

Rapid Detection and Prognosis of Lung Cancer

by Yujiao Wu

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Steven Su

University of Technology Sydney Faculty of Engineering and Information Technology

February 2020

Certificate of Original Authorship

Required wording for the certificate of original authorship

CERTIFICATE OF ORIGINAL AUTHORSHIP

I, *Yujiao Wu* declare that this thesis, is submitted in fulfilment of the requirements for the award of *Doctor of Philosophy*, in the *Faculty of Engineering and Information Technology* at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution. *If applicable, the above statement must be replaced with the collaborative doctoral degree statement (see below).

*If applicable, the Indigenous Cultural and Intellectual Property (ICIP) statement must be added (see below).

This research is supported by the Australian Government Research Training Program.

Production Note: Signature: Signature removed prior to publication.

Date: 17/02/2021

Collaborative doctoral research degree statement

I certify that the work in this thesis has not previously been submitted for a degree nor has it been submitted as part of the requirements for a degree at any other academic institution except as fully acknowledged within the text. This thesis is the result of a Collaborative Doctoral Research Degree program with *[insert collaborative partner institution]*.

Indigenous Cultural and Intellectual Property (ICIP) statement

This thesis includes Indigenous Cultural and Intellectual Property (ICIP) belonging to *[insert relevant language, tribal or nation group(s) or communities*], custodians or traditional owners. Where I have used ICIP, I have followed the relevant protocols and consulted with appropriate Indigenous people/communities about its inclusion in my thesis. ICIP rights are Indigenous heritage and will always remain with these groups. To use, adapt or reference the ICIP contained in this work, you will need to consult with the relevant Indigenous groups and follow cultural protocols.

Acknowledgements

Firstly, I would like to take this opportunity to express my sincere and deep gratitude to my supervisor, Associate Professor Steven Su, for his continual support, help, and encouragement during my Ph.D. study. Dr. Su has brought me into the topic of electronic nose and deep learning and provided brilliant insights into my research works. It is my honor to have a supervisor who always inspires me to achieve higher targets. His conscientious and meticulous attitude on research has a significant influence on my work.

I am grateful to my co-supervisor, Dr. Steve Ling, for his patient and constructive suggestions on my research. I feel so fortunate to have the precious chance to work with Dr. Steve. He has been significant in all aspects during my Ph.D. studies. I am deeply inspired by his hardworking and professional attitude to work. I feel really thankful for all his support and selfless help.

An extraordinary thanks go to my external supervisor Dr. Fan Yang, for his support and encouragement. His warm personality, broad vision, depth of knowledge, and dedication to work have been a true inspiration to my work and life.

I also want to express my appreciation to the staff members in the Centre for Health Technologies, School of biomedical engineering, University of Technology Sydney, especially to Professor Joanne Tipper, Professor Gyorgy Hutvagner, and Dr. Jan Szymanski. I have received a unique and memorizable experience working with these professional and inclusive people.

I would also like to thank my colleagues in A/Prof. In particular, Steven Su's research group, Dr. Lin Ye, Dr. Hairong Yu, Dr. Kairui Guo, Dr. Yao Huang, Taopin Liu, Miao Zhang, and Lingmeng Li, for their great help and technical support. I would also be grateful to my friends, in particular, Dr. Wenwei Mo, Dr. Lang Chen, Dr. Pengfei Cui, Dr. Zhichao Sheng, Dr. Haimin Zhang, Zhiyuan Shi, Xiaoshui Huang, Juan Lyu, Yimeng Feng, Hanjie Wu, and Dr.Daniel Roxby, and all of my colleagues whose name has not been mentioned here, for their valuable and worth-less help. Working together with them brings a lot of happiness and a wonderful memory for me.

I want to acknowledge the financial support for this project, provided jointly by the University of Technology Sydney (UTS) and the Shenzhen ET group.

Lastly, my deepest gratitude goes to my mom, dad, uncle, grandma, and all my family, for their encouragement and support. I would also like to express my great gratitude to my grandpa; I really hope you could witness all the important moments in my life. Pale words are hard to express my gratitude to all of you. This dissertation wouldn't exist without your love.

Yujiao Wu

Sydney, Australia, Feb 2021

List of Publications

I have published one journal paper, one conference paper, attended and delivered an oral presentation in 1 international forum. Besides, two journal papers are under review.

Journals

- Yujiao Wu, Liu T, Ling S H, SW Su, et al. Air Quality Monitoring for Vulnerable Groups in Residential Environments Using a Multiple Hazard Gas Detector[J]. Sensors, 2019, 19(2): 362.
- Yujiao Wu, SW Su, et al. Estimation of Parameters in Electronic nose. (Under review)
- 3. Yujiao Wu, Ling S H, SW Su, et al. 3DResSA: A Novel Multimodal Deep Learning Framework for Lung Cancer Survival Analysis. (Under review)

Conference Proceedings

- Yujiao Wu, Liu T, Ling S H, SW Su, et al. A Smart "E-Nose" System for Indoor Hazardous Air Monitoring. Australian Biomedical Engineering Conference(ABEC) 2018.
- Yujiao Wu, SW Su, et al. A rapid disease diagnosis system based on electronic nose. China-New Zealand Investment Forum on Innovative Technologies (IFIT) 2018.

Contents

	List	t of Figu	ires		xi
	List	t of Tabl	es		xv
1	Int	troduc	tion		1
	1.1	Problem	n Stateme	ent	1
	1.2	Motiva	tion and A	Aims	10
	1.3	Project	Scope .		11
	1.4	Dissert	ation Con	$\operatorname{tribution}$	12
	1.5	Outline	e of This I	Dissertation	14
•	Ъ				90
2	Ba	ckgro	und an	d Literature Review	20
	2.1	Introdu	iction		20
	2.2	Electro	nic nose .		21
		2.2.1	Develop	ment of the E-nose	21
		2.2.2	Principle	e of Operation of E-nose Systems	23
		2.2.3	E-nose S	ensor Types	24
		2.2.4	System 1	dentification Method for E-nose Calibration	25
		2.2.5	Applicat	ions and Advances in E-nose Technologies	30
			2.2.5.1	Applications for Food Analysing	30
			2.2.5.2	Applications for Environmental Monitoring	32
			2.2.5.3	Applications for Disease Diagnosis	33

2.3 Lung Cancer	34
2.3.1 Types and Stages	35
2.3.1.1 Types	35
2.3.1.2 Stages	35
2.3.1.2.1 T (Tumor)	36
2.3.1.2.2 N (Node)	36
2.3.1.2.3 M (Metastasis)	36
2.3.2 Prognosis of Lung Cancer	36
2.4 Lung Cancer Detection	37
2.4.1 Traditional methods	37
2.4.2 Lung Cancer Detection using Bio-markers from Human Breath	38
2.4.3 Lung Cancer VOCs Detection Techniques	41
2.5 Common ML Classification Algorithms	42
2.5.1 Logistic Regression	42
2.5.2 Support Vector Machines	43
2.5.3 The K-nearest Neighbours	45
2.6 Multimodal Learning	45
2.6.1 Background	45
2.6.2 Multimodal Deep Learning in Cancer Detection and Prognosis	47
2.7 Deep Learning in Medical Imaging	49
2.7.1 Development History	49
2.7.1.1 3D-ResNet	50
2.7.2 Deep Learning in Medical Imaging for Cancer	52
2.8 Survival Analysis	54

		2.8.1	Time-to-Event D	ata		54
		2.8.2	Basic Concepts			54
			2.8.2.0.1	Survival Function		54
			2.8.2.0.2	Cumulative Density Function		55
			2.8.2.0.3	Death Density Function		55
			2.8.2.0.4	Hazard Function		56
		2.8.3	Evaluation Metri	ics		56
		2.8.4	Statistical Metho	ds		57
			2.8.4.0.1	Non-parametric Methods		57
			2.8.4.0.2	Parametric Methods		58
			2.8.4.0.3	Semi-parametric Methods		58
		2.8.5	Machine Learnin	g Methods		59
		2.8.6	Survival Analysis	s for NSCLC		59
ર	Δ	Dilot	Study of Am	tificial Olfactory System:	The De-	
J	Α					
	vel		nt of Multipl	e Hazard Gas Detector	Inc De	62
	ve]	lopme	nt of Multiple	e Hazard Gas Detector	ine De	62
	ve l	Introdu	nt of Multiple	e Hazard Gas Detector		62 62
	vel 3.1 3.2	Introdu Gas De	nt of Multiple	e Hazard Gas Detector	· · · · · · · ·	62 62 66
	vel 3.1 3.2	Introdu Gas De 3.2.1	nt of Multiple action tection Platform MHGD System H	e Hazard Gas Detector	· · · · · · · · · · · · · · · · · · ·	 62 62 66 69 70
	vel 3.1 3.2	Introdu Gas De 3.2.1 3.2.2	nt of Multiple action tection Platform MHGD System H Software Develop	e Hazard Gas Detector	· · · · · · · · · · · · · · · · · · ·	 62 62 66 69 70
	vel 3.1 3.2 3.3	Introdu Gas De 3.2.1 3.2.2 Data A	nt of Multiple nction tection Platform MHGD System H Software Develop nalysis	e Hazard Gas Detector	· · · · · · · · · · · · · · · · · · ·	 62 62 66 69 70 71
	 vel 3.1 3.2 3.3 	Introdu Gas De 3.2.1 3.2.2 Data A 3.3.1	nt of Multiple nction tection Platform MHGD System H Software Develop nalysis Signal Pre-proces	e Hazard Gas Detector	· · · · · · · · · · · · · · · · · · ·	 62 62 66 69 70 71 71
	vel 3.1 3.2 3.3	Introdu Gas De 3.2.1 3.2.2 Data A 3.3.1 3.3.2	nt of Multiple nt of Multiple nction tection Platform MHGD System H Software Develop nalysis Signal Pre-proces Feature Generati	e Hazard Gas Detector	· · · · · · · · · · · · · · · · · · ·	 62 62 66 69 70 71 71 72
	vel 3.1 3.2 3.3	Introdu Gas De 3.2.1 3.2.2 Data A 3.3.1 3.3.2 3.3.3	nt of Multiple nt of Multiple nction tection Platform MHGD System H Software Develop nalysis Signal Pre-proces Feature Generati Machine Learnin	e Hazard Gas Detector	· · · · · · · · · · · · · · · · · · ·	 62 62 66 69 70 71 71 72 73

		3.4.1	Data Analysis	78
	3.5	Results	Analysis and Discussion	81
	3.6	Conclus	sions	82
4	Ra	pid D	isease Detection System	91
	4.1	Introdu	ction	91
	4.2	Overall	System Architecture	93
	4.3	MOS S	Sensor Array and Sampling Chamber	96
		4.3.1	Working Principle of MOS Sensor and Sensor Array	97
		4.3.2	The Design of Sensor Array and Sampling Chamber	99
	4.4	The Ha	rdware Development of RDDS	102
		4.4.1	Power-supply Design	102
		4.4.2	Driver Module Design	103
		4.4.3	Mechanical Module Design	104
		4.4.4	MCU Module and Sample Module	105
	4.5	The So	ftware Development of RDDS	107
	4.6	A Simp	le Calibration Method for E-nose System	108
		4.6.1	Experimental Setup	109
		4.6.2	Calibration Theory – Time Response of Sensor System	110
		4.6.3	Results and Conclusions	112
	4.7	Summa	ry	113
5	De	epMN	ISA: A Novel Multimodal Deep Learning Frame	-
	wo	ork for	Non-small Cell Lung Cancer Survival Analysis1	17
	5.1	Introdu	ction	118
	5.2	Method	lology	122

ix

		5.2.1	The Str	ucture of	DeepMMSA
			5.2.1.1	Multime	odal Feature Extraction
			5	.2.1.1.1	CT Images Feature Extraction with
					3D-ResNet
			5	.2.1.1.2	Clinical Record Feature Extraction 125
			5.2.1.2	Multim	odal Feature Fusion
			5.2.1.3	Surviva	l Analysis
	5.3	Experi	ments .		
		5.3.1	Dataset		
		5.3.2	Data Pr	eprocessi	ng
		5.3.3	Experim	nent Setur	р
		5.3.4	Ablation	n Study	
		5.3.5	Results		
	5.4	Conclu	sion and	Future W	Vork
	5.5	Summa	ary		
6	Di	sserta	tion Co	onclusi	ons and Future Works 137
	6.1	Summa	ary of Dis	sertation	
	6.2	Summa	ary of Co	ntributior	ns
	6.3	Future	Works .		

List of Figures

1.1	Lung cancer. Image source: Cancer Walls	2
1.2	Incidence and mortality of the top 10 cancers worldwide. Image credit: 2018 American Cancer Society.	3
1.3	Incidence and mortality of the top 10 cancers worldwide. Image credit: 2018 American Cancer Society.	4
1.4	Incidence and mortality of the top 10 cancers worldwide. Image credit: 2018 American Cancer Society.	4
1.5	The symptoms of lung cancer. Image credit: Roy Castle Lung Cancer Foundation.	5
2.1	Mammalian olfactory system vs e-nose system. Image credit: Nature.	24
2.2	Principle of sensors in e-nose system. Image source: Semantic Scholar.	28
2.3	The hypothesis about underlying relationship between lung cancer with breath analysis[1]	40
2.4	Framework of early fusion. Image credit: ResearchGate	46
2.5	Framework of late fusion. Image credit: ResearchGate	46
2.6	An example for the hybrid fusion framework. <i>Image credit:</i> <i>ResearchGate.</i>	47
2.7	An example of 2D convolution operation Image source: Towards Data Science.	51

2.8	The deep reseidual function F of 3D-ResNets. The left figure shows a building block for 3D-ResNets with layers of 18 and 34. The right figure shows a bottleneck building block for 3D-ResNets with layers of 50, 101, and 152	52
2.9	An example for the data type of time-to-event [2]	55
3.1	The structure of proposed system	67
3.2	The 3D design of the proposed system	68
3.3	Feature f1, f3 and f6 extracted from Sensor TGS2603's original	
	response curve.	74
3.4	Feature f2 and f7 extracted from the first-order derivative from	75
2 5	Eastern f4 f5 f8 and f0 anter stal from the accord order derivation	10
5.0	form of Sensor TGS2603's response curve.	76
3.6	The data flow diagram of MHGD	77
3.7	The response curves of Sensor TGS2620, TGS2603, and TGS2600 for gas ethanol, in which Figure 3.7a is of the raw time series data, and Figure 3.7b is of the preprocessed time series data.	84
3.8	The response curves of Sensor TGS2620, TGS2603, and TGS2600 for rotten meat odors, in which Figure 3.8a is of the raw time series data, and Figure 3.8b is of the preprocessed time series data	85
3.9	The response curves of Sensor TGS2620, TGS2603, and TGS2600 for burning cigarette gases, in which Figure 3.9a is of the raw time series data, and Figure 3.9b is of the preprocessed time series data	86
9 10	The response survey of Concer TCC2620, TCC2602, and TCC2600	00
3.10	for gas ethanol in the second experiment, in which Figure 3.10a is of	
	the raw time series data, and Figure 3.10a is of the preprocessed	
	time series data	87

3.11	The response curves of Sensor TGS2620, TGS2603, and TGS2600 for rotten meat odors in the second experiment, in which Figure
	3.11a is of the raw time series data, and Figure 3.11b is of the preprocessed time series data. 88
3.12	The response curves of Sensor TGS2620, TGS2603, and TGS2600 for burning cigarette gases in the second experiment, in which
	Figure 3.12a is of the raw time series data, and Figure 3.12b is of
	the preprocessed time series data
4.1	The model of proposed RDDS system
4.2	Functional block diagram of RDDS
4.3	Basic measuring circuit of MOS sensors
4.4	Chamber design
4.5	PCB design for sensor board
4.6	The prototype of sensor board
4.7	Power-supply Design
4.8	Driver module design
4.9	Mechanical module design
4.10	Figure 4.10a shows the design of MCU module. Figure 4.10b shows
	the design of sample module
4.11	Mechanical module design
4.12	The experiment regarding RDDS system is performed in UTS chemical lab
4.13	The experiment regarding RDDS system is performed in UTS science chemical lab
4.14	Unit step input time response of a first order system. <i>Image source:</i>
	ElectricalWorkbook

4.15	The step response specification of RDDS system	•		. 1	13
4.16	The prototype of RDDS system.			. 1	115

5.1	The framework of deepMMSA. DeepMMSA mainly has three
	modules: (1)First, it employs the 3D-ResNet in combination with
	plain networks for multimodal feature extraction; (2) Then, it uses
	simple feature fusion method (early fusion) for multimodal fusion;
	(3) Lastly, during desicion making stage, multiple-layers Perceptron
	(MLP) is designed for the survival prediction
5.2	Training and testing process

6.1	Future multimodal	framework	for rapid	LC detection	and	accurate	
	prognosis.						. 141

List of Tables

2.1	Types and mechanisms of common e-nose gas sensors [3]. \ldots \ldots	26
2.2	Pros and cons of different types of e-nose sensor [3]	27
3.1	Feature types and descriptions used in gas classification	73
3.2	Gas sensors sensitivity characteristics	78
3.3	Confusion matrix of single sensor	80
3.4	Confusion matrix of sensor combination	80
3.5	Confusion matrix under open environment	82
4.1	The brand and model of the main hardware models	95
4.2	Response characteristics of eight metal-oxide semiconductor gas	
	sensors.	100
4.3	The step response specification of RDDS system.	113
5.1	To evaluate the performance of different ResNet structure and effect	
	of whether using multiple modalities.	131
5.2	To evaluate the effects of different ratios between modalities features	
	in fusion procedure and the performance of survival analysis neural	
	network with or without hidden layer	132
5.3	Result vs baselines.	132

Abbreviation

2D	Two dimensions or two-dimensional
3D	Three dimensions or three-dimensional
4D	Four dimensions or four-dimensional
AI	Artificial Intelligence
ML	Machine Learning
DL	Deep Learning
CNN	Convolutional Neural Network
NN	Neural network
C-index	Concordance
MAE	Mean absolute error
MSE	Mean square error
BS	Brier score
IBS	Integrated Brier score
LC	Lung cancer
NSCLC	Non-small cell lung cancer
SCLC	Small cell lung cancer
ROC	The receiver operating characteristic curve
AUC	The area under ROC curve

kNN	K-nearest	neighbors
-----	-----------	-----------

- SVM Support vector machines
- CT Computed tomography
- CAT Computed axial tomography
- LDCT Low-dose CAT scan or CT scan
- ECG Electrocardiogram
- EEG Electroencephalogram
- MRI Magnetic resonance imaging
- PET Positron emission tomography
- WHO World Health Organization
- CA Classical adenocarcinoma
- SRCC Signet-ring cell carcinoma
- MAC Mucinous adenocarcinoma
- SCC Squamous cell carcinoma, or known as epidermoid carcinoma
- QOL Quality of life
- MHGD Multiple hazard gas detector
- RDDS Rapid disease detection system
- DeepMMSA Multimodal deep learning framework for survival analysis
- TCIA The Cancer Imaging Archive
- DC Direct current
- BRI Building-related illnesses
- SBS Sick building syndromes
- IAQ Indoor air quality

SIDS S	Sudden	infant	death	syndrome
--------	--------	--------	-------	----------

- PGA Programmable gain amplifier
- S/N Signal-to-noise ratio
- PUFA Polyunsaturated fatty acids
- ROS Reactive oxygen species
- VOC Volatile organic compound
- MOX Metal oxide
- MOS Metal-oxide-semiconductor
- QCM Quartz crystal microbalance
- BAW Bulk acoustic wave
- SAW Surface acoustic wave
- CB Catalytic bead
- TBC Total bacterial count
- MCU Micro control unit
- USB Universal serial bus
- UART Universal asynchronous receiver transmitter
- TBARS Thiobarbituric acid reactive substances assay
- TVBN Total volatile basic nitrogen
- MM Malignant mesothelioma
- ARD Asbestos-related disease
- COPD Chronic obstructive pulmonary disease
- ECOPD An exacerbation of Chronic obstructive pulmonary disease
- BN Batch normalization

Notations

- r_i *i*-th 3D radiology image
- c_i *i*-th clinical information
- X_i *i*-th data sample, usually a vector
- T_i Time *i*-th event of interest or censoring occurred
- \hat{T}_i predicted or estimated T_i
- e_i *i*-th event, 1 for uncensored, 0 for censored
- I(x) 1 if x = True else 0
- S(t) Survival function
- $\hat{S}(t)$ Estimated survival function
- h(t) Hazard function
- H(t) Cumulative hazard function
- $\hat{G}(t)$ Kaplan-Meier estimator of the censoring distribution
- t_{max} Maximal time for the estimated survival time
- $\sigma(x)$ Sigmoid function, $\frac{1}{1+exp(-x)}$
- R_L Load resistance
- R_s Sensor resistance
- V_c Circuit voltage
- Vout Output voltage

au Time constant

k DC gain

θ Time delay

- u(t) Input in the time domain
- y(t) Input in the time domain
- $\dot{y}(t)$ The first-order form of output in the time domain
- G(s) Transfer function, ratio of output and input in the Laplace domain

Abstract

Lung Cancer (LC) or lung carcinoma is the uncontrolled growth of epithelial cells that line up in the respiratory tract. LC is a leading cause of cancer death in both males and females and it has contributed the deaths of millions of people around the world. Smoking tobacco products is the major cause of LC.

Tremendous progress has been made in terms of better diagnosis and treatment of LC. However, the majority of LC deaths are caused by the slow spread and development of the disease. Indeed, most LC patients are diagnosed at an advanced stage only after they have presented with obvious symptoms. Owing to this, curative treatment is no longer an option. Thus, developing effective screening methods and accurate prognosis of LC is of paramount importance, not simply for early detection but also to improve patients' quality of life (QOL) and reduce the mortality of LC. Regular chest x-rays have been studied for LC screening, but they have been of limited assistance in prolonging the lives of most patients. In recent years, low-dose CAT scan (formerly known as computed axial tomography or CAT scan) or CT scan (LDCT) has been applied to patients with a higher risk of getting LC. Nevertheless, this kind of screening needs to be conducted by appropriate CT scanners. Besides, these facilities also need to work together with the staff with rich experience in CT scans for LC screening. What's more important, to guarantee a timely treatment, a team of specialists need to cooperate with the facilities to give patients proper health care and follow-up if there are abnormalities found. To sum up, the existing system have different kinds of deficiencies and hinders the patients of LC from getting timely treatment. Moreover, research shows that 2/3 of the world population, which equals 4.7 billion people, lacks adequate radiology specialists and the right kind of medical facilities.

To alleviate the above-mentioned issues, we propose a cheaper, easy-to-use, portable electronic nose (e-nose) system to analyze the biomarkers in human breath to rapidly and non-invasively discriminate LC patients from healthy individuals. The e-nose for volatile organic compounds (VOCs) pattering is cheaper and portable. Using cross-reactive, it can detect and discriminate between complex mixtures. To explore the working principle and discrimination ability of the e-nose system and overcome the limitations of using existing non-intelligent, slow-responding, deficient gas sensors, we proposed a novel artificial-intelligent-based multiple hazard gas detector (MHGD) system that is mounted on a motor vehicle-based robot that can be remotely controlled. First, we optimized the sensor array for the classification of three hazardous gases. After that, the optimal sensor array was mounted on the MHGD to detect and classify the target gases. Finally, MHGD is tested through experiments and the results shows that the designed MHGD system could achieve an acceptable accuracy (70.00%).

Even though the previously mentioned prototype achieved an acceptable performance for hazard mixtures classification, but we needed for medical applications a scalable, stable, and robust device with a sealable gas path and automatic control system. Thus, to enhance the system's robustness and overcome the many deficiencies in MHGD, a prototype, namely 'Rapid Disease Detection System (RDDS),' was developed. This device is designed for breath analysis in the medical field. In real-world clinical practice, multiple devices based on identical designs will be used in different clinics. Thus, it is essential to perform instrument calibration before the sampling procedure to ensure the data is reproducible and reliable for analysis. In the RDDS system, with time delays, three parameters need to be determined in the calibration process: the time delay, the gain, and the time constant. Based on this, a parameter estimation method for the RDDS system is proposed. We analyzed four different standard gas mixtures(CSGMs) to calibrate the RDDS system. Finally, we obtained the three parameters of the system with the average value for the fit to the estimation data of 92.8%.

Moreover, for a better-individualised prognosis for LC and improved survival predictability, we worked at a deeper level towards survival analysis. To reveal the underlying relation of prognostic information of radiomic images, fully utilise the potential of the prognostic power existing in the radiomic data, and exploit the correlations between radiomic images and survival information, we made the first attempt to develop a deep 3D multimodal deep learning framework for survival analysis (namely DeepMMSA) using the medical image in radiology. Quantitative results on the Non-Small Cell Lung Cancer Radiomics (NSCLC-Radiomics) data show that the proposed method could surpass the traditional methods by 4% on concordance, revealing that our method could provide a more accurate diagnosis method and prognostic decision-making solution in future clinical practice.