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ABSTRACT

Although convolutional neural networks have proven to be effective and stable
in image feature learning, sequence modelling is still critical for learning spa-
tial and temporal context information. In an image scenario, different semantic

structures can be regarded as a sequence arranged along the horizontal (or vertical)
direction. Moreover, in a video scenario, temporal sequence modelling is necessary for
understanding inter-frame relationships, such as object movement and occlusion. This
thesis explores more effective spatial or temporal sequence modelling for image or video
scenario understanding. For the former, an encoder-decoder framework is proposed to
split an input scenario into a sequence of spatial features and reconstruct the input. By
modelling spatial sequence information, the framework can even predict new scenes with
very large scales in length while keeping a consistent style regarding the given input.
For video understanding, the thesis processes temporal sequences in a recurrent manner
(i.e., frame by frame), which is more memory-efficient. In addition, the thesis proposes
to implicitly impose the feature embedding of each target and relative background to
be contrastive throughout the temporal sequence, promoting the results of downstream
tasks accordingly. Besides, a novel transformation module is designed to model channel
relationships for improving intra-frame representation ability. To validate proposed
approaches and components, extensive experiments are conducted on image outpainting,
instance segmentation, object detection, classification, video classification, and video
object segmentation.
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