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ABSTRACT 
Advanced householder profiling using digital water metering data analytics has been 
acknowledged as a core strategy for promoting water conservation because of its ability to 
provide near real-time feedback to customers and instil long-term conservation behaviours. 
Customer profiling based on household water consumption data collected through digital water 
meters helps to identify the water consumption patterns and habits of customers. This study 
employed advanced customer profiling techniques adapted from the machine learning research 
domain to analyse high-resolution data collected from residential digital water meters. Data 
analytics techniques were applied on already disaggregated end-use water consumption data 
(e.g., shower and taps) for creating in-depth customer profiling at various intervals (e.g., 15, 
30, and 60 minutes). The developed user profiling approach has some learning functionality as 
it can ascertain and accommodate changing behaviours of residential customers. The developed 
advanced user profiling technique was shown to be beneficial since it identified residential 
customer behaviours that were previously unseen. Furthermore, the technique can identify and 
address novel changes in behaviours, which is an important feature for promoting and 
sustaining long-term water conservation behaviours. The research has implications for 
researchers in data analytics and water demand management, and also for practitioners and 
government policy advisors seeking to conserve valuable potable-water resources. 

KEYWORDS 
User profiling, digital water meter, water conservation, water consumption data, behaviour 
change, Recommender System.  

1. INTRODUCTION 
In recent years, ensuring water supply during periods of shortage caused by drought and 
avoiding low pressure during the hours of peak demand have been two of the challenges 
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troubling many metropolitan water utilities (Nguyen et al., 2016). Rolling out Digital Water 
Meters (DWMs) can be considered a potential solution for overcoming these challenges 
because the data they collect can contribute to water conservation and peak demand 
management. In an experiment to measure the effects of feedback information on water 
consumption, researchers found that when households received more information with higher 
water consumption, they demonstrated higher water saving (Cespedes Restrepo and Morales-
Pinzon, 2020). Another study reported that detailed water consumption feedback can contribute 
mean savings of 5.5% across 25 studies (Liu and Mukheibir, 2018). In addition, a short-term 
water demand forecasting model was proposed by Nguyen et al. (2016) based on the data 
collected from DWMs which stated significant impact on peak demand management. A healthy 
number of investigations have been undertaken to generate insights from DWM data. These 
studies can be divided into five categories: (1) water-use feedback; (2) water event 
categorisation; (3) water demand forecasting; (4) behaviour analysis; and (5) socioeconomic 
analysis (Rahim et al., 2020). However, further scope for improvement exists for the current 
situation through incorporating highly personalised systems, because there is a direct 
relationship between the level of personalisation and effects on water conservation. 
Personalisation can be achieved through comprehensive user profiling, which provides the 
opportunity to meet users needs and preferences (Eke et al., 2019). 

A user or customer profile is defined as a “summary of the user’s interest, characteristics, 
behaviours, and preferences,” whereas user profiling is the “system of collecting, organizing 
and inferring the user profile information” (Eke et al., 2019). User personalisation through user 
profiling is now a widely adopted technique in various domains, such as artificial intelligence, 
data science and information science (Gauch et al., 2007). Recommender systems (RSs) can 
be considered one of the notable applications of user personalisation. Recommender systems 
are intelligent systems that recommend a list of items that are most likely of interest to the user 
(Burke, 2007). At present, RSs are deployed in various application domains as their application 
is no longer limited to selling more products or recommending news. The most common RS 
applications are employed in five domains: Entertainment, Content, E-commerce, Services, 
and Social (Montaner et al., 2003; Ricci et al., 2015). However, the water industry is yet to 
adopt RSs, although great potential exists for RSs to promote water-conscious behaviour 
(Rahim et al., 2019). Comprehensive user profiling based on water consumption data collected 
from DWMs can provide valuable information regarding users’ water use patterns along with 
the ability to track any changes in water use behaviours. For this reason, in-depth user profiling 
is a must for the success of such RSs. Although a healthy number of user profiling techniques 
have been proposed in relevant studies (e.g., demand profiling, habit detection), they are still 
not suitable for RSs because of their limitations. 

Many user profiling techniques have been adopted based on water consumption data collected 
from residential DWMs. For instance, hourly water consumption data have been used to build 
demand profiles, enabling water demand to be forecasted accurately. Gaussian mixture models 
(GMM’s) based approach was proposed by McKenna et al. (2014) to represent demand patterns 
and then classify the demand patterns. In another approach, Padulano and Del Giudice (2018) 
introduced a two phases procedure: clustering and classification to detect water consumption 
patterns. In addition, the probability of a particular event occurring at a particular hour was 
used in water event categorisation (Nguyen et al., 2014). Furthermore, a habit detection 
algorithm (Cardell-Oliver, 2016) was proposed where the user profile was based on five 



constraints, which were expressed using five parameters. Moreover, behaviour analysis-related 
studies have mainly aimed to understand the behaviours and dynamics of consumers based on 
water consumption data. Although different user profiles are created to reach different goals, 
they have some common limitations. First, in many studies, weekends and weekdays are not 
considered separately for profiling, despite the consumption patterns varying. Second, all 
related studies have only considered hourly consumption; however, other frequency intervals 
such as 15 and 30 minutes may provide more insights. Third, almost all investigations have 
considered total consumption data rather than individual water event consumption data. Lastly, 
existing studies have been unable to accommodate recent changes in behaviours because total 
or average consumption is used for profiling. These limitations of relevant studies indicate the 
necessity for a new comprehensive user profiling approach to make effective recommendations 
for promoting water conscious behaviours. 

In this study, we introduced a new comprehensive user profiling approach that overcomes the 
limitations of prior relevant studies. In numerous studies, weekday and weekend water 
consumption have not been considered separately. Hence, in our proposed approach we 
performed profiling separately for weekdays and weekends. In terms of the profiling interval, 
our hypothesis was that more frequent interval profiling provides a greater understanding of 
the behaviours and habits of customers. Therefore, along with hourly profiling, we created two 
other user profiling frames at 15- and 30-minute intervals. In addition, instead of profiling 
based on total water consumption data, the user profiles were created based on disaggregated 
end-use water consumption data (e.g. showers and taps). Furthermore, to accommodate recent 
changes in behaviours, profiles were created by giving higher priority to recent data. Finally, 
an algorithm was introduced that performs user profiling for each household. To enhance the 
user profiles further, other information that characterises behaviours such as shower duration, 
volume of water used in the shower, and washing machine usage was collected. After 
comparing customer profiling at various intervals (e.g., 15, 30, and 60 minutes), we concluded 
that more frequent intervals (i.e., 15 minutes) of profiling provided a better understanding of 
user behaviours that was previously unseen. Moreover, through tracking recent changes in 
behaviours, it became possible to identify and track habits and changes in behaviours. 

The findings from our experiments implied that the proposed approach addresses two aspects 
of the promotion of water-conscious behaviours. First, it addresses water conservation through 
the collection, organisation, and inference of water usage and savings scopes (i.e., the average 
volume of water used in the shower, average shower duration, and number of times performing 
laundry). Second, the approach provides the opportunity to manage water demand by 
characterising the patterns in water consumption behaviours and habits by providing the likely 
time a particular event will occur at various intervals. Thus, this research introduces a 
comprehensive user profiling approach that accommodates recent changes in behaviours and 
has the potential for promoting water-conscious behaviours. The major contributions of this 
study are as follows: 

• It has proposed a comprehensive user profiling approach that addresses the limitations 
(e.g. not considering disaggregated water consumption data, profiling at shorter 
intervals, tracking and reflecting recent changes in behaviour, profiling based on the 
type of day) of the most recent state-of-art studies.  

• It has introduced an advanced profiling algorithm to create user profiles based on dis-
aggregated water consumption data. 



• It has identified the most suitable profiling interval among three profiling intervals.  
• It has highlighted the key benefits from such profiling approach for consumers, utilities, 

and policy makers.  

The remainder of the paper is organised as follows. Section 2 presents a critical analysis of the 
related works. Section 3 examines the methodology followed in this study. Section 4 discusses 
the findings of the study and finally, section 5 draws the conclusion of the paper.  

2. RELATED WORKS 
To the best of the authors’ knowledge, no studies have been conducted on in-depth user 
profiling with the purpose of promoting water-conscious behaviours through an RS, as the 
concept of RS in the water industry is relatively new (Rahim et al., 2019). However, some 
studies have involved some sort of user profiling for solving other problems. These studies can 
be categorised into three: (1) behaviour analysis; (2) socioeconomic analysis; and (3) water 
end-use categorisation. Although the user profiles developed in these studies were used to solve 
specific problems, they have some limitations that must be overcome to develop 
comprehensive user profiling. 

Numerous studies have been performed on behaviour analysis based on simple user profiling 
to understand the behaviours and dynamics of consumers from water metering data. These 
studies can be categorised into three: (1) habit detection and profiling; (2) demand profiling; 
and (3) customer segmentation. In case of habit detection and profiling, four types of pattern 
were identified by Cardell-Oliver (2013): continuous-flow days; exceptional peak-use days; 
programmed patterns with recurrent hours; and normal use patterns. By contrast, three profiles 
were identified by Cominola et al. (2016) after segmenting water consumers based on their 
eigen behaviours. In another study, a detailed breakdown of hourly water use by volume for 
different times (i.e., peak hour, day, and month) was performed by Cole and Stewart (2013) to 
provide an accurate estimation of indoor and outdoor consumption. In addition, a habit 
detection algorithm was introduced by Cardell-Oliver (2016) based on time series data from 
water meters; however, because of heuristics, it could not guarantee the detection of all habits. 
Demand profiling has been performed in many studies for predicting water demand. For 
instance, McKenna et al. (2014) utilised hourly consumption data for classifying demand 
patterns. Later, a demand profile was proposed (Gurung et al., 2015) based on diurnal patterns 
of efficiency-rated appliances for modelling water demand. Lastly, eight relevant usage profiles 
from water consumption data were identified using clustering and modelling techniques on 
water consumption data by Cheifetz et al. (2017). However, these studies were based on hourly 
aggregated water consumption data rather than disaggregated data. Only Nguyen et al. (2016) 
considered hourly disaggregated data. Customer segmentation or clustering techniques have 
been applied in a few studies as part of their behaviour analysis. For forecasting future 
behaviour and clustering consumption behaviour, a hybrid model was proposed by Leyli-Abadi 
et al. (2018). In another study, residents were divided into five clusters by family structure, job, 
or lifestyle using a fuzzy clustering algorithm based on water consumption data. In a recent 
study, customer segmentation based on eigen-behaviour analysis was adapted and used to 
identify three main water end-use profile clusters (i.e., showering, clothes washing, and 
irrigation) (Cominola et al., 2019). Furthermore, they observed the existence of time-of-use 
and intensity-of-use within each class. However, in this study, the authors did not consider 
recent changes in the behaviours. 



In socioeconomic studies, consumers’ socioeconomic and demographic factors have been 
studied to understand their effect on water conservation (Beal et al., 2011; Bich-Ngoc and 
Teller, 2018; Willis et al., 2013). Such studies have used consumers’ socioeconomic and 
demographic data to identify the determinants of water consumption (Beal et al., 2011; Bich-
Ngoc and Teller, 2018; Willis et al., 2013). Although these studies have helped to determine 
the factors behind water consumption, further information is required for users’ profiles to 
promote water conservation. 

In the case of water end-use categorisation, the use of user profiles is very rare. The probability 
of time-of-use for each event over a 24-h period based on total collected data was used by 
(Nguyen et al., 2014) to categorise water end-use. However, recent changes in behaviours were 
also omitted from this study.  

After examining relevant studies, we identified the following research gaps that need to be 
overcome to create comprehensive user profiling: 

• Consideration of disaggregated water consumption data: Disaggregated water 
consumption data provide more information about water consumption data (i.e., for which 
purpose the water is used, such as showering or irrigation). Because existing studies have 
mostly considered total consumption data instead of disaggregated data, they have missed 
the opportunity to utilise disaggregated water consumption data to generate useful insights. 
Therefore, future studies on profiling should consider disaggregated consumption data. 

• Profiling at reduced intervals: Existing profiles are mostly on an hourly interval. However, 
profiling at reduced intervals may provide more specific information and a greater 
understanding of consumers’ habits and behaviours. Thus, future studies should consider 
user profiling frames at a reduced interval (e.g., 15 or 30 minutes). 

• Tracking and reflecting recent changes in behaviour: Studies based on profiling have been 
unable to reflect recent changes in behaviour in users’ profiles. However, if changes go 
unnoticed and are not considered in the profiles, then the profiles will become less 
effective. Hence, the approach must be adapted to track and reflect recent changes in water 
consumption behaviour. 

• Profiling based on the type of day: Water consumption patterns vary depending on the type 
of day (i.e., weekday or weekend). Therefore, user profiling should be performed based on 
the type of day to improve the effectiveness. 
 

3. MATERIAL AND METHODS 
The proposed approach in this study for creating comprehensive user profiling can be divided 
into three consecutive steps: (1) data set collection and preparation; (2) profile creation; and 
(3) feature extraction. In the first step, a raw data set was collected from 306 single stand-alone 
households in Melbourne, Australia, and in the second step, a profiling algorithm was 
incorporated to create profiles. Finally, in the last step, statistical modelling was adopted for 
extracting features to enhance the profiles. Figure 1 represents the workflow of the study. The 
following subsections discuss the steps in details. 

 
 



 
Figure 1. Workflow of the study. 

3.1. Data collection and preparation 
The raw data for this study originated from 306 single stand-alone households in Melbourne, 
Australia. The data set consists of recordings of high-resolution data at 5-second intervals that 
were collected for 10 months (February–December 2010). The collected raw data were then 
analysed with Autoflow (Nguyen et al., 2014), an intelligent metering system. Nine types of 
water end-use were classified by Autoflow with 90% accuracy. Autoflow provided the 
classifications of water end-use events: taps, dishwashers, leaks, evaporating coolers, washing 
machines, showers, toilets, irrigation, and bathtubs. These formed the primary data set for this 
research. Figure S1 depicts the steps in the primary data collection process. 

After collecting the primary data set, the next step was to perform the initial pre-processing. 
For profiling, we considered only those events that occurred between 06h00 and 23h59 because 
the number of events and volume consumed from 00h00 to 05h59 are negligible in comparison. 
After this step, the pre-processed data were stored in a database for further processing. Table 1 
presents a summary of the data set. 

Table 1. Summary of the data set after initial pre-processing 

Item Description 

Number of households 306 
Data collection duration 11-02-2010 to 11-10-2010 (dd-mm-year) 
Hours considered 06h00-23h59 
Data collection interval 5 seconds 
Number of end-uses 9 
Number of events 56 310 576 
Total shower events 181 358 
Total bathtub events 18 274 
Total washing machine events 30 996 
Total dishwasher events 34 524 
Total irrigation events 9 975 
Total toilet events 1 173 902 
Total tap events 4 152 386 



Total leak events 50 709 161 
 

From Table 1, it is obvious that the number of leak events dominates all other events because 
one long continuous leak event is a set of many tiny discrete events recorded every 5 seconds. 
Similarly, the number of tap events is the second highest but in each event on average 0.87 
litres of water were used. Because these two events occurred frequently but an insignificant 
amount of water was used, these two events were not considered for profiling to reduce 
computational time and maintain scalability. In addition, toilet (flush) and evaporating cooler 
events were excluded from profiling because toilet events are spontaneous and evaporating 
coolers are responsible for less than 1% of total water consumption. For these reasons, we 
considered high water consumption events (shower, bathtub, irrigation, washing machine, and 
dishwasher) (Rahim et al., 2019), because when combined, these events account for nearly 
70% of the total water consumption (Stewart et al., 2010). 

Many studies have overlooked considering water consumption patterns on weekends and 
weekdays separately. However, this information is particularly crucial because water 
consumption patterns may differ depending on the type of day. Hence, as the last step of pre-
processing, we extracted the type of day (i.e., weekend or weekday) from the given date. Figure 
S2 illustrates the consumption patterns of 200 sample households for 15 days, which clearly 
depict the difference in consumption patterns, especially for showers. During weekdays, 8:00–
8:30 am is the peak time for taking showers. Conversely, on weekends, 11:00 am is the peak 
time for taking showers. 

After the pre-processing step, the final data set consisted of 12 attributes. Table 2 presents a 
description of these attributes. 

Table 2. Description of the attributes in the final data set 

Attribute Description Example 

Site Unique identifier for each household in the data set.  Site001, Site002.  
Start date Start date of an event 11-Feb-2010 
Start time Start time of an event 08:38:15 
End date End date of an event 11-Feb-2010 
End time End time of an event 08:42:10 
Category Water end-use category Shower, dishwasher 
Duration Amount of time an event took place. 0:03:55 
Volume Quantity (in litre) of water used in an event  36.81 
Max flow Maximum flow rate (Litre per minute) recorded for an event 10.83  
Mode flow Mode of flow rate (Litre per minute) recorded for an event 9.33 
Cyclic event Multiple intakes of water during one single event  C1 (Cycle 1 for washing 

machine), D5 (Cycle 5 
for dishwasher) 

Type of day If the day is Saturday or Sunday then weekend, otherwise 
weekdays.  

Weekend, weekday 

 
The data set used in this study has some limitations. First of all, it does not have any socio-
demographic data. Second, it does not have any weather data. Though the inclusion of these 
data would be interesting, however, we believe the absence of these data will not undermine 
the current profiling study.  



3.2. Profile creation 
Profile creation is the most important step in the proposed approach which is based on a 
profiling algorithm. The proposed algorithm is designed in such a way that it can address the 
limitations of existing studies. The proposed algorithm consists of three steps. First, a data 
structure is initialised. Next, the probability distribution (PD) is computed using probability 
mass function (PMF). Finally, profiles are created by concatenating multiple vectors created in 
the previous steps. Algorithm 1 describes the algorithm with a detailed explanation for each 
step.  

Algorithm 1. Consumption profile creation algorithm 
ConsumptionProfile(𝑠𝑠, 𝑠𝑠𝑠𝑠, 𝑒𝑒𝑠𝑠, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖, td,𝑤𝑤):creates water consumption profile for household 𝑠𝑠, based on the 
data where the start date is 𝑠𝑠𝑠𝑠 and end date is 𝑒𝑒𝑠𝑠, 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is the value of interval for profiling, 𝑖𝑖𝑠𝑠 is the type of 
the day (i.e, weekday, weekend) and 𝑤𝑤 is weight for different periods of time.  

 

Here: 

𝑠𝑠 ∈ 𝑺𝑺, where S= {𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒001,𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒002 …  𝑆𝑆𝑖𝑖𝑖𝑖𝑒𝑒306} 

𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ∈ 𝑰𝑰, where I= {15 𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑒𝑒𝑠𝑠, 30 𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑒𝑒𝑠𝑠, 60 𝑚𝑚𝑖𝑖𝑖𝑖𝑚𝑚𝑖𝑖𝑒𝑒𝑠𝑠} 

𝑒𝑒 ∈ 𝑬𝑬, where E= {𝑆𝑆ℎ𝑜𝑜𝑤𝑤𝑒𝑒𝑖𝑖,𝐵𝐵𝐵𝐵𝑖𝑖ℎ𝑖𝑖𝑚𝑚𝑡𝑡,𝐶𝐶𝑖𝑖𝑜𝑜𝑖𝑖ℎ𝑒𝑒𝑠𝑠𝑤𝑤𝐵𝐵𝑠𝑠ℎ𝑒𝑒𝑖𝑖,𝐷𝐷𝑖𝑖𝑠𝑠ℎ𝑤𝑤𝐵𝐵𝑠𝑠ℎ𝑒𝑒𝑖𝑖, 𝐼𝐼𝑖𝑖𝑖𝑖𝑖𝑖𝐼𝐼𝐵𝐵𝑖𝑖𝑖𝑖𝑜𝑜𝑖𝑖} 

𝑖𝑖 ∈ 𝑻𝑻, where T is the set of times at intrvl from 06h00 to 23h59. 

 

The major steps of the algorithm are as follows: 

1. Initialise data structure 
2. Probability Distribution computation 
3. Profile creation 
 

We now examine the steps in detail. 

 

1. Initialise data structure. 
To calculate and store the distribution of an event e over a given time t, for household s, an n-dimensional 
vector 𝑖𝑖𝑒𝑒𝑒𝑒1 = (𝑖𝑖𝑒𝑒𝑒𝑒1 , 𝑖𝑖𝑒𝑒𝑒𝑒2 , … ,𝑖𝑖𝑒𝑒𝑒𝑒𝑛𝑛−1,𝑖𝑖𝑒𝑒𝑒𝑒𝑛𝑛)is taken and it is initialised to 0. Note that, the value of dimension 
depends on the value of intrvl. For instance, when the value of intrvl= 30 minutes, then dimension will be 
total hours from 06h00 to 23h59 × 2 = 18 × 2 = 36.  
 
(a) Set 𝑖𝑖𝑒𝑒𝑒𝑒 ← 0. 

 

2. Probability Distribution computation 
To understand the behaviour or habit of the users, we have employed a probability mass function (PMF). 
PMF can be defined as a function that provides the probability that a discrete random variable is exactly 
equal to some value. Formally this function 𝑝𝑝: 𝑹𝑹 → [0,1] can be defined as: 
 
𝑝𝑝𝑋𝑋(𝑥𝑥𝑖𝑖) =  𝑃𝑃(𝑋𝑋 = 𝑥𝑥𝑖𝑖) 𝑓𝑓𝑜𝑜𝑖𝑖 − ∞ < 𝑥𝑥 < ∞      (1) 

 

       And properties of PMF are: 



 

∑𝑝𝑝𝑋𝑋(𝑥𝑥𝑖𝑖) = 1                     (2) 

𝑝𝑝𝑋𝑋(𝑥𝑥𝑖𝑖) > 0                     (3) 

𝑝𝑝𝑋𝑋(𝑥𝑥𝑖𝑖) = 0 𝑓𝑓𝑜𝑜𝑖𝑖 𝐵𝐵𝑖𝑖𝑖𝑖 𝑜𝑜𝑖𝑖ℎ𝑒𝑒𝑖𝑖 𝑥𝑥        (4) 

 

Equation 2 describes the sum of the probabilities associated with each possible value will be always up to 
1. According to equation 3, the values of probabilities must be positive. And for other values, the probability 
will be 0. 

 

This step will compute probability distribution (PD) for each event across time 𝑖𝑖 with interval 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖for the 
given type of the day 𝑖𝑖𝑠𝑠 and assign it to 𝑖𝑖𝑒𝑒𝑒𝑒 

(a) for each 𝑒𝑒 in 𝐸𝐸: 
a. compute 𝑝𝑝𝑋𝑋(𝑥𝑥𝑖𝑖) 
b. 𝑖𝑖𝑒𝑒𝑒𝑒 ←  𝑝𝑝𝑋𝑋(𝑥𝑥𝑖𝑖) 

 
3. Profile creation 

At this step, the profile is created by constructing two more PDs by repeating step 1 &2 and assigning 
weight 𝑤𝑤𝑖𝑖 and merging all the PDs. The reason for creating the PDs is separating most recent, second most 
recent and previous historical data. In this way, it would be possible to assign a higher weight to most recent 
patterns as the most recent data will always capture better changes in behaviours. Finally, each weighted 
vector for each event is concatenated to a matrix 𝑀𝑀. 
(a) 𝑖𝑖𝑒𝑒𝑒𝑒2 ←  𝑝𝑝𝑋𝑋(𝑥𝑥𝑖𝑖) and 𝑖𝑖𝑒𝑒𝑒𝑒3 ←  𝑝𝑝𝑋𝑋(𝑥𝑥𝑖𝑖) 
(b) 𝑖𝑖𝑒𝑒𝑒𝑒𝑤𝑤 ← (𝑖𝑖𝑒𝑒𝑒𝑒1 × 𝑤𝑤1) + (𝑖𝑖𝑒𝑒𝑒𝑒2 × 𝑤𝑤2) + (𝑖𝑖𝑒𝑒𝑒𝑒3 × 𝑤𝑤3) where 𝑤𝑤1 > 𝑤𝑤2 ≥ 𝑤𝑤3 
(c) 𝑀𝑀 ← (𝑖𝑖𝑒𝑒1𝑖𝑖

𝑤𝑤 … 𝑖𝑖𝑒𝑒𝑖𝑖𝑖𝑖
𝑤𝑤 ) 

 

 
In step one, for each event a vector is initialised with n-dimension. As we have considered five 
large water consumption categories (e.g., shower, bathtub, washing machine, dishwasher and 
irrigation), five n-dimensional vectors will be initialised. The dimension of the vectors depends 
on the interval value. For 15 minutes, there will be 72; for 30 minutes 36; and for 60 minutes 
interval there will be 18 dimensions. The reason for choosing a vector as the data structure is 
to measure the Cosine similarity.  

Cosine similarity is a measure of similarity between two non-zero vectors to determine how 
similar the vectors are by calculating the cosine of the angle between them. Mathematically, 
the cosine of two vectors that are non-zero can be described by following equations. 

 

𝐴𝐴 ∙ 𝐵𝐵 =  ‖𝐴𝐴‖‖𝐵𝐵‖𝑐𝑐𝑜𝑜𝑠𝑠𝑐𝑐         (5) 

 

Given two vectors, A and B, the cosine similarity, cos(𝑐𝑐) is measured using a dot product and 
magnitude as follows: 

𝑠𝑠𝑖𝑖𝑚𝑚𝑖𝑖𝑖𝑖𝐵𝐵𝑖𝑖𝑖𝑖𝑖𝑖𝑠𝑠 = cos(𝑐𝑐) =  𝐴𝐴∙𝐵𝐵
‖𝐴𝐴‖‖𝐵𝐵‖

=  ∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1

�∑ 𝐴𝐴𝑖𝑖2𝑛𝑛
𝑖𝑖=1 �∑ 𝐵𝐵𝑖𝑖2𝑛𝑛

𝑖𝑖=1

      (6) 



Where Ai and Bi are components of vector A and B, and 

 

𝐴𝐴 ∙ 𝐵𝐵 = ∑ 𝐴𝐴𝑖𝑖𝐵𝐵𝑖𝑖𝑛𝑛
𝑖𝑖=1 = 𝐴𝐴1𝐵𝐵1 + 𝐴𝐴2𝐵𝐵2 + ⋯+ 𝐴𝐴𝑛𝑛𝐵𝐵𝑛𝑛      (7) 

 

The derived value of similarity ranges from [−1, 1] where -1 completely opposite and to 1 
means completely similar. In this scenario, A and B vectors hold the PD for a particular event 
and the resulting similarity would provide an indication of changes in consumption behaviours 
based on time.  

To capture and understand the timing of water consumption events, a probability mass function 
(PMF) is used in step two. A PMF is a function that provides the probability that a discrete 
random variable is equal to some value (Stewart, 2009). The computed probability based on 
most recent data of each event 𝑒𝑒 across time 𝑖𝑖 at interval 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 for type of the day 𝑖𝑖𝑠𝑠 is 
assigned to designated vector 𝑖𝑖𝑒𝑒𝑒𝑒. 

In the last step, at first, two more vectors for each event are created using PMF based on 
previous water consumption data. Later, these vectors are combined into one vector for each 
event by giving more weights to the vector holds the most recent data. Therefore, after 
assigning a higher weight to the first PD vector and lower weights to the other PD vectors, that 
is 𝑤𝑤1 to 𝑖𝑖𝑒𝑒𝑒𝑒1 , 𝑤𝑤2 to 𝑖𝑖𝑒𝑒𝑒𝑒2 ,  and 𝑤𝑤3 to 𝑖𝑖𝑒𝑒𝑒𝑒3 ,   where 𝑤𝑤1 > 𝑤𝑤2 ≥ 𝑤𝑤3, a matrix 𝑀𝑀 is constructed by 
concatenating the vectors for each household.  

𝑀𝑀 = �
��𝑤𝑤1 × 𝑖𝑖𝑒𝑒1𝑒𝑒1

1  �  + �𝑤𝑤2 × 𝑖𝑖𝑒𝑒1𝑒𝑒1
2 �+ �𝑤𝑤3 × 𝑖𝑖𝑒𝑒1𝑒𝑒1

3 �� ⋯ ��𝑤𝑤1 × 𝑖𝑖𝑒𝑒1𝑒𝑒𝑛𝑛
1 �  + �𝑤𝑤2 × 𝑖𝑖𝑒𝑒1𝑒𝑒𝑛𝑛

2 �+ �𝑤𝑤3 × 𝑖𝑖𝑒𝑒1𝑒𝑒𝑛𝑛
3 ��

⋮ ⋱ ⋮
��𝑤𝑤1 × 𝑖𝑖𝑒𝑒𝑚𝑚𝑒𝑒1

1  �  + �𝑤𝑤2 × 𝑖𝑖𝑒𝑒𝑚𝑚𝑒𝑒1
2 �+ �𝑤𝑤3 × 𝑖𝑖𝑒𝑒𝑚𝑚𝑒𝑒1

3 �� … ��𝑤𝑤1 × 𝑖𝑖𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛
1 �  + �𝑤𝑤2 × 𝑖𝑖𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛

2 �+ �𝑤𝑤3 × 𝑖𝑖𝑒𝑒𝑚𝑚𝑒𝑒𝑛𝑛
3 ��

�    (8) 

  

Each row in the matrix represents the PD of one event, whereas each column presents a time 
at an interval between 6 am and 12 am. Figure 2 describes the steps of the profile creation 
algorithm. 

 

 

Figure 2. Illustration of the time of use and weighted probability of the use algorithm. 

 



Such a matrix can be used to make recommendations to change a particular water consumption 
behaviour from a particular time. For instance, if a household seems to always perform 
irrigation at a particular hour of peak water demand (e.g., 8 am or 5 pm), then recommendations 
can be made to gradually shift this event outside of the hours of peak demand to avoid low 
water pressure. 

3.3. Feature extraction 
A customer profile with a PD that provides a possible time for an event to occur is not sufficient 
for promoting water-conscious behaviours. This is because more information is required. 
Therefore, to enhance the profiles and create in-depth user profiles, features must be extracted 
from the data. Depending on the goal of the water utility and items to recommend, the features 
to extract may vary. Table 3 lists the extracted features in this study from different events, 
which can be utilised to develop a personalised recommender system.  
 
To extract these features, we mostly employed statistical methods. For instance, to derive the 
mean consumed volume of water for showers, bathtubs, washing machines, dishwashers, or 
toilets, we applied the arithmetic mean using the following equation (9): 
 

𝑥𝑥 = 1
𝑛𝑛
∑ 𝑥𝑥𝑖𝑖 =  1

𝑛𝑛
(𝑥𝑥1 + 𝑥𝑥2 + ⋯𝑥𝑥𝑛𝑛)        (9) 

where 𝑥𝑥1,𝑥𝑥2,⋯ , 𝑥𝑥𝑛𝑛 are the volume of each event. 

 

Table 3. Extracted features list from each event 

Event Feature 

Shower Mean consumed volume, mean duration, mode of flow rate, change in volume 
compared with the previous week, change in duration compared with the previous 
week, and change in flow rate compared with the previous week 

Bathtub Mean consumed volume, change in volume compared with the previous week 
Washing machine Mean consumed volume, number of loads per week 
Dishwasher Mean consumed volume, number of loads per week 
Toilet Mean consumed volume 
Leak Total volume in the last week 
Tap Mode flow rate 

 

4. RESULTS AND DISCUSSION 

4.1 Personalised recommendation system 
The extracted features of each end-use category performed in the previous step are the main 
resource for developing a personalised RS for each household. On the one hand, the mode flow 
rate of shower events can be used to identify the efficiency of the shower, and recommendations 
to replace the showerhead can be made accordingly. Similarly, the consumed volume in toilet 
flushes can be used to infer whether the flush system is a dual flush system because typical 
single flush systems consume 11 litres per flush in Australia (Business Amenities Fact Sheet, 
2009). Replacing the typical system with a 4.5/3 litre dual flush system can save approximately 



11,000 litres/year/person, assuming the person uses the toilet four times a day (Business 
Amenities Fact Sheet, 2009). On the other hand, changes in flow rate or volume or duration 
can be used to infer the effectiveness of recommendations. For instance, if shower duration 
reduces compared with the previous week/month after a recommendation is made to reduce 
shower time, this would indicate that the household is responding to the recommendations. 
Furthermore, after making a recommendation to replace a showerhead with a water-saving one, 
any reduction in flow rate or volume compared with the previous week/month would imply the 
effectiveness of recommendations. Figure S3 is an example of the significance of the water 
savings that could be achieved from such a recommendation. 

4.2 Effective water demand management through behaviour change and flow theory 

In positive psychology, flow is defined as a subjective state where people become so 
completely involved in something that they forget time, fatigue, and everything else except the 
activity (Csikszentmihalyi et al., 2014). The flow theory of behaviour-changing tasks (Yürüten, 
2017) states that if the difficulty of a task matches the capabilities of the person, then his or her 
engagement will be maximised. This theory can be translated into the RS field as the balance 
between the user’s ability to perform behaviour-changing tasks and the difficulty to perform 
the recommended tasks. For instance, in our case, let us consider a consumer who performs 
irrigation or uses a bathtub at a specific time during the hours of peak demand. To shift the 
event time from a peak to a nonpeak hour of demand, recommendations can be made to shift 
the event time by 15 or 30 minutes gradually. Suggesting that behaviours be shifted by 1 hour 
might be difficult for many consumers, and in such cases, the users would lose interest in the 
system. 

In this study, we created profiles at three different intervals (i.e., 15, 30, and 60 minutes) using 
the proposed algorithm, and performed comparisons among the profiles to identify the most 
suitable one. Furthermore, we extracted some features from the consumption data to enhance 
the user profiles, and we noted some very interesting findings.  

We compared the profiling at three different intervals and observed that profiling at a lower 
interval (15 minutes) provided a greater understanding of the behaviour of consumers. Figure 
S4 a, b, and c represent the total number of each event during weekdays at 60, 30, and 15 
minutes, respectively, over a period of 10 months at Site 325. If we consider that the morning 
peak hour of water demand (Cole and Stewart, 2013) is from 7 AM to 9 AM, then we can see 
that nearly 50% of shower events occurred from 7:00 AM to 7:29 AM for that particular 
household. It was only possible to observe this pattern as we performed profiling at 15-minute 
intervals. Therefore, the profiling interval of 15 minutes provided a greater understanding of 
water consumption patterns. The implication of this finding is that it can lead to potential 
effective demand management through changing the behaviour of users. This is achieved by 
shifting specific water consumption events from a specific time by incorporating flow theory 
into behaviour change. 

 
4.3 Enhanced demand management thorough understanding customer behaviour 
changes 

We found that profiling based on the PD of different water consumption events could be used 
to identify, understand, and notice changes in the habit and behaviour of users. To demonstrate 



this statement, we calculated the PD for three different periods of time. First, we calculated the 
PD for the latest 18 days, denoted as P1, and then the previous 18 days, denoted as P2, and 
lastly all other previous days, denoted as P3. An unchanged PD for a particular event in each 
period would indicate a strong habit, and any change in PD in P1 would indicate recent changes 
in behaviour compared with previous patterns. Figure 3 depicts the PD of shower events during 
weekdays across a different period of time for Site 325. 

 

Figure 3. Comparing the probability distribution of shower events during weekdays across 
different periods of time at Site 325; P1 refers to the recent 18 days, P2 refers to the previous 18 

days; and P3 represents all previous days’ data. 
 

From Figure 3, we can see that the probability of taking showers at 8 AM was 30% in P2 and 
P3. However, in the latest 18 days (P1), the shower time changed to 9 AM with the probability 
of 80%. This clearly indicated the change in shower time compared with previous behaviour 
patterns. By contrast, the probability of taking a shower at 10 PM almost remained the same, 
which indicated the strong habit of taking a shower at that time. Similar patterns can be found 
for other activities using the proposed profiling approach. The 18-day interval was chosen 
based on a study that reported it took 18–254 days to form a habit (Lally et al., 2010). 

The main implication of this finding is that improved demand management can be ensured 
through identifying households with strong and flexible behaviour patterns. The weighted PD 
over three different periods of time will help to identify consumers with flexible demand 
patterns. For example, if a household exhibits fluctuations in consumption patterns for a 
particular event that does not have a fixed time for any water consumption activity, then the 
recommendation system could be developed to target that household because it is the most 
flexible for behaviour change.  

4.4 Opportunities for system enhancement 

We extracted a healthy number of interesting features from the data set to enhance profiles 
further, and concluded that these features provide in-depth analysis and previously unseen 
insights. For instance, after extracting the feature of weekly change in shower water volume, 
we could identify those households with a percent increase or decrease in water volume. This 
insight can be useful for tracking changes in behaviours and recommending relevant and 
effective activities. Figure 4 a, b represents the histogram of the number of households with a 



change in shower consumption volume compared with the previous week on weekdays and on 
weekends respectively.  

 
(a) 

 
(b) 

Figure 4. Histogram of the number of households with a change in shower consumption volume 
compared with the previous week: (a) shower volume change on weekdays; (b) shower volume 

change on weekends. 
 
For instance, let us assume a household consumes approximately 70 litres of water per shower 
event over a week before receiving any recommendations. Based on their consumption pattern, 
a recommendation can be made to reduce their shower water consumption to 60 litres. Then, 
using the extracted features, we can determine how effective the recommendation is the next 
week. If the water consumed for showers drops in the following week, this would mean that 
the recommendation is working properly and has been accepted by the household. However, if 
no change occurs in the consumption or it increases, this would mean that the recommendation 
is not effective for that household and further calibrations can be made (i.e., reduce shower 
water consumption to 65 litres). In this way, it would be possible to obtain implicit preferences 
of consumers instead of explicit preferences (i.e., through rating or like–dislike). 

4.5 Summary of key benefits 

The profiling approach introduced in this study overcomes the limitations of existing studies. 
The anticipated benefits from such profiling are discussed here. 

i. Identification of habits/behaviour patterns with more detail and accuracy: The 
proposed profiling approach can be helpful for identifying habits/behaviour patterns 
of consumers in more detail and with enhanced accuracy. On the one hand, the 
identification of such habits or behaviours depending on the type of day (i.e., 
weekday or weekend) would encourage consumers to become more aware of or 
educated about water-conscious behaviours. On the other hand, such insights would 
provide an enhanced understanding of consumers to the utilities and policy makers, 



which can be used to determine more effective water conservation programs, 
campaigns, and education. 

ii. Tracking of changes in behaviour: The proposed profiling approach has the ability 
to track changes in water consumption behaviour of customers. This would 
empower them to take control of their water consumption and help determine their 
progress towards water conservation. In addition, alerting consumers to any 
deviations from their usual consumption patterns would help them stay on track for 
sustainable water consumption. For water utilities, tracking any changes in the 
behaviour of customers would help them understand the various factors that 
influence water consumption (i.e., type of day, temperature, recommendations for 
water conservation, education, programs, and campaigns) at a more detailed level.  

iii. Improvement of demand profiling: Demand profiling is critical for utilities and 
policymakers to understand water consumption patterns, enhance peak water 
demand management, and reduce water pumping costs as well as greenhouse gas 
(GHG) emissions. The profiling approach introduced in this study can play a vital 
role in improving demand profiling by predicting the time and probability of future 
events. Based on the improved demand profiling and enhanced understanding of 
water consumption enabled by the proposed approach, utilities and policymakers 
can introduce flexible tariff plans. Current state-of-the-art water end-use 
classification systems can classify water end-use at an accuracy rate of 95% 
(Nguyen et al., 2020; Yang et al., 2018). To improve the accuracy of such systems 
further, the profiling approach proposed in this study can be adopted. Further 
accuracy in water end-use would increase customers’ acceptance of and trust in 
such systems, utilities, and policymakers. 

iv. Grouping of households with similar consumption patterns: Households with 
similar consumption patterns can be grouped at a more detailed level based on the 
proposed profiling approach. This will help consumers compare their consumption 
patterns with other customers and increase awareness of water conservation. 
Grouping households will also help utilities and policymakers identify unique 
numbers of groups and their characteristics. Based on such insights, targeted water 
conservation programs and campaigns can be designed to promote water 
conservation further. 

v. Foundation for a Recommender System: User profiling is an integral part of 
Recommender Systems. The profiling approach introduced in this study can be 
considered the foundation for a RS in the water industry for promoting water-
conscious behaviours. Such a RS can be highly beneficial for consumers, utilities, 
and policy makers. Through the RS, consumers would be able to interact directly 
with water utilities through explicit and implicit preferences. This would result in 
improvements in customer services/satisfaction. For utilities and policymakers, the 
recommender system would provide the opportunity to obtain consumer feedback 
regarding different recommendations and policies in a cost-effective and timely, 
efficient manner.   

Table 4 summarizes the anticipated benefits from the proposed profiling approach for different 
beneficiaries. 

Table 4. Anticipated benefits from the proposed profiling approach for different beneficiaries 



Benefit Beneficiary 
Customer Utilities Policy makers 

Identification of habits/behaviour patterns    

Tracking of changes in behaviour    

Enhancement of peak water demand management    

Reduction in water pumping costs (GHG emissions)    

Understanding of water consumption patterns    
Prediction of time and probability of future events    
Improvement in customer service/satisfaction    
Flexible tariffs    

Increased accuracy of water end-use classification    

Grouping of similar households    

Basis for a recommender system    

 

4.6 Challenges 

In this study, we observed some challenges in user profiling. First, handling vast amounts of 
high-resolution water consumption data at 5-second intervals was a challenge in terms of 
processing and analysis even for 306 single-standalone households. This indicates further 
challenges when DWMs are deployed widely. Second, we observed that the profiling outcome 
highly depends on the accuracy of water end-use classification because the technique uses 
water end-use data as the primary input. Therefore, any misclassification in water end-use 
would result in poor profiling results. Lastly, we observed that households with no water 
consumption data in recent days (empty households) may not have any meaningful PD for 
water consumption events. In such scenarios, profiling should be performed carefully and 
consistency should be maintained. 

5. CONCLUSION AND FUTURE WORK 
The user profiling technique has been widely adopted in various domains for providing 
personalised services. However, the water sector is yet to adopt advanced user profiling, which 
could be used to promote water-conscious behaviours through a recommender system. In this 
study, a user profiling approach based on water consumption data from residential DWMs was 
proposed along with a profiling algorithm. Furthermore, profiles were created at different 
intervals (e.g. 15, 30, and 60 minutes). Our findings suggested that profiling at 15-minute 
intervals provides better insights regarding the behaviour of consumers. It can also be used to 
identify habits and track changes in behaviours that are important for promoting and sustaining 
long-term water-conscious behaviours. We believe our findings will help researchers and 
practitioners in data analytics and water demand management as well as government policy 
advisors by providing valuable insights.  

Currently, we are working towards a recommender system based on the proposed profiling 
technique for promoting water-conscious behaviours. As for future work, clustering consumers 
based on the proposed profiling approach can be performed as it would facilitate grouping 
consumers at a more detailed level. Furthermore, because the relational database management 
system used in this study took a long time to execute queries, a data warehouse could be 



proposed for storing and analysing complex data. A carefully designed data warehouse can 
handle many complexities in data (Ahmed et al., 2013). In addition, profiling that includes 
socioeconomic data can be performed to provide further insights. Such a profiling approach 
can be extended to other industries or resource consumption scenarios, such as profiling of 
electricity and gas consumption for residential and non-residential customers. 
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Appendix A. Supplementary materials  

 

Figure S1. Primary data collection process 
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(b) 

Figure S2. Count of water end-use events in 30 minutes interval during: a) weekdays; b) 
weekends. 

 



 

Figure S3. A personalised water recommender system. 
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(c) 

Figure S4. Total number of each events at Site 325 at: (a) 60-minute intervals; (b) 30-
minute intervals; and (c) 15-minute intervals. 
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