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Abstract:  

An important feature in most urban roads, and similar environments such as in theme 

parks, campus sites, industrial estates, science parks and the like is the existence of 

pavements or curbs on either side defining the road boundaries. These curbs, which 

are mostly parallel to the road, can be harnessed to extract useful features of the road 

for implementing autonomous navigation or driver assistance systems. However, 

vision alone methods for extraction of such curbs or road edge features with accurate 

depth information is a formidable task as the curb is not conspicuous in the vision 

image and also it requires the use of stereo images. Further, bad lighting, adverse 

weather conditions, non-linear lens aberrations, lens glare due to sun and other bright 

light sources can severely impair the road image quality and thus the operation of 

vision alone methods. In this paper an alternative and a novel approach involving the 

fusion of 2D laser range and monochrome vision image data is proposed to improve 

the robustness and reliability. Experimental results are presented to demonstrate the 

viability, and effectiveness, of the proposed methodology and its robustness to 

different road configurations and shadows.  

Key Words—Intelligent sensors, robot vision systems, laser measurement systems, 

transportation  
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1.  Introduction 

The development of techniques for high performance autonomous navigation and 

control of vehicles in outdoor road environments has become an important and active 

research endeavor in the face of emerging markets for advanced Autonomously 

Guided Vehicles (AGVs), mobile robots, and smart vehicles. An intelligent system for 

the detection of road boundaries and painted lane markings are indispensable 

elements in the realization of such autonomous systems as well as in driver assistance 

systems. Some of the well known road detection methods can be cited as, RALPH 

(Rapidly Adapting Lateral Position Handler) [1], Dickmanns et al [2], GOLD 

(Generic Obstacle and Lane Detection system) [3], ALVINN (Autonomous Land 

Vehicle In a Neural Network) [4], ARCADE (Automated Road Curvature And 

Direction Estimation) [5], LOIS (Likelihood Of Image Shape) [6] and work by 

Aufrere et al [7].  

Detection of pavement boundaries and range estimation are valuable for 

number of intelligent applications including autonomous navigation, drowsy driver 

warning and forward collision warning. Work by Lakshmanan et al [8], 

Kaliyaperumal et al [9], Ma et al [10] and Nikolova et al [11] are few instances where 

millimeter wave radar (MMWR) have been applied for road boundary detection. laser 

measurement systems (LMS) have also been used for road boundary detection using 

reflection posts [12], guardrails and posts [13]. To the best of our knowledge 

application of two-dimensional (2D) LMS and monocular camera for road curb 

detection and the manner in which, it is utilized here have not been reported in the 

literature. 

An assembly involving a 2D LMS and a CCD camera and appropriate image, 

vision and laser range data processing algorithms are proposed in this paper as an 
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effective intelligent system for compact and real-time extraction of road features 

useful for autonomous navigation and driver assistance systems. In Section 2, the 2D 

ladar for road curb detection is described. The extracted curb data mapped on the 

image plane is used to estimate the midline (or lanes) of the road in Section 3. In both 

cases, i.e., the curb detection using laser and midline extraction using vision, are 

formulated as an Unscented Kalman filtering problem. In Section 4, we develop a 

Kalman filter framework for temporal tracking of extracted road curbs.  Experimental 

results gathered from the composite sensor mounted on our in-house built test-bed 

(Figure  10), GenOME (Generic Outdoor Mobile Explorer) is used in Section 5 to 

illustrate the effectiveness of the proposed algorithms. Section 6 concludes the paper. 

 

2.   Road Boundary Extraction using a 2D LMS 

In the past decade, interests in the use of LMSs in autonomous navigation systems 

have been on the increase [12-18]. LMSs can provide a low cost alternative to 

MMWR systems for depth/range measurement under poor lighting, visibility and bad 

weather conditions [14]. In autonomous navigation, LMSs have been used in obstacle 

detection [15], navigation [16], localization [17-18], and road boundary detection 

(using reflection posts [12], using guard rails and posts [13]). In our application, the 

LMS is used mainly to detect the road boundaries or edges as defined by the curbs. 

The use of laser measurement device to detect the curbs is more robust and reliable as 

compared to camera-based vision systems especially in bad weather and poor lighting 

conditions.  

Curb extraction is achieved by a front mounted 2D ladar sensor looking down 

the road ahead (10-15m) with a small tilt, zero pan and swing angles (Figure 1). The 

LMS scans a laser spot beam from right to left through 180 degrees on a plane 
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inclined at an angle Lα  (equal to the tilt angle) to the road surface. The idealized road 

model and sensing scenario is shown in Figure 2. For a given region (e.g. road surface 

(CD), curb surface (BC or DE) or pavement surface (AB or EF)) the evolution of the 

range data, ( ), provided by the LMS can be described approximately by a straight-

line over a small window. In the Unscented Kalman Filter (UKF) based technique, a 

straight-line process model is used to predict the next range data (

id

2id + ) given the past 

two range measurements ( ) obtained at equal angular separation (see Figure 3). 

The filtering is effective and valid provided the model of the process adequately 

describes the evolution of the range data points, i.e. for data lying on the same region, 

for example, flat pavement surface and curb surface. The prediction error would be 

significant from the measured data at the boundary separating two contiguous regions 

(e.g. pavement surface to curb surface). Thus, the magnitude of the prediction error 

computed at a particular data point can be used to validate the authenticity of the 

process model describing the evolution of the range data points. If the prediction error 

exceeds a threshold at a particular data point it indicates start of a new process model, 

and hence a candidate end-point of a segment. These segmented edge lines are 

analyzed for possible curb edges using bank of filters. 

1,i id d +

 

2.1 Data Filtering and Segmentation  

The Unscented Kalman filter (UKF) methodology, which is based on a stochastic 

framework, filters (random errors and outliers), effectively segments the data and 

estimate parameters simultaneously. Selection of threshold for segmenting the data is 

based on the statistical properties of the data. Although, methods based on the Hough 

Transform can be used for line extraction, it is unsuitable for this application since 

even a few points (at least three) can correspond to a valid curb. Thus, many 
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candidate edge lines result from its application requiring the use of extensive 

processing to filter out the lines corresponding to the curbs. Further, the selection of 

threshold is quite arbitrary. 
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Figure 1: LMS and CCD camera sensor assembly and reference coordinate frames 

 

Process model: 

Consider the three points P1, P2 and P3, lying on a line segment L1, at a range of di, 

di+1, and di+2 respectively from the ladar measuring system, as shown in Figure 3. The 

range measurements are obtained at equal angular separation of γ  degrees. Using 

elementary trigonometry it can be shown that [19]: 

1
2

12 cos
i i

i
i i

d dd
d dγ

+
+

+

=
−

         (1) 

Now, a three state process model can be set up by choosing state variables as, 

1 2( 1) ix k d ++ = and 2 1( 1) ix k d ++ = . 
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Represented in vector form, 

( ) ( )1 ( ) (k f k+ = +x x         (3) 

( )kv  is the process noise and is assumed to be .  ~ (0, )LN Q

 

Observation model: 

Linear measurement model is, 

[ ]
1

1 2

3

( )
( ) 1 0 0 ( ) ( ) ( ) ( )

( )
i

x k
z k d x k w k k w k

x k
+

⎡ ⎤
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⎢ ⎥⎣ ⎦

Hx       (4) 

where,  is the observation matrix, and w k  is the measurement noise assumed  to 

be 

H ( )

2~ (0, )LN σ  and uncorrelated. 
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Figure 2: Ideal model of road, curbs and 
pavements 

Figure 3: Three consecutive laser data 
points on a flat road surface 
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It is to be noted that the process model is nonlinear. A well-known approach is 

to linearize it and use the Extended Kalman Filter (EKF). Although EKF is a widely 

used modality, it has the disadvantages of difficulty in implementation, difficulty in 
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tuning, and only reliable for systems that are almost linear on the time scale of the 

update intervals [20]. Therefore, Unscented Kalman Filter [20] is adopted for the 

filtering and segmentation. 

 

Filter Initialization: 

A reasonable initial value for the state estimate,  and posteriori error 

covariance,  can approximately be chosen using two range measurements, at 

time k=1 and k=2. From equation (4), we have 

k kx̂( / )

( | )k kP

1 1ˆ ˆ(1|1) (1),   (2 | 2) (2)x z x z= = . From 

equation (2), we have  and hence,  2 1ˆ ˆ(2 | 2) (1|1)x x=

( )
( )

1

(2)
ˆ(2 | 2) (1)
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z z
z z
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⎥
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Since the measurement noise is assumed uncorrelated,  

2

2

0 0
(2 | 2) 0 0

0 0 0

L

L

σ
σ

⎡ ⎤
⎢= ⎢
⎢ ⎥⎣ ⎦

P           (6) 

 

Data Segmentation: 

The filtered data is segmented using an appropriate threshold, and is based on 

[21].  Suppose the true values of the predicted measurement,  and 

observation, 

( )ˆ 1/k k+Hx

( 1k +z , are ( )ˆ 1/k k′ +Hx  and ( )1k′ +z  respectively. Then their 

difference is, ( ) ( )ˆ 1/ 1k k k k′ ′ ′+ − +y Hx z and its estimate is, 

. Now, it is to be tested for the hypothesis, , such that ( ) (ˆ 1/ 1k k k k= + − +y Hx z ) oH
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the predicted and the observed values represent the same point. i.e., , 

against the alternative hypothesis  as, 

0 :   0kH ′ =y

1H 1 :   0kH ′ ≠y . Assuming that  

and  have statistically independent errors and their covariance matrices are 

 and respectively, then under the hypothesis , the covariance matrix of the 

difference 

( )ˆ 1/k k+Hx

1k +z( )

x̂Λ zΛ 0H

ky  is given by,  ˆ= +y xΛ Λ Λz

Now, the square of the Mahalanobis distance, M
kδ  between the predicted and 

observed measurement, i.e.  and ( )ˆ 1/k k+Hx ( )1k +z  is, 

( ) ( )( ) ( ) ( ) (( )

1

1
ˆˆ ˆ     1 1/ 1 1/

M T
k k y k

T
k k k k k

δ −

−

=

= + − + + + − +z x

y Λ y

z Hx Λ Λ z Hx )k
    (7) 

The hypothesis, , is accepted against , with confidence 0H 1H α  by choosing a 

threshold ε , such that 0{ | }M
kP Hδ ε≤ =α . Hence, at a confidence level of α , the 

new measurement point  is regarded as belonging to the same process, if ( 1k +z )

M
kδ ε≤ . It is to be noted that M

kδ  is having a 2χ  distribution and therefore, an 

appropriate threshold ε  for a given α  can easily be determined using a 2χ table. In 

the event, M
kδ ε>  the new measurement point is regarded as an initial observation of 

a new process. In such an event the previously filtered point is declared as the end of 

current collinear segment and re-initialize and execute the algorithm using the new 

measurement point as the starting point of a new segment (process model). 

Here, a line is represented by a point and orientation { }, ,L L Lx y φ . { },L Lx y is 

estimated as the mean of each data  (in Cartesian coordinates) in a particular 

segmented data set and Lφ  is directly estimated through UKF. 
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2.2 Road Boundary Extraction 

Similar to painted lane markings, curbs (height is about 14cm) are features that 

parallel to the road and provide useful information for road detection. This property is 

used to filter the candidate line segments correspond to the road boundaries among 

those extracted in section 2.1.  

  

Orientation Filter: 

 The straight-line segments extracted are first analyzed for their orientation. If it is 

assumed that the vehicle is initially, approximately parallel to the road edges (curbs), 

then only those edge segments whose orientations are constrained by equation (8) are 

chosen for further processing.  

2L
πφ φ= ± ∆ max            (8) 

where, ( )
1

r

y
R wφ − ⎛ ⎞

∆ = ⎜ ⎟−⎝ ⎠
max

min
sin Rmin,  and  are  the minimum radius of the 

road curb and the road width respectively (see Figure 4).  is assumed to be known 

a priori  and 

rw

rw

Rmin  is usually a road design parameter [22].  
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Figure 4: Orientation of curbs with respect to vehicle 
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Neighborhood Filter: 

Subsequent to orientation filtering, edge segments lying in the neighborhood of the 

road ahead at a distance corresponding to the look-ahead distance of the laser ( y ) are 

extracted. The neighborhood is defined as the lateral interval between the two points 

( L )x y,  and ( R )x y,  shown in Figure 5. Points corresponding to the maximum 

possible left and right lateral positions of the curbs at a look-ahead distance of y  can 

be calculated as,  

( )

( )

2

2

 
2 2 2

2 2

v r
L

r

v
R r

r

w w yx
R w

w yx w
R w

= − −
−

= − +
−

min

min

         (9) 

where, rR w>min  and  is the width of the vehicle. Therefore, the line segments 

obtained in orientation filtering are further filtered in neighborhood filtering based on 

where the edge segments intersect the line 

vw

y y= . That is, the edge segments whose 

x -coordinates, x , that satisfy the following constraint (10) are chosen for further 

processing. 

L Rx x x≤ ≤                               (10) 
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Figure 5: Vehicle in a left/right road curvature 
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Road Width Filter: 

With the proliferation of GPS and digital maps, it is reasonable to assume the 

availability of approximate road widths. In this stage, the road width constraint is 

applied to extract a pair of edge segments that correspond to the road curbs. The 

interline distance at a look-ahead distance ( y ), between all pairs of edge segments 

extracted in neighborhood filter, are determined.  Now we choose the single pair of 

edge segments whose interline distance ( ), closely matches the a priori road width 

(

dl

rw ) subject to a tolerance wε  as given in equation (11). 

( ) ( )r w d r ww l wε ε− ≤ ≤ +                      (11) 

 

3.  Road Boundary Extraction using Vision  

The computational complexity of image processing can drastically be reduced by 

restricting the computations to a region of interest (ROI). The extracted curbs using 

LMS data can effectively be used to define an ROI. This needs a calibrated laser-

camera system.  

 

3.1 Laser-Camera Calibration 

Vehicle, camera and laser reference coordinate frames are chosen as shown in Figure 

1. It can be shown that if a point in 3D space is given in homogenous coordinates as 

( , , ,1 ')x y z  with respect to the vehicle reference frame, { , its representation in the 

image, (  is [23]: 

}V

),u v

( )
( ) ( ) ( ) ( )

0
0

0 0sin cosx

x x
u u g f

y y z zω ω
−

= +
− + −

                 (12) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

0 0
0

0 0

cos sin
sin cosy

y y z z
v v g f

y y z z
ω ω
ω ω

− − −
= +

− + −
                  (13) 
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where,  is the principal point, and  (pixels/m) are the gains along x and 

y axes, 

( 0 0,u v ) ' xg yg

f  is the focal distance, ( )0 0 0, , 'x y z  is the center of perspectivity or the 

position of the camera lens (origin of camera frame { ) relative to the vehicle frame, 

) and  

}C

{ }V ω  is the tilt angle of the camera. The camera mounting is fixed with zero 

pan and swing angles.  

If the 3D vehicle coordinates of a point on the road surface is ( , , ) 'x y z , and its 

coordinates in the laser measurement domain is ( ,Li idθ ), then assuming a flat road 

surface and a laser tilt angle of Lα  we have (see Figure 1): 

( )cos cos
( cos sin )
0

i L Li

i L Li

x d
y d L
z

α θ
α θ

=

= +
=

                   (14) 

 

3.2 Road Boundary Extraction  

Lane markings provide more reliable edges than that of pavement boundaries in 

vision images. Therefore, it is proposed to use lane markings in road boundary 

extraction. In Figure 6, suppose the curve,  is the image of the middle lane marking 

of the road ahead.  Now, consider the points labeled 

iC

1,i iP P+  and  lying on the 

curve  at the polar coordinates 

2iP+

iC ( ) ( )1 1, , ,i i i id dθ θ+ + , and ( )2 2,i id θ+ +  respectively. If 

the three points are chosen such that 1 1 2i i i iθ θ θ θ+ + + γ− = − = , where γ  and the 

curvature of the curve,  near the points are sufficiently small, then the points can be 

assumed approximately collinear and their relationship given by equation (1). Here 

the range of a point on the image plane is interpreted to be the radial distance to the 

point from the origin. Thus, given the range measurements , and  of the 

previous consecutive points , and 

iC

id 1id +

iP 1iP+ , on the curve, , one may predict the next iC
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point ’s range measurement 2iP+ 2id + . A filtered estimate of the predicted point ’s 

range measurement , can be computed if a measurement of it is available. Such a 

measurement can be obtained by searching for an edge pixel along the line OA in the 

neighborhood of the point . This process of prediction, measurement and filtering 

can be applied in sequence to all measured points in order to extract the curve, .  

Similar to the procedure described in Section 2.1, we use the non-linear process 

(equation (2)), the measurement model (equation (4)), however without the state 

2iP+

2id +

2iP+

iC

( )3x k  and UKF to extract the middle lane marking of the road.  

O

iP

1iP+

2iP+

iC
iθ

1iθ +2iθ +

γ

A

γ

1id +
id

2id +

β
 

 
Figure 6: Image points on the 
middle lane image curve. 

 
Figure 7: Search area on an edge image 

 
 

Filter implementation:  

To start the UKF it is important that we have the polar coordinates of two initial 

points , and  on lane curve  to be extracted. The two initial points are 

determined in a robust manner. Hough Transformation (HT) is used for the edges in a 

rectangular window (see Figure 7), W , centered approximately at a point (obtained 

using laser data) on the middle lane image curve  to extract candidate line 

segments. The HT procedure is made computationally efficient using the predicted 

midline segment using linear curb segments extracted by laser. Then candidate line 

1P 2P iC

iC
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segments of HT are clustered and line corresponding to white lane marking is 

extracted. Intersection of that line with top and bottom edges of the window W  are 

chosen as initial two points.  The choice of width and height of the rectangular 

window, are influenced by a combination of factors including, computational 

efficiency, curvature of the lane marking, flatness and gradient of road and camera 

pose. 

W

Knowing the coordinates (row, column) of the two points on the mid line, it is 

possible to calculate the coordinates, 1 1( , )d θ , and 2 2( , )d θ  of the points, , and . 

These range values computed for the two initial coordinate points can be considered 

as the first two measurements , and  of  and . Hence, a reasonable 

initial state estimate of the UKF is: 

1P 2P

(1)z (2)z 1d 2d

( )
( )
2

ˆ(2 | 2)
1

z
z

⎡ ⎤
= ⎢ ⎥
⎣ ⎦

x                            (15) 

Since the measurement noise is assumed uncorrelated, normally distributed 

with zero mean and variance 2
cσ , an initial estimate of the state error covariance 

matrix can be: 

2

2

0
(2 | 2)

0
c

c

σ
σ

⎡ ⎤
== ⎢ ⎥

⎣ ⎦
P                       (16) 

For , we may use the UKF to obtain the next point’s range ’s 

prediction, 

2k ≥ 2id +

1̂( 1| )x k k+ , given the previous two points’ (  and ) filtered range 

data, 

iP 1iP+

1̂( | )x k k  and 2ˆ ( | )x k k . To obtain the filter update, 1̂( 1| 1x k k )+ + ,  of the 

prediction,

2k ≥

1̂( 1| )x k k+ , using the UKF, measurement ( 1)z k +  is used. Repeating the 

process for all available points within a window defined by the look ahead distance, 

, the mid lane image curve of the road can be extracted. Next, the general 2k ≥
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procedure for determining a range measurement ( 1)z k +  of the predicted range 

1̂( 1| )x k k+  for  is described. 2k ≥

As was described at the outset, by searching along the line segment OA 

(Figure 6, and 7, straight line at an angle of γ  with line 1iOP+ ) of the edge-image one 

can detect edge pixels that could possibly define the range measurement,  of 

point . In actual practice, it is only necessary to search a segment of the line OA, 

such as between intersection points of lines and with  of Figure 7, thus 

reducing the computation time. , and  are determined based on the 3

( 1)z k +

2iP+

1C 2C OA

1C 2C σ  limit of 

the error covariance. Since, apart from the correct edge pixel data corresponding to 

the mid lane marking, there can be spurious white pixels that may be detected as 

possible measurements of , along the line OA, we choose the data point that yields 

the minimum absolute innovation (

2iP+

ˆ| ( 1) x( 1/ 1) |e z k k k= + − + +H ) at each iteration. In 

other words, the measurement value ( 1)z k +  for update of state , 

covariance and Kalman gain 

ˆ ( 1/ 1k k+ +x )

( 1/ 1)k k+ +P ( 1K k )+ , is chosen to be the range 

measurement that is closest to the predicted range measurement based on the process 

and measurement models. This process will be repeated for all points defined by, 

2 2 .i iθ θ+ = − γ n, where . The number of points  considered is a function 

of the look-ahead distance.  

1,........,i = n

 

Road Boundary Estimation: 

Now the boundary of the road is obtained in image coordinates by mapping the 

trajectories  and  (Figure 8) of the intersection points or the end-points of the 

line segment  as it is swept along the road in a direction perpendicular to the x-axis 

of the camera frame. The road boundary in the image plane is defined by the 

lC rC

iL
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trajectories of the end-points of the line segments iL′  (projections of line ) of length 

 centered at the mid line on the image plane. Knowing the width of the line 

segment from the laser range measurements (section 2), equation (17) can be used 

to generate the length  at a given row coordinate v, and hence the road boundary in 

image coordinates [23].  

iL

iw

rw

iw

( )sin( )x C
i

y

g Dw v
g

vα
∞= −                      (17) 
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(a) Parallel road edge curves on the 

ground plane 

(b) Projection of road edge curves on the 

image plane 

Figure 8: Road in ground plane and its projection in the image plane 

 

 

4.  Road Boundary Tracking 

So far, we have dealt with road feature detection and in this section we begin with the 

formulation of the problem of road feature tracking. In the case of using laser data for 

road curb tracking, the formulation and its solution are complicated by the fact that 

there are no obvious moving target(s) to detect/track and the detection/tracking 

sensors are on board a moving platform (vehicle). Since the objective is to detect and 

track curbs, a pseudo target is defined as the line segment that results from the 
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intersection of the planar laser scan with the planar curb surface. Thus when the 

vehicle is in motion the line segment or target moves along the curb. 

 

4.1   Problem Formulation 

Coordinate Frames: 

There are three coordinate frames of interest. A fixed world coordinate frame 

{ }W WX Y, is used mainly for visualization purposes, and two coordinate frames 

{ }k k
V VX Y,  and { }1 1k k

V VX Y+ +, denoting the vehicle frame at the time instances  and 

 respectively (see Figure 9) are for derivation of the curb tracking algorithm. The 

relationship between the vehicle frames at the 

k

1k +

( )1 thk + instant and the k th instant is a 

simple rotation ( vφ∆ ) followed by a translation . x yt t( , )
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Figure 9: Road curb and coordinate frames 

 

Target Model: 

The state vector, , is defined as x ( ) ( ) ( ){ R R Rx k y k kφ∈x , , , ( ) ( ) ( )}L L Lx k y k kφ, , , 
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where ( ) ( ) ( )( )R R Rx k y k kφ, ,  and ( ) ( ) ( )( )L L Lx k y k kφ, ,  denote the right and left 

curb segments with respect to the kth vehicle frame. Since the road is locally flat, the 

target (LMS- scan and curb intersection) would be approximately at a known distance 

y  in the direction of the vehicle y-axis. From Figure 9, it may be easily deduced that 

the evolution of the curb segments is described the by equation (18). 

[ ]1  k k k+ = +x( ) f x( ), u( ) v( )k                                                                                   (18) 

where,  ,            
TR R R L L Lk x k y k k x k y k kφ φ⎡ ⎤= ⎣ ⎦x( ) ( ), ( ), ( ), ( ), ( ), ( )

 [ ]  k k k k k= +f x( ), u( ) F( ) x( ) u( ) 

1

,      

3 3

3 3

v x

x v

k
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

R O
F( )

O R
, 

0
0

0 0

v v

v v v

φ φ
φ φ

∆ − ∆⎡ ⎤
⎢ ⎥= ∆ ∆⎢ ⎥
⎢ ⎥⎣ ⎦

cos sin
R sin cos , 

R R
V x v V y v

R R
V x v V y v

R
V v

L L
V x v V y v

L L
V x v V y v

L
V v

x t y t

x t y t

k
x t y t

x t y t

φ φ

φ φ

φ φ
φ φ

φ φ

φ φ

⎡ ⎤∆ − ∆ − ∆ − ∆
⎢ ⎥
∆ − ∆ + ∆ − ∆⎢ ⎥

⎢ ⎥∆ −∆⎢ ⎥=
⎢ ⎥∆ − ∆ − ∆ − ∆
⎢ ⎥
∆ − ∆ + ∆ − ∆⎢ ⎥

⎢ ⎥∆ −∆⎣ ⎦

( )cos ( )sin

( )sin ( )cos

u( )
( )cos ( )sin

( )sin ( )cos

 

kv( )  is zero-mean white Gaussian process noise with covariance, 

. In Figure 9, point C is the position measurement 

 of the right curb segment 

T
VtE k k k⎡ ⎤ =⎣ ⎦v( )v( ) Q ( )

(  R R
x yk kz ( ), z ( )) ( )  R R R

x yk k kφz ( ), z ( ), z ( ) obtained at kth instant.  

 

Observation Model: 

The observations correspond directly to the left and right straight curb segments, each 

represented in terms of a point ( ) and orientation (x yz z, zϕ ). The observation model in 

the presence of two curbs (left and right) is, 
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[ ] k k= +z( ) h x( ) w( )k                     (19) 

where, superscript ( ) ( ) ( ) ( ) ( ) ( )      
TR R R L L L

x y x yk z k z k z k z k z k z kφ φ⎡ ⎤= ⎣ ⎦z( ) , , , , , R and L 

denote right and left sides respectively. ( ) [ ] ( )  k⎡ ⎤ =⎣ ⎦h x H x k , where, . 

 is the sequence of zero-mean white Gaussian measurement noise with block 

diagonal covariance matrix . It is important to note that 

depending on the number of curbs that exist, the measurement vector dimension 

(equation (19)) is modified accordingly.  

6 6x=H I

( )kw

( ) ( )T VtE k k⎡ ⎤ =⎣ ⎦w w R

 

4.2 Filter Implementation 

The extracted image features (Section 3) with LMS- data (Section 2) are used in curb 

tracking. The target model and the measurement model defined by equations (18) and 

(19) are used with following parameter values (see Figure 9).  

( )
( )

( )
( )
1

1

2

3

i
BC ABi i

Vi
AB BC

i
BC ABi i

AB AB Vi
AB BC

i i i
BC V

AB v

AB y v v x v

c c
x

m m

c c
y m c

m m

m
m
c t y t y

φ
φ

φ φ φ

−

−
∆ = −

−

−
∆ = + −

−

∆ = −

= − ∆

= + ∆ + ∆ + ∆

z ( )

z ( )

tan z ( )
tan

cos tan ( sin )

                                                             (20) 

where, ;  meaning left or right.  and  values are obtained from the 

fitted lines for the vision data along the curb segment 

i L R= , i
BCm i

BCc

BC . It is to be noted that it can 

be made more accurate by fitting a polynomial to the vision data of the segment BC . 

However, due to the limitation of the maximum road curvature that can have, it is 

reasonable to use a straight line fit rather than a more complex polynomial fit. Having 

defined the process and sensor models, the Kalman filtering approach [24] is used in 
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tracking. 

 

4.3 Data Association 

One of the challenging problems in curb tracking is that the LMS may provide 

cluttered measurements with partially observable measurements corresponding to the 

actual target. Partial observability is mainly due to the non-existing curbs due to road 

branching, x-junctions and curbs blocked by other vehicles. The image sensor can be 

effectively used to overcome those problems.   

 Let us assume the measurements of vision data ( ( ),x y ) in vehicle coordinates 

are having the same covariance, 2
Vσ , where V refers to vision data.  Now, the variance 

of best-fitted line parameters can be calculated as follows. 

Using the maximum likelihood, in the case of Gaussian distributed 

uncertainties, the best fit for parameters, { }ka=a  with measurement,  is 

the one that minimizes the 

( ,y f= x a)

2χ  function, 

( )2
2

2

( , )i i

i i

y f
χ

σ
−

=∑
x a

                    (21) 

where, 2
iσ  is the variance of data. The information matrix, can be defined as, IH

2 21
2

I
jk

j k

H
a a
χ∂

=
∂ ∂

                      (22) 

Then, variances and covariances of { }ka=a  are given by, 

( ) 1

,j k

I
a a jkV H

−
=                       (23) 

If the line is represented by, tan ly x lcφ= + , the perpendicular distance from a point 

( ,i i )x y to the line is given by, 
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sin cos cosi i l i l ld x y c lφ φ φ= − +                     (24) 

Finding the best-fit parameters, which minimizes  in equation (24) can be 

formulated as a minimization of 

id

2χ  as,  

( )22
2

1( , ) sin cos cosl l i l i l l l
iV

c x y cχ φ φ φ
σ

= − +∑ φ                   (25) 

and therefore, variance of the angle of the fitted line, 2
Vφ

σ  can be calculated. It is 

assumed that the fitted line is passing through the mean of the data set and hence the 

variance of the ( ),x y  corodinates can be calculated as, 
2
V

N
σ , where N is the number 

of data in the data set. Let’s assume the line parameters at time k is [ ]Tk l l lx yψ φ= , ,  

and its covariance matrix is, 

2

2

2

0 0

0 0

0 0

V

V
k

l

N

N
ψ

φ

σ

σ

σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜Λ =
⎜
⎜ ⎟
⎜ ⎟
⎝ ⎠

⎟
⎟

                     (26) 

Let’s consider the transformation of line data from kth frame [ ]Tk l l lx yψ φ= , , to k+1th 

frame, 1kψ + , (see Figure 9), 

1k v kψ ψ+ = +ˆ R u                       (27) 

and propagation of uncertainties,  

1 v

T
T v v

k v k v
v v

ψ ψ

φ φ+

⎛ ⎞ ⎛ ⎞∂ ∂
Λ = Λ + Λ +Λ⎜ ⎟ ⎜ ⎟∂∆ ∂∆⎝ ⎠ ⎝ ⎠

ˆ
R u

R RR R                   (28) 

where, and  are uncertainties in rotation and translation respectively. The 

Mahalanobis distances are calculated for all the candidate LMS line segments in 

v
ΛR Λu
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k+1th time instant with the transformed vision line data from the  kth time instant to 

k+1th time instant as follows.  

( ) ( ) ( )1

1 1 1 1 1

TM V L V L
k k k k k k k

ψ ψδ ψ ψ ψ ψ
−

+ + + + += − Λ +Λ −ˆˆ ˆ 1+                 (29) 

For the values of 1
M
kδ + , which are less than a threshold κ , (determined using 2χ  

distribution tables), we choose the LMS line segment corresponding to the minimum 

value of 1
M
kδ +  as the candidate LMS line to be used in the Kalman filter as a 

measurement. The transformed vision line data also be used in the Kalman filter as the 

second sensor measurement. 

 

5.   Experimental Results 

Experiments were carried out on roads in a campus environment with a SICK [14] 2D 

laser measurement system and a CCD camera mounted on an in-house built test-bed 

vehicle as shown in Figure 10. The SICK LMS 290 provides range data at 10 intervals 

over 1800 with accuracy of 5cm over 80m.  The data transfer rate is 500kbaud. A 

dedicated image processing hardware (IP5000-CD [25]) was used for low-level real-

time image processing tasks of the boundary detection algorithm. All the sensor data 

acquisition and algorithmic processing were implemented over three distributed single 

board Pentium III, 800MHz computers connected in a 100Mbs LAN [26]. The 

combination of the distributed processing hardware and the dedicated image 

processing hardware enabled the system to be operated at 200ms sampling time, 

which was quite adequate for relatively moderate speeds of the vehicle (4-5m/s).  

±
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Figure 10: Laser/vision sensor assembly mounted on the GenOME 

 

5.1 Road Boundary Extraction using an LMS 

Laser data extracted from the looking down laser (tilt angle of 2.6o) in a road 

environment (in vehicle coordinates) is shown in Figure 11(a). The crosses refer to 

the actual laser data and circles denote the detected discontinuity points using the 

UKF described in Section 2. The approximately vertical two segments around 7 m 

apart (in the middle part of the plot) are the data corresponding to the road curbs. Due 

to the convex nature of the road surface, the data corresponding to the road surface 

form a “V” shape rather than a straight line. Left most data correspond to a bank on 

the left side of the road. Scatter of data on the right hand side are due to the trees, 

lampposts and other man-made structures. In Figure 11(b) the mean value ({ },c c
L Lx y ) 

of each data segment is shown using a ‘traingle’. The orientation ( c
Lφ ) of each line 

segment passing through the mean ({ },c c
L Lx y ) are shown in Figure 11(c) using a 

‘triangle’. 
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(a) Laser data (crosses) and detected 
discontinuity points (circles) 

(b) Triangle represent the mean of each data 
segment  
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(c) x-axis: laser sweeping angel, y-axis: Estimated orientation angle of each data point and 

Triangle represents the orientations corresponding to Triangle in (b) 
 

Figure 11: Line feature extraction using 2D LMS 

 

The result of filtering the lines using Orientation and neighborhood filtering is 

depicted in Figure 12(a). It may be observed that there are four line segments 

satisfying the orientation and neighborhood constraints, although their relative 

locations are not the same. Results after road width filtering is shown in Figure 12(b). 
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For qualitative assessment of results, laser data corresponding to the detected edge-

lines are mapped to the visual image of the road scene (see Figure 12(c)) captured by 

the camera mounted on the vehicle.  It could be noted that the curbs are correctly 

detected as shown in Figure 12(c).  
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(a) Line segments after orientation and 
neighborhood filter 

(b) Line segments after road width filter 

 
 

 
 

 
(c) Detected curbs on the image plane 

 
Figure 12: Curb extraction results 

 

5.2 Road Boundary Estimation using Vision 

Images were captured in various road scenarios and assessed the robustness of the 

feature extraction algorithm as shown in Figure 13. Although, a straight-line model is 

assumed in the synthesis of the UKF, it is capable of detecting curved lane markings 

with shadows, letters and speed regulating strips effectively.  
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Figure 13: Feature extraction results in extreme images 

 

5.3 Road Boundary Tracking 

In this experiment, the vehicle was driven approximately at a constant speed of  4 ms-1 

along different road segments. The vehicle speed and orientation (yaw angle) 

measurements were obtained using wheel encoders and a fiber optic gyroscope 

respectively. The detection and tracking results obtained in different road scenarios, 

referenced to the global coordinate frame, are shown in Figure 14. For qualitative 

assessment of the results, the detected and tracked road boundaries are shown in 

Figure 14(a). In Figure 14(a) and (b), scenario ‘A’ corresponds to a situation where 

both left and right curbs exists, ‘B’ only the left curb (a new road branches to the right 

from the main road; y-junction), ‘C’ no curbs on either side (vehicle entering or in the 

midst of an x-junction), and ‘D’ a sharp bend to the right. In Figure 14(a), solid lines 
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denote the curbs while dashed line denotes the vehicle path. In Figure 14(b), crosses 

denote the raw ladar data, circled and crosses denote the detected curbs using ladar 

and solid lines correspond to estimated midline and road boundaries using vision 

sensor. The vehicle’s orientation (solid line), estimated left (dashed line) and right 

(dotted line) curb angles as the vehicle moves, referenced to the global frame, are 

shown in Figure 14(c). 

Figure 15 shows different but typical scenarios in a road environment. In 

situations as shown in Figures 15(a), 15(b), and 15(c) the separation of curbs from 

complex lane markings and other signs imprinted on the road using image alone 

methods even using complex image processing supplemented by heuristics would be 

unreliable and time consuming. The vision alone methods also fail in extreme images 

due to low lighting (rainy weather in Figure 15(d) and nighttime in Figure 15(e)) and 

saturation (reflection of sunlight in Figure 15(f)). Being an active sensor, ladar is 

capable of handling such complex road scenarios due to lighting and weather quite 

effectively improving the robustness of the road boundary tracking algorithm. 
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(c) Curb angle tracking (dashed- left curb, dotted – right curb, solid – vehicle’s 
orientation) 

 
Figure 14: Road boundary tracking results 
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(a) Road with zigzag markings (b) Road with pedestrian crossings  

 

(c) Road view blocked by an overtaking 

vehicle 

(d) Road view in rainy weather 

  

(e) Road view at nights (f) Saturated images due to reflections 

Figure 15: Extreme situations in roadway environments (crosses - laser data, circled 

crosses - laser data corresponding to the curbs) 

 

6.  Conclusion 

Sensing and detection of lanes and road boundary in real time are important tasks in 

the synthesis of autonomous vehicles and driver assistance systems. In this paper, we 

have proposed a laser/camera composite sensing methodology for robust road 

extraction of pavement curbs with accurate depth information. On one hand vision 

alone methods, being passive, suffer from degradation of performance due to bad 

lighting, adverse whether conditions, reflections from bright source, etc. On the other 

hand, using active sensors such as a laser 2D scanner can over come such limitations, 
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although it can only provide limited information. However, by fusing both sensor data 

in a complementary fashion the limitations of one can be compensated by the other to 

achieve better performance. This has been demonstrated through experimental results 

for the case of detection and tracking road curbs under different road scenarios such 

as road branching, sharp curvatures and other vehicles obstructing road curbs.  
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