MODELS AND METAHEURISTICS FOR VEHICLE ROUTING PROBLEMS UNDER UNCERTAINTY

by

Chenlian Hu

A THESIS SUBMITTED

IN FULFILMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

School of Computer Science

Faculty of Engineering and Information Technology (FEIT)

University of Technology Sydney

July 2021

Certificate of Authorship/Originality

I, Chenlian Hu declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the School of Computer Science, Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis. I certify that the work in this thesis has not previously been submitted for a degree nor has

it been submitted as part of the requirements for a degree at any other academic institution except as fully acknowledged within the text. This thesis is the result of a Collaborative Doctoral Research Degree program with the Shanghai Jiao Tong University.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

July 2021

Acknowledgements

Looking back at the past several years, I have been privileged to study and work with the smart and creative colleagues of the Decision Systems & e-Service Intelligence (DeSI) Lab in the Australian Artificial Intelligence Institute (AAII, formerly the Centre for Artificial Intelligence (CAI)). This thesis would not have been possible without their help and support.

First of all, I would like to express my deeply-felt thanks to my principal supervisor Distinguished Professor Jie Lu. I owe my sincere gratitude to Professor Lu, for her patience, assistance, and encouragement. Professor Lu is knowledgeable, humorous, and kind. She taught me how to conduct in-depth research and gave me freedom to pursue my own research interests. Without her guidance and support, this thesis would not have become a reality.

I would also like to thank my co-supervisor A./Professor Guangquan Zhang, for his selfless love and support on my research and life in Sydney. The discussions with him gave me a lot of insights and ideas for my research. His decisiveness and sharp insights motivated me when I felt lost or afraid about the future.

I am grateful to all the members of the DeSI Lab. They gave me a lot of valuable suggestions to improve this thesis. It was really a great experience to work with these dedicated researchers.

Last but not least, I would like to owe my sincere gratitude to my family. My father and mother have been continuously supporting me and giving me love and encouragement to overcome all the adversities I have faced.

Abstract

Within the logistics and transportation industry, the vehicle routing problem (VRP) bears significant importance in many real-life logistics activities. As one of the most important and widely studied combinatorial optimization problems in the past sixty years, the VRP, also known as the capacitated VRP (CVRP), focuses on minimizing transportation costs: it concerns how to serve a set of geographically dispersed customers with a fleet of homogeneous vehicles at minimum cost. Given the potentially substantial savings from optimizing routing strategies in practical logistics activities, various complex extensions of the CVRP inspired from real-life applications have increasingly received attention. In the CVRP and most of its extensions, a common assumption is that the values of all problem parameters are readily available and can be precisely known in advance. However, this assumption does not invariably hold in many practical routing problems due to uncertainty, which could be secondary to factors such as imprecise information on customer demands, unfixed service times for customers, and varying travel times for vehicles. Thus, routing strategies generated without considering uncertainty may ultimately be found infeasible in real-life applications.

This thesis aims to study several important extensions of the CVRP under uncertainty. To model these problems, we adopt the robust optimization paradigm which is an effective framework for optimization problems with uncertain data. Given their complexity, we focus on developing efficient metaheuristic solution approaches. Our investigations are threefold. Firstly, we study the vehicle routing problem with time windows considering uncertainty in customer demands, service times, and travel times. To capture these different

types of uncertainty, novel route-dependent uncertainty sets are defined. The problem is modelled through a robust mathematical formulation with the route-dependent uncertainty sets and solved via a metaheuristic based on the adaptive variable neighbourhood search method. Secondly, we study the vehicle routing problem with simultaneous pickup and delivery and time windows under uncertainty in pickup demands and travel times. A robust mathematical formulation with two route-dependent uncertainty sets is presented to model the problem and a metaheuristic based on the adaptive large neighbourhood search method is proposed to solve it. Finally, we study the two-echelon multiple-trip vehicle routing problem with time windows and satellite synchronization under customer demand uncertainty. This problem considers a two-echelon transportation system and a number of practical features commonly observed in city logistics. A robust mathematical formulation with a novel demand uncertainty set and a metaheuristic based on the variable neighbourhood search framework are accordingly proposed. We conduct extensive numerical experiments which employ benchmark instances from the literature. The computational results show that the proposed solution approaches can generate high-quality deterministic and robust solutions for large-sized instances within a reasonable running time. In addition, Monte Carlo simulation tests are designed to evaluate the robustness of the obtained solutions. Useful managerial insights for decision-makers in the logistics and transportation industry are derived from a comprehensive analysis of the computational results.

Table of Contents

Ce	ertificate of Authorship/Originality			
Ac	cknow	vledgements	iii	
Al	ostrac	t	iv	
Li	st of l	Figures	xi	
Li	st of [Tables	xii	
1	Intr	oduction	1	
	1.1	Background and Motivations	1	
	1.2	Research Problems	6	
	1.3	Research Contributions	8	
	1.4	Research Significance	10	
	1.5	Thesis Structure	10	
	1.6	Publications	13	
2	Lite	rature Review	15	
	2.1	The CVRP	15	
		2.1.1 Exact Methods	16	
		2.1.2 Heuristic Methods	17	
	2.2	Literature Related to the VRPTW Under Uncertainty	20	

		2.2.1	The VRF	YTW	20
		2.2.2	Stochasti	c Versions of the VRPTW	24
		2.2.3	Robust V	Versions of the VRPTW	25
	2.3	Literat	ure Relate	d to the VRPSPDTW Under Uncertainty	27
		2.3.1	The VRF	PSPD	27
		2.3.2	The VRP	PSPDTW	30
		2.3.3	Stochasti	c Versions of the VRPSPD	31
	2.4	Literat	ure Relate	d to the 2E-MTVRPTWSS Under Uncertainty	32
		2.4.1	The 2E-C	CVRP	32
		2.4.2	Complex	Extensions of the 2E-CVRP	35
	2.5	Summa	ary		36
3	Vehi	cle Rou	ting Prob	lem with Time Windows Under Uncertainty	39
	3.1	Introdu	action		39
	3.2	Proble	m Stateme	ent and Model Formulation	40
		3.2.1	The VRP	YTW	40
		3.2.2	The VRF	TW Under Uncertainty	42
	3.3	An AV	NS-Based	Metaheuristic	48
		3.3.1	Overview	v of the Metaheuristic	49
		3.3.2	Solution	Evaluation	53
		3.3.3	Initial So	lution	58
		3.3.4	Key Con	ponents of the AVNS Framework	59
			3.3.4.1	Shaking Neighbourhoods	59
			3.3.4.2	Selection Methods	61
			3.3.4.3	Adaptive Mechanism	64
			3.3.4.4	Local Search	65
			3.3.4.5	Acceptance Criterion	66

	3.4	Comp	utational E	xperiments	67
		3.4.1	Experim	ent Description and Parameter Setting	67
		3.4.2	Computa	ational Results	72
			3.4.2.1	Results for Medium-Sized Instances	72
			3.4.2.2	Results for Large-Sized Instances	81
	3.5	Summ	ary		85
1	Vob	ialo Dou	ting Drok	alom with Simultaneous Diskun and Delivery and Time	
4	Win	dowa II	nden Une	enteinty	07
	vv III 4 1	uows U		ertainty	00
	4.1	Introd	uction	·····	80
	4.2	Proble	m Stateme		88
		4.2.1	The VRI	2SPDTW	88
		4.2.2	The VRI	SPDTW Under Uncertainty	90
	4.3	An AI	LNS-Based	l Metaheuristic	93
		4.3.1	Overview	v of the Metaheuristic	94
		4.3.2	Solution	Evaluation	98
		4.3.3	Initial Sc	olution	103
		4.3.4	Key Con	nponents of the ALNS Framework	103
			4.3.4.1	Destroy Operators	103
			4.3.4.2	Repair Operators	106
			4.3.4.3	Adaptive Mechanism 1	108
			4.3.4.4		109
			4.3.4.5	Acceptance Criterion	110
	4.4	Comp	utational E	Experiments	110
		4.4.1	Experim	ent Description and Parameter Setting 1	111
		4.4.2	Computa	ational Results	115
			4.4.2.1	Results for Medium-Sized Instances	116

			4.4.2.2 Results for Large-Sized Instances	123
	4.5	Summ	ary	128
5	Two	-Echelo	on Multiple-Trip Vehicle Routing Problem with Time	Windows
U	and	Satellit	e Synchronization Under Uncertainty	129
	5.1	Introd	uction	129
	5.2	Proble	em Statement and Model Formulation	131
		5.2.1	The 2E-MTVRPTWSS	131
		5.2.2	The 2E-MTVRPTWSS Under Uncertainty	137
	5.3	A VN	S-Based Metaheuristic	141
		5.3.1	Overview of the Metaheuristic	142
		5.3.2	Constructing an Initial Solution	145
			5.3.2.1 Constructing a Set of Second-Echelon Vehicle	Routes . 146
			5.3.2.2 Constructing a Set of First-Echelon Vehicle Ro	outes 150
		5.3.3	Minimizing the Number of Vehicle Routes in Two Echel	ons 156
		5.3.4	Minimizing the Total Travel Distance of Vehicle Route	s in Two
			Echelons	163
	5.4	Comp	utational Experiments	165
		5.4.1	Experiment Description and Parameter Setting	165
		5.4.2	Computational Results	169
			5.4.2.1 Results for Medium-Sized Instances	170
			5.4.2.2 Results for Large-Sized Instances	175
	5.5	Summ	ary	181
6	Con	clusion	and Further Study	182
	6.1	Conclu	usions	
	6.2	Furthe	er Study	185

Bibliography	187
Abbreviations	217

X

List of Figures

1.1	Example for the CVRP.
1.2	Thesis structure and main research contents
3.1	Examples for the cyclic exchange and sequence reinsertion operators 60
5.1	A solution to the 2E-MTVRPTWSS
5.2	An example of two second-echelon vehicle routes
5.3	The geographical locations of the logistics centre and satellites 16

List of Tables

3.1	The shaking neighbourhood structures adopted in the AVNS-based meta-	
	heuristic	60
3.2	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the C1 instances with 50 customers	73
3.3	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the R1 instances with 50 customers	73
3.4	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the RC1 instances with 50 customers	74
3.5	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the C2 instances with 50 customers	80
3.6	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the R2 instances with 50 customers	81
3.7	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the RC2 instances with 50 customers	81
3.8	Average results of the deterministic and robust solutions derived for the	
	Solomon's instances with 100 customers	82
3.9	Average results of the best and average robust solutions derived for the	
	Solomon's instances with 100 customers.	84

3.10	Best deterministic solutions generated by the AVNS-based metaheuristic	
	in comparison to the current best-known solutions for the Solomon's	
	instances with 100 customers.	84

- 4.1 Average results of the solutions derived with different parameter settings in the uncertainty polytopes for the Cdp1 instances with 50 customers. . . 117
- 4.2 Average results of the solutions derived with different parameter settings in the uncertainty polytopes for the Rdp1 instances with 50 customers. . . 117
- 4.3 Average results of the solutions derived with different parameter settings in the uncertainty polytopes for the RCdp1 instances with 50 customers. 118
- 4.4 Average results of the solutions derived with different parameter settings in the uncertainty polytopes for the Cdp2 instances with 50 customers. . . 118
- 4.5 Average results of the solutions derived with different parameter settings in the uncertainty polytopes for the Rdp2 instances with 50 customers. . . 119
- 4.6 Average results of the solutions derived with different parameter settings in the uncertainty polytopes for the RCdp2 instances with 50 customers. 119

- 4.9 Best deterministic solutions generated by the ALNS-based metaheuristic in comparison to the current best-known solutions for the instances of Wang and Chen (2012).

5.2	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the 2EC1 instances with 50 customers and	
	8 satellites	71
5.3	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the 2ER1 instances with 50 customers and	
	8 satellites	71
5.4	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the 2ERC1 instances with 50 customers	
	and 8 satellites	71
5.5	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the 2EC2 instances with 50 customers and	
	8 satellites	72
5.6	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the 2ER2 instances with 50 customers and	
	8 satellites	72
5.7	Average results of the solutions derived with different parameter settings	
	in the uncertainty polytopes for the 2ERC2 instances with 50 customers	
	and 8 satellites	72
5.8	Detailed results of the deterministic and robust solutions derived for the	
	2EC1, 2ER1, and 2ERC1 instances with 100 customers and 8 satellites 17	76
5.9	Detailed results of the deterministic and robust solutions derived for the	
	2EC2, 2ER2, and 2ERC2 instances with 100 customers and 8 satellites 17	17
5.10	Best results of the VNS-based metaheuristic in comparison to the ALNS	
	on the 2E-MTVRPTWSS instances in Grangier et al. (2016) 17	79