

Investigation of Strategies for Risk Minimisation of Adverse Alkali-Silica Reaction in Concrete

by

Elsie Nsiah-Baafi

Thesis submitted in fulfilment of the requirements for the degree of

Doctor of Philosophy

under the supervision of

Dr. Kirk Vessalas Dr. Paul Thomas Professor Vute Sirivivatnanon

University of Technology Sydney Faculty of Engineering and Information Technology

February 2021

Certificate of Original Authorship

I, *Elsie Nsiah-Baafi* declare that this thesis, is submitted in fulfilment of the requirements for the award of *Doctor of Philosophy* in the *School of Civil and Environmental Engineering, Faculty of Engineering and Information Technology* at the University of Technology Sydney.

This thesis is wholly my own work unless otherwise referenced or acknowledged. In addition, I certify that all information sources and literature used are indicated in the thesis.

This document has not been submitted for qualifications at any other academic institution.

This research is supported by the Australian Government Research Training Program.

Production Note: Signature removed prior to publication.

Signature: Elsie Nsiah-Baafi

Date: February 23, 2021

ACKNOWLEDGMENTS

Foremost, I wish to extend my deepest gratitude to my supervisors: Dr. Kirk Vessalas, Dr. Paul Thomas, and Professor Vute Sirivivatnanon. Words cannot express how much I appreciate the guidance and training you have given me throughout my doctoral study. I always count myself blessed for the opportunity to study under your supervision. *Thank you!*

I would also like to acknowledge the support I have received throughout my research work from the UTS Science Technical Officers: Dr. Alex Angeloski, Dr. Mark Lockrey, and Dr. Herbert Yuan for their support with the analytical and characterisation studies carried out in their respective laboratory. I am also grateful to the FEIT Laboratory Technical Officers: Johir Mohammed, Rami Haddad, Mulugeta Hailu, and the UTS Service life facilities Techincal Support Assistant, Ann Yan. I truly appreciate all the assistance I have received from you. *Dankie!*

I also acknowledge the assistance I have received from the School of Civil and Environmental Engineering Academic Officer, Van Le, for ensuring all the documentation surrounding my candidature is submitted to the university on time.

Salamat!

My gratitude also goes out to Muans Abdulnebe of Boral Materials and Technical Services for supplying the non-reactive Australian aggregates used, facilitating the work done in the initial stages of this study, and allowing my involvement in some industrial laboratory concrete mixing for essential training purposes. *Mahalo!* I sincerely thank ARC Nanocomm Hub for the financial support during my doctoral study. Similarly, I am grateful to Sue Freitag of WSP Opus and James Mackechnie of Concrete NZ for providing financial support and the New Zealand aggregates used in this study. I salute their very informative discussions on the codes of practice in New Zealand and their contribution to reviewing some of the published results from this study. *Medaase!*

I am thankful to my family for their support and encouragement through this journey. I truly could not have done this without you. *Merci!*

Finally, to my research mates, thank you for making this study a memorable one. *Xièxiè!*

LIST OF PUBLICATIONS

E., Nsiah-Baafi, K., Vessalas, P., Thomas and V., Sirivivatnanon, 2018, Mitigating Alkali-Silica Reactions in the Absence of SCMs: A Review of Empirical Studies. Proceedings, 5th International fib Congress, 7-11 October 2018, Melbourne, Australia.

E.Nsiah-Baafi, K., Vessalas, P., Thomas and V., Sirivivatnanon, 2019, Investigating Reactive Aggregate Combination for Alkali-Silica Reaction Risk-Free Concretes, Concrete Institute of Australia's Biennial National Conference, 8-11 September 2019, Sydney, Australia

E., Nsiah-Baafi, K., Vessalas, P., Thomas and V., Sirivivatnanon, 2019, Investigation of Alkali Threshold Limits and Blended Aggregate in ASR Risk-free Concretes, Concrete NZ conference, 10-12 October, Dunedin, New Zealand.

E., Nsiah-Baafi, K., Vessalas, P., Thomas and V., Sirivivatnanon, 2020, Protocols for Investigating Reactivity of Aggregates and Alkali thresholds for ASR Prevention, 16th International Conference on Alkali Aggregate Reaction in Concrete (ICAAR), October 2021, Lisboa, Portugal.

E., Nsiah-Baafi, K., Vessalas, P., Thomas and V., Sirivivatnanon, 2020, Mitigation of ASR using Aggregate Fines as Alternative for SCMs, 16th International Conference on Alkali Aggregate Reaction in Concrete (ICAAR), June 2021, Lisboa, Portugal.

TABLE OF CONTENTS

CERTI	FICA	TE OF ORIGINAL AUTHORSHIP	II
ACKN	OWLE	DGMENTS	III
LIST O	F PU	BLICATIONS	V
TABLE	OF CO	ONTENTS	VI
LIST O	F FIG	URES	XI
LIST O	F TA	3LFS.	
ABCTE	олст		XXV
			AAV
CHAP	IER I	. IN I RODUCTION	1
1.1	Res	earch Aims	6
1.2	Res	earch Objectives	6
1.3	Sigr	lificance of Research	7
1.4	Org	anisation of Thesis	8
CHAP	ΓER 2	. LITERATURE REVIEW	
2.1	0ve	rview	11
2.2	Alka	ali-Silica Reaction (ASR)	11
2.3	Pre	-requisites for ASR	13
2.3	3.1	Reactive Aggregates	
2.3	3.2	Alkali content	
	2.3.2.1	Potential Internal Sources of Alkali	17
2.3	3.3	Moisture	19
2.4	Env	ironmental Influence on ASR	21
2.5	Мес	hanism of ASR	23
2.5	5.1	Chemical Mechanism of ASR	23
	2.5.1.1	Factors Affecting the Formation of Alkali-Silica Gel	25
2.5	5.2	Pore Solution Alkali Cations	26
	2.5.2.1	Role of Calcium Hydroxide	28
2.5	5.3	Characteristics of Alkali-Silica Gel and Expansion Mechanism	
	2.5.3.1	Expansion Mechanism of Alkali-Silica Gel	32

2.6	Syn	ptoms and Effects of ASR	35
2.7	Tes	t Methods for Assessing ASR	41
2	2.7.1	Standard Test Methods for Assessing ASR	
	2.7.1.1	Petrography	45
	2.7.1.2	Chemical Reactivity Test	47
	2.7.1.3	Concrete Prism Test (CPT)	50
	2.7.1.4	Accelerated Concrete Prism Test (ACPT)	51
2	2.7.2	Limitations of CPT	53
2.8	Mit	igation and Control of ASR	55
2	2.8.1	Use of Non-Reactive Aggregates	56
2	2.8.2	Restricting Moisture Access	56
2	2.8.3	Limiting Alkali Content	57
	2.8.3.1	Using Low Alkali Content Cement	58
	2.8.3.2	Alkali Limits in Concrete	59
	2.8.3.3	Addition of Supplementary Cementitious Materials (SCMs)	61
2	2.8.4	Addition of Ground Siliceous Particles	67
2	2.8.5	Use of a Non-Expansive Aggregate Combination	71
Chapter S		Immory	72
Cha	upter 5		
сна Снај	PTER	3 MATERIALS AND METHODS FOR ASSESSING A	GGREGATE
CHAI RFA(PTER	3. MATERIALS AND METHODS FOR ASSESSING A	GGREGATE 75
CHAI REA(PTER CTIVIT	3. MATERIALS AND METHODS FOR ASSESSING A Y AND ALKALI-SILICA REACTION	GGREGATE
CHAI REAC 3.1	PTER CTIVIT	3. MATERIALS AND METHODS FOR ASSESSING A Y AND ALKALI-SILICA REACTION	GGREGATE 75
CHAI REA(3.1 3.2	PTER CTIVIT Ove Mat	3. MATERIALS AND METHODS FOR ASSESSING A Y AND ALKALI-SILICA REACTION prview	GGREGATE 75 75 75
CHAI REA(3.1 3.2	PTER CTIVIT Ove Mat 3.2.1	3. MATERIALS AND METHODS FOR ASSESSING A Y AND ALKALI-SILICA REACTION rview rerials Aggregates	GGREGATE 75 75 75 75
CHAI REA(3.1 3.2 3 3	PTER CTIVIT Ove Mat 3.2.1 3.2.2	3. MATERIALS AND METHODS FOR ASSESSING A Y AND ALKALI-SILICA REACTION rview erials Aggregates Cement	GGREGATE 75 75 75 75 75
CHAI REA(3.1 3.2 3 3 3 3	PTER CTIVIT Ove Mat 3.2.1 3.2.2 3.2.3	3. MATERIALS AND METHODS FOR ASSESSING A Y AND ALKALI-SILICA REACTION prview cerials Aggregates Cement Reagents	GGREGATE 75 75 75 75 76 77
CHAI REA(3.1 3.2 3 3 3 3.3	PTER CTIVIT Ove 3.2.1 3.2.2 3.2.3 Met	3. MATERIALS AND METHODS FOR ASSESSING A Y AND ALKALI-SILICA REACTION prview cerials Aggregates Cement Reagents hods	GGREGATE 75 75 75 75 75 76 77 78
CHAI REA(3.1 3.2 3 3 3 3.3 3.3	PTER CTIVIT Ove 3.2.1 3.2.2 3.2.3 Met 3.3.1	3. MATERIALS AND METHODS FOR ASSESSING A Y AND ALKALI-SILICA REACTION prview erials Aggregates Cement Reagents hods Physical Expansion Test Methods	GGREGATE 75 75 75 75 76 77 78 78
CHAI REA(3.1 3.2 3 3 3.3 3.3 3.3	PTER CTIVIT Ove 3.2.1 3.2.2 3.2.3 Met 3.3.1 3.3.1.1	3. MATERIALS AND METHODS FOR ASSESSING A Y AND ALKALI-SILICA REACTION rview erials Aggregates Cement Reagents chods Physical Expansion Test Methods Accelerated Mortar Bar Test (AMBT)	GGREGATE 75 75 75 75 75 76 77 78 78
CHAI REA(3.1 3.2 3 3 3.3 3.3 3.3	PTER CTIVIT Ove 3.2.1 3.2.2 3.2.3 Met 3.3.1 3.3.1.1 3.3.1.1	3. MATERIALS AND METHODS FOR ASSESSING ANY AND ALKALI-SILICA REACTION rview erials	GGREGATE 75 75 75 75 75 76 76 78 78
CHAI REA(3.1 3.2 3 3.3 3.3 3.3 3.3	PTER CTIVIT Ove 3.2.1 3.2.2 3.2.3 Met 3.3.1 3.3.1.1 3.3.1.2 3.3.2	3. MATERIALS AND METHODS FOR ASSESSING ANY AND ALKALI-SILICA REACTION Prview	GGREGATE 75 75 75 75 75 76 76 78 78 78 78
CHAI REA(3.1 3.2 3 3.3 3.3 3.3 3.3	PTER CTIVIT Ove 3.2.1 3.2.2 3.2.3 Met 3.3.1 3.3.1.1 3.3.1.2 3.3.2	3. MATERIALS AND METHODS FOR ASSESSING ANY AND ALKALI-SILICA REACTION	GGREGATE 75 75 75 75 76 76 77 78 78 78 78 78
CHAI REA(3.1 3.2 3 3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	PTER CTIVIT Ove 3.2.1 3.2.2 3.2.3 Met 3.3.1 3.3.1.1 3.3.1.2 3.3.2 3.3.2	3. MATERIALS AND METHODS FOR ASSESSING ANY AND ALKALI-SILICA REACTION erview	GGREGATE 75 75 75 75 75 76 76 77 78 78 78 78 78
CHAI REA(3.1 3.2 3 3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	PTER CTIVIT Ove 3.2.1 3.2.2 3.2.3 Met 3.3.1 3.3.1.1 3.3.1.2 3.3.2 3.3.3 3.3.3.1	3. MATERIALS AND METHODS FOR ASSESSING A Y AND ALKALI-SILICA REACTION Prview eerials	GGREGATE 75 75 75 75 75 75 76 78 78 78 78 78
CHAI REA(3.1 3.2 3 3 3.3 3.3 3.3 3.3 3.3 3.3 3.3 3.3	PTER CTIVIT Ove 3.2.1 3.2.2 3.2.3 Met 3.3.1 3.3.1.1 3.3.1.2 3.3.2 3.3.3 3.3.3.1 3.3.3.1 3.3.3.1	3. MATERIALS AND METHODS FOR ASSESSING A Y AND ALKALI-SILICA REACTION erview gerials Aggregates Cement Reagents chods Physical Expansion Test Methods Accelerated Mortar Bar Test (AMBT) Concrete Prism Tests RILEM Recommended Methods for Determining Alkali Limits o Chemical Tests ASTM C289 Dissolution Test	GGREGATE 75 75 75 75 75 76 76 78 78 78 78 78

3.3.4 Characterization Techniques	95 .95 .01 .04 .07 .08 11 14 15 16
3.3.4.1 Petrography 3.3.4.2 Microstructural and Elemental Compositional Analysis 3.3.4.3 Sample Preparation 1 3.3.4.3 3.3.4.3 Sample Preparation 1 3.3.4.4 X-Ray Diffraction Analysis (XRD) 1 3.3.4.4 X-Ray Diffraction Analysis (XRD) 1 3.3.4.5 X-Ray Fluorescence Spectroscopy (XRF) 1 3.3.4.6 Thermogravimetric Analysis (TGA) 1 3.3.5 Microwave Plasma Atomic Emission Spectroscopy (MP-AES) 1 3.3.6 Laser Diffraction Particle Size Analysis 1 3.3.6 Laser Diffraction Particle Size Analysis 1 3.3.6 Laser Diffraction Particle Size Analysis 1 3.3.7 Compressive and Flexural Strength Tests 1 Chapter Summary 1 1 Chapter Summary 1 1 4.1 Overview 1 4.2 Experimental Plan 1 4.2.1 Materials 1 4.2.2 Methods 1 4.3 Results and Discussion 1 <tr< th=""><td>.95 .98 .01 .04 .07 .08 11 14 15 16</td></tr<>	.95 .98 .01 .04 .07 .08 11 14 15 16
3.3.4.2 Microstructural and Elemental Compositional Analysis 3.3.4.3 Sample Preparation 1 3.3.4.3 Sample Preparation 1 3.3.4.4 X-Ray Diffraction Analysis (XRD) 1 3.3.4.5 X-Ray Fluorescence Spectroscopy (XRF) 1 3.3.4.6 Thermogravimetric Analysis (TGA) 1 3.3.4.6 Thermogravimetric Analysis (TGA) 1 3.3.5 Microwave Plasma Atomic Emission Spectroscopy (MP-AES) 1 3.3.6 Laser Diffraction Particle Size Analysis 1 3.3.7 Compressive and Flexural Strength Tests 1 Chapter Summary 1 Chapter Summary 1 4.1 Overview 1 4.2 Experimental Plan 1 4.2.1 Materials 1 4.2.2 Methods 1 4.3 Results and Discussion 1 4.3.1 Petrographic Assessment of Aggregates 1	.98 .01 .04 .07 .08 11 14 15 16
3.3.4.3 Sample Preparation 1 3.3.4.4 X-Ray Diffraction Analysis (XRD) 1 3.3.4.5 X-Ray Fluorescence Spectroscopy (XRF) 1 3.3.4.6 Thermogravimetric Analysis (TGA) 1 3.3.4.6 Thermogravimetric Analysis (TGA) 1 3.3.4.6 Thermogravimetric Analysis (TGA) 1 3.3.5 Microwave Plasma Atomic Emission Spectroscopy (MP-AES) 1 3.3.6 Laser Diffraction Particle Size Analysis 1 3.3.7 Compressive and Flexural Strength Tests 1 Chapter Summary 1 1 Chapter Summary 1 1 4.1 Overview 1 4.2 Experimental Plan 1 4.2.1 Materials 1 4.2.2 Methods 1 4.3 Results and Discussion 1 4.3.1 Petrographic Assessment of Aggregates 1 4.3.2 Charrier Tester 1	01 04 07 08 11 14 15 16
3.3.4.4 X-Ray Diffraction Analysis (XRD) 1 3.3.4.5 X-Ray Fluorescence Spectroscopy (XRF) 1 3.3.4.6 Thermogravimetric Analysis (TGA) 1 3.3.5 Microwave Plasma Atomic Emission Spectroscopy (MP-AES) 1 3.3.6 Laser Diffraction Particle Size Analysis 1 3.3.7 Compressive and Flexural Strength Tests 1 Chapter Summary 1 1 CHAPTER 4. INVESTIGATING ALKALI LIMITS AND AGGREGATE BLENDS FORMITIGATING DELETERIOUS ASR IN CONCRETES 1 4.1 Overview 1 4.2 Experimental Plan 1 4.2.1 Materials 1 4.2.2 Methods 1 4.3 Results and Discussion 1 4.3.1 Petrographic Assessment of Aggregates 1 4.3.2 Chamieral Texter 1	.04 .07 .08 11 14 15 16
3.3.4.5 X-Ray Fluorescence Spectroscopy (XRF)	.07 .08 11 14 15 16
3.3.4.6 Thermogravimetric Analysis (TGA)	108 11 14 15 16
3.3.5 Microwave Plasma Atomic Emission Spectroscopy (MP-AES) 1 3.3.6 Laser Diffraction Particle Size Analysis 1 3.3.7 Compressive and Flexural Strength Tests 1 Chapter Summary 1 CHAPTER 4. INVESTIGATING ALKALI LIMITS AND AGGREGATE BLENDS FOR MITIGATING DELETERIOUS ASR IN CONCRETES 1 4.1 Overview 1 4.2 Experimental Plan 1 4.2.1 Materials 1 4.3 Results and Discussion 1 4.3.1 Petrographic Assessment of Aggregates 1 4.3.2 Chemical Tests 1	11 14 15 16
3.3.6 Laser Diffraction Particle Size Analysis 1 3.3.7 Compressive and Flexural Strength Tests 1 Chapter Summary 1 CHAPTER 4. INVESTIGATING ALKALI LIMITS AND AGGREGATE BLENDS FOR MITIGATING DELETERIOUS ASR IN CONCRETES 1 4.1 Overview 1 4.2 Experimental Plan 1 4.2.1 Materials 1 4.2.2 Methods 1 4.3 Results and Discussion 1 4.3.1 Petrographic Assessment of Aggregates 1 4.2.2 Gherrier Tests 1	14 15 16
3.3.7 Compressive and Flexural Strength Tests 1 Chapter Summary 1 CHAPTER 4. INVESTIGATING ALKALI LIMITS AND AGGREGATE BLENDS FOR MITIGATING DELETERIOUS ASR IN CONCRETES 1 4.1 Overview 1 4.2 Experimental Plan 1 4.2.1 Materials 1 4.2.2 Methods 1 4.3 Results and Discussion 1 4.3.1 Petrographic Assessment of Aggregates 1 4.3.2 Chemical Tests 1	15 16
Chapter Summary 1 CHAPTER 4. INVESTIGATING ALKALI LIMITS AND AGGREGATE BLENDS FOR MITIGATING DELETERIOUS ASR IN CONCRETES 1 4.1 Overview 1 4.2 Experimental Plan 1 4.2.1 Materials 1 4.2.2 Methods 1 4.3 Results and Discussion 1 4.3.1 Petrographic Assessment of Aggregates 1 4.3.2 Chamical Texts 1	16 תו
CHAPTER 4. INVESTIGATING ALKALI LIMITS AND AGGREGATE BLENDS FOR MITIGATING DELETERIOUS ASR IN CONCRETES 4.1 Overview 1 4.2 Experimental Plan 4.2.1 Materials 1 4.2.2 Methods 1 4.3 Results and Discussion 4.3.1 Petrographic Assessment of Aggregates 1 4.3.2	חו
MITIGATING DELETERIOUS ASR IN CONCRETES 1 4.1 Overview 1 4.2 Experimental Plan 1 4.2.1 Materials 1 4.2.2 Methods 1 4.3 Results and Discussion 1 4.3.1 Petrographic Assessment of Aggregates 1	эκ
4.1Overview	17
4.2 Experimental Plan 1 4.2.1 Materials 1 4.2.2 Methods 1 4.3 Results and Discussion 1 4.3.1 Petrographic Assessment of Aggregates 1 4.2.2 Chargingal Tests 1	17
4.2.1Materials14.2.2Methods14.3Results and Discussion14.3.1Petrographic Assessment of Aggregates14.2.2Chamical Tests1	19
 4.2.2 Methods	19
 4.3 Results and Discussion	21
4.3.1 Petrographic Assessment of Aggregates	24
	24
4.3.2 Unemical lests	29
4.3.3 Expansion Tests	34
4.3.3.1 Accelerated Mortar Bar Test (AMBT)	.34
4.3.3.2 Concrete Prism Test (CPT)1	38
4.3.3.3 Accelerated Concrete Prism Test (ACPT)1	.41
4.3.3.4 Potential Correlation between Test Methods1	.42
4.3.4 Determination of Alkali Limits1	43
4.3.4.1 Determination of Alkali Limits at 24 Months1	.46
4.3.4.2 Minimizing the risk of ASR using sand blends (WT ¹ and WT ²)1	.49
4.3.5 Petrographic Analysis of Mortar and Concrete Samples1	49
4.3.5.1 Mortar Bars1	.49
4.3.5.2 Concrete Prisms	.57
Chapter Summary	65
CHAPTER 5. CORRELATIONS BETWEEN ASR TEST METHODS USED FO	OR
ASSESSING POTENTIAL REACTIVITY OF AGGREGATES	60

5.1	0ve	rview	168
5.2	Exp	erimental Plan	169
5.2	2.1	Statistical Analysis	
	5.2.1.1	Pearson's Correlation Coefficient Method	
	5.2.1.2	Factorial Analysis	170
5.2	2.2	Leachate Assessment of CPT Expansion Tests	172
5.3	Rest	ults and Discussion	174
5.3	3.1	Reliability of Existing Test Methods for Aggregate Reactivity Deter	mination
			174
5.3	3.2	Correlation between Expansion Test Methods	178
	5.3.2.1	Accelerated Mortar Bar Test (AMBT) and Concrete Prism Test (CPT)	
	5.3.2.2	Concrete Prism Tests at 38°C (CPT) and 60°C (ACPT)	
5.3	3.3	Leachate Assessment for Concrete Prism Expansion Tests	185
5.3	3.4	Assessment of Factors that Affect ASR Expansion	193
	5.3.4.1	Principal Component Analysis (PCA)	
	5.3.4.2	Analysis of Variance	
Chap	pter St	ımmary	198
CHAP	TER 6	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF (ROUND
CHAP REACT	TER 6 FIVE A	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF (GROUND
CHAP REAC	TER 6 FIVE A Ove	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF (GGREGATE FINES	GROUND
CHAP2 REAC1 6.1	TER 6 FIVE A Ove: Exp	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF (GGREGATE FINES rview erimental Plan	GROUND 200
CHAP2 REAC1 6.1 6.2	TER 6 FIVE A Ove: Expo	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C GGREGATE FINES rview erimental Plan	GROUND 200 200 202
CHAP7 REAC7 6.1 6.2 6.2	TER 6 FIVE A Ove: Expo 2.1	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C GGREGATE FINES rview erimental Plan Materials	GROUND 200 200 202 202 202
CHAP REACT 6.1 6.2 6.2	TER 6 FIVE A Ove: Expo 2.1 6.2.1.1 6.2.1.2	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C GGREGATE FINES rview erimental Plan Materials Ground Reactive Aggregate Fines (GRAFs) Reference Aggregates	GROUND 200 200 202 202 202 202
CHAP2 REACT 6.1 6.2 6.2	TER 6 FIVE A Ove Expo 2.1 6.2.1.1 6.2.1.2 2.2	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C GGREGATE FINES rview erimental Plan Materials Ground Reactive Aggregate Fines (GRAFs) Reference Aggregates Methods	GROUND 200 202 202 202 202 205 205
CHAP2 REACT 6.1 6.2 6.2 6.2	TER 6 FIVE A Ove Expo 2.1 6.2.1.1 6.2.1.2 2.2 2.3	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C GGREGATE FINES rview erimental Plan Materials Ground Reactive Aggregate Fines (GRAFs) Reference Aggregates Methods Chemical Tests	GROUND 200 202 202 202 205 205 205 207
CHAP2 REACT 6.1 6.2 6.2 6.2	TER 6 FIVE A Ove: Expo 2.1 6.2.1.1 6.2.1.2 2.2 2.3 6.2.3.1	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C GGREGATE FINES	GROUND 200 202 202 202 205 205 207 207
CHAP2 REACT 6.1 6.2 6.2 6.2	TER 6 FIVE A Ove: Expo 2.1 6.2.1.1 6.2.1.2 2.2 2.3 6.2.3.1 6.2.3.2	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C .GGREGATE FINES	GROUND 200 200 202 202 205 205 207 207
CHAP2 REACT 6.1 6.2 6.2 6.2 6.2	TER 6 FIVE A Ove: Expo 2.1 6.2.1.1 6.2.1.2 2.2 2.3 6.2.3.1 6.2.3.2 2.4	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C .GGREGATE FINES	GROUND 200 200 202 202 205 205 207 207 207 211
CHAP: REACT 6.1 6.2 6.2 6.2 6.2	TER 6 FIVE A Ove: Expe 2.1 6.2.1.1 6.2.1.2 2.2 2.3 6.2.3.1 6.2.3.2 2.4 6.2.4.1	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C 	GROUND 200 200 202 202 205 205 207 207 207 207 211
CHAP: REACT 6.1 6.2 6.2 6.2 6.2	TER 6 FIVE A Ove: Expo 2.1 6.2.1.1 6.2.1.2 2.2 2.3 6.2.3.1 6.2.3.2 2.4 6.2.4.1 6.2.4.2	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C GGREGATE FINES	GROUND 200 200 202 202 205 205 207 207 207 211 211 T)212
CHAP2 REACT 6.1 6.2 6.2 6.2 6.2 6.2	TER 6 FIVE A Ove Expo 2.1 6.2.1.1 6.2.1.2 2.2 2.3 6.2.3.1 6.2.3.2 2.4 6.2.4.1 6.2.4.2 Resu	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C GGREGATE FINES	GROUND 200 200 202 202 202 205 205 207 207 211 211 T)212 213
CHAP2 REACT 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.3 6.3	TER 6 FIVE A Ove Expo 2.1 6.2.1.1 6.2.1.2 2.2 2.3 6.2.3.1 6.2.3.2 2.4 6.2.4.1 6.2.4.2 Resu 3.1	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C GGREGATE FINES	GROUND 200 200 202 202 202 205 205 207 207 211 T)212 213 Reactive
CHAP2 REACT 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.3	TER 6 FIVE A Ove: Expo 2.1 6.2.1.1 6.2.1.2 2.2 2.3 6.2.3.1 6.2.3.2 2.4 6.2.4.1 6.2.4.2 Resu 3.1 ggregat	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C .GGREGATE FINES	GROUND 200 200 202 202 202 205 205 205 207 2107 211 T)212 213 Reactive 213
CHAP2 REACT 6.1 6.2 6.2 6.2 6.2 6.2 6.2 6.3 6.3 6.3 6.3 6.3 6.3	TER 6 FIVE A Ove: Expo 2.1 6.2.1.1 6.2.1.2 2.2 2.3 6.2.3.1 6.2.3.2 2.4 6.2.4.1 6.2.4.2 Resu 3.1 ggregat 6.3.1.1	. INVESTIGATING THE ASR MITIGATION POTENTIAL OF C 	GROUND 200 200 202 202 202 205 205 205 207 210 211 T)212 213 Reactive 213

6.3.2 Influence of Ground Reactive Aggregate Fines (GRAFs) on the Pore Solution	on
Chemistry of Pastes	23
6.3.2.1 Alkalinity (pH) of Pore Solutions	23
6.3.2.2 Ion Concentration of Pore Solutions	26
6.3.3 Expansion Test Results	33
6.3.3.1 Effect of Ground Reactive Aggregate Fines on ASR Expansion of Mortar Bars2	34
6.3.3.2 Effect of Ground Reactive Aggregate Fines on ASR Expansion of Concrete Prise	ms
	41
6.3.4 Thermogravimetric Analysis (TGA) of Pastes containing GRAFs 24	44
6.3.5 Influence of Ground Reactive Aggregates on Mechanical Properties	of
Concrete24	48
6.3.6 Evaluating ASR Mitigation Mechanism of Ground Reactive Aggregat	ces
through Post-Expansion Characterisation of Concrete Prisms	51
Chapter Summary	65
CHAPTER 7. CONCLUSION	57
7.1 Overview	67
7.1 Overview	67 ng
 7.1 Overview	67 ng 67
 7.1 Overview	67 ng 67 of
 7.1 Overview	67 ng 67 of 72
7.1Overview	67 ng 67 0f 72 ite
7.1 Overview	67 ng 67 of 72 ite 76
7.1 Overview	67 ng 67 of 72 ite 76 30
7.1 Overview	67 ng 67 of 72 ite 76 30 33
7.1 Overview	67 ng 67 of 72 ite 76 30 33 21
7.1 Overview	67 ng 67 of 72 ite 76 30 33 21 23

LIST OF FIGURES

Figure 2.1 Schematic representation of ASR and Thomas Stanton in 1940 with a bridge
parapet wall showing evidence of ASR (Thomas, Fournier & Folliard 2013)12
Figure 2.2 A typical two dimensional schematic of the silicate structure showing (a)
crystalline silica and (b) amorphous silica (Brown 2012)15
Figure 2.3 A typical example of alkali (sodium) within an amorphous silica structure
(Callister & Rethwisch 2014)19
Figure 2.4 Effects of water-to-cement ratio on ASR expansion of concrete specimens
(Stark 1995)20
Figure 2.5 Schematic representation of (a)-(b) the hydrolisation of silica and to form
silanol (c) alkali charge balancing resulting in the formation of alkali silicate (Pignatelli,
Comi & Monteiro 2013)25
Figure 2.6 Effect of solution alkalinity (pH) on the concentration of silica dissolved (Cs)
(Vogelsberger, Seidel & Rudakoff 1992)26
Figure 2.7 Changes in the expansion of mortar bars in 0.05M NaOH solution as a function
of SiO ₂ /Na ₂ O ratio of the ASR gel formed (Glasser & Kataoka 1981)28
Figure 2.8 Schematic molecular model of a typical ASR gel (Vayghan, Rajabipour &
Rosenberger 2016)
Figure 2.9 Schematic diagram of DDLs mechanism of ASR gel expansion (reconstructed
from(Pignatelli, Comi & Monteiro 2013))34
Figure 2.10 Symptoms of ASR. (a) map cracking (b) efflorescence and exudation of ASR
gel from concrete cracks (c) aggregate pop-out (d) surface discoloration and ASR gel
exudation from map cracks (Thomas, Fournier & Folliard 2013)

Figure 2.11 The Chickamauga lock and dam showing extensive cracking due to ASR
(dominating mechanism) and ACR (Smith et al. 2017)
Figure 2.12 ASR affected concrete showing (a) cracks, exudation, efflorescence, and
discoloration on a bridge beam, (b) longitudinal crack on a concrete beam, and (c and d)
misalignment of concrete members (Thomas, Fournier & Folliard 2013)
Figure 2.13 The Los Angeles sixth street viaduct showing signs of significant ASR
(Muscato 2017)
Figure 2.14 Recommended protocol for assessing the reactivity of aggregates to
minimize the risk of ASR. (Standards Australia 2015)
Figure 2.15 (a) Examples of SCMs. From left to right; fly ash (Class C), metakaolin,
silica fume, fly ash (Class F), slag and calcined clay, and (b) image of the Nant-y-Moch
Dam (a 60-year-old bridge) containing reactive aggregates and 50% fly ash (Thomas,
Fournier & Folliard 2013)62
Figure 2.16 Effects of (a) SCM addition on the expansion of mortar bars (Tapas et al.
2019) and (b) SCM composition on dosage requirement for effective ASR mitigation in
concrete(Thomas 2011)
Figure 2.17 Effect of SCM fineness and dosage on the compressive strength. Data from
(Chindaprasirt, Jaturapitakkul & Sinsiri 2005)66
Figure 2.18 Linear distribution of elements (Ca, Si and Na) along a partly reacted finely
ground glass grain, showing evidence of a pozzolanic reaction to form (Na-C-S-H) ASR
gel(Afshinnia & Rangaraju 2015b)68
Figure 2.19 SEM micrographs of concrete sample containing (a) 100% cement and (b)
30% glass powder. Note: 1= Aggregate; 2= ASR gel (Afshinnia & Rangaraju 2015b) 69
Figure 2.20 Influence of particle size on the reactivity of reactive silica (Thomas 2011)

Figure 3.1 AMBT procedure showing (a) Horbat mixer (b) AMBT moulds (c) initial
curing of mortar bars in a humidity cabinet (d) water curing of mortar bars at 80°C (e)
ageing in 1M NaOH hot bath at 80°C, and (f) horizontal comparator for measuring
expansion at respective ages
Figure 3.2 Concrete mixing procedure
Figure 3.3 Concrete mixing with principal supervisor and laboratory technicians, for CPT
and ACPT, and schematic and photograph of prism storage method (showing absorbent
polypropylene rope) during curing for CPT and ACPT86
Figure 3.4 38°C environmental chamber for CPT and the horizontal comparator for CPT
and ACPT prism expansion measurements carried out in this study
Figure 3.5 ASTM C289 standard curve for identifying reactivity of aggregates91
Figure 3.6 Procedure for GAST method (a) ring mill for grinding aggregates to micron-
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry after day 1 of testing
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry after day 1 of testing
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry after day 1 of testing
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry after day 1 of testing
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry after day 1 of testing
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry after day 1 of testing
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry after day 1 of testing
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry after day 1 of testing
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry after day 1 of testing
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry after day 1 of testing
sized powders (b) ground aggregate slurries in 80°C oven and (c) ground aggregate slurry after day 1 of testing

Figure 3.15 General TGA curve for hydrated cement (Singh et al. 2015)
Figure 3.16 Thermal analyser used for TGA in this study110
Figure 3.17 4200 Agilent Technologies MP-AES instrument with an autosampler113
Figure 3.18 Malvern MasterSizer 3000 laser diffraction particle size analyser
Figure 4.1 Plane polarised petrographic images of aggregate (a) aggregate WT, (b) GW,
(C) RT, and (d) PR. Note: Q= Quartz; Q"= Quartz veining through aggregate particle;
F=Feldspar; G= Indurated greywacke in aggregate RT (notice the resemblance to
aggregate GW); P=Pumice, and epidote vein cutting across the meta-greywacke fragment
of aggregate GW128
Figure 4.2 Classification of aggregates according to the dissolution test (as per ASTM
C289)130
Figure 4.3 Compiled dissolution test from (Freitag 2003) for aggregate AS (x). Modified
from (Black 2009)
Figure 4.4 TG-DTG results of 28 days GAST test on aggregates
Figure 4.5 AMBT expansion results for aggregates at (a) 0.6 M, (b) 0.8 M and (c) 1.0 M
NaOH alkali concentration136
Figure 4.6 12 months CPT expansion results for the selected aggregates (a) including
aggregate AS and (b) excluding aggregate AS at 38°C and 5.25 kg/m ³ Na ₂ O _e alkali
content. Note: Initial expansion (Day 0/Month 0) is 0.00%. Graphs represent expansion
measurements from Day 7 (Month 0.25)
Figure 4.7 6 months ACPT expansion results for aggregates at 60°C and 5.25 kg/m ³
Na2Oe alkali content. Note: Initial expansion (Day 0/Month 0) is 0.00%. Graphs represent
expansion measurements from Day 7 (Month 0.25)142
Figure 4.8 12-month CPT expansion of aggregates at varying alkali content (Na ₂ O _e)145
Figure 4.9 24-month CPT expansion of aggregates at varying alkali content (Na ₂ O _e)146

Figure 4.10 Petrographic images of mortar bar WT showing (a) photograph of cutoff dyed block surface *(image width= approx. 20mm),* (b) fine crack joining two acid volcanic fragments and showing porosity in a glassy shard and acid volcanics, (c) ASR induced open crack passing through an acid volcanic and porous depleted glassy shard, as well as through quartz grains and (d) ASR gel lining an air bubble leading from micro-cracks within a beta-form quartz grain *(Note: SCALE= 200µm)*

Figure 5.4 Relationship between AS 1141.60.1 AMBT and AS 1141.60.2 CPT test
methods
Figure 5.5 Related studies on the comparison of AMBT and CPT results for several
aggregates from various projects
Figure 5.6 Correlation between AMBT and CPT for different aggregates assessed under
AS 1141.60.1 and AS 1141.60.2 test methods
Figure 5.7 Correlation between 12 months CPT and 3 months ACPT expansion tests.
Figure 5.8 Alkali leaching from prisms tested under CPT condition (38°C). Note: All
concrete prisms have initial alkali content of 5.25 kg/m ³ Na ₂ Oe
Figure 5.9 Alkali leaching from prisms tested under ACPT condition (60°C). Note: All
concrete prisms have initial alkali content of 5.25 kg/m ³ Na_2O_e
Figure 5.10 Alkali leaching from prisms containing only cement, tested under CPT and
ACPT. Note: All concrete prisms have initial alkali content of 5.25 kg/m ³ Na ₂ O _e 188
Figure 5.11 Alkali leaching for one prism tested under standard CPT condition at varying
alkali contents (total alkali measured divided by three)191
Figure 5.12 Scree plot of extracted principal components and related eigenvalues 194
Figure 5.13 Loading plot for variables in principal component analysis
Figure 5.14 Effect of varying alkali and temperature on measured expansion
Figure 6.1 A typical example of GRAFs used and the particle size distribution of cement,
GRAFs, and FA204
Figure 6.2 SEM micrograph and elemental mapping of fractured hardened paste surface
showing (a) GRAFs in paste and (b-c) well-dispersed GRAFs (Si) in paste (Note: Paste
<i>contains</i> 25% <i>RH</i> _G)208

Figure 6.3 Photographs of paste specimens during curing phase for pore solution analysis
Figure 6.4 Illustration of pore solution extraction device
Figure 6.5 Photograph of (a) concrete specimens cast for the various tests and (b)
concrete cylinder during 28 days compressive strength testing
Figure 6.6 Concentration of silicon released by GRAFs and FA in 1M NaOH at 80°C
Figure 6.7 Concentration of aluminium released by GRAFs and FA in 1M NaOH at 80°C
Figure 6.8 Microstructure of (a) unreacted FA and (b-d) FA treated in 1M NaOH alkali
solution at 80°C after 28 days
Figure 6.9 Schematic showing the zeolitization process of FA (Fansuri, Pritchard &
Zhang 2008)
Figure 6.10 Microstructure of (a) unreacted WT _G and (b-d) WT _G treated in 1M NaOH
alkali solution at 80°C after 28 days219
Figure 6.11 Microstructure of (a) unreacted GW _G and (b-d) GW _G treated in 1M NaOH
alkali solution at 80°C after 28 days
Figure 6.12 Microstructure of (a) unreacted RH _G and (b-d) RH _G treated in 1M NaOH
alkali solution at 80°C after 28 days
Figure 6.13 XRD diffraction patterns of GRAFs and FA (a) untreated and (b) treated in
1M NaOH at 80°C after 28 days
Figure 6.14 Effect of temperature on the measured pH of pore solutions of pastes
containing GRAFs after 28 days
Figure 6.15 Effect of age on the measured pH of pore solutions of pastes containing
GRAFs at 38°C

Figure 6.16 Total alkali concentration of the pore solution after 28 days and varying
temperatures
Figure 6.17 Total alkali concentration of the pore solution at 38°C and varying ages 229
Figure 6.18 Ca/Si ratio of the pore solution of pastes after 28 days and varying
temperatures
Figure 6.19 Concentration of Al in the pore solution of pastes after 28 days and varying
temperatures
Figure 6.20 AMBT expansion results of aggregates used as GRAFs
Figure 6.21 Effect of GRAFs on AMBT expansion of mortar bars with reactive test
aggregates WT (a-c) and RT (d-f)237
Figure 6.22 AMBT results of mortar bars containing GRAFs and FA at 25% cement
replacement level
Figure 6.23 AMBT expansion results for mortar bars containing reference aggregate WT
and ground non-reactive aggregate PR (PRG)239
Figure 6.24 Mortar bar expansions as related to three cement alkali contents in 1M
NaOH 80°C test solution (Islam et al. 2016)240
Figure 6.25 Expansion results of 12 months CPT at 38°C for concrete prisms containing
GRAFs and FA. Note: Initial expansion (Day 0/Month 0) is 0.00%. Graphs represent
expansion measurements from Day 7 (Month 0.25)241
Figure 6.26 Expansion results of ACPT (CPT at 60°C) for concrete prisms containing
GRAFs and FA. Note: Initial expansion (Day 0/Month 0) is 0.00%. Graphs represent
expansion measurements from Day 7 (Month 0.25)
Figure 6.27 Microstructure of fractured paste samples containing (a) FA (2000x) and
GRAFs (WT _G) (1000x) cured at 60°C after 28 days (Note the presence of ettringite (Ett),

portlandite (CH), calcium silicate hydrate (C-S-H), calcium aluminium silicate hydrate
(C-A-S-H), and aluminate ferrite monosulfate (AFm))244
Figure 6.28 Portlandite content in pastes containing GRAFs at different dosages after 28
days curing at 80°C245
Figure 6.29 (a) Full range DTG curves and (b) partial range DTG curves showing
portlandite content in pastes with 25% cement replacement after 28 days at CPT
temperature (38°C) Note: Area under portlandite curve represents the amount of
portlandite present in the system247
Figure 6.30 (a) Full range DTG curves and (b) partial range DTG curves showing
portlandite content in pastes with 25% cement replacement after 28 days at ACPT
temperature (60°C) Note: Area under portlandite curve represents the amount of
portlandite present in the system247
Figure 6.31 Effect of GRAFs and FA on the compressive and flexural strengths of
concrete after 28 days
Figure 6.32 Appearance of concrete prisms after 8 months ACPT (Note micro-cracks
(within red squares) and map cracking on the surface of control samples (OPC))252
Figure 6.33 SEM-BSE micrograph and elemental mapping of ASR gel found in the
control sample (WT- control) after 8 months (242x) (Note: aggregate has higher Na
alkali content)
Figure 6.34 Morphology of crystalline ASR gel after 8 months (a) forming on the surface
of the aggregate particle in the control prisms (5000x) (b) ASR gel at a higher
magnification (10000x)256
Figure 6.35 SEM-SEI micrograph and elemental mapping of ASR gel found in concrete
prism containing 25% WT _G after 8 months (400x)257

Figure 6.36 SEM-SEI micrographs of the concrete prisms containing 25% GW _G showing
ASR gel in cracks after 8 months (a) along the aggregate-paste interface (500x) and (b)
within the paste (250x)
Figure 6.37 SEM-SEI micrograph and elemental mapping of ASR gel found in concrete
prism containing 25% GW _G after 8 months (1000x)261
Figure 6.38 SEM-SEI micrographs of concrete prisms containing 25% RH_G at (a) 200x
(b) 200x (c) 250x and (d) 500x, showing extensive cracking and presence of ASR gel
after 8 months (Note red arrows in (c) indicate the reaction rim of aggregate)

LIST OF TABLES

Table 2.1 Composition of ASR gel identified in different studies 31
Table 2.2 Examples of concrete structures around theta world that have suffered effects
ASR
Table 2.3 Laboratory Test methods for ASR assessment
Table 2.4 ASR susceptible minerals in aggregates (Islam & Akhtar 2013)47
Table 2.5 Variations in adopted AMBT test methods (Golmakani 2013) 49
Table 2.6 Expansion limits and reactivity classification as per the different current
CPT methods
Table 2.7 Alkali limits specified in CSA A23.2-27A (Canadian Standards Association
2000)
Table 3.1 Description of all the aggregates used in this study
Table 3.2 The chemical composition of the cement used, as determined by XRF analysis
Table 3.3 Grading requirement for manufactured fine aggregates in AMBT according to
AS 1141.60.1
Table 3.4 AMBT aggregate reactivity classification by AS1141.60.1 test method82
Table 3.5 Coarse aggregate grading requirement for CPT and ACPT under AS 1141.60.2
Table 3.6 Classifications of aggregate reactivity levels in accordance with RILEM AAR
3.2
Table 3.7 Selected wavelengths of the desired elements for MP-AES analysis
Table 4.1 Aggregates and sand blends selected for investigating alkali limits

Table 4.2 Summary of the test program showing the different test methods used, the
sample description and test conditions122
Table 4.3 Mortar bars and concrete prisms selected for post-expansion petrographic
assessment124
Table 4.4 Mineralogical composition and reactivity classification of aggregates selected
for investigating alkali limits, as determined by petrography125
Table 4.5 ASTM C1778 Classification of Aggregate Reactivity
Table 4.6 RILEM AAR-3.2 reactivity categories and recommended alkali limits as per
RILEM AAR-7.1
Table 4.7 Summary of aggregate reactivity classifications based on various expansion
tests and suggested alkali limits148
Table 4.8 ASR causative minerals in the respective aggregates and their mortar bars 151
Table 5.1 Comparison of reactivity classification by various test methods 175
Table 5.2 Correlation between 12 months CPT results and ACPT results at different ages
Table 5.3 Alkali leaching (Na ₂ O _e) for three concrete mixes, during CPT and ACPT
expansion tests
Table 5.4 Effect of alkali content on alkali leaching during CPT per prism (total alkali
measured divided by three)190
Table 5.5 Percentage of alkali in safety margin and leached alkali per prism at alkali
content of 4.0 kg/m ³ Na ₂ O _e 192
Table 6.1 Details of the ground reactive aggregates used in this study determined by
petrography
Table 6.2 Chemical composition of GRAFs, FA, and cement determined by XRF 203
Table 6.3 Particle Size distribution of GRAFs, cement, and FA 204

Table 6.4 Summary of the test program for investigating the ASR mitigation potential of
GRAFs
Table 6.5 Sodium and potassium ion concentration in the pore solution of pastes after 28
days as a function of temperature
Table 6.6 MP-AES results of pore solution of pastes containing GRAFs and FA at
different ages
Table 6.7 EDS Analysis of ASR gels in concrete prisms after eight months (Atomic
weight percentages have been normalized relative to oxygen)

ABSTRACT

In recent decades, many structures worldwide have suffered damage due to alkalisilica reaction (ASR). This reaction is one of the most recognised chemical reactions leading to the deterioration of concrete. ASR is largely an alkali-activated process that causes the concrete to expand with time. To minimise the risk of expansion, a large focus has been placed on reducing the alkali content in the concrete when nonreactive aggregates are not available to use as part of the mix design. Restricting the alkali content can be achieved by: (i) imposing a generalised alkali limit of 0.6% Na₂O_e in cement and limiting the total alkali content in concrete to 2.5-2.8 kg/m³ Na₂O_e; and (ii) adding supplementary cementitious materials (SCMs) for partial replacement of the cement to limit and bind the amount of alkali available. While these practices have shown desired outcomes in the past, recent challenges surround the implementation of these practices, such as a shortage of SCM supply in the foreseeable future and the economic cost associated with using such solutions.

In addition, owed to the several limitations identified, the validity of classifying the reactivity status of aggregates against current short-term laboratory test methods employed for assessing ASR is under conjecture by researchers. This has left the concrete and cement industry with the inconvenient option of performing long-term tests extending up to 24 months to obtain a reliable prediction of an aggregate's reactivity. As a consequence, a delay in decision-making leading to a decrease in productivity is likely.

For these reasons, this study has been undertaken to explore sustainable and novel techniques for mitigating ASR that also encourage the conservation of natural resources. Aggregates of different mineralogical compositions and reactivity potentials sourced from Australia and New Zealand were studied using a suite of test methods comprised of petrography, chemical tests, expansion tests, and analytical techniques.

The effect of varying alkali content on the expansion behaviour of selected aggregates was investigated via accelerated mortar bar test (AMBT), concrete prism test (CPT), and accelerated concrete prism test (ACPT) to establish specific alkali limits respective to the mineralogical composition and reactivity classification of the aggregate. Subsequently, the potential of using ground reactive aggregate fines (GRAFs) as alternative additives for mitigating ASR was evaluated. Pastes, mortar, and concrete specimens containing varying cement replacement levels of GRAFs were studied and compared against control and fly specimens using expansion tests, thermogravimetric analysis (TGA), and microwave plasma atomic emission spectroscopy (MP-AES) analysis carried out on extracted pore solutions. The effect of GRAFs on some mechanical properties of concrete was also measured. Furthermore, the correlation between the various test methods was investigated via a statistical approach involving the use of Person's correlation coefficient method and a modified factorial analysis approach to assess the validity of the different test methods and to determine the effects and interactions of ASR factors on expansion.

The results showed that a generalised alkali limit imposed on all aggregate types may not be necessary. It is further illustrated that the current alkali limits could be relaxed to accommodate the use of cement containing slightly higher alkali content with aggregates that are compatible, or revised from the current 2.5 to 2.8 kg/m³ Na₂O_e set in concrete. The efficacy of GRAFs in mitigating ASR as potential SCMs was established as pozzolanicity was identified from the GRAFs investigated. Although the mechanical properties of concretes containing GRAFs were found to be lower than control concrete strength after 28 days, the GRAFs satisfied the ASTM C618 strength requirement for natural pozzolans revealing pozzolanicity for the coarser particle-sized GRAFs compared to fly ash and cement particle fineness. The findings also showed consistency in the reactivity prediction by the different methods. A positive correlation was found between CPT, chemical tests, and AMBT. Moreover, a correlation coefficient of r= 0.9 was found between 12 months CPT and three months ACPT, indicating that ACPT could be used as a reliable short-term test method for early predictions of the reactivity potential of aggregates.