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ABSTRACT

The Australian labour market is in the midst of significant structural changes.

Emerging technologies, such as Artificial Intelligence (AI), are changing the

demands for skills and tasks within jobs. Additionally, the economic crisis

induced by COVID-19, in conjunction with other factors, have accelerated these ad-

justments. Three major issues for the Australian labour market are (1) skill shortages,

(2) job transitions, and (3) AI adoption at the firm-level. This thesis by compilation

addresses each of these issues in a series of four standalone papers. The first paper puts

forward a range of indicators to detect skill shortages from a longitudinal dataset of

online job advertisements (ads). The second paper develops a machine learning model

that accurately predicts skill shortages from job ads data and employment statistics. The

third paper conducts an in-depth case study of the journalism jobs crisis in Australia,

examining both the changes in labour demand (using job ads) and labour supply (using

employment statistics) from 2012-2020. Last, the fourth paper develops a novel method

to measure the similarity between sets of skills from real-time job ads data. These

similarity measures are then combined with other labour market variables to build a

‘Job Transitions Recommender System’ that accurately predicts transition pathways

between occupations, validated against a longitudinal household survey. The same skills

set similarity method is then used to construct a measure of new technology adoption in

labour markets, showcasing AI.
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