

Sequence Modelling with Deep Learning for Visual Content Generation and Understanding by Zongxin Yang

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of Prof. Yi Yang

University of Technology Sydney Faculty of Engineering and Information Technology

Jul 2021

CERTIFICATE OF ORIGINAL AUTHORSHIP

, *Zongxin Yang* declare that this thesis, is submitted in fulfilment of the requirements for the award of Doctor of Philosophy, in the Faculty of Engineering and Information Technology at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note:

Signature: Signature removed prior to publication.

Date: 16th Jul, 2021

ABSTRACT

lthough convolutional neural networks have proven to be effective and stable in image feature learning, sequence modelling is still critical for learning spatial and temporal context information. In an image scenario, different semantic structures can be regarded as a sequence arranged along the horizontal (or vertical) direction. Moreover, in a video scenario, temporal sequence modelling is necessary for understanding inter-frame relationships, such as object movement and occlusion. This thesis explores more effective spatial or temporal sequence modelling for image or video scenario understanding. For the former, an encoder-decoder framework is proposed to split an input scenario into a sequence of spatial features and reconstruct the input. By modelling spatial sequence information, the framework can even predict new scenes with very large scales in length while keeping a consistent style regarding the given input. For video understanding, the thesis processes temporal sequences in a recurrent manner (*i.e.*, frame by frame), which is more memory-efficient. In addition, the thesis proposes to implicitly impose the feature embedding of each target and relative background to be contrastive throughout the temporal sequence, promoting the results of downstream tasks accordingly. Besides, a novel transformation module is designed to model channel relationships for improving intra-frame representation ability. To validate proposed approaches and components, extensive experiments are conducted on image outpainting, instance segmentation, object detection, classification, video classification, and video object segmentation.

ACKNOWLEDGMENTS

I would like to thank my supervisor Professor Yi Yang, without whom I would not have been able to complete this thesis. I sincerely appreciate him for his selfless support and patience. He guided me throughout the research by providing tremendous help on his knowledge and insight into the related fields.

I would also like to thank my colleagues at University of Technology Sydney. I would like to thank Yunchao Wei, Linchao Zhu, Xin Yu, Ping Liu, Yu Wu, Qianyu Feng, Peike Li, Chen Liang, Jiaxu Miao, Yuhang Ding, and many others. I was really fortunate to work with them and participate in intellectual conversations with them.

Lastly, I would like to thanks my mother, Gexiu Liao, and my father, Jianlin Yang, for their support and love throughout the years.

LIST OF PUBLICATIONS

- 1. Z. YANG, J. DONG, P. LIU, Y. YANG, AND S. YAN, Very long natural scenery imageprediction by outpainting, in ICCV, 2019, pp. 10561-10570.
- 2. Z. YANG, L. ZHU, Y. WU, AND Y. YANG, *Gated channel transformation for visual*recognition, in CVPR, 2020, pp. 11794-11803.
- 3. Z. YANG, Y. WEI, AND Y. YANG, Collaborative video object segmentation by foreground-background integration, in ECCV, Springer, 2020, pp. 332-348.

TABLE OF CONTENTS

List of Publications is				
Li	st of	Figures	cii	
List of Tables			vi	
1	Intr	roduction		
	1.1	Visual Feature Learning	1	
	1.2	Sequence Modeling for Image Generation	2	
	1.3	Sequence Modeling for Video Understanding	3	
	1.4	Contributions	4	
2	Lite	erature Review	5	
	2.1	CNN-based Visual Feature Learning	5	
		2.1.1 Image Feature Learning	5	
		2.1.2 Video Feature Learning	5	
	2.2	Image Generation	6	
		2.2.1 RNN-based Image-to-Image Translation	6	
		2.2.2 Generative Adversarial Networks	6	
		2.2.3 Image Inpainting	7	
		2.2.4 Image Outpainting	7	
		2.2.5 Image-to-Image Translation	7	
	2.3	Video Understanding	8	
		2.3.1 Video Classification	8	
		2.3.2 Semi-supervised Video Object Segmentation	8	
3	3 Natural Scenery Image Generation by Spatial Sequence Modeling			
	3.1	Introduction		
	3.2	The Proposed Approach	13	

		3.2.1	Encoder-Decoder Generator	14
		3.2.2	Loss Function	18
	3.3	Result	S	20
		3.3.1	One-step Generation	20
		3.3.2	Multi-Step Prediction	22
	3.4	Conclu	asion	24
4	Col	labora	tive Foreground-Background Integration for Video Under-	
	star	nding		27
	4.1	Introd	uction	27
	4.2	The P	roposed Approach	29
		4.2.1	Pixel-level Matching	31
		4.2.2	Instance-level Attention	33
		4.2.3	Collaborative Ensembler (CE)	34
		4.2.4	Gated Channel Transformation (GCT)	34
		4.2.5	Implementation Details	35
	4.3	Result	s	38
		4.3.1	Comparison Results	39
		4.3.2	Ablation Study	43
	4.4	Conclu	asion	45
5	Fut	ure Wo	orks	47
		_		

Bibliography

49

LIST OF FIGURES

FIGURE

Page

3.1	An illustration of one-step image outpainting, which predicts unseen contents outside the input region with the identical scale of the input. The semantic information and spatial layout must keep harmonious and consistent between	
	predicted contents and the input scenario.	12
3.2	An illustration of multi-step image outpainting in horizontal direction for natural scenarios.	12
3.3	(a) An overview of our outpainting framework, which contains a discriminator and a generator. (b) An illustration of multi-step image outpainting based on our framework. In this iterative manner, we can efficiently predict unseen contents with a very large scale in length	14
3.4	An illustration of Recurrent Contextual Transfer (RCT). The input feature maps are split into a sequence along a spatial dimension (horizontal dimension in our setting). Two layers of LSTM [32] are used to iteratively transfer the spatial sequence from the input region to the predicted region	16
3.5	(a) The structure of Skip Horizontal Connection (SHC). (b) The details of Global Residual Block (GRB). N , and r , and ks denote channel number, dilation rate, and kernel size of convolutional layers separately	16
3.6	 (a): Removing all the SHC connections, the predicted results have a clear faultage on the junction line between the given scene and generated scene. (b) Using only a single SHC connection in the decoder's second stage, the junction boundary becomes smoother and move a bit to the predicted region. (c) Applying all the SHC connections as our default setting, the predicted regults have an availantly smooth junction line. 	17
	results have all excellently should junction fille	т (

3.7	Comparison results on the proposed dataset. (d) The ground-truth image	
	scenes. (c) The predictions have clear faultage on the junction line between	
	the given scene and generated scene using a fully-connected layer to transfer	
	information from the encoder to the decoder. (b) Applying SHC layers can miti-	
	gate the problem of faultage. However, the predicted contents are still blurred	
	where the prediction position is far from the junction line, as highlighted in	
	yellow boxes. (a) We improve the prediction quality in faraway regions by	
	replacing the fully-connected layer with our proposed RCT, which has a better	
	performance in modelling spatial sequence.	18
3.8	Some scenes sampled from the natural scenery dataset. The dataset contains	
	about 6,000 complicated and diverse natural scenes, including starry sky,	
	riverbank, seaside, valley, snow mountain, etc	19
3.9	Comparing our framework with state-of-the-art image generation works on	
	the 1-step generation, ours SHC+RCT framework achieves the best generative	
	quality	21
3.10	We can generate outpainting images with a huge scale in length. Given an	
	image scene with a size of 128×128, our method iteratively generates a 16	
	times larger scene in the horizontal direction from left to right, leading to a	
	large prediction with a size of 2176 pixels in length. Since the predictions are	
	too long, we divide every prediction into two halves	23
3.11	We generate outpainting images in both the horizontal directions, left and	
	right. Given an input image, our method iteratively generates a 4 times larger	
	scene for each horizontal direction, leading to a large prediction with a size of	
	1152 pixels in length	23
3.12	Comparison results on multi-step generations.	24
3.13	A snow mountain prediction starting from a scene with rarely observable	
	contents. Such a case is extremely difficult for traditional non-deep-learning	
	works.	24
4.1	CI denotes Collaborative Integration. The dot-line arrow denotes the proposed	
	background matching. In the given video sequence, we have two foreground	
	objects, <i>i.e.</i> , pink sheep and blue sheep. Without background matching, the	
	blue sheep's prediction is confused by one similar sheep in the background	
	region, as shown in the top line. By adding the background matching, the	
	confusion problem is relieved, as shown in the bottom line	28

4.2	CFBI overview . F-G, red color, and blue color denote Foreground-Background,	
	foreground region, background region, respectively. The confidence of the	
	matching map with a deeper colour will be higher. Given the current frame	
	(t = T), the reference frame with mask $(t = 1)$, and the previous frame with	
	mask ($t = T - 1$), CFBI will model their temporal dependencies and predict	
	the target segmentation of the current frame. First, we use a backbone to	
	extract pixel-level embeddings for all three frames. The pixel-level embed-	
	dings of $t = T - 1$ and $t = 1$ will be separated into foreground embeddings and	
	background embeddings regarding the given masks. Then, the instance-level	
	attention and pixel-level matching will be applied to both the foreground	
	embeddings and background embeddings to model temporal sequence infor-	
	mation and predict the current frame segmentation. During inference, given	
	the first frame mask, we can predict target masks from the reference frame	
	to the final one by iterating such a prediction process.	30
4.3	In video understanding, there are diverse movement speeds, from nearly	
	static to fast, of foreground objects. The demonstration video sequences are	
	sampled from YouTube-VOS [81]	32
4.4	The detailed structure of the instance-level attention module. C , W , and	
	H mean channel dimension, width, and height, separately. C_e refers to the	
	channel number of pixel-level embedding extracted from the backbone	33
4.5	The detailed architecture of Gated Channel Transformation.	35
4.6	By using normalization operation, GCT is able to explicitly model some chan-	
	nel relations, like cooperation (decreasing channel variance) and competition	
	(increasing channel variance).	35
4.7	(a) If we use traditional random cropping, some cropping boxes (red boxes as	
	shown) will contain little or even no object region. (b) By using the proposed	
	balanced-crop, all the cropping boxes contain enough foreground pixels	36
4.8	On the validation split of DAVIS 2017, CFBI is compared with a state-of-	
	the-art VOS method, STMVOS. STMVOS confuses a part of the person and	
	the bicycle in the second video. Besides, CFBI is successful in segmenting	
	the foreground weapon after blur and occlusion in the top sequence, while	
	STMVOS fails.	37

4.9 On YouTube-VOS and DAVIS 2017, we show some qualitative results of CFBI. On YouTube-VOS, CFBI succeeds in matching and segmenting all the desired sheep with a similar appearance from a flock of sheep. On DAVIS 2017, CFBI performs perfectly after the occlusion on the dogs and the person. However, when two objects have very similar textures and are very close, CFBI is still confused by a part of the object, as shown in the bottom sequence. 39

LIST OF TABLES

TABLE

Page

3.1	The hyper-parameter setting of our encoder-decoder generator.	15
3.2	Ablation study of different GRB number. 1 denotes we remove all the GRB	
	blocks except the one where the feature dimensions are $16 imes 32 imes 256$	21
3.3	Comparison results in FID [31] and IS [57] metrics. In the testing split of	
	proposed natural scenary dataset, the images have an average IS score of 3.387.	22
4.1	Compare CFBI with existing frameworks on the validation 2018, validation	
	2019, and testing 2019 splits of YouTube-VOS [81]. MS denotes that the flip	
	& multi-scale augmentation is used in the evaluation. * , SD, and FT denote	
	model ensemble, simulated training data, and online fine-tuning, respectively.	38
4.2	Compare CFBI with existing frameworks on the validation split of DAVIS	
	2016 [52]. (YT) denotes both the training splits of YouTube-VOS and DAVIS	
	2017 are used in the training process.	40
4.3	Compare CFBI with existing frameworks on the validation split and the	
	testing split of DAVIS-2017 [53].	41
4.4	Apply GCT to modern CNNs for evaluating the error performance (%) in	
	image classification on ImageNet [56]. G/P denotes GFLOPS/Parameters. $\ . \ .$	42
4.5	Apply GCT to Mask R-CNN [28] in instance segmentation (mask AP) and	
	object detection (box AP) on COCO [45]	42
4.6	Apply GCT to NL [74] in action recognition, using top-1 accuracy (%), on	
	Kinetics	43
4.7	We ablate different background information from CFBI in these experiments.	
	*, IL, PL denote removing the foreground bias and background bias, the	
	instance-level attention, and pixel-level matching, respectively	43
4.8	Ablation of other components.	44