds). The accuracy score for this 
configuration was 96%.  
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Figure E6. Performance metrics for each activity classification model 

After identifying the DNN model as the best candidate of the first round, more 
experimentations were conducted with this model, with different configurations in 
terms of the number of hidden layers. The number of nodes in each layer was set to 
128. The ADAM (adaptive moment estimation) algorithm was used for optimisation,
and the categorical cross-entropy function was used as the loss function. The mini-
batch training method was used, with a batch size of 250.
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Figure E7. Comparison of DNN models with different layers for the activity classification task 

The experimentation with different structures of the DNN model brought a slight 
improvement in the performance (Figure E7). The recall metric scores are consistently 
high, showing that the models have very good performance in terms of identifying the 
actual label for all classes, without many false negatives. The best score was obtained 
from the DNN model with the 6 layers (97.3% accuracy). This model also had the best 
results in the F1 score. An example of activity classification using the selected DNN 
model with a 10-second window is presented in Figure E8.  
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Figure E8. An example of activity classification using the selected DNN model. 

E.1.4. COMPARISON OF THE THRESHOLD-BASED APPROACH WITH THE ML 
MODEL FOR ACTIVITY CLASSIFICATION 

 

Figure E9. Comparison between the threshold-based approach and the ML model for activity 
classification, using the test data 

The final step of this experimentation was the comparison between the selected ML 
model and the threshold-based approach. As shown in Figure E9, the threshold-based 
approach had a worse performance than the ML model. The best performance for the 
threshold-based approach (89% accuracy, compared to 97% accuracy for the ML model) 
was achieved using a 10-second window. 

The DNN model with the 6 hidden layers was thus chosen as the model that will be 
further used in this research (starting from Chapter 5) for activity recognition. The 
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supervised ML model is more powerful in terms of accuracy, especially concerning its 
ability to identify intense movements. This ability is essential for identifying 
physiological responses which might be related to spontaneous movements. The 
threshold-based approach is still a good alternative option with acceptable accuracy 
and could be used by other researchers who do not have data for training the ML 
model.  

E.2. ARTEFACT RECOGNITION 

After identifying the best performing activity classification model, the second task of 
this phase was to test different algorithms for artefact recognition. This task is 
necessary for processing EDA data and removing erroneous data portions. 

E.2.1. DATASET 

The dataset that was used as input for the artefact recognition model (Figure E10) 
contained all data from Phase A of the experiment in Sydney (see section 2.4.2. in 
Chapter 2). The design of the indoor experiments involved some activities that included 
intense hand movements to create artefacts (Figure C1, Appendix C). The data from all 
participants (n=18) of this phase was used to construct the model for artefact 
recognition.  

 

Figure E10. The data used in the EDA artefact recognition model. 

The dataset was then inspected visually and labelled. The labels were assigned after 
splitting the data into segments using non-overlapping 5-second windows. An algorithm 
was built in Python for interactive labelling of the data segments. The process involved 
visualising each window separately and within its neighbouring data points, and then 
assigning a label (Figure E12). A similar approach was followed in the website that was 
built for artefact classification in Taylor et al. (2015).  The ML task was framed as a 
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binary classification problem, where class 0 indicated the absence of an artefact and 
class 1 indicated its presence.  

The dataset contained 256,703 samples before the segmentation in windows and was 
unbalanced (Figure E11). After segmenting the data in windows, approximately 10% 
were marked as artefacts belonging to class 1. The baseline accuracy was, therefore, 
relatively high (90%).  

 

Figure E11. The distribution of the data used for training the artefact recognition algorithm 

 

Figure E12. The method used for visualising the data in segments and labelling them as artefacts or clean 
data 

E.2.2. FEATURE EXTRACTION 

The data was resampled at 4 Hz (4 values per second) for the artefact recognition task, 
following the original frequency of the EDA sensor of the Empatica E4 wristband. The 
data was then split to non-overlapping windows for feature extraction. The different 
window sizes that were tested here ranged from 4 to 20 samples (corresponding to 1-5 
seconds). The experimentation showed that there was no improvement when using 
windows with a size larger than 5 seconds. 
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Seven features were extracted from the EDA signal in each window: mean, first order 
derivative, second order derivative, mean of the first order derivative, mean of the 
second order derivative, STD, and STD of the first order derivative.  

E.2.3. CLASSIFICATION APPROACH AND ML ALGORITHMS 

The experimentation with different ML algorithms for artefact recognition involved the 
same strategy followed in the activity classification task. The same ML algorithms were 
tested here as well. Figure E13 shows the results. 

  

Figure E13. Accuracy scores for each model for the artefact recognition task.  

 

Figure E14. Performance metrics for each artefact recognition model 

As shown in Figure E13, all the algorithms achieved very high accuracy, ranging between 
94% and 96%. The highest accuracy (96%) was achieved by the DNN model (using a 
window size between 2-3 seconds) and the SVM model (5-second window). However, 
Figure E14 shows that while the performance metrics are very high for the dominant 
class, they are much lower for the class representing the artefacts (Class 1). A possible 
reason for this difference in the performance is the imbalance between the classes. The 
SVM model had particularly low metrics for Class 1; the recall metric and the F1 score 
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were the lowest among all models. The DNN and the RF model had the best metrics 
regarding the overall performance.  

The only similar work that involves ML methods for artefact recognition is the study of 
Taylor et al. (2015). In their study, the best performing model was the SVM classifier, 
which had similar accuracy (95.6%) in the binary classification task. However, in this 
study, the SVM model had the poorest performance in the detailed analysis of the 
metrics (Figure E14).  

 

Figure E15. Example of the application of the constructed DNN model for artefact recognition 

Based on the findings of the experiments presented above, the DNN model was 
selected as the best candidate for artefact recognition, using a 3-second window. An 
example of the application of the model on the EDA data of one user from the test 
sample is presented in Figure E15. The performance of the model was also checked by 
applying it to the free-living activities dataset. The visual inspection of the results 
showed that the model identified correctly most of the artefacts, especially in cases 
where there were many erroneous data points grouped together, as in Figure E15. 
Some occasional misclassifications were still observed. The model, thus, does not 
guarantee the complete elimination of artefacts. However, it is an overall well-
performing solution, considering that the only alternative would be the manual 
inspection of the data, which is extremely time consuming in very large datasets.  
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APPENDIX F 
PHYSIOLOGICAL MEASURES AND EMOTIONS 

APPENDIX F 

This section contains a brief review of the relationship between physiological measures 
and emotions. The content is primarily related to Chapter 3.  

The relationship between physiological changes and emotions is a complex one. 
Emotions are often generated from the perception of the physiological functions; for 
instance, the perceived effort during an activity can generate negative feelings, or the 
autonomic arousal caused by a threatening situation can elicit an anxious or fearful 
behaviour. At the same time, emotions can be generated from other subjective or 
objective factors and may influence the physiological state in return (Boucsein & Backs 
2009).  

According to emotion theory, the majority of mood states and emotions can be 
positioned within ranges spread across two dimensions. The first dimension depicts the 
intensity of the emotion, or degree of activation and is connected to arousal. The 
second is referred to as affect or valence and depicts the degree of pleasantness 
(Boucsein 2012). Studies on the physiological effects of mood and emotions often use 
these dimensions to describe the emotional state (Jacob et al. 1999). There have also 
been suggestions (Shapiro et al. 2001) that emotional states should not be evaluated as 
discrete reactions, but as multifaceted experiences which may be composed of 
contrasting feelings (such as anxious and happy). 

In terms of the relation between emotions and bodily responses, research has shown 
that emotional states affect the autonomic nervous system, especially in the case of 
emotions grouped under the negative dimension of the affect. This activation is 
manifested with various measures: blood pressure, blood volume, EDA and HR 
(Cacioppo et al. 1993).  

In terms of HR, the usually examined variables are the rise of HR and the duration of this 
increase. The findings have been somewhat inconsistent; for example, while Jacob et al. 
(1999) found that negative and positive emotions sometimes elicit similar reactions in 
terms of the magnitude of HR response, Shapiro et al. (2001) found that only the 
negative moods were associated with an increase in HR. Anttonen and Surakka (2005) 
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observed a small decrease in HR as a response to both negative and positive stimuli.  In 
all cases, if the subject’s mood affected HR, that was a slight change of 3 to 5 bpm. 
These differences may be due to methodological issues, such as differences in stimuli 
used to induce the emotion (Stemmler 2010). The meta-analysis of Kreibig (2010) 
showed that the HR increase was not distinctively associated with positive or negative 
emotions, but more related to the degree of activity. In terms of duration of response, 
Brosschot and Thayer (2003), as well as Anttonen and Surakka (2005) found that it was 
more prolonged in the case of negative emotion in daily situations. It should also be 
noted that while these studies investigated emotions as spontaneous changes in mood, 
triggered after stimuli such as the display of pleasant or unpleasant pictures, these 
changes (or emotions and moods elicited from other subjective circumstances) can 
have a long-lasting effect (i.e., Shapiro et al. 2001). 

As for EDA as a measure of emotional state, some studies showed a connection 
between anger and a higher frequency in NS.SCRs, while fear elicited more NS.SCRs and 
a smaller increase of tonic EDA in comparison to sadness. Happiness produced a milder 
rise in tonic EDA compared to disgust, which did not elicit any specific changes in 
autonomic activity. In the meta-analysis of Cacioppo et al. (1993), when the discrete 
emotions were grouped to positive and negative ones, there was no significant 
difference in EDA between the two states (Cacioppo et al. 1993). In the more recent 
meta-analysis of Kreibig (2010), most emotions were accompanied by an increase in 
EDA, apart from sadness, contentment and relief. Kreibig suggests that this could be 
attributed to the degree of preparation for motor activity, which is more related to the 
other emotions, while the ones with decreased EDA might reflect a state of passivity or 
lack of tendency for action.  

In his review of studies on the connection between emotions and their 
psychophysiological measures, Boucsein (2009) states that it is difficult to distinguish 
discrete emotions from their bodily effects, without accompanying them with subjective 
reports from the studied individuals, as different emotions might elicit similar changes 
in autonomic arousal. The EDA appears to be a better measure of the intensity of 
emotion, and HR more appropriate for measuring valence. Boucsein though points out 
that some of the responses might influence the autonomic nervous system not because 
of the elicited emotion, but due to the stimulus properties (for instance, using moving 
instead of still images as the stimulus).  

As HR and EDA are also related to other variables, such as movement, it is difficult to 
identify how these variables interact (Shapiro et al. 2001). Position, activity, location, 
social activity, consumption (caffeine, alcohol, smoke) can also influence cardiovascular 
activity and override the effect of mood. In emotion studies, variables related to 
movement, posture, information processing and environmental parameters such as 
temperature, are called context effects. The psychophysiological effect of one emotion 
can be altered when the context effects change, as this creates situations with very 
different combinations of physical and mental processes Stemmler (2010). Some of the 
studies mentioned earlier in this section were conducted only with sitting subjects (e.g., 
Brosschot & Thayer 2003) which suggests that the effects they identified might not be 
equally visible when the subject is engaged in any activity more intense than sitting. 
Jacob et al. (1999) confirmed this by analysing the contribution of different variables to 
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changes in cardiovascular activity and showing that the most significant changes are 
associated with the activity of the subject.  
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APPENDIX G 
ANALYSIS OF CHANGES IN HR FOR THE ROUTES 
OF SELECTED USERS 

APPENDIX G 

This appendix contains material related to Chapter 5 (section 5.3). For each of the 
routes studied in section 5.3, the results of the HR data analysis are presented here, 
complementing the results of the analysis of the EDA data. 
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APPENDIX H 
OTHER MATERIAL 

APPENDIX H  

This appendix contains figures related to the statistical analysis presented in Chapter 6.  

 

Figure H1. Frequency table for the categorical variables in the data collected in Zürich and the combined 
dataset  
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Figure H2. Frequency table for the categorical variables in the data collected in Sydney 
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