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ABSTRACT

Stroke has become one of the most devastating health problems due to post-stroke
disabilities. Rehabilitation is the necessary process for stroke survivors following
discharging from the intensive care units. Of those stroke survivors, 82% of them

cannot regain full arm functions, in turn, their daily lives are dramatically affected
since they cannot perform daily activities such as eating, dressing, or taking showers
independently. In recent years, technology-assisted rehabilitation is introduced using
functional electrical stimulation, robotic devices, and virtual reality. Although technology-
based systems have demonstrated advantages in early research, there are numerous
aspects needed to be further investigated to ensure more stable physiological analysis of
the affected upper limb and broader usage in the clinical field.

This thesis proposes a complete upper-limb rehabilitation system with multimodal
motor function training using neuroelectric signals. First, motion intent recognition
and emotion classification is analysed using electroencephalogram (EEG) signal. The
EEG-based motion intent recognises the desired motion of stroke patients before the
motion is executed. At the same time, emotions of the patients are monitored to ensure
safety while the patients are doing exercises. Novel designed classifiers, including hybrid
Support Vector Machine and hidden Markov Model and a Fuzzy-based Support Vector
Machine, are demonstrated. The EEG-based classifiers are able to achieve 78% accuracy
using novel machine learning algorithms, which improves 10-15% comparing with the
classical methods.

Second, electromyography (EMG) is one of the most frequently used parameters since
it reveals the electrical activity of a specific muscle that is related to the muscle force. In
this thesis, EMG connectivity analysis using multivariable autoregression is proposed
to analyse the inter-relationship between muscles. Using EMG connectivity analysis,
the paretic arm is considered as the abnormal system, and the non-paretic arm is the
reference side. The rehabilitation strategy is to control the abnormal system to generate
identical EMG connectivity patterns as the reference side.

After integrating the layers controlled by physiological signals, a wearable exoskele-
ton is built as a rehabilitation device by mimicking human-like movements. The exoskele-
ton guides and supports rehabilitation movements based on the patients’ physiological
signals. After consolidating with physiotherapists and stroke patients, features such as
wireless communication, low-power consumption, touch screen user interface, etc., are
implemented to promotes the ease-of-use and expand the possible applications in the
clinical field. At the moment, a clinical study that has recruited nine stroke patients is
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conducted regarding outcome assessment and rehabilitation prediction. Followed by this
study, the developed exoskeleton will be evaluated on stroke patients.
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

1.1 Introduction: Human Brain, Neural Signals and
Measurements

The human brain is arguably the most important organ as it processes the information

received from the body and the environment, and react to it internally and externally.

Serving as the command centre for the body, the brain has been the core of biomedical-

related study for centuries, and yet there is much we do not thoroughly understand.

Nevertheless, to begin exploring the brain’s intricate network, we must gain insight into

the brain’s structure.

The brain sits inside the cranium that is the bone structure under the scalp. The eight

cranial bones and fourteen skeleton bones protect the brain from external traumatic

injuries. Anatomically, the brain is divided into the brain stem, the cerebellum, the

hypothalamus, the thalamus, and the cerebrum [1]. Furthermore, the different parts of

the brain are closely connected during information processing and transferring, which is

the nature of brain-related research difficulties. In this thesis, two issues are emphasized:

1 . How to examine and reflect the dynamic changes of the brain activity using

non-invasion techniques? Moreover, with practical concerns such as cost, portability,

comfortableness, etc., how to measure and decide the adequate spatial and temporal

resolution in brain signal processing?

2 . How to calculate the interconnection qualitatively and quantitatively between

different regions of the brain? In addition, how to accurately interpret the relationship

(anatomically and functionally)?

The following paragraphs are presenting the fundamentals of brain anatomy related

to the above issues. By understanding the biomedical background, we are able to gain

the perspective from physiological studies, which is essential in comprehending the

physiological basis of the target medical conditions, acquiring the requirements from

patients and doctors, and filling the gap between medicine and engineering. Later in

this chapter, we will discuss in detail the approaches to resolving the two challenges

mentioned above.

First, the spatial property is one of the keys to revealing the mystery of how the brain

works. The brain is analysed from three planes, coronal, sagittal and horizontal shown

in Figure 1.1. Different methods are applied to discover the property in each plane and

section. Here, we mainly focus on the sagittal plane. As this study is concentrating on

both cognitive feedback and motor functions, the cerebral cortex becomes the centre of

this research. The cerebral cortex is the folded section on the outer layer of the brain.
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1.1. INTRODUCTION: HUMAN BRAIN, NEURAL SIGNALS AND MEASUREMENTS

Figure 1.1: The anatomic planes of the human brain

(See: [2])

It is made of grey matter that contains millions of neurons to allow us to speak, read,

and move around. The cerebral cortex consists of four lobes, as Figure 1.2 highlighted in

different colours. Commonly, the frontal lobe is considered the processor for emotional

reaction and controlling body movements. Parietal lobe oversees the general senses.

Temporal lobe consists of the olfactory and auditory areas. Occipital lobe is responsible

for visual function and spatial cognition. In this thesis, both frontal and occipital are

critical in rehabilitation training. However, as we discussed earlier, the interconnection

shall not be neglected, which is why other lobes are also included in the research’s

primary stage.

Figure 1.2: Lobes of the human brain and their functions

(See:[3])
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CHAPTER 1. INTRODUCTION AND LITERATURE REVIEW

Secondly, as we zoom into the function of emotion and cerebral cortex, it is essential

to discuss further the connection between the prefrontal cortex (PFC), limbic system

and the definition of human emotions. The PFC supports cognitive functions, including

cognitive, affective, and integrated social behaviours. Under the frontal cortex shown

in Figure 1.3, the deeper structure involving the thalamus, hypothalamus and basal

ganglia form an emotion processing site, called limbic system [4]. The limbic system is

commonly referred to as the functional anatomical system closely related to emotions,

memory, and pathologically to psychotic conditions and cognitive defects [5].

Figure 1.3: The limbic system of the human brain

(See:[4])

With the understanding of brain anatomy, we next briefly discuss the role of emo-

tions in biomedical engineering research. To start, one must define ‘emotion’, which is

something we experience every day, every minute and every second, and yet ‘felt but

cannot be explained’. In psychology, one of the broadly accepted definitions of emotion

is ‘episodic, relatively short-term, biologically based patterns of perception, experience,

physiology, action, and communication that occur in response to specific physical and

social challenges and opportunities’ [6]. This definition demonstrates two critical proper-

ties of emotion, fast-changing and compounded, challenging in biomedical engineering

projects. The fast-changing property presents a time-variant system, and the complex

nature exposes the challenge for expressing personal and conceptual ideas using quanti-

tative methods. Various biomedical signal processing techniques and advanced machine

learning algorithms are implemented and further explained in later sections of this

chapter to overcome such difficulties.
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1.1. INTRODUCTION: HUMAN BRAIN, NEURAL SIGNALS AND MEASUREMENTS

Figure 1.4: The motor cortex of the human brain

(See:[7])

Lastly, this thesis targets motor skills recovery during rehabilitation; therefore,

the motor cortex plays an important role. In Figure 1.4, the motor cortex comprises

primary motor cortex (green), premotor cortex (red), and supplemental motor area

(green). Primary motor cortex controls simple voluntary movements [8], and the rest of

the motor cortex administrates more complex functions than the primary motor cortex.

Furthermore, primary cortex determines the force, direction, and speed of the movement.

As the name suggested, premotor cortex selects the appropriate movement before the

execution; whereas the supplemental motor area arranges the sequence of a complex

movement based on experiences. Overall, each of the sections is essential to biomedical

related studies, especially to rehabilitation sessions. The movement’s complexity will

vary at different recovery stages; therefore, by understanding the area that needs to be

activated and stimulated, the recovery efficiency could be further improved.

After clearing the significance and identifying the challenges in anatomic analysis,

we also need to specify the brain research’s engineering aspects. In the first chapter, we

begin with the most fundamental element of the analysis, data selection.
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1.1.1 Computed Tomography and Positron Emission
Tomography

Computed tomography (CT) uses a circular-shaped x-ray source (shown in Figure 1.5)

to generate images of cross-sections of the body. Then, these cross-section images are

organised together to form a three-dimensional image to understand the target area

better. Comparing with traditional x-ray images, this method presents a higher spatial

resolution. Also, positron emission tomography (PET) is used to measure the body’s

metabolic activity. PET combines nuclear and biochemical medicine to reveal the infor-

mation at the cellular level. CT coupled with PET, shown in Figure 1.6, can present

the metabolic processes of the brain structures embedded deeply under the frontal and

temporal lobes [9].

Figure 1.5: An example of a computed tomography machine

(See:[10])

In brain-related conditions, PET/CT is a widely used neuroimaging technique in

practical due to its speed, availability, and low-cost [11], which is commonly considered as

an early diagnosis test. PET/CT’s limitations are first keeping the patient at a stationary

position during the acquisition that can take 10 – 20 minutes. Movements during

this period reduce the resolution of the image dramatically. Furthermore, attenuation

correction of the photons emitted by the patient’s brain and position can also impact

the quality of the measure [9]. In stroke rehabilitation training, patients are hardly in a

stationary position for an extended period; therefore, the dynamic requirement of this

thesis prevents us from choosing this neuroimaging technique. Another concern of such

method is that these methods are nuclear medicine imaging. The radiation exposure

for patients and health care workers can be a severe risk [12] if we are going to use

these methods for long-term rehabilitation treatment. In this thesis, PET/CT is used for

emergency evaluation of acute stroke.
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Figure 1.6: CT (left) and PET/CT (right) images of the human brain

(See:[9])

1.1.2 Magnetoencephalography

Magnetoencephalography (MEG) measures the magnetic fields generated by the elec-

trical activity of neurons [13]. The magnetic fields generated in the brain is small

(femto-tesla to pico-tesla), and the collection process can be interfered by the earth’s rela-

tively stronger magnetic field [13]. To overcome such issue, as demonstrated in Figure

1.7, MEG machine uses superconductors in an extremely low-temperature environment

to pick up the small signal. Also, the acquisition is taken in a magnetically shielded room

to reduce noises.

Figure 1.7: An example of the MEG machine

(See:[13])

MEG has a high temporal resolution as it can reach 1000 Hz sampling frequency.

The cortical activity patterns can be clearly presented as illustrated in Figure 1.8.

Nevertheless, as the restrictions stated above, the preparation and collection time is

7
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usually up to 2 hours. Together with the high cost of the overall set-up, this method

becomes inappropriate for movement-induced analysis.

Figure 1.8: MEG scan images of the human brain

(See:[14])

1.1.3 Magnetic Resonance Imaging and Functional Magnetic
Resonance Imaging

Since the early 1980s, Magnetic Resonance Imaging (MRI) has become one of the most

fascinating and innovative neuroimaging techniques in recent years [15]. First, we shall

understand the basis of MRI technology and its associated technique, function Magnetic

Resonance Imaging (fMRI). MRI machine generates a strong magnetic field that changes

the body tissue’s energy state at the atomic level. Then, a pulse of magnetic energy is

introduced that causes the atoms to resonate. After the pulse is removed, the atoms

return to lower energy level and release the energy. This energy emitted and time taken

to restore to the original state is the primary information collected, further analysed later

to determine the type of tissue. In turn, MRI presents a clear anatomical structure of the

targeted area, whereas fMRI focuses on the metabolic function, which is measured based

on the blood oxygenation level dependent (BOLD) effect. The fMRI machine processes

the difference between oxygenated and deoxygenated haemoglobin.

Nowadays, fMRI is combined with conventional MRI to generate a standard brain

image in both clinical and research fields. First, the MRI image is formed by stacking

the signal slices; then, fMRI is taken and placed on the MRI image. Therefore, both the

anatomic structure in high spatial resolution and metabolic activities are illustrated in

the same image. Since the invention and recent development of software and hardware,

fMRI technology shows an increasing number of studies in almost all brain-related stud-

ies [17]. This trend is due to many behavioural and observational theories in cognitive

research are further explored using the data-based approach. Nevertheless, as the dia-

gram of MRI set-up shown in Figure 1.9, fMRI requires the participant to stay at specific

positions in a specialised confined space that can cause anxiety and claustrophobia for

some patients. This exposes a serious concern when we are going to study a dynamic

8
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Figure 1.9: An overview of the MRI system

(See: [16])

motor system on post-stroke patients. Another challenge using fMRI method is the issue

of cost. In Australia, post-stroke rehabilitation is often conducted at the rehabilitation

clinics, where equipment such as fMRI systems cannot be installed due to the lack of

professional human resources, specialised facilities, and financial capabilities. In the

pilot studies and clinical trials involved in this thesis, fMRI is used in the hyperacute,

acute and subacute phase to examine the brain’s infarcted tissue for diagnosis purposes

[15]. This information is later used to categorise the experiment participants into more

detailed groups for further analysis.

1.1.4 Functional Near-infrared Spectroscopy

A new approach, functional near-infrared spectroscopy (fNIRS), using NI light to detect

the concentration changes in brain-related biomedical engineering research is proposed

since the early 2000s [18]. When the photons from the NI wave passes through the

oxygenated and deoxygenated haemoglobin, fNIRS sensors pick up this information to

determine the blood flow changes over time. One example of the fNIRS images is shown

in Figure 1.10, where the activation intensity and cortical oxygen level are presented

using a colour bar and a simple line chart.
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Figure 1.10: An fNIRS image showing the oxygenated and deoxygenated haemoglobin
levels

(See: [19])

This new approach demonstrates several benefits of stroke-related cognitive and

motor function studies. Since fNIRS uses the optical imaging technique, it would not

induce health risk compared to nuclear imaging methods (e.g., CT and PET). This method

has also shown high feasibility in cognitive and motor function studies [20]. The low cost,

easy to use, and portable properties are also suitable for fundamental and innovative

research projects. We are currently conducting a joint clinical study between Australia

and China, shown in Figure 1.11, to investigate the cognitive and learning rehabilitation

for post-stroke patients using fNIRS. Nonetheless, at around 100 Hz, the sampling

frequency would create a problem for event-related potential research, often used in the

cognitive analysis. Therefore, fNIRS is often used in combination with high temporal

resolution methods such as electroencephalography (EEG) introduced in the next section.

Figure 1.11: An example of fNIRS used in a stroke-related clinical study
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1.2 Electroencephalography

In 1924, Hans Berger invented the electroencephalography technique and applied in

humans [21]. The electroencephalogram detects the electrical variation from the neural

activities generated at the cerebral cortex. The basis of EEG signal is from the under-

standing of the neuronal electrochemical processes. As the basic unit for the human

nervous system, neurons undertake six stages from a complete neuron stimulation cycle

shown in Figure 1.12. At the resting stage, the member stays at the resting potential

at around -70 millivolts. After a stimulus is presented, the graded potential is gener-

ated, which opens the sodium or potassium channels. Next is the action potential stage,

where depolarisation occurs after the threshold potential is reached. At this stage, the

potential difference can be around 100 millivolts. Then, to restore the polarisation of the

membrane, repolarisation brings down the member potential to a value that is lower

than the previous resting potential. This is called hyperpolarisation, and it is followed by

refractory period, where stimulus is absent, and the member prepares for the next circle

by returning to the resting potential. By understanding the basis of the signal that EEG

collects, we can optimise the design the EEG machine to collect higher quality signals.

Figure 1.12: The cycle of a neuron’s membrane potential

(See:[22])

EEG hardware design is usually discussed under three aspects: recording electrodes

and electrode placement. Ag-AgCl electrode demonstrate excellent DC-stability, superior
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low frequency noise and lowest resistance. This result is in line with the reversible

chemical reaction that is responsible for conductive charge transfer:

(1.1) Ag(s)+Cl−(aq)
 AgCl(s)+ e−

Since EEG has been criticised because of its poor spatial resolution, the placement of

the electrodes is even more important to reduce the negative impact. The international

10-20 system is a widely used method to provide a full coverage of the scalp. It uses

the bony landmarks to construct lines of sensors in prefrontal, frontal, central, parietal,

occipital, and auricular regions shown in Figure 1.13. The standard 10-20 system usually

contains 21 seeds including the reference nodes (A1 and A2).

Figure 1.13: The international 10-20 system for EEG sensor placement

(See:[23])

Nowadays, more EEG devices are making innovative sensor placement designs based

on the needs. For medical research projects, there are the 10-10 system and other

arrangements that increases the number of sensors to 32, 64 and 128 to improve the

spatial resolution and detect extremely localised electrical potentials. Whereas some

devices focus on the usability and portability of the device. These devices allow the users

to move around by applying wireless transmission and reduced number of sensors (e.g.

14 sensors for Emotiv Epoc X). Considering the broad variety of the applications that

can provide, both approaches have been tested under different scenarios in this thesis.

Due to the rapid development of the hardware and software of EEG analysis, another

phrase,‘Brain-Computer Interface’ (BCI), has become one of most heated topics in both
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biomedical research and industrial applications.On the 28th of August 2020, Elon Musk’s

Neuralink chip tested live in pig brain. This news has drawn a lot of attention from the

public on how much of potential that the brain research could achieve. In biomedical

engineering research, BCI is defined as a computer-based system that collects physio-

logical signals from the brain, processes them, then uses the information gathered as a

series of commands to instruct the computer to perform desired tasks[24]. In another

word, the brain’s signal does not travel to the muscles as human beings normally do.

The signal goes to a computer system and is carried out by external tools. The first type

of BCI in biomedical engineering is around prostheses development in the early 1970s.

However, the development was slow since the hardware and software capabilities. After

2000, reduced cost on the hardware and fast improvement on signal processing and ma-

chine learning techniques provided a resourceful environment for BCI to grow. Overall,

BCI has been applied in communication, environmental control, assistive devices, and

rehabilitation shown in Figure 1.14. This thesis discusses BCI applications in emotion

recognition and motor imagery in stroke rehabilitation.

Since the invention, EEG has dramatically developed sensor quality, communica-

tion, and signal processing techniques for biomedical engineering projects. The close

connection to mechatronics permits hardware improvement over the last few decades.

The trend on machine learning and big-data analysis allow EEG research to take a huge

leap in noise reduction, feature selection and pattern recognition.

Given the impressed sensitivity in showing rapid changes in neurological reactions,

EEG has also been implemented for several clinical practices. The analysis of the

neuro-electrical abnormality has produced significant impact on epilepsy detection [26],

Alzheimer’s disease [27], sensory processing disorders [28], etc.

EEG has been applied in stroke studies for several decades. At first, EEG was mainly

used as a diagnostic tool during the acute phase [29]. With the development of CT/PET

and fMRI techniques, research projects are shifting EEG into post-stroke rehabilitation

stage. EEG can monitor the changes continuously throughout the rehabilitation training.

Moreover, several studies examined the differences between the normal and affected

hemisphere to gain more information on how the brain undergoes the recovery process

after stroke [29] [30].

In this thesis, EEG has been selected as the primary neuroimaging source for brain

research for stroke rehabilitation. The reasons are mainly threefold.

First, for pilot studies and clinical trials, EEG is collected using a non-invasion
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Figure 1.14: Examples of BCI Applications

(See: [25])

headset that permits the patient to perform rehabilitation training in a specific range

and without environment constraints (such as a magnetically shielded room for MEG

scan).

Second, high temporal resolution EEG provided, advanced signal processing and ma-

chine learning skills allow continuous monitoring and accurate detection and prediction

of the brain activities.

Finally, considering the feasibility of the experiment and future clinical applications

using our findings in facilities such as rehabilitation clinics or even at home, EEG is

a reasonable choice due to ease-of-use, low-risk, and low-cost features. Chapter 2 will

discuss how EEG is acquired and the BCI applications using EEG.
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1.3 Electromyogram

Currents generated by muscles fibres is a tiny but important signal that can be extracted

and analysed for various biomedical studies such as motor neuron disease, neuropathies,

or muscular dystrophies. This electrical current is called electromyogram (EMG), which is

one of the most important physiological signal studying the human motor functions. Since

EMG directly measures the activity of the muscle, it provides the information of how the

commands from the motor cortex is executed on the lower end. Two critical properties

have made EMG become one of the most significant signal regarding motor function

studies [31]. First, EMG is generated before the execution. For upper limb muscles,

the EMG signal can be detected 40ms ahead. Secondly, there is a close interaction

between EMG signal and EEG signal from the brain. This finding lays the foundation for

future applications that would combine signals from different sources. It also presents a

promising basis for stroke rehabilitation studies as both the muscles and the brain are

investigated at the same time.

To understand how EMG can be used in this thesis, it is necessary to learn the

the physiological basis of EMG demonstrated in Figure 1.15. The command of muscle

activity is originated from the motor cortex in the brain. The hierarchical structure of

the system passes the information from the brain to spinal cord, then to the skeletal

muscles. Within the skeletal muscle, the smallest unit is called motor unit (MU), where

motoneuron and muscle fibres are presented. The number of MUs per muscle in humans

may range from about 100 for a small hand muscle to 1000 or more for large limb muscles.

Figure 1.15: A schematic representation of motor control mechanisms

(See:[32])
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During muscle contractions, both speed and force can change the motor units re-

cruitment and the activation frequency. The electrical signal detected is based on the

total number of MU involved and the activation frequency. Therefore, EMG can directly

reflect how strong and how fast the target muscle contracts. It is also important to notice

that these two factors are not the only sources that can change EMG signal. Muscle

fibre potential, MU discharge synchronisation and fatigue level can also influence EMG

patterns.

There are mainly two types of EMG acquisition methods, needle EMG and surface

EMG. Needle EMG, illustrated in Figure 1.16, is usually used in clinical practices where

clinicians are trying to diagnose any possible muscular skeletal disorders. During a

needle EMG, a needle electrode inserted directly into a muscle. This invasion approach

is able to gather clearer and faster information from the muscle, however, the main

limitation is that invasive EMG requires professional trainings to operate. It is also not

portable since the patients usually need to stay at certain position without the freedom

to move.

Figure 1.16: An example of needle EMG

(See:[31])

The other approach is surface EMG (sEMG). This approach is more common in

research and engineering studies as it is non-invasive and does not require medical

doctors to perform signal collection procedures. However, the drawbacks of this method

is that sEMG induces more sources of noises in the signal. Therefore, identifying the

factors and removing noises is one of the main tasks for sEMG analysis. First, similar

with needle EMG, sEMG is mainly affected by the muscle contraction speed and force.

Other factors includes the distance between the sensors to the muscles, the impedance of
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the skin or any other tissues between the skin and the electrode. sEMG signal is also

influenced by its hardware quality (amplifiers, electrodes, filters, etc.). The next section

introduces several statistical and frequency-based measures to extract information from

sEMG signals.
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1.4 Stroke Rehabilitation and Wearable Robotics

Stroke is a global health-care problem that is common, serious, and disabling. Only 18%

of stroke patients with severe upper extremity paresis regain full arm function [33].

However, arm function is essential to cope with the tasks of daily living. To regain the

upper-limb (UL) motor functions, physiotherapists have developed a series of rehabili-

tation techniques for stroke patients, including motor-skill exercises, mobility training,

and constraint-induced therapy. In recent years, technology-assisted rehabilitation is

introduced using functional electrical stimulation [34], robotic devices [35], and virtual

reality [36]. These rehabilitation strategies have also demonstrated their strengths

in several clinical studies [37]. Although the proposed technology-based systems have

demonstrated advantages in early research, there are numerous aspects needed to be

further investigated to ensure more stable physiological analysis and broader usage in

the clinical field [38].

To utilise biological signal for stroke rehabilitation requires an in-depth neurophysio-

logical analysis that reveals biological feedback from the therapies, and more importantly,

provides a comprehensive and consistent method to measure the recovery of patients’

motor function. With the rapid development of the neuroelectrical devices, there has

been an increase in projects using muscle activities of UL in stroke rehabilitation [39]

[40]. Surface electromyogram has been used as one of the critical parameters in recent

studies. Advantages such as the ability to predict movements, and estimation of the

required assistance for rehabilitation therapies illustrate the potential to use sEMG in

physiological analysis for stroke [41] [42] [43]. Nevertheless, the long-lasting issues of

sEMG such as susceptible easily to various sources of artefact, difficulties in isolating to

individual muscles and variations due to physical and environmental states still exist

in stroke rehabilitation studies. To overcome such problems, an accurate and stable

mapping between sEMG and mechanical parameters is essential. This task has been

conducted using healthy participants [44]; however, the unnatural relationship caused by

stroke and unpredictable recovery progress of the patient are the top challenges in sEMG

applications. Therefore, instead of searching for a suitable model between biological and

mechanical input, a similar neuroelectrical signal, electroencephalogram that is collected

from the human scalp, has presented a successful example in biomedical research. Mod-

ern brain mapping methods have demonstrated the anatomical and functional connection

patterns using EEG signal. The organised behaviour of different region of the brain

is emphasised to not only establish the relationship between data-driven prospectives
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and clinical manifestations but also propose a platform to show the commonality of

physiological signal in unnatural states between different individuals. Thus, adapting

EEG connectivity analysis is a potential solution to apply sEMG in stroke patients who

are demonstrating complex neuromuscular feedback.

Rehabilitation is an effective method to recovery after stroke. Rehabilitation often

starts right after the patient is out of the critical situation. This thesis aims to develop a

rehabilitation system that can used in multiple stages of stroke recovery. Therefore, it is

important to first understand the phases of stroke rehabilitation, and the needs at each

phase.

According to the Brunnstrom’s approach [45], there are seven stages for stroke. First

is the flaccidity stage. At this stage, the patient completely lost the capability of move.

The paralysis often happens with the acute events that damages the nerves in the brain.

The second stage is the appearence of spasticity. This means some muscles of the patients

start to perform small, abnormal, and involuntary activities. The next stage of stroke

recovery make the spasticity of the muscle at the highest level. Due to the stiffness

of the muscle, it is important to perform enough stretching exercises with reasonable

rehabilitation activities to reduce the spasticity.

Followed by that, the next stage shows a decreasing trend of the spasticity. This

is the stage where the patients start to feel the positive effects of rehabilitation. It is

also important to regain the strength and control of the muscles. After regaining the

basic movement, the fifth stage is to train the patients to do daily living activities. Once

the patients is starting to showing the independence of living, the last two stages are

follow-up rehabilitation and returning to normal.

Regarding the technologies used in stroke rehabilitation, this thesis mainly discuss

the rehabilitation robots developed in recent years. Although these robots have started

in a new era of modern neuromuscular rehabilitation engineering and assistive technol-

ogy research [46], several concerns have been raised. First, the lack of ergonomic and

standardised design leads to issues for transforming the technology from lab to bedside.

Some robots present a positive result on healthy subjects; however, stroke patients find

these designs are not practical to use in clinical settings. The performance assessment for

stroke rehabilitation using robots is also another area that similar works in exoskeleton

design have not studied systematically. In this thesis, we present a self-developed upper

limb exoskeleton that can be used in multiple stages of stroke recovery with several

features to improve the clinical feasibility. A novel EMG-based rehabilitation assessment

is also demonstrated, offering a physiological based performance assessment.
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1.5 Overview of the Thesis

Figure 1.17: A summary of this thesis

In this thesis, ‘Multi-mode Stroke Rehabilitation System Using Signal-Controlled

Human Machine Interface’, a complete robot-based rehabilitation system is offered to

improve post-stroke recovery efficiency patients. Three modules are presented in this

thesis, shown in Figure 1.17. The first module uses physiological signal to create a

Brain-Computer interface application detecting the emotional states during activities.

Electroencephalogram is collected as one of the primary physiological sources. The

emotional states of the participants are classified during training sessions. The detected

emotions provide critical information on the patients’ performance. The detected negative

emotions, such as fear is used as a safety measure for the system. To create a efficient

BCI, three approaches are demonstrated using feature extraction methods and advanced

machine learning algorithms to achieve optimised classification accuracy.

The second module of the system acquires electromyogram, which is the muscle’s

electrical activity. A novel designed EMG connectivity analysis is applied to construct the

muscle network of stroke-induced upper limb impairment. EMG-based muscle connectiv-

ity reveals the interconnection between different muscle groups during rehabilitation

training. This information is used for two purposes in this rehabilitation system. First,

it is used as a type of signal processing feature for impaired movement evaluation and

detection. Secondly, a personalised training paradigm is constructed for the rehabilita-

tion robot. The EMG feature of the non-affected side of the limb is used as the reference.
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Then, when the system detects abnormal EMG connectivity from the affected limb, the

robot works as a wearable exoskeleton to guide the impaired limb to perform similarly

with the reference. This rehabilitation training method has shown promising results

from the feasibility studies and simulations using the previous dataset.

The last module is the design of a hybrid biosignal-based rehabilitation system. First,

an upper limb rehabilitation exoskeleton is built using carbon-reinforced 3D printing

material. This lightweight, portable, wireless robot is used to support the affected

movement for stroke patients. Combined with the findings in previous modules, two

human-machine interfaces are developed. First, the emotion classification interface

is used in this system during motor imagery (MI) training. During motor imagery

training, the system recognises the participant’s imagined movement and uses the

virtual reality environment as visual feedback. This training is specifically designed for

stroke patients at their early recovery stages, where they can hardly perform voluntary

limb movements.The robot is served as a motor execution tool to improve the quality of

the imaged movement. A real-time movement detection system is implemented when the

robot is used as a wearable exoskeleton. The movement detection system, together with

the personalised training paradigm developed in the second module offers a customised

approach that can improve stroke recovery efficiency.

In the first chapter, this thesis’s physiological basis is discussed to present a broad

view of the related technologies’ history and recent development. The literature review

provides a systematical examination regarding neuroimaging techniques, which justifies

the selection of the hardware. Hypothesis and research aims are also proposed at the

end of the first chapter. The second chapter focuses on the EEG-based brain-computer

interfaces. The advanced machine learning algorithms developed have made an impact

on analysing internal mental process using neurological signals. The third chapter

emphasises on the human motor function. Stroke, an acute neurological dysfunction

that can cause severe motor deficits, is introduced in this chapter. Biomedical signal

processing skills are applied to explore the unanswered questions in stroke-induced

neuromuscular impairments. Next, by merging the BCI and EMG analysis, a multi-

mode stroke rehabilitation system is established. Chapter 4 demonstrates a wearable

exoskeleton developed at the School of Biomedical Engineering, University of Technology,

Sydney. This stroke rehabilitation system has drawn a lot of interest from both the

research and industrial fields. One of the ongoing clinical trials is also explained in this

chapter. Finally, a summary and future work plan are presented in the Chapter 5.
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EMOTION RECOGNITION AND BRAIN-COMPUTER

INTERFACES

2.1 Introduction

Human emotion has been studied by psychologists for more than 200 years to serve as a

diagnostic tool for a large number of mental illnesses. Traditionally, psychologists judge

the patients’ emotion states based on the observations including facial expressions and

voice characteristics. Even though to recognise one’s emotion is one of the regular tasks

for psychologists, there is still a high demand to find an accountable solution for human

emotion classification from both research and practical point of view. Especially in the

last few decades, the focuses of many scientific and engineering research projects have

been oriented to the human body. New terms such as the human-machine interface (HMI)

and brain-computer interface require the computer to recognise the emotion states and

react to the detected emotions to improve the efficiency of the communication between

the machine and human. With the rapid development of human anatomy science and

biomedical engineering techniques, researchers have been seeking for an engineering-

based approach for emotion classification. Comparing to the psychological method, these

approaches share the advantages where data acquisition measures have a solid scientific

background that guarantees the accuracy of the collected data, signal processing tools

offer a mathematical foundation for the calculation of the original data and machine

learning algorithms demonstrate the efficiency of the training and predicting process.
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However, the emotion classification systems need further improvement with the chal-

lenges including these four areas: (a) to choose the proper method to collect signal and

identify the distinction between the emotion states; (b) to reduce the data dimension to

perform fast calculation; (c) to extract the correct features to represent the information

embedded in the data; (d) to design the learning algorithm to recognise the patterns and

accurately classify the emotion based on the training process.

Numerous efforts have been applied in the field of emotion classification from different

aspects to overcome the above difficulties. First of all, researchers have studied many

sources for emotion classification. Some visible manifestations have been investigated

to detect emotion states by used the vector of 12 speech power coefficients to classify

six types of basic human emotion[47]. Researchers also have drawn much interest in

facial expression, for example, by analysing facial images [48]. Further works have

also been done for tracking the characteristics to study of the emotion states [49] [50].

Moreover, combined sources such as facial expression and body gestures have been

applied to improve the accuracy [51] [52]. Nevertheless, a significant drawback of using

behavioural modalities for emotion detection is the uncertainty that arises in the case

of individuals who either are consciously regulating their emotional manifestations or

are naturally suppressive [53]. Thus, researchers moved their focus to psychological

signals such as electrocardiography (ECG) and electroencephalogram , as these are

the involuntary reactions of the human body. Anatomically, it has been confirmed that

emotional processes could be represented by EEG activities [54]. Here, it is believed that

emotions are generated from the limbic system located in the front lobe of the brain.

The limbic system activities can be monitored by EEG signal as it represents the brain

activities regarding voltage variation from the human scalp. Many recent projects [55]

[56] [57] [58] [59] have been using EEG signal to perform different feature extraction

methods and classifier design.

EEG signal can be enormous if it is collected in a long duration of time with high

sampling frequency. In the case of human emotion classification, relative long signal

collection time and high sampling frequency needed to provide enough resources for

different types of human emotion and the adequate number of samples for analysis

to detect emotion variations within small time frame. As a result, the computational

time would be tedious, and it would limit the application of the system. Researchers

have created several methods to compress EEG signal, and sparse representation is one

of the most popular choices. A sparse kernel was used to transform EEG signal into

the smaller size dataset [60]. Further work has been carried out for determining the
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sparsity of EEG in Gabor frame [61]. A recently developed method, compressed sensing

(CS), has attracted considerable attention in engineering, which offers a framework for

compression of finite-dimensional vectors [62]. Zhang et al. [63] argued that current

CS algorithms only work well for sparse signals or signals with sparse representation

coefficients. Since EEG is neither sparse in the original time domain nor sparse in

transformed domains, current CS algorithms cannot achieve good recovery quality. A

Block Sparse Bayesian Learning (BSBL) has been further proposed and demonstrated a

high result of recovery rate [63].

Followed by data compression, numerous feature extraction methods have been

applied for EEG signal. Statistic features involving maximum and minimum value, peak-

to-peak, mean, standard deviation have been explored [64] [65]. In the frequency domain,

Fourier Transform (FT) analysis has been investigated as well [66][67][68]. Another

method, Wavelet Transform (WT), can be used with controllable wavelet size to detect

every change of the signal. It also can localise the change in the signal, which could be

overlooked if using FT method. Candra et al. [69] addressed several advantages using

Discrete WT involving multi-scale zooming and multi-rate filtering. Both relative wavelet

energy and relative wavelet entropy used in Candra‚Äôs study showed consistently high

quality.

Lastly, a classifier is designed to recognise the feature patterns of human emotion

states. There are currently more than a dozen of machine learning algorithms invented

and a large number of combinations of them. Finding the suitable algorithm for EEG

signal is crucial. Classifiers which include Linear Discriminant Analysis (LDA) [70], k-

Nearest Neighbour (kNN) [65], Adaptive Neural Fuzzy Inference Systems (ANFIS) [68],

binary linear Fisher‚Äôs Discriminant Analysis (FDA) [71], Hidden Markov Model (HMM)

[72] and Support Vector Machine (SVM) [65][69][73] have been utilised. Furthermore,

Neural Networks (NN) including deep learning network with principal component-based

covariant shift adaption [74] and statistical features back-propagation neural network

[75] are also studied in emotion classification projects. The comparison between each

algorithm shows that SVM has higher accuracy due to the excellent discrimination

performance in binary decision problems [76].

2.2 Material

An online EEG resource, the Database for Emotion Analysis using Physiological signals

(DEAP), is selected to be the experimental input dataset. Although invasive methods
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such as attaching electrode probes directly on the surface of the brain have been devel-

oped to collect the electrical movement, considering the objective is to perform emotion

classification with easy set-up, a noninvasive process should be preferred. However,

non-invasion method, which is collecting the signal from human scalp, introduces a

significant amount of noise. Therefore, a high standard electrode placement system and

collecting equipment are required. Moreover, to stimulate and record the correct emotion

states are also challenging. DEAP dataset has considered both of these factors with a

selfassessment questionnaire to maximise the accuracy of the collected EEG signal and

the emotion states recorded [77].
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Figure 2.1: 2D Emotion Planes

DEAP dataset contains 32 test subjects to perform EEG signal collection using music

video clips to stimulate various emotion states. The 32 participants are asked to sit still,

watching 40 music video clips lasting 1 minute. The EEG signal is extracted using the

standard 10-20 system, which contains 32 electrodes. The dataset evaluates emotion

states using four scales, same as we used later in the classification process, namely

valence, arousal, dominance and liking. The emotion is considered from 1–9 in each

scale. For instance, number 1 in valence means a deficient valence emotion state, and

number 9 in dominance indicates high dominance state. Thus, there is in total four

emotion responses for one music video for each. The dataset is downloaded from the

official website, and the data file is translated into ‘.mat’ format. For each subject, two

matrices record their EEG signal and corresponding emotion states. The first matrix has

three dimension, which includes 40 videos labelled from 1 to 40, 32 EEG electrodes as

the Geneva order and 60 seconds EEG signal in millivolts. The other matrix indicates

the emotion states in four scales, namely valence, arousal, dominance and liking. All

four variables are chosen, and two 2D planes are generated based on them. The emotion

states are measured on the emotion plane shown below in Figure 2.1 The median value,
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5, is used to separate these four areas in both axes.

In the following sections, three approaches are presented to show the improvement

of the BCI for emotion recognition from signal processing, feature selection and machine

learning algorithm development.

2.3 Solution One: novel parameter with combined
support vector machine and hidden Markov
model classifier

2.3.1 Methods

The methods overview is demonstrated using a functional block diagram shown in

Figure 2.2 The raw signal is collected from the standard 10-20 system, then pass to

pre-processing that removes noises and divides the long signal into 6-second segments.

The second module uses wavelet analysis to transfer EEG signal from time domain

to frequency domain. Three parameters are calculated from each section forming the

extracted features. The features enter the combined SVM and HMM classifier and the

output is the classified emotion according to arousal-valence plane.

Figure 2.2: Functional Block Diagram
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The signal is down-sampled to 128 Hz sample rate. Lower sample rate reduces

processing time for the feature parameters calculation. Electrooculography (EOG) is

removed in that eye movement is the primary noise source. A bandpass filter is applied

to remove noises that are less than 4 Hz or larger than 45 Hz. The noise-free EEG signal

is segmented into 6 second time window. Since the sample rate is 128 Hz, after the

segmentation, the total number of segments for this solution is 10×32×40×32= 409600.

All parts will go through the feature extraction process and 30% of the segments are

selected to be the learning set for the classifier, and 70% are in the testing set.

DWT is utilised due to the advantages of time-frequency localisation, multiscale

zooming, and noise filtering. Since the study focuses on the valence-arousal plane emotion

states, the frequency bands chosen are alpha, beta and gamma bands. The specific

variables for wavelet transform are determined based on previous studies. The mother

wavelet function is Daubechies5 (db5) and the decomposition level is 6 based on the

dominant frequency components of EEG signal which are from 8 Hz to 64 Hz.

To start with wavelet analysis, DWT coefficients are calculated. The following equa-

tion finds the wavelet coefficients.

(2.1) < f ,ψa,b >= Ca,b =
∫∞

−∞
(

1p
2− j

)ψ(
t−2− jk

2− j )

In equation 2.1, 2 jk and 2 j are the time localisation and scale respectively, while ψ(t)
denotes the mother wavelet function [69]. DWT coefficients are used in all three features

calculation.

The first feature is relative wavelet energy. It is calculated as follows:

(2.2) p j =
∑N

k |C j(k)|2∑
j
∑

k |C j(k)|2

C j(k) represents the detail coefficients, which indicates that the numerator is the

detail wavelet energy. The denominator is the total wavelet energy. The probability p j

reveals the time-scale density of the input data.

The second feature extracted is relative wavelet entropy. It is expressed below:

(2.3) Swt(p|q)=∑
j

p j · ln(
p j

q j
)
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The variable q j is used as the reference distribution to give a more accurate value

for p j. Relative wavelet entropy shows the similarity between two probabilities. In this

design, the Shannon entropy is utilised.

The third feature used in the study is an innovative approach of joining two features

together. DWT coefficients and standard deviation are selected and multiplied to create

this variable. This method proposes an ideal circumstance that it includes information

from both time domain and frequency domain, which leads to better performance of the

classification system. The mathematical notation is shown in equation 2.5.

(2.4) λ= Ca,b ·σ2

Firstly, SVM is developed to classify the extracted features. Since SVM is normally

for binary classification, in order to classify both valence and arousal axes, two SVMs

are established. Radial Basis Function is utilised in the training step. There are three

combinations tested in SVM classifier: the innovative variable that joins both time

and frequency domain; a bundle of two variables from DWT; and a bundle of all three

variables.

While SVMs are large-margin classifiers known for their excellent discrimination

performance in binary decision problems, they do not incorporate a model with time,

HMM is capable of representing temporal dynamics very efficiently. Thus, a combined

model of both SVM and HMM is designed to reach higher accuracy. The general idea is

to use SVM output as the input of HMM. However, it is not possible to directly use the

output as a probability measure. The output indicates the distance between the sample

to the support vectors and the relationship between the output and the class probability

is not clear. A sigmoid function is utilised to discover the connection between these two

variables shown below:

(2.5) g(h(x), A,B)= 1
1+ exp(Ah(x)+B)

The parameters A and B are calculated by maximum likelihood estimation with

g(h(x), A,B). The distance between the support vectors and the optimised plane is used

to create the HMM classifier model. Since the classifier only needs to identify whether

the input signal is on the higher half or the lower half of the axes, using MATLAB

HMM toolbox function, hmmtrain and hmmdecode, the class probability is successfully

reflected.
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2.3.2 Results

Table 2.1: average accuracy for different feature combinations

2D Plane Innovative
Variable Only

Wavelet
Variables

All Three
Variables

Valence 0.5793 0.5485 0.6021
Arousal 0.6136 0.6182 0.6279

The contribution of the innovative variable for emotion classification is studied. SVM

classifier is used with three combinations of the extracted feature shown in Table 2.1. The

first set uses the innovative variable only. The second set contains both of the wavelet

analysis variables. The last set is a three dimensional matrix including all of the three

features. It is worth to note that all 40 music clips and 32 test subjects are taken into

the calculation. Since it is a large dataset, average accuracy on valence and arousal

planes are used to represent the overall performance. Despite the accuracy of individual

parameters is relatively low; the joined three parameter data group is consistently

higher than other combinations. On valence axis, the increase of the accuracy of the

three parameters test is more than 2% for innovative parameter only and more than 5%

for wavelet parameters only. The increase of accuracy confirms that combining time and

frequency domain parameters can improve the performance of the classification system.

Figure 2.3: Valence Plane Classification Accuracy: all 32 participants are demonstrated
on the x-axis. The y-axis indicates the classification accuracy in decimal numbers. The
yellow dash line represents the traditional SVM classification, and the blue solid line is
accuracy for the novel combined SVM and HMM classifier.
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Figure 2.4: Arousal Plane Classification Accuracy: all 32 participants are demonstrated
on the x-axis. The y-axis indicates the classification accuracy in decimal numbers. The
green dash line represents the traditional SVM classification, and the red solid line is
accuracy for the novel combined SVM and HMM classifier.

The SVM classifier and the combined classifier are tested seperately by the three

dimentional dataset shown in the last column of Table I. Figure 2.3 and Figure 2.4

demonstrate the average accuracy for each test subject on both valence and arousal

plane. As the diagrams shown, the combined SVM and HMM classifier returns higher

values constantly in the majority of the cases. This reaffirms the combined classifier

methodology, which is to use the property of the support vector of the SVM classifier as

the input of the HMM classifier, and as a result, the second classifier finds the hidden

information in the features and corrects the classification process.

Figure 2.5 compares the average accuracy for these two classifiers on valence and

arousal axis. The blue bars are the average accuracy for SVM classifier and the yellow

bars stand for the combined design. The average accuracy on valence axis rises 3.15%

and it increases 2.88% on arousal axis. The stable increase of accuracy on both axes

illustrates that the combined SVM and HMM classifier contributes in improving the

accuracy and the stability of the system.

This approach establishes an innovative design of emotion classification system based

on EEG signal. Using DEAP database as the input data, three features, relative wavelet

energy, relative wavelet entropy and a novel variable which is the product of standard

deviations in time domain and DWT coefficients from frequency domain are calculated

respectively. A combined SVM and HMM classifier is also designed aiming to improve

the accuracy of the classification. The result indicates that the bundle containing all

three features returns the highest accuracy. Comparing the combined classifier with solo
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Figure 2.5: Average Accuracy: SVM vs Combined Classifier

SVM classifier, the accuracy increases approximate 3%. It indicates that the combined

classifier can optimise the emotion recognition process consistently.

2.4 Solution Two: hybrid fuzzy cognitive map /
support vector machine using compressed
sensing

2.4.1 Methods

When EEG signal is collected, it is undoubted that the brain activities would cause

responses from more than one part of the brain. However, there is yet a clear way to find

which part of the brain is working for an individual emotion state, neither to understand

how closely related between the extracted features and the result. The vague definition

of the acquired signal and the output catalogues has caused serious troubles for the

classification. One of the solutions for such situation is to use fuzzy logic. Fuzzy logic

provides a foundation for approximate reasoning using imprecise propositions based on

fuzzy set theory [78]. A Fuzzy C-Means and Fuzzy k-Means clustering methods have
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been implemented for classifying the emotions [79]. Additionally, fuzzy cognitive maps

(FCMs) are fuzzy models that combine aspects of fuzzy logic, neural networks and non-

linear dynamical systems [80]. FCM is firstly studied by Kosko [81]in 1986, then the

method has been used in several engineering disciplines. Based on the analysis by Vliet

et al.[82], the motivations for using FCM are easy to build and parameterise, flexibility

in representation, easy to use and understand, handle complex and dynamic problems.

Papageorgiou and Salmeron [83]state that FCM has been used as the classification tool

in medicine, business information and agriculture. Salmeron [84] designed a three layer

FCMbased classifier for artificial emotions forecasting. FCMs are capable of revealing

the inter-relationship between their input states. Nevertheless, fuzzy logic is rarely used

in emotion classification, nor in the field of EEG signal processing and analysis. FCM is

able to find the inter-relationship between the features, and the relationship would help

to select the feature according to the significance. Therefore, combining both algorithms

together would improve the accuracy. If a hybrid classifier could merge the merits of

both SVM and FCMs, the classification system would reduce the uncertainty of the EEG

signal and produce higher accuracy.

In this section, we propose a FCM-based classification algorithm. A simple FCM

structure graph is shown in Figure 2.6. C1 to C5 represent each node or state of the

system. The connection between each individual is demonstrated as the weight matrix W.

Therefore, at each step, the new values of each node depends on the activation function,

which is a sigmoid function in this section. The vector state is calculated as:

C1

C2

C3

C4

C5

W15

W51

W21

W25

W14

W53

W23

W43
W34

W54

Figure 2.6: An example of Fuzzy Cognitive Map
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(2.6) ct+1
i = f (ct

i +
n∑

j=i
Wji · ct

j)

After an inference process, the FCM reaches either one of two states following some

iterations. It settles down to a fixed pattern of node values, the so-called hidden pattern

or fixed-point attractor.
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Figure 2.7: Functional Block Diagram

The functional block diagram in Figure 2.7 shows the general development procedures.

The study is divided into three modules. Firstly, the raw signal is collected from the

standard 10-20 system, then pass to pre-processing that removes noises and segments

the long signal into 6-second EEG epochs. The second module uses CS to compress the

size of the preprocessed EEG signal into a smaller dimension. Then, WT analysis is

used to extract the features form the compressed data. Two parameters are calculated

from each segment forming the extracted features. The features enter the last module,

classification, which contains an SVM classifier and a hybrid SVM and FCM classifier.

The output of the SVM classifier is also used as the input of the hybrid one. Finally,

the output is the classified emotion according to the arousal-valence plane and the

dominance-liking plane.

Compressed sensing (CS) is initially defined to compress a large data x with the

length N into a much smaller matrix by a random matrix, denoted by Φ, i.e.,
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(2.7) y=Φx,

where y is the compressed data, and Φ is the sensing matrix with the size of M×N.

However, EEG signal cannot directly use this equation due to the lack of zero in the input

signal. The success of CS highly depends on the assumption that most of the input data

are zero. An alternative approach is utilised. A dictionary matrix is calculated initially,

then the equation becomes:

(2.8) y=ΦDz,

where D has the dimension of M×M and z is sparse. In this equation, the CS

algorithms recover z first, and then recover the original signal x. In this section, the

EEG epoch contains 768 samples, which is the input data for CS. Using equation 1.9, the

compressed data only has 192 samples in each segment.

DWT is utilised due to the advantages of time-frequency localisation, multiscale

zooming, and noise filtering. Alpha, beta and gamma bands are studied. The specific vari-

ables for wavelet transform are determined based on previous studies. The wavelet used

is Daubechies5 (db5) and the decomposition level is 6 because the dominant frequency

components of EEG signal is between 8 Hz to 64 Hz.

Figure 2.8 demonstrates the relationship between SVM and FCM. It is the core

concept of how to design hybrid SVM and FCM classifier. This study uses MATLAB

as the programming language. The architecture of the hybrid SVM and FCM classifier

is represented in Fig.4. The extracted features, which are relative wavelet energy and

relative wavelet entropy, are firstly entered the SVM classifier. These wavelet features

formulate the first layer of the hybrid classifier. The output of the SVM classifier combined

with these two features forms a ten-node hidden layer. The sigmoid function is utilised

as the activation function. After the system converges, the output layer shows the stable

state of the nodes. This process also calculates the weight matrix of the hybrid classifier.

The weight matrix reveals the connections between the hidden layer and the output

layer, as well as the relationship within the output nodes. A defuzzification method is

applied to transform the value of the nodes into scales of the human emotion states.

Since the states of each node are within -1 and +1, the low scale emotion are the negative

values, and vice versa.
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Figure 2.8: Hybrid SVM & FCM Classifier. First two features are relative wavelet
energy and relative wavelet entropy, entering the SVM classifier. The output of the SVM
classifier together with these two feature establish the FCM, which presents the final
output of the classified emotions.

2.4.2 Results
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Figure 2.9: A Segment of EEG and its recovered signal from CS
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Figure 2.9 demonstrates a random chosen EEG signal segment in its original form

and recovered form. The initial 6-second section consists of high frequency noise and 768

number of samples. CS method uses equation 1.9, where D is the inverse db5 WT matrix,

and Φ is a sparse binary matrix, to reduce the noise and the size of the data. It is clear

that EEG peaks and valleys have preserved from the CS process. For example, around

sample number 100 and 200, highlighted in red and yellow, the peaks are consistent

with little distortion. At the same time, the recovered data is smoother, such as the blue

highlighted areas that are from sample number 360 to 410, and sample number 580 to

605. The overall presentation of the recovered signal contains the major activities of the

original one. The compression process reduces the size of the data into one-fourth of its

original size based on equation 2.7, without losing critical information.

Two types of classifiers are tested using the compressed data. A single SVM with

Radial Basis Function is first implemented to examine the 6-second EEG epochs and

to identify the emotion states from the four planes. Then, A hybrid SVM and FCM

classifier is designed to serve the same task. Lastly, the hybrid classifier uses the

output of each epoch to recognise the overall emotion states for the music videos. This

process is considered as the revised process of the segmentation in preprocessing. As the

continuous EEG signal with the same emotion reaction is separated into 10 sections,

the last classifier merges the results of the epochs for the same videos and calculate

the overall scale on the emotion planes. Figure 2.10 shows the accuracy of the three

classifiers for the 32 test subjects on the valence-arousal plane. When the classifiers are

tested on the EEG epochs, the hybrid SVM and FCM, which is the red line, is always

higher than the single SVM classifier, which is the green line. This is because the hybrid

classifier adds the fuzzy logic after the SVM classifier. By doing such, the connectivities

within the emotion states and the features can be mapped, and it will correct previous

errors by the SVM classifier. A similar trend can be viewed on the dominance-liking

plane as well, which is shown in Figure 2.11.

The last classifier designed is shown on both Figure 2.10 and Figure 2.11 using the

blue line. The hybrid classifier (videos) merges the result of ten predictions to form one

outcome. The accuracy is expected to be higher than the previous ones. The result from

all four planes justifies the assumption; however, in each plane, there are a few test

subjects showing low accuracy using the last classifier. In Figure 2.10, test subject 4 and

9 are showing much lower accuracy comparing with the epoch methods. Test subject

7 has the same tendency on the dominance-liking plane. This classifier demonstrates

the characteristic of emphasising the accuracy of the results. In another word, the third
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Figure 2.10: Accuracy on Valence-Arousal Plane

classifier can improve the result to a higher accuracy if the previous classifiers can

successfully recognise the correct emotion; on the other hand, if the previous classifiers

perform poorly, the accuracy of the third classifier would be even lower, because one

music video represents one kind of emotion and only one kind. In another word, one

music video clip corresponds to a fixed number of four emotion scales. Therefore, if the

input for the third classifier is the mean value of each music video. The accuracy will

increase if the majority of the window segments recognise the right emotion. However, in

some cases like participant 7, the accuracy drops. The possible reason is that the emotion
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Figure 2.11: Accuracy on Dominance-Liking Plane

experiencing by the participant does not match the standard emotional response.

The average accuracy for all 32 test subjects is calculated and presented in Figure

2.12. The hybrid classifier using videos as a whole has the highest accuracy, which is

at 78.39%. Comparing with the single SVM classifier, the hybrid one has a consistent

3.23% increase in accuracy. The dominance plane has the largest improvement, which is

3.63%, and the liking plane has the smallest rise, which is 2.77%. The overall accuracy

of the hybrid SVM and FCM classifier for epoch testing is 73.32%, and for video testing

is 78.03%. From the confusion matrix shown in Table 2.2, although the third classifier
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Figure 2.12: Average Accuracy with standard deviation on four Emotion Planes. Blue bar
represents classical SVM classifier. Red bar represents hybrid SVM and FCM classifier
using epoch. Yellow bar represents hybrid SVM and FCM classifier using video.

has the highest accuracy, it has the highest standard deviation error; however, the classi-

fier of the epoch testing has a much smaller error range than the other two classifiers.

Therefore, even though the average accuracy of the videos testing classifier is higher, the

system appears to be less stable than the epoch testing hybrid classifier.

Sensitivity(%) Specificity(%) Accuracy(%)
Classifier 1: SVM 71.33 ± 9.4 69.45 ± 9.6 71.17 ± 7.2

Classifier 2: Hybrid (epoch) 72.81 ± 5.3 73.59 ± 5.4 73.32 ± 3.6
Classifier 3: Hybrid (video) 77.37 ± 11.9 78.64 ± 13.2 78.03 ± 11.7

Table 2.2: Confusion matrix for the three designed classifiers

This method proposed a complete human emotion classification system using EEG

signal. Due to the large size of the dataset, a series of preprocessing techniques are used,

and advanced CS algorithm is designed for EEG signal to reduce the dimension. Wavelet

analysis is then implemented to extract the distinctive features. A hybrid classifier

which combines SVM and FCM is used to reveal the connection between each state and

eventually to classify the emotion states. CS have successfully reduced the size of the

EEG signal four times smaller without losing critical information. The hybrid classifier
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demonstrates consistent improvement comparing with the single SVM classifier, which

is 3.34% of the increase in valence axis, 3.19% in arousal axis, 3.63% in dominance axis,

2.77% in liking axis and overall of 3.23%. When considered one piece of 60-second video

as a whole, the accuracy can reach 95.83%, with an average of 78.03%. The future work

can investigate the connectivity between each EEG electrode using similar methods.

With a more comprehensive understanding of the connectivity of the human brain,

many brain-related research projects can be benefited from the results, and possible

breakthroughs can be expected.

2.5 Solution Three: joint EEG and facial expression
features

2.5.1 Methods

First, it is important to notice that for many clinical and engineering project, emotion

can be highly correlate to satisfactory or performance. Nonetheless, the previous models

of the human emotions is not sufficient to represent the satisfactory level of the product

or service. Figure 2.13 categorises 9 basic customer emotions into the ‘Negative Neutral

Positive (NNP)’ scale. According to Feldman’s model, these discrete emotion states are

placed on the arousal-valence plane. This section utilises the ‘NNP’ model combined with

the arousal-valence plane to adopt both aspects of affective design feedback recognition

and the numerical representation from the engineering perspective.

Negative Neutral Positive

afraid

sad

disappointed

quiet

calm

relaxed

happy

satisfied

enthusiastic

Figure 2.13: Emotion Model: Negative Neutral Positive

The functional block diagram are shown in Fig 2.14. A combination of EEG signals

and facial images is applied in this work to classify the affective status of the partici-

pants comprehensively. First of all, the data about videos and EEG signals are collected

from DEAP dataset. Next, the preprocessing for EEG signal is to remove the noise and

segment the long signal into 6-second EEG epochs. The size of preprocessed EEG signal
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should be compressed into a smaller dimension by CS. Meanwhile, the preprocessing

for the videos is to crop picture per second and change the picture to gray-scale. After

the preprocessing, WT analysis is used for the compressed EEG signal and LBP is used

for the cropped facial gray-scale image to extract the features. At last, the features are

the input of classifier and the output is the classified emotion according to the arousal-

valence plane and “Negative Neutral Positive" model.

Figure 2.14: Functional block diagram.

For the 22 participants, we have 874 videos totally and each video lasts one minute.

We use a auto-screenshot software to obtain the facial image for every second from all

the videos. In that case, we got 52440 images of 510×640 pixels. Figure 2.15 shows some

examples of these images.

Because of the uncertain position of the crop area and in order to acquire a accurate

feature, we have to crop a detail image according to a fixed distance between two eyes

from the original pictures. The image should be changed to gray-scale due to LBP’s

gray-scale invariance.

LBP is widely used in facial expression recognition and a powerful method to describe

the texture of image. The cropped image could be divided into cells(e.g. a×a pixels for

each cells). Then compare each pixel with its eight neighbour pixels by circle in a cell,

write ‘0’ when the value of center pixel is greater than neighbour’s and write ‘1’ when it is

smaller. An 8-digit binary number will be given after that. So with 8 surrounding pixels

there will be 256 possible combination, called Local Binary Patterns. This histogram is

seen as a 256-dimensional feature vector. The basic LBP operator described is a fixed

3×3 neighbourhood. A more formal description of LBP operator is given as:
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Figure 2.15: The sample facial image after auto-screenshot from the videos.

(2.9) LBP(xc, yc)=
P−1∑
p=0

2ps(i p − ic)

(xc, yc) is the central pixel with intensity ic and i p is the intensity of the neighbour

pixel. s is a sign function defined as:

(2.10) s(x)=
{

1, if x ≥ 0

0, else.

Different types of curved edges has been coded by the binary number of LBP which is

shown in Figure 2.16.

The position of the neighbour (xp, yp) of a given point (xc, yc), p ∈ P can be calculated

by :

(2.11) xp = xc +R cos(
2πp

p
)

(2.12) yp = yc −R sin(
2πp

p
)

R is the radius of the circle, which indicates the distance from the centre to the

neighbour points. P is the number of sample points, which illustrates the total number
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Figure 2.16: Examples of texture primitives which can be detected by LBP (white circles
represent ones and black cirlces zeros).

(See: [85])

of circularly symmetric neighbours for one centre point. This operator is an extension to

original LBP codes and it’s called Extended LBP or Circular LBP. The LBP algorithm is

executed by Matlab function ‘extractLBPFeatures’. An 1×10 feature vector is obtained

for each cropped facial expression image. Therefore, the dimension of feature matrix is

52440×10.

The developed hybrid classifier utilises both EEG features and facial expression

features to determine the responses of the test subjects. This study is a subject dependent

experiment.

2.5.2 Results

Figure 2.17 represents the accuracy of the classifiers from valence plane. The single SVM

classifier, which is the green line, stays at lowest accuracy in most cases. It also fluctuates

along the mean value largely comparing with the other two lines. This indicates that

the single SVM classifier is less stable than the hybrid classifier. It is also important

to notice that for Participant 19, the classification accuracy on the valence plane is

lower than others, and the single SVM returns a higher percentage than the hybrid one.

This reason for this outlier is that this participant identifies his emotion feedback on

the questionnaire is around the median number 5. In this emotion model, the median

number is used to separate the classes. Therefore, although the emotion identified by

Participant 19 is neural, such as 4.5-5.5 on valence plane, the emotion model divides

the emotion into either positive or negative. On the valence plane, the hybrid classifier

with EEG features only returns a stable classification accuracy shown as the red line;

nonetheless, the combined EEG and facial expression features demonstrates the highest
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Figure 2.17: Accuracy on Valence Plane

accuracy. The highest accuracy is close to 80% and there are more than half of the test

subjects showing over 75% accuracy.
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Figure 2.18: Accuracy on Arousal Plane

The average accuracy on the arousal plane has the similar trends as the valence plane

shown in Figure 2.18. The single SVM is the most inaccurate and unstable classifier.

However, even though there are certain test subjects showing that combined features
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give higher accuracy, for subject 16, the accuracy is significantly lower than the EEG

feature only classifier. These predictions of the classifiers reaffirm that in some situations,

facial expressions can be consciously regulated by individuals and become misleading for

emotion classification.
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Figure 2.19: Accuracy on ‘Negative Neutral Positive’ Plane

The ‘Negative Neutral Positive’ plane is specifically designed for the purpose of

providing feedback for an affective system. Figure 2.19 illustrates the subject dependent

classification accuracy based on this model. The general trend consists with the previous

arousal-valence model; nevertheless, the hybrid classifier with both EEG and facial

expression features demonstrates high accuracy. Test subject 2 has over 80% accuracy

and three other subjects show accuracy that is very close to this number. As well, Subject

19, which is considered as a special case using the valence-arousal plane model, shows a

steady classification accuracy using NNP model. This finding explains that the ‘Negative

Neutral Positive’ model not only gives the intuitive expression of the emotion feedback,

but also improve the accuracy of the classifiers.

The bar chart shown in Figure 2.20 compares the overall accuracy for each of the

classifier in all three planes. The lowest overall accuracy is always the single SVM

classifier and the highest is the hybrid combine feature classifier. The increases of the

accuracy are over 5% for all three planes. The largest increase from EEG feature only

to combined features occurs on the valence plane, which is 1.68%. The highest overall

accuracy is 75.64%, which is on the “Negative Neutral Positive" plane. Thus, the third
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Figure 2.20: Average Accuracy on Three Different Emotional Planes. Yellow indicates
valence, and green indicates arousal plane. The blue bars use the NNP model.

blue bar has the highest accuracy among all with a reasonably small error range, which

indicates that the FCM-SVM classifier with both EEG and facial expression features

using the “Negative Neutral Positive" model is the optimal design for affective system

feedback recognition.

This last solution offers a hybrid physiological approach to emotional feedback detec-

tion of affective system. The physiological method uses EEG signal and facial expression

collected from the customers, applied with the state-of-the-art biomedical signal process-

ing techniques such as LBP, CS and wavelet analysis to extract the distinctive features.

Various machine learning algorithms and feature selection combinations have been

tested using the processed DEAP dataset. The optimal design of the emotion feedback

classification is to use an innovative FCM-SVM classifier with both EEG and facial

expression features on the “Negative Neutral Positive" plane. The design overcomes the

common issues with emotion classification including emotion model definition, feature

extraction and machine learning algorithm design. It improves more than 5% accuracy

comparing to the stanard SVM classifier. The overall accuracy for this design is 75.64%

with the highest accuracy at 81.2%.
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3
ELECTROMYOGRAM AND POST STROKE MOVEMENT

ANALYSIS

3.1 sEMG-based Statistic and Frequency Analysis

Statistic and frequency analysis allow us to explore the hidden information of sEMG

signal. It can also reduces the size of the data for later processing methods. Here, we

present six statistic analysis methods and two frequency analysis methods that are

broadly used in sEMG analysis [86].

First, mean absolute value (MAV) is one of the most used features in statistical

analysis. The reason for taking the absolute value is that sEMG signal varies from

negative to positive. The rectification process make the signal into all positive numbers,

which presents an easier quantitative analysis. The equation for MAV is:

(3.1) MAV = 1
N

N∑
i=1

|xi|

Variance of EMG (VAR) is another time domain feature that is used in sEMG analysis.

The equation is shown as:

(3.2) V AR = 1
N −1

N∑
i=1

|x2
i |

Root mean square (RMS) is a popular feature that is often measured in sEMG projects.

It is calculated as Gaussian random process with constant force and non-fatigue level of

49



CHAPTER 3. ELECTROMYOGRAM AND POST STROKE MOVEMENT ANALYSIS

the muscle. The euqation is shown as follow:

(3.3) RMS =
√√√√ 1

N

N∑
i=1

x2
i

Log detector feature is closely related to the contraction force of the target muscle.

The equation is shown as:

(3.4) LOG = exp
1
N

N∑
i=1

log(|xi|)

Waveform length (WL) measures the complexity of the sEMG signal. It is the cumu-

lative length of the EMG signal over time. The equation is:

(3.5) WL =
N−1∑
i=1

|xi+1 − xi|)

The last time domain feature is zero crossing (ZC). This parameter calculates the

number of times that EMG waveform crosses the zero amplitude. To minimise the impact

from noises, a threshold is always set to determine a range of small variations around

zero amplitude are all consider as zero for the sign function. The equation for ZC is:

(3.6) ZC =
N−1∑
i=1

sgn(xi ∗ xi+1 ∩|xi+1 − xi|> threshold)

The spectral domain features are mainly used to investigate the level of fatigue and

MU recruitment. The frequency domain is based on the Fourier Transform. In recent

years, more spectral features are used in continuous monitoring and rehabilitation

projects. First, one of the most basic feature is mean power of the EMG power spectrum.

The formula is shown as:

(3.7) MNP =
m∑

j=1
P j/M

Power spectrum ratio (PSR) merges the information from peak frequency and fre-

quency ratio. This parameter compares the energy at the maximum of the power spec-

trum with the total energy of the entire signal. The equation is:

(3.8) PSR =
∑ f0+n

j= f0−n P j∑∞
j=−∞ P j
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3.2 EMG Connectivity Analysis in Stroke
Rehabilitation

In this section, the proposed sEMG-based functional connectivity techniques are pri-

marily adapted from brain connectivity analysis. Since the early 2000s, two functional

connectivity techniques have been broadly applied in EEG studies, Directed Transfer

Function (DTF) and Partial Directed Coherence (PDC) [87]. DTF can be used to deter-

mine the directional influences between any given pair of channels in a multivariate

dataset. DTF is an estimator that simultaneously characterizes the direction and spectral

properties of the interaction between brain signals and requires only one multivariate

autoregressive (MVAR) model to be estimated simultaneously from time series. Another

popular estimator, PDC, transforms into the frequency domain as a factorization of the

Partial Coherence based on MVAR coefficients [88]. The PDC is of particular interest

because of its ability to distinguish direct and indirect causality flows in the estimated

connectivity pattern. Furthermore, to adapt the specific features of sEMG and UL move-

ments, a windowing technique shall be included to present the time information. By

applying connectivity analysis on EMG signal, the mapping between biological signal

and UL postures evolves to a network of the muscle group, where the dependence and

information exchange between the muscles can be formulated.

To further investigate the EMG connectivity result, graph theory techniques play

a significant role in reducing the complexity and extracting features. The abstract

definition of a graph containing nodes and edges can be smoothly transferred into UL

muscle groups and the information flows between them. In EMG connectivity, binary

directed networks can be constructed by applying DTF and PDC. Measures of functional

segregation and integration present the local and global connection within the network.

Therefore, basic attributes such as network density, where the sparseness of the network

is calculated, and link reciprocity reflects the tendency of paired nodes. The functional

integration is computed using the shortest path length that estimates the strength of

the connection between each muscle groups. Another measure, clustering index, which is

firstly introduced by the famous ’small-world’ network paper, is a suitable indicator for

functional segregation analysis.

An innovative approach is offered here to analyse the interconnection of upper limb

muscle groups based on sEMG signal for stroke rehabilitation. Functional connectivity

analysis is adapted from EEG-based techniques to determine the dominance of the

individual muscle dynamically. In this dataset, both affected and non-affected sides
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are processed for comparison during four-force-level gripping activities. This analysis

discovers the differences in the physiological connection for paretic extremities by imple-

menting network analysis parameters. Furthermore, the comparison between the paretic

side and non-paretic side offers a powerful tool to design a transformational algorithm,

where the paretic arm can study the connectivity patterns of the non-paretic arm.

3.2.1 Materials

The experiment was conducted by the faculty of Biomedical Engineering at Sun Yat-sen

University. There were eleven subjects after stroke, mean age: 54 ± 15.84 years, three

females, eight males, including in this experiment. The subject selection criteria are

firstly hemiparesis resulting from a single unilateral lesion of the brain with onset at least

one month prior to data collection. Secondly, the patients are able to generate voluntary

contractions of both hands. As well, the participants show normal proprioception as

indicated by scoring more than 33 on the sensory and proprioception components of the

Fugl-Meyer Assessment (FMA). Lastly, the patients have no visual, cognitive or attention

defect which prevented following the experimental procedures as indicated by a score

of 23 or more on the mini mental state examination (MMSE). In the healthy group, all

the participants were righthanded. Informed consent was obtained from all participants.

The study was approved by the Ethics Committee of Sun Yat-sen University.Hand and

arm motor impairments of the subjects after stroke were assessed using both FMA and

Wolf Motor Function Test (WMFT).

The customised grip dynamometer was cylindrical with a diameter of 60 mm and a

height of 90 mm, and it was fixed to the experiment table. The dynamometer contained

four force sensors placed asymmetrically to measure the grip force and calculate the

rotation torque. A 16-bit analogue to digital converter sampled the force data at a rate

of 1000 Hz. As well, customised surface EMG sensors were attached on the upper limb

muscles , namely biceps brachii, anterior deltoid, posterior deltoid, flexor carpi radialis,

extensor carpi radialis, flexor digitorum superficialis and extensor digitorum communis.

The EMG signal was also sampled at 1000 Hz.

Both the affected and unaffected hands of the stroke group and the dominant hands

of the healthy group were tested. The participants were instructed to sit with their backs

straight against the backrest of the chair and rest the arm to be tested on the tabletop.

The upper arm was in a neutral adducted position with approximately 15 - 20◦ of shoulder

flexion and 90◦ of elbow flexion. The dynamometer was grasped with the thumb and the

four fingers in opposition. During testing, the forearm of each participant was constrained
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by a belt to standardize grip position and prevent forearm motion. Each participant

was first instructed to apply maximal grip force (MGF) to the dynamometer three times,

holding it for 5 seconds each time while an indicator light was illuminated. The largest

MGF among the three measurements was used to normalize the grip force for the sub-

maximal force level tasks. The visual presentation designed using LabVIEW displayed

both the target and the actual force levels. Figure 1 shows the LabVIEW presentation

viewed by each participant. The stationary horizontal red lines represented the three

target force levels, and the movable horizontal blue bar represented the actual force

level produced by the participant in real time. Then, the participants were instructed

to apply sub-maximal force to move the blue bar at the red target line and hold it for 5

seconds. The targets were 25%, 50% and 75% of the MGF. A rest period of 30 seconds

was provided between each trial to minimize fatigue. Each force target was presented

three times for a total of 9 sub-maximal trials with each participant. Both force and

EMG signal from paretic and non-paretic sides were saved for off-line analysis.

3.2.2 EMG Connectivity Analysis

We hypothesize that the stroke-related motor outcome measures can be represented

from the interaction of neuromuscular signal in stroke rehabilitation therapy. Moreover,

the performance UL movements are accompanied by EMG-based functional connectivity

patterns that are evaluated using graph theory measures.

Force and EMG signal are collected simultaneously while the stroke patients are

performing the gripping exercise. The stored data firstly enters the pre-processing

steps, including filtering, rectification and segmentation. Then, the pre-processed data is

analysed by two connectivity methods, which are Short-time DFT and Short-time PDC.

Since the experiment shows four force groups, the results can be compared between

different percentages of MGF, paretic and non-paretic limb and across the patients. The

last step is to use the analysis to generalise the critical concepts of the movement support

system that can provide the necessary support to complete the rehabilitation exercises.

A fourth-order Butterworth low-pass filter with a cut-off frequency of 20 Hz was used

to filter the force signals. Another third-order Butterworth band-pass filter was added to

remove the noise from the EMG signal. The lower cut-off frequency was set to 20 Hz and

the higher cut-off frequency is 150 Hz. The EMG signal was also rectified to ensure all

data are positive for later calculation. Since the experiment carried out for 15 seconds

and the patients held the grip sensor for at least 5 seconds, it is critical to include the

time information in the analysis. Therefore, a 1-second window with 0.25-second overlap
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was utilised for EMG segmentation. Similar to the Short-time Fourier Transform, this

segmentation process improves the connectivity analysis by adding the time domain.

First, the EMG signal that includes eight muscle groups in total uses MVAR to

generate the estimation parameters. The algorithm adopts the linear Kalman filtering

approach to update the MVAR parameters for each time sample. Given a univariate

time series, its consecutive measurements contain information about the process that

generated it. An attempt at describing this underlying order can be achieved by modelling

the current value of the variable as a weighted linear sum of its previous values. This is

an autoregressive (AR) process and is a very simple, yet effective, approach to time series

characterization [89]. The order of the model is the number of preceding observations

used and the weights are the parameters of the model estimated from the data that

uniquely characterize the time series [90]. Multivariate autoregressive models extend

this approach to multiple time series so that the vector of current values of all variables

is modelled as a linear sum of previous activities.

Let X be a set of EMG signal. The pre-processed signal can be presented as:

(3.9) X = [X1(t), X2(t), X3(t), ..., X8(t)]T

where t refers to time and the subscripts indicate the number of the muscle groups.

There are eight muscle groups, so the total number of the channels is eight.

The MVAR model is transformed in the time-varying system. The general format of

the equation is:

(3.10) Y (t)=
i=1∑
p

Y (t− i)A(i)+E(t)

where p is the order of the model, A(i) is the 8-by-8 matrix of coefficients defined by

the linear Kalman filtering shown above, and E(t) is the vector of white noise.

The model order, p, is calculated from the Bayesian-Schwartz‚Äôs criterion:

(3.11) SC(p)= ln[det(V )]+ ln(N)∗ p∗82

N

where V is the noise E(t) covariance matrix, and N is the total number of the data.

Then, to present the same information from the frequency domain:

(3.12) A(λ)=
r=1∑

p
Ar z−r|z=e− j2πλ
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and H(λ)= A−1(λ) is the transfer function derived from Y (t).

The normalised DTF represents the ratio between the inflow from the source channel

to the destination channel to the sum of all inflows to this channel. The value of the

normalised DTF is always from 0 to 1, where 0 means no influence and 1 means the

maximum influence [91]. The calculation is shown as:

(3.13) γ2
i j(λ)=

(|H2
i j(λ)|2)∑8

m=1(|H2
im(λ)|2)

Where i is the destination channel and j is the source channel that is used to calculate

the influences comparing with the total influence from all eight channels. DTF detects

the source channel for both direct and indirect flows. To distinguish between the direct

and indirect transmissions, PDC is utilised to show the direct relations only in the

frequency domain [92]. It is defined as:

(3.14) π2
i j(λ)=

(|A2
i j(λ)|2)∑8

m=1(|A2
im(λ)|2)

This function describes the ratio between outflow from the channel j to channel i to

all the outflows from the channel j. Both PDC and DTF are necessary for this analysis as

they cover different aspects of the connectivity problem. Whereas PDC addresses the

immediate direct dynamic frequency domain link between the various time series, DTF

exposes the links from one time series to another regardless of the influence pathway,

be it immediate or otherwise [93]. DTF shows the existence of the influence of the

source channel onto all other channels while it is not influenced by them. As such,

PDC portrays immediate direct connectivity, whereas DTF portrays directional signal

reachability denoting active indirect interaction. By plotting both of methods against

time, the rehabilitation exercise can be analysed regarding the upper limb muscle groups

and their interconnection relationship.

3.2.3 Graph Theory Analysis

First, to demonstrate the sparseness of the network, one of the most frequently used

parameter is density, denoted by k. The value varies from 0 to 1, where 0 means sparser,

and the network has fewer edges and less information is transferred between the nodes
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[94]. The calculation for density is shown as:

(3.15) k(M)= 1
N(N −1)

∑
i 6= j

mi, j

By combining PDC and DTF analysis, we create EMG-based directed connectivity

networks for upper limb movements. The information flow in or flow out becomes an

important identity needed to be addressed. Moreover, the tendency of forming paired

nodes is considered to reveal significance of the information flow in the EMG network.

Link reciprocity illustrates the tendency of pairing nodes that can be computed as:

(3.16) ρ(M)= r(M)−k(M)
1−k(M)

The following two parameters are broadly used in binary network analysis. The

structural properties of the network are demonstrated by the average shortest path

length PL and clustering index C. C measures the cliquishness of the neighbourhood

(a local property), whereas PL measures the functional integration property between

two nodes in the graph (a global property) [95]. The equation for the characteristic path

length is shown as:

(3.17) PL = 1
N(N −1)

∑
i 6= j

di, j

3.2.4 Discussion

Based on the EMG and force signal extracted from the stroke patients while they are

performing the grip exercise, it is possible to address the limitations mentioned at the

beginning. Firstly, a new approach of neurophysiological analysis specifically for stroke

rehabilitation is established. Using connectivity analysis on EMG signal transforms the

upper limb into a system where each node is one group of muscle. The eight nodes in total

show a complete system for movement analysis. By differentiating the levels of strength,

the interrelationship between the eight muscle groups on the healthy and paralysed arm

is clearly shown. The common channels that are displayed in all strength levels show

the consistency of the movement. More importantly, the difference of the connectivity

is noticed to distinguish how the muscles work to generate higher strength. The more

significant analysis is to compare the paretic and non-paretic muscle connectivity. This

comparison indicates the internal connection between the muscles after stroke. It is

reasonable to assume that similar EMG connectivity would be obtained on both arms for
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healthy subjects. This analysis shows one of the possible reasons why the stroke-affected

arm cannot perform as well as the healthy side from the muscular function point-of-view.

Therefore, to recover from the affected motor function, gaining the similar muscle con-

nectivity can reduce the difficulties and time length of the recovery, as the connectivity

represents the certain individual movement pattern. This approach overcomes the issue

with the learning a ‘general’ or ‘healthy’ movement pattern that is developed by other

people.

The possible application for this analysis is to design a movement support system for

stroke rehabilitation exercises. The system would use the healthy side of the EMG con-

nectivity as the reference. Since the time information is also included in the Short-time

DTF and Short-time PDC analysis, it has the potential to track the connectivity changes

on the paralysed arm in a real-time situation. The rehabilitation device shall provide

the adequate support to transform the connectivity on the paretic side to the reference.

Nonetheless, before drawing the conclusion, a few limitations of this study need to be

pointed. The experiment needs to be expanded to a larger number of patients and more

categories of rehabilitation exercises. As well, DFT and PDC are functional connectivity

methods, effective connectivity analysis such as Granger causality shall be considered in

the following studies.
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3.3 An EMG Connectivity Application: Functional
Electrical Stimulation-based Stroke
Rehabilitation System

3.3.1 Introduction

Functional Electrical Stimulation (FES), which directly stimulates the affected muscle

by applying electrical current [96], also indicates a direct effect on the excitability of the

central nervous system [97]. FES has been utilised in a series of fundamental movements,

including standing and walking [98] mainly targeting large muscles. However, to make

this treatment available for more precise and complex low-level fine movements, Jarc

et al. proposed that it is necessary to develop a patient-specific stimulation pattern to

cope with varying task demands [99]. Furthermore, to reduce the expertise and labour

required to provide instruction and supervision, the stimulation strategy shall embed

intelligent technologies such as automating intervention. This goal can be achieved by

implementing an analysis of patients’ biological data. Therefore, FES is also capable

of transferring the recovery process from repeating personal-instructed and practical

exercises to a data-driven neurophysiological point-of-view.

Regarding the analysis of neuro-feedback of the rehabilitation, electromyography is

the most frequently used parameter since it reveals the electrical activity of a specific

muscle that is related to the muscle force [100]. EMG connectivity analysis using MVAR

was proposed to analyse the inter-relationship between muscles. Using EMG connectivity

analysis, the paretic arm is considered as the abnormal system, and the non-paretic arm

is the reference side. The rehabilitation strategy is to control the abnormal system to

generate identical EMG connectivity patterns as the reference side.

To implement FES in upper-limb rehabilitation, a permutation representation of

the EMG connectivity can be adapted in this circumstance. The permutation network

transforms n input terminals to its n output terminals [101]. Moreover, the n-puzzle

problem solver can be used here to discover the FES triggering method. The n-puzzle

problem consists of the initial state, goal state, path cost and successor function [102]. In

the case of automated upper-limb FES strategy, the eight-puzzle solver is ideal since the

solver is the largest puzzle can be completely solved [103], and the eight channels can

efficiently cover the majority of the superficial muscles on the arms.

In this section, a permutation representation is proposed to describe the EMG connec-

tivity analysis and an 8-puzzle solver is modified as the automated FES control strategy
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to simulate the transfer from the abnormal to the healthy muscle inter-connection. The

following section illustrates the material used in this study and an overview; the EMG

connectivity methods, permutation representation and 8-puzzle solver. The stimulation

strategy was then applied to an 11-patient database to evaluate the efficiency of the

proposed functional electrical stimulation system.

3.3.2 Methods

A third-order Butterworth band-pass filter is used to remove the noise from the EMG

signal explained in the previous section. The lower cut-off frequency is set to 20 Hz, and

the higher cut-off frequency is 150 Hz. The EMG signal is then rectified, and a 1-second

window with 0.25-second overlap is utilised for segmentation. Similar to the Short-time

Fourier Transform, this segmentation process improves the connectivity analysis by

adding the time domain.

The short-time DTF and PDC analysis reveal a large amount of information regarding

the interconnection between the eight muscles. For each time segment, there are seven

outflows from one muscle, and there are seven inflows towards one muscle. Therefore,

the representation of the connectivity analysis is often a complex matrix; in this case, a

8 x 8 matrix. Since both inflow and outflow are considered, two matrices are shown for

each time segment. The complexity of this representation creates obstacles for real-time

FES triggering. Thus, the cycle notation of permutation is adopted in this process. The

most dominant muscle is firstly determined. In each time frame, DTF and PDC are

combined to find the closest connected muscle to the most dominant muscle and treat as

the next element in the cycle. This mathematical transformation is a rather conceptual

conversion from a high dimensional data to a simple format. A three-dimensional human

model using graphic modelling tool Blender is established to visualise the permutation

representation of the EMG connectivity more directly and intuitively.

Figure 3.1: An Example of 8-puzzle Problem
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The permutation representation of the EMG connectivity reduces the complexity of

an 8x8 matrix to an eight-element sequence. In this study, we consider the non-affected

side as the reference and the affected side as the abnormal system. Therefore, for each

patient, there will be two sequences representing the muscle interconnection. This idea

is identical to Eight-puzzle Problem, one of the classic difficulty problem in artificial

intelligence [104]. Figure 3.1 is an example of the 8-puzzle problem. The goal is to

rearrange the initial state squared tiles to the goal state by moving tiles into the adjacent

empty square. An artificial intelligence 8-puzzle solver by MATLAB is designed using

the node ordering schemes in Iterative-Deepening A*. As mentioned above, the 8-puzzle

has one initial state, which is the paretic arm permutation and one goal state, which

is the healthy arm permutation. The solver calculates the simplest path, presents the

step-by-step instruction, and offers the cost function, which shows the total number of

steps needed to reach the goal state. The simplest path is then selected as the automated

FES stimulation strategy.

3.3.3 Results and Discussion
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Figure 3.2: Patient 9 Non-paretic Sides 25% MGF DTF Representation Using 8x8 Matrix

The EMG connectivity using DTF and PDC are firstly represented using two 8 x

8 matrices. One example is given in Figure 3.2. In this example, patient number 9

is selected while performing 25% of MGF. Figure 3.2 shows the non-paretic arm, and
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Figure 3.3: Patient 9 Paretic Sides 25% MGF DTF Representation Using 8x8 Matrix

Figure 3.3 indicates the paretic arm connectivity of the DTF analysis. The vertical

axis represents time in seconds, and the horizontal axis represents frequency in Hertz.

The colour bar on the right indicates that strong influence appears in yellow and weak

influence is in dark blue. The most dominant muscles are clear to identify. For the

non-paretic side, the DTF shows muscle number 6. On the paretic side, DTF is muscle

number 7. This finding proves that the connectivity between muscles has differences

between the paretic and non-paretic arm. Moreover, these differences can cause the

rehabilitation process to be struggling for the patients. It is important to note that

traditional mirroring therapy requires the patient to following the exact movement

based on mechanical observation. Nevertheless, in this FES training strategy, we focused

on the neuromuscular feedback of the non-paretic arm. Thus, instead of aiming at asking

patients to follow specific movement trajectories, the rehabilitation shall be focused on

the training the muscles to coordinates with each other in the correct fashion.

Table 3.1: Permutation Format: Cycle Notation

Upper Extremity Permutation Sequence
Non-affected (6, 3, 4, 8, 7, 5, 1, 2)

Affected (7, 8, 4, 5, 1, 2, 6, 3)
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To extract the information about the information flow between muscles, the per-

mutation representation is adapted for a clearer understanding. The same example is

used to show the cycle notation of the permutation. These matrices shown in Figure

3.2 and Figure 3.3 can be reduced to the format shown in Table 3.1. On the health

side, the most dominant muscle number is 3, then muscle number 6 is most connected

with muscle number 3. The next element is muscle number 4, and so on. This process

is also implemented using MATLAB. This representation reduces the complexity of

the original matrix format. The same observation can also be demonstrated using a

three-dimensional human model shown in Figure 3.4. It contains the specific muscle

names and locations with the corresponding movement animations.

Figure 3.4: Permutation Format: Three-dimensional Human Model

Figure 3.5: 8-Puzzle Solver
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Lastly, the 8-puzzle solver is utilised to find the fastest path from the initial state to

the goal state. In Figure 3.5, both states are presented in the tradition 8-puzzle format.

MATLAB is used in this stage to best move and the cost, which is the total number of

the action required. Following the previous example for patient 9, the cost is 26 steps,

indicating that the automated stimulation strategy for this particular case requires 26

steps to convert the affected arm EMG connectivity pattern into the normal one. We

executed this proposed strategy to all collected data. Since 11 patients performed 12

upper limb movements for each individual, we have in total of 132 trials. The average

length of the optimal path is 14.65 ± 3.82 (round up to 11–18) steps, with the minimum

steps is 4, and the maximum is 27. Considering a conventional pre-defined FES treatment

is usually over 10 minutes, the number of steps is within a reasonable range. Considering

the low computational power required, this proposed strategy can be implemented in the

current market-available FES devices that are programmable.

3.4 Conclusion

Module 2 presents a novel automated functional electrical stimulation strategy for upper

limb stroke rehabilitation. It is developed by simplifying the inter-relationship between

muscles to permutation notation. Then, the puzzle-based solver is modified to find the

best path from the paretic side to the healthy side of the arm. This best path represents

the fastest stimulation strategy to train and support patients’ movements. Based on

the 11 stroke patients dataset, this automated stimulation strategy requires small

computational power to calculate the patient-specific intervention, and the procedure is

simple to implement in practical fields.

63





C
H

A
P

T
E

R

4
HYBRID BIOSIGNAL-BASED REHABILITATION SYSTEM

USING A WEARABLE ROBOT

4.1 AI Exoskeleton: a Self-developed Rehabilitation
Robot

At present, the mainly clinically therapy for post-stroke patients is repetitive, active

movement-based rehabilitation which promotes brain plasticity and motor recovery

to regain various functions [100]. Many of the improvements are made in the first

six months after treatment, but improvement can continue for years [105]. Although

rehabilitation can improve the motor function of the affected limb, several concerns and

challenges are needed to be addressed.

Firstly, the cost of the physical therapy is high due to the requirements of professional

supervisions at specific facilities and hospitals for a long-term. Now in Australia, the

number of registered physical therapist members is around 18,000, which is seriously

insufficient. As well, patients need to purchase a series of rehabilitation devices to meet

the different demands along the recovery process. The annual cost of outpatient stroke

rehabilitation is approximately 24,500 AUD [104], which could last for several years.

The financial burden would discourage patients from receiving proper rehabilitation

training.

Secondly, as the age group of stroke incidence is getting younger [106], the traditional

rehabilitation methods such as motor-skill exercises, mobility training, and constraint-
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induced therapy appears to be a lack of pleasure and efficiency for younger patients.

Especially, when young workers are the targeted patients, their goals are returning to

independent daily life and work as soon as possible. Thus, new technologies with better

interactions are demanded.

One approach to overcome the above issues is robotics. Since the 1960s, robot technol-

ogy has been developed with the characteristics of precision, controllability, and lack of

fatigue [107]. Due to these advantages, since the 1980s, the research of rehabilitation

robots has begun to attract attention. Rehabilitation robots can assist physiotherapists

in rehabilitation training to free physiotherapists from high-intensity physical labour.

By using the high-precision sensors attached to robots for monitoring and evaluating

the training process, the physiotherapists can accurately grasp the recovery of patients’

motor function, so as to develop a corresponding training program, make training more

targeted and scientific. Furthermore, robotic devices have the advantages of possible

independent training, where professional human power is not necessary during the

training if proper safety measures have been considered.

In order to design a rehabilitation program for helping young post-stroke patients

return to work, a further challenge is to provide individualised rehabilitation goals

and management plans based on patients’ own requirements [108]. However, most

of the current rehabilitation robots cannot make real-time adjustments according to

the patient’s consciousness. It is easy for patients to rely on the machine to passively

complete the training [109]. Since stroke can affect both upper and lower extremities

motor function at different severity, rehabilitation robots need to cover different motor

functions on both arms and legs. As shown in the research in [110], the majority of the

young patients are blue-collar workers, therefore both gross and fine motor functions are

required to be included in their rehabilitation. As well, a new technology, Virtual Reality

(VR), demonstrates the advantages of mimic real working environment and the higher

level of engagement. Thus, a robotic-based full-body rehabilitation system with lower

costs, improved recovery efficiency and enjoyment shall be developed to assist young

stroke survivors to return to work.

This section introduce a self-developed multi-mode robotic rehabilitation system

(MRRS) with multiple training modes and functions for aiding young post-stroke patients

to finish their personal-designed training programs based on their needs for returning to

work.

First, an upper-limb exoskeleton is going to be developed for rehabilitation exercises

such as gripping. The upper-limb exoskeleton would use the functional connectivity
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analysis on surface electromyography to discover the movement pattern of the health

side of the arm and use this information as the reference to train the paretic arm. By

doing such, the exoskeleton uses the patients’ own movement characteristics, so it would

be easier for them to regain the movement abilities.

VR is introduced in this project as the main visual feedback method for rehabilita-

tion exercises. Actual working environments is developed using VR. To evaluate the

rehabilitation system and ensure the safety of the training, the project also aims to use

electroencephalogram of the patients to detect the fatigue level and emotion states, as

well as to classify the whether the movement is passive or active.

Figure 4.1: AI Exoskeleton

Figure 4.1 shows the design our AI exoskeleton that can be used in various stages of

stroke rehabilitation. It uses 3D printed material as the main frame of the robot. Carbon-

reinforced material ensures rigidity of the robot, at the same time, offers a lightweight

design. Regarding the hand, shown in Figure 4.2, there are six linear actuators to

perform flexion and extension of the fingers and thumbs. The additional actuator allows

the thumb to rotate.The hand is able to perform several hand gestures, including basic
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movement such as pinch gripping, shown in Figure 4.3, and complex movements such as

holding a cup, shown in Figure 4.4.

Figure 4.2: Hand section of the AI Exoskeleton

Figure 4.3: AI Exoskeleton performing pinch grip

On each side of the robot, the forearm consists of 5 actuators. There are 4 actuators

on the upper arm and 3 actuators around the shoulder area. In total 12 actuators permits

wrist, elbow and shoulder joints to perform like-human movements. The robot has in

total 14 degree-of-freedom on the fingers, thumb, wrist, elbow, and shoulder joints. The

wrist is able to rotate using the actuators shown in Figure 4.5. The elbow produce flexion

and extension, and the shoulder joints are connected to the middle support piece and

68



4.1. AI EXOSKELETON: A SELF-DEVELOPED REHABILITATION ROBOT

Figure 4.4: AI Exoskeleton holding a cup

offers abduction, adduction, horizontal flexion and extension with the actuators shown

in Figure 4.6. The mechanical design on these joints provide users a natural movement

wearing the exoskeleton. Additional features such as wireless communication, low power

consumption and touch-screen GUI are also implemented on the robot to optimise the

users experience. The following section explains how we use the previously discussed

techniques with EMG and EEG in this rehabilitation robot to help patient recover.

Figure 4.5: AI Exoskeleton: wrist and forearm with actuators
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Figure 4.6: AI Exoskeleton: elbow, upper arm and shoulder with actuators

4.2 Virtual Reality-based Motor Imagery

Motor imagery (MI) can be defined as the covert cognitive process of imagining a move-

ment of your own body (-part) without actually moving that body(-part) [111]. Motor

images are endowed with the same properties as those of the (corresponding) motor

representations, and therefore have the same functional relationship to the imagined or

represented movement and the same causal role in the generation of this movement. At

the cortical level, a specific pattern of activation, that closely resembles that of action

execution, is observed in areas devoted to motor control. Jeannerod [112] laid the foun-

dation that motor imagery and mental training can be used to enhance the neurological

feedbacks for actual motor functions. Since 2000, MI has been applied in brain-computer

interface (BCI) [113], neurologic rehabilitation [114], and psychological evaluation [115].

In recent years, since the rapid development of neuroelectric measurement devices and

BCI-related machine learning algorithm, MI and its medical applications have become

one of the most significant practical implementations [99]. However, there still are chal-

lenges applying this technology in the clinical field. Two main issues are the quality

/ vividness of the imaginary action and the satisfactory level of the technology-based

rehabilitation paradigm.

The first challenge in MI is the quality of the imagined actions. Until today, this

issue remains as the major practical obstacle. To properly address this problem, the

first step is to differentiate the motor or kinesthetic imagery from visual imagery [116].

The critical difference is that MI is not the virtual environment imagined in a third

person’s view but introspective kinesthetic feelings of moving the limb in a first person’s

view. To ensure the first person’s view, the latest technology, immersive VR, offers
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a possible solution. Vourvopoulos et al. [117] demonstrated that VR-induced motor

imagery training paradigms improved rehabilitation efficiency. This interactive training

environment requirement can be addressed adequately by immersive virtual reality

technology. By implementing VR-based MI in stroke rehabilitation, the rehabilitation

process can start as early as the patients gain the conscious of practising motor acts in

their heads. Moreover, the MI exercises can be easily modified to become a home-based

training with minimal safety concerns. Nevertheless, as VR technology is still at the

early stage, how to design the visual training instructions during MI in order to produce

better event-related desynchronization patterns is still unclear [118].

The level of engagement and satisfaction is an important factor that often neglected

by the researchers and engineers who develop these rehabilitation systems. So far,

there is yet a systematic research project investigating the technology-induced stroke

rehabilitation methods. Nonetheless, the concerns of the user’s experience have raised as

more physiotherapists and clinicians have reported that the drop-out rate is increasing.

Therefore, to overcome these two issues, this paper presents a virtual reality-induced

motor imagery rehabilitation protocol that focuses on the high-repetitiveness of the acts

and their functionality. It also proposes a novel systematic Participant Engagement

and Satisfaction Survey (PESS) to access the user’s experience of the designed training

protocol.

Due to the impact from the COVID-19 restrictions on laboratory use and conduction

of the clinical trials, the VR-based MI study cannot be started as planned. Here, we

mainly discuss the designed experimental protocol.

Figure 4.7: EEG sensor placement (in red) for MI experiment

This motor imagery training protocol offers an innovative stroke rehabilitation inter-

vention using quantitative methods to assess the quality of the VR-induced MI training

strategies. For VR-based training, OSVR HDK2 open-source head-mounted display set
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was selected in this proposed experiment. Together with the HDK2 set, a 7-channel

Electroencephalogram pad is also attached on the straps of the VR headset. EEG signal

is recorded to analyze the quality of the imagination using mental task classification

tools. EEG is acquired at a sampling frequency of 256 Hz [110]. The following sensor

locations are selected based on the standard 10-20 system: C3, C4, Fz, O1, O2, Oz, and

Pz. Figure 4.7 demonstrates the exact locations of the EEG sensors that are highlighted

in red on the 10-20 system. To capture activity relating to MI, three electrodes should be

placed above the sensorimotor cortex at C3, C4 and Fz. To capture activity relating to

stimulation response, four electrodes should be placed over the parietal-occipital region

at O1, Oz, O2 and Pz. Since the headset straps are firmly secured to ensure the VR

google staying on the user, the EEG sensors are also stabilised by this set-up.

Figure 4.8: Timeline for the ME/MI trial

There are three fundamental rehabilitation acts: extend the left arm straight out

(left arm lateral raise to shoulder height), extend the right arm straight out (right arm

lateral raise to shoulder height), raise both arms horizontally in front of the body (both

arms anterior raise to shoulder height). There are also three functional rehabilitation

acts: drinking water from a cup and putting the cup back, using a spoon to drink soup

from a plate, and buttoning and unbuttoning the shirt.

Figure 4.9: An example of the visual cue: a computer-based movement instruction
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In order to evaluate the vividness of VR-induced training, it is necessary to establish

a control group that is given the movement instructions based on computer-based

animations. Therefore, this proposed rehabilitation protocol includes two phases. The

first phase is a randomized motor execution (ME) / motor imagery (MI) experiment using

three-dimensional human model animations as visual instruction. This instruction is

shown on a computer screen. Figure 4.8 shows the action sequence for each trial on a

time scale. To ensure focus, each trial begins with participants gazing at a cross sign

at the center of the screen for 3 seconds, and a 1 second warning tone is presented at

the beginning. Then, randomly, one of the animation cues appears for 6 seconds, during

which time the participants are instructed to follow the movement as long it is present

on the computer screen. One of the visual cue examples is shown in Figure 4.9. The

instructions illustrate the type of the movement the participant shall perform, and

whether it is ME (move the arms) or MI (without moving the arms). In the end, there is

a 5-second resting period to avoid fatigue. Phase one repeats this sequence 30 times, and

there is a 2-minute for every 10 trials. After finishing 30 trials, a Kinesthetic and Visual

Imagery Questionnaire (KVIQ) is completed to evaluate the vividness of MI. This data is

used as the reference for the later EEG-based vividness analysis. The engagement and

satisfaction survey is completed by the participants.

Figure 4.10: VR-based movement instruction: drinking water from a cup

Phase two of the experiment is to use immersive VR as the visual instruction for

MI. Similar procedures are followed, and the animated visual cue is replaced by the

first-person VR instruction. Figure 4.10 demonstrates an example of first-person VR

instruction. In this example, the VR environment shows an arm is reaching to a glass

of water in front of the participant. The height of the arm and the distance of the glass

are designed using realistic measures. We used a 360-degree camera (HUAWEI 360

Panoramic VR Camera) to record the training movements; therefore, the users feel

more sensible to watch an actual human arm performing exercises at the same level of
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their own arms. Thirty trials are conducted in Phase two as well. After phase two, the

participants complete another KVIQ and PESS to assess the vividness of MI using the

VR-assisted method.

The designed survey is listed in the APPENDIX section. The first section of PESS

contains 16 evaluation questions targeting the movement instructions, physical and

mental feelings of the training protocol. Question 1-3 focus on the clarity of the visual

instructions. Question 4-6 are related to the required movements. Question 7-9 discover

the focus and rest set-up of the trials. Question 10-12 gather the information of the

comfortableness of the devices used in this protocol. Lastly, question 13-16 ask the

participants overall experiences. In this section, we use 1 point as ‘Strongly Disagree’ and

5 points as ‘Strongly Agree’ for statistical analysis. The statistics can clearly indicate the

success and inadequacy of this training scheme. The second section lists four open-ended

questions to gather more systematic reviews. It is important to note that immersive

VR environment can be overwhelming for some patients; therefore, this survey can

provide the additional information to improve the design. In cases where patients are

not suitable for VR-based therapy, the exoskeleton can also used as a visual feedback by

executing the imagined activities.
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4.3 Human-Machine Interface: Upper Limb
Movement Prediction

In the upper-limb movement prediction module, the first step is to acquire sEMG data

during rehabilitation exercises. The choices of exercise should expand to a wider range

as the rehabilitation system aims to provide as many types of movement assists as

possible [96]. These exercises shall also be selected depending on the previous working

environment of the patients. The following basic exercises are selected based on the

recommendation of physiotherapists: cane leaning, circle movement, straight push,

punching movement, pushing movement, unweighted bicep curls, weighted bicep curl,

open arm movement and side arm raise [119].

EMG signal is then analysed using functional connectivity method, which is derived

from EEG connectivity, to differentiate the interconnection of muscles. Studies [120]

have shown that the comparison between the paretic side and non-paretic side can offer a

powerful tool to design the transformation algorithm. As the goal is to provide movement

assist, the most effective strategy is to control the paretic arm to do the same routine as

the non-paretic arm. The paretic arm muscle group is treated as the abnormal system,

and the non-paretic muscle group is considered as the reference. A mapping is created to

transform the abnormal system into the reference. The mapping utilises the permutation

and advanced machine learning algorithms to minimise the workload.

Two standard exercises are required for all patients, gripping exercise and moving

target exercise for 1 hour per day, 3 days a week. Each exercise lasts 1 minute and

repeats 20 times. The patient shall grip or move the handle at the tip of the exoskeleton,

which in turn moves the cursor or playing rehabilitation games using Virtual Reality

(VR) technology as the visual feedback. VR is introduced in exoskeleton module as this

method presents users with opportunities to engage in activities within environments

that appear, to various extents, similar to real-world objects and events [121]. Moreover,

specific working environment and skills can be designed using VR. Then, the exoskeleton

arms are placed on both paretic and non-paretic arms. Movement support is given on the

paretic arm to assist the patients to reach the exercise target.
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4.4 Fatigue and Safety: an Application for Emotion
Classification

VR is considered to be the optimal feedback method for the three modules mentioned

above, as this technology provides the capability to create an environment in which the

intensity of feedback and training can be systematically manipulated and enhanced in

order to create the most appropriate, individualized motor learning paradigm [122]. The

VR environment is developed based on individual requirements in order to offer higher

motivation and enhance visual, auditory and haptic feedback [123].

To evaluate the training process and ensure the safety of the patients, EEG is acquired

to serve the following purposes. First, real-time fatigue level [107] and emotion detection

[124] is implemented to show the mental state of the patients. When negative feelings

are detected, measures such as reducing workload and difficulties, encouragement

and incentives would increase the communication between the patients and the robot,

resulting in higher motivation.
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4.5 A Clinical study: EMG analysis and Upper Limb
Fugl-Meyer Assessment

4.5.1 Intruduction

During rehabilitation process, evaluation of motor function is essential for understand-

ing the mechanisms of motor control and motor learning. Multiple clinical scales are

available to determine the functional ability and motor function in individuals with

hemiparesis [125]. An assessment scale that is robust, easily administered, reliable and

capable of reflect changes over time can reveal precise evaluation of the impairment

and become a powerful tool for optimal prediction and evaluation [126]. The Fugl-Meyer

Assessment (FMA) developed and introduced in 1975 by Fugl-Meyer et al. [127], which

was the first quantitative instrument for evaluation of hemiparetic patients. FMA is

the most widely used standardized clinical scale for evaluation of sensorimotor function

after stroke. Furthermore, upper limb FMA can be used in every stage of stroke recovery

to investigate the motor function of the patient. Clinically, together with FMA, the

Brunnstrom Approach is also broadly used to evaluate the current degree of hemiplegia

and develop an appropriate rehabilitation strategy [128]. Nevertheless, with the rapid

development of the non-invasive electro-physiological devices in recent years, the limi-

tations of the traditional assessment tools have been revealed, which are highly based

on the observation of the physiotherapists and lack of the neurological basis for the

rehabilitation process.

To overcome this limitation and discover the changes on the neuromuscular level

of upper-limb stroke rehabilitation, surface electromyogram is an ideal source of phys-

iological signal for the analysis. In 2018, a novel approach of sEMG decoding system

is proposed ‚Äì EMG functional connectivity analysis ‚Äì that have been validated on a

dataset consisting of eleven stroke patients performing gripping rehabilitation exercises.

The EMG functional connectivity analysis, which is adapted from electroencephalogram

connectivity analysis, can unveil the direction of the information flow between the upper

extremity muscles. The previous study demonstrates that the muscle activity and con-

nectivity can be different for the same participant at different strength levels. Secondly,

the different connectivity patterns across the patients shows that, each individual has a

unique movement behaviour and muscle activation pattern. Lastly, large the connectivity

pattern differences appear when comparing between the affected and non-affected arm.

However, the previous study only focused on one type of upper limb motion, which can
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be considered as inclusive at certain degree. Therefore, to track the recovery process

while collecting EMG data becomes essential in this study. In this clinical study, we

propose a seven-week plus one follow-up visit experiment that collects sEMG signal

on both affected and non-affected arms while perform upper limb FMA activities. We

aim to discover the neurological basis of the upper limb muscle recovery process and

establish an EMG-based quantitative assessment tool for stroke-related motor function

impairment and recovery prediction.

4.5.2 Experimental Protocol

From mid 2020, by collaborating with Shanghai Jiao Tong University, a clinical trial in

China is established to explore the EMG variations during stroke rehabilitation. This

experiment is a two-month weekly collection plus one follow-up visit experiment that

collects sEMG signal on both affected and non-affected arms while performing UL-FMA

activities. The study aims to discover the neurological basis of the upper limb muscle

as patients recover, and to establish an EMG-based quantitative assessment tool for

stroke-related motor function impairment. We also aim to predict recovery based on

EMG functional connectivity using machine learning.

Figure 4.11: EMG sensor location for the EMG-FMA experiment
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This is an ongoing experiment, where patients are evaluated by occupational ther-

apists every week using modified UL-FMA. EMG sensors are attached on both arms

during assessment. At this stage, five participants are recruited and four weeks of data

has been processed as the primary data analysis phase. The demographic details of the

patients are shown in the Appendix section. In this experiment, 16 EMG sensors from

Cometa wireless PicoEMG system is used to collect both EMG and IMU signal. Eight

muscle groups on each arm are studied, namely, biceps brachii, triceps brachii, flexor

carpi radialie, extensor carpi ulnaris, posterior deltoid, upper trapezius, pectoralis major,

and infraspinatus. The sensor locations are shown in Figure 4.11.

At this stage, we have completed the primary data analysis for the first four weeks. All

five patients have shown positive results regarding their recovery. For each participant,

the significant findings and predictions are listed in the following paragraphs.

4.5.3 Results and Discussion

4.5.3.1 Patient 1

The overall FMA upper limb score for Patient 1 has increased over the last 4 weeks,

from less than 40 to 50. The stacked bar chart divides the UL-FMA activities into seven

categories shown in Figure 4.12. Category 1 (C1) is volitional movement within synergies

(flexor) in navy. Category 2 (C1) is volitional movement within synergies (extensor) in

organe. Category 3 (C1) is volitional movement mixing synergies in yellow. Category

4 (C1) is volitional movement within little or no synergies in purple. Category 5 (C1)

includes movements on wrists in green. Category 6 (C1) are motions related to hands in

blue. Category 7 (C1) is coordination and speed in maroon. Figure 4.12 shows there are

major rises in C1, C3 and C6. It is also worth noting that although there are fluctuations

between weeks (especially week 2), none of the categories falls consistently. Later, C3

movements are further analysed by EMG signals to indicate the improvement, and EMG

connectivity analysis is utilised to discover C7, where the FMA scores stay at a lower

range through the four weeks.

In Figure 4.13, two muscles are selected, namely flexor carpi radialis and upper

trapezius. The first two graphs demonstrate the EMG magnitude changes between week

1 and week 4. The non-affected side EMG is also included as a reference. The RMS values

for the EMG signals are also calculated. Flexor carpi radialis is presenting an increasing

trend, which further proves Patient 1 is recovering well. However, the upper trapezius
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Figure 4.12: Patient 1 FMA score. Category 1 (C1) is volitional movement within syner-
gies (flexor) in navy. Category 2 (C1) is volitional movement within synergies (extensor)
in organe. Category 3 (C1) is volitional movement mixing synergies in yellow. Category
4 (C1) is volitional movement within little or no synergies in purple. Category 5 (C1)
includes movements on wrists in green. Category 6 (C1) are motions related to hands in
blue. Category 7 (C1) is coordination and speed in maroon.

RMS values state there is a decreasing trend. The reason for this observation is that

upper trapezius is the major muscle for movement 12. When other muscles cannot be

customarily activated, the major muscle over activates. Therefore, the fatigue level of

the major muscle increases rapidly; in turn, the difficulty of the movement increases.

In Figure 4.14 and Figure 4.15, the relatively low score (w1: 4, w2: 3, w3: 4, w4:

4) movement is analysed by EMG connectivity method, short-term directed transfer

function. The significant nodes in the affected network are Ch7 and Ch4, whereas the

non-affected network has Ch 7 and Ch 1 as the significant nodes. A future suggestion is

that more therapies targeting biceps brachii can be considered during coordination and

speed exercises.
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Figure 4.13: Patient 1 Movement 12 EMG Analysis

Figure 4.14: Patient 1 Movement 28 Affected Side EMG Connectivity

4.5.3.2 Patient 2

Patient 2’s overall FMA upper limb score has increased over the last 4 weeks, from less

than 20 to almost 40. Figure 4.16 shows there are major rises in C3, C4 and C6. Later,

C6 movements are further analysed by EMG signals to demonstrate the improvement,

and EMG connectivity analysis is utilised to discover C7, where the FMA scores stay at
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Figure 4.15: Patient 1 Movement 28 Non-affected Side EMG Connectivity

almost zero throughout the four weeks.

Figure 4.16: Patient 2 FMA score

In Figure 4.17, two muscles are selected, namely biceps brachii and posterior deltoid.

The first two graphs demonstrate the EMG magnitude changes between week 1 and

week 4. The non-affected side EMG is also included as a reference. The RMS values for

the EMG signals are calculated. Biceps brachii serves as one of the major muscles in

movement 23. The RMS values clearly state the low activation level in the first week,

which score 1 for FMA upper limb test. It is important to note that although patient 2

had score 2 in the following weeks, and the activation level is relatively stable; comparing

to the activation level of the healthy side for posterior deltoid, the non-affected muscle is
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approximately four-fold higher. A suggestion is to continue work on the deltoid region in

future therapies to prevent fluctuation and/or deterioration.

Figure 4.17: Patient 2 EMG Analysis for Movement 23

Figure 4.18 and Figure 4.19 directly present the issue of the upper limb muscle

networks during movement 28. The affected network only has one significant node that

is Ch7. However, the non-affected side shows a rather sparse network that information

is exchanged through Ch7, Ch 4, Ch 2 and Ch 1. In future therapies, the coordination of

multiple muscle regions including upper arm, forearm and chest region shall be focused.
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Figure 4.18: EMG Connectivity analysis on Movement 28. Affected Arm.

Figure 4.19: EMG Connectivity analysis on Movement 28. Non-affected Arm.

4.5.3.3 Patient 3

Patient 3’s overall FMA upper limb score has increased approximately 5-8 points over

the last 4 weeks. Figure 4.20 demonstrates there are steady rises in C1 and C3. It is

worth noting that C6 remained at zero for the first two weeks, showed a spike in week

3 and returned to a low value in week 4. Later, C1 movements are further analysed by
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EMG signals to show the improvement, and EMG connectivity analysis is utilised to

discover the variation of C6, and further discuss the human error introduced by FMA.

Figure 4.20: Patient 3 FMA score

Two muscles are selected, infraspinatus and posterior deltoid, to analyse movement

2 of C1. Figure 4.21 demonstrate the EMG magnitude changes between week 1 and

week 4. The non-affected side EMG is also included as a reference. The RMS values for

the EMG signals are also calculated. Infraspinatus serves as a support muscle, shows

a recovery trend, but it is far from the activation level on the healthy side. As a result,

the major muscle is over-activated to compensate for the loss of the support from other

muscles, showing in posterior deltoid. A suggestion is to focus on the support muscle

regions, which can reduce the load from the major muscles, in turn, minimise the fatigue

effect.

Figure 4.22 and Figure 4.23 are the muscle networks from week 3 and week 4,

indicating similar sparseness and motifs for movement 21. On the other hand, Figure

4.24 is the healthy side muscle network has a completely different information exchange

system for the same movement. This finding indicates that the sudden spike in week 3

can be human error, where the FMA assessor made an incorrect judgement. This also

reveals that by evaluating in three-level, 0, 1 and 2, is not efficient enough for upper

limb movements that can be considered as small variations in terms of displacement

and joint angles. Thus, EMG-based analysis shall be utilised in such circumstances. A

suggestion is to activate Ch 5. posterior deltoid in coordination and speed exercises.
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Figure 4.21: Patient 3 Movement 2 EMG Analysis

Figure 4.22: EMG Connectivity analysis on Movement 21. Affected Arm Week 3.

4.5.3.4 Patient 4

Patient 4 has a high FMA score in all four weeks, showing slight fluctuations in week

2 and week 3, shown in Figure 4.25. However, the motor functions are considered in a

high standard in most categories. In this analysis, movement 17 from C5 is isolated for

further discussion, since C5 appears as the worst category for patient 4, averaging 6.25
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Figure 4.23: EMG Connectivity analysis on Movement 21. Affected Arm Week 4.

Figure 4.24: EMG Connectivity analysis on Movement 21. Non-affected Arm Week 4.

out of 10.

In Figure 4.26, two muscles are selected, namely extensor carpi ulnaris and upper

trapezius, to investigate the muscle activation levels using EMG signal. The first two

graphs demonstrate the EMG magnitude changes between week 1 and week 4 for

movement 17. The non-affected side EMG is also included as a reference. The RMS

values for the EMG signals are presented in the third graph. The RMS values for
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Figure 4.25: Patient 4 FMA score

extensor carpi ulnaris show a steady increasing trend over the last four weeks, and it is

closing to the level on the healthy side. This indicates that the current rehabilitation

therapy for extensor muscle groups is sufficient. The upper trapezius muscle presents

over-activation on the affected side comparing to the non-affected arm. However, the

upper trapezius muscle is not considered the major muscle in this activity. The suggestion

is during the daily rehabilitation therapies, it is necessary to explain and guide patient

4 to show which muscle regions are major and which are support. The coordination of

muscles during wrist exercises needs to be emphasized.
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Figure 4.26: Patient 4 Movement 17 EMG Analysis

4.5.3.5 Patient 5

The overall FMA upper limb score has made an impressive rise over the last four weeks,

from less than mid-30 towards mid-50. Figure 4.27 shows there are major rises in C1,

C3 and C4. At the same time, C5 remains at a similar status. Further analysis includes

EMG statistic analysis for C4 movement 13 and frequency domain connectivity analysis

for C5 movement 19.

Figure 4.27: Patient 5 FMA score
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Figure 4.28, Figure 4.29, Figure 4.30, and Figure 4.31 show the affected side EMG

connectivity for movement 19 over the past four weeks. Although FMA and statistical

EMG analysis could not express the changes, the functional connectivity and the muscle

network has demonstrated the progress. The affected side network demonstrated high

sparseness in week 1. Then, the significant nodes were adjusting from Ch 8 (week

1, 2), Ch 7 (week 2), and Ch 3 (week 3), to two nodes Ch 7 and Ch 1 (week 4). This

proves that this connectivity transformation corresponds to the network pattern on the

healthy side, shown in Figure 4.32. This trend indicates that although the progress is

not showing on FMA or statistical EMG analysis, patient 5 is recovering and forming the

correct information exchange network on the affected arm. Suggestions are to continue

the current therapy and focus on the biceps brachii training during elbow and wrist

exercises.

Figure 4.28: EMG Connectivity analysis on Movement 19. Affected Arm Week 1.
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Figure 4.29: EMG Connectivity analysis on Movement 19. Affected Arm Week 2.

Figure 4.30: EMG Connectivity analysis on Movement 19. Affected Arm Week 3.
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Figure 4.31: EMG Connectivity analysis on Movement 19. Affected Arm Week 4.

Figure 4.32: EMG Connectivity analysis on Movement 19. Non-affected Arm Week 4.
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4.6 Conclusion

In this chapter, Module 3 is presented by introducing the self-developed exoskeleton.

This upper limb exoskeleton provides 14 degree of freedom on both extremities. This 3D

printed robot is light and portable with user-friendly operating system. Furthermore, this

thesis emphasises the human-machine interfaces implemented in this system to provide

rehabilitation therapies at different stages of stroke recovery. This robot-based stroke

rehabilitation system offers two types of training mode, motor imagery and movement

support, with over 30 different activities. First, at early stages of stroke recovery, the

motor imagery mode uses EEG signal collected from the wireless headset using 14 seeds

to identify the motion intent without physically moving the limbs. The feedback of the

imagined activities are demonstrated with VR technology. This therapy improves the

neuroplasticity of the affected regions brain. After the stroke survivors start to regain

some voluntary motor functions, the movement support mode provides the assist-as-

needed during upper limb training in real-time. Moreover, a performance assessment

tool using EMG connectivity is presented and verified in an ongoing clinical study.

The primary results show that EMG connectivity analysis discovers the physiological

changes of the affected extremities and provides a systematical method to analyse the

link between anatomic and statistical connection between the muscle groups.
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5.1 Summary

To conclude, the stroke rehabilitation system is developed to meet the different enquires

at several recovery stages. At early stages of the post-stroke recovery process, patients

cannot perform voluntary movements. Under these scenarios, we utilise the neurological

information extracted from the brain to conduct motor imagery training. Patients are

instructed to picture movements in the head without actually moving their arms. Using

the human-machine interface explained in Chapter 2 and Chapter 4, the rehabilitation

system detects the intent of the movement, and execute it on the robot as the feedback

for the patients. Also, the neurological signal from the brain, electroencephalogram, is

also continuously monitoring the mental state of the patient. It is not only an evaluation

measurement for the designed training sessions, but also a part of the protection scheme

that can adjust or stop the training if there is a negative emotion detected.

Three modules are presented in this thesis. Module 1 analyses neuroelectrical signal

from the brain to detect psychological variations during upper limb activities. Module

2, explained in Chapter 3, offers another mode of rehabilitation training, where stroke

patients are able to perform slight movement on their affected side. In this case, EMG

signal is processed using the novel developed functional connectivity methods to generate

the upper limb muscle network. This network reveals the inter-relationship between the

upper limb muscle groups. By comparing the muscle network of the impaired arm to

the non-affected side, a personalised training scheme is proposed. Function electrical
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stimulation method is simulated using this training scheme. Furthermore, the robotic

system can also use this interface between muscle and machine to guide the abnormal

movement using the robitc arms.

Module 3 evaluates the practical significance of this thesis that is presented in

Chapter 4, where an upper limb exoskeleton is constructed at the Centre for Health

Technologies Lab at the University of Technology, Sydney. By combining with EEG and

EMG signals as the input, this system is able to monitor, evaluate and perform real-time

movement instructions during different stages of the stroke recovery. This robot can

improve the rehabilitation efficiency by providing personalised training programs. As

the sources of the input are physiological signals and the automatic human-machine

interfaces are applied, this system is capable of reducing the load of the physiotherapists.

Additionally, the possibility of home rehabilitation presented in this rehabilitation system

presents an enormous potential for tele-health market. Under the impact of COVID

19, receiving rehabilitation treatment at home is a tremendous benefit not only to the

post-stroke patients, but also to the community as a whole.
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5.2 Future Work

Despite the multi-mode stroke rehabilitation system has been constructed, the research

and practical work for this system is not finished. The future work is mainly in two areas,

machine learning algorithm development and conducting clinical trials.

First, the machine learning algorithms are currently used as pattern recognition and

real-time detection. With the latest data received from the clinical trial in Shanghai, a

new approach is discussed: the prediction of stroke recovery based on early EMG signals.

This study will provide a deep insight into the physiological changes based on different

types of stroke events. The correlation between the damage in the brain and the impact

on the muscle will also be emphasized.

Another approach using machine learning is to use the state-of-the-art algorithms

such as transfer learning and reinforcement learning to investigate how the patient

adapts the machine. This will further present the effort on how to design the human-

machine interface to minimise the effort required to use the system.

Last but not least, clinical studies with larger groups are necessary for validating the

theories and methodologies presented in this thesis. Luckily, the AI Exoskeleton system

has attracted attentions from several hospitals and research institutes in Australia,

China, and India. Although the current COVID 19 situation has made clinical ever more

challenging than before, the discussion with these hospitals and institutes is going well.

Learning from the current clinical trial in Shanghai, it is highly possible to start a larger

group clinical trial in Sydney and Melbourne in 2021.
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Please rate your satisfaction Strongly 
Agree Agree Neutral Disagree Strongly 

Disagree 

1. The experiment procedure was clearly
explained
2. The instructions given were easy to
follow
3. The length of the instruction video
was adequate
4. I can understand what the required
movements are
5. I can perform the three fundamental
movements
6. I can perform the three functional
movements
7. I can keep my focus during the entire
experiment
8. I did not experience any muscle
fatigue
9. I did not experience any motion
sickness or nauseated
10. The VR headset does not restrict my
normal movement
11. The straps of the VR headset does
not create uncomfortableness of the head
12. I did not feel pain on the scalp after
wearing the VR headset
13. The training module was engaging

14. The training module was interesting

15. The training module was a useful
upper limb exercise
16. Overall, I was satisfied with the
training protocol



1. If you were satisfied with this experiment, please indicate why you feel this way.
2. Would you like to do this type of training again? Was there anything about this experience that would

make you think twice before doing it again?
3. What would influence whether you would/would not engage virtual reality training again?
4. Is there anything else that you would like to tell me about your experience with virtual reality training?
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