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ABSTRACT

One-shot resource distillation in quantum resource theories, and W-state

encoding for optical QEC

by

Madhav Krishnan Vijayan

Part I of this thesis studies the problem of optimally converting a single copy of an

arbitrary quantum state into maximally resourceful states. Specifically, in the resource

theory of coherence, the ideal rate for this conversion is found when assisted by a distant

party with whom one shares a quantum state. The optimal distillation of a target pure

state in a more general resource theory framework is then studied with minimal assump-

tions regarding the physical resource. Part II of this thesis studies the problem of error

correction in linear quantum optics. An encoding using W-states is introduced which is

easily implementable using current technology without feed-forward and it shown that

this encoding is robust against independent dephasing errors.
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Nomenclature and Notation
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Hilbert space of dimension d : Hd
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1

Chapter 1

Introduction

This thesis is divided into two parts. One studying resource concentration and state

transformations in quantum resource theories and the other studying optical quantum

error correction. A detailed background and literature survey of each topic is given at the

beginning of each of these parts.

1.1 Research Aims

Part I

� Study the problem of resource distillation from finite copies of an arbitrary state in

the framework of quantum resource theories.

� Obtain the optimal rate of this resource distillation for coherence when assisted by

a non-local helper.

� Show that these techniques can be generalised by abstracting the resource away in

a general framework.

Part II

� Develop an optical QEC scheme that is viable for current quantum optical architec-

tures which is passive and does not require any feed-forward.
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1.2 Scope and significance

Resource theories have become an important tool in the analysis of quantum informa-

tion processing. In this thesis I first study the problem of finite copy resource distillation

with assistance in the resource theory of coherence. This fills a gap in our current un-

derstanding of the resource theory of coherence as well as lays the foundation for further

analysis of multipartite coherence manipulation. I will then proceed to present a frame-

work for analysing resource distillation in a general resource theory. This approach allows

us to treat multiple resource theories on the same footing and make interesting state-

ments of wide applicability. We also gain a better understanding of what are the features

of known resource theories that arise from the resource theory structure as opposed to

the nature of the particular resource.

Finally, I develop a quantum optical encoding scheme using W-states which is robust

against independent dephasing noise. This has the following benefits — (a) W-states are

highly robust against entanglement destruction due to mode loss. (b) They are easy to

produce and manipulate. (b) The scheme is entirely passive, requiring no feed-forward of

measurement outcomes.

1.3 Thesis Organisation

This thesis is organised as follows —

� Chapter 1: This introduction.

� Chapter 2: An introduction to resource theories is given and a literature survey

of coherence and general resource theories is conducted.

� Chapter 3: I derive bounds for one-shot distillation of maximally coherent states

from arbitrary pure states. Using this I find the optimal rate of distilling coherence
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when assisted by a distant party. I then show that this finite copy result will recover

the known asymptotic results in the limit of infinite copies.

� Chapter 4: A general resource theory framework is introduced and I consider

the problem of pure state transformations in this framework. Bounds on the ideal

rate are obtained in terms of a new entropic quantity Gmin which quantifies the

maximum overlap of a state with the set of free states in a resource theory.

� Chapter 5: The results of part I are discussed and I highlight some open problems.

� Chapter 6: Motivation and a literature survey of optical quantum computing are

given.

� Chapter 7: An optical encoding using W-states is introduced. This encoding is

shown to be robust against independent dephasing noise. The success probabilities

and fidelities of this scheme under different operating procedures are given as a

function of error parameters.

� Chapter 8: A summary of the findings of part II and a comparison with existing

schemes is given and I discuss future directions and open problems.
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Part I

Resource Theories



5

Chapter 2

Background and Literature Survey

2.1 Introduction

Quantum resource theories (QRTs) have become a powerful tool for analysing various

topics within quantum information theory. In general they study how certain features of

quantum systems behave when the physical operations and manipulations of the system

are limited. For instance, quantum entanglement is a feature that emerges in multi-

partite quantum systems, and it is natural to consider how entanglement behaves when

the spatially separated parties are restricted to local operations and classical communi-

cation (LOCC). Using resource theories, researchers are able to more precisely identify

and quantify the role that certain quantum features, such as entanglement, play in the

performance of different quantum computational tasks (Horodecki et al. 2009; Plenio

and Virmani 2007). Beyond entanglement, the resource theoretic approach has found

application in the study of quantum Shannon theory (Devetak et al. 2008), quantum

thermodynamics (Gour et al. 2015; Brandao et al. 2013), shared reference frames (Gour

and Spekkens 2008), and many others (Chitambar and Gour 2019). General measures

such as the relative entropy of resource can be applied to different resource theories and

carry analogous operational interpretations in each (Horodecki et al. 2002; Horodecki and

Oppenheim 2013; Brandão and Gour 2015; Anshu et al. 2017).

2.2 Resource theory of Coherence

The fact that coherent superpositions of quantum states are valid physical states is

an essential feature of quantum mechanics, and it is the first point to consider when
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identifying advantages of quantum computation over its classical counterpart (Mermin

2007). Recently, the phenomenon of coherent superpositions has received rigorous devel-

opment through the lens of a quantum resource theory (Baumgratz et al. 2014; Aberg

2006; Levi and Mintert 2014; Chitambar and Gour 2016; Du et al. 2015; Winter and Yang

2016; Yadin et al. 2016). See also (Streltsov et al. 2017) for a detailed review. In the

resource theory of coherence, a state is considered resourceful if it is non-diagonal in a

particular fixed basis. All diagonal states are called incoherent states and they take the

form δ =
∑
i

δi|i〉〈i|, where {|i〉}i is some fixed basis known as the incoherent basis. I

will denote the set of incoherent states as I. Note that the incoherent states essentially

represent classical probability distributions encoded in some physical system, and thus

the resource theory of coherence captures one of the most basic non-classical features that

quantum mechanics allows.

2.2.1 Classes of incoherent operations

Like all QRTs, only certain quantum operations are permitted when characterising

the operational capabilities of coherence. Several different families of allowed, or “free”,

operations have been proposed in the literature, and they all share the property of being

non-coherence-generating; i.e. they map the set of diagonal states onto itself. I will now

discuss some important classes of incoherent operations.

Maximally incoherent operations (MIO) (Aberg 2006): These are the largest class of

incoherent operations and are defined as any CPTP operation that maps a diagonal state

to a diagonal state. I.e., for Λ ∈ MIO and δ ∈ I,

Λ(δ) =
∑
i

KiδK
†
i ∈ I, (2.1)

where {Ki} are some Kraus operator representation of the map Λ. If we interpret this

Kraus operator representation as a particular implementation of the MIO operation then

we can see that the condition is weak enough to allow probabilistic generation of coherence.
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This is because 1

TrKiδK
†
i

KiδK
†
i need not be an incoherent state. However, the average state

produced by the process has to be an incoherent state.

Incoherent operations (IO) (Baumgratz et al. 2014) : These operations are those for

which there exists a Kraus operator representation {Ki} such that even knowledge of the

outcome i will not allow the generation of coherence. This is stated as, for any δ ∈ I,

1

TrKiδK
†
i

KiδK
†
i ∈ I ∀i. (2.2)

IO Kraus operators can be shown to be of the following form (Winter and Yang 2016):

Ki =
∑
j

cj(i)|fi(j)〉〈j|, (2.3)

where fi(j) is a mapping between the basis labels. In general this mapping need not be

bijective.

Strictly incoherent operations (SIO) (Winter and Yang 2016; Yadin et al. 2016): These

operations are those which are uninfluenced by coherence in the input state as long as we

are restricted to incoherent measurements. Formally we can define this to be the property

that for any state ρ and a set of incoherent Kraus operators {Kj},

〈i|KjρK
†
j |i〉 = 〈i|Kj∆(ρ)K†j |i〉 , (2.4)

where ∆ is the completely dephashing map defined as,

∆(ρ) =
∑
i

|i〉〈i|ρ|i〉〈i|. (2.5)

An equivalent definition of an SIO Kraus operator is that it is an IO Kraus operator Ki

with the property that K†i is also IO. This allows us to characterise an SIO Kraus operator

as,

Ki =
∑
j

cj(i)|πi(j)〉〈j|, (2.6)

where now πi(j) is a one-to-one permutation of the basis labels. An interesting conse-

quence of this form is that SIO Kraus operators preserve the coherence rank of a state,



8

which is the rank of the state after a completely dephasing channel has been applied to

it.

There are several other classes of free operations discussed in the literature which I

will not go into in detail but briefly describe. Dephasing-covariant incoherent operations

(DIO) are all CPTP maps that commute with the completely dephasing operation ∆.

Physically incoherent operations (PIO) are operations that can be implemented using

an incoherent ancilla, a global incoherent unitray and incoherent measurements — in

other words an incoherent Stinespring dilation. Note that in general MIO, IO and SIO

do not have such ‘free’ dilations. Genuinely incoherent operations (GIO) (de Vicente

and Streltsov 2016) are operations that leave incoherent states unchanged, i.e. for Λ ∈

GIO and δ ∈ I, Λ(δ) = δ. Fully incoherent operations (FIO) (de Vicente and Streltsov

2016) are operations such that all Kraus operator decompositions are incoherent. Finally

another class of relevant operations are the translationally invariant operations (TIO)

(Gour and Spekkens 2008; Marvian and Spekkens 2013; Marvian et al. 2016) which were

originally defined in the resource theory of asymmetry. These operations commute with

time translation with respect to some Hamiltonian H such that, for Λ ∈ FIO and any

state ρ,

e−iHtΛ(ρ)eiHt = Λ(e−iHtρeiHt).

A connection to coherence is made by noticing that asymmetry with respect to a d-

dimensional representation of U(1) essentially reduces to the resource theory of coherence

(Piani et al. 2016).

2.2.2 Coherence quantifiers

Quantifying the amount of coherence in a quantum state is achieved through several

coherence monotones and measures. A function C : D(H) → R may be classified as a

coherence monotone if it satisfies the following properties (Baumgratz et al. 2014; Streltsov

et al. 2017):
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(a) Non-negativity:

C(ρ) ≥ 0 ∀ρ ∈ D(H), (2.7)

with the equality holding only for incoherent states.

(b) Monotonicity:

C(Λ(ρ)) ≤ C(ρ). (2.8)

C is non-increasing under any incoherent operation Λ.

(c) Strong monotonicity: ∑
i

piC(σi) ≤ C(ρ), (2.9)

where σi ∝ KiρK
†
i is the post-measurement state occurring with probability pi =

TrKiρK
†
i for some incoherent process characterised by the Kraus operators {Ki}.

This implies that even if we have access to the measurement outcome i we cannot

increase coherence on average.

If a function C satisfies properties (a)-(c) it is referred to as coherence monotone. For C

to be a coherence measure, it must additionally satisfy the following properties*,

(d) Convexity: ∑
i

piC(ρi) ≥ C

(∑
i

piρi

)
(2.10)

(e) Uniqueness for pure states: For any pure state |ψ〉〈ψ|,

C(|ψ〉〈ψ|) = S(∆(|ψ〉〈ψ|)), (2.11)

where S(·) is the von-Neumann entropy.

*There is some difference in the literature regarding this. For example (Baumgratz et al. 2014) only

requires properties (a)-(d) for C to be classified as a measure while (Streltsov et al. 2017) argues for all

of the properties (a)-(f) to be required.
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(f) Additivity :

C(ρ⊗ σ) = C(ρ) + C(σ) (2.12)

I will now describe some important coherence quantifiers.

Relative entropy of coherence

The relative entropy of coherence is a distance based quantifier of coherence where the

distance is the relative entropy between the state and set of incoherent states. For a state

ρ it is defined as,

Cr(ρ) = min
δ∈I

S(ρ‖δ), (2.13)

where S(ρ‖δ) = Tr ρ log ρ − Tr ρ log σ is the relative entropy. It can be shown that the

relative entropy of coherence can be expressed as the simple one line expression (Winter

and Yang 2016; Baumgratz et al. 2014)

Cr(ρ) = S(∆(ρ))− S(ρ). (2.14)

The relative entropy of coherence satisfies all condition (a)-(f) to be a coherence measure.

l1 norm of coherence

The l1 norm of coherence is based on the lp family of matrix norms (Baumgratz et al.

2014);

‖M‖lp =

(∑
i,j

|Mij|p
)1/p

. (2.15)

It is defined as,

Cl1(ρ) = min
δ∈I
‖ρ− δ‖l1 =

∑
i 6=j

|ρij|. (2.16)

This is essentially the absolute sum of the non-diagonal or ‘coherent part’ of a density

matrix. The l1 norm of coherence satisfies properties (a)-(d) defined in section 2.2.2.
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Robustness of coherence

The robustness is a geometric measure based on the idea that you can destroy the

resource in a state by sufficiently mixing it with another state. The amount of this mixing

using an optimal state defines the robustness. Formally we can define the robustness of

coherence of a state ρ ∈ D(H) as (Napoli et al. 2016),

Rc(ρ) = min
σ∈D(H)

{
s ≥ 0 :

ρ+ sσ

1 + s
∈ I
}
. (2.17)

Note that unlike the definition of robustness in entanglement where the minimisation is

over the free states, here the minimisation is over all states. This is because it is not

possible to get a diagonal state by mixing a diagonal state with a non-diagonal state. The

robustness of coherence satisfies properties (a), (b) and (d) for all incoherent operations

and satisfies (c) for IO.

2.2.3 Operational tasks

I will now describe some important operational tasks in the resource theory of coher-

ence and mention some notable results in this area. First let us definite the maximally

coherent state of rank M as,

|ΦM〉 =
1√
M

M−1∑
i=0

|i〉 (2.18)

and the unit maximally coherent state as,

|Φ2〉 =
1√
2

(|0〉+ |1〉). (2.19)

I will refer to the corresponding density matrices as ΦM and Φ2 respectively.

Pure state conversion

Given two pure states ψ and φ in Hd, there exists an operation Λ ∈ IO such that

Λ(φ) = ψ if and only if ∆(ψ) � ∆(φ) (Du et al. 2015). Here a � b for d-dimensional
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vectors a and b is read as b majorizes a and is defined as the following conditions holding,

d∑
i=1

ai =
d∑
i=1

bi = 1,

k∑
i=1

a↓i ≤
k∑
i=1

b↓i ∀k ∈ {1, 2, . . . , d}, (2.20)

where a↓ and b↓ are vectors with the same elements as a and b respectively but with the

elements arranged in descending order. The operation that achieves this transformation

is in fact an SIO operation. This implies there are certain pure states which do not allow

inter-conversion via IO since there can be states ψ and φ where neither ∆(ψ) � ∆(φ)

or ∆(φ) � ∆(ψ) are true. In the limit of arbitrarily many copies one can transform the

n copies of the state ψ to m copies of the state φ with vanishing error using an MIO

operation as long as m/n < S(∆(ψ))/S(∆(φ)). This transformation is impossible for

m/n > S(∆(ψ))/S(∆(φ)) (Yuan et al. 2015). This implies that asymptotically any pure

state ψ can be transformed reversibly to the unit maximally coherent state Φ2 at a rate

of S(∆(ψ)) since S(∆(Φ2)) = 1.

Distillation

The distillation of coherence is the process of generating unit maximally coherent states

Φ2 from a given arbitrary quantum state ρ using incoherent operations. This quantity

which is called the distillable coherence Cd(ρ) of the state is a coherence measure in the

sense of satisfying properties (a)-(f) in section 2.2.2 when we consider arbitrarily many

copies. The distillable coherence turns out to be equal to the relative entropy of coherence

and has the simple expression

Cd(ρ) = S(∆(ρ))− S(ρ) = Cr(ρ). (2.21)

In the single copy regime, we are interested in the rate of this transformation allowing

for an error ε in the traget state which we represent as Cc(ρ, ε). Regula et al. (2018)
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showed that the pure state distillation� rate can be bounded using the hypothesis testing

inequality as

Cc(ψ, ε) = min
σ∈I

Dε
H(ψ‖σ)− δ, (2.22)

where 0 ≤ δ ≤ 1 and Dε
H is the smoothed hypothesis testing relative entropy defined as,

Dε
H(ψ‖σ) = − log min{Tr[σM ] : 0 ≤M ≤ I, 〈ψ,M〉 > 1− ε}, (2.23)

In chapter 3 I derive alternate bounds for this quantity in terms of the min-entropy.

Formation

For any d-dimensional quantum system, a maximally coherent state |Φd〉 exists that

can be transformed to any other d-dimensional quantum state ρ (Baumgratz et al. 2014).

One can then ask the more general inverse question of distillation — given n copies of the

unit maximally coherent state Φ2 how many copies of a target state ρ can you obtain with

incoherent operations and an error ε which is vanishing in the asymptotic limit? Winter

and Yang (2016) showed that this rate is given by the coherence of formation defined as,

Cf (ρ) = inf
{pi,ψi}

∑
i

piS(∆(ψi)), (2.24)

where
∑

i piψi = ρ. The one-shot pure state formation (dilution) rate for several classes

of incoherent operations were given by Zhao et al. (2018) in terms of different coherence

monotones.

2.3 General resource theories

While what constitutes a resource can vary widely between different QRTs, some

common structure is shared among them. Broadly speaking, a QRT divides states and

operations in quantum theory into ones that an experimenter has access to freely and

�Pure state distillation is traditionally called concentration in the literature.
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ones which are costly to use; in other words, into those which are free and those which

are resourceful. Where one draws this boundary usually depends on the particular ex-

perimental or physical constraints under consideration. Studying this general structure

independent of specific QRTs has allowed for a better understanding of certain quantum

information quantities. For example, Brandão and Gour showed that the relative entropy

of resource captures the asymptotic convertibility rate between two states, when one con-

siders resource non-generating operations in a general convex QRT (Brandão and Gour

2015). An operational interpretation for general resources was given in (Takagi et al.

2019) by showing that for any convex QRT there exists a channel discrimination task for

which a resource state will strictly outperform a free state.

In this thesis I will present results in a general framework that are applicable to

QRTs whose most resourceful states are pure. This includes entanglement, coherence,

and magic state quantum computing theories. The meaning of “most resourceful” is

ambiguous, yet it can be made more precise in both a quantitative and operational sense.

Quantitatively, pure states could be regarded as being more resourceful in a QRT if they

maximize some resource measure, such as the relative entropy of resource (Horodecki and

Oppenheim 2013) or the robustness of resource (Brandão and Gour 2015). Alternatively,

one could take an operational perspective and regard some set of pure states S as being

the most resourceful in a QRT if any state ρ on a given state space can be realized by

a free transformation ϕ → ρ with ϕ := |ϕ〉〈ϕ| ∈ S. In entanglement theory, such

sets are known as maximally entangled sets, and it is an interesting research problem to

identify maximally entangled sets with minimal structure (de Vicente et al. 2013). When

pure states are regarded as a precious resource, a natural task of interest is pure-state

distillation. Typically, this problem is phrased as a multi-copy state conversion problem

ρ⊗n → ϕ⊗m, which can be interpreted as exchange n copies of ρ for m copies of ϕ using

the free operations of the QRT. In the limit of n → ∞, the smallest ratio n
m

quantifies

the asymptotic distillation rate of state ϕ from ρ (Bennett et al. 1996). In the non-
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asymptotic or “one-shot” regime, the problem is to determine how many copies of ϕ can

be obtained from an arbitrary initial state ρ up to some specified error bound (Liu et al.

2019; Regula et al. 2020). In chapter 4 I will derive bounds for this one-shot pure-state

distillation problem that applies to a wide-range of QRTs. The results obtained match

those obtained independently by Liu et al. (2019) but the techniques I use avoid the need

for a semi-definite programming formulation and have greater mathematical simplicity.
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Chapter 3

One-shot Assisted Coherence distillation

3.1 Introduction

The specific problem we consider here involves coherence concentration on one system

under the assistance of a second party. The operational scenario is depicted in Figure

3.1. We suppose that Alice and Bob initially share some bipartite entangled state |ψ〉AB,

and the goal is to concentrate the largest amount of coherence on Bob’s side under the

constraints that (a) Alice only communicate classically with Bob, and (b) Bob can only

perform incoherent operations. While this is a two-body problem as described, it gen-

eralises to a many-body one in which a large number of parties are collectively being

called “Alice.” Our question then finds application in classically-connected quantum net-

works where the goal is to concentrate coherence at one of the nodes in order to perform

some quantum information processing task. For example this could be a distant lab with

limited capacity to generate coherence or a quantum probe which needs to be amplified

using shared entanglement. Our problem is analogous to the one of entanglement assisted

generation of entanglement which has been studied in (Buscemi and Datta 2013). By

studying the effect of entanglement assistance on coherence generation we aim to better

understand the relationship between entanglement and coherence.

There is a strong similarity between the resource theories of coherence and entangle-

ment, and some of these connections have been pointed out in (Chitambar and Hsieh

2016; Streltsov et al. 2015, 2016; Zhu et al. 2017) . The equivalence in structure between

the coherence of assistance and the entanglement of assistance was exploited in (Chitam-

bar et al. 2016) to find the asymptotic coherence of assistance. Inspired by previous work
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Figure 3.1 : The general task considered in this chapter involves assisted coherence con-

centration. In phase (i), Alice and Bob share some entangled state |ψ〉AB. In phase (ii),

Alice makes a measurement on her system and communicates the measurement result to

Bob. Bob then performs local incoherent operations to maximize the coherence |ΦM〉 of

his system.

on the problem of one-shot, or single-copy, assisted entanglement concentration (Buscemi

and Datta 2013), we bound the one-shot assisted coherence concentration. In the as-

sisted concentration scenario, Alice and Bob share a bipartite pure state |ψ〉AB and the

goal is to maximize the rate of concentration of unit maximally coherent states (MCS)

|Φ2〉 = 1√
2

(|0〉+ |1〉) on Bob’s side, while Bob is restricted to using incoherent operations

and one-way communication is allowed from Alice to Bob. The ideal assisted concentra-

tion rate in the asymptotic setting Cc(ψ
AB), i.e., when Alice and Bob share arbitrarily

many copies of the state |ψ〉AB, is known to be equal to the coherence of assistance (Chita-

mbar et al. 2016). While this rate is achievable with many copies of the state, in realistic

scenarios resources are limited. Thus a more practical question is the following: if we

allow for some bounded error in the process, how many copies of a maximally coherent

state can we generate from just a single copy of the given pure state ψAB? While this

question has been answered for concentration and dilution in the unassisted setting (Reg-

ula et al. 2018; Zhao et al. 2018, 2019), it has remained an open question for the one-shot

assisted concentration paradigm, and it is one that we answer in this chapter.
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An outline of our approach is as follows: We argue that Alice can prepare any pure

state ensemble consistent with Bob’s local density operator using just local operations

and classical communication. Alice will choose to prepare the most optimal ensemble

she can on Bob’s system and now Bob is left with the task of concentrating this pure

state ensemble using incoherent operations to create a MCS. We derive bounds on the

maximum rate at which Bob can achieve this concentration in two steps. First we derive

bounds for the concentration rate Cc(ψ, ε) for a pure state ψ using incoherent operations,

where ε is the allowed error. While this problem has been previously solved in (Regula

et al. 2018) , our approach uses different techniques. Then we generalize our pure state

proof to find the bounds for the concentration rate Cc(E, ε) for an ensemble of pure states

E = {pi, ψi}i with error ε and hence find bounds upto Alice’s initial optimization for the

one-shot assisted concentration problem. We then show that our one-shot rate recovers

the previously known rate in the appropriate limits.

This chapter is organized as follows: In section 3.2 quantities we will use for various

proofs in this chapter are defined. In section 3.3 bounds on the one-shot (unassisted)

concentration of MCSs from an arbitrary pure state are derived. In section 3.4 we will

generalize these bounds to get the average rate of concentration from an ensemble of pure

states and in section 3.5 it will be shown that in the asymptotic limit we recover the

expected rate. Finally the conclusions from this section are presented in section 3.6.

3.2 Definitions

We fix a particular basis {|i〉}i in a given Hilbert space H as the incoherent basis

and let I denotes the set of states which are represented by diagonal density matrices

(incoherent states) in this basis. The maximally coherent state of rank M is defined with

reference to this basis as,

|ΦM〉 =
M−1∑
i=0

1√
M
|i〉 . (3.1)
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We use the notation ψ and |ψ〉〈ψ| interchangeably. We will use the fidelity measure

defined as,

F (ρ, σ) := Tr

(√√
σρ
√
σ

)
= ‖√ρ

√
σ‖1. (3.2)

The following lemmas are well-known.

Lemma 1. For any self-adjoint operator A and B and any positive operator 0 ≤ P ≤ I,

Tr(P (A− B)) ≤ Tr(A− B)+ ≤ ‖A− B‖1, (3.3)

where (X)+ denotes the positive part of the operator X.

Proof: see (Bowen and Datta 2006)

Lemma 2. For any state ρ and an operator 0 ≤ Λ ≤ I such that Tr(Λρ) ≥ 1− ε then,

‖ρ−
√

Λρ
√

Λ‖1 ≤ 2
√
ε (3.4)

Proof: see (Ogawa and Nagaoka 2002; Winter 1999).

We also define the following entropic quantities: for any two operators ρ and σ in

a Hilbert space H such that ρ, σ ≥ 0 and any operator P such that 0 ≤ P ≤ I, and

α ∈ (0,∞) \ {1},

SPα (ρ‖σ) =
1

α− 1
log2 Tr

[√
Pρα
√
Pσ1−α

]
. (3.5)

Notice that for P = I, this reduces to the relative Rényi entropy. We will be often using

the quantity,

SP0 (ρ‖σ) = lim
α→0

SPα (ρ‖σ) = − log2 Tr
[√

PΠρ

√
Pσ
]
, (3.6)

where Πρ is the projector unto the support of ρ in H. Notice that the quantity,

SI
0(ρ‖σ) = S0(ρ‖σ) = − log2(Tr Πρσ) (3.7)

is the relative Rényi entropy of order 0. The relative entropy of coherence is defined as,

Cr(ρ) := min
δ∈I

S(ρ‖δ) = S(∆(ρ))− S(ρ), (3.8)
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where ∆ is the completely dephasing operation which deletes off-diagonal terms in the

reference basis, mathematically defined as ∆(ρ) =
∑
i

|i〉〈i|ρ|i〉〈i|, S(·‖·) ≡ SI
1(·‖·) ≡

S1(·‖·) is the relative entropy and S(·) is the von-Neumann entropy. We use S0(ρ‖σ) to

define the min-entropy of coherence as,

Cmin(ρ) = min
σ∈I

S0(ρ‖σ). (3.9)

where I is the set of incoherent states. We also define the min-entropy as,

Smin(ρ) = − log2(λmax(ρ)), (3.10)

where λmax(ρ) is the largest eigenvalue of ρ. To define smoothed versions of these entropic

quantities we define the ε-close ball for any state ρ and ε ≥ 0 as,

b(ρ, ε) = {σ : σ ≥ 0,Tr[σ] = 1, F (ρ, σ) ≥ 1− ε}. (3.11)

Similarly we define a ε-close ball of sub-normalized pure states as,

b′∗(ρ, ε) := {ψ : Tr(ψ) ≤ 1, F (ψ, ρ) ≥ 1− ε} (3.12)

where ψ are pure states. The normalized version of this ε-ball is defined as

b∗(ρ, ε) = {ψ : Tr(ψ) = 1, ψ ∈ b′∗(ρ, ε)}. (3.13)

The optimal rate for concentration of coherence with assistance and asymptotically many

copies of the state ψAB is known to be equal to the coherence of assistance Da(ρ
B), where

ρB = TrA(ψAB), defined as (Chitambar et al. 2016),

Da(ρ
B) := max

{pi,ψBi }i:∑
i
piψ

B
i =ρB

∑
i

piCr(ψ
B
i ) = S(∆(ρB)). (3.14)

We define the one-shot assisted coherence concentration as,

C
A|B
O,ε (|ψ〉AB) := max

Λ∈O
{log2 M : F 2(ΛAB→B′(|ψ〉AB),ΦB′

M ) ≥ 1− ε}, (3.15)
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where O is the set of local quantum-incoherent operations with one-way classical com-

munication (LQICC-1), ε ≥ 0, F (ρ, σ) is the fidelity and ΦB′
M is the maximally coherent

state of rank M in the output Hilbert space HB′ . In general LOCC can have an arbi-

trary number of communication rounds between the parties. But since we are restricted

to communication from Alice to Bob but not the other way, one round is sufficient, see

for example Buscemi and Datta (2013). The most general procedure that Alice and Bob

could undertake would be for Alice to perform some POVM {PA
i }i on her part of the

state and communicate the result to Bob who would then apply an incoherent operation

Λi depending on Alice’s outcome. Let N be the set of natural numbers {0, 1, ..}, we can

write down an expression or the optimal rate as:

Ca(ρ
B, ε) := max

{PAi }i
max
M∈N

{
log2 M : max

{ΛBi }i
F 2

(∑
i

piΛ
B
i (ρBi ),ΦB′

M

)
≥ 1− ε

}
, (3.16)

which we call the one-shot coherence of assistance, where piρ
B
i = TrA((PA

i ⊗ IB)ψAB).

Equation (3.16) can be understood as Alice performing an optimal POVM {PA
i }i which

prepares the state ρBi with probability pi on Bob’s system. Alice then communicates the

measurement outcome i to Bob who applies an optimal local incoherent operation Λi on

his system. The one-shot coherence of assistance can be equivalently defined as,

Ca(ρ
B, ε) := max

{pi,ψBi }i
max
M∈N

{
log2 M : max

{ΛBi }i
F 2

(∑
i

piΛ
B
i (ψBi ),ΦB′

M

)
≥ 1− ε

}
, (3.17)

where ρB =
∑
i

piψ
B
i , since without loss of generality, the maximization over POVMs

{PA
i }i can be restricted to rank-1 POVMs and this is equivalent to preparing any ensemble

on Bob’s side consistent with his reduced state ρB (Buscemi and Datta 2013). Thus the

concentration task can be split into two parts; Alice prepares an optimal pure state

ensemble {pi, ψBi }i by performing a suitable measurement and communicates the index

i to Bob. Bob then performs an optimal incoherent operation on this state to distil the

maximally coherent state. Then our task is reduced to finding the optimal rate of distilling

the optimal pure state ensemble which will be the best achievable rate on average.
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3.3 Pure state concentration

We will now derive bounds for the one-shot pure state concentration of MCSs. The

one-shot coherence concentration rate for a pure state ψ, a set of incoherent operations

O and ε ≥ 0 is defined as :

Cc(ψ, ε) := max
M∈N

{
log2 M : max

Λ∈O
F 2(Λ(ψ),ΦM) ≥ 1− ε

}
. (3.18)

We will make use of the following lemma,

Lemma 3. For any two pure states ψ and φ if the condition ∆(ψ) � ∆(φ) where the

notation ρ � σ indicates that ρ majorizes σ, then there exists an incoherent operation Λ

such that

Λ(φ) = ψ. (3.19)

Proof: I present a proof given in (Winter and Yang 2016) here for completeness. Let

spec(∆(ψ)) = ~p and spec(∆(φ)) = ~q. The majorization condition implies that there exist

permutations {π} and a set of real numbers {λπ : 0 ≤ λπ ≤ 1,
∑

π λπ = 1}, such that

~q =
∑
π

λπ~pπ (3.20)

where ~pπ is a vector with the components of ~p permuted by π. An explicit construction

of Λ is given in terms of its Kraus operators as,

Λ(φ) =
∑
π

KπφK
†
π, (3.21)

where,

Kπ =
∑
i

√
λπ

√
pπ(i)

q(i)
|π(i)〉〈i| (3.22)

where pπ(i) and q(i) are the ith components of ~pπ and ~q respectively. It can be verified

that Λ(φ) = ψ by substituting the definition of the Kraus operators Kπ from equation

(3.22) in equation (3.21), thus proving the lemma. Since the Kraus operators K do not

decrease the coherence rank of the input state, it is classified as a strictly incoherent

operation (SIO) (Winter and Yang 2016).
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Theorem 1. For any pure state ψ and ε ≥ 0

max
ψ∈b∗(ψ,ε)

Smin(∆(ψ))− δ ≤ Cc(ψ, ε) ≤ max
ψ∈b′∗(ψ,4ε)

Smin(∆(ψ)), (3.23)

where 0 ≤ δ ≤ 1 is a number which ensures the lower limit is the logarithm of an integer.

Proof: For any pure states ψ such that, ∆(ΦM) � ∆(ψ), then from lemma 3 there exists

an incoherent operation Λ such that Λ(ψ) = ΦM . Let spec(∆(ΦM)) = ( 1
M
, 1
M
, ..., 1

M
) and

spec(∆(ψ)) = (ψ1, ψ2, , ..., ψd) Then the majorization condition implies that,

k∑
i=1

1

M
≥

k∑
i=1

ψ↓i , ∀k, d, (3.24)

where the ψ↓i are the elements ψi in a monotonically decreasing order. Notice that in this

case 1
M
≥ ψmax ≡ max

j
ψj is sufficient to imply the majorization condition in equation

(3.24) and ensuring the existence of a Λ that achieves the desired transformation. This

implies that Λ(ψ) = ΦM for any M such that Smin(∆(ψ)) = − log λmax ≥ logM . In

particular M = b2Smin(∆(ψ))c is always achievable. Consequently, for any pure state ψ ∈

b∗(ψ, ε) there exists an operation (in this instance an SIO) Λ such that Λ(ψ) = ΦM for

M = b2Smin(∆(ψ))c. Due to the monotonicity of fidelity under positive trace-preserving

maps we have,

1− ε ≤ F (ψ, ψ) ≤ F (Λ(ψ)Λ(ψ)) = F (Λ(ψ),ΦM). (3.25)

Hence, Cc(ψ, ε) ≥ log2 M for any state ψ ∈ b∗(ψ, ε), or

Cc(ψ, ε) ≥ max
ψ∈b∗(ψ,ε)

log2b2Smin(∆(ψ))c. (3.26)

For the converse, let M be the maximum of all ε-achievable rates for concentration of the

pure state ψ, i.e., there exists an incoherent operation Λ such that F 2(Λ(ψ),ΦM) ≥ 1− ε.

Note that for any incoherent state γ ∈ I we have,

ΦMΛ(γ)ΦM =
1

M
ΦM , (3.27)
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since δ ∈ I implies ΦMδΦM = 1
M

ΦM . Multiplying both sides of equation (3.27) with Λ(ψ)

and taking the trace gives,

Tr(Λ(ψ)ΦMΛ(γ)ΦM) =
1

M
Tr(Λ(ψ)ΦM) ≤ 1

M
, (3.28)

where for the inequality we have used the fact that Λ(ψ) ≤ I. Continuing from equation

(3.28)

log2 M ≤ − log2 Tr(ΦMΛ(ψ)ΦMΛ(γ)) = − log2 Tr(Λ∗(ΦMΛ(ψ)ΦM)γ), (3.29)

where Λ∗ is the dual map of Λ such that Tr(XΛ(ρ)) = Tr(Λ∗(X)ρ). Defining Q :=

Λ∗(ΦMΛ(ψ)ΦM) we have,

log2 M ≤ − log2 Tr(Qγ) ≤ − log2 Tr(
√
Qψ
√
Qγ) ≤ − log2 Tr(ψ̃γ), (3.30)

where we use the fact that
√
Qψ
√
Q ≤ Q and we have introduced the sub-normalized

state |ψ̃〉 ≡
√
Q |ψ〉. Since γ is an arbitrary incoherent state, we thus have

log2 M ≤ min
γ∈I

{
− log2 Tr(ψ̃γ)

}
= − log2(λmax(∆(ψ̃)) = Smin(∆(ψ̃)). (3.31)

We will now show that ψ̃ ∈ b′∗(ψ, 2ε). Note that,

Tr(Qψ) = Tr(ΦMΛ(ψ)ΦMΛ(ψ))

= 〈ΦM |Λ(ψ)|ΦM〉2 =
(
F 2(Λ(ψ),ΦM)

)2 ≥ 1− 2ε.

(3.32)

where for the last inequality we use the fact that F 2(Λ(ψ),ΦM) ≥ 1− ε. Now we can see

that,

F (ψ, ψ̃) = 〈ψ|
√
Q |ψ〉 ≥ 〈ψ|Q |ψ〉 = Tr(Qψ) ≥ 1− 2ε, (3.33)

where the last inequality follows from equation (3.32). This implies that ψ̃ ∈ b′∗(ψ, 2ε).

From equation (3.31) we can write,

log2 M ≤ Smin(∆(ψ̃)) ≤ max
ψ∈b′∗(ψ,2ε)

Smin(∆(ψ)), (3.34)
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thus proving the theorem. Note that theorem 1 is essentially equivalent to the result given

in Regula et al. (2018). Using the theory of distillation norms, the authors had shown the

one-shot pure state concentration of coherence to be

Cc(ψ, ε) = min
σ∈I

Dε
H(ψ‖σ)− δ, (3.35)

where 0 ≤ δ ≤ 1 and Dε
H(ψ‖σ) is the smoothed hypothesis testing relative entropy. That

is, Dε
H(ψ‖σ) = − log min{Tr[σM ] : 0 ≤ M ≤ I, F (ψ,M) > 1 − ε}. By applying Sion’s

minimax theorem (Sion 1958), we see that Eq. (3.35) reduces to

Cc(ψ, ε) = max
M∈B∗(ψ,ε)

Smin(∆(M)), (3.36)

where B∗(ψ, ε) = {M : 0 ≤M ≤ I, F (ψ,M) > 1−ε} is the so-called operator ball around

ψ. Note that B∗(ψ, ε) ⊃ b(ψ, ε) ⊃ b′∗(ψ, ε) ⊃ b∗(ψ, ε). Our lower bound in Theorem 1

therefore implies that the maximum in Eq. (3.36) is attained by a pure state M .

3.4 Coherence concentration for an ensemble of pure states

For any given pure state ensemble E = {pi, ψi}i we define the coherence concentration

for E as :

Cc(E, ε) := max
M∈N

{
log2 M : max

{Λi}i
F 2

(∑
i

piΛi(ψi),ΦM

)
≥ 1− ε

}
, (3.37)

where Λi are incoherent operators. The one-shot coherence of assistance is then given by,

Ca(ρ, ε) = max
E

Cc(E, ε), (3.38)

where E are all possible pure state ensemble decompositions of ρ. We will now define for

any ensemble E = {pi, ψi}i the following quantity :

F∆
min(E) := min

i
Smin(∆(ψi)). (3.39)

This is an estimate of the minimum coherence that can be distilled from the ensemble E.

Also for any ensemble E and ε ≥ 0 we define the set :
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b′(E, ε) :=

{
E = {pi, ψi}i : Tr(ψi) ≤ 1,

∑
i

piF (ψi, ψi) ≥ 1− ε

}
. (3.40)

and also the subset of b(E, ε) with normalized pure states as,

b(E, ε) :=
{
E = {pi, ψi}i ∈ b′(E, ε) : Tr(ψi) = 1

}
(3.41)

Now we state our main result.

Theorem 2. For any given ensemble E = {pi, ψi}i of pure states, and any ε ≥ 0,

max
E∈b(E,ε)

F∆
min(E)− δ ≤ Cc(E, ε) ≤ max

E∈b′(E,2ε)
F∆
min(E), (3.42)

where 0 ≤ δ ≤ 1 is a number to ensure that the lower limit is the logarithm of an integer.

Proof: Our proof of Theorem 2 follows in parallel to the proof of Theorem 1. For the

lower bound, let E = {pi, ψi}i be any ensemble such that E ∈ b(E, ε), i.e.
∑
i

piF (ψi, ψi) ≥

1 − ε. As in the proof of Theorem 1, we know that for each pure state ψi Bob can

distill a maximally coherent state of length log2

⌊
2Smin(∆(ψi))

⌋
without error. Then there

exists a set of incoherent operations {Λi}i such that Λi(ψi) = ΦM(E), where M(E) ≡

min
i

⌊
2Smin(∆(ψi))

⌋
. This is because each ψi ∈ E can attain a maximally coherent state of

at least length M(E) using incoherent operations. Then,

1− ε ≤
∑
i

piF (ψi, ψi) ≤
∑
i

piF (Λi(ψi),Λi(ψi)),

=
∑
i

piF (Λi(ψi),ΦM(E)) = F

(∑
i

piΛi (ψi) ,ΦM(E)

)
,

(3.43)

where the second inequality follows from the monotonicity of fidelity under CP maps.

Since this holds for any E ∈ b(E, ε), we conclude that

Cc(E, ε) ≥ max
E∈b(E,ε)

min
i
Smin(∆(ψi))− δ,

= max
E∈b(E,ε)

F∆
min(E)− δ,

(3.44)

thus proving the direct part of the theorem.
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For the converse part, suppose that Cc(E, ε) = log2 M . Then there exists a family of

incoherent maps {Λi}i such that

1− ε ≤ F 2

(∑
i

piΛi(ψi),ΦM

)
=
∑
i

pi 〈ΦM |Λi(ψi) |ΦM〉 . (3.45)

Since each Λi is incoherent, for any γ ∈ I we have that

ΦMΛi(γ)ΦM ≤
1

M
ΦM . (3.46)

With Λi(ψi) ≤ I, we can multiply both sides of the previous equation by Λi(ψi) and take

the trace to obtain

log2 M ≤ − log Tr [ΦMΛi(ψi)ΦMΛi(γ)]

= − log Tr [Λ∗i (ΦMΛi(ψi)ΦM) γ]

= − log Tr[Qiγ]

≤ − log Tr
[√

Qiψi
√
Qiγ

]
≤ − log Tr[ψ̃iγ], (3.47)

where we have used the fact that
√
Qψi
√
Q ≤ Q and we have introduced the sub-

normalized states |ψ̃i〉 ≡
√
Qi |ψi〉. Define the pure state ensemble Ẽ ≡ {pi, ψ̃i}i. Re-

turning to equation (3.47), we can choose the incoherent state γ to be an eigenvector

associated with the largest eigenvalue of ∆(ψ̃i). Using this inequality on every |ψ̃i〉 ∈ Ẽ,

we obtain

log2 M ≤ min
i
Smin(∆(ψ̃i)) = F∆

min(Ẽ). (3.48)

It remains to show that Ẽ ∈ b′(E, 2ε). Using the inequality in Eq. (3.33), we have

√∑
i

piF (ψi, ψ̃i) ≥
√∑

j

pi Tr[Qiψi]

=

√∑
i

pi 〈ΦM |Λi(ψi) |ΦM〉2

≥
∑
i

pi 〈ΦM |Λi(ψi) |ΦM〉 ≥ 1− ε, (3.49)
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where the second inequality follows from the concavity of the function f(x) =
√
x. Hence∑

i piF (ψi, ψ̃i) ≥ (1− ε)2 ≥ 1− 2ε. So we have,

log2 M ≤ F∆
min(Ẽ) ≤ max

E∈b′(E,2ε)
F∆
min(E). (3.50)

3.5 Asymptotic coherence of assistance

For a mixed state ρ ≡ ρB, its one-shot coherence of assistance is given by

Ca(ρ, ε) = max
E

Cc(E, ε), (3.51)

where the maximization is over all ensemble decompositions E of ρ. The coherence of

assistance for ρ is defined by

Da(ρ) = max
E={pi,ψi}i

∑
i

piS(∆(ψi)), (3.52)

with its regularized version being D∞a (ρ) = lim
n→∞

1
n
Da(ρ

⊗n). The asymptotic assisted co-

herence concentration for Alice and Bob sharing a pure state |ψ〉AB is given by (Chitambar

et al. 2016),

DA|B
c (|ψ〉AB) = D∞a (ρB) = S(∆(ρB)), (3.53)

where ρB = TrA(|ψ〉AB). Let us define the asymptotic limit of the one-shot coherence of

assistance as,

C∞a (ρ) = lim
ε→0

lim
n→∞

1

n
Ca(ρ

⊗n, ε). (3.54)

I will now show that under this limit we recover the asymptotic expression.

Theorem 3. For any state ρ,

C∞a (ρ) = D∞a (ρ). (3.55)

Lemma 4. For any state ρ,

C∞a (ρ) ≤ D∞a (ρ). (3.56)
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Proof : Suppose ρ has support on a d-dimensional Hilbert space. From Theorem 2, we

have

Ca(ρ
⊗n, ε) ≤ max

E
max

E∈b′(E,2ε)
F∆
min(E) ≤ max

E
max

E∈b′(E,2ε)

∑
i

piSmin(∆(ψi))

≤ max
E

max
E∈b′(E,2ε)

∑
i

piS(∆(ψi)), (3.57)

where the first maximization is taken over all ensembles E generating ρ⊗n. To bound

the last term introduce the quantum-incoherent states σBX =
∑
i

piψi ⊗ |i〉〈i|, σBX =∑
i

piψi ⊗ |i〉〈i|, and note

‖σBX − σBX‖1 =
∑
i

pi‖ψi − ψi‖1 = 2
∑
i

piT (ψ1, ψi) ≤ 8ε+ 8
√
ε, (3.58)

where T (ψi, ψi) is the trace distance and the proof of the last inequality can be found in

appendix A.2. If we let ∆B denote the dephasing map on system B then we further have

δ := ‖∆B(σBX)−∆B(σBX)‖1 ≤ 8ε+ 8
√
ε. An application of the Alicki-Fannes inequality

(Alicki and Fannes 2004) to the states ∆B(σBX) and ∆B(σBX) yields∣∣∣∣∣∑
i

piS(∆(ψi))−
∑
i

piS(∆(ψi))

∣∣∣∣∣ ≤ 4δn log(d) + h(δ), (3.59)

where h(δ) := −δ log2(δ)− (1− δ) log2(1− δ), is the binary entropy function. Hence

Ca(ρ
⊗n, ε) ≤ max

E

∑
i

piS(∆(ψi)) + 4δn log(d) + h(δ) = Da(ρ
⊗n) + 4δn log(d) + h(δ).

(3.60)

Dividing both sides by n and taking the limits n→∞, ε→ 0 yields the desired result.

Definition 1. We define the quantum-incoherent state corresponding to any pure state

ensemble E = {pi, ψBi }i as,

σBZE :=
∑
i

piψ
B
i ⊗ πZi . (3.61)

where πZi are orthogonal rank one incoherent projectors |i〉〈i|Z.
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I define the function C
ε

min : D(HB ⊗HZ)→ R which is a smoothed version of Cmin(·)

introduced in equation (3.9) but defined for quantum-incoherent states;

C
ε

min(σBZE ) := max
E∈b(E,ε)

min
νBZ∈I

S0(σBZE ‖νBZ). (3.62)

I will make use of the following lemmas,

Lemma 5. For any state ρB and any ε ≥ 0,

max
E

C
ε
2
min(σBZE )− δ ≤ Ca(ρ

B, ε), (3.63)

where the maximization is taken over all ensembles E = {pi, ψi}i such that ρB =
∑
i

piψi

, σBZE :=
∑
i

piψi ⊗ πi and 0 ≤ δ ≤ 1 ensures the lower limit is the logarithm of a positive

integer.

Proof: Notice that,

C
ε
2
min(σBZE ) := max

E∈b(E, ε
2

)
min
νBZ∈I

{
− log2 Tr

(
ΠσBZ

E
νBZ

)}
,

= max
{pi,φi}i∈b(E, ε2 )

min
i

min
νB∈I

{
− log2 Tr(φiν

B)
}
,

= max
{pi,φi}i∈b(E, ε2 )

min
i

{
− log2 λmax(∆(φi))

}
,

= max
{pi,φi}i∈b(E, ε2 )

min
i
Smin(∆(φi)),

= max
E∈b(E, ε

2
)
F∆
min(E) ≤ Cc(E, ε),

(3.64)

where the inequality comes from theorem 2. Maximizing over E proves the lemma.

Lemma 6. Given a quantum-incoherent state (σBZE )⊗n and any general pure state en-

semble En = {p(n)
i , ψni }i such that (σBZE )⊗n =

∑
i

p
(n)
i ψni , we have

lim
ε→0

lim
n→∞

1

n
max
En

C
ε

min(σB
nZn

En ) ≥ max
E

Cr(σ
BZ
E ), (3.65)

where Cr(σ) is relative entropy of coherence.

Proof: We need to use some results from the quantum information spectrum approach.
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Definition 2. Given a sequence of states ρ̂ = {ρn}∞n=1 with ρn ∈ D(H⊗n) (set of density

operators in H⊗n) and positive operators σ̂ = {σn}∞n=1 with σn ∈ B(H⊗n) (set of positive

operators acting on H⊗n), and defining Ωn(γ) := ρn − 2nγσn, the quantum spectral inf-

divergence rate is defined as,

D(ρ̂‖σ̂) := sup
{
γ : lim inf

n→∞
Tr ({Ωn ≥ 0}Ωn) = 1

}
, (3.66)

where {X ≥ 0} for a self-adjoint operator X denotes the projector unto the non-negative

eigenspace of X.

Lemma 7. Given a state ρn and a self-adjoint operator ωn, for any real γ,we have,

Tr ({ρn − 2nγωn}ωn) ≤ 2−nγ . (3.67)

Proof : see (Datta and Renner 2009).

Lemma 8. For any given state ρB, let E = {pi, ψi} denote a pure state decomposition

and En = {pi,n, ψni } denote a pure state decomposition of the state (ρB)⊗n, then we have,

lim
ε→0

lim
n→∞

1

n
max
En

C
ε

min(σB
nZn

En ) ≥ max
E

min
νBZ∈I

D(σ̂BZE ‖ν̂BZ), (3.68)

where σ̂BZE =
{

(σBZE )⊗n
}
n≥1

and ν̂BZ = {(νBZ)⊗n}n≥1.

Proof: Let E∗ be an ensemble such that it achieves the maximum in equation (3.68). By

definition we have,

max
En

C
ε

min(σB
nZn

En
) = max

En
max

En∈b(En,ε)
min

νBnZn∈I
S0(σB

nZn

En
‖νBnZn),

≥ max
E

max
En∈b(E⊗n,ε)

min
νBnZn∈I

S0(σB
nZn

En
‖νBnZn),

≥ max
En∈b((E∗)⊗n,ε)

min
νBnZn∈I

S0(σB
nZn

En
‖νBnZn),

(3.69)

where E⊗n is the product pure state ensemble {pi, ψi}⊗n . For each νB
nZn and any γ ∈ R

we define the projector,

P n
γ ≡ P n

γ (νB
nZn) := {(σBZE∗ )⊗n − 2nγνB

nZn ≥ 0}. (3.70)
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Since νB
nZn are incoherent states, the projector P n

γ also has a quantum-incoherent struc-

ture. Let σ̂BZE∗ be the i.i.d. (independent and identically distributed) sequence of states

{(σBZE∗ )⊗n}∞n=1. For a sequence ν̂BZ := {νBnZnn }∞n=1 fix δ > 0 and choose γ ≡ γ(ν̂BZ) :=

D(σ̂BZE∗ ‖ν̂BZn )−δ. Then from the definition of the quantum inf-divergence rate in equation

(3.66), there exists an n large enough such that,

Tr
(
P n
γ (σBZE∗ )⊗n

)
≥ 1− ε, (3.71)

for any ε ≥ 0. Here I have used the fact that the quantum inf-divergence rate can be

arternatively defined as (see prop 2. in (Bowen and Datta 2006))

D(ρ̂‖σ̂) := sup
{
γ : lim inf

n→∞
Tr ({Ωn ≥ 0}ρn) = 1

}
, (3.72)

where Ωn = ρn − 2nγσn. Now I define,

P n
γ (σBZE∗ )⊗nP n

γ

Tr
(
P n
γ (σBZE∗ )⊗n

) =

∑
i pi,nψ

n

i ⊗ πni
Tr(P n

γ (σBZE∗ )⊗n)
≡ ωB

nZn

E′n,γ
(νB

nZn) =: ωB
nZn

E′n,γ
, (3.73)

where πni = |in〉〈in| and E′n is the pure state ensemble {pi,n, ψ
n
i

Tr(Pnγ (σBZ
E∗ )⊗n)

}i with ψ
n

i =

TrZn(P n
γ (ψni ⊗πni )P n

γ ). We will now show that E′n ∈ b((E∗)⊗n, ε). Since P n
γ has a quantum-

incoherent structure, we can write it as P n
γ =

∑
i Π

n
γ,i ⊗ πni . Where Πn

γ,i are projectors

acting on the Hilbert space (HB)⊗n. Now we have,

1− ε ≤ Tr
(
P n
γ (σBZE∗ )⊗n

)
= Tr

(∑
i

pi,nΠn
γ,iψ

n
i ⊗ πni

)
=
∑
i

pi,n Tr
(
Πn
γ,iψ

n
i

)
. (3.74)

but note that,

F

(
ψ
n

i

Tr(P n
γ (σBZE∗ )⊗n)

, ψni

)
=

1√∑
j

pj,n Tr(Πn
γ,jψ

n
i )

Tr
(√
〈ψni |Πn

γ,i|ψni 〉〈ψni |Πn
γ,i|ψni 〉

)
,

=
1√∑

j

pj,n Tr(Πn
γ,jψ

n
i )

Tr
(
Πn
γ,iψ

n
i

)
.

(3.75)
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Hence we have,∑
i

pi,nF

(
ψ
n

i

Tr(P n
γ (σBZE∗ )⊗n)

, ψni

)
=

√∑
j

pj,n Tr(Πn
γ,jψ

n
i ),

≥
∑
j

pj,n Tr(Πn
γ,jψ

n
i ) ≥ 1− ε,

(3.76)

where the last inequality follows from equation (3.74). Equation (3.76) implies that

E′n ∈ b((E∗)⊗n, ε). Proceeding from equation (3.69) we have

lim
n→∞

1

n

(
max

En∈b((E∗)⊗n,ε)
min

νBnZn∈I
S0(σB

nZn

En
‖νBnZnn )

)
,

≥ lim
n→∞

1

n
min

νB
nZn∈I

S0(ωB
nZn

E′n,γ
‖νBnZnn ),

= lim
n→∞

1

n
min

νB
nZn∈I

{
− log2 Tr

(
ΠωB

nZn

E′n,γ
νB

nZn

n

)}
,

≥ lim
n→∞

1

n
min

νB
nZn∈I

{
− log2 Tr

(
P n
γ ν

BnZn

n

)}
,

≥ min
ν̂BZ

γ(ν̂BZ) = D(σ̂BZE∗ ‖ν̂BZn )− δ = max
E

D(σ̂BZE ‖ν̂BZn )− δ.

(3.77)

For the second inequality, we have used the fact that ΠωB
nZn

E′n,γ
≤ P n

γ and the third inequality

follows from lemma 7. As this holds for arbitrary δ ≥ 0 we recover the statement of lemma

8 in the limit ε→ 0.

Lemma 9. For any sequence of states ρ̂ = {ρ⊗n}n≥1,

min
σ̂
D(ρ̂‖σ̂) = Cr(ρ), (3.78)

where σ̂ = {σn}n≥1 with σn ∈ I and Cr(ρ) = min
δ∈I

S(ρ‖δ) is the relative entropy of

coherence.

Proof: Consider the family of sets M := {Mn}n≥1

Mn := {δn ∈ In}n≥1 (3.79)

where In is the set of incoherent states in H⊗n.

Proposition 1. The family of sets M satisfies the conditions required to apply the gen-

eralized Stein’s lemma (proposition III.1 in (Brandao and Plenio 2010)) .
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Proof: see appendix A.1.

From proposition 1 we have for a given state ρ,

S∞M :=
1

n
SMn(ρ⊗n), (3.80)

with SMn(ρ⊗n) := min
δn∈Mn

S(ρ⊗n‖δn). Let Ωn(γ) = ρ⊗n−2nγδn. Then from the generalized

Stein’s lemma in (Brandao and Plenio 2010) it follows that for γ > S∞M(ρ),

lim
n→∞

min
δn∈Mn

Tr ({Ωn(γ) ≥ 0}Ωn) = 0. (3.81)

This implies that min
σ̂
D(ρ̂‖σ̂) ≤ S∞M(ρ). Conversely, for γ < S∞M(ρ),

lim
n→∞

min
δn∈Mn

Tr ({Ωn(γ) ≥ 0}Ωn) = 1, (3.82)

which implies that min
σ̂
D(ρ̂‖σ̂) ≥ S∞M(ρ). Thus we have,

D(ρ̂‖σ̂) = S∞M(ρ). (3.83)

But by definition S∞M(ρ) ≡ C∞r (ρ) := lim
n→∞

1
n

min
δn∈I

S(ρ⊗n‖δn) = Cr(ρ) because of the addi-

tivity of the relative entropy of coherence (Winter and Yang 2016), thus proving lemma

9. Lemma 8 and lemma 9 together prove lemma 6.

Lemma 10. For any bipartite state ρB,

C∞a (ρB) ≥ lim
n→∞

1

n
Da((ρ

B)⊗n) ≡ D∞a (ρ). (3.84)

Proof: Let E = {pi, ψi}i be a pure state ensemble decomposition of ρ and En = {pin , ψB
n

in }in

be such a decomposition of (ρB)⊗n. As before I define the quantum incoherent state,

σB
nZn

En =
∑
i

pinφ
Bn

in ⊗ πZ
n

in , (3.85)

where πZ
n

in = |in〉〈in| is the incoherent basis in H⊗nZ . From lemma 5 we know that,

Ca((ρ
B)⊗n, ε) ≥ max

En
C

ε
2
min(σB

nZn

En )− δn, (3.86)
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where 0 ≤ δn ≤ 1. So we have,

C∞a (ρB) := lim
ε→0

lim
n→∞

1

n
Ca((ρ

B)⊗n, ε) ≥ lim
ε→0

lim
n→∞

1

n
max
En

C
ε
2
min(σB

nZn

En ),

≥ max
E

Cr(σ
BZ
E ),

(3.87)

where we have used lemma 5 for tne first inequality and lemma 6 for the last inequality.

Lemma 11. For any quantum-incoherent state σBZ =
∑

i piσ
B
i ⊗ πZi , where πZi = |i〉〈i|Z

are projectors unto the incoherent basis elements and {σi}i are arbitrary density operators,

the relative entropy of coherence of σBZ is given by,

Cr(σ) =
∑
i

piCr(σi). (3.88)

Proof:

Cr(σ
BZ) = Cr

(∑
i

piσ
B
i ⊗ πZi

)
= S

(
∆

(∑
i

piσ
B
i ⊗ πZi

))
− S

(∑
i

piσ
B
i ⊗ πZi

)

= S

(∑
i

pi∆(σBi )⊗ πZi

)
− S

(∑
i

piσ
B
i ⊗ πZi

)
.

(3.89)

We have,

S(σBZ) = −Tr σBZ log σBZ

= −Tr

((∑
i

piσ
B
i ⊗ πZi

)
log

(∑
j

pjσ
B
j ⊗ πZj

))

= −Tr

((∑
i,k

piλ
i
k|λik〉〈λik|B ⊗ πZi

)
log

(∑
j,l

pjλ
j
l |λ

j
l 〉〈λ

j
l |
B ⊗ πZj

))

= −Tr

(∑
i,k

piλ
i
k log(piλ

i
k)|λik〉〈λik|B ⊗ πZi

)

= −
∑
i,k

piλ
i
k log(piλ

i
k)

= −
∑
i,k

piλ
i
k log(pi)−

∑
i,k

piλ
i
k log(λik)

= −
∑
i

pi log pi +
∑
i

piS(σi)

(3.90)
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where in the third equality I have used the spectral decomposition of σBi =
∑
k

piλ
i
k|λik〉〈λik|B,

thus proving the lemma. Since σBZE from equation (3.87) is a quantum-incoherent state,

we use lemma 11 to get,

Cr

(∑
i

piφ
B
i ⊗ πZi

)
=
∑
i

piCr(φi). (3.91)

Hence we have,

C∞a (ρB) := lim
ε→0

lim
n→∞

1

n
Ca((ρ

B)⊗n, ε) ≥ max
{pi,φBi }

∑
i

piCr(φ
B
i ) = Da(ρ

B). (3.92)

Lemma 4 and 10 proves theorem 3.

3.6 Conclusions

In this chapter I have derived bounds for the one-shot concentration of maximally

coherent states for pure states and average rate for an ensemble of pure states. Using

this I obtained bounds on the one-shot coherence of assistance and hence the assisted

coherence concentration. Finally, I showed that asymptotically the one-shot quantity

reduces to the correct known result. Finding the one-shot concentration rate for a more

general scenario than assistance where communication is not restricted to being one-way

and with multiple parties helping Bob, the so called collaboration scenario, remains an

open question. These results highlight how techniques used in the resource theory of

entanglement can find ready application to the resource theory of coherence. This raises

an interesting question, is there a more general framework under which we can solve such

problems and exploit the common resource theory structure? I will explore this in the

next chapter.
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Chapter 4

General One-Shot Distillation

4.1 Introduction

There is an intuitive link between the quantitative and operational resourcefulness of

a state. The larger value a particular resource measure assigns to a state, the greater

rate of resource distillation the state should possess. While this rule of thumb does not

always hold in general, usually it is possible to bound resource distillation rates in terms

of other resource measures. In this chapter, I introduce a function Gmin(ρ) that measures

the overlap of the state ρ with the set of free states. One-shot distillation bounds are

given in terms of this function as well as the free robustness of the state. The latter

quantity measures how much mixing with another free state γ is required to erase the

resourcefulness of ρ.

Robustness is an important resource monotone first used to study entanglement (Vidal

and Tarrach 1999), and it has since found application in the study of general resource

theories (Brandão and Gour 2015; Takagi and Regula 2019; Takagi et al. 2019). Allowing

the state γ to be arbitrary and not necessarily free leads to the definition of the generalized

robustness of resource. Every state will have a finite free robustness provided the set of

free states has a non-empty interior. However, for affine resource theories (QRTs in which

affine combinations of free states are also free) (Gour 2017) it can be shown that the free

robustness will diverge for all resource states, and even for non-affine resource theories

there can be states without finite free robustness (Liu et al. 2019; Regula 2017).

To make our bounds applicable to more QRTs, I consider a smoothed version of

the free robustness, which I call the δ-free robustness. Roughly speaking, this quantity
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measures how much mixing of a free state is required to eliminate all but a δ ≥ 0 amount

of resource from a given state. In all QRTs, including affine ones, the δ-free robustness

will be finite for all states whenever δ > 0. Complementing the δ-free robustness is

the set of quantum operations that cannot generate more than a δ amount of resource.

Bounds are given for distilling pure states using these δ-resource-generating operations.

Note that studying such operations has already proven crucial to obtaining asymptotic

convertibility in entanglement theory (Brandão and Plenio 2008, 2010) and more general

QRTs (Brandão and Gour 2015). To my knowledge, this is the first work that investigates

a trade-off in resource-distillation with respect to a relaxation on the resource-generating

power of the underlying operations.

During the completion of this work I became aware of an independent work which

derives bounds for the one-shot distillation rate in terms of the hypothesis testing relative

entropy (Liu et al. 2019). Note that the hypothesis testing inequality is the operator

smoothed version of Gmin(ρ) while I use the state smoothed version Gε
min(ρ). Similarly

the achievable map that Liu et al. (2019) use for mixed state transformation is a variation

of the one I use for pure state distillation. The difference between these maps is that our

map uses state smoothing instead of operator smoothing and is also applicable to QRTs

where the free robustness need not be finite. The authors define a class of QRTs in which

there exists pure reference states that have constant overlap with the set free states which

is conceptually similar to the constraints on Gmin(φm) I introduce through Property 1 as

expressed in equation (4.19).

4.2 Definitions

Let D denote the collection of all quantum states for a given quantum system. A

resource theory is defined by the pair {F ,O} where F ⊂ D is called the set of free states

and O is the set of free operations. Any state not in F is known as a resource state. One
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useful resource quantifier is the free robustness of resource, defined as

Rf (ρ) := inf
π∈F

{
s ≥ 0 :

ρ+ sπ

1 + s
∈ F

}
. (4.1)

πρ ∈ F is referred to as an optimal state if it can be used to achieve the infimum value

in the definition of Rf (ρ). The quantity Rf (ρ) has a natural operational interpretation.

Suppose that an experimenter Alice has access to a resource state ρ in her laboratory.

Additionally, Alice has the capability to prepare any free state π ∈ F . With probability

1
1+s

Alice forwards the state ρ to Bob, while with probability s
1+s

she prepares some

free state π and sends it to Bob instead. Bob’s description of the received state is thus

1
1+s

(ρ + sπ). The free robustness of ρ, quantifies the threshold value such that for any

s < Rf (ρ), Bob’s received state will assuredly still possess resource.

One drawback of the free robustness is that it is not finite in many QRTs. For example,

in the resource theory of coherence, it is not possible to mix a resource state (i.e. a non-

diagonal density matrix) with a free state (i.e. a diagonal density matrix) to obtain another

free state. An alternative notion of robustness that does not generally suffer from this

problem involves taking the infimum in equation (4.1) over all states D instead of over

just the free states F (Harrow and Nielsen 2003; Steiner 2003). The resulting quantity is

known as the generalized robustness Rg(ρ), and it has emerged as an important resource

measure since its dual characterization often leads to computationally friendly resource

witnesses (Brandão 2005; Piani et al. 2016; Napoli et al. 2016; Regula 2017). Here I

introduce a family of robustness measures that generalises the free robustness.

For mathematical convenience, let us first recall the generalized log-robustness, which

is given by

LRg(ρ) := log [1 +Rg(ρ)] . (4.2)

It is not difficult to show that this quantity is sub-additive, meaning that

LRg(ρ⊗ σ) ≤ LRg(ρ) + LRg(σ), (4.3)
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as long as F is closed under tensor products. Next let us define the set of δ-free states,

F δ := {ρ : LRg(ρ) ≤ δ}, (4.4)

which from sub-additivity satisfies

ρ, σ ∈ F δ ⇒ ρ⊗ σ ∈ F2δ (4.5)

provided F is closed under tensor products. Then for δ ∈ [0,+∞], I define the δ-free

robustness as

Rδ(ρ) := inf
π∈Fδ

{
s ≥ 0 :

ρ+ sπ

1 + s
∈ F δ

}
, (4.6)

from which we recover Rf (ρ) = R0(ρ). We can likewise consider the δ-free log-robustness,

LRδ(ρ) := log[1 +Rδ
f (ρ)]. (4.7)

It can be shown easily that the δ-free robustness for any state ρ ∈ S is finite if

δ > 0 and the generalized robustness is finite. Indeed, using convexity of the generalized

robustness, we can see that for any state ρ and free state γ,

Rg

(
ρ+ sγ

1 + s

)
≤ 1

1 + s
Rg (ρ) +

s

1 + s
Rg (γ) ,

=
1

1 + s
Rg (ρ) . (4.8)

Equation (4.8) implies that the resource in any state ρ as quantified by the generalized

robustness, can be made arbitrarily small by mixing sufficiently with a free state provided

the generalized robustness of ρ is finite. In other words for any δ > 0, there exists some

finite positive number s∗ such that 1
1+s∗

(ρ+ s∗π) ∈ F δ.

For a given QRT {F ,O}, equation (4.4) provides a relaxation on the set of free states.

A corresponding relaxation can be made on the free operations. Following the lead of

Brandão and Plenio (2008, 2010); Brandão and Gour (2015), let Oδ denote the set of
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δ-resource-generating (δ-RG) operations as the full collection of operations that act in-

variantly on F δ; i.e.

Λ ∈ Oδ ⇔ Λ(γ) ∈ F δ ∀γ ∈ F δ. (4.9)

We are interested in the problem of converting a given state ρ to multiple copies of some

pure state ϕ using the δ-resource-generating operations of the theory. More precisely, for

an initial state ρ and a target state ϕ = |ϕ〉〈ϕ|, the one-shot distillation rate of conversion

for parameters ε, δ ≥ 0 is defined as

Dδ,ε(ρ, ϕ) := max
m∈N

{
m : sup

Λ∈Oδ
F 2(Λ(ρ), ϕ⊗m) ≥ 1− ε

}
. (4.10)

Here, the fidelity between two states is given by

F (ρ, σ) := Tr

(√√
σρ
√
σ

)
= ‖√ρ

√
σ‖1, (4.11)

which for a pure state σ = |ϕ〉〈ϕ| has the form F (ρ, ϕ) =
√
〈ϕ| ρ |ϕ〉. I will use the

notation ϕ⊗m and ϕm interchangeably.

To obtain bounds on Dδ,ε(ρ, ϕ), I first define a quantity Gmin(ρ) as a measure of the

maximum overlap between a positive operator ρ and the set of free states F ,

Gmin(ρ) = inf
γ∈F
{− log Tr(ργ)} . (4.12)

We will want a smoothing of Gmin(ρ) similar to what we had in chapter 3 for Smin. Let

us denote the sub-normalised ε-ball around a state ρ by

b′(ρ, ε) = {I ≥ ρ ≥ 0 : F (ρ, ρ) ≥ 1− ε} . (4.13)

The pure state ball around a state ρ is as before given by

b∗(ρ, ε) =
{
ψ ∈ b′(ρ, ε) s.t. ψ is pure

}
. (4.14)

Then the state-smoothed version of Gmin(ρ) is defined as

Gε
min(ρ) = max

ρ∈b′(ρ,ε)
Gmin(ρ). (4.15)
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The pure state smoothed version Gε
min,∗(ρ) has a similar meaning except with the max-

imization taken over b∗(ρ, ε) instead of b′(ρ, ε). If b∗(ρ, ε) is an empty set we define

Gε
min,∗(ρ) = 0.

4.3 General Distillation Bounds

As described above, the essential ingredients to a resource theory are the sets of

free states F and free operations O. Most QRTs will have additional structure on these

objects, such as convexity or closure of F under partial trace. We wish to bound Dδ,ε(ρ, ϕ)

with as few assumptions on the QRT as possible. For our upper bound, we only require

that Gmin is an extensive resource measure for pure states. More precisely, we make the

following singular assumption:

Property 1. For every pure state ϕ, there exists a constant c(ϕ) such that

Gmin(ϕ⊗m) = inf
γ∈F
− log Tr

(
ϕ⊗mγ

)
≥ m · c(ϕ) (4.16)

for all m ∈ N.

In thermodynamics, an extensive property is additive under the addition of more systems,

for example the total heat contained in a system is the sum of the heat contained in each

subsystem. Equation (4.16) expresses this condition in a general QRT for the quantity

Gmin and multiple copies of a pure state. This extensive property holds for the QRTs for

entanglement, coherence and purity. I now present the first result.

Theorem 4. Let ε, δ ≥ 0 be arbitrary. For any resource theory satisfying property 1,

G2
√

2ε
min (ρ) + log(1 + δ)

c(ϕ)
≥ Dδ,ε(ρ, ϕ). (4.17)

Moreover, if ρ is a pure state, this bound can be tightened to read

G2ε
min,∗(ρ) + log(1 + δ)

c(ϕ)
≥ Dδ,ε(ρ, ϕ). (4.18)
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Proof. Let m be the highest rate achievable with error ε. This implies that there exists a

δ-resource generating operation Λ ∈ Oδ such that F 2(Λ(ρ), ϕm) ≥ 1− ε. Property 1 can

be equivalently stated as,

ϕmγϕm ≤ 1

2mc(ϕ)
ϕm ∀γ ∈ F . (4.19)

To see this, note that using the definition of Gmin and the statement of property 1 we

have,

min
γ∈F
− log(Tr(ϕmγ)) ≥ mc(ϕ), (4.20)

=⇒ − log(Tr(ϕmγ)) ≥ mc(ϕ) ∀γ ∈ F , (4.21)

=⇒ Tr(ϕmγ) ≤ 2−mc(ϕ), (4.22)

=⇒ 〈ϕm|γ|ϕm〉 ≤ 2−mc(ϕ), (4.23)

=⇒ 〈ϕm|γ|ϕm〉ϕm ≤ 2−mc(ϕ)ϕm, (4.24)

=⇒ 〈ϕm|γ|ϕm〉 |ϕm〉〈ϕm| ≤ 2−mc(ϕ)ϕm, (4.25)

=⇒ |ϕm〉 〈ϕm|γ|ϕm〉 〈ϕm| ≤ 1

2mc(ϕ)
ϕm. (4.26)

=⇒ ϕmγϕm ≤ 1

2mc(ϕ)
ϕm, (4.27)

where I have used the notation ϕm = |ϕm〉〈ϕm|. Starting from the final expression, all

the steps can be reversed to obtain the initial expression hence proving the equivalence.

Since Λ ∈ Oδ, for every γ ∈ F , there exists some π ∈ F and σ ∈ D such that

Λ(γ) = (1 + δ)π − δσ. Then from equation (4.19), it follows that

ϕmΛ(γ)ϕm ≤ 1 + δ

2mc(ϕ)
ϕm. (4.28)

Multiplying both sides of this by Λ(ρ) and taking the trace yields

Tr(Λ(ρ)ϕmΛ(γ)ϕm) ≤ 1 + δ

2mc(ϕ)
Tr(Λ(ρ)ϕm) ≤ 1 + δ

2mc(ϕ)
. (4.29)

Using the cyclic property of trace and denoting the dual map of Λ as Λ∗ gives
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mc(ϕ)− log(1 + δ) ≤ − log Tr(ϕmΛ(ρ)ϕmΛ(γ)), (4.30)

= − log Tr(Λ∗(ϕmΛ(ρ)ϕm)γ), (4.31)

= − log Tr(Qγ) ≤ − log Tr(
√
Qρ
√
Qγ), (4.32)

where in the last inequality I use the fact that ρ :=
√
Qρ
√
Q ≤ Q. Since γ is an arbitrary

free state, we can say that

mc(ϕ) ≤ min
γ∈F
{− log Tr(ργ)} = Gmin(ρ) + log(1 + δ). (4.33)

I will now show that ρ ∈ b′(ρ, 2
√

2ε). Note that,

Tr(Qρ) = Tr(ϕmΛ(ρ)ϕmΛ(ρ))) = 〈ϕm|Λ(ρ)|ϕm〉2 , (4.34)

=
(
F 2(Λ(ρ), ϕm)

)2 ≥ 1− 2ε. (4.35)

where for the last inequality I use the fact that F 2(Λ(ρ), ϕm) ≥ 1 − ε. From the gentle

measurement lemma (Winter 1999) we know that, ‖ρ− ρ‖1 ≤ 2
√

2ε. This implies that

F 2(ρ, ρ) ≥ 1− 2
√

2ε (4.36)

and ρ ∈ b′(ρ, 2
√

2ε). In equation (4.34), replacing the mixed state ρ with the pure state

ψ we have,

Tr(Qψ) ≥ 1− 2ε. (4.37)

Note that ψ =
√
Qψ
√
Q, hence

F (ψ, ψ) = 〈ψ|
√
Q |ψ〉 ≥ 〈ψ|Q |ψ〉 = Tr(Qψ) ≥ 1− 2ε. (4.38)

Hence ψ ∈ b∗(ψ, 2ε) and we see that,

mc(ϕ) ≤ max
ψ∈b∗(ψ,2ε)

Gmin(ψ) + log(1 + δ). (4.39)
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We next consider the achievability of pure-state distillation. While Theorem 4 holds

for a wide class of QRTs, including ones that are non-convex, our lower bound on Dδ,ε(ρ, ϕ)

applies only for convex QRTs whose free states are closed under tensor products. Before

stating this, we observe a property of the δ-free log-robustness which holds in such QRTs.

Unlike the generalized log-robustness, LRδ does not appear to be sub-additive in general.

However, we can at least provide the following bound.

Proposition 2.

LRmδ(ρ⊗m) ≤ log[1 + (1 + 2Rδ(ρ))m]− 1

≤ m log[1 + 2Rδ(ρ)] (4.40)

for every integer m and δ > 0.

Proof. Let ρ = (1 + s)π − sσ, where s = Rδ(ρ) and π, σ ∈ F δ. We can then write ρ⊗m

as a linear combination of operators belonging to Fmδ, each of which is an m-part tensor

product of the π and σ. From the definition, LRmδ(ρ⊗m) is no greater than the logarithm

of the positive weight in this linear combination. The positive weight can be written as

1

2
[((1 + s) + s)m + ((1 + s)− s)m] =

1

2
(1 + (1 + 2s)m).

Taking a logarithm establishes the first inequality in (4.40), and the second follows by

observing 1 ≤ (1 + 2Rδ(ρ))m.

We use this inequality to establish a lower bound Dσ,ε(ρ, ϕ).

Proposition 3. Consider any QRT in which the set of free states F is convex. For any

δ, ε ≥ 0,

Dδ,ε(ρ, ϕ) ≥ m (4.41)

for any positive integer m satisfying

G2ε
min,∗(ρ) ≥ m log[1 + 2Rδ/m(ϕ)].
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Remark 1. For the special case that δ = 0, one can take m =
⌊

G2ε
min,∗(ρ)

log[1+2R0(ϕ)]

⌋
so that

D0,ε(ρ, ϕ) ≥
⌊

G2ε
min,∗(ρ)

log[1 + 2R0(ϕ)]

⌋
. (4.42)

Proof. Let m > 0 satisfy G2ε
min,∗(ρ) ≥ m log[1 + 2Rδ/m(ϕ)]. We will follow a standard

approach of introducing a simple measure-and-prepare map that does the job (see, for

example, (Rains 2001)). Consider the CPTP map

Λ(ω) = Tr[(I − ψ)ω]πϕm + Tr[ψω]ϕm, (4.43)

where πϕm is an optimal state chosen in the definition of Rδ/m(ϕm) and ψ is an optimal

state chosen in the definition of G2ε
min,∗(ρ). We first verify that

F (ϕm,Λ(ρ)) ≥ F 2(ϕm,Λ(ρ)) = Tr(ϕmΛ(ρ)), (4.44)

≥ Tr[ψρ] ≥ 1− 2ε, (4.45)

where we use the fact that ψ ∈ b∗(ρ, 2ε). Next, we use Eq. (4.40)

G2ε
min,∗(ρ) ≥ m log[1 + 2Rδ/m(ϕ)] ≥ LRδ(ϕm), (4.46)

along with the definition of G2ε
min,∗(ρ) to conclude that

− log Tr[ψγ] ≥ LRδ
f (ϕ

m) =⇒ Tr[ψγ] ≤ [1 +Rδ(ϕm)]−1

for any γ ∈ F . Hence

Λ(γ) = Tr[(I − ψ)γ]πϕm + Tr[ψγ]ϕm ∈ F δ. (4.47)

Convexity of F has been used here to ensure that Rδ(ϕm)[1 + Rδ(ϕm)]−1πϕm + [1 +

Rδ(ϕm)]−1ϕm remains free under any mixing with πϕm .

Notice that the lower bound in proposition 3 would be tighter if we could replace the δ-

free robustness in equation (4.41) with the generalized robustness. However doing so would
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no longer ensure that the measure-and-prepare map of equation (4.43) always generates

a sufficiently small amount of resource. This problem can be overcome in the many-copy

setting where one can invoke the Generalized Quantum Stein’s Lemma (Brandao and

Plenio 2010), and this is essentially the high-level approach taken in Refs. (Brandão and

Plenio 2008, 2010; Brandão and Gour 2015) to obtain asymptotic reversibility of resource

transformations.

4.4 Examples

In many resource theories there exists a maximally resourceful unit pure state ϕ, such

as the Bell state |ϕe〉 := 1√
2
(|00〉+|11〉) for entanglement or the uniform superposition state

|ϕc〉 := 1√
2
(|0〉 + |1〉) (|Φ2〉 from chapter 3) for coherence. The one-shot distillation rate

of the resource is the optimal rate at which one can convert a single copy of a given state

into several copies of the maximally resourceful unit state under some error threshold.

Equation (4.39) immediately recovers known results for the one-shot concentration rate

in entanglement (Buscemi and Datta 2013) and the coherence rate from chapter 3.

Let us first recall that min-entropy of a state ρ is defined as.

Smin(ρ) = − log(λmax(ρ)), (4.48)

where λmax(ρ) is the largest eigenvalue of ρ. In the QRT of entanglement, Gmin(ϕAB) =

Smin(TrA ϕ
AB) while in the QRT of coherence, Gmin(ϕA) = Smin(∆(ϕA)), where ∆ is the

completely dephasing map. To see this notice that for any bipartite pure state,

|ϕ〉AB =
∑
i

√
λiU |λi〉A |λi〉B (4.49)

the minimisation in equation (4.12) is achieved by the product state γ = U |λmax〉〈λmax|U †⊗

|λmax〉〈λmax|, where |λmax〉 is the eigenvector corresponding to the largest eigenvalue of

TrA ϕ
AB (see Appendix B.1). Similarly for coherence the minimisation is achieved by the

largest eigenvector of ∆(ϕ). Let Γ represent the partial trace operation or the completely
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Table 4.1 : Value of Gmin(ψ) in different theories

R.Theory Entanglemnet Coherence

Gmin(ψ) Smin(ρψ) Smin(∆(ψ))

dephasing map. It can be easily verified that Smin(Γ(ϕm)) = mSmin(Γ(ϕ)). Comparing

with equation (4.16), the quantity c(ϕ) = Smin(Γ(ϕ)) = 1 for these resource theories.

We define the ideal rate of one-shot distillation of entanglement for an arbitrary

pure state ρ to many copies of the maximally entangled state ϕe using δ-entanglement-

generating operations as Eδ,ε(ρ, ϕe). Similarly the ideal rate of one-shot coherence distil-

lation is defined to be Cδ,ε(ρ, ϕc), where ϕc is the maximally coherent state.

Corollary 1. The one-shot pure state concentration rate for entanglement Eδ,ε(ψAB, ϕe)

using δ-entanglement-generating operations and the one-shot concentration rate of coher-

ence Cδ,ε(ψ, ϕc) using δ-coherence-generating operations are given by,

Eδ,ε(ψAB, ϕe) ≤ max
ψ
AB∈b∗(ψAB ,2ε)

Smin(ρ
ψ
AB)

+ log(1 + δ), (4.50)

Cδ,ε(ψ, ϕc) ≤ max
ψ∈b∗(ψ,2ε)

Smin(∆(ψ)) + log(1 + δ), (4.51)

respectively, where ρ
ψ
AB = TrA(ψAB) is the reduced density matrix of ψ

AB
and ∆(ψ) =∑

i |i〉〈i|ψ|i〉〈i| is the completely dephased version of ψ in the incoherent basis.

In the limit of δ = 0 we recover previously known results regarding the one-shot con-

centration of coherence and entanglement in (Buscemi and Datta 2013; Vijayan et al.

2018; Regula et al. 2018). Proposition 3 implies that for the resource theory of entangle-

ment, the upper-bound given in Theorem 4 is tight for prefect transformations recovering

the known result in (Buscemi and Datta 2013) as shown below.

Corollary 2. For the resource theory of entanglement the perfect transformation ψ → ϕme ,
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where ϕe is the unit maximally entangled state is achievable with a free operation Λ ∈ O

with a rate

E0,0(ψAB, ϕe) = Gmin(ψAB) = Smin(ρψAB), (4.52)

where ρψAB = TrB(ψAB).

Proof. From proposition 3 we know that there exists a free-operation Λ in the limit

δ, ε→ 0 which performs the transformation ψ → ϕme if,

Gmin(ψ) ≥ m log(1 + 2Rf (ϕe)) ≥ LR(ϕme )

= LRg(ϕ
m
e ) = m, (4.53)

where we have used equation (4.46) and the fact that the free log-robustness of entangle-

ment is equal to the generalized log-robustness of entanglement LRg(ρ) for pure states

and for the maximally entangled state of rank 2m the generalized robustness is equal to

m (Harrow and Nielsen 2003; Steiner 2003). Combining equations (4.53) and (4.39) in

the limit δ, ε→ 0 gives the desired result.

Remark 2. For any dimension d ≥ 2, the δ-free robustness of coherence Rδ
f (ϕ

m) is

achieved by the maximally mixed state Id = 1
d

∑
i

|i〉〈i|, where m = log d.

Proof. Let the optimal incoherent state achieving Rδ
f (ϕ

m) be πϕm . The twirling opera-

tion T for a state ρ is defined as an empirical average over all possible incoherent basis

permutations of ρ. Notice that for the maximally coherent state T (ϕm) = ϕm. From the

definition of δ-resource robustness we have,

ρ =
ϕm +Rδ

f (ϕ
m)πϕm

1 +Rδ
f (ϕ

m)
∈ Iδ, (4.54)

where Iδ is the set of δ-incoherent states. Applying the twirling operation on both sides

of equation (4.54) we have,

T (ρ) =
ϕm +Rδ

f (ϕ
m)T (πϕm)

1 +Rδ
f (ϕ

m)
∈ Iδ. (4.55)
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The last inclusion follows from the fact that coherence is invariant under the twirling

operation. Equation (4.55) implies that if mixing Rδ
f (ϕ

m) amount of πϕm with ϕm gives

you a state in Iδ then mixing Rδ
f (ϕ

m) amount of T (πϕm) will also give you a state in Iδ.

For any incoherent state γ, T (γ) will be the completely mixed state Id
d

. We can see this by

noticing that the state T (γ) is permutation invariant by virtue of the twirling operation

and the only permutation invariant incoherent state is the maximally mixed state.

4.5 Conclusions

As mentioned in the introduction, the general one-shot distillation problem has been

studied in Ref. (Liu et al. 2019) in a more exhaustive manner. However, the techniques

used in this chapter are different, and a salient point of this work is the relative math-

ematical simplicity of the techniques. Currently these results are confined to pure state

distillation and a future direction would be to see if these techniques can find the most

general mixed state transformation bounds.

Another open question is whether these bounds reproduce the asymptotic results in

(Brandão and Gour 2015) under the usual regularisation procedure. This requires further

investigation of the asymptotic properties of Gmin(ρ) and LRδ(ρ). One technical challenge

in this direction is that we are constrained to use the free robustness instead of the

generalized robustness to ensure that the direct map is a free map. To directly apply the

Generalized Quantum Stein’s Lemma of Ref. (Brandao and Plenio 2010) for obtaining

asymptotic results (Brandão and Gour 2015), a connection needs to be made between the

δ-free robustness and the generalized robustness.

It is also of interest to explore what the nature of trade off between error δ in the used

operation and error ε in the final state is and if they have some operational interpretation.

Clearly these quantities must be inversely related since increasing δ allows you to use a

larger set of operations which can get you closer to the target state and thus reducing

ε. Operationally one can interpret a non-zero δ to represent the resource consumed to
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perform the given task. Seeing whether this allows us to define a new resource measure

and more quantitative statements regarding specific QRTs are left to future work.

For the lower bounds we have assumed that the QRT must be convex, an improvement

to these bounds would be to find a way to relax this constraint to include non-convex

QRTs as well like we do in our upper bounds.
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Chapter 5

Discussion

5.1 Main Results

In part I of this thesis I started by studying the resource theory of coherence and

answered the question of what is the ideal rate of one-shot assisted coherence distillation.

In the process I obtained bounds for one-shot distillation of maximally coherent states

from both pure states and pure state ensembles. The obtained rates were shown to

reproduce known results in the asymptotic regime of no error and arbitrarily many copies.

I then presented a general framework for analysing resource theories and showed that with

a minimal set of assumptions we can obtain one-shot pure state distillation bounds. I

also introduce the δ-free robustness and show how to incorporate imperfection in the free

operations into the analysis. These results provide a powerful approach towards handling

multiple resource theories under one framework and can serve as a guide for future studies

in unifying resource theories.

5.2 Open problems

A natural extension of our results in assisted distillation of coherence in the bipartite

setting is considering assistance in a multipartite setting. In this case Bob is tasked with

distilling coherence in his system while being assisted by multiple correlated parties. The

rate of assistance here must be less than the bipartite case since if we consider all the

helpers as one system this reduces to the results we have obtained. The exact rates in

this case remains an open question.

While we have obtained one-shot distillation bounds in a general resource framework,
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the next step of showing this reproduces the asymptotic results of Brandão and Gour

(2015) is left to future work. The challenge here is to find a way to apply the Quantum

Stein’s Lemma (Brandao and Plenio 2010) to our map which uses the δ-free robustness.

Almost certainly there must be a trade-off between error in the final state of the transfor-

mation ε and the error in the free operation used δ, an exact expression for this trade-off

is of interest to determine. An improvement on the results of chapter 4 would be to relax

the constraint of convexity of the free states for the lower bounds as it was done for the

upper bounds.

5.3 Future Directions

The general resource theory framework is a powerful tool to understand resource the-

ories. However most of the results in this area are of an information theoretic nature and

not readily applicable to real world systems. However the idea of different operations

being restricted and classes of states being more costly is a natural assumption for any

real world quantum technology platform. A worthwhile project would be to explore how

to apply these ideas to optimisation problems in quantum hardware. For example in

the circuit model of quantum computation it is possible to decompose a given quantum

circuit using different universal gate sets which are in principle equivalent. However de-

pending on the nature of the physical system used for this implementation some gates are

naturally going to be more desirable than others. Since what is costly and not costly is

highly platform dependent, a framework for abstracting away this detail and performing

important optimisation tasks at an abstract level could become a powerful tool for the

development of quantum technology.



54

Part II

Optical Quantum Error Correction
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Chapter 6

Introduction

In this part of the thesis, we now turn our attention to the problem of optical quantum

error correction in passive linear optical systems. A major difference from part I is that

here we are primarily interested in infinite dimensional Hilbert spaces rather than finite

dimensional ones. We present an encoding scheme for such systems using W-states which

we go on to show is robust against uncorrelated dephasing noise.

6.1 Overview

Before presenting the main results I will introduce common tools for analysing infinite

dimensional systems in section 6.2 and provide background and motivation to the research

problem in section 6.3. I will then discuss different classes of multipartite entangled states

and elaborate on why W-states are a good candidate for encoding and define the W-basis

in section 7.1. In section 7.2 I introduce the W-state based encoding using only linear

optics and single-photon inputs and describe how to post-select to filter random phase

errors. This section will also describe the linear optics error model that we will consider.

Then in section 7.3 the success probability of the protocol is computed along with the

fidelity of the output logical state with the input logical state. I will then go on to show

how the performance improves as the level of encoding increases. Section 7.4 discusses

how to implement qubit gates on the logical qubit while in the W-state encoding. Finally

I discuss some of the implications of this work and make some concluding remarks in

section 7.5.
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6.2 Preliminaries

Photons can be understood to be mode excitation in a quantised electromagnetic field.

Any optical pure state can be represented as,

|ψ〉 =
∞∑
k=0

ck |k〉 , (6.1)

where ck are complex amplitudes and the state |k〉 is a state with exactly k photons.

The basis formed by all states |k〉 for k ∈ {0, 1, . . . } is called the Fock basis or photon

number basis. The state |0〉 is the vacuum state with no photons. This is the state that is

responsible for the so called zero point energy of empty space. We denote this state with

the special symbol |Ω〉. We will use the formalism of creation and annihilation operators

which is ubiquitous in the study of infinite dimensional systems. The creation operation

a† is defined through its action on the Fock basis as

â† |k〉 =
√
k + 1 |k + 1〉 . (6.2)

The annihilation operator â is similarly defined as

â |k〉 =
√
k |k − 1〉 . (6.3)

They also obey the canonical commutation relation ââ† − a†â = 1. Using these operators

we can express the state in equation (6.1) in the Heisenberg representation as

|ψ〉 =
∞∑
k=0

ck√
k!

(â†)k |Ω〉 . (6.4)

We will make of use this form and represent the unitary evolution of the state as the

evolution of the creation an annihilation operators using the relation,

Û |ψ〉 =
∞∑
k=0

ck√
k!

(Û â†Û †)k |Ω〉 , (6.5)

where Û is any unitary operator.
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6.3 Background and Motivation

Within quantum information processing systems, the ability to detect and correct

errors is a prerequisite for fault-tolerant quantum computing. In the standard approach

to solving this problem, one first constructs error-detection circuits, upon which we build

error-correction capabilities. Finally, keeping the physical errors below the so called error

threshold the protocol is applied in a recursive fashion to suppress errors completely in the

asymptotic limit (Shor 1996; Preskill 1998; Nielsen and Chuang 2000). In the absence of

the initial error detection stage, such a construction for mitigating errors cannot function.

The standard framework when considering optical quantum error correction is in the

context of universal quantum computation (Knill et al. 2001). Given that this model

is universal, multiple layers of error correcting codes can be implemented. In general

this requires large, but sub-exponential, resource overheads each with sub-threshold error

rates. Although such constructions are essential for realising the full potential of quantum

computing, it remains a distant target. Hence there is currently a pursuit to find utility for

achievable near-term devices with post-classical capabilities, even if not universal (Harrow

and Montanaro 2017; Lund et al. 2017). This has lead to the alternative target where

universality is discarded as a requirement and the sole purpose is demonstrating some

form of quantum computational advantage with pragmatically reasonable resources.

An important example of such a paradigm whose quantum power has been proven to

be more than classical but not fully universal is boson-sampling. Boson-sampling is the

set of problems that can be constructed from the preparation and measurement of indi-

vidual bosons subject to evolution via a network of passive random linear interferometers

(Aaronson and Arkhipov 2011, 2014). Some quantum resources come cheaper than others

within these models, in particular, additional modes prepared with vacuum states within

the boson-sampling paradigm are considered to have much lower cost than additional

modes prepared with single photons. However, given that this model is passive, one may
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suspect that it is not possible to perform any kind of error correction without leaving the

constraints of the model, and hence dealing with errors defaults back to the requirements

associated with universal models.

Marshman et al. (Marshman et al. 2018) have shown that, for boson-sampling, it is

possible to detect the presence of random phase errors without leaving the paradigm and

that the conditional state on detecting the error has a lower error than would otherwise be

the case. This was done using a redundant encoding of the passive linear interferometer

with a particular network chosen for encoding and decoding of input single photons.

The presence of the photon within a particular mode was used as the error detection

mechanism. This is distinct from the considerations of (Arkhipov 2015) for errors within

unitary networks as there it was assumed that there was no redundancy utilizing additional

resources.

I extend this result by considering single photon encoding that involve W-state path

entanglement encoding of photonic qubits encoded in dual-rail form. These states can

be generated from single photons through passive linear interferometers, and resemble

a generalisation of an optical fan-out operation. It has desirable properties for error

correction such as the maintenance of path entanglement when single systems are lost. The

expansion in mode number can be conceptually related to conventional error-correction

schemes based on redundancy, such as Shor’s original 3-qubit code (Shor 1995), however

the code space that is used in this work is much more robust against mode loss than most

current QEC codes which use stabilizer states such as the GHZ state. I will show that this

encoding yields an improvement on local dephasing errors (Rohde and Ralph 2006) much

like that of the previous work but also show that photon loss is the constraining factor

in the heralded fidelity for this localised noise model. This performance is shown to be

independent of the type of distribution underlying the random phase errors provided that

the errors acting on different modes are independent (i.e., no correlated errors), identical

(all modes are treated the same) and the characteristic function for the distribution is
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well defined. Under these conditions any level of encoding will improve fidelity when

conditioned on detecting no error and with a large enough encoding we can fully mitigate

the dephasing error.

The idea of error filtration in a passive linear optic network has been explored in (Gisin

et al. 2005; Li et al. 2007; Jiang et al. 2017). Broadly these schemes transmit a photon

through a linear optical network such that some measurement outcomes will indicate an

uncorrupted state in some output. I formalise this intuition by giving an explicit code

space and show how it is robust against mode loss and i.i.d. dephasing noise.

Other schemes have explored the use of probabilistic gates to protect against trans-

mission loss such as (Ewert and van Loock 2017) where optical Bell measurements are

used along with a parity encoding. However the encoding states used for these schemes

are highly entangled GHZ-like states. These states cannot be deterministically prepared

using passive linear optics without introducing active feed-forward and additional photons

to accommodate the higher level of encoding — making such schemes highly impractical

using present-day technology.
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Chapter 7

W-state encoding for linear optics

7.1 Introduction

An inherent feature of any kind of multi-qubit entangled state is that, by virtue of its

entanglement, loss or decoherence of a single constituent qubit diminishes its degree of en-

tanglement, similarly reducing its purity (or conversely, increasing its collective entropy).

Some entangled states are more robust than others in this respect and, as discussed be-

low, the W-states are a quintessential example of entangled states with this robustness

property. Note that the resultant state following a partial trace operation upon a qubit

(equivalent to loss when using single photon encoding) is independent of anything done

only to traced out qubits prior to the partial tracing operation. Therefore considering

loss via partial trace is completely sufficient to understand the worst-case degradation of

an entangled state under any kind of local noise process.

7.1.1 GHZ states

The worst-case scenario is the GHZ state, a maximally-entangled n-qubit state of the

form,

|GHZn〉 =
1√
2

(|0〉⊗n + |1〉⊗n), (7.1)

whereby all qubits are collectively perfectly correlated. That is, measurement of any

one (in the computational Z-basis), reveals the equivalent measurement outcome of all

others. However, this directly implies that losing access to this information similarly

implies loss of knowledge of the others. Loss or dephasing directly correspond to such loss

of information. For this reason, dephasing a single qubit, or losing it outright, implies
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complete decoherence of the entire n-qubit state. Specifically, partial tracing out a single

qubit from a GHZ state leaves behind the hopelessly mixed stated,

Tri(|GHZn〉 〈GHZn|) =
1

2
|0〉⊗n−1 〈0|⊗n−1

+
1

2
|1〉⊗n−1 〈1|⊗n−1 , (7.2)

where the partial trace is performed upon any qubit i.

7.1.2 Cluster states

Cluster (or graph) states (Raussendorf and Briegel 2001; Raussendorf et al. 2003) are a

highly useful class of states, enabling universal quantum computation using the measure-

ment based model for quantum computing (MBQC). Despite being more computationally

useful than GHZ states, they are far less entangled, and hence far more robust against

localised noise processes. For example, by measuring out the immediate neighbours of a

lost qubit from within a graph state, a reduced, yet perfect graph state is recovered, given

by the sub-graph of the original graph, with the neighbourhood of the lost qubit removed.

7.1.3 W-states

An especially robust (and so far not particularly useful) class of entangled states are

the W-states (Zeilinger et al. 1997; Dür et al. 2000), given by the equal superposition of

a single excitation across n-sites. In qubit form this can be expressed,

|Wn〉 =
1√
n

(|1, 0, 0, . . .〉+ |0, 1, 0, 0, . . .〉

+ |0, 0, 1, 0, . . .〉+ |0, 0, 0, 1, . . .〉+ . . . ). (7.3)

Alternately, this can be expressed in terms of creation or excitation operators, â†i for the

ith site,

|Wn〉 =
1√
n

n∑
i=1

â†i |Ω〉 , (7.4)
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where |Ω〉 is the collective ground or optical vacuum state. The latter representation is

the one we will focus on here, given its direct applicability to photonic encoding.

These states exhibit complete permutational symmetry under qubit interchange. That

is, the state is invariant under any permutation π̂ ∈ Sn in the symmetric group,

π̂ |Wn〉 = |Wn〉 . (7.5)

Tracing out a single qubit from a W-state yields,

Tri(|Wn〉 〈Wn|) =
n− 1

n
|Wn−1〉 〈Wn−1|

+
1

n
|0〉⊗n−1 〈0|⊗n−1 . (7.6)

That is, upon loss of a single qubit, with probability p = (n− 1)/n it simply undergoes

a reduction in its level of encoding to a |Wn−1〉 state, preserving its W-type structure

entirely, otherwise collapsing to the |0〉⊗n−1 state. This implies that for large n, W-states

are extremely robust (indeed almost invariant) against single-qubit loss. As discussed

earlier, this directly implies similar single-qubit robustness against other noise channels.

Note that atomic ensemble qubits (Duan et al. 2001) are a direct alternate physi-

cal manifestation of W-type encoding, whereby an ensemble (or cloud) of collectively-

addressed atomic qubits undergo collective excitation, mathematically of the form given

in Eq. (7.4). This approach to realising physical qubits has attracted much attention,

especially as good candidates for quantum memories, given their notably high coherence

lifetimes, often at room temperature, which can be intuitively associated with the de-

scribed robustness of their underlying W-type entanglement structure – if a few atoms go

missing from the cloud, little is lost.

The n-qubit W-state can be easily generalised to an entire orthonormal W-basis, by

appropriately manipulating the phase relationships within the n terms in the superpo-

sition. One way in which to choose these phases is by taking the elements from the

Quantum Fourier Transform (QFT) matrix, or generalised Hadamard matrices, both of
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which have equal 1/
√
n amplitudes across all matrix entries, with phase relationships

ensuring orthonormality.

These different phase relationships do not change the earlier observations about the

states’ robustness against local noise. This immediately leads to the intuition, that by

choosing such a W-basis for encoding logical qubits, the encoded logical qubit must inherit

via linearity these same robustness characteristics. This makes them a direct candidate

for optical encoding, given that photonic implementation of QFT mappings may be imple-

mented via passive linear optics, in the absence of any active control, and is realisable with

today’s technology integrated wave-guide architectures across a large number of modes.

7.2 Protocol

Success

Failure

+

Figure 7.1 : Photonic W-state error-correction and -detection protocol. Encoding of a

single dual-rail photonic qubit proceeds via a Quantum Fourier Transform ( ˆQFT ), which

maps the 2-mode encoding across a larger number of redundant modes. The independent

dephasing noise channel is denoted by E . Decoding proceeds via the inverse Quantum

Fourier Transform ( ˆQFT
†
). Post-selection upon detecting the single photon within the

desired 2 output modes defining the single qubit, projects the logical state into one with

reduced noise action.
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The error-detection and correction protocol is shown in Fig. 7.1. Consider N optical

modes, the first two of which contain a single photon state, defining a dual-rail-encoded

photonic qubit. This qubit can defines a logical qubit,

|L〉 = α |0〉L + β |1〉L

= (αâ†0 + βâ†1) |Ω〉 , (7.7)

where |Ω〉 is the N mode vacuum state. To W-encode the logical qubit we pass the

N modes through a linear optical network implementing the N -mode quantum Fourier

transform,

â†i → Ŵ †
i =

N−1∑
j=0

Q̂ij â
†
j, (7.8)

where,

Q̂jk =
ωjkN√
N

; j, k ∈ {0, 1, . . . , N − 1}, (7.9)

are matrix elements of the N -dimensional quantum Fourier transformation operator Q̂

with ωN = e
2πi
N . This transforms the logical qubit to the encoded qubit,

|W 〉 = (αŴ †
0 + βŴ †

1 ) |Ω〉 , (7.10)

which represents the same state of quantum information, but in expanded form. Next the

W-encoded state passes through a noisy channel that independently adds random phases

to each optical mode,

â†j → eiθj â†j, (7.11)

where the θj represent random variables, whose distribution is considered arbitrary at

this point, that form a vector ~θ describing the phases applied to each mode. The state

|W ~θ〉 denotes the W-encoded state following application of the phase noise channel. We

now apply the decoding operation (the inverse QFT operation), and the first two output

modes represent the decoded logical state, ρ̂L. Because of the noise in the channel we
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are not guaranteed to observe the photon strictly within the first two modes. Thus we

post-select and treat cases where photons are found in the other modes as heralding a

failure. The intuition is then that for the heralded success cases the phase noise errors

would have been filtered out.

The fidelity of the decoded state compared to the input logical qubit |L〉 is

FN = 〈L| ρ̂L |L〉 , (7.12)

where |L〉 is implicitly a function of the superposition parameters α and β. Note that

the overlap between two states is invariant under common unitary operations. As the

encoding and decoding operations are unitary it suffices to consider the fidelity of the

W-encoded state,

FN = 〈W |W ~θ〉 〈W ~θ|W 〉 , (7.13)

where FN is used here to show that the fidelity will depend on the number of modes

used for the encoding N . Eq. (7.13) assumes knowledge of the phase errors in each mode

as represented by ~θ but these are of course unknown. However we can model them as

independent random variables acting on each mode separately according to some arbitrary

distribution p,

p(~θ) =
N−1∏
j=0

pi(θj), (7.14)

where pj is the distribution for mode j. The encoded state after application of the error

channel on average is given by,

ρ̂W =

∫
p(~θ) |W ~θ〉 〈W ~θ| d~θ. (7.15)

The fidelity between the output and input of the error channel is given by,

FN = 〈W |
(∫

p(~θ)|W ~θ〉〈W ~θ|d~θ
)
|W 〉 . (7.16)
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As with all quantum operations, the noise channel is a linear map on the state space. Let

the channel map be denoted by L~θ, then we have for the encoded qubit state,

|W ~θ〉 = L~θ(|W 〉) = αL~θ(|W0〉) + βL~θ(|W1〉)

= α |W ~θ
0 〉+ β |W ~θ

1 〉 , (7.17)

where |Wk〉 = Ŵ †
k |Ω〉, following the definition in Eq. (7.8),

|W ~θ
k 〉 =

N−1∑
j

Q̂kje
iθja†j |Ω〉 . (7.18)

These equations can now be used to compute ρ̂W ,

ρ̂W =

∫
p(~θ)

(
|W ~θ〉〈W ~θ|

)
d~θ

=

∫
p(~θ)

(
1∑

i,j=0

cic
∗
j |W

~θ
i 〉〈W

~θ
j |

)
d~θ, (7.19)

where c0 = α and c1 = β. Substituting the definition of |W ~θ
i 〉 from Eq. (7.18) and defining,

km,n = (α + βωmN )(α + βωnN)∗, (7.20)

we obtain,

ρ̂W =
1

N

∫
p(~θ)



k0,0 k01e
i(θ0−θ1) k0,2e

i(θ0−θ2) . . . k0,(N−1)e
i(θ0−θN−1)

k1,0e
i(θ1−θ0) k1,1 k12e

i(θ1−θ2) . . .

k2,0e
i(θ2−θ0) k2,1e

i(θ2−θ1) k2,2 . . .

...
. . .

k(N−1),0e
i(θN−1−θ0) k(N−1),(N−1)


d~θ,

(7.21)

where the matrix within the integral represents the state after the noise channel in the

photon number basis. The characteristic function of a probability distribution p(x) is

defined as,

φp(x)(z) =

∞∫
−∞

p(x)eixzdx. (7.22)
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If we assume all θj are identically and independently distributed as p(θ) then we have,

λ =

∫
p(~θ)ei(θj−θk)d~θ = |φp(θ)(1)|2, (7.23)

whenever the indices j and k are different. Thus,

ρ̂W =
λ

N

N−1∑
i,j=0

(1− δij)ki,j|i〉〈j|+
1

N

N−1∑
i

ki,i|i〉〈i|

= λ (|W 〉〈W | −∆(|W 〉〈W |)) + ∆(|W 〉〈W |)

= λ|W 〉〈W |+ (1− λ)∆(|W 〉〈W |), (7.24)

where we have used the fact that,

N−1∑
i,j=0

ki,j
N
|i〉〈j| = |W 〉〈W |, (7.25)

and ∆ is the completely dephasing map in the photon number basis defined as,

∆(ρ̂) =
∑
i

〈i|ρ̂|i〉 |i〉〈i|. (7.26)

We can see from Eq. (7.24) that the our error channel is essentially a dephasing channel

with dephasing parameter λ. To analyze our protocol further we will choose a particular

error model by assuming that the phase error in each mode is distributed as a Gaussian

with mean µ and variance δ2*,

p(θ) =
1√
2πδ

e−
(θ−µ)2

2δ2 . (7.27)

This is a natural choice when we do not have any knowledge about the nature of the

processes that generates the errors beyond that many underlying random distributions

*This assumption allows for values of θ that are larger than single multiples of 2π, but the theory

used here does not need to be changed to incorporate this. The operations used in defining the phase

shift channel are periodic and hence having larger value of phase does not invalidate this description.

However, it does mean that there is no unique probability density function for any given distribution on

the range [0, 2π).
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average to give a final contribution to the error from the central limit theorem. The

characteristic function of a normal distribution is given by,

φp(θ)(z) = e−
δ2z2

2
+iµz. (7.28)

This leads to λ = e−δ
2

and,

ρ̂W = e−δ
2 |W 〉〈W |+ (1− e−δ2)∆ (|W 〉〈W |) . (7.29)

We can interpret the error channel as performing the identity operation with probability

e−δ
2

and the Fock basis dephasing operation with probability (1 − e−δ
2
). This channel

is thus a dephasing channel with probability of no error occurring p = e−δ
2
. In practical

terms, the variance δ2 of the phase error will depend on the physical implementation of

the quantum channel. For fibre-optic cables we would generally expect the variance to

increase with the length of the cable L or equivalently the propagation time of the photon

in cable tp = L/v, where v is the propagation velocity of the photon in the fibre. If we

model the variance as increasing linearly with propagation time, i.e,

δ2 =
tp
T2

, (7.30)

where T2 is a constant defining a characteristic time for the dephasing channel, we can

write down our error channel in the standard dephasing channel notation as,

ρ̂W = Edephasing
tp (|W 〉〈W |)

= e−tp/T2 |W 〉〈W |+ (1− e−tp/T2)∆(|W 〉〈W |). (7.31)

7.3 Error heralding

In implementing the protocol as described in Fig. 7.1, we can perform the post-selection

in two different ways:

� Presence heralding: Success is assumed based upon the detection of exactly one

photon between the output modes 0 and 1, which define the logical qubit space.
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Note that in the absence of quantum non-demolition measurements, this is neces-

sarily destructive, limiting its applicability. The heralding operator is effectively the

projector

Π̂presence = â†0 |Ω〉 〈Ω| â0 + â†1 |Ω〉 〈Ω| â1. (7.32)

� Absence heralding: Success is inferred via the detection of no photons in any

of the remaining modes outside the logical qubit space. This is non-destructive on

the logical qubit, broadening its utility. However, photon loss contributes to the

occurrence of this signature, implying higher error rates on the remaining logical

qubit. The heralding operator is equivalently a projection given by

Π̂absence = Î−
N−1∑
i=2

â†i |Ω〉 〈Ω| âi. (7.33)

7.3.1 Heralding probability

Absence heralding

We define the absence heralded probability PHa as the probability that no photons

are detected in modes 2 to (N − 1) and ρ̂out to be the N -mode state of the system at

the end of the protocol before the final measurement. Assuming a uniform loss model

parameterized by η, for our choice of input states the probability of detecting the photon

in mode m is

(1− η) · 〈Ω|âmρ̂outâ
†
m|Ω〉 , (7.34)
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where |Ω〉 is the global vacuum state. Using this expression for the probability of detection

under loss we can see that,

PHa = Pr(Photon is in modes 0 or 1)

+ Pr(Photon is in modes 2-(N − 1))

× Pr(Loss in modes 2-(N − 1)),

=
1∑
i=0

〈Ω|âiρ̂outâ
†
i |Ω〉+ η

(
1−

1∑
i=0

〈Ω|âiρ̂outâ
†
i |Ω〉

)
,

= η + (1− η)

(
1∑
i=0

〈Ω|âiρ̂outâ
†
i |Ω〉

)
,

= η + (1− η)

(
1∑
i=0

〈Ω|âiQ̂†ρ̂W Q̂â†i |Ω〉

)
,

= η + (1− η)

(
1∑
i=0

〈Wi|ρ̂W |Wi〉

)
. (7.35)

Using Eq. (7.24) we can write,

〈Wk|ρ̂W |Wk〉 = λ |〈Wk|W 〉|2

+ (1− λ) 〈Wk|∆(|W 〉〈W |)|Wk〉 . (7.36)

The first term on the R.H.S. of Eq. (7.36) is simply,

|〈W0|W 〉|2 = |α|2,

|〈W1|W 〉|2 = |β|2, (7.37)

which are the values of k that preserve the encoded qubit. The second term can be

calculated as,

〈Wk|∆(|W 〉〈W |)|Wk〉 =

1

N2

1∑
m,n=0

N−1∑
j,q,p=0

ω
(m−n)j+(q−p)k
N cmc

∗
nδpjδjq,

=
1

N2

1∑
m,n=0

N−1∑
j=0

ω
(m−n)j
N cmc

∗
n

=
1

N

1∑
m,n=0

δmncmc
∗
n =

1

N
, (7.38)
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where in the first equality we have used the fact that,

|Wk〉 =
N−1∑
q=0

Q̂kqâ
†
q |Ω〉 , (7.39)

where Q̂kp are the coefficients of the quantum Fourier transform operator defined in equa-

tion (7.9) and

∆(|W 〉〈W |) =
1∑

m,n=0

cmc
∗
n

N−1∑
j=0

ω
(m−n)j
N â†j|Ω〉〈Ω|âj. (7.40)

This implies that the photon in the error state is equally spread over all the modes after

decoding. If the state contains an error, the heralding will detect it with a probability of

N−2
N

and miss it with probability 2
N

. So there will be a linear advantage in error detection

with the number of modes. Substituting these results in Eq. (7.35) we get,

PHa = η + (1− η)

[
λ|α|2 +

1

N
(1− λ)

]
+ (1− η)

[
λ|β|2 +

1

N
(1− λ)

]
= η + (1− η)

[
λ+

2

N
(1− λ)

]
. (7.41)

If we assume the Gaussian error model in Eq. (7.27) this will reduce to,

PHa = η + (1− η)

[
e−δ

2

+
2

N
(1− e−δ2)

]
. (7.42)

As the number of modes N increases the heralded probability will decrease, this is because

the probability of the error state being in the modes 1 and 2 is inversely proportional to

N . As we connected the phase error variance to a T2 time via Eq. (7.30), we can also

reparameterize the loss probability as η = 1−e−tp/T1 . In terms of the T1 and T2 parameters

and propagation time tp, the absenence heralded probability can be written as,

PHa = (1− e−tp/T1)

+ e−tp/T1
[
e−tp/T2 +

2

N
(1− e−tp/T2)

]
. (7.43)
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Presence heralding

The presence heralded case is the case where we post-select on there being no photon

loss. The presence heralded fidelity is the probability of getting a photon in modes 1 and

2 and this can be easily seen to be,

PHp = PHa − η. (7.44)

7.3.2 Heralded fidelity

Absence heralding

The absence heralded state is the state in the output modes 0 and 1 when no photons

are detected in the modes modes 2 – (N − 1). This can happen in two mutually exclusive

ways; either the photon is lost and there is no photon in any mode or there is no loss

and our negative measurement of modes 2 – (N − 1) projects the quantum state into the

subspace spanned by a†0 |Ω〉 and a†1 |Ω〉. So, the absence heralded state is given by,

ρ̂Ha = (1− η)
Π̂0,1ρ̂outΠ̂0,1

Tr(Π̂0,1ρ̂out)
+ η|Ω〉〈Ω|, (7.45)

where,

Π̂0,1 = a†0|Ω〉〈Ω|a0 + a†1|Ω〉〈Ω|a1, (7.46)

is the projector on to the subspace of modes 1 and 2. But we observe that,

Tr(Π̂0,1ρ̂out) = 〈Ω|â0ρ̂outâ
†
0|Ω〉+ 〈Ω|â1ρ̂outâ

†
1|Ω〉

= 〈Ω|â0Q̂†Q̂ρ̂outQ̂
†Q̂â†0|Ω〉

+ 〈Ω|â1Q̂†Q̂ρ̂outQ̂
†Q̂â†1|Ω〉

= 〈W0|ρ̂W |W0〉+ 〈W1|ρ̂W |W1〉

= λ+
2

N
(1− λ). (7.47)
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The fidelity of the heralded state with our logical input state is given by,

FHa = 〈L|ρ̂Ha |L〉

= 〈L|Q̂†Q̂ρ̂HaQ̂†Q̂|L〉

= (1− η)
〈W |ρ̂W |W 〉

Tr(Π̂W0,W1ρW )

=
1− η

λ+ 2
N

(1− λ)
· F (|W 〉 , ρ̂W ), (7.48)

where,

Π̂W0,W1 = |W0〉〈W0|+ |W1〉〈W1|, (7.49)

and in the third equality we have used the fact that Π̂0,1|Ω〉〈Ω|Π̂0,1 = 0. We can interpret

Eq. (7.48) as saying that heralding improves the output fidelity of our protocol by a factor

of,

1− η
λ+ 2

N
(1− λ)

. (7.50)

We have,

F (|W 〉 , ρ̂W ) = λ+ (1− λ) 〈W |∆(|W 〉〈W |)|W 〉 . (7.51)

Notice that,

〈W |∆(|W 〉〈W |)|W 〉 = Tr(|W 〉〈W |∆(|W 〉〈W |))

=
N−1∑
i=0

([|W 〉〈W |]ii)2, (7.52)

where, [|W 〉〈W |]ii are diagonal elements of the the state |W 〉〈W | in the computational

basis. We know that,
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[|W 〉〈W |]ii =

〈Ω|âi

(
1∑

m,n=0

cmc
∗
n

N−1∑
k,j=0

Q̂mkâ
†
k|Ω〉〈Ω|âjQ̂

∗
nj

)
â†i |Ω〉

=
1

N

1∑
m,n=0

N−1∑
k,j=0

cmc
∗
nω

mk−nj
N δikδji

=
1

N

1∑
m,n=0

cmc
∗
nω

(m−n)i
N . (7.53)

Using the above expression we obtain,

〈W |∆(|W 〉〈W |)|W 〉

=
N−1∑
i=0

(
1

N

1∑
m,n=0

cmc
∗
nω

(m−n)i
N

)(
1

N

1∑
p,q=0

cpc
∗
qω

(p−q)i
N

)

=
1

N2

1∑
i=0

1∑
m,n,
p,q =0

cmcpc
∗
nc
∗
qω

(m−n+p−q)i
N

=
1

N

1∑
m,n,
p,q =0

cmcpc
∗
nc
∗
qδm−n+p,q

=
1

N

1∑
m,n,p=0
m−n+p≥0

cmcpc
∗
nc
∗
m−n+p

=
|α|4 + |β|4 + 4|α|2|β|2

N

=
1 + 2|α|2|β|2

N
. (7.54)

Therefore,

FHa = (1− η) ·
λ+ (1− λ)1+2|α|2|β|2

N

λ+ 2
N

(1− λ)
. (7.55)

In terms of Bloch variables θ and φ where α = cos θ
2
, β = eiφ sin θ

2
as, it can be seen that,

FHa = (1− η) ·
e−δ

2
+ (1− e−δ2)(2+sin2 θ

2N
)

e−δ2 + 2
N

(1− e−δ2)
. (7.56)
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In the limit of large N the heralded fidelity will approach (1 − η). This implies that the

only error will be from photon loss. In terms of the dephasing and amplitude damping

channel parameters T2 and T1 and a propagation time tp this can be written as,

FHa = e−tp/T1 ·
e−tp/T2 + (1− e−tp/T2)(2+sin2 θ

2N
)

e−tp/T2 + 2
N

(1− e−tp/T2)
. (7.57)

Presence heralding

In the presence heralded case, we are post selecting the case where there is no photon

loss in the system, so the post measurement state in this scenario will be,

ρ̂Hp =
Π̂0,1ρ̂outΠ̂0,1

Tr(Π̂0,1ρ̂out)
(7.58)

this just improves the fidelity by a factor of (1 − η) giving, the fidelity as,

FHp =
FHa

1− η
. (7.59)

The heralded probability is plotted in Fig. 7.2 as a function of δ and T2 with fixed values

of η and T1 respectively. From these plots it is evident that the heralded fidelity improves

with the number of modes N . The choice of the parameters values T1 and η do not

influence the ordering of these plots.

Heralding type Probability Fidelity

Presence PHp = (1− η)[λ+ 2
N

(1− λ)] FHp = Nλ+(1−λ)(1+2|αβ|2)
(N−2)λ+2

Presence (N →∞) PHp = (1− η)λ FHp = 1

Absence η + PHp (1− η)FHp

Table 7.1 : Heralding probabilities and post-selected logical qubit fidelities of a single

photon qubit under the W-state encoding protocol, according to the two different modes

of post-selection operation. Note that here λ = |φp(θ)(1)|2 as defined in equation (7.23).
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7.3.3 Probability and fidelity plots

The heralding probability and associated post-selected state fidelities are shown as a

function of the channel parameters in Fig. 7.2, and the respective analytic expressions

in Tab. 7.1. Note that while we are specifically plotting for a Gaussian noise model, the

qualitative features can be expected to be the same for any i.i.d. error model. This is

because depolarizing parameter λ is related to the characteristic function φp(θ)(z) through

equation (7.23). A function and it’s Fourier transform will have their variances inversely

related like quadrature variances so even if the exact expressions for the fidelity and

heralding probabilities might vary we can expect the qualitative behaviour to remain the

same and the average map to be a depolarizing channel.

7.4 Single-qubit unitary operations

Once in the encoded basis we can directly perform single-qubit unitary operations,

without decoding and encoding again. To see this, consider the single qubit operation,

|ψout〉L = Û |ψin〉L , (7.60)

in the logical qubit basis. In the encoded photonic basis, this can be expressed,

|ψout〉L = Q̂†Q̂[Û ⊕ ÎN−2]Q̂†Q̂ |ψin〉L , (7.61)

where we have inserted the identity operation ÎN−2 on the ancillary input photonic modes,

and Î = Q̂†Q̂. This yields the equivalent redundantly-encoded photonic unitary operation

(i.e between encoding and decoding),

|ψout〉enc = Ũ |ψin〉enc , (7.62)

where,

Ũ = Q̂[Û ⊕ ÎN−2]Q̂†, (7.63)

is the redundantly-encoded equivalent of the logical 2-qubit operation, obtained by con-

jugating with Q̂.
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Figure 7.2 : Analytic heralded error-correction results for the absence heralding technique.

Results for presence heralding are given by simple transformations of these results (shift

by η for PH , and scale by (1 − η) for FH). (left) Heralding probability and (right) post-

selected fidelity, parameterized in terms of loss-rate, and dephasing in terms of (top)

phase-variance δ, (bottom) T2-time for tp = 1.
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7.5 Discussion

7.5.1 Pros and cons

The W-state encoding scheme has the following advantages:

1. It can be implemented in a number of quantum memory architectures such as atomic

ensembles, optical cavities and delay lines.

2. Any independent uncorrelated dephasing noise can be corrected for with sufficient

levels of encoding. The physical source of these phase errors will depend on the

particular architecture. For example, in a delay line, temporal mismatch between

photon arrival times will manifest as a phase error. If this is influenced by thermal

fluctuations, it will be manifested as a dephasing error reflecting our theoretical

calculations of the post error state. In an optical cavity array, the source of the

phase error could be decay rate mismatch between cavities. All these cases are

consistent with our model.

3. Normally to correct phase mismatch one could either thermally or mechanically

isolate the system or use a high intensity source to periodically measure phase

errors and actively correct it using feedback. Our scheme mitigates this.

4. Because we only need passive linear optics without feed-forward, this is quite scalable

with present-day technology, notably integrated photonic waveguide chips.

5. Robustness against mode loss. Standard QECs require the use of entangling gates

such as CNOTs and the code state themselves can be highly entangled such as the

GHZ states. These states however are not robust against loss in the sense of a

partial trace operation while the W-state encoding will robust against such loss and

increasingly so with higher levels of encoding.

The disadvantages of this scheme are:
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1. Inability to correct correlated phase fluctuations (e.g a uniform phase shift across

all redundant memory cells).

2. A multiplier in production cost and resource overhead, determined by the degree of

redundancy.

7.5.2 Robustness against different noise models

While I have used a Gaussian noise model for detailed analysis in Section 7.2, this is

by no means an absolute requirement on many of the results we present. As mentioned in

Section 7.3, the property that determines the output state is the characteristic function

for the random variables in the noise model for the unitary errors evaluated at z = 1.

Due to the nature of the characteristic function, this value will be well defined in virtually

all possible distributions, even ones that do not have a well defined moment generating

function. The exact details of specific properties of the scheme will change under different

distributions (e.g. the T1 and T2 decoherence factors identified here won’t be well defined

in general), but the analysis from the point of view of the encoded state will be essentially

the same as what we have presented here.

7.6 Conclusion

I have proposed a passive linear optics encoding, using W-states which have the prop-

erty of being strongly robust against entanglement degradation from qubit loss. This

encoding was shown to be robust against any dephasing error modelled as an uncorre-

lated independent and identically distributed dephasing process on each subsystem. It

was shown that the effective error probability is inversely related to the level of encoding

N , vanishing in the large N limit. The loss rate upper-bounds the fidelity and success

probability, but its effect does not scale with N , given that uniform losses can be com-

muted through passive linear optics systems.

The protocol is naturally suited to optical quantum memories (e.g via atomic ensem-
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bles, cavities, or delay lines), where the dominant error processes are independent dephas-

ing and loss. Single-qubit operations are readily implementable within the encoded basis

using conjugated passive linear optics operations.
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Chapter 8

Discussion

8.1 Main Results

In part II of the thesis I presented a quantum optical encoding scheme using W-states.

This encoding was shown to be robust against independent dephasing noise and success

rates and fidelities of the protocol are given for a Gaussian noise model. The scheme has

several advantages such as

(a) Code words are robust against mode loss.

(b) States can be easily encoded using simple fan out style beam splitter operations.

(c) Is completely passive and requires no measurement feed-forward.

(d) Easily implementable using current technology (an experimental implementation is

under-way in collaboration with the quantum photonics group at the Indian Institute

of Science, Bangalore)

8.2 Comparison with other schemes

It is important to clarify the distinction between this protocol, which can be regarded

as a form of error filtration, and the more general concept of fault-tolerance where gate

errors are accommodated for. Here we have assumed that our encoding and decoding

operations are ideal, and all the dephasing errors are associated with the channel between

them. Furthermore, we are not considering full quantum computations, but rather the

storage or communication of just a single photonic qubit.



82

While future work might consider the effects of errors in the encoding and decoding

errors in this protocol, the presented analysis is nonetheless reasonably well justified

in most practical circumstances. Current linear optics technology, both using discrete

elements or in integrated wave-guides, has become extremely mature and precise, enabling

passive linear networks to be implemented with very high degrees of fidelity. On the other

hand, photonic qubits communicated over long-distance links, via any medium, or which

are held in quantum memories by coupling them to non-optical physical systems, are far

more likely to contribute to these noise processes.

A further distinction between this scheme and conventional error correction schemes,

is that we don’t rely on any notion of code concatenation to asymptotically improve error

thresholds. Instead, we directly expand our level of encoding by increasing the number

of optical modes in the fan-out operation implemented by the QFT encoding operation.

Unlike most well known codes whereby error syndrome measurements are used to apply

feed-forward corrections to encoded qubits, this protocol does not rely on any form of

active correction via syndrome extraction. Rather, dephasing noise is effectively mapped

to non-determinism, such that upon success the effective dephasing rate has been reduced.

The final important distinction between this scheme and conventional QEC schemes,

is that we do not create our encoded state via the introduction of additional qubits (i.e

photons), but via the the introduction of additional optical modes, where the number

of photons is preserved. Owing to these conceptual differences compared to more famil-

iar QEC and fault-tolerance techniques, this scheme as presented is especially suited to

the context of photonic quantum communication or storage via coupling into quantum

memories.

8.3 Open problems

The W-state encoding we introduce in chapter 7 allows for the implementation of

arbitrary unitary gates as discussed in section 7.4. However to achieve universal quan-
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tum computing in the sense of KLM (Knill et al. 2001) we need to able to implement

probabilistic gates; how to do this in the W-state encoding is a promising line of research.

8.4 Future Directions

Extending the W-state encoding scheme to qudits has received some attention in

(Ramakrishnan et al. 2020). However, applying the encoding for multiple qubits is an open

problem. There are two natural ways to do this, either using a global W-state encoding

on the full system or applying the encoding to each qubit individually. Comparing these

schemes to see if one has an advantage is an avenue that is being explored.



84

Appendix A

Resource theory of coherence

A.1 M satisfies generalized Stein’s lemma

For the generalized Stein’s lemma to hold for a family of sets M the following condi-

tions need to be met (Brandao and Plenio 2010)

1. Each Mn must be closed and convex.

2. Each Mn contains σ⊗n for a full rank state σ ∈ D(H).

3. If ρ ∈Mn+1, then Trk(ρ) ∈Mn, for every k ∈ {1, ..., n+ 1}.

4. If ρ ∈Mn and ν ∈Mm, then ρ⊗ ν ∈Mn+m.

5. If ρ ∈ Mn then PπρPπ ∈ Mn for every π ∈ Sn, where Pπ is the representation of a

permutation π in H⊗n and Sn is symmetric group of order n.

The set of incoherent states in H⊗n will be convex and closed satisfying the first

condition. δ⊗n ∈ In satisfying condition 2. Trk(δn+1) ∈ In where δn+1 ∈ In+1 for any

k ∈ {1, ..., n+1} satisfying condition 3. δn⊗νm ∈ Im+n when δn ∈ In and νm ∈ Im hence

condition 4. is satisfied. Finally the permutation operation is just a relabelling of the

incoherent basis hence the set of incoherent states will be closed under such a permutation

and condition 5. is satisfied.
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A.2 Upper bound for trace distance

Given that
∑

i piF (ψi, ψi) ≥ 1 − 2ε, and Tr(ψi) = 1,Tr(ψi) ≤ 1 we want to find an

upper bound in terms of ε for the expression,

∑
i

piT (ψi, ψi), (A.1)

where T is the trace distance. Let |ψi〉 = a |ψi〉 + b |ψ⊥i 〉, where 〈ψi|ψ⊥i 〉 = 0 and |ai|2 +

|bi|2 = δi ≤ 1. We have,

T (ψi, ψi) :=
1

2
‖ψi − ψi‖ =

∑
j

|λij|, (A.2)

where {λij}j are the eigenvalues of the operator ψi − ψi. Expressing this operator in the

basis {|ψi〉 , |ψ⊥i 〉} we get

ψi − ψi = (1− |ai|2)|ψi〉〈ψi| − |b|2|ψ⊥i 〉〈ψ⊥i | − ab∗|ψi〉〈ψ⊥i | − a∗b|ψ⊥i 〉〈ψi|, (A.3)

or in matrix form,  1− |ai|2 −aib∗i

−a∗i bi |bi|2

 . (A.4)

If we calculate the eigenvalues of the above matrix we get,

λi± =
1− δi

2
± 1

2

√
(1 + δi)2 − 4|ai|2. (A.5)

Using equation (A.2) we have,

T (ψi, ψi) =

∣∣∣∣1− δi2
+

1

2

√
(1 + δi)2 − 4|ai|2

∣∣∣∣
+

∣∣∣∣1− δi2
− 1

2

√
(1 + δi)2 − 4|ai|2

∣∣∣∣ , (A.6)

≤ |1− δi|+
∣∣∣√(1 + δi)2 − 4|ai|2

∣∣∣ . (A.7)

Now we have,

∑
i

piT (ψi, ψi) ≤
∑

pi|1− δi|+
∑
i

pi

∣∣∣√(1 + δi)2 − 4|ai|2
∣∣∣ . (A.8)
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We know that δi ≤ 1 so we can find an upper bound by substituting δi = 1 in the second

term in the above equation, i.e.,

∑
i

piT (ψi, ψi) ≤
∑
i

pi|1− δi|+
∑
i

pi

∣∣∣√4− 4|ai|2
∣∣∣ , (A.9)

≤
∑
i

pi(1− δi) + 2
∑
i

pi
√

1− |ai|2, (A.10)

≤
∑
i

pi(1− δi) + 2

√
1−

∑
i

pi|ai|2. (A.11)

Notice that

F 2(ψi, ψi) = | 〈ψi|ψi〉 |2 = |ai|2 ≤ δi. (A.12)

So,

∑
i

piT (ψi, ψi) ≤
∑
i

pi(1− δi) + 2

√
1−

∑
i

piF 2(ψi, ψi). (A.13)

Consider the following inequality,

1− 2ε ≤
∑
i

piF (ψi, ψi) ≤
√∑

i

piF 2(ψi, ψi). (A.14)

So we have, ∑
i

piF
2(ψi, ψi) ≥ 1− 4ε. (A.15)

Since δi ≥ F 2(ψi, ψi), we also have,

∑
i

piδi ≥ 1− 4ε. (A.16)

An upper bound for equation (A.13) can be found by substituting the values
∑

i piδi =

1− 4ε =
∑

i piF
2(ψi, ψi) , so we get,

∑
i

piT (ψi, ψi) ≤ (1− (1− 4ε)) + 2
√

1− (1− 4ε), (A.17)

= 4ε+ 4
√
ε. (A.18)
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Appendix B

General resource theory

B.1 Converse for of one-shot concentration of entanglement and

coherence

B.1.1 Entanglement

Notice that for any separable state can be expressed as γ =
∑
i

qiρi⊗σi. We will show

that the maximally entangled state

|Φe〉 =
1√
2

(|00〉+ |11〉) , (B.1)

satisfies property 1 with c(Φe) = 1. I.e.,

Φm
e γΦm

e ≤
1

2m
Φm
e , (B.2)

Using the definitions directly we have,

Φm
e γΦm

e = 〈Φm
e 〉 γΦm

e Φm
e ,

≤ αΦm
e ,

(B.3)

where,

α = max
γ∈SEP

Tr(Φm
e γ). (B.4)
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Now using the definition of γ we can write,

max
γ∈SEP

Tr(Φm
e γ)

= max
{ρk,σk}

1

2m

∑
k

pk
∑
i,j

〈j〉 ρki 〈j〉 σki, (B.5)

≤ 1

2m
max
ρ,σ

∑
i,j

〈j〉 ρi 〈j〉 σi, (B.6)

=
1

2m
max
ρ,σ

∑
i,j

〈j〉 ρi 〈i〉 σT j, (B.7)

=
1

2m
max
ρ,σ

Tr(ρσT ), (B.8)

≤ 1

2m
, (B.9)

where in the last inequality I have used the fact that ρ, σT ≤ I. Thus property 1 is

satisfied.

From equation (4.18) the ideal rate of one-shot concentration for a pure state ρ using

a δ-entanglement-generating operation is bounded as,

Eδ,ε(ρ,Φm
e ) ≤ max

ψ∈b∗(ψ,2ε)
Gmin(ψ) + log(1 + δ). (B.10)

Let ψ be the state that achieves this maximisation. Then,

Eδ,ε(ψAB,Φm
e ) ≤ min

γ∈SEP

{
− log Tr(ψγ)

}
+ log(1 + δ), (B.11)

where SEP is the set of separable states. Since ψ is really a bipartite pure state ψ
AB

,

we can write it as a purification of it’s reduced density matrix ρB = TrA(ψ
AB

). Let

ρB =
∑
i

λi|λi〉〈λi|, then there is some unitary U such that,

|ψAB〉 =
∑
i

√
λiU |λi〉A |λi〉B . (B.12)

Now the trace in equation (B.11) is maximized by a product state γ = σ ⊗ δ, since any

convex combination can only decrease the trace. So,

max
γ

Tr(ψ
AB
γ)

= max
σ,δ

∑
i,j

√
λiλj 〈λj〉U †σUλj 〈λi〉 δλi. (B.13)
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The above sum is maximized by choosing σ = U |λmax〉〈λmax|U † and δ = |λmax〉〈λmax|

where |λmax〉 is understood to be the eigenvector with the largest eigenvalue. So,

max
γ∈SEP

Tr(ψ
AB
γ) = λmax(ρ

B). (B.14)

Using this,

Eδ,ε(ψAB,Φe) ≤ − log λmax(ρ
B) + log(1 + δ) (B.15)

= Smin(ρB) + log(1 + δ). (B.16)

B.1.2 Coherence

For the unit maximally coherent state,

|Φc〉 =
1√
2

(|0〉+ |1〉) , (B.17)

notice that,

Φm
c γΦm

c = Tr(Φm
c γ)Φm

c , (B.18)

=
1

2m
Φm
c , (B.19)

where in the second line we have used the fact that for any incoherent state γ and pure

state ψ, Tr(ψγ) = λmax(∆(ψ)), where λmax gives the largest eigenvalue and ∆ is the

completely dephasing map in the incoherent basis. Thus the maximally coherent state

also satisfies property 1 with c(Φc) = 1. Following the same line for reasoning as for

entanglement, the ideal concentration rate with error ε for an optimal state ψ using δ-

incoherence-generating operations is bounded as,

Cδ,ε(ρ,Φc) ≤ min
γ∈I

{
− log Tr(ψγ)

}
+ log(1 + δ),

= − log(λmax(∆(ψ)) + log(1 + δ),

= Smin(∆(ψ)) + log(1 + δ).

(B.20)
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