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ABSTRACT

Although convolutional neural networks have proven to be effective and stable
in image feature learning, sequence modelling is still critical for learning spa-
tial and temporal context information. In an image scenario, different semantic

structures can be regarded as a sequence arranged along the horizontal (or vertical)
direction. Moreover, in a video scenario, temporal sequence modelling is necessary for
understanding inter-frame relationships, such as object movement and occlusion. This
thesis explores more effective spatial or temporal sequence modelling for image or video
scenario understanding. For the former, an encoder-decoder framework is proposed to
split an input scenario into a sequence of spatial features and reconstruct the input. By
modelling spatial sequence information, the framework can even predict new scenes with
very large scales in length while keeping a consistent style regarding the given input.
For video understanding, the thesis processes temporal sequences in a recurrent manner
(i.e., frame by frame), which is more memory-efficient. In addition, the thesis proposes
to implicitly impose the feature embedding of each target and relative background to
be contrastive throughout the temporal sequence, promoting the results of downstream
tasks accordingly. Besides, a novel transformation module is designed to model channel
relationships for improving intra-frame representation ability. To validate proposed
approaches and components, extensive experiments are conducted on image outpainting,
instance segmentation, object detection, classification, video classification, and video
object segmentation.
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1
INTRODUCTION

1.1 Visual Feature Learning

For visual feature learning, there are two types of basic data, image and video. For
the former, it has been demonstrated that Convolutional Neural Networks (CNNs) are
effective in fundamental computer vision tasks, such as segmentation [61], classifica-
tion [35], and detection [61]. A single convolutional layer computes with a small region
of neighbouring pixels for each spatial position, which suffers from the problem of local
ambiguities [67]. To relieve such a problem, it is proposed to construct deep CNNs and im-
prove the receptive fields by VGGNets [60], using multiple stages of convolutional layers,
non-linear layers, and pooling operators. Moreover, a residual connection is introduced by
ResNets [29] for building deeper yet stable convolutional architectures. Although deeper
CNNs help to enlarge the receptive fields of networks, the learned spatial dependencies
are still restricted in a fixed range [69].

Extending 2D CNNs to 3D ones, C3D [40, 68] and many following methods (e.g., [74])
has proven to be effective for modeling spatial-temporal features in video recognition
tasks, such as action classification [42]. However, a large amount of computational
resource is required to run these methods, and thus most of the researchers only afford
to model temporal dependencies in short video sequences, with 16 frames in usual [74].
Besides, all the input video frames must be fed to 3D CNNs simultaneously and in
parallel, rather than frame by frame. The latter manner puts less pressure on memory
usage for inference.

1



CHAPTER 1. INTRODUCTION

Compared to CNN-based methods, sequence modelling based methods (e.g., [14, 32])
show a better talent to learn long-term dependencies in Natural Language Processing
(NLP) tasks. Moreover, Recurrent Neural Networks (RNNs) [5] process sequential in-
formation in a node by node manner instead of in parallel. This one-by-one manner
allows the network to receive input data online, and changing the length of the input
data will not affect memory usage. In recent years, more and more sequence modelling
based methods are introduced to replace or cooperate with CNN-based methods in vi-
sual tasks, such as lip reading [16], image captioning [80], localization [39], and image
understanding [7].

1.2 Sequence Modeling for Image Generation

Image generation is one of the most fundamental visual tasks and is closely related to
sequence modelling. Intuitively, a person asked to paint, draw or otherwise recreate a
visual scenario will naturally do so in a sequential, iterative procedure [25]. Following
this concept, RNNs have been applied and shown to excel in handwriting generation [24].
DRAW [25] mimicked the foveation of the human eye to construct complex images
iteratively, with an RNN-based auto-encoding framework. Furthermore, PixelRNN [69]
proposed to sequentially predict the pixels in a scene in the two spatial directions.
However, the training and inference of PixelRNN are impractical and inefficient to cover
all the pixels when handling high-resolution images.

Differently, CNN-based methods [38, 50, 85] aimed to generate entire scenes at once
and employs downsample-upsample pipelines to improve computational efficiency. Com-
pared to RNN-based methods, CNN-based methods can only learn contextual information
in fixed extents due to limited receptive fields. Thus they are difficult to make long-range
predictions while keeping consistency in each image scene.

In Chapter 3, an effective end-to-end framework is proposed to model long-range
dependencies for image generation. Given an input image scene, the method generates
unseen contents outside the given image border. The predicted scene should keep seman-
tically harmonious regrading the given scene and can be much larger than the input
scene. This setting is also known as image outpainting or image extrapolation. In con-
trast to popular CNN-based image inpainting [85], outpainting is rarely studied before.
There are two major challenges for outpainting: (1) The inconsistency between generated
and original regions. (2) The difficulty in making predictions in high qualities when
spatially far away from the input. An encoder-decoder framework is proposed to solve the

2



1.3. SEQUENCE MODELING FOR VIDEO UNDERSTANDING

above two problems, combining recurrent sequence modelling module (LSTM [32]) with
CNN architectures. The designed framework can generate highly realistic images with
very large scales in length while keeping a consistent style regarding the given input.
More than that, a new natural scenery dataset is collected and proposed to evaluate
our method’s effectiveness. The dataset contains about 6,000 complicated and diverse
natural scenes, including starry sky, riverbank, seaside, valley, snow mountain, etc.
Sufficient experiments and ablation studies on this dataset demonstrate the efficiency
and effectiveness of the framework.

1.3 Sequence Modeling for Video Understanding

A lot of attention has been attracted by 3D-CNN based methods [22, 40] in video recogni-
tion tasks in recent years. However, these methods are usually applicable in modelling
temporal information in short videos [74]. Such a characteristic limits the application of
3D-CNN in many Video Semantic Segmentation [92], Video Object Tracking (VOT) [4],
and Video Object Segmentation (VOS) [6]. To efficiently process long-term video sequence,
many methods for these tasks employs a recurrent and iterative manner, i.e., processing
the given video frame by frame.

Chapter 4 focuses on exploring a more efficient and effective temporal sequence
modelling framework for the challenging semi-supervised VOS. Given a video sequence
and desired objects’ masks of the reference frame, semi-supervised VOS is responsible
for segmenting objects in a pixel-wise manner across the entire video sequence.

Many VOS works [48, 70], proposed for semi-supervised VOS and based on temporal
sequence modelling, have shown promising performance. However, few VOS works focus
on modelling the background region’s temporal sequence information and only pay
attention to finding robust matching mechanisms based on the foreground target (s).
The foreground region is intuitively easy to be recognised from a video when accurately
removing the background. More than that, video scenarios usually contains a group
of similar-looking instances, such as humans, animals, and cars. Under these cases,
predictions of one foreground object are easy to be confused by a similar-looking instance
in the background.

Unlike previous works that only focus on the foreground object’s temporal sequence
modelling (s), we argue that the background dependencies are equally important. In
Chapter 4, we propose a Collaborative Foreground-Background Integration (CFBI) ap-
proach for semi-supervised VOS. In CFBI, the learned feature embeddings from the

3



CHAPTER 1. INTRODUCTION

foreground target and the background region are implicitly compelled to be contrastive,
thus promoting the network’s representative ability and improving the VOS accuracy.
To handle various object scales, both pixel-level and instance-level information types
are applied for matching targets between the given reference and the video frames
required to predict. Besides, a novel transformation module is designed to model channel
relationships in a single frame to improve representation ability. A series of experiments
are designed on three popular benchmarks, and CFBI exceeds all the state-of-the-art
VOS approaches.

1.4 Contributions

This thesis is organised as follows. After this chapter, Chapter 2 presents the literature
review on visual feature learning and covers related recent studies on image generation
and video understanding, including image inpainting, image outpainting, video classi-
fication, and video object segmentation. In Chapter 3, an encoder-decoder framework
by introducing horizontal sequence modelling is proposed to predict very long natural
scenery images. We collect a diverse natural scenery dataset and evaluate the model
with it on image outpainting. Chapter 4 proposes a video understanding framework for
iteratively segmenting the given object from the video frame by frame. The model is
evaluated on video object segmentation. Chapter 5 briefly summarises the thesis and
show future directions for improvements.

In this thesis, I make the following contributions:
(1) An efficient encoder-decoder network is designed by combining sequence modelling

with CNN architectures for image outpainting. Before the proposed framework, there
are rare deep learning based methods for image outpainting.

(2) I collect a new outpainting dataset, in which 6,000 complicated natural scenarios
are collected. We validate the effectiveness of the outpainting framework on the proposed
dataset.

(3) I consider video background to be equally treated as foreground and propose
a video understanding framework for semi-supervised VOS. The proposed methods
outperform all the previous strongest approaches on the three most popular benchmarks
while maintains an efficient run-time.

(4) I design a generally applicable transformation module for visual understanding.
In this unit, explainable and trainable variables are proposed to model global channel
relationships in CNNs.
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2
LITERATURE REVIEW

2.1 CNN-based Visual Feature Learning

2.1.1 Image Feature Learning

VGGNets [60] and Inception networks [65] has proved that it is critical for im-
proving the representative ability of image networks by constructing deep convo-
lutional networks. A residual connection was introduced by ResNets [29] to help

build convolutional structures with larger depth. The residual connection concept has
been demonstrated to be robust and stable in many following methods [30, 79].

Many other works paid attention to another manner, i.e., increasing the diversity of
operator composition, for improving the representative ability of the basic convolutional
elements (or blocks) within CNNs. InceptionV3 [66] proposed to construct computational
elements with multi-branch pooling or convolutional layers. ResNeXt [79] proved that
grouped convolutional layers are practical and efficient in improving the cardinality of
block transformations. Even though the efforts mentioned above have made significant
progress in image feature learning, the learned spatial dependencies are still restricted
in a fixed range due to the limited size of convolutional receptive fields [69].

2.1.2 Video Feature Learning

After 2D CNNs achieved much success in image tasks, 3D convolutions [40, 68] (C3D)
were introduced for video classification task. Among the methods following C3D, Non-

5



CHAPTER 2. LITERATURE REVIEW

local neural networks [74] (NLNets) designed a non-local operation for modelling global
dependencies, which are difficult to capture by convolutional layers. The non-local oper-
ation significantly improved the accuracy of video classification [42]. However, a large
amount of computational resource is required to run these methods and thus only afford
to model temporal dependencies in short video sequences, with 16 frames in usual [74].
In addition, all frames of the input video must be fed to 3D CNNs simultaneously and in
parallel, rather than frame by frame. The latter puts less pressure on memory usage.

2.2 Image Generation

2.2.1 RNN-based Image-to-Image Translation

Many approaches based on RNNs have been proposed to learn spatial dependencies for
image generation. Graves et al. [24] proved that RNNs are promising in handwriting
generation. DRAW [25] mimics the foveation of the human eye to construct complex
images with an RNN-based auto-encoding framework iteratively. Furthermore, Pixel-
RNN [69] present an RNN that iteratively generates the pixels in a scene in the two
spatial directions. However, the training and inference of PixelRNN are impractical and
inefficient to cover all the pixels when handling high-resolution images.

In comparison, we combine both convolutional and recurrent structures into an end-
to-end framework in Chapter 3. The input or output sequences of the RNN module are
downsampled or upsampled by our encoder-decoder convolutional network. Thus the
length of the sequence is significantly reduced.

2.2.2 Generative Adversarial Networks

It has been demonstrated that Generative Adversarial Networks (GANs) [23] is suc-
cessful in various visual problems, including visual content generation [18, 54], style
transfer [91], and image completion [50]. GAN proposed a training pipeline consisting
of a discriminator and a generator. The generator was compelled by the discriminator
to captures the training data attributes by using an adversarial loss. Diverse variants
of GANs have arisen to stabilise the training of GAN. Among them, commonly used
WGAN-GP [26] introduced a gradient penalty process and achieved much better training
stability. Hence, we utilise WGAN-GP in this thesis for our image outpainting approach.

6



2.2. IMAGE GENERATION

2.2.3 Image Inpainting

Many preliminary published works for image inpainting [3, 49] employed non-semantic
approaches to match local patches and fill the missing hole. Benefit from the development
of CNNs, recent methods [36, 50, 82, 85] outperform the traditional methods, not sur-
prisingly. As the scale of the missing hole or patch grows larger, however, the predicted
results’ performance degrades.

2.2.4 Image Outpainting

Image outpainting or image extrapolation is more challenging than image inpainting due
to larger missing regions and less contextual information. There have been many classical
methods [44, 62, 87] for image extrapolation or image outpainting. These methods were
based on traditional processing methods instead of based on deep learning. Many of the
traditional approaches attempted to “search" similar scene(s) from the given candidate(s)
and then spatially stitch the matched scene patch(es) with the input scene. These
traditional methods have many limitations. First, Constructing handcrafted features
is elaborate and complicated. Second, many post-processes, such as local warping [73],
are necessary for guaranteeing smooth patch stitching. Third, the searching space of
the candidates significantly affects the outpainting results. The prediction will fail if
there is no suitable patch in candidates. The framework proposed in Chapter 3 is the
first method based on deep learning for solving image outpainting problem to the best of
our knowledge.

2.2.5 Image-to-Image Translation

In recent works [23, 38, 58, 91] for image-to-image translation, Deep CNNs have been
widely applied. “Pix2Pix" [38] proposed to model pixel-to-pixel mapping by using con-
ditional generative adversarial network [23]. Many methods applied the concept of
“Pix2Pix" to related tasks, such as sketch-to-photograph transfer [58] and many other
style transfer tasks [20, 91]. There is a notable difference between image-to-image trans-
lation and image outpainting. In the former, the input scene and the output one share a
similar semantic layout and consistent spatial position. However, in image outpainting,
the output scene is larger than the input one. Many pixels, outside the input region and
in the output scene, have no corresponding pixels in the input scene.

7
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2.3 Video Understanding

2.3.1 Video Classification

Apart from the above CNN-based methods for video feature learning, many methods
investigated temporal sequence modelling in videos for video classification. Long Short-
Term Memory [32], which has good stability in long-term sequence modelling, was
employed by Ng et al. [86] and Donahue et al. [19]. A Convolutional Gated Recurrent
Unit is proposed by Ballas et al. [2] to utilise information from multiple spatial scales of
the feature. Srivastava et al. [63] extended the sequence to sequence framework [64] to
learn features from consecutive frames and proposed a composite recurrent autoencoder
for unsupervised video learning.

2.3.2 Semi-supervised Video Object Segmentation

A lot of frameworks based on temporal sequence modelling have been proposed to
process long-term video sequences efficiently iteratively in the field of semi-supervised
VOS. Among them, some methods [6, 77] proposed to fine-tune the VOS framework
on the given reference frame, which are attached with the ground-truth object mask
in semi-supervised VOS. OnAVOS [71] introduced an online fine-tuning approach, i.e.,
fine-tuning on the reference frame during the inference process. MaskTrack [51] tracked
objects by using optical flow to propagate the mask of objects from one frame to the
following one. For improving the performance, PReMVOS [46] combined four different
deep convolutional networks into a framework, but quite a lot of fine-tuning processes
are used for training and inference. Even though the efforts mentioned above have
achieved promising results, the fine-tuning at the inference stage heavily slows down
these methods’ run-time.

To avoid using inefficient online fine-tuning, recent methods (e.g., [12, 83]) focused on
improving the effectiveness of temporal sequence modelling. A concept of instance-level
embedding was introduced by OSMN [83] for efficiently predicting the object segmenta-
tion. PML [11] leveraged a nearest-neighbour classifier to learn pixel-wise embeddings
for objects. A pixel-level matching mechanism was proposed by VideoMatch [34] to map
the pixel attributes from the reference frame to the current object frame. In addition,
FEELVOS [70] proposed a glocal and local matching pipeline for efficient multi-object
video segmentation. The local matching is responsible for matching the object’s pixels
between the previous frame and the current one. STMVOS deployed a memory bank for

8
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reading and storing the object attributes from the frames in history. However, extensive
simulated data generated from various datasets are necessary for training STMVOS.
Without such an elaborate training procedure, the performance of STMVOS drops a lot.

In Chapter 4, both the instance-level and pixel-level information types are utilised to
model temporal sequences for VOS. Moreover, a collaborative foreground-background
integration approach is proposed to learn more contrastive embedding of the background
region additionally. The above-mentioned methods ignore important background match-
ing.
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3.1 Introduction

As illustrated in Fig. 3.1, the objective of image outpainting is to predict unseen
contents outside the border of a given scene. The predicted scene has to be
harmonious and consistent regarding the given scene on both semantic content

and spatial configuration. The utilisation of image outpainting is promising in various
applications. However, it is still hindered for realistic image outpainting due to this
problem’s difficulties.

Compared to image inpainting [3, 49], which has to completes missing regions inside
the given images, two major difficulties exist in image outpainting. First, it is not easy
to smoothly connect the semantic information and spatial layout between the predicted
contents and the given image. [73] proposed to warp local textures to generate smooth
transition around the boundaries between predictions and inputs. Second, it is hard to
make the predicted contents in the distance be harmonious with the given scene because
little contextual information can be used to infer the unseen region.

To solve the image outpainting problem, Some preliminary works [44, 62, 73, 87] have
been proposed. These methods were based on traditional processing methods instead of
based on deep learning. Many of the traditional methods attempted to “search" similar
scene(s) from the given candidate(s) and then spatially stitch the matched patch(es) with
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Outpainting

?

Figure 3.1: An illustration of one-step image outpainting, which predicts unseen contents
outside the input region with the identical scale of the input. The semantic information
and spatial layout must keep harmonious and consistent between predicted contents
and the input scenario.

Input Prediction

...� N

Figure 3.2: An illustration of multi-step image outpainting in horizontal direction for
natural scenarios.

the input scene. These traditional methods have many limitations. First, Constructing
handcrafted features is elaborate and complicated. Second, many post-processes, such
as local warping [73], are necessary for guaranteeing smooth patch stitching. Third,
the searching space of the candidates significantly affects the outpainting results. The
prediction will fail if there is no suitable patch in candidates.

It has proved that deep encoder-decoder networks are robust in image inpainting [50].
In these networks, the encoder parts are responsible for extracting a high-level convolu-
tional feature from an input image, while the decoder parts will generate and predict a
completed image by modelling contextual dependencies. Following the same strategy, we
construct an encoder-decoder pipeline for image outpainting. Moreover, some innovative
improvements are made in the pipeline to handle the two critical problems mentioned
above.

A person asked to draw or paint an image outpainting will naturally and sequentially
do so from the image boundary to the faraway distance. Following the same concept,
Recurrent Contextual Transfer (RCT) is proposed to model spatial sequence infor-
mation in a single direction (horizontal direction in our default setting). RCT works
in a sequence-to-sequence manner, i.e., the spatial sequence of the input image will be
transferred to a new spatial sequence for predicted contents. We use RCT to connect
the network encoder and decoder. In other words, the spatial sequence length is firstly
downsampled by the convolutional encoder. Thus, RCT is much more computationally
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efficient than PixelRNN [69], which processed spatial sequences at a pixel level. The
benefit from the sequence modelling of RCT is that our network can maintain the faraway
predictions with the input scene.

Apart from the spatial sequence modelling, we propose Skip Horizontal Connec-
tion (SHC) to further fuse the encoder’s information with decoder’s around the boundary
of the given input. SHC constructs horizontal connections at multiple spatial levels be-
tween the encoder and decoder. By doing this, the decoder can learn strong spatial
dependencies around the input boundary, promoting the smoothness and quality of the
predicted contents accordingly.

Combining the advantages of the above RCT and SHC modules, our outpainting
framework is able to predict unseen contents with extra length beyond the input boundary.
Fig. 3.2 shows a recurrent outpainting approach based on our method. Specifically, the
last step’s prediction will be used as the input for the next step iteratively. This approach
can efficiently predict realistic and smooth predictions with a very large scale in length.
Our method is capable of generating content with high qualities, even if the contents are
placed far from the given scene, where rare contextual dependencies can be used.

A new dataset with natural scenarios is collected and proposed to evaluate our
method’s effectiveness. The dataset contains about 6,000 complicated and diverse natural
scenes, including starry sky, riverbank, seaside, valley, snow mountain, etc. Extensive
experiments are designed on the natural scenery dataset, and the proposed framework
outperforms all competitors [36, 38, 85], not surprisingly.

3.2 The Proposed Approach

Fig 3.3(a) shows an overview of our outpainting framework, which follows the pipeline of
GAN [23], i.e., a discriminator and a generator. We follow the commonly-used encoder-
decoder framework to build the generator, where Skip Horizontal Connection (SHC) is
applied to fuse the encoder’s information into the decoder’s on multiple spatial scales.
Moreover, Global Residual Blocks (GRB) is designed to create a large receptive field
to learn more local contextual information. Besides, Recurrent Contextual Transfer is
proposed to model spatial sequence information and connect the encoder and decoder.

13



CHAPTER 3. NATURAL SCENERY IMAGE GENERATION BY SPATIAL SEQUENCE
MODELING

Conv

Resblock×3

Resblock×4

Resblock×5

Trans-Conv

Resblock×2
SHC+GRB

RCT

Resblock×3

SHC+GRB

Trans-Conv

SHC
Trans-Conv

SHC
Trans-Conv

Ground 
Truth

Input

Left half

Prediction

Global D

Adversarial Loss

Reconstruction Loss

SHC+GRB

Trans-Conv
Resblock×4

fake

real

128×256 
×3

128×128 
×3

64×64 
×64

32×32 
×128

16×16 
×256

8×8 
×512

4×4 
×1024

4×8 
×1024

128×256 
×3

64×128 
×64

8×16 
×512

16×32 
×256

32×64 
×128

Local D

Conv

(a) Overview

Generator

Input

Generator

Generator

...

Prediction 1

Prediction 2

Prediction N-1

Prediction N

...

Stitch

Input Pred 1 Pred 3 Pred 4 Pred 5

...
Pred …

(b) Multi-Step Prediction

Figure 3.3: (a) An overview of our outpainting framework, which contains a discrimi-
nator and a generator. (b) An illustration of multi-step image outpainting based on our
framework. In this iterative manner, we can efficiently predict unseen contents with a
very large scale in length.

3.2.1 Encoder-Decoder Generator

In this section, an encoder-decoder generator is designed for image outpainting. Given an
input image, the encoder part is responsible for extracting its representative feature and
then split the feature into a spatial sequence. The proposed RCT module will transfer
the sequence feature from the input region to the predicted unseen region. The decoder
part takes the transferred spatial sequence to generate an unseen prediction with the
same scale, style, and consistent scene regarding the generator input.

Encoder. We follow the structure of commonly-used ResNet-50 to build our encoder. In
detail, the layers of ResNet-50 after conv4_5 are removed. Moreover, we use a convolu-
tional layer (stride= 2) to replace the max pooling layer.

Convolutional layers are difficult to propagate global context information from the
input region to another predicted region since the convolutional receptive fields’ scales
are limited [50]. For solving this problem, Context-Encoder [50] employed fully-connected
layers to build pixel-to-pixel correspondence between the input region and the predicted
region. However, the use of fully-connected layers restricted Context-Encoder that they
can only deal with features with fixed dimensions. Such a restriction decreases the
prediction qualities when predictions are required to be large-scale, which is shown
in Fig. 3.7(c). Furthermore, fully-connected layers utilise a mass of parameters, and
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layer output size parameters
Conv 64×64×64 4×4, stride=2
Conv 32×32×128 4×4, stride=2

Res-Block×3 16×16×256 first block’s stride=2
Res-Block×4 8×8×512 first block’s stride=2
Res-Block×5 4×4×1024 first block’s stride=2

RCT 4×4×1024 None
GRB+SHC 4×8×1024 dilation=1
Res-Block×2 4×8×1024 None
Dilated-Conv 8×16×512 4×4, stride=2
GRB+SHC 8×16×512 dilation=2
Res-Block×3 8×16×512 None
Dilated-Conv 16×32×256 4×4, stride=2
GRB+SHC 16×32×256 dilation=4
Res-Block×4 16×32×256 None
Dilated-Conv 32×64×128 4×4, stride=2

SHC 32×64×128 None
Dilated-Conv 64×128×64 4×4, stride=2

SHC 64×128×64 None
Dilated-Conv 128×256×3 4×4, stride=2

Table 3.1: The hyper-parameter setting of our encoder-decoder generator.

thus the training process will become inefficient or impractical when handling high-
resolution images. Instead of using fully-connected layers, we propose a Recurrent
Contextual Transfer (RCT) module for modelling spatial dependencies to avoid the above
shortcomings.

Recurrent Contextual Transfer. Fig. 3.4 shows the detailed structure of our RCT
module, which is responsible for modelling spatial sequence dependencies and transfer-
ring the features from the encoder output to the decoder input in a spatially iterative
approach. Specifically, we first split the feature maps of the given input into a sequence
along a spatial dimension (horizontal dimension in our setting). The input channel
dimensions are reduced by one convolutional layer. After that, RCT uses two layers of
LSTM [32] to iteratively transfer the spatial sequence from the input region to the pre-
dicted region. The predicted sequence will be stitched back into a convolutional feature,
followed by one convolutional layer for increasing the channel dimensions. Thus, the
input feature maps and the output ones of RCT will share the same channel dimension.

The benefit of the recurrent structure in RCT is that we can control the prediction
region’s scale by adjusting the predicted spatial sequence’s length. More than that, we
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Figure 3.4: An illustration of Recurrent Contextual Transfer (RCT). The input feature
maps are split into a sequence along a spatial dimension (horizontal dimension in our
setting). Two layers of LSTM [32] are used to iteratively transfer the spatial sequence
from the input region to the predicted region.

can efficiently predict scenes with high-quality and very large scale in length by iterating
the generator, as shown in Fig. 3.10, 3.11.
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Figure 3.5: (a) The structure of Skip Horizontal Connection (SHC). (b) The details of
Global Residual Block (GRB). N, and r, and ks denote channel number, dilation rate,
and kernel size of convolutional layers separately.

Decoder. The decoder is responsible for decoding the predicted feature maps from RCT
and outpainting the given image to an entire image containing an unseen and adjacent
region. Without loss of generality, we will predict the right half of an image scene in our
default setting, given the left half. To construct the decoder network, we use 5 transposed-
convolutional layers, which is prevalent in image generation to upsample convolutional
features and decrease the number of neurons accordingly. Different from previous works
(e.g., [50]), Skip Horizontal Connection is proposed to fuse the encoder’s information
with decoder’s further, around the boundary of the given input.
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(a) Without SHC (b) Single SHC (c) Full SHC (Ours) (d) Ground-truth

Figure 3.6: (a): Removing all the SHC connections, the predicted results have a clear
faultage on the junction line between the given scene and generated scene. (b) Using only
a single SHC connection in the decoder’s second stage, the junction boundary becomes
smoother and move a bit to the predicted region. (c) Applying all the SHC connections as
our default setting, the predicted results have an excellently smooth junction line.

Skip Horizontal Connection. U-Net [55] introduced a framework, which concatenates
the encoder features with the decoder features at each spatial level. Thus, the encoder
information would be easier to assess during the decoding process. Following the same
strategy, we propose Skip Horizontal Connection (SHC) to build more connections in
our encoder-decoder generator. Unlike U-Net, our SHC does concatenation on a spatial
dimension instead of the channel dimension since the decoder’s desired spatial region is
not consistent with the encoder’s one. In our setting, the decoder features have a spatial
region outside the input region, which is different from the encoder features.

Fig. 3.5(a) illustrates the detailed structure of SHC. Let Dh,w,c and Eh,w2 ,c denote a
feature from decoder and a feature from encoder, respectively, a output feature D

′
h,w,c is

computed by SHC. Specifically, we first concatenate Eh,w2 ,c with Dlef t
h,w2 ,c

, the left half of
Dh,w,c on the dimension of channels. Second, 3 convolutional layers, which constitute a
bottleneck structure like bottleneck Res-Block [29], are used to merge the information in
the concatenated feature into a new feature, E

′

h,w2 ,c
. After that, a element-wise residual

connection is applied between Eh,w2 ,c and E
′

h,w2 ,c
, and generates Dlef t′

h,w2 ,c
. Finally, we use

Dlef t′
h,w2 ,c

to replace the left part of the decoder feature, and thus the encoder information is
introduced.

Apart from SHC, Global Residual Block is proposed to make large receptive fields
and learn a wide range of contextual information. Following ResNets [29], we employ
a residual structure, which performs stable during the training process. For reducing
computation cost, the normal n×n convolutional layer is replaced with a combination
of two convolutional layers with the kernel size of n×1 and 1×n. Furthermore, dilated-
convolutional layers [84] are used to enlarge the receptive field while keeping coverage
and resolution. In our outpainting setting, the horizontal scale is larger and more
important than the vertical one. Thus, our GRB modules use a larger kernel size in the
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(a) SHC+RCT (Ours) (b) SHC+FC (c) FC (d) Ground-truth

Figure 3.7: Comparison results on the proposed dataset. (d) The ground-truth image
scenes. (c) The predictions have clear faultage on the junction line between the given
scene and generated scene using a fully-connected layer to transfer information from the
encoder to the decoder. (b) Applying SHC layers can mitigate the problem of faultage.
However, the predicted contents are still blurred where the prediction position is far
from the junction line, as highlighted in yellow boxes. (a) We improve the prediction
quality in faraway regions by replacing the fully-connected layer with our proposed RCT,
which has a better performance in modelling spatial sequence.

horizontal direction.

3.2.2 Loss Function

Two types of loss functions, i.e., a generative adversarial loss and a masked reconstruction
loss, are used in our framework. The latter focuses on the low-level attributes of image
scenes and is employed to capture the logical correlations and the overall layout of
the given input scene’s predicted contents. Differently, the adversarial loss [1, 23, 26]
is responsible for improving the quality of scene details, which belong to high-level
attributes.
Masked Reconstruction Loss, Lrec(x), is based on a MSE loss applied between the
entire generated scene containing the input region x̃ and the ground-truth scene x. The
MSE loss can make compel the generator to generate a rough and blurry layout of the
predicted scene with regrads to the ground-truth [50]. In formula,

(3.1) Lrec(x)=M% ∥ x− x̃ ∥22,

where a mask weight, M, is applied to progressive decrease the weight of MSE along
the horizontal direction towards the predicted region. The mask applied in loss function
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Figure 3.8: Some scenes sampled from the natural scenery dataset. The dataset contains
about 6,000 complicated and diverse natural scenes, including starry sky, riverbank,
seaside, valley, snow mountain, etc.

has been commonly used in many image generation methods [36, 50, 85]. Intuitively, the
prediction should have little correlation with the ground-truth scene where the region
is far away from the input boundary. A cos function is used to decay M to 0, which is
different from the mask function used in previous works. Let d denote the horizontal
distance between a position in the predicted region and the input boundary, our mask
function is:

(3.2) M(d)=
1+ cos( dπ

Wp
)

2
,

where Wp denotes the width of the predicted region in the training stage.
Global and Local Adversarial Loss is employed to learn high-level details to solve
the blurry problem of MSE loss. Specifically, two types of discriminators, i.e., one global
discriminator and one local discriminator, are used to make that the predicted contents
can not be distinguished from real scenes. The global discriminator takes the entire
image scene, containing both the input region and the predicted region, as input. In
comparison, the local discriminator takes only the predicted region. Besides, we follow
the same strategy in WGAN-GP [26] to construct each discriminator, glocal or local.

WGAN-GP enforces a muted constraint, a gradient penalty regarding the gradient
norm, on the discriminator. Let x̃∼Px̃ denote a random sample from the predicted scenes,
the formular of our objective is,

(3.3) max
G

min
D

λgp E
x̃∼Px̃

[(∥ ∇x̃D(x̃) ∥2 −1)2]+ E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)].

Thus the formular of our discriminator loss, Ldis, is

(3.4) Ldis =min
D

λgp E
x̃∼Px̃

[(∥ ∇x̃D(x̃) ∥2 −1)2]+ E
x̃∼Pg

[D(x̃)]− E
x∼Pr

[D(x)].

Moreover, the generator loss, Lgen, is

(3.5) Lgen =min
G

− E
x̃∼Pg

[D(x̃)]
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For the local adversarial loss, L local
dis and L local

gen , the real sample x and fake sample
x̃ are the generated region (i.e., the right half in our setting) of the ground-truth image
and the generated image. In contrast, the global adversarial loss, L global

dis and L
global
gen ,

takes the entire ground-truth image and the entire generated scene as inputs.
Finally, the complete adversarial loss for training discriminator, LD , is

(3.6) LD =L
global
dis +L local

dis .

And the complete generator loss, LG , is

(3.7) LG =λrecLrec+λadv[βL
global
gen + (1−β)L local

gen ].

We set λgp = 10, β= 0.9, λadv = 0.002, and λrec = 0.998 in all the experiments.

3.3 Results

A new natural scenery dataset is collected and proposed to evaluate our method’s ef-
fectiveness. The dataset contains about 6,000, 5,000 for training and 1,000 for testing,
complicated and diverse natural scenes, including starry sky, riverbank, seaside, valley,
snow mountain, etc. About 3,000 scenes are manually selected from SUN dataset [78],
while other scenes are collected from the internet. We show some samples of the natural
scenery dataset in Fig. 3.8.

Extensive experiments are designed on the proposed natural scenery dataset for
evaluating our method. We first show the results on 1-step horizontal generation. Then
the results of multi-step generation will demonstrate the powerful ability of our frame-
work in modelling spatial sequence. Notably, our framework predicts natural scenes
in only the horizontal direction due to the collected dataset’s spatial characteristics.
However, our network can theoretically model spatial sequence in any direction after
slight modifications in network structure or inference approach.

3.3.1 One-step Generation

During training, Adam optimizer [43] with β2 = 0.9 and β1 = 0.5 is applied to optimize
the losses in Eq. 3.7 and Eq. 3.6. The batch size is 32, and the initial learning rate is
0.0001, which is divided by 10 after 1,000 epochs. The framework will be trained for
1,500 epochs in total. We first warm-up the generator for 1000 iterations, setting λadv = 0
and λrec = 1. During the rest of training schedule, we use λadv = 0.002 and λrec = 0.998.
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(a) GLC [36] (b) Pix2Pix [38] (c) CA [85] (d) SHC+FC (e) SHC+RCT

Figure 3.9: Comparing our framework with state-of-the-art image generation works on
the 1-step generation, ours SHC+RCT framework achieves the best generative quality.

Following the same training strategy of GAN in [1], every time we update the generator
parameters, the discriminator parameters are updated ncir times. When the training
iteration number is less than 30 or a multiple of 500, we update the discriminator more
times, setting ncir = 30. In other cases, ncir = 5 is used for saving computation. For
training, all the images are resized to 144×432, and we employ random cropping and
flipping to augment the training data. For testing, all the scenes are in a resolution of
128×256.

In the experiments, popular Fréchet Inception Distance [31] (lower is better) and
Inception Score [57] (higher is better) are utilised to evaluate the performance of out-
painting.

GRB Number FID IS

0 15.171 2.756
1 14.828 2.765

3 (ours) 13.713 2.852

Table 3.2: Ablation study of different GRB number. 1 denotes we remove all the GRB
blocks except the one where the feature dimensions are 16×32×256.

Comparison with Previous Works. For evaluating our generation performance, we
make comparisons with some latest image generation methods. Fig. 3.9 and Table. 3.3
show the comparison results, and our framework generates the most realistic prediction
results, demonstrating our effectiveness in modelling spatial sequence information.

Our method outperforms all the other methods in the FID score, and the IS score is
slightly worse than CA [85], as shown in Table. 3.3. The reason is that CA’s contextual
attention module directly utilised the original region’s information to reconstruct the
predicted region. However, the contextual attention makes predictions blurry where far
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Method FID IS

Pix2Pix [38] 19.734 2.825
GLC [36] 14.825 2.812
CA [85] 19.040 2.931
FC+SHC 15.186 2.845

RCT+SHC (Ours) 13.713 2.852

Table 3.3: Comparison results in FID [31] and IS [57] metrics. In the testing split of
proposed natural scenary dataset, the images have an average IS score of 3.387.

away from the input region, as shown in Fig. 3.9, 3.12. Besides, contextual attention
results in a worse FID score (19.040 vsour 13.713). CA is a suitable approach for small
patch prediction but is ineffective in large-scale outpainting.

Ablation Study. Ablation studies are conducted for SHC and RCT to evaluate their
performance. Fig. 3.7 shows the qualitative comparisons. Without both SHC and RCT,
the predictions have clear faultage on the junction line between the given scene. Applying
SHC layers can mitigate the problem of faultage. However, the predicted contents are
still blurred, where the prediction position is far from the junction line. We improve
the prediction quality in faraway regions by replacing the fully-connected layer, which
connects the decoder and encoder, with our proposed RCT, which performs better in
modelling spatial sequence. Table.3.2 shows the results of the ablation study of GRB
numbers. The quality of results progressively improves with more GRB blocks, which
demonstrates the necessity of GRB.

3.3.2 Multi-Step Prediction

For further evaluating our effectiveness in modelling spatial sequence, the models trained
in Sec. 3.3.1 are used in the experiments of multi-step generation, where the last step’s
prediction will be used as the input for the next step iteratively. The predictions from all
the steps will be stitched into an entire and large-scale prediction.

Fig. 3.10 shows the qualitative results of multi-step generation in a single horizontal
direction, from left to right, while Fig. 3.11 shows the generation in both the horizontal
directions, left and right. Our framework is good at maintaining the scene consistency
and harmony after multiple steps of prediction. In contrast, Fig. 3.12 shows the results
of other competitors [36, 38, 85] on multi-step generation, where the quality of their
predictions fastly degrades along with the increasing steps. Besides, our method with
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Input Step 1 8

9 16
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Figure 3.10: We can generate outpainting images with a huge scale in length. Given
an image scene with a size of 128×128, our method iteratively generates a 16 times
larger scene in the horizontal direction from left to right, leading to a large prediction
with a size of 2176 pixels in length. Since the predictions are too long, we divide every
prediction into two halves.

Input
Step 1 4Step -1-4

Figure 3.11: We generate outpainting images in both the horizontal directions, left and
right. Given an input image, our method iteratively generates a 4 times larger scene
for each horizontal direction, leading to a large prediction with a size of 1152 pixels in
length.

only a fully-connected (FC) connection maintains a better consistency but will suffer
from the blurry problem. All these large-scale results demonstrate that our framework
is robust in large-scale image outpainting, and the proposed RCT module is promising in
modelling spatial sequence information.

We also prove that our method predicts contents instead of taking over the patches
in the input scene. Fig. 3.13 shows a snow mountain prediction starting from a scene
with rarely observable contents. Such a case is extremely challenging for traditional
non-deep-learning works (e.g., [44, 62, 73, 87]) since it is difficult to find useful patches
from such a given seen region, which contains nearly null observable textures.
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Pix2Pix

GLC

FC+SHC

RCT+SHC

CA

Figure 3.12: Comparison results on multi-step generations.

Input Step 1 7

8 15

Figure 3.13: A snow mountain prediction starting from a scene with rarely observable
contents. Such a case is extremely difficult for traditional non-deep-learning works.

3.4 Conclusion

An efficient generative framework for large scale image generation by modelling spatial
sequence is proposed in this chapter. The framework, to the best of our knowledge, is
the first framework on the strength of deep neural networks for solving the outpainting
problem. By introducing the proposed RCT, SHC, and GRB components, our framework
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3.4. CONCLUSION

is capable of predicting large-scale scenes with realistic quality. We can also iterate the
generator to progressively generate image scenes with extremely large scales in length,
which is unprecedented. Besides, we collect a new natural scenery dataset for evaluating
the performance of image outpainting. our method outperforms all competitors [36, 38,
85] without accident.
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COLLABORATIVE FOREGROUND-BACKGROUND

INTEGRATION FOR VIDEO UNDERSTANDING

4.1 Introduction

Temporal sequence modelling is essential in many video understanding tasks with
long-term videos in data, such as Video Object Segmentation (VOS) [6], Video
Semantic Segmentation [92], and Video Object Tracking (VOT) [4]. Among these

tasks, VOS is one of the basic tasks in video understanding with many valuable applica-
tions in computer vision, such as self-driving cars [88] and augmented reality [47]. This
chapter explores a more efficient and effective temporal sequence modelling framework
for the challenging semi-supervised VOS, which aims to segment objects in a pixel-wise
manner across the entire video sequence.

Many preliminary VOS solutions [6, 46, 71] were based on online fine-tuning, i.e.,
fine-tuning on the first frame in the inference stage. To avoid using inefficient online
fine-tuning, recent methods (e.g., [48, 70, 83]) focused on improving the effectiveness
of temporal sequence modelling and maintaining a fast run-time. STMVOS deployed a
memory bank for reading and storing the object attributes from the frames in history.
However, extensive simulated data generated from various large image datasets [13,
21, 27, 45, 59] are necessary for training STMVOS. Without such an elaborate training
procedure, the performance of STMVOS drops a lot. FEELVOS [70] proposed a glocal
(between the reference and current object frame) and local (between the previous and
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C H A P T E R  4.  C O L L A B O R A T I V E  F O R E G R O U N D- B A C K G R O U N D I N T E G R A T I O N  F O R

V I D E O  U N D E R S T A N D I N G

R ef er e n c e (t = 1) Pr e di cti o n (t = T)

w/ o CI

w/ CI  
( o ur s)

Fi g u r e 4. 1:  C I d e n ot e s  C oll a b o r ati v e I nt e g r ati o n.  T h e d ot-li n e a r r o w d e n ot e s t h e p r o p o s e d

b a c k g r o u n d  m at c hi n g. I n t h e gi v e n vi d e o s e q u e n c e,  w e  h a v e t w o f o r e g r o u n d o bj e ct s, i. e.,

pi n k s h e e p a n d bl u e s h e e p.  Wit h o ut b a c k g r o u n d  m at c hi n g, t h e bl u e s h e e p’ s p r e di cti o n

i s c o nf u s e d b y o n e si mil a r s h e e p i n t h e b a c k g r o u n d r e gi o n, a s s h o w n i n t h e t o p li n e.  B y

a d di n g t h e b a c k g r o u n d  m at c hi n g, t h e c o nf u si o n p r o bl e m i s r eli e v e d, a s s h o w n i n t h e

b ott o m li n e.

c u r r e nt o bj e ct f r a m e)  m at c hi n g  m e c h a ni s m  u si n g pi x el- wi s e f e at u r e e m b e d di n g f o r

ef fi ci e nt  m ulti- o bj e ct vi d e o  u n d e r st a n di n g.  T h e p r o p o s e d  F E E L V O S f r a m e w o r k i s ef fi ci e nt

a n d si m pl e b ut i s  n ot eff e cti v e a s  S T M V O S i n p e rf o r m a n c e.

Alt h o u g h t h e a b o v e- m e nti o n e d eff o rt s  h a v e a c hi e v e d  n ot a bl e p r o m oti o n f o r  V O S, f e w

V O S  w o r k s f o c u s o n  m o d elli n g t h e b a c k g r o u n d r e gi o n’ s t e m p o r al s e q u e n c e i nf o r m ati o n

a n d o nl y p a y att e nti o n t o  fi n di n g r o b u st  m at c hi n g  m e c h a ni s m s r e g a r di n g t h e f o r e g r o u n d

t a r g et ( s).  O n e p e r s o n i s i nt uiti v el y e a s y t o r e c o g ni s e t h e f o r e g r o u n d o bj e ct i n vi d e o s

w h e n a c c u r at el y r e m o vi n g t h e o p p o sit e b a c k g r o u n d r e gi o n.  F u rt h e r m o r e, c o m m o n vi d e o

s c e n e s  u s u all y f o c u s o n a g r o u p of si mil a r i n st a n c e s, s u c h a s  h u m a n s, a ni m al s, a n d c a r s.

W h e n t a r g eti n g si mil a r i n st a n c e s, t h e  mi s si n g of  m at c hi n g f o r b a c k g r o u n d i n st a n c e s

will l e a d t o a n i n e vit a bl e p r o bl e m of c o nf u si o n i n p r e di cti o n.  Fi g. 4. 1 gi v e s a c a s e of t h e

b a c k g r o u n d c o nf u si o n p r o bl e m i n o u r p r a cti c e.  S u c h a p h e n o m e n o n  m oti v at e s  u s t h at

w e  h a v e t o e q u all y t r e at b ot h t h e f o r e g r o u n d a n d b a c k g r o u n d r e gi o n s f o r l e a r ni n g  m o r e

c o nt r a sti v e f e at u r e e m b e d di n g, r eli e vi n g t h e b a c k g r o u n d c o nf u si o n, a n d t h u s p r o m oti n g

t h e  V O S p e rf o r m a n c e.

U nli k e p r e vi o u s  w o r k s t h at o nl y f o c u s o n t h e f o r e g r o u n d o bj e ct’ s t e m p o r al s e q u e n c e

m o d elli n g ( s),  w e a r g u e t h at t h e b a c k g r o u n d d e p e n d e n ci e s a r e e q u all y i m p o rt a nt.  H e n c e,

w e p r o p o s e a  C oll a b o r ati v e  F o r e g r o u n d- B a c k g r o u n d I nt e g r ati o n ( C F B I) a p p r o a c h f o r

s e mi- s u p e r vi s e d  V O S. I n  C F B I, t h e l e a r n e d f e at u r e e m b e d di n g s f r o m t h e f o r e g r o u n d

t a r g et a n d t h e b a c k g r o u n d r e gi o n a r e i m pli citl y c o m p ell e d t o b e c o nt r a sti v e, t h u s p r o-

m oti n g t h e  n et w o r k’ s r e p r e s e nt ati v e a bilit y a n d i m p r o vi n g t h e  V O S a c c u r a c y.  T o  h a n dl e

v a ri o u s o bj e ct s c al e s, b ot h pi x el-l e v el a n d i n st a n c e-l e v el i nf o r m ati o n t y p e s a r e a p pli e d f o r
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4.2. THE PROPOSED APPROACH

matching targets between the given reference and the video frames required to predict.
Besides, a novel transformation module is designed to model channel relationships in
a single frame to improve representation ability. As to the training process, a balanced
random-crop augmentation approach is proposed to avoid biasing the network para-
meters to the background attributes in datasets. We significantly increase temporal
modelling effectiveness by combining all the above methods and components while the
framework is still keeping efficient.

For validating the effectiveness of the CFBI framework, we design sufficient experi-
ments on YouTube-VOS 2018 [81], DAVIS 2017 [53], and DAVIS 2016 [52], three of the
most popular VOS benchmarks. Without the use of post-processing, online fine-tuning,
or simulated data, we outperform all the competitors on all three benchmarks, i.e., the
validation splits of YouTube-VOS (J&F 81.4%), DAVIS 2016 (89.4%), and DAVIS 2017
(81.9%). More than that, the performance can be boosted to 82.7%, 90.1%, and 83.3% by
applying a flipping & multi-scale augmentation during inference. More ablation studies
prove the necessity of each proposed component or method.

4.2 The Proposed Approach

Many previous methods (e.g., [70, 83]) have been proposed to model the foreground
region’s temporal sequence information. A concept of instance-level embedding was
introduced by OSMN [83] for efficiently predicting the segmentation mask of video
objects. However, the diversity of features within the objects’ appearance details was not
considered by using only instance-level embedding vectors, thus leading to imprecise
results. In comparison, some methods [11, 70] proposed to learn pixel-wise embedding
for matching every pixel of the object, promoting the feature diversity and resulting in
more promising performance. However, the pixel-level matching mechanism can only
utilise contextual information in a small local range and thus is easy to be confused by
some similar textures or instances in the background region.

A solution to the above problems is to incorporate both the instance-level and pixel-
level information types into a framework. Besides, it is important to treat both the
foreground and background regions equally for learning more contrastive feature embed-
ding. Thus, a collaborative foreground-background integration framework is proposed
in this chapter. An overview of the detailed framework is shown in Fig. 4.2. In the
framework, the background embedding is considered for collaborating with foreground
embedding, thus implicitly encouraging the learned pixel-level embeddings of the back-
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VIDEO UNDERSTANDING

Figure 4.2: CFBI overview. F-G, red color, and blue color denote Foreground-
Background, foreground region, background region, respectively. The confidence of the
matching map with a deeper colour will be higher. Given the current frame (t = T),
the reference frame with mask (t = 1), and the previous frame with mask (t = T −1),
CFBI will model their temporal dependencies and predict the target segmentation of
the current frame. First, we use a backbone to extract pixel-level embeddings for all
three frames. The pixel-level embeddings of t=T−1 and t= 1 will be separated into fore-
ground embeddings and background embeddings regarding the given masks. Then, the
instance-level attention and pixel-level matching will be applied to both the foreground
embeddings and background embeddings to model temporal sequence information and
predict the current frame segmentation. During inference, given the first frame mask,
we can predict target masks from the reference frame to the final one by iterating such a
prediction process.

ground region and the foreground object to be more diverse in the embedding space.
Moreover, both the pixel-level and instance-level matching mechanisms are deployed for
modelling temporal sequence information. Besides, we propose a multi-local matching
approach to make the pixel-level matching robust to different speeds of object motion,
and an instance-level attention module is designed for utilising instance guidance in a
more efficient manner. For aggregating all the foreground, background, instance-level,
and pixel-level embeddings, an efficient collaborative ensembler with large receptive
fields is designed to predict accurate segmentation masks.
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4.2. THE PROPOSED APPROACH

4.2.1 Pixel-level Matching

We show the architecture of our pixel-level matching in the middle of Fig. 4.2. We utilise
a global-local matching approach [70] for modelling temporal information between the
first, the previous, and the current frames. In comparison, the matching mechanism
is also applied to the background region, and we propose a multi-window strategy for
improving the robustness of the local matching.

For modelling the temporal sequence information in the background region, the
foreground pixel-wise distance [70] is modified to distinguish between the background
and foreground. Let Ft and Bt denote all the foreground object pixels and the background
pixels at time t, the formula of the distance between pixel q at time t and pixel p at time
T (the current frame) with regards to their pixel-wise embedding, eq and ep, is,

(4.1) Dt(p,q)=





1− 2
1+exp(||ep−eq||2+bF )

if q ∈ Ft

1− 2
1+exp(||ep−eq||2+bB)

if q ∈Bt
,

where bB and bF are trainable background and foreground biases, used to learn different
distance functions for background and foreground. Thus, the constrast between the
foreground and the background embeddings is strengthened.
Foreground-Background Global Matching. The global matching is applied between
the reference frame t= 1 and the current frame t=T. Let all pixels at time t are in the
set P t, the pixel set of a foreground object o at time t can be denoted as P t,o ⊆P t. Thus,
the formula of the foreground global matching between the object pixels of the reference
frame and one pixel p of the current frame is,

(4.2) GT,o(p)= min
q∈P1,o

D1(p,q).

The formula for the background global matching is similar. Let P t,o =P t\P t,o denote
the set of relative background pixels regarding the foreground object o, the formula for
the background global matching is,

(4.3) GT,o(p)= min
q∈P 1,o

D1(p,q),

which is similar to the foreground one.
Foreground-BackgroundMulti-Local Matching. There are diverse movement speeds
in video understanding, from nearly static to fast, of foreground objects, as shown in
Fig. 4.3. However, FEELVOS utilised only a fixed window of neighbouring pixels to
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(a) Slow motion (b) Fast motion

Figure 4.3: In video understanding, there are diverse movement speeds, from nearly
static to fast, of foreground objects. The demonstration video sequences are sampled
from YouTube-VOS [81].

conduct the local matching mechanism and hence is difficult to fit various and different
motion rates. In contrast, we propose a multi-local matching approach, i.e., learning to
select a suitable local window, to make the pixel-level matching robust to different object
motion speeds. The matching maps of small windows are extracted from the largest
window in a lightweight manner on the implementation. Hence, proposed multi-local
matching is as efficient as local matching with a single matching window.

First, H(p,k) and K = {k1,k2, ...,kn} denote the neighbourhood pixel set of pixel p in
a maximum distance of k and the set of all the neighbourhood scales, respectively, the
formula of the foreground multi-local matching between the object pixels of the previous
frame (T−1) and one pixel p of the current frame is,

(4.4) MLT,o(p,K)= {LT,o(p,k1),LT,o(p,k2), ...,LT,o(p,kn)},





min

1 otherwise

where

(4.5) LT,o(p,k)= q∈PT
p,
−
k
1,o

DT−1(p,q) if PT
p,
−
k
1,o +=,

,

and PT
p,
−
k
1,o := PT−1,o ∩H(p,k) denotes the object pixels placed in the neighborhood

window. Similarly, the formula of the background multi-local matching is

(4.6) MLT,o(p,K)= {LT,o(p,k1),LT,o(p,k2), ...,LT,o(p,kn)},

where

(4.7) LT,o(p,k)=





pmin
q∈P T

,
−
k
1,o

p
DT−1(p,q) if P T

,
−
k
1,o +=,

1 otherwise
,
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Figure 4.4: The detailed structure of the instance-level attention module. C, W, and H
mean channel dimension, width, and height, separately. Ce refers to the channel number
of pixel-level embedding extracted from the backbone.

andP
p,k
T−1,o :=P T−1,o∩H(p,k) denotes the backgournd pixels placed in the neighborhood.

Apart from the global and local matching maps, the pixel-wise embedding and the
previous frame mask are also concatenated with the current frame embedding, as shown
in the bottom box of Fig. 4.2, followed by our collaborative ensembler to integrate all
the temporal information. It has been proved that concatenating the previous frame
mask is effective in VOS [70]. In our practice, the framework performance can be further
improved by about 0.5% if we concatenate both the previous frame’s mask and pixel-wise
embedding.

4.2.2 Instance-level Attention

In addition to pixel-level matching, we apply an instance-level attention mechanism to
help model temporal sequence information for objects with larger scales, as shown in the
right of Fig 4.2

We first divide each pixel-level embedding extracted from the backbone into fore-
ground pixels and background ones regarding the foreground region and background
region in the given mask for the reference and previous frames. Then, channel-wise
average pooling is applied to each pixel group to transfer the four pixel-level embeddings
(i.e., P1,o, PT−1,o, P 1,o, and P T−1,o ) into instance-level embedding vectors, and all the
four instance-level embedding vectors are concatenated into one final instance-level
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embedding vector. Hence, such a vector aggregates the instance-level information from
both the foreground and background regions and the reference and previous frames.

After generating the instance-level vector, a designed lightweight attention mecha-
nism is applied for controlling the output network, i.e., Collaborative Ensembler (CE).
Inspired by channel attention methods (e.g., [33]), we construct a gate module to adjust
each feature channel’s scale based on the information containing in the instance-level vec-
tor. The gate module’s architecture is one fully-connected layer followed by a non-linear
activation function, which is simple yet effective in our practice.

Compared to the pixel-level embedding, the instance-level vector containing global
contextual information of the object. Such global information is useful for relieving the
problem of local ambiguities [67], which derives from the local receptive fields of features,
like the pixel-level embedding.

4.2.3 Collaborative Ensembler (CE)

To aggregate both the instance-level and pixel-level informations, an efficient collabora-
tive ensembler network is designed to make large receptive fields and implicitly model
the temporal dependencies on both the foreground and background regions, as shown in
the bottom right of Fig. 4.2.

Following recent methods in semantic segmentation [9, 10], collaborative ensembler
employs a downsample-upsample pipeline containing three downsampling stages of
bottleneck Res-Blocks [29] followed by an ASPP [10] module and an upsampling De-
coder [10] module. Dilated convolutional layers are used in Res-Block for capturing
more contextual information. The Res-Block numbers for the three stages are 2, 3, 3,
respectively. In each stage, the dilation rates of Res-Blocks are 1, 2, 4 (or 1, 2 for Stage 1)
in order. Collaborative ensembler takes the pixel-level matching results as input, and
the instance-level attention mechanism is applied before each Res-Block of collaborative
ensembler.

4.2.4 Gated Channel Transformation (GCT)

To further improve CE’s representation ability, a novel transformation module, i.e., Gated
Channel Transformation, is designed to model channel-wise and contextual information,
as shown in 4.5. In detail, GCT firstly aggregates global contextual embedding by using
$2 norm for each channel. We apply channel-wise embedding weight, α, to adjust each
embedding’s importance. After that, a lightweight $2 normalisation operation is employed
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c o m p etiti o n a n d c o o p e r ati o n.  A n ill u st r ati o n i s s h o w n i n  Fi g. 4. 6. I n t h e  n o r m ali s ati o n

o p e r ati o n,  w e  u s e c h a n n el- wi s e g ati n g  w ei g ht a n d g ati n g bi a s, ∞ a n d Ø , t o c o nt r ol t h e

b e h a vi o u r of r el ati o n  m o d elli n g.  W h e n t h e g ati n g  w ei g ht of o n e c h a n n el i s p o siti v el y

a cti v at e d,  G C T  will p u s h t h e a cti v ati o n of t hi s c h a n n el f a r a w a y f r o m t h e ` 2 n o r m of all

t h e, li k e p r o m oti n g t hi s c h a n n el t o c o m p et e  wit h ot h e r c h a n n el s.  O p p o sit el y,  w h e n o n e

c h a n n el’ s g ati n g  w ei g ht i s  n e g ati v el y a cti v at e d,  G C T t e n d s t o p r o m ot e t hi s c h a n n el t o

c o o p e r at e  wit h t h e ot h e r s.

I n o u r e x p e ri m e nt s,  w e a p pl y  G C T b ef o r e all t h e c o n v ol uti o n al l a y e r s of  C E t o i m p r o v e

C E’ s r e p r e s e nt ati o n a bilit y a n d t h u s p r o m ot e  V O S’ s p e rf o r m a n c e a c c o r di n gl y.

4. 2. 5 I m pl e m e n t a ti o n  D e t ail s

W e a dj u st t h e c o m m o nl y  u s e d t r a diti o n al r a n d o m c r o p pi n g a n d t h e s a m pli n g st r at e g y

u s e d i n  F E E L V O S f o r i m p r o vi n g t h e t r ai ni n g eff e cti v e n e s s.
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t = T + 1

t = 1
t = T � 1

t = T

…

(a) Normal

t = T + 1

t = 1
t = T � 1

t = T

…

(b) Balanced

Figure 4.7: (a) If we use traditional random cropping, some cropping boxes (red boxes as
shown) will contain little or even no object region. (b) By using the proposed balanced-
crop, all the cropping boxes contain enough foreground pixels.

Balanced Random-Crop. In video understanding tasks, the foreground object usually
only occupies a small area in the lens. If we use traditional random cropping, as shown
in Fig. 4.7, some cropping boxes (red boxes as shown) will contain little or even no object
region. More background information is easy to bias the model to background attributes,
which is not desired.

In this section, a balanced random-crop strategy is proposed for solving such an issue
for video segmentation. The balanced random-crop is applied on a sequence of frames
(i.e., the current frame, the reference frame, and the previous frame). For all the frames,
the cropping window is consistent and restricted to contain enough foreground object
pixels. The restriction approach is computationally efficient. To be specific, the method
will judge whether the randomly cropped window contains object pixels or not after
cropping. If not, the cropping process will be repeated until the desired condition is met.

Sequential Training. For each training iteration, FEELVOS sampled only one current
frame for each video sequence. In this case, all the previous masks are sampled from the
ground-truth labels. In contrast, RGMP proposed to predict multiple steps in training,
and the predictions in the early steps will be used to guide the segmentation in later
steps. This training strategy is more consistent with the test stage, thus leading to better
performances in evaluation.

In our experiments, we sample longer video frame sequences for every training
iteration. Specifically, we first sample a batch of videos for each iteration. After that,
we randomly sample one frame and N+1 consecutive frames for each video to be the
reference frame, the previous frame, and the current sequence required for prediction.
Samely, the predictions in the early steps will be used to guide the segmentation in later
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Figure 4.8: On the validation split of DAVIS 2017, CFBI is compared with a state-of-the-
art VOS method, STMVOS. STMVOS confuses a part of the person and the bicycle in the
second video. Besides, CFBI is successful in segmenting the foreground weapon after
blur and occlusion in the top sequence, while STMVOS fails.

steps.

Training Details. The backbone network of CFBI is one of the latest image semantic
segmentation networks, DeepLabv3+ [10] based on dilated ResNet-101 [10], which is
more efficient than Xception-65 [15] adopted by FEELVOS. The backbone is pre-trained in
image classification on ImageNet [17] and in image semantic segmentation on COCO [45].
One depth-wise separable convolution is used to propagate the backbone’s final feature
into the space of pixel-level embedding.

For VOS training, the segmentation loss is following the bootstrapped cross-entropy
loss used in FEELVOS. The window sizes of the multi-local matching are K = {2,4,6,8,10,12}
in our experiments. During the training of VOS, the BN [37] parameters in the backbone
are frozen, and we apply Group Normalization (GN) [75] to collaborative ensembler. GN
is robust to small training batch sizes. The foreground bias bF and background bias bB

are initialised to zero during training. We use a window size of 465×465 for the balanced
random-crop and set N to 3 for sequential training. Using longer sequence length will
not further improve performance but takes much more computational resources.

The training splits of YouTube-VOS [81] (3471 videos) and DAVIS 2017 [53] (60 videos)
are used for training VOS. All the videos are first downsampled to 480P resolution before
training. The training optimiser is SGD with a momentum of 0.9. The base learning rate
and training iterations are 0.01 and 100,000 for YouTube-VOS experiments or 0.006 and
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Seen Unseen

Methods FT SD Mean J F J F

Validation 2019 Split

CFBI 81.0 80.6 85.1 75.2 83.0
CFBIMS 82.4 81.8 86.1 76.9 84.8

Testing 2019 Split

MST∗ [89] X 81.7 80.0 83.3 77.9 85.5
EMN∗ [90] X 81.8 80.7 84.7 77.3 84.7
CFBI 81.5 79.6 84.0 77.3 85.3
CFBIMS 82.2 80.4 84.7 77.9 85.7

Validation 2018 Split

AG [41] 66.1 67.8 - 60.8 -
PReM [46] X 66.9 71.4 75.9 56.5 63.7
BoLT [72] X 71.1 71.6 - 64.3 -
STM− [48] 68.2 - - - -
STM [48] X 79.4 79.7 84.2 72.8 80.9
CFBI 81.4 81.1 85.8 75.3 83.4
CFBIMS 82.7 82.2 86.8 76.9 85.0

Table 4.1: Compare CFBI with existing frameworks on the validation 2018, validation
2019, and testing 2019 splits of YouTube-VOS [81]. MS denotes that the flip & multi-scale
augmentation is used in the evaluation. ∗, SD, and FT denote model ensemble, simulated
training data, and online fine-tuning, respectively.

50,000 for DAVIS experiments. The batch size is 8 videos or 6 videos for YouTube-VOS or
DAVIS, respectively. The data augmentations are a combination of random scaling, the
balanced random-crop, and random flipping. The scales used in the multi-scale inference
are {1.0,1.15,1.3,1.5} for YouTube-VOS and {2.0,2.15,2.3} for DAVIS.

4.3 Results

Following recent methods [48, 70], sufficient experiments are conducted on DAVIS
2017 [53] and DAVIS 2016 [52], and YouTube-VOS [81] to evaluate the effectiveness of
our framework. CFBI is trained on the training split of YouTube-VOS for the YouTube-
VOS experiments. For both the DAVIS-2017 and DAVIS-2016 experiments, we train
CFBI on the training split of DAVIS 2017. We also evaluate the DAVIS results by training
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Figure 4.9: On YouTube-VOS and DAVIS 2017, we show some qualitative results of
CFBI. On YouTube-VOS, CFBI succeeds in matching and segmenting all the desired
sheep with a similar appearance from a flock of sheep. On DAVIS 2017, CFBI performs
perfectly after the occlusion on the dogs and the person. However, when two objects have
very similar textures and are very close, CFBI is still confused by a part of the object, as
shown in the bottom sequence.

CFBI on both the training splits of DAVIS 2017 and YouTube-VOS.

Three popular metrics are used for evaluation, i.e., J score, F score, and their mean
value (J&F ).J score is computed as the average Intersection-over-Union score between
the ground truth mask and the predicted segmentation results. F measures an average
boundary similarity between the mask boundary of the ground truth and the prediction.
All our results are evaluated by using the official tools or the official evaluation server
for a fair comparison.

4.3.1 Comparison Results

YouTube-VOS [81] is currently the largest public dataset proposed for multi-object
video segmentation containing about 4500 videos. The popular DAVIS-2017 dataset is
nearly 38 times smaller than YouTube-VOS. Specifically, YouTube-VOS consists of a
training split with 3471 videos and 65 classes, a validation split with 507 videos and
extra 26 unseen classes, and a test split with 541 videos and extra 29 unseen classes.
Notably, the validation and test splits of YouTube-VOS have many unseen categories
and are thus suitable for evaluating VOS frameworks’ generalisation ability.

We compare CFBI with state-of-the-art network architectures on the validation
2018, validation 2019, and testing 2019 splits of YouTube-VOS. Without the use of
post-processing, online fine-tuning [6, 71], or simulated data [48, 76], we significantly
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Methods FT SD Mean J F t/s

OSMN [83] - 74.0 0.14
PML [11] 77.4 75.5 79.3 0.28
VideoMatch [34] 80.9 81.0 80.8 0.32
RGMP− [76] 68.8 68.6 68.9 0.14
RGMP [76] X 81.8 81.5 82.0 0.14
A-GAME [41] (YT) 82.1 82.2 82.0 0.07
FEELVOS [70] (YT) 81.7 81.1 82.2 0.45
OnAVOS [71] X 85.0 85.7 84.2 13
PReMVOS [46] X 86.8 84.9 88.6 32.8
STMVOS [48] X 86.5 84.8 88.1 0.16
STMVOS [48] (YT) X 89.3 88.7 89.9 0.16
CFBI 86.1 85.3 86.9 0.18
CFBI (YT) 89.4 88.3 90.5 0.18
CFBIMS (YT) 90.7 89.6 91.7 9

Table 4.2: Compare CFBI with existing frameworks on the validation split of DAVIS
2016 [52]. (YT) denotes both the training splits of YouTube-VOS and DAVIS 2017 are
used in the training process.

outperform all the competitors and achieve a mean score of 81.4% on the validation
2018 split. More than that, we can further boost the performance to 82.7% by apply-
ing a flipping & multi-scale strategy during inference. In comparison, the previous
best STMVOS, which used extra training data simulated from various large image
datasets [13, 21, 27, 45, 59], is 2.0% lower than our 81.4% result. Without such an
elaborate simulated training procedure, the performance of STMVOS drops a lot from
79.4% to 68.2%.

To further demonstrate our generalisation ability, CFBI is compared with the winner
solution, EMN [90], in the 2nd Large-scale Video Object Segmentation Challenge. On
the testing 2019 split of YouTube-VOS, our single-model result exceeds the challenge
winner, which utilises model ensembling, by 0.4% in the mean score.

DAVIS 2016 [52] is a single-object video segmentation dataset consisting of 20 videos
with high-quality annotations in the validation split. We compare CFBI with existing
methods on the validation split of DAVIS 2016 [52]. The results are shown in Table 4.2.
Training with both the training splits of DAVIS 2017 and YouTube-VOS, we achieve
a mean score of 89.4%. This result is a bit better than STMVOS (89.3%), which uses
extra simulated data. In general, it is easier to over-fit a much smaller dataset. Hence,
the accuracy gap between STMVOS and CFBI is smaller on small-scale DAVIS than
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Methods FT SD Mean J F

Validation Split

OSMN [83] 54.8 52.5 57.1
VideoMatch [34] 62.4 56.5 68.2
OnAVOS [71] X 63.6 61.0 66.1
RGMP [76] X 66.7 64.8 68.6
A-GAME [41] (YT) 70.0 67.2 72.7
FEELVOS [70] (YT) 71.5 69.1 74.0
PReMVOS [46] X 77.8 73.9 81.7
STMVOS [48] X 71.6 69.2 74.0
STMVOS [48] (YT) X 81.8 79.2 84.3
CFBI 74.9 72.1 77.7
CFBI (YT) 81.9 79.1 84.6
CFBIMS (YT) 83.3 80.5 86.0

Testing Split

OSMN [83] 41.3 37.7 44.9
OnAVOS [71] X 56.5 53.4 59.6
RGMP [76] X 52.9 51.3 54.4
FEELVOS [70] (YT) 57.8 55.2 60.5
PReMVOS [46] X 71.6 67.5 75.7
STMVOS [48] (YT) X 72.2 69.3 75.2
CFBI (YT) 74.8 71.1 78.5
CFBIMS (YT) 77.5 73.8 81.1

Table 4.3: Compare CFBI with existing frameworks on the validation split and the
testing split of DAVIS-2017 [53].

large-scale YouTube-VOS. Compared to FEELVOS, a more fair baseline that CFBI is
based on, CFBI performs a much better result 89.4% vs81.7%) while maintaining a much
faster run-time (0.18s vs0.45s). Besides, we can boost the performance from 89.4% to
90.1% by applying a flipping & multi-scale augmentation during inference.

DAVIS 2017 [53] extends DAVIS 2016 to a multi-object video segmentation dataset,
containing 59 objects and 30 videos in the validation split. CFBI excellently outperforms
FEELVOS by 10.4% (81.9% vs.71.5%), which is shown in Table 4.3. Moreover, using
extra simulated data, STMVOS is still worse than our CFBI (81.8% vs.81.9%). Fig. 4.8
shows some qualitative results of CFBI. Similar to the previous observation, the flipping
& multi-scale strategy during inference can improve the performance to be higher
(from 81.9% to 83.3%). To further demonstrate our generalisation ability, CFBI is also
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original +SE [33] +GCT (ours)
Backbone top-1/5 G/P top-1/5 GFLOPs/Param top-1/5 G/P

ResNet-50 [29] 23.8/7.0 3.879/25.61 22.9/6.6 3.893∗/28.14 22.7/6.3 3.900/25.68
ResNeXt-50 [79] 22.4/6.3 3.795/25.10 22.0/6.1 3.809∗/27.63 21.7/6.0 3.821/25.19
Inception-v3 [66] 24.3/7.3 2.847/23.87 24.0/7.2 2.851∗/25.53 23.7/7.1 2.862/23.99
VGG-16 [60] 26.2/8.3 15.497/138.37 25.2/7.7 15.525/138.60 25.1/7.5 15.516/138.38

Table 4.4: Apply GCT to modern CNNs for evaluating the error performance (%) in image
classification on ImageNet [56]. G/P denotes GFLOPS/Parameters.

Backbone box AP mask AP

ResNet-50 37.8 34.2
ResNet-50+SE [8] 38.2(0.4) 34.7(0.5)
ResNet-50+GCT 39.8(2.0) 36.0(1.8)
ResNet-101 40.1 36.1
ResNet-101+GCT 42.0(1.9) 37.7(1.6)

Table 4.5: Apply GCT to Mask R-CNN [28] in instance segmentation (mask AP) and
object detection (box AP) on COCO [45].

evaluated on the testing split of DAVIS 2017. Compared to the validation split, the
testing split is much more challenging. Table 4.3 shows that CFBI makes a significant
improvement over STMVOS (74.8%vs72.2%). The inference augmentation can boost our
testing result to a much higher 77.5%. All the above results strongly demonstrate the
generalisation ability and robustness of CFBI.

Qualitative Results. More qualitative results of CFBI, on the validation split of
YouTube-VOS (81.4%) and DAVIS 2017 (81.9%), are shown in Fig. 4.9. Compared to
STMVOS, CFBI is more robust to challenging cases, like similar objects, blurring, occlu-
sion, and fast motion. On YouTube-VOS, CFBI succeeds in matching and segmenting all
the desired sheep with a similar appearance from a flock of sheep. However, when two
objects have very similar textures and are very close, CFBI is still confused by a part of
the object, as shown in the judo video.

Evaluating Gated Channel Transformation. To evaluate the proposed GCT unit
further, we also try to apply GCT in more visual tasks, including action recognition,
instance segmentation, image classification, and object detection. The related results are
shown in Table 4.4, 4.5, and 4.6. Applying GCT before every convolutional layer of the
modern CNN networks, all the networks get promising performance gains. Besides, com-
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Backbone NL [74] +GCT

ResNet-101 75.7 76.2(0.5)
ResNet-50 74.6 75.1(0.5)

Table 4.6: Apply GCT to NL [74] in action recognition, using top-1 accuracy (%), on
Kinetics.

PL IL Mean J F

X X 74.9 72.1 77.7
X∗ X 72.8 69.5 76.1
X 73.0 69.9 76.0

X 72.3 69.1 75.4
70.9 68.2 73.6

Table 4.7: We ablate different background information from CFBI in these experiments.
∗, IL, PL denote removing the foreground bias and background bias, the instance-level
attention, and pixel-level matching, respectively.

pared to a commonly-used channel attention module, SE [33], the increase of parameters
introduced by GCT is negligible, as shown in Table 4.4. In summary, GCT is effective,
efficient, and can generalise across various visual tasks and datasets.

4.3.2 Ablation Study

We ablate each proposed component or method to evaluate its necessity on the validation
split of DAVIS 2017 in this section.
Background Embedding. We first study the influence of ablating background infor-
mation from the framework, and the related results are shown in Table 4.7. Without any
of the background designs, the performance of CFBI seriously degrades from 74.9% to
70.9%. Such a strong result demonstrates the importance of modelling temporal informa-
tion of both the foreground and background regions. It will decrease the performance to
73.0% or 72.3% by removing background information from the instance-level attention
or the pixel-level matching, respectively. In other words, the background information is
more important for extracting better pixel-level embedding. This is reasonable because
it is easier for a foreground object to have similar background pixels than background
objects. At last, the foreground and background bias, bF and bB, are removed from the
distance function, leading to a decreased performance of 72.8%. This result proves that
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Methods F J Mean

0 FEELVOS (baseline) 70.9 65.6 68.3
1 w/o instance-level attention 75.5 69.8 72.7
2 w/o balanced random-crop 75.8 69.8 72.8
3 w/o collaborative ensembler 76.1 70.5 73.3
4 w/o sequential training 75.7 70.8 73.3
5 w/o multi-local matching 76.8 70.8 73.8
6 CFBI (Ours) 77.7 72.1 74.9

Table 4.8: Ablation of other components.

the background distance and foreground distance should be independently considered.

Other Components. Table 4.8 shows the ablation study results of all the other proposed
components and methods. We reproduce the baseline method, FEELVOS, training with
the same setting of CFBI, and Line 0 is the corresponding result (68.3%). In contrast,
our CFBI performances much better (74.9% in Line 6).

In line 1, we remove all the instance-level modules from the collaborative ensembler,
and use only the pixel-level matching for modelling temporal information. Then, the
performance of CFBI drops to the lowest 72.7 among all the components, proving the
importance of the instance-level information.

In line 2, the balanced random-crop is replaced by traditional random cropping.
Under this case, the framework result deteriorates to 72.8%. In other words, the pro-
posed balanced random-crop successfully relieve the problem of biasing to background
attributes.

In line 3, the collaborative ensembler is replaced by 4 depth-wise separable convolu-
tional layers, the segmentation output network proposed in FEELVOS. Compared to our
dynamic segmentation, the proposed collaborative ensembler performs 1.6% better due
to larger receptive fields.

In line 4, the CFBI result drops to 73.3% without using the sequential training
strategy, and thus shows the effectiveness of the strategy.

In line 5, the multi-local matching is replaced by the original matching with only a
single window, leading to a performance drop of 1.1%. Our multi-local matching is more
robust to various motion rates in videos than the original local matching.

In summary, we explore the necessity of each proposed component or method of CFBI.
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4.4 Conclusion

In this chapter, we propose a Collaborative Foreground-Background Integration frame-
work for modelling temporal information efficiently. It is critical to model temporal
information of both the foreground and background regions. Moreover, both the pixel-
level information and instance-level information are useful for improving the robustness
of the framework. Besides, the proposed general transformation module, GCT, is efficient
in modelling channel relations and is robust to various visual tasks and datasets. Finally,
the proposed sequential training and balanced random-crop are simple and effective in
learning better feature embedding.
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FUTURE WORKS

In this thesis, I investigated efficient sequence modelling methods for both image content
generation and video understanding. I demonstrated the importance of modelling the
spatial sequence information in predicting large-scale scenes with high qualities for
image content generation. However, the proposed framework’s spatial sequence modelling
is restricted in a fixed direction (the horizontal direction in our setting). It is valuable to
explore how to efficiently learn sequence dependencies on both the vertical and horizontal
directions with one single framework in future works. As to video understanding, we
proved that the concept of foreground-background collaboration is critical in modelling
more robust temporal sequence information in challenging video object segmentation.
We hope such a simple yet effective concept will help promote the development of more
video understanding tasks in the future. In theory, the concept of foreground-background
collaboration should also be promising for some image tasks, which have the definition
of foreground and background, such as few-shot segmentation and saliency detection.
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