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Abstract 

Fibres have been implemented in cement-based materials in an attempt to 

overcome their brittleness nature. This implementation has illustrated the ability to 

reduce or eliminate the brittleness of concrete, enhance the ductility and fracture 

toughness of structures using fibre-reinforced cement-based materials (FRCs). 

However, it has been revealed by numerous studies that there is a dissimilarity in the 

mechanical performance of FRCs at different parts of specimens, even casting within 

the same mixture. The variation of fibres/matrix interaction, which is largely influenced 

by the distribution and orientation of fibre in the matrix, has been identified as a main 

factor leading to such divergence in FRCs behaviour. This vital shortcoming has 

restrained the application of FRCs in large-scale on-site production and industrial 

construction. Previous investigations have indicated the rheology properties of the fresh 

mix, fibre properties, mixing and casting procedure, size of specimens and wall-effect 

contribute to the fibre distribution and orientation in FRCs. Nevertheless, most research 

on the distribution and orientation of fibres in FRCs so far is limited to rigid steel fibre. 

Engineered Cementitious Composites (ECC) is a unique class of high-

performance fibre-reinforced cementitious composites (HPFRCC), exhibiting high 

tensile ductility with the tensile strain capacity up to 5% with a moderately low synthetic 

fibre fraction (typically 2% or less by volume). Through micromechanics tools, ECC 

properties can be engineered based on applications, forming a range of ECC materials 

for disparate functionalities in addition to the common characteristics of high tensile 

ductility and multiple fine cracking. Different groups of ECC are named based on their 

dominant characteristics. For example, self-consolidating or flowable ECC was 
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developed for large-scale on-site construction applications and employed in real-scale 

structural members. ECC typically utilises short synthetic fibres, such as polyvinyl 

alcohol (PVA) or polyethylene (PE) fibres, which are tiny in diameter. These fibres are 

flexible, i.e., they can be bent or coiled in the matrix of ECC. Notably, the orientation of 

a bent or coiled fibre varies at different cross-sections of the specimen. Moreover, actual 

distribution of the fibre orientation can be affected by other factors such as casting 

techniques or the rheology of fresh mix. Hitherto, what has not been reported is a reliable 

approach that can provide a full understanding of the orientation and distribution of 

flexible synthetic fibres in the matrix of ECC and practical information regarding fibre 

orientation and distribution for estimating the tensile performance of ECC. 

The aim of this PhD research is to model the flow behaviour of ECC and then 

investigate the distribution and orientation of flexible synthetic fibres and their effects 

on the tensile performance of ECC material. To achieve this aim, a numerical model was 

first developed to simulate the flow of fresh ECC, in order to gain insights into ECC 

flow as well as distribution and orientation of flexible synthetic fibres in the cementitious 

matrix of fresh ECC. The developed model particularly focused on the flow 

characteristics of self-consolidating or flowable ECC. The flow of self-consolidating 

ECC was described as a non-Newtonian viscous fluid. The Lagrangian form of the 

Navier-Stokes constitutive equations of fresh ECC was solved using a mesh-free, 

smoothed particle hydrodynamics method. The flexible synthetic fibre in ECC was 

modelled as separate particles in the computational domain, which possessed identical 

continuum properties as mortar particles except for the drag force between two adjacent 

fibre particles.  
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The developed models were then validated by several standard tests through 

simulating the flow of self-consolidating ECC, including the flow cone tests, V-funnel 

and U-box tests. Numerical results were found to be consistent with the experimental 

test data obtained from the literature. Through these validations, the proposed model has 

proved its capability of providing insight into the flow behaviour of self-consolidating 

ECC in terms of filling, passing abilities and the distribution/orientation of flexible 

synthetic fibres. A simple technique was then proposed for evaluating the orientation 

distribution of flexible synthetic fibres at various sections of a simulated specimen after 

the fresh ECC stopped flowing in the mould. The influence of specimen thickness on 

the orientation of synthetic fibres in ECC was also numerically investigated through the 

simulation the casting of fresh self-consolidating ECC into different thicknesses of 

moulds. The bending phenomenon of flexible synthetic fibres and its influence on the 

distribution of fibre orientations were also studied. 

Over the years, since the stress-crack opening relationship of a single crack at the 

lower mesoscale of ECC crucially governs the stress strain-hardening at its macroscale 

composite structure, several fibre-bridging constitutive models have been developed. 

However, although the two-way pullout mechanism of fibre, micro-matrix spalling and 

Cook-Gordon effects were considered in these models, the prediction of the stress-crack 

opening relationship still showed a remarkable difference compared to the experimental 

test data. To take advantage on the understanding of the orientation distribution of 

flexible synthetic fibres from the developed model above, a novel fibre-bridging model 

was also developed in this thesis. In this innovative model, the relationship between fibre 

stress and its displacement when bearing the stress released from the cracked matrix was 

derived through considering the two-way pullout mechanisms of an arbitrary inclined 
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fibre. Consequently, the findings of the proposed fibre-bridging model reveal much 

better agreements with the experimental testing data in comparison with existing 

models, especially during the pullout stage of fibre. Finally, a novel approach was 

proposed for estimating the tensile performance of ECC through the developed models 

at two states of ECC above. The information of fibre orientation and distribution at 

different cross-sections of a moulding specimen were incorporated into the developed 

fibre-bridging model to estimate the tensile behaviour of ECC. With this strategy, the 

distinct effects of fibre orientation and distribution on the tensile behaviour of ECC were 

also exposed.  

Although the flowable ECC has garnered much attention in this work, the 

developed models in this thesis have great engineering potential for applications of other 

ECC. Extrudable or printable ECC, for instance, exhibits self-reinforcing properties 

being emerged as an encouraging material for 3D printing concrete. In this regard, 

modelling the extrusion process can be valuable for observing and evaluating the 

orientation and distribution of flexible fibres at each print filament. Moreover, modelling 

of extrudable ECC at the fresh state is worthwhile, and help us to understand the 

influences of its rheology properties on the deformation of filaments and stability of 

printed structures. If successful, this can save a huge amount of materials and effort on 

3D printing research using ECC. 


	Title Page
	Certificate of Original Authorship
	Acknowledgements
	Publications from this Thesis
	Table of Contents
	List of Figures
	List of Tables
	Abstract



