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ECOPD An exacerbation of Chronic obstructive pulmonary disease

BN Batch normalization
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COVID-19 Coronavirus disease 2019
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Notations

ri i-th 3D radiology image

ci i-th clinical information

Xi i-th data sample, usually a vector

Ti Time i-th event of interest or censoring occurred

T̂i predicted or estimated Ti

ei i-th event, 1 for uncensored, 0 for censored

I(x) 1 if x = True else 0

S(t) Survival function

Ŝ(t) Estimated survival function

h(t) Hazard function

H(t) Cumulative hazard function

Ĝ(t) Kaplan-Meier estimator of the censoring distribution

tmax Maximal time for the estimated survival time

σ(x) Sigmoid funciton, 1
1+exp(−x)

RL Load resistance

Rs Sensor resistance

Vc Circuit voltage

Vout Output voltage
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τ Time constant

k DC gain

θ Time delay

u(t) Input in the time domain

y(t) Input in the time domain

ẏ(t) The first-order form of output in the time domain

G(s) Transfer function, ratio of output and input in the Laplace domain



xxii

Abstract

Lung Cancer (LC) or lung carcinoma is the uncontrolled growth of epithelial cells

that line up in the respiratory tract. LC is a leading cause of cancer death in both

males and females and it has contributed the deaths of millions of people around

the world. Smoking tobacco products is the major cause of LC.

Tremendous progress has been made in terms of better diagnosis and treatment

of LC. However, the majority of LC deaths are caused by the slow spread and

development of the disease. Indeed, most LC patients are diagnosed at an advanced

stage only after they have presented with obvious symptoms. Owing to this, curative

treatment is no longer an option. Thus, developing effective screening methods and

accurate prognosis of LC is of paramount importance, not simply for early detection

but also to improve patients’ quality of life (QOL) and reduce the mortality of LC.

Regular chest x-rays have been studied for LC screening, but they have been of

limited assistance in prolonging the lives of most patients. In recent years, low-dose

CAT scan (formerly known as computed axial tomography or CAT scan) or CT scan

(LDCT) has been applied to patients with a higher risk of getting LC. Nevertheless,

this kind of screening needs to be conducted by appropriate CT scanners. Besides,

these facilities also need to work together with the staff with rich experience in CT

scans for LC screening. What’s more important, to guarantee a timely treatment, a
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team of specialists need to cooperate with the facilities to give patients proper health

care and follow-up if there are abnormalities found. To sum up, the existing system

have different kinds of deficiencies and hinders the patients of LC from getting timely

treatment. Moreover, research shows that 2/3 of the world population, which equals

4.7 billion people, lacks adequate radiology specialists and the right kind of medical

facilities.

To alleviate the above-mentioned issues, we propose a cheaper, easy-to-use,

portable electronic nose (e-nose) system to analyze the biomarkers in human breath

to rapidly and non-invasively discriminate LC patients from healthy individuals.

The e-nose for volatile organic compounds (VOCs) pattering is cheaper and portable.

Using cross-reactive, it can detect and discriminate between complex mixtures. To

explore the working principle and discrimination ability of the e-nose system and

overcome the limitations of using existing non-intelligent, slow-responding, deficient

gas sensors, we proposed a novel artificial-intelligent-based multiple hazard gas de-

tector (MHGD) system that is mounted on a motor vehicle-based robot that can

be remotely controlled. First, we optimized the sensor array for the classification

of three hazardous gases. After that, the optimal sensor array was mounted on the

MHGD to detect and classify the target gases. Finally, MHGD is tested through

experiments and the results shows that the designed MHGD system could achieve

an acceptable accuracy (70.00%).

Even though the previously mentioned prototype achieved an acceptable perfor-

mance for hazard mixtures classification, but we needed for medical applications a

scalable, stable, and robust device with a sealable gas path and automatic control
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system. Thus, to enhance the system’s robustness and overcome the many defi-

ciencies in MHGD, a prototype, namely ‘Rapid Disease Detection System (RDDS),’

was developed. This device is designed for breath analysis in the medical field. In

real-world clinical practice, multiple devices based on identical designs will be used

in different clinics. Thus, it is essential to perform instrument calibration before the

sampling procedure to ensure the data is reproducible and reliable for analysis. In

the RDDS system, with time delays, three parameters need to be determined in the

calibration process: the time delay, the gain, and the time constant. Based on this,

a parameter estimation method for the RDDS system is proposed. We analyzed four

different standard gas mixtures(CSGMs) to calibrate the RDDS system. Finally, we

obtained the three parameters of the system with the average value for the fit to the

estimation data of 92.8%.

Moreover, for a better-individualised prognosis for LC and improved survival

predictability, we worked at a deeper level towards survival analysis. To reveal the

underlying relation of prognostic information of radiomic images, fully utilise the

potential of the prognostic power existing in the radiomic data, and exploit the

correlations between radiomic images and survival information, we made the first

attempt to develop a deep 3D multimodal deep learning framework for survival

analysis (namely DeepMMSA) using the medical image in radiology. Quantitative

results on the Non-Small Cell Lung Cancer Radiomics (NSCLC-Radiomics) data

show that the proposed method could surpass the traditional methods by 4% on

concordance, revealing that our method could provide a more accurate diagnosis

method and prognostic decision-making solution in future clinical practice.
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