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Abstract

Within the logistics and transportation industry, the vehicle routing problem (VRP) bears

significant importance in many real-life logistics activities. As one of the most important

and widely studied combinatorial optimization problems in the past sixty years, the VRP,

also known as the capacitated VRP (CVRP), focuses on minimizing transportation costs:

it concerns how to serve a set of geographically dispersed customers with a fleet of

homogeneous vehicles at minimum cost. Given the potentially substantial savings from

optimizing routing strategies in practical logistics activities, various complex extensions of

the CVRP inspired from real-life applications have increasingly received attention. In the

CVRP and most of its extensions, a common assumption is that the values of all problem

parameters are readily available and can be precisely known in advance. However, this

assumption does not invariably hold in many practical routing problems due to uncertainty,

which could be secondary to factors such as imprecise information on customer demands,

unfixed service times for customers, and varying travel times for vehicles. Thus, routing

strategies generated without considering uncertainty may ultimately be found infeasible in

real-life applications.

This thesis aims to study several important extensions of the CVRP under uncertainty.

To model these problems, we adopt the robust optimization paradigm which is an effective

framework for optimization problems with uncertain data. Given their complexity, we

focus on developing efficient metaheuristic solution approaches. Our investigations are

threefold. Firstly, we study the vehicle routing problem with time windows considering

uncertainty in customer demands, service times, and travel times. To capture these different



v

types of uncertainty, novel route-dependent uncertainty sets are defined. The problem is

modelled through a robust mathematical formulation with the route-dependent uncertainty

sets and solved via a metaheuristic based on the adaptive variable neighbourhood search

method. Secondly, we study the vehicle routing problem with simultaneous pickup and

delivery and time windows under uncertainty in pickup demands and travel times. A robust

mathematical formulation with two route-dependent uncertainty sets is presented to model

the problem and a metaheuristic based on the adaptive large neighbourhood search method

is proposed to solve it. Finally, we study the two-echelon multiple-trip vehicle routing prob-

lem with time windows and satellite synchronization under customer demand uncertainty.

This problem considers a two-echelon transportation system and a number of practical

features commonly observed in city logistics. A robust mathematical formulation with a

novel demand uncertainty set and a metaheuristic based on the variable neighbourhood

search framework are accordingly proposed. We conduct extensive numerical experiments

which employ benchmark instances from the literature. The computational results show

that the proposed solution approaches can generate high-quality deterministic and robust

solutions for large-sized instances within a reasonable running time. In addition, Monte

Carlo simulation tests are designed to evaluate the robustness of the obtained solutions.

Useful managerial insights for decision-makers in the logistics and transportation industry

are derived from a comprehensive analysis of the computational results.
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