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ABSTRACT

Internet of Things (IoT) enables the connection of a broad range of
artifacts with advanced sensory technologies and produces massive
amounts of data to support ambient intelligence. While the potential
of IoT systems is widely recognized, there is still limited work to
demonstrate such a system with the autonomy and the ability to
execute in the real world. Inspired by the successful introduction
of robots to specialized IoT environments, we propose an end-to-
end solution for a generic, interactive ambient intelligence system,
where robotic assistants can assist humans in conducting activities
in IoT-enabled smart homes. We evaluate the solution based on
implementations of public benchmarks on open-source platforms.
We use several activities to demonstrate the effectiveness of the
proposed solution in real life.
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1 INTRODUCTION

The Internet of Things (IoT) promises to integrate digital and phys-
ical worlds by connecting artifacts and build networks of them.
Traditionally, IoT devices are designed to work on their own and
may use incompatible protocols. However, inter-device communi-
cation and interactions are critical toward building a generalized
connected environment, such as a smart home application. Web of
Things (WoT)!2 is proposed by W3C to facilitate IoT applications,
with standardized descriptions of actions, events, and properties
of things, as an extension to existing and widely used web proto-
cols. Enabled controls of devices with decoupled specialized APIs,
broader interactions between smart things in hypermedia environ-
ments can be established comfortably. With plenty of IoT products
commercially available, recent research and industry have success-
fully adapted connected things in our daily life.

https://www.w3.org/TR/wot-thing-description/
Zhttps://www.w3.org/TR/wot-architecture/

Xianzhi Wang
xianzhi.wang@uts.edu.au
University of Technology Sydney
Sydney, NSW, Australia

Quan Z. Sheng
michael.sheng@mgq.edu.au
Macquarie University
Sydney, NSW, Australia

Zhongjie Wang
Xiaofei Xu
rainy@hit.edu.cn
xiaofei@hit.edu.au
Harbin Institute of Technology
Harbin, China

Although WoT offers the flexibility and openness for connected
things in smart systems, the connected things cannot work ==
autonomously but still require human intervention. For example,
although a coffee machine may be able to can fill water, grind
beans, brew, frother, and add milk, it faces tremendous difficulties
in selecting or filling proper beans according to user preferences.
The current research mostly focuses on making such recommenda-
tions yet cannot control any device to take the actions accordingly.
Besides, the behaviors of things or how the connected things are
used are usually predefined by the designers. However, the envi-
ronments or user requirements can evolve dynamically, and there
can be unexpected requirements that demand unforeseen ways
of utilization or interactions. For example, a connected lamp for
reading on a desktop may be moved into the kitchen for plants,
and this requires the lamp to work without human attendance and
to alter its light color to maximize plants’ productivity instead of
human comfortableness.

Inspired by Multi-Agent Systems, some efforts develop smart
agents and prove them effective to support dynamic interactions
with IoT systems. In a representative study, Qi et al. [22] propose
a Web APIs recommendation for WoT applications based on key-
words; Besides, Ciortea et al. [7] propose a smart agent that can
dynamically plan new sequences of actions to better achieve its
goals with available resources. A further step to address the above
issues is the Internet of Robotic Things (IoRT), which introduces
robots into IoT environments to leverage the combined strengths
of robotics, IoT, and edge computing. The robots in IoRT are either
equipped with IoT sensors or designed to fuse IoT sensory data to
gain awareness of the environments. They also analyze and adapt
certain actions to interact with the physical world in an extended
fashion. Since invention, IoRT practices have been mostly focused
on machine-machine and machine-human collaborations at work-
places (e.g., maintenance and service jobs) to circumvent hazards or
reduce labor costs. Although the combination of IoT and robotics
has been introduced to smart city [18], or for earlier exploration in
general interactions and specialized scenarios [19]. Existing smart
home studies have been focusing on particular tasks, such as social



robots, which use physical sensing to assist human-machine inter-
action yet cannot conduct general tasks to conduct real physical
interactions. There remains a significant gap to bring robotics into
home applications to make the whole system work for supporting
physical human-machine interactions.

Considering a more desirable scenario: Bob is preparing a bowl of
cereal as breakfast, and usually, he finishes the meal with a cup of tea;
the system detects a series of events in the kitchen at the time, such
as movements of a cabinet door, bowl, fridge door, cereal containers
and such, which leads to the recognition of Bob preparing cereal as
breakfast; then based on Bob’s routine, the system envisages a tea to
finish the breakfast, and promotes our robot with 3D depth camera
moving to the kitchen, which just identified a mug and teaspoon is on
the bench, and this confirms the predicted intention; The robot then
coordinates a robotic arm on the bench to make a tea for Bob while
the cereal is being consumed. The above envisioning matches our goal
towards ambient intelligence, thus motivating this study. Such a setup
can also be found in Figure 1.

In this work, We propose a novel framework, namely Intent-
aware Interactive Web of Things to enable and enhance ambient col-
laborative intelligence Our framework capitalizes on multi-faceted
collaborations between humans, the Web of Things, and robots on
top of our unified IoT-endowed platform [33].

Our framework conducts four major tasks. First, it fuses robotic
and smart home sensory data to jointly infer human intention based
on the subject’s current and past behaviors, where the required
data are gathered for supporting our ambient intelligence system
and downstream tasks. Then, it combines the inferred intention
with contextual information observed by the robot with sensors
(e.g., a 3D camera) for semantic recognition and prompts physical
interactions. This helps prompt possible interactions for the intelli-
gent robotic assistants. Third, it further processes the interaction to
actions with relations identified , which helps define the objectives
for the robotic assistants in instructive steps. Lastly, a suitable phys-
ical agent conducts the actions with an awareness of the physical,
sensory data or with the help of other robots. Our contributions in
this work are summarized below:

(1) We propose an end-to-end solution for an interactive ambi-
ent intelligence system, with robotic assistants assist activi-
ties of the subject in IoT enabled smart homes;

(2) We engineered generic web-based descriptions for smart-
home IoT device interactions, which enable the actions to
be not only decided but also executed in the physical world
by robotic assistants;

(3) We trained our reinforced learning-based robotic assistants
to exploit rewards as well as failure experience, with the
policy continuation strategy as well as Hindsight Experience
Replay method, which largely fasten the learning process;

(4) We implement the simulation with the Deepbot framework
in the OpenAl gym environment, which also enables us to
demonstrate some selective activities in real life.

The rest of this paper is organized as follows: Section 2 reviews
the related work to this study; Section 3 overviews the framework
by firstly defining the objectives and introducing preliminaries,
followed with detailed explanations of our framework by data-
flow; Section 4 explains evaluation datasets, experiment settings,
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Figure 1: Basic set up and application scenario of proposed
system

and result analysis; And section 5 concludes this work with some
insights on future improvements.

2 RELATED WORK

In the past decades, IoT, including smart-home-related studies, has
attracted enormous attention, thanks to the availability of various
networked smart devices, appliances, and improved computing ca-
pability. While due to hardware and technical limit, early studies in
the field are explicitly related to specific human-oriented applica-
tions such as web management, location, tracking, activity recog-
nition. CASAS[9] by Washington State University, for example, is
one of the earliest and largest smart-home experimental platforms,
where users are sensed and tracked by various pre-installed devices
in the apartments. Successful studies has been produced in activity
recognition[5], cognition and health assessment[10] and human
behavior analyze s[23]. Ruan et al.[26, 27] identified it using wear-
able sensors may lead to some burdens in practice, thus proposed
multiple methods that progressively achieved device-free indoor
human subject localization and tracking. On the other hand, As
more IoT devices available, the management of such connected
devices can also be a critical step towards the ultimate goal of an
ambient intelligent environment. Yao et al.[35] demonstrated that
a unified management system could effectively integrate virtual
and physical resources, where users can monitor, visualize, and
aggregate services, they[34] later also investigate to find the most
relevant things in the system according to human interactions and
attend success. Shemshadi et al.[29] provide a framework for diver-
sified and relevant search in IoT, laid the foundation for IoT search
engines. Their further study[33] then reveals a real-time multi-level
activity monitoring system for a personalized smart home, which
fully automated continuously tracks daily activity and conducts
abnormal activity detection.

These studies lay a solid foundation in the field. Although they
realized ambient intelligence in some aspects or certain applica-
tions, this is yet far from the true ‘smart, intelligent environment
where ‘acting’ can be equally important to support human activi-
ties. In fact, robots can provide even greater flexibilities in terms
of ‘acting’ in the smart environment [8], apart from networked
and smart appliances. Naturally, robots in IoT also start, or even
concurrently at large are dedicated to specialized tasks. Li et al. [17]
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demonstrate robotics application in fruit harvesting supported by
IoT system. Kauser et al. [15] proposed a highly automated robotic
system with various IoT sensors in greenhouses to relieve the la-
bor of farmers. Kanwar et al.[14] designed an IoT-based robotics
system for fire-fighting. Cheng et al. [6] come out with a robot-
ics system with IoT toys for EFL teaching. As IoT-related robotics
research becomes increasingly prominent, the concept IoRT has
been proposed, where more studies are more related to integrate
robots as a part of IoT networks, taking advantage of their physical
existences and abilities of execution. As mentioned before, Liu et
al. [18] explore robots behavior in a smart city scenario, and Mahieu
et al. [19] investigate context-aware and personalized interactions
on the internet of robotic things. Vermesan et al. [32] and Batth et
al. [3] individually overviewed IoRT and clarified some concepts
with suggested architecture and applications. And undoubtedly,
those existing literature opened up our ideas and established the
base of this research.

3 METHOD

As shown in Figure 2, our proposed framework is aimed to explore
an enhanced ambient intelligence in the Web of Things environ-
ment. We propose to demonstrate it in smart homes with robot
helpers, connected things, and sensors. And in the scope of this
study, we explore to prompt the autonomous robot helpers actively
collaborating with a human subject in activities of daily living in a
smart-home setting with no explicit human instructions, where the
ambient-intelligent system are supported by various environmental
sensors in the background. Particularly, we consider the proposed
framework to have three main stages, where the system infers sub-
ject intent, composites actuation for interactions, and executes the
actions for the subjects in advance. The following of this section
will explain the three stages in detail.

3.1 Problem setup

As mentioned before, our proposed framework starts with estimat-
ing the intents of the human subject. At this stage, it is essentially
an activity prediction problem with multimodal sensor data. While
different from some existing literature, here, activities are not de-
fined instructive procedures, and each instance of activity has no
clear-cut segmentation. Several activities can be done simultane-
ously and staggeringly. Thus we will need to first model the human
activities and develop an appropriate segmentation method for rec-
ognizing complex activities, for an awareness of the concurring
events and the subject intentions.

Once figuring out the intention of the subject based on the sen-
sory data, we can narrow down the scope of activities for the subject.
We propose in the second stage to finalize the conscientious moves
for the robot assistants, as well as devising instructions for them
towards the goal. For this, we start by motivating the moving robot
on the floor, which is equipped with a 3D stereo camera, to scan
the environment where the subject is conducting activities for in-
teractable objects. For example, in our aforementioned scenario,
the scanning can happen in the kitchen, and the interactable in
our scope is referred to as to defined with WoT Things Description
and can be interacted with APIs. With the items identified, we can
infer the most likely move of our subject in the even smaller search

space. Hence a more precise prediction can be produced based on
the usage history as well as certain basic rules either preset or
learned from the past data in the userspace. A further search with
the key items can be then translated into step-by-step instructions
and send to our robotic assistants to be accomplished.

However, it takes some effort to instruct robotic assistants, which
cannot understand semantic procedures. Besides, in real-life home
applications, the same task can alter due to environmental fluctua-
tions and situational variations, which often are also unpredictable
in the uncontrolled setting. Building factory-like streamlined au-
tomation is not viable at home. Thus a smart and adaptive robotic
control system is essential here, which leads to our last stage. Luck-
ily, recent research in deep reinforced learning and robotics pro-
vides us practical solutions for such applications. Subsequently, we
adopted a similar approach, and specifically, we propose to use
the aforesaid moving robot with a 3D stereo camera as the visual
guide for other cooperative robot assistants for an expository col-
laboration with the human subject. The proposed learning process
is namely powered by an adaptation of Policy Continuation with
Hindsight Inverse Dynamics (PCHID), which has been proven merit
for this application.

Formally, we denote the set of activities as A € RN, where refers
to the i-th class of activity in the set; At time ¢, we received sensory
inputs x{l € RY, where at the first stage we require the predicted
ongoing activity correspondingly:

xf = g7 = ai M
Henceforth, semantic description corresponded to current input x‘tA
is also fetched, and whose keywords are noted as Q;‘ € RY, which
is then jointly matched with a subset of corresponding semantic
keywords Q? € R? from object detected by the moving robot
assistant R;,. Then with all the contexts and historical activity with
usage information, Ay recorded in space, we can infer the most
likely intended action of the subject at time ¢" + 1, y”;l,ﬂ =dj€A
, and accordingly the action compositor a(-) produces executable
procedure with a series of interactions 7 € RM for the target
to 04 with objects to 09 assumed that in a short time duration
Q9 +1=0P = Q. That is:

(08,09, A} — d; )

A o
I = (g, Q%) ©)
Ultimately the interactions 7 will be sent to the robot, which sees
each interaction 15, as a goal and learns to reach.

3.1.1 Things Description for Smart Home. Intuitively before our
processes, it would be necessary to formulate a uniform operation
interface for interactable devices in the smart home environment as
well as descriptions, so that the system can know the functionality
of a certain specific device, how can it interact, and what can be
the possible outcomes of the interactions.

Connected and interactive things in our proposed smart home
environment are abstracted as web resources, as recommended in
WoT TD by W3C aforementioned, which enables standardization of
IoT resources. With WoT TD, IoT devices and things are registered
with a resource directory for dynamical discovery, and hypermedia
interactions can be performed as standardized web interactions
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Figure 2: The workflow of this proposed system in the scenario. Generally, the robot assistant first observed human activity,
which fused with the Web of things sensory data and inferred that the end-user is making cereal breakfast and want to have
a cup of tea; The system then searched keywords semantics and worked out procedures of making tea; The assistant visually
guided robot arm on desk executed the procedure and presented a cup of tea to the end-user.

with normal web protocols, such as HTTP; Then, the device con-
trols and interactions are essentially advertised as web services,
relying on WS-* standards. The JSON-based serialization also has
advantages in implementation. Intuitively, based on the work by
Ciortea et al. [7] and Ricci et al. [25], a semantic description of Web-
based Artifacts are also adapted in our work, used as the first-class
abstraction for a clear integration and deployment of MAS.

3.2 Intent-Awareness with Connected Things

Given the environment setups ready and devices described as re-
quired, in this very first stage, our goal is generally to predict the
next human activity and generate the output in the form of seman-
tics for the WoT API searching in the next step. And essentially, this
is fundamentally an activity Relationship Modelling problem. Nat-
urally, data collection can be the first and essential step toward this
objective. Environment changes can be sensed in different sources
and modalities, while particularly in a smart home, sensory data is
more common under the consideration of privacy. Yet, it is worth
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mentioning that with the advancement of sensory technology, nu-
merous kinds of sensors can be deployed for collecting various
contextual information, even at different frequencies. This leads to
studies of sensor events based on ongoing activities and new activ-
ity detection, as well as segmentation of the sensor events based on
prior knowledge for better HAR analyze s and modelings. And this
is extensively studied with copious state-of-the-art approaches.

As semantic features are vital in the later stages in our proposed
framework, here, we adopted a workflow inspired by Triboan et
al. [31], for both generalization and model efficiency. Predominantly,
it is a semantic theory-based approach for sensor event segmen-
tation, which intrinsically analyze s and compare sensor event to
actions of known activities. Noted that, after learning of the activ-
ity model, a semantic activity prediction can then be adapted for
the required inputs for the following stages. The following of this
subsection will explain the procedure.

3.2.1 activity Modelling. First of all, the environmental context
(EC) can be essential in our smart home settings, which can arguably
consists of various entities (ETy) such as the human subject (H,),
location (L;), ambient characteristic (AC,), sensor characteristics
(Sp) and interactable objects (Objq) of classes (Cy):

EC = {Hp, Lm, ACo, Sp, Oqu} 4)

As for Semantic Relations SR between EC and activities, we denote a
Sensor Environment (SR) for the relationship (R.) between specific
sensor event and corresponding objects. That is

SR = an(Re, EC) > R, — SE (5)

where

SE = instance(Re, Sp) — Re (6)
As specified by Triboan et al. [31], the actual activity performed
by human subjects can vary in real-life and may not match our
prior knowledge. It would be critical to consider subject preferences
(Pref;) as well. And it is modeled as

Pref, = instance(Re, an N Preference) — R, 7)

3.2.2  Semantic Decision. Working on the above-modeled relation-
ships, regular, generic activities can be recognized using semantic
reasoning methods on the ontology. Given the streamed and ob-
served a set of sensory events E°, and the possible activity candi-
dates (A”), we can construct an activity thread (AT;). With Termi-
nology Box (T-Box) reasoning on regular, generic activities, and
Assertion Box (A-Box) reasoning for user preferred activities, it can
be presented as

AT; = {tBox[A’, E®], aBox[Pref,[Pref’, E*]]} (8)

Specifically, it is assumed the traced semantic relationship is
generic, and the metadata of sensor event e, € E° is analyzed
d for the corresponding Entity (ETk) to deduce the candidates of
relationships with activities. As the process going, the concurrent
activities can be inferred using a semantic reasoner. And when the
T-Box returns conflicted results, which can be identified with the
mismatch of the corresponding entities and set of sensor events
in our predefined knowledge base. Here, user-preferred activity is
assumed for such irregular behaviors. While in this case, the current
actions are learned and saved for later use, with the corresponding
activity and sensor events.

3.2.3 Sensor Events Segmentation. In this subsection, sensor events
segmentation is introduced for activity prediction, while it also crit-
ically impacts the overall performance as the base motivation of
system actions. While in our setting, the segmentation can be chal-
lenging, and as our proposed scenario is naturally more complicated
with richer contexts containing more than wearable motion sensory
data as in most activity-related wors, not to mention that in our
practice, very low-latency processing is preferred if not real-time.
Specifically, in this work, we propose to extend literature to work
with a richer context from IoT sensors in a smart home setting.
Noted here, we generalize the concept of sensory events to contain
also status and usage information gathered in the IoT networks.

Inspired by Mallick et. al. [20], we propose to adapt a transaction-
based segmentation, as at a given activity transaction, activities
may be multiplexed and accordingly we also consider that transac-
tion segmentation may not perfectly align with individual activities.
That is, given a set of sensory events E = {ej, ez, ...egle; € ES},
we can segment it in to multiple transactions denoted as tr; =
{ei,€it+1,...,ei+j} € Tr.The transaction tr; matches exactly with ac-
tivity a; is defined as ProperCut transaction, while OverCut denotes
transactions do not contain all transactions and Undercut transac-
tions involves multiple activities. While, as defined by Mallick et
al. in their work [20], we also aimed to minimize the number of
overcutting and undercut transactions here.

While differently, we argue that in our application, the transac-
tions can have overlapped to couple with activity multiplexing. It is
not critical for us to segment the sensory events into transactions
with continuous timestamps. This can also simplify the segmenta-
tion and improve the latency for processing data. For example, it is
totally acceptable with an activities a; = {e1,e3}, az = {eg, e3,e5}
in Ez = {e1, ez, €3, e4, €5}, where we have tr; = {e, ez, e3} and
tro = {ez, e3, e4 e5}. Here {e1, e3} is key events help us identify aj,
and similarly, a; is identified by {e, e3, e5}. Noted that some op-
tional events for an activity can happen, such as it is not necessarily
critical for one to use fridge when cooking. Thus, our goal is then
to identify the minimal transactions of sensory events that contain
complete activities for the downstream processing. Given we have
contextual information of sensors and IoT devices also available in
the home, such information is also embedded and clustered, where
the distances are considered as weights in conjunction with the
temporal sequences for the segmentation. MinMax algorithm has
been proven effective and can be used for such processes.

3.24 activity prediction. Since the segmentation of sensory data
is now available, the activity habits of the subject can be effectively
learned, and thus we can infer possible next moves of the subject,
which is then used for our downstream processing as input, to give
commands to our execution agent, that is the robot assistant. While
our focus in this paper is the verification of other parts, we adapt the
state-of-the-art approach in this module. Specifically, we propose
to utilize recent work propose by Altulyan et al. [1], where the
approach can effectively suggest the next items to be used by the
subject and learns in ambient by both the history of interactions,
as well as new interactions, especially when wrong suggestions are
made. Despite the proposed method are originally used as part of
the reminder system for Alzheimer patients caring, its core function
is essentially activity prediction and promotion. Specifically, this



method involves three major stages, while we require only two of
them as the removal of the reminder promotion:

(1) Complex activity recognition. At this initial stage, the
system learns what is ongoing with the subject, and espe-
cially with sensory data, and recognized simple elementary
activities such as the posture of the subject and movement
of subject limbs, what complex activities, or in general, what
is the subject doing. For this, we first identify the simple
elementary activities, and based on our predefined ontologi-
cal model; orchestrated rules are used for complex activities
recognition.

(2) Recommendation. At this stage, we prompt activities and
items to be used in the next step. Initially, this was used
to remind items to the subject, while we in this study take
advantage and pass the item recommendation to the ambi-
ent intelligence and ultimate our robot assistants. For this,
the system firstly learns the past trajectories of activities
for references as experiences, where the steps in sequences
are used as states. Based on the recorded state trajectories,
current contextual states can be determined and used for
inferring the following ones and accordingly the activities to
be performed as well as items to be used. Especially, the avail-
ability of state trajectories enabled us to build the learning
process with the Q-learning RL framework.

3.3 Semantic Searching for Interactive Web of
Things

As now we have learned what activity is ongoing based on the
sensory observations and historical user interactions and figured
out what actions next the human subject intends to perform, we
can search the environment for the objects and conjecture the
procedure towards the inferred intention with a semantic search,
and thereafter the procedure can be passed to our execution agent,
i.e., the robot arm, for completion. While to achieve this, we may
need first to recognize the object on presence, and for this, we adopt
Mask-RCNN mentioned above, with details explained as follows.

3.3.1 Mask R-CNN. Mask R-CNN [12] is a well-known and widely
used efficient pixel-level object segmentation algorithm, which
is developed from bounding box segmentation method Faster R-
CNN [24] by Ren et al. Besides the Region Proposal Network (RPN)
that propose Rol and the object detector from Fast R-CNN [11]
extract features and refine the bounding of objects on the proposed
regions, Mask R-CNN also identify if given pixels in each region
are parts of certain objects, thus produces binary masks for objects.
Specifically, it output 1 for pixels belonging to an object and 0
otherwise. In this work, we use the masks for (1) object detection
and (2) combining with depth information to locate 3D positions of
interesting objects in the scene, which are then used to coordinate
both the setting of learning goals and training/running processes.

3.4 Context-aware Hypermedia Interactions

Here and now, we have contrived the procedures for an attainable
activity that the human subject is likely to perform subsequently
in steps, yet this can still be hard for a robotic assistant to com-
prehend, as it is not instructive hardware movement commands or

movement coordinate for the robotic arms in our case. The steps in
our generated procedure are more resemble goals. Thus we need a
set of algorithms to achieve them, and specifically, we introduce
Policy Continuation with Hindsight Inverse Dynamics (PCHID) as
a strong and effective RL-based approach for this purpose.

3.4.1 Policy Continuation with Hindsight Inverse Dynamics. In-
spired by Hindsight Experience Replay (HER) [2], Sun et al. propose
PCHID [30] to expand HER to a more general self-supervised learn-
ing for Goal-conditional tasks with the ability to extrapolate the
learned policy to more complex and non-linear Hindsight Inverse
Dynamics(HID) applications, which can be applied both standalone
and combined with other RL frameworks, such as DQN. Here they
Target to learn general policy in larger policy space while meet-
ing the restrictions of sub-policies while learning. In PCHID, they
introduced the goal into inverse dynamics as Hindsight Inverse
Dynamics, and specifically expand it to k-step as the goal may re-
quire multiple steps to be reached, where they ensure the goal is
solvable from 0-th step, 1st step until k-th step, i.e., all the goals
in each step can be reached under the optimal policy. Thus it can
output the minimal k-step actions required by the goal under op-
timal policy. In their very study, they experiment specifically on
reaching a moving target (the goal, i.e., the target is constantly
changing thus requires updating in each step), while in our settings,
we are considering completing a complex task in multiple steps
with different sub-goals.

3.4.2  Multi-Step Goals with Policy Continuation. While Sun et al.
in their PCHID [30] has proved that making the system knowing
about the hindsight goal can be considerably beneficial for a faster
and smoother convergence toward an extrapolated goal, it is also
found more sophisticated settings are still challenging in a single
goal setting. The idea is to expand the original HER model for
HID to include the k-step solubility for better optimization. Similar
to their bit-flipping example, we also propose to adapt such an
approach.

Specifically, as in the Universal Value Function Approximators
(UVFA) [28], we have possible goals g € G and a corresponding
reward rg : S X A — R, where the S, A is the space for states and
actions, and for certain episode the goal g is fixed, and accordingly
at timestamp ¢, we have r; = ry(s¢, g¢) and policy 7 : SX G — A.
While expanded from the (0, 1) binary problem set, the reward
would then as indicated in the HER, to be

bject bject
r(st,ar,g) = /1|g—s;J Jectip |g—sf+{ec | 9)

Noted that, in our case, while the hyperparameters p € 1,2, the
A may not be limited to 0, 1, which will be discussed later in the
following section on evaluation and experiment.

Based on the UVFA model of HID, we follow Sun et al. to apply
the k-step solvable extension, and hence the state-goal S X G is
decomposed as SXG = (SXG)oU(SXG)1U...U(SXG)TU(SXG)U,
see [30] for more details. Thus, our objective here is to find the
optimal policy 7* = 75U} U...Un}. U, where for each state-goal-
action pair at timestamp ¢, we have a policy 7} leads toward the
next sub-goal. Hence, the objective can be solved by SDG models,
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where

O = argmin Z

gk_lsi St Laliel...k
O A LS

1 foy, (st G141 (5241, 71) = an)lI

(10)

Figure 3: (a) Overall testing success rate to training episodes;
(b) Overall learning rewards obtained to training episodes.

4 EVALUATION

In this study, we conduct most evaluations based on simulation,
while in order to show its feasibility in real-life applications, we
implemented live demonstrations of certain selective activities,
whose video can be found at XXXX.

Our test mainly focuses on the task learning process of robotic
assistants and is based on RLBench [13], which is opensource and
contains a large number of daily activities (100 activities) for robotic
related manipulation benchmark. While the RLBench uses the
PyRep simulator, we implemented it with Deepbot framework [16]
and OpenAl gym environment [4]. This essentially enables us to
synchronize the simulation with ROS, where our real-life robots
rely on, thus easier to produce the demonstration linked above.

Specifically, our setting up involves a Lynxmotion AL5D robot
arm, a TurtleBot waffle Pi equipped with a 3D stereo camera, and
some activity-interactive items, especially kitchen utensils.

4.1 Experiments

As mentioned, the robotic assistants actuate based on the UVFA
model of HID, which is an extension to DQN [21]. It would be
sensible to compare PCHID with DQN and its successor HER to
demonstrate the overall effectiveness in our application with daily
tasks, specifically the RLBench tasks. The reward is set 0 if the final
state is within the tolerance of the subgoal for each step and -1 if
the state of the robotic arm failed to be reasonably close. Figure 3
shows the overall success rates and rewards to episodes of training.
It can be observed that the PCHID method is overall effective and
learning significantly faster than compared HER and normal DON
method in our applications. Figure 5 presents some intermediate
learning outcomes, given (a) and (b) failed to complete the task of
‘Pick and lift’ where (c) succeed at episode 20, 50, and 100; Figure 4
demonstrate effectiveness of PCHID in some selected tasks, namely
(a) Pick and lift; (b) Place cups; (c) Remove cups; (d) Press switch.

In this study, we set the step of PCHID to 5. Larger steps may
incrementally improve the results. The computational costs can
be exceptionally high, not to mention in the current setting, the
success rates can be argued acceptable.

5 CONCLUSION

In this work, we propose an ambient-intelligent system with collab-
orative robotic assistants to actively work with human subjects in
smart homes. The system takes advantage of recent studies of sen-
sory data-based human activity prediction and RL-based Robotic
controlling to present an end-to-end collaborative solution in smart
homes. Simulations and certain demonstrations show the effective-
ness of our proposed system.

5.1 Future Work

It is worth mentioning that despite in our system, the ambient intel-
ligent and robotic assistants can work without human invention, the
environmental setup is still predefined in the system. This results
in a certain amount of expertise labor work, especially the parts
involving WoT Things Description on how smart objects in the
environment can interact as well as the activity recognition which
is based on preset ontology and rules. It would be argued the prede-
fined items and activities are inclusive, not to mention that setups
in real-life homes can be changed as time goes. Hence in the feature,
we will accordingly aim to tackle the above-mentioned major short-
comings, Explicitly we will study: (1) an interactable item-discovery
method to dynamically expand system knowledge about the envi-
ronment and prompt robotic assistant activities, based on online
observations of activities conducted by the human subject; (2) Novel
robotic and ambient intelligence oriented activity modeling method,
which specifically models activities for ambient and passive online
learning, thus direct activity recognition in the background with
the ability to learn new and unrecorded activities.
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