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austraits, a curated plant trait 
database for the Australian flora
We introduce the austraits database - a compilation of values of plant traits for taxa in the 
Australian flora (hereafter AusTraits). AusTraits synthesises data on 448 traits across 28,640 
taxa from field campaigns, published literature, taxonomic monographs, and individual 
taxon descriptions. Traits vary in scope from physiological measures of performance 
(e.g. photosynthetic gas exchange, water-use efficiency) to morphological attributes 
(e.g. leaf area, seed mass, plant height) which link to aspects of ecological variation. AusTraits 
contains curated and harmonised individual- and species-level measurements coupled to, 
where available, contextual information on site properties and experimental conditions. This 
article provides information on version 3.0.2 of AusTraits which contains data for 997,808 
trait-by-taxon combinations. We envision AusTraits as an ongoing collaborative initiative for 
easily archiving and sharing trait data, which also provides a template for other national or 
regional initiatives globally to fill persistent gaps in trait knowledge.

Background & Summary
Species traits are essential for comparing ecological strategies among plants, both within any given vegetation 
and across environmental space or evolutionary lineages1–4. Broadly, a trait is any measurable property of a plant 
capturing aspects of its structure or function5–8. Traits thereby provide useful indicators of species’ behaviours in 
communities and ecosystems, regardless of their taxonomy8–10. Through global initiatives the volume of available 
trait information for plants has grown rapidly in the last two decades11,12. However, the geographic coverage of 
trait measurements across the globe is patchy, limiting detailed analyses of trait variation and diversity in some 
regions, and, more generally, development of theory accounting for the diversity of plant strategies.

One such region where trait data is sparsely documented is Australia; a continent with a flora of c. 28,900 
native vascular plant taxa13 (including species, subspecies, varietas and forma). While significant investment has 
been made in curating and digitising herbarium collections and observation records in Australia over the last two 
decades (e.g. The Australian Virtual Herbarium houses ~7 million specimen occurrence records; https://avh.ala.
org.au), no complementary resource yet exists for consolidating information on plant traits. Moreover, relatively 
few Australian species are represented in the leading global databases. For example, the international TRY data-
base12 has measurements for only 3830 Australian species across all collated traits. This level of species coverage 
limits our ability to use traits to understand and ultimately manage Australian vegetation14. While initiatives such 
as TRY12 and the Open Traits Network15 are working towards global synthesis of trait data, a stronger representa-
tion of Australian plant taxa in these efforts is essential, especially given the high richness and endemicity of this 
continental flora, and the unique contribution this makes to global floral diversity16,17.

Here we introduce the AusTraits database (hereafter AusTraits), a compilation of plant traits for the Australian 
flora. Currently, AusTraits draws together 283 distinct sources and contains 997,808 measurements spread across 
448 different traits for 28,640 taxa. To assemble AusTraits from diverse primary sources and make data availa-
ble for reuse, we needed to overcome three main types of challenges (Fig. 1): (1) Accessing data from diverse 
original sources, including field studies, online databases, scientific articles, and published taxonomic floras; (2) 
Harmonising these diverse sources into a federated resource, with common taxon names, units, trait names, and 
data formats; and (3) Distributing versions of the data under suitable license. To meet this challenge, we devel-
oped a workflow which draws on emerging community standards and our collective experience building trait 
databases.

By providing a harmonised and curated dataset on 448 plant traits, AusTraits contributes substantially to 
filling the gap in Australian and global biodiversity resources. Prior to the development of AusTraits, data on 
Australian plant traits existed largely as a series of disconnected datasets collected by individual laboratories or 
initiatives.

A full list of authors and their affiliations appears at the end of the paper. 

DATA DeScripTor

opeN

https://doi.org/10.1038/s41597-021-01006-6
https://avh.ala.org.au
https://avh.ala.org.au
http://crossmark.crossref.org/dialog/?doi=10.1038/s41597-021-01006-6&domain=pdf


2Scientific Data |           (2021) 8:254  | https://doi.org/10.1038/s41597-021-01006-6

www.nature.com/scientificdatawww.nature.com/scientificdata/

AusTraits has been developed as a standalone database, rather than as part of the existing global database 
TRY12, for three reasons. First, we sought to establish an engaged and localised community, actively collaborat-
ing to enhance coverage of plant trait data within Australia. We envisioned that a community would form more 
readily to fill gaps in national knowledge of traits with local ownership of the resource. While we will never have a 
counterfactual, a vibrant community excited to be part of this initiative has indeed been established and coverage 
is much higher for Australian species than has been achieved since TRY’s inception. Local ownership also aligns 
well with funding opportunities and national research priorities, and enables database coordinators to progress at 
their own speed. Second, we wanted to apply an entirely open-source approach to the aggregation workflow. All 
the code and raw files used to create the compiled database are available, and this database is freely available via 
a third party data repository (Zenodo) which is itself built for long term data archiving, with an established API. 
Finally, we targeted primary data sources, where possible, whereas TRY accepts aggregated datasets. The hope was 
that this would increase data quality, by removing intermediaries and easier identification of duplicates.

While independent, the overall structure of AusTraits is similar to that of TRY, ensuring the two databases will 
be interoperable. Both databases are founded on similar principles and terminology18,19. Increasingly, research-
ers and biodiversity portals are seeking to connect diverse datasets15, which is possible if they share a common 
foundation.

We envision AusTraits as an on-going collaborative initiative for easily archiving and sharing trait data about 
the Australian flora. Open access to a comprehensive resource like this will generate significant new knowledge 
about the Australian flora across multiple scales of interest, as well as reduce duplication of effort in the compila-
tion of plant trait data, particularly for research students and government agencies seeking to access information 
on traits. In coming years, AusTraits will continue to be expanded, with integrations into other biodiversity plat-
forms and expansion of coverage into historically neglected plant lineages in trait science, such as pteridophytes 
(lycophytes and ferns). Further, through international initiatives, such as the Open Traits Network, linkages are 
being forged between plant datasets and a variety of other organismal databases15.

Methods
primary sources. AusTraits version 3.0.2 was assembled from 283 distinct sources, including published 
papers, field measurements, glasshouse and field experiments, botanical collections, and taxonomic treatments. 
Initially we identified a list of candidate traits of interest, then identified primary sources containing measure-
ments for these traits, before contacting authors for access. As the compilation grew, we expanded the list of traits 
considered to include any measurable quantity that had been quantified for at least a moderate number of taxa 
(n > 20).

For a small subset of sources from herbaria, providing a text description of taxa, we used regular expressions 
in R to extract measurements of traits from the text. A variety of expressions were developed to extract height, 
leaf/seed dimensions and growth form. Error checking was completed on approximately 60% of mined measure-
ments by visually inspecting the extracted values relative to the textual descriptions.

Trait definitions. A full list of traits and their sources appears in Supplementary Table 120–354 . The list of 
sources in AusTraits was developed gradually as new datasets were incorporated, drawing from original source 
publications and a published thesaurus of plant characteristics19. We categorised traits based on the tissue where 
it is measured (bark, leaf, reproductive, root, stem, whole plant) and the type of measurement (allocation, life 
history, morphology, nutrient, physiological). Version 3.0.2 of AusTraits includes 358 numeric and 90 categorical 
traits.

Database structure. The schema of AusTraits broadly follows the principles of the established Observation 
and Measurement Ontology18 in that, where available, trait data are connected to contextual information about 
the collection (e.g. location coordinates, light levels, whether data were collected in the field or lab) and informa-
tion about the methods used to derive measurements (e.g. number of replicates, equipment used). The database 

Fig. 1 The data curation pathway used to assemble the AusTraits database. Trait measurements are accessed 
from original data sources, including published floras and field campaigns. Features such as variable names, 
units and taxonomy are harmonised to a common standard. Versioned releases are distributed to users, allowing 
the dataset to be used and re-used in a reproducible way.
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contains 11 elements, as described in Table 1. This format was developed to include information about the trait 
measurements, taxon, methods, sites, contextual information, people involved, and citation sources.

For storage efficiency, the main table of traits contains relatively little information (Table 2), but can be cross 
linked against other tables (Tables 3–8) using identifiers for dataset, site, context, observation, and taxon (Table 1). 
The dataset_id is ordinarily the surname of the first author and year of publication associated with the 
source’s primary citation (e.g. Blackman_2014). Trait values were also recorded as being one of several pos-
sible value types (value_type) (Table 9), reflecting the type of measurement submitted by the contributor, 
as different sources provide different levels of detail. Possible values include raw_value, individual_
mean, site_mean, multisite_mean, expert_mean, experiment_mean. Further details on 
the methods used for collecting each trait are provided in a methods table (Table 5).

Harmonisation. To harmonise each source into the common AusTraits format we applied a reproducible 
and transparent workflow (Fig. 1), written in R355, using custom code, and the packages tidyverse356, yaml357, 
remake358, knitr359, and rmarkdown360. In this workflow, we performed a series of operations, including refor-
matting data into a standardised format, generating observation ids for each set of linked measurements, transform-
ing variable names into common terms, transforming data into common units, standardising terms (trait values) 
for categorical variables, encoding suitable metadata, and flagging data that did not pass quality checks. Details from 
each primary source were saved with minimal modification into two plain text files. The first file, data.csv, con-
tains the actual trait data in comma-separated values format. The second file, metadata.yml, contains relevant 
metadata for the study, as well as options for mapping trait names and units onto standard types, and any substitu-
tions applied to the data in processing. These two files provide all the information needed to compile each study into 

Element Contents

traits A table containing measurements of plant traits.

sites A table containing observations of site characteristics associated with information in ‘traits’. Cross referencing 
between the two dataframes is possible using combinations of the variables ‘dataset_id’, ‘site_name’.

contexts A table containing observations of contextual characteristics associated with information in ‘traits’. Cross 
referencing between the two dataframes is possible using combinations of the variables ‘dataset_id’, ‘context_name’.

methods A table containing details on methods with which data were collected, including time frame and source.

excluded_data A table of data that did not pass quality test and so were excluded from the master dataset.

taxa A table containing details on taxa associated with information in ‘traits’. This information has been sourced from the 
APC (Australian Plant Census) and APNI (Australian Plant Name Index) and is released under a CC-BY3 license.

definitions A copy of the definitions for all tables and terms. Information included here was used to process data and generate 
any documentation for the study.

sources Bibtex entries for all primary and secondary sources in the compilation.

contributors A table of people contributing to each study.

taxonomic_updates A table of all taxonomic changes implemented in the construction of AusTraits. Changes are determined by 
comparing against the APC (Australian Plant Census) and APNI (Australian Plant Name Index).

build_info A description of the computing environment used to create this version of the dataset, including version number, 
git commit and R session_info.

Table 1. Main elements of the harmonised AusTraits database. See Tables 2–8 for details on each component.

key value

dataset_id Primary identifier for each study contributed into AusTraits; most often these are scientific papers, books, or online 
resources. By default should be name of first author and year of publication, e.g. ‘Falster_2005’.

taxon_name Currently accepted name of taxon in the Australian Plant Census or in the Australian Plant Name Index.

site_name Name of site where individual was sampled. Cross-references to identical columns in ‘sites’ and ‘traits’.

context_name Name of contextual senario where individual was sampled. Cross-references to identical columns in ‘contexts’ and ‘traits’.

observation_id A unique identifier for the observation, useful for joining traits coming from the same ‘observation_id’. These are assigned 
automatically, based on the ‘dataset_id’ and row number of the raw data.

trait_name Name of trait sampled.

value Measured value.

unit Units of the sampled trait value after aligning with AusTraits standards.

date Date sample was taken, in the format ‘yyyy-mm-dd’, but with days and months only when specified.

value_type A categorical variable describing the type of trait value recorded.

replicates
Number of replicate measurements that comprise the data points for the trait for each measurement. A numeric value (or 
range) is ideal and appropriate if the value type is a ‘mean’, ‘median’, ‘min’ or ‘max’. For these value types, if replication is 
unknown the entry should be ‘unknown’. If the value type is ‘raw_value’ the replicate value should be 1. If the value type is 
‘expert_mean’, ‘expert_min’, or ‘expert_max’ the replicate value should be ‘na’.

original_name Name given to taxon in the original data supplied by the authors

Table 2. Structure of the traits table, containing measurements of plant traits.
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a standardised AusTraits format. Successive versions of AusTraits iterate through the steps in Fig. 1, to incorporate 
new data and correct identified errors, leading to a high-quality, harmonised dataset.

After importing a study, we generated a detailed report which summarised the study’s metadata and compared 
the study’s data values to those collected by other studies for the same traits. Data for continuous and categorical 
variables are presented in scatter plots and tables respectively. These reports allow first the AusTraits data curator, 
followed by the data contributor, to rapidly scan the metadata to confirm it has been entered correctly and the 
trait data to ensure it has been assigned the correct units and their categorical traits values are properly aligned 
with AusTraits trait values.

Taxonomy. We developed a custom workflow to clean and standardise taxonomic names using the latest 
and most comprehensive taxonomic resources for the Australian flora: the Australian Plant Census (APC)13 
and the Australian Plant Name Index (APNI)361. These resources document all known taxonomic names for 
Australian plants, including currently accepted names and synonyms. While several automated tools exist for 
updating taxonomy, such as taxize362, these do not currently include up to date information for Australian 
taxa. Updates were completed in two steps. In the first step, we used both direct and then fuzzy matching (with up 

key value

dataset_id Primary identifier for each study contributed into AusTraits; most often these are scientific papers, books, or online 
resources. By default should be name of first author and year of publication, e.g. ‘Falster_2005’.

site_name Name of site where individual was sampled. Cross-references to identical columns in ‘sites’ and ‘traits’.

site_property The site characteristic being recorded. Name should include units of measurement, e.g. ‘longitude (deg)’. Ideally we have at 
least these variables for each site - ‘longitude (deg)’, ‘latitude (deg)’, ‘description’.

value Measured value.

Table 3. Structure of the sites table, containing observations of site characteristics associated with 
information in traits.

key value

dataset_id Primary identifier for each study contributed into AusTraits; most often these are scientific papers, books, or online 
resources. By default should be name of first author and year of publication, e.g. ‘Falster_2005’.

context_name Name of contextual senario where individual was sampled. Cross-references to identical columns in ‘contexts’ and 
‘traits’.

context_property The contextual characteristic being recorded. Name should include units of measurement, e.g. ‘CO2 concentration 
(ppm)’.

value Measured value.

Table 4. Structure of the contexts table, containing observations of contextual characteristics associated 
with information in traits.

key value

dataset_id Primary identifier for each study contributed into AusTraits; most often these are scientific papers, books, or 
online resources. By default should be name of first author and year of publication, e.g. ‘Falster_2005’.

trait_name Name of trait sampled. Allowable values specified in the table ‘traits’.

methods
A textual description of the methods used to collect the trait data. Whenever available, methods are taken 
near-verbatim from referenced source. Methods can include descriptions such as ‘measured on botanical 
collections’, ‘data from the literature’, or a detailed description of the field or lab methods used to collect the 
data.

year_collected_start The year data collection commenced.

year_collected_end The year data collection was completed.

description A 1–2 sentence description of the purpose of the study.

collection_type
A field to indicate where the majority of plants on which traits were measured were collected - in the ‘field’, 
‘lab’, ‘glasshouse’, ‘botanical collection’, or ‘literature’. The latter should only be used when the data were 
sourced from the literature and the collection type is unknown.

sample_age_class A field to indicate if the study was completed on ‘adult’ or ‘juvenile’ plants.

sampling_strategy
A written description of how study sites were selected and how study individuals were selected. When 
available, this information is copied verbatim from a published manuscript. For botanical collections, this 
field ideally indicates which records were ‘sampled’ to measure a specific trait.

source_primary_citation Citation for primary source. This detail is generated from the primary source in the metadata.

source_primary_key Citation key for primary source in ‘sources’. The key is typically of format ‘Surname_year’.

source_secondary_citation Citations for secondary source. This detail is generated from the secondary source in the metadata.

source_secondary_key Citation key for secondary source in ‘sources’. The key is typically of format ‘Surname_year’.

Table 5. Structure of the methods table, containing details on methods with which data were collected, 
including time frame and source.
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to 2 characters difference) to search for an alignment between reported names and those in three name sets: 1) All 
accepted taxa in the APC, 2) All known names in the APC, 3) All names in the APNI. Names were aligned with-
out name authorities, as we found this information was rarely reported in the raw datasets provided to us. Second, 
we used the aligned name to update any outdated names to their current accepted name, using the information 
provided in the APC. If a name was recorded as being both an accepted name and an alternative (e.g. synonym) 
we preferred the accepted name, but also noted the alternative records. For phrase names, when a suitable match 
could not be found, we manually reviewed near matches via web portals such as the Atlas of Living Australia to 
find a suitable match. The final resource reports both the original and the updated taxon name alongside each 
trait record (Table 2), as well as an additional table summarising all taxonomic name changes (Table 6) and fur-
ther information from the APC and APNI on all taxa included (Table 7). Any changes in taxonomy are exposed 
within the compiled dataset, enabling researchers to review these as needed.

Data records
Access. Static versions of AusTraits, including version 3.0.2 used in this descriptor, are available via Zenodo363. 
Data is released under a CC-BY license enabling reuse with attribution – being a citation of this descriptor and, 
where possible, original sources. Deposition within Zenodo helps makes the dataset consistent with FAIR prin-
ciples364. As an evolving data product, successive versions of AusTraits are being released, containing updates 
and corrections. Versions are labeled using semantic versioning to indicate the change between versions365. As 

key value

dataset_id
Primary identifier for each study contributed into AusTraits; most often these are scientific papers, 
books, or online resources. By default should be name of first author and year of publication, e.g. 
‘Falster_2005’.

original_name Name given to taxon in the original data supplied by the authors

cleaned_name Name of the taxon after implementing any changes encoded for this taxon in the metadata file for the 
correpsonding ‘dataset_id’.

taxonIDClean Where it could be identified, the ‘taxonID’ of the ‘cleaned_name’ for this taxon in the APC.

taxonomicStatusClean Taxonomic status of the taxon identified by ‘taxonIDClean’ in the APC.

alternativeTaxonomicStatusClean The status of alternative records with the name ‘cleaned_name’ in the APC.

acceptedNameUsageID ID of the accepted name for taxon in the APC or APNI.

taxon_name Currently accepted name of taxon in the APC or in the APNI .

Table 6. Structure of the taxonomic_updates table, of all taxonomic changes implemented in the 
construction of AusTraits. Changes are determined by comparing against the APC (Australian Plant Census) 
and APNI (Australian Plant Name Index).

key value

taxon_name Currently accepted name of taxon in the APC or in the APNI .

source Source of taxnonomic information, either APC or APNI.

acceptedNameUsageID ID of the accepted name for taxon in the APC or APNI.

scientificNameAuthorship Authority for taxon indicated under taxon_name.

taxonRank Rank of the taxon.

taxonomicStatus Taxonomic status of the taxon.

family Family of the taxon.

genus Genus of the taxon.

taxonDistribution Known distribution of the taxon, by state.

ccAttributionIRI Source of taxonomic information.

Table 7. Structure of the taxa table, containing details on taxa associated with information in 
the traits table. This information has been sourced from the APC (Australian Plant Census) and APNI 
(Australian Plant Name Index) and is released under a CC-BY3 license.

key value

dataset_id Primary identifier for each study contributed into AusTraits; most often these are scientific papers, books, or online resources. 
By default should be name of first author and year of publication, e.g. ‘Falster_2005’.

name Name of contributor

institution Last known institution or affiliation

role Their role in the study

Table 8. Structure of the contributors table, of people contributing to each study.
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validation (see Technical Validation, below) and data entry are ongoing, users are recommended to pull data from 
release, to ensure results in their downstream analyses remain consistent as the database is updated.

The R package austraits (https://github.com/traitecoevo/austraits) provides easy access to data and exam-
ples on manipulating data (e.g. joining tables, subsetting) for those using this platform.

Data coverage. The number of accepted vascular plant taxa in the APC (as of May 2020) is around 28,98113. 
Version 3.0.2 of AusTraits includes at least one record for 26,852 taxa (~93% of known taxa). Five traits (leaf_
length, leaf_width, plant_height, life_history, plant_growth_form) have records for more than 50% of known 
species (Fig. 2a). Across all traits, the median number of taxa with records is 62. Supplementary Table 1 shows 
the number of studies, taxa, and families with data in AusTraits, as well as the number of geo-referenced 
records, for each trait. Looking across traits and tissue categories, coverage declined gradually, with moderate 

key value

raw_value Value is a direct measurement

site_min Value is the minimum of measurements on multiple individuals of the taxon at a single site

site_mean Value is the mean or median of measurements on multiple individuals of the taxon at a single site

site_max Value is the maximum of measurements on multiple individuals of the taxon at a single site

multisite_min Value is the minimum of measurements on multiple individuals of the taxon across multiple sites

multisite_mean Value is the mean or median of measurements on multiple individuals of the taxon across multiple sites

multisite_max Value is the maximum of measurements on multiple individuals of the taxon across multiple sites

expert_min
Value is the minimum observed for a taxon across its range or in this particular dataset, as estimated by an expert 
based on their knowledge of the taxon. Data fitting this category include estimates from floras that represent a taxon’s 
entire range.

expert_mean
Value is the mean observed for a taxon across its range or in this particular dataset, as estimated by an expert based 
on their knowledge of the taxon. Data fitting this category include estimates from floras that represent a taxon’s entire 
range, and values for categorical variables obtained from a reference book, or identified by an expert.

expert_max
Value is the maximum observed for a taxon across its range or in this particular dataset, as estimated by an expert 
based on their knowledge of the taxon. Data fitting this category include estimates from floras that represent a taxon’s 
entire range.

experiment_min Value is the minimum of measurements from an experimental study either in the field or a glasshouse

experiment_mean Value is the mean or median of measurements from an experimental study either in the field or a glasshouse

experiment_max Value is the maximum of measurements from an experimental study either in the field or a glasshouse

individual_mean Value is a mean of replicate measurements on an individual (usually for experimental ecophysiology studies)

individual_max Value is a maximum of replicate measurements on an individual (usually for experimental ecophysiology studies)

literature_source Value is a site or multi-site mean that has been sourced from an unknown literature source

unknown Value type is not currently known

Table 9. Possible value types of trait records.
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Fig. 2 Coverage of traits by taxa. (a) Matrix showing the coverage of taxa for each trait, with yellow indicating 
presence of data. The figure was generated with a subset of 500 randomly selected taxa. (b) Number of taxa with 
data for first 100 traits for all traits and separated by tissue.
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coverage(>20%) for more than 50 traits (Fig. 2). Coverage for root, stem and bark traits declined much faster than 
trait measurements for other plant tissues (Fig. 2b).

The most common traits are non geo-referenced records from floras; these are trait values representing a 
continental or region mean (or spread) and hence are not linked to a location. Yet, geo-referenced records were 
available for several traits for more than 10% of the flora (Fig. 3a). Coverage is notably higher for geo-referenced 
measurements of some tissues and trait types - such as bark stems and roots - relative to non-geo-referenced 
measurements (Fig. 3).

Trait records are spread across the climate space of Australia (Fig. 4a), as well as geographic locations (Fig. 4b). 
As with most data in Australia, the density of records was somewhat concentrated around cities or roads in 
remote regions.

100

101

102

103

104

105

leaf stem bark root reproductive whole plant
Major plant part

Ta
xa

 (
n)

Geo−referenced
a

leaf stem bark root reproductive whole plant
Major plant part

Category

allocation

life history

morphology

nutrient

physiology

Not geo−referenced
b

Fig. 3 Number of taxa with trait records by plant tissue and trait category, for data that are (a) Geo-referenced, 
and (b) Not geo-referenced. Many records without a geo-reference come from botanical collections, such as 
floras.

Fig. 4 Coverage of geo-referenced trait records across Australian climatic and geographic space for traits in 
different categories. (a) AusTraits’ sites (orange) within Australia’s precipitation-temperature space (dark-grey) 
superimposed upon Whittaker’s classification of major biomes by climate370. Climate data were extracted at 10" 
resolution from WorldClim371. (b) Locations of geo-referenced records for different plant tissues.
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Overall trait coverage across an estimated phylogenetic tree of Australian plant species is relatively unbiased 
(Fig. 5), though there are some notable exceptions. One exception is for root traits, where taxa within Poaceae 
have large amounts of information available relative to other plant families. A cluster of taxa within the family 
Myrtaceae which are largely from Western Australia have little leaf information available.

Comparing coverage in AusTraits to the global database TRY, there were 76 traits overlapping. Of these, 
AusTraits tended to contain records for more taxa, but not always; multiple traits had more than 10 times the 
number of taxa represented in AusTraits (Fig. 6). However, there were more records in TRY for 25 traits, in par-
ticular physiological leaf traits. Many traits were not overlapping between the two databases (Fig. 6). We noted 
that AusTraits includes more seed and fruit nutrient data; possibly reflecting the interest in Australia in under-
standing how fruit and seeds are provisioned in nutrient-depauperate environments. AusTraits includes more 
categorical values, especially variables documenting different components of species’ fire response strategies, 
reflecting the importance of fire in shaping Australian communities and the research to document different strat-
egies species have evolved to succeed in fire-prone environments.

technical Validation
We implemented three strategies to maintain data quality. First, we conducted a detailed review of each source 
based on a bespoke report, showing all data and metadata, by both an AusTraits curator (primarily Wenk) and 
the original contributor (where possible). Measurements for each trait were plotted against all other values for the 
trait in AusTraits, allowing quick identification of outliers. Corrections suggested by contributors were combined 
back into AusTraits and made available with the next release. Version 3.0.2 of AusTraits, described here, is the 
sixth release.

Fig. 5 Phylogenetic distribution of trait data in AusTraits for a subset of 2000 randomly sampled taxa. The 
heatmap colour intensity denotes the number of traits measured within a family for each plant tissue. The most 
widespread family names (with more than ten taxa) are labelled on the edge of the tree.
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Second, we implemented automated tests for each dataset, to confirm that values for continuous traits fall 
within the accepted range for the trait, and that values for categorical traits are on a list of allowed values. Data 
that did not pass these tests were moved to a separate spreadsheet (“excluded_data”) that is also made available 
for use and review.

Third, we provide a pathway for user feedback. AusTraits is an open-source community resource and we 
encourage engagement from users on maintaining the quality and usability of the dataset. As such, we welcome 
reporting of possible errors, as well as additions and edits to the online documentation for AusTraits that make 
using the existing data, or adding new data, easier for the community. Feedback can be posted as an issue directly 
at the project’s GitHub page (http://traitecoevo.github.io/austraits.build).

Usage Notes
Each data release is available in multiple formats: first, as a compressed folder containing text files for each of the 
main components, second, as a compressed R object, enabling easy loading into R for those using that platform.

Using the taxon names aligned with the APC, data can be queried against location data from the Atlas of 
Living Australia. To create the phylogenetic tree in Fig. 6, we pruned a master tree for all higher plants366 using the 
package V.PhyloMaker367 and visualising via ggtree368. To create Fig. 3a, we used the package plotbi-
omes369 to create the baseline plot of biomes.

code availability
All code, raw and compiled data are hosted within GitHub repositories under the Trait Ecology and Evolution 
organisation (http://traitecoevo.github.io/austraits.build/). The archived material includes all data sources and 
code for rebuilding the compiled dataset. The code used to produce this paper is available at http://github.com/
traitecoevo/austraits_ms.
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