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ABSTRACT

Research on 2D general feature based SLAM algorithm for mobile robot

by

Jiaheng Zhao

Simultaneous Localization and Mapping (SLAM) is a fundamental research prob-

lem for autonomous robot navigation and map construction. This thesis studied the

problem of improving the performance of localization and mapping for mobile robots,

including pre-fitting features with ellipse representation, representing features with

implicit functions, parameterization in Fourier series, and submap joining.

The conventional planar scan matching approach cannot cope well with the open

environment as lacking of sufficient edges and corners. A SLAM algorithm with pre-

fitted conic features via 2D lidar is presented, which is named as Pre-fit SLAM and

can be adapted to an open environment nicely. The novelty of this work includes

threefold: (1) defining a conic feature based parameterization approach; (2) develop-

ing a SLAM method to utilize feature’s conic geometric information and odometry

information since open environments are short of regular linear geometric features.

Synthetic and practical experiments demonstrated that the proposed SLAM algo-

rithm can get accurate and convincing results for the open environment and the

map in our representation can express accurately the environment situation.

In order to avoid information loss during pre-fitting progress and to enlarge the

scope of feature representation, a post-count framework for 2D lidar SLAM with

implicit functions on general features is studied. Since 2D laser data reflect the

distances from the robot to the boundary of objects in the environment, it is natural

to use the boundary of the general objects/features within the 2D environment to

describe features. Implicit functions can be used to represent almost arbitrary shapes

from simple (e.g. circle, ellipse, line) to complex (e.g. a cross-section of a bunny



model), thus it is worth studying implicit-expressed feature in 2D laser SLAM. The

main contributions are the specific problem formulation and algorithm framework

for 2D laser SLAM with general features represented by implicit functions (named

as Implicit-SLAM). Furthermore, ellipses and lines are used as examples to compare

the proposed SLAM method with the traditional pre-fit method. Simulation and

experimental results show that Implicit-SLAM has a better performance compared

with Pre-fit SLAM and other methods, demonstrating the potential of this new

SLAM formulation and method.

A 2D laser SLAM approach with Fourier series based feature parameterization

(called Fourier-SLAM) and submap joining is studied to improve the efficiency of

convergence and the accuracy of method using implicit functions. The Fourier se-

ries are introduced to parameterize irregular closed shape features and the SLAM

problem with Fourier series feature parameterization is formulated. A submap join-

ing process is also derived in order to reduce the high dependence on precise initial

guess and the computing time. Fourier-SLAM has been evaluated on both synthetic

and actual data and is able to obtain accurate trajectory and feature boundaries.

We also prove that submap joining method can improve the calculation efficiency

without loosing too much accuracy.
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Abbreviation

SLAM - Simultaneous Localization and Mapping

RMSE - Root Mean Square Error

2D: Two-dimensional

3D: Three-dimensional

ICP - Iterated Closest Point

NDT - Normal Distribution Transform

GMM - Gaussian Mixture Models

ToF - Time-of-Flight



Nomenclature and Notation

The semicolon is to represent vertical vector concatenation. Lowercase letters indi-

cate scalars, bold lowercase letters indicate vectors, and uppercase letters indicate

matrices. Some special symbols are listed below.

The observed points have zero-mean Gaussian noise nz ∈ R2 ∼ N (0,Σz).

{j}p ∈ R2 denotes an observed point in the frame j.

{j}Pk = [{j}pk1, · · · , {j}pkM ] is a 2D point set observed of feature k at the frame j.

{G}Pk is usually abbreviated as Pk since it is relative to the global frame.

φ is an angle within the range [−π, π) .

R(φ) ∈ SO(2) =

cosφ − sinφ

sinφ cosφ

 is the corresponding rotation matrix which is

abbreviated as R.

t = [tx, ty]
ᵀ
is the translation vector.

Rij, tij means the rotation and translation from frame i to frame j.

If i is the global frame {G}, it is usually omitted in order to simplify the formula.

Ξj = [tj;φj] is a robot pose.

T (Ξj,
{j}χ) represents the process of transforming a point/point cloud/feature from

frame {j} to global frame {G}.

T−1(Ξj,
{G}χ) represents the process of transforming a point/point cloud/feature

from global frame {G} to frame {j}.



xviii

Feature Φk is in closed shape, whose boundary point set is denoted by Pk.

‖e‖2
Σ is the weighted L2 vector norm with a covariance of Σ.
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