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Abstract—Deep learning frameworks generally require suffi-
cient training data to generalize well while fail to adapt on small
or few-shot datasets. Meta-learning offers an effective means of
tackling few-shot scenarios and has drawn increasing attention
in recent years. Meta-optimization aims to learn a shared
set of parameters across tasks for meta-learning while facing
challenges in determining whether an initialization condition
can be generalized to tasks with diverse distributions. In this
regard, we propose a meta-gradient boosting framework that
can fit diverse distributions based on a base learner (which
learns shared information across tasks) and a series of gradient-
boosted modules (which capture task-specific information). We
evaluate the model on several few-shot learning benchmarks and
demonstrate the effectiveness of our model in modulating task-
specific meta-learned priors and handling diverse distributions.

Index Terms—Meta Learning, Few-shot Learning, Optimiza-
tion

I. INTRODUCTION

While humans can learn fast with very few samples using
prior knowledge and experiences, artificial intelligence algo-
rithms face challenges in dealing with such situations. Learning
to learn (or meta-learning) [1] leverages transferable knowledge
learned from previous tasks to improve learning on new tasks
[2]; it emerges as an effective means of address the few shot
challenge.

In meta-learning, meta-optimization [3]–[5], a.k.a., model-
agnostic meta-learning (MAML) [6] is a fundamental task
that learns initial model parameters from past tasks so as to
adapt fast and perform well on new tasks. Meta-optimization
frameworks offer flexibility in model choices and exhibit
excellent performance in various domains, such as image clas-
sification [6], [7], language modeling [8], and reinforcement
learning [9], [10]. Generally, they define a target model Fθ and
a meta-learnerM. The learning tasks T = {T train, T test} are
divided into training and testing tasks, where T are generated
from the meta-dataset D, i.e., T ∼ P (D). Each task contains a
support set DS and a query set DQ for training and evaluating
a local model. The initialization of the model parameter θ
is learned by the meta learner, i.e., θ ← M(T train). We
denote the meta-learned parameter by φ, i.e., θ ← φ. For
each task, the model obtains locally optimal parameter θ̂
by minimizing the loss L(Fθ(DS), yS), where yS stands for
the label set for the support set. The meta parameter φ will

be updated across all training tasks by minimizing the loss
ΣT∈T train(L(Fθ̂(D

Q), yQ)). The goal of meta-optimization
approaches is to take only a small number of epochs to
learn locally optimal parameters across training tasks while
the learned parameter φ can quickly converge to an optimal
parameter for new tasks.

Most methods assume some transferable knowledge across
all tasks and rely on a single shared meta parameter. However,
the success of the meta-learners are limited within similar task
families, and the single shared meta parameter cannot well
support fast learning on diverse tasks (e.g., a large meta-dataset)
or task distributions (e.g., T are generated from multiple
meta-datasets) due to conflicting gradients for those tasks [2].
Recent efforts have studied multiple initial conditions to solve
the above challenges. Some employ probabilistic models [5],
[11], [12] while others incorporate task-specific information
[3], [13], [14]. The former learns to obtain an approximate
posterior of an unseen task yet needs sufficient samples
to get reliable data distributions; the latter conducts task-
specific parameter initialization using multiple meta-learners yet
requires expensive computation and cannot transfer knowledge
across different modes of task distributions.

In this work, we aim to resolve the above challenges from
a novel perspective by proposing a meta gradient boosting
framework. Gradient boosting [15] aims to build a new learner
towards the residuals of the previous prediction result for each
step. We call the learner for each step as weak learner and
make predictions based on summing up the weak learners.
Recent research [16], [17] has demonstrated the potential
of decomposing deep neural nets into an ensemble of sub-
networks, each achieving low training errors. We propose to
use the first or first few weak learners as the base learner,
followed by a series of gradient-boosting modules to cope
with a diverse array of tasks—the base learner is responsible
for inferring transferable knowledge by learning across all
tasks; the gradient-boosting modules are designed to make
task-specific updates to the base learner. Moreover, we operate
in the embedding space to inherit the advantages of metric
learning, whose simple inductive bias is evidently effective for
very-few-shot learning [18]. In a nutshell, our contributions
include:
• We propose a novel framework in enabling task-awareness

of the traditional meta-optimization approaches: a meta



gradient boosting framework with gradient-boosting mod-
ules inferring the task-specific priors.

• The framework is flexible and efficient. It takes fewer
resources in setting the initialization conditions and does
not require a large number of gradient-boosting modules.

• Our extensive experiments on few-shot learning scenarios
for both regression and classification tasks suggest the
model’s ability in capturing task-aware priors with very
few cases.

II. RELATED WORK

Meta-learning has the potential of replicating the human
ability to learn new concepts from one or very few instances.
It has recently drawn increasing attention, given its broad
applicability to different fields [2].

Pioneers [4], [6] in this topic propose optimization algorithms
with learned parameters to automate the exploitation to the
structures of learning problems. However, most of them
initialize the same set of model parameters for all tasks
that may have different distributions, thus resulting in over-
fitting. Recent studies either model the mixture of multiple
initial conditions via probabilistic modeling [11], [12] or
incorporate task-specific knowledge [3], [14], to address the
above issues. [12] and [11] use variational approximation to
enable probabilistic extensions to MAML. But it is unclear
how to extend MAML for a wide range of task distributions.
[5] consider multiple conditions by borrowing the idea of
variational autoencoders [19], which encodes inputs to a low-
dimensional latent embedding space and then decodes the
learned latent code to generalize task-specific parameters.
Another line of research defines a set of initialization modules
and incorporates task-specific information to select task-specific
modules; this way, it can identify the mode of tasks sampled
from a multimodal task distribution and adapt quickly through
gradient updates [13]. [20] propose a Hierarchically Structured
Meta-Learning (HSML) framework to perform soft clustering
on tasks. HSML first learns the inputs and then obtains
clustering results by the hierarchical clustering structure. HSML
tailors the globally shared parameter initialization for each
cluster via a parameter gate to initialize all tasks within the
clusters. The above approaches have common limitations in 1)
requiring sufficient data samples to generalize task distribution,
thus may fail in few-shot cases; 2) being computationally
expensive due to the globally stored initialization modules; 3)
facing challenges in exhaustively listing every possible initial
condition.

Compared with optimization-based meta-learning ap-
proaches, metric-based meta-learning approaches [21], [22]
learn a projection network that maps the support and the
query samples into the same embedding space for comparing
the similarities, which aims at optimizing the representation
learner Fθ so that samples with different labels locate in
distinct regions in the embedding space. Metric-based learning
approaches are non-parametric, easier for implementation, and
less computationally expensive. They have shown superior
performance on the case of very-few-shot learning [18],

thus achieve state-of-the-art performance on most few-shot
learning benchmarks [23]. Recent studies [18], [24] suggest
that the Prototypical Networks [21] can be re-interpreted
as a linear classifier, where the label is represented by the
prototypical representation vector instead of one-hot encoding,
i.e., yn = 1

KΣKk=1Fθ(xnk), xnk ∈ DS for label n as the
average of the representations obtained by Fθ for K support
samples. Optimizing the representation learner Fθ in a meta-
optimization way can improve the results. We follow this idea
in formulating the learning target by combining the strengths
of Prototypical Networks and MAML [18].

Two other closely related topics to meta-learning are mod-
ular approaches [25] and multi-task learning [26]. Modular
approaches are similar to meta-learning in that the input signal
gives relatively direct information about a good structural
decomposition of the problem. For example, [14] adopt the
modular structure and parameter adaptation method for learning
reusable modules. Multi-task learning aims to learn a good
shared parameter or make the parameter for each task as similar
as possible [27]. For example, [28] propose two task networks
that share the first few layers for the generic information before
applying different prediction layers to different tasks. These
approaches differ from meta-learning in requiring fine-tuning
on all training samples; thus, they cannot adapt well to new
tasks.

Our framework Meta Gradient Booting (MetaGB) neural
network is based on the idea of gradient boosting [15], which
aims to build a new learner towards the residuals of the previous
prediction result for each step. The learner for each step is
called a weak learner, and the prediction is based on the
summation of weak learners. Weak learners may vary from
traditional decision trees [29] to neural networks [16], [30]. A
recent study [16] proposes a general framework for gradient
boosting on neural networks, which work for both regression
and classification tasks. It uses the deep layers of neural nets
as a bagging mechanism in a similar spirit to random forest
classifier [31]. After only slight tuning, deep neural nets can
perform well on a wide range of small real-world datasets [17].
These findings demonstrate the potential of decomposing deep
neural nets into an ensemble of sub-networks, each achieving
low training errors. In our framework, we use the first weak
learner or the first few weak learners as the base learner for
learning the shared initialization parameter across tasks. The
output for each weak learner is then aggregated to the inputs for
the next step for constructing an end-to-end learning strategy
until the last gradient-boosting module. This way, the base
learner serves as transferable knowledge, and the gradient-
boosting modules following it are trained for task-specific
predictions.

III. METHOD

A. Task Formulation

We explore the problem in the context of supervised learning,
where input-output pairs are available in both training and
validation sets. Similar to previous meta-optimization based
approaches [4], [6], we assume the tasks are generated from



an underlying distribution T ∼ P (D), where D is the meta-
dataset, which is either a uni-mode dataset or multi-mode
datasets. Given a set of tasks T = {T train, T test}, each task
T ∈ T contains a support dataset DS and a query dataset
DQ, both representing input-output pairs (x, y). The support
dataset DS includes N ×K samples for N classes each with
K samples, which forms the N -way K-shot learning task. The
query dataset includes samples belong to those N classes. We
aim to learn a meta-learner M to guide the initialization for a
target model Fθ so that the target model can quickly adapt and
perform well on a given new task. We propose a Meta Gradient
Boosting (MetaGB) framework as the target model Fθ, which
consists of several weak learners and can be represented as
Fθ ∼ ΣIi=0fθi . The first weak learner fθ0 or the first few
weak learners are regarded as the base learner for learning the
shared information φ across tasks; the following weak learners
{fθi |i = 1, . . . , I} are gradient-boosting modules for capturing
task-specific information. The meta learner M aims to learn
transferable knowledge and provides initialization details for
the base learner, i.e., θ0 ←M(T train), so that the model can
quickly adapt to task-specific predictions with a few gradient-
boosting steps. The meta-learner in this paper denotes the
global sharing parameter φ. Figure 1 shows an example of our
MetaGB framework when I = 1, where we update the model
locally for task-specific predictions and update the meta-learner
globally for all tasks. For a classification task, the output y
is the representative vector for its corresponding label class
instead of a one-hot vector; for a regression task, the output
y ∈ R is a numerical value. We will discuss more details in
the following.

B. Local learning: task-adaptive updating via gradient-
boosting

Gradient boosting machines hold out optimization in the
function space [15]. In particular, the target model is in an
addition form

Fθ = ΣIi=0αifθi , (1)

where I is the number of adaptions (gradient boosts), fθ0
is the first weak learner, which provides initial prediction of
the inputs, fθi are the function increments (gradient-boosting
modules), and αi is the boosting rate.

To start, the base-learner fθ0 minimizes the prediction loss
L(fθ0 , y) to predict the outputs ŷ ← fθ0(x), which looks
very similar to the traditional supervised approaches. Then,
at gradient boosting step i, the gradient boost module fθi
minimizes the loss L(fθi , gi), where gi = −∂L(y,F

i−1
θ (x))

∂Fi−1
θ (x)

denotes the negative gradient for the previous step’s prediction,
and F iθ = Σi∗=0α∗fθ∗ denotes the ensemble of functions at
gradient step i. Traditional boosting frameworks learn each
weak learner greedily; therefore, only parameters of i-th weak
learner are updated at boosting step i while all the parameters of
previous i− 1 weak learners remain unchanged. This, together
with the single shared meta parameter, make it easy for the
model to stuck in a local minimum. The fixed boosting rate
αi further aggravates the issue.
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Fig. 1. Example of the model with only one gradient-boosting module. Green
lines are for local updates and red lines are for global updates.

In response, we construct the gradient boosting neural
network in a cascading structure [32]. Similar to [16], at each
step i, we take the concatenation of the inputs x and the
hidden layer of the previous weak learner hi−1 = σθi−1(x)
as the inputs for the current step gradient boost module, i.e.,
gi ← fθi([hi−1, x]). But our approach differs in optimizing the
gradient boosting neural networks in a macroscopic view—for
each step i, we learn the ensemble of the weak learners F iθ
by minimizing the loss function

arg min
θ
L(y,F iθ)→ arg min

θ
L(y,Σi∗=0α∗fθ∗), (2)

We update parameters of both weak learners and gradient boost
module via back-propagation. Generally, the parameter θ of
Fθ is locally updated via

θ ← θ − β∇θL(y,Fθ) (3)

where β is the task learning rate. The boosting rate αi can
be set in various forms—in the simplest case, we can use an
increasing or decreasing boosting rate, e.g. αi = αi−1/c (c is
a constant), to decrease or increase the contribution of the base
learner. We will discuss model performance under different
settings of the boosting rate later. Both the boosting rate and
the number of gradient boost modules affect the sharing ability
and prediction performance of the base learner. [33] found
that the gradient for the earlier weak learners decays with
the increasing number of gradient boost modules. On balance,
we use the base learner of our proposed gradient boosting
framework as a weak learner and a series of gradient-boosting
modules as strong learners for a specific task.



Algorithm 1: Task Training by MetaGB

Input :DS = (xS , yS), DQ = (xQ, yQ), φ
/* Training on the support sets */
initialize the base learner fθ0 by θ0 ← φ;
for i in I do
F iθ = Σi∗=0α∗fθ∗ ;
minimize the loss L(yS ,F iθ(xS)) by equation (2)

end
for iter in iterations do

θ ← θ − β∇θL(yS ,Fθ(xS)) ;
end
/* Testing on the query sets */
get the prediction by ŷQ = Fθ(xQ)

Algorithm 1 shows the pseudocode of the task training
process by MetaGB. Specially, for the classification tasks,
the labels are initialized by the representative vector for its
corresponding label class, i.e., yn = 1

KΣkfθ0(xSnk), so that to
introduce inductive bias to the model.

C. Global learning: meta-optimization for transferable knowl-
edge learning

The learning and updating strategy of the gradient boosting
framework ensure a weak base learner. Since the base learner
could be the first weak learner or the first few weak learners,
we use fθ0 to represent both conditions for ease of illustration.
We take the meta-optimization approach for initializing the
base learner so that the model can provide an initial guess
for the prediction based on the transferable knowledge over a
wide arrange of tasks. Specifically, we learn a global sharing
parameter φ s.t. θ0 ← φ. Similar to other MAML-based
approaches [3], [6], we minimize the expected loss on the
local query set DQ for tasks T ∈ T in meta optimization, i.e.,
minimizing the loss

arg min
φ

Lmeta → arg min
φ

ΣT∈T L(yQ,Fθ̂(x
Q)) (4)

where T = {DS , DQ}, DQ = (xQ, yQ), and θ̂ is the updated
model parameters by learning on the support set DS we
introduced in the previous section.

The meta-gradient for updating φ may involve higher-order
derivatives, which are computationally expensive for deep
neural nets. Some work [4], [6] take one-step gradient descent
(FOMAML), i.e.,

φ← φ− γ 1

|T |
ΣT∈T∇θ̂0L(yQ,Fθ̂(x

Q)) (5)

or parameter difference (Reptile), i.e.,

φ← φ+ γ
1

|T |
ΣT∈T (θ̂T0 − φ) (6)

for meta-optimization, where γ is the global learning rate.
Specially, We use FOMAML (equation 5) to update the global
parameter φ for its generally better performance. After the
meta training process, we obtain the updated meta parameter

Algorithm 2: Meta Training by MetaGB
Input : Training tasks T
Output: The updated meta parameter φ̂
random initialize the meta parameter φ;
for iter in iterations do

for T in T do
initialize the task base learner by θ0 ← φ;
task training on the support set by Algorithm 1;
obtain the updated task parameters θ̂;
task testing on the query set;

end
update the meta parameter φ by equation (5)

end

φ̂, which can be utilized to initialize the model for new tasks.
The pseudocode of meta training is described in Algorithm 2.

IV. EXPERIMENTS

A. Regression tasks

We adopt the simple regression task with similar settings
in [11]. In the 1D regression problem, we assume different
tasks correspond to different underlying functions, and we aim
to predict the outputs for new tasks by learning on very few
samples. Specially, we consider four types of functions, i.e.,
sinusoidal, linear, quadratic, and abstract value functions. To
ensure each function can generate a variety of tasks, we define
the four functions with three variables as follows:
• Sinusoidal function: v2 · sin(x+ v1) + v3
• Linear function: v2 · (x+ v1) + v3
• Quadratic function: v21 · x+ v2 · x+ v3
• Absolute value function: v2 · |x+ v1|+ v3

where v1, v2, and v3 are sampled uniformly from ranges [0,
π], [-3,3], and [-3,3], respectively. The inputs are within [-5,5],
and the outputs are perturbed with Gaussian noise with the
standard deviation of 0.3.

1) Single-mode Task Adaptation: Under the case of single-
mode learning, the training tasks T tr and testing tasks T te
are generated from a single type of function. For each task T ,
the function is given by randomly selecting the coefficients
v1, v2, v3, e.g., the slope for the linear function, then generates
the input-output pairs for support set DS and query set DQ.
Following [6], we use two fully connected layers of size
40 as the weak learner for regression tasks. The activation
function is Leaky ReLU [34], which provides good and
stable results over the four functions. By default, the MetaGB
framework includes one weak learner as the base learner and
three gradient-boosting modules, where the gradient boost
modules share the same structure as the base learner but with
different parameter initialization. Recall that we use a cascading
structure [32] in constructing the whole framework: at each
step i, we take the concatenation of the inputs x and the
hidden layer of the previous weak learner hi−1 = σθi−1

(x) as
the inputs of gradient boost module at the current step, i.e.,
gi ← fθi([hi−1, x]), where σ is the embedding layer. Notice



4 2 0 2 4
1.5

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5 Real distribution
Pred distribution with 1 inner update
Pred distribution with 5 inner updates
Pred distribution with 10 inner updates
Real values of chosen cases

(a) Sinusoid function

4 2 0 2 4

7.5

5.0

2.5

0.0

2.5

5.0

7.5
Real distribution
Pred distribution with 1 inner update
Pred distribution with 5 inner updates
Pred distribution with 10 inner updates
Real values of chosen cases

(b) Linear function

4 2 0 2 4

3

4

5

6

7

8

9 Real distribution
Pred distribution with 1 inner update
Pred distribution with 5 inner updates
Pred distribution with 10 inner updates
Real values of chosen cases

(c) Quadratic function

4 2 0 2 4

14

12

10

8

6

4

2

0

Real distribution
Pred distribution with 1 inner update
Pred distribution with 5 inner updates
Pred distribution with 10 inner updates
Real values of chosen cases

(d) Absolute value function
Fig. 2. Performance on uni-mode regression tasks with three gradient boost modules. Blue lines show the real distribution. Red nodes stand for the real
values of the support set samples when n-shot = 5. The dashed yellow, blue, and green lines represent for model performance with updating 1, 5, or 10 times,
respectively.

that the input for the regression task is a single numerical
value, we introduce shortcut layers to map the input x to a
latent embedding hx so that to be with the same shape as hi−1,
i.e., we feed [hi−1, hx] into the i-th gradient boost module.
We have also tested the model performance with forwarding
[hi−1, hi−2] for each gradient boost module and found it only
has a slight impact on the model performance. The inputs are
batch normalized [35] when fed into the whole framework.
Then, we update ten times for both the base learner and gradient-
boosting modules for task learning. The task learning rate β
is set to 0.01, and the boosting rate α is initialized as 0.5 that
will be automatically updated during the task training. The
meta sharing parameter φ will be learned on the training tasks
with a meta-learning rate γ as 0.01.

Figure 2 shows the performance of the proposed MetaGB
framework with three gradient boost modules in different task
adaptation steps on the four types of functions. We have the
following observations. 1) Generally, more updating steps
improve the model performance. For the relatively simple
regression tasks, the model can generalize well with few
updating steps. 2) Too many updates (i.e., updating ten times
for a module) can only slightly improve the performance,
which suggests the MetaGB can obtain an acceptable result
in a computationally inexpensive way. 3) We notice that the
model cannot handle well with the unseen cases for the
sinusoid function, as the trace from the five seen samples
could form either quadratic function or absolute value functions.
To improve the performance, we can predict the coefficients
v1, v2, v3 in forming the function distribution other than directly
predict the regression output y. However, this will weaken the
generalization ability of the model in handling a wide variety
of regression functions. Overall, the proposed framework can
accurately predict the regression outputs within the input
domain of the few observed samples.

2) Multi-mode Task Adaptation: Under the case of multi-
mode learning, the training tasks and the testing tasks are
generated from multiple types of functions, i.e., we generate
multi-mode training tasks by first selecting the function type for
each task T and then initializing random parameters v1, v2, v3
for the function to generate samples. Other settings for multi-
mode learning are similar to the settings for single-mode
learning.

Learning from the above four types of distribution is
challenging. First, the function values may vary across the
distributions. For example, the output of the quadratic function
can range from zero to dozens (see Figure 2) while the other
three functions are more likely to produce outputs within [-
10,10]. Second, the few-shot samples that sit on a line might be
generated from non-linear functions, which makes it difficult
to learn the real modality from such samples. Updating more
steps for task-specific models could solve the first challenge yet
may cause over-fitting. The second challenge can be mitigated
by producing a set of models for task learning. Our proposed
MGB can well handle the two challenges by a series of task-
specific gradient boost modules and providing flexibility in
updating the framework.

We compare the proposed framework on multi-mode re-
gression tasks with the baseline MAML [6] and two other
state-of-the-arts: Multimodal Model-Agnostic Meta-Learning
(MMAML) [13], and Meta-learning with Latent Embedding
Optimization (LEO) [5]. Both MMAML and LEO model a
mixture of multiple initial conditions. MMAML modulates the
meta-learned prior parameters via an external modular network
to enable more efficient adaptation; LEO solves the problem via
probabilistic modeling that learns a stochastic latent space with
an information bottleneck conditioned on the input data, from
which the high-dimensional parameters are generated. Metric-
based meta-learning approaches are discarded for comparison
since they are not applicable for regression tasks. We use mean
absolute error (MAE) as the evaluation metric to evaluate
the model performance in training on one-mode (sinusoidal
function), two-mode (sinusoidal function and linear function),
or four-mode (all the four functions) tasks. To ensure a fair
comparison, the same basic settings of the network structure
are configured for all comparison methods, and the models are
learned within certain training epochs. The results are shown
in Table I.

We have the following observations. 1) Capturing task-
specific patterns on multi-mode tasks is difficult, where the
MAE is larger when more function modes are considered. This
makes sense considering the randomness in choosing functions
and function parameters for all models. 2) Comparing MAML
with other methods, we can see that incorporating task identities,
e.g., modifies the initialization parameter by an external network



TABLE I
RESULTS FOR REGRESSION TASKS (MAE)

Method
1 Mode 2 Modes 4 Modes

5-shot 10-shot 5-shot 10-shot 5-shot 10-shot

MAML [6] 1.234±0.174 1.054±0.077 1.548±0.223 1.356±0.109 2.044±0.472 1.698±0.267
LEO [5] 0.957±0.123 0.789±0.042 1.127±0.175 0.899±0.084 1.234±0.248 1.095±0.163
MMAML [13] 0.638±0.053 0.526±0.027 0.783±0.096 0.709±0.048 1.016±0.181 0.920±0.099

MetaGB-1 0.674±0.009 0.524±0.013 0.999±0.103 0.906±0.038 1.213±0.173 0.928±0.084
MetaGB-2 0.629±0.004 0.512±0.005 0.822±0.032 0.734±0.021 1.046±0.106 0.899±0.027
MetaGB-5 0.615±0.005 0.476±0.005 0.704±0.042 0.672±0.077 0.985±0.089 0.825±0.043

as in MMAML or introduces a group of task-aware gradient
boost modules as in our MetaGB, can significantly improve the
performance for multi-mode learning. MAML has the highest
error for both uni-mode tasks and multi-mode tasks, which
suggests the single sharing parameter is hard to capture task
identities and needs more training information to generalize
well. 3) Comparing the performance of the proposed MetaGB
with one (MetaGB-1), two (MetaGB-2), and five (MetaGB-
5) gradient-boosting modules, the performance improves with
more gradient boost modules, while the improvement decreases
as the number of gradient-boosting modules increases, which
suggests the MetaGB can obtain well performance with a
small number of gradient boost modules. Overall, the proposed
MGB framework achieves the best performance in all settings
and shows more stable performance compared with LEO and
MMAML on multi-mode regression tasks, which proves the
effectiveness of the gradient boost modules in capturing the
task-specific multi-modality information.

B. Classification tasks

We use four datasets to evaluate multi-mode few-shot classi-
fication tasks: Omniglot [36], miniImageNet [37], FC100 [24],
and CUB [38]. Basic information about the datasets are
listed in Table II, where # samples denotes the number of
samples for each class, and # channels denotes the number of
image channels. We divide tasks in each dataset into train,
validation, and test tasks. Omniglot is a dataset of 1,623
handwritten characters from 50 different alphabets, where we
use the characters from the first 30 alphabets, the following
10 alphabets, and the last 10 alphabets as training, validating,
and testing tasks, respectively. The miniImageNet dataset is a
subset of the ImageNet1. Following [6], we divide 100 classes
into 64, 16, and 20 classes for meta-training, meta-validation,
and meta-testing, respectively. Fewshot-CIFAR100 (FC100)
is based on the widely applied CIFAR 100 dataset2. Similar
to [24], we divide 100 classes into 60 training classes, 20
validation classes, and 20 testing classes. As for the Caltech-
UCSD Birds 200 dataset, i.e., the CUB dataset, we follow the
settings in [13] and use 140, 30, and 30 classes for training,
validation, and testing, respectively. In general, we use 20

1http://www.image-net.org/
2https://www.cs.toronto.edu/∼kriz/cifar.html

TABLE II
BASIC INFORMATION OF THE IMAGE DATASETS

Dataset # classes # samples # channels Image size
Omniglot 1,623 20 1 28×28

miniImageNet 100 600 3 84×84
FC100 100 600 3 32×32
CUB 200 >40 3 84×84

batches of 50 tasks to train the model for both uni-mode tasks
and multi-mode tasks.

1) Single-mode Task Adaptation: Under the case of single-
mode image classification, the training, validation, and testing
tasks are generated from a single dataset and have no inter-
section in the label set. For each N -way K-shot learning
task, we randomly draw N classes and sample K images
for each class to form the support set. We further sample
M images for each class to form the query set, which
includes N ×M images. By default, MetaGB includes one
weaker learner as the base learner and uses either CONV4 [6]
or ResNet18 [32] as the backbone. For the gradient boost
modules, we use CONV4 [6] as the backbone for saving the
computation cost. Similar to the settings of regression tasks,
we batch normalize the inputs and use shortcut layers before
feeding them into the gradient modules. For classification,
instead of using one-hot vectors, we use the prototype vector,
i.e., yn = 1

KΣKk=1Fθ(xnk), xnk ∈ DS , to initialize the
representation for each class for task training. We update
five times for both the base learner and the gradient-boosting
modules in task learning. Then, the class representation will
be updated with the learned task-specific model parameter
θ̂, which will be further used for evaluation on the query
set. The boosting rate (α) for each gradient boost module is
automatically learned and is initialized as 0.5. The task learning
rate β and the meta-learning rate γ are set to 0.001 and 0.005,
respectively.

We evaluate the performance of the proposed MetaGB
framework with one, two, or five gradient boost modules and
compare with a series of baseline methods (e.g., MAML [6]
and ProtoNet [21]) and several recent task-adaptive frameworks
(e.g., LEO [5] and TADAM [24]) for the single-mode image
classification tasks. The results are presented in Table III, where
the comparison results are originated from the published papers.
First, we can see that the options of the model backbone can



TABLE III
RESULTS FOR SINGLE-MODE CLASSIFICATION TASKS (ACCURACY)

Method Backbone
miniImageNet FC100 CUB

5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot 5-way 1-shot 5-way 5-shot

MAML [6] CONV4 48.70±1.84 63.11±0.92 - - 69.96±1.01 82.70±0.65
ProtoNet [21] CONV4 49.42±0.78 68.20±0.66 35.30±0.60 48.60±0.60 - -
MatchingNet [8] CONV4 43.56±0.84 55.31±0.73 - - 72.36±0.90 83.64±0.60
TADAM [24] ResNet-12 58.50±0.30 76.70±0.30 40.10±0.40 56.10±0.40 - -
ProtoNet [21] ResNet-18 - - 37.50±0.60 52.50±0.60 71.88±0.91 87.42±0.48
LEO [5] WRN28-10 61.76±0.08 77.59±0.12 - - - -

MetaGB-1 CONV4 49.04±1.58 60.58±1.23 36.68±1.32 54.37±1.04 68.24±1.68 81.35±1.12
MetaGB-2 CONV4 50.18±1.37 63.29±0.95 39.46±0.98 57.68±0.90 68.68±1.17 83.49±0.78
MetaGB-5 CONV4 50.88±1.01 65.11±0.88 40.61±0.89 58.89±0.99 69.72±1.03 84.12±0.65

MetaGB-1 ResNet18 56.78±0.97 70.74±0.98 38.44±1.27 55.14±1.12 70.37±1.32 82.86±1.21
MetaGB-2 ResNet18 58.84±0.72 74.51±0.89 40.52±1.01 58.76±1.01 71.68±1.12 84.37±1.07
MetaGB-5 ResNet18 59.31±0.61 77.17±0.63 40.84±1.08 59.85±0.97 72.31±1.16 86.19±0.99

TABLE IV
RESULTS FOR MULTI-MODE CLASSIFICATION TASKS (ACCURACY)

Method
2 Modes 3 Modes 4 Modes

5-way 20-way 5-way 20-way 5-way 20-way

1-shot 5-shot 1-shot 1-shot 5-shot 1-shot 1-shot 5-shot 1-shot

MAML [6] 0.6381 0.7524 0.4296 0.5235 0.6481 0.2986 0.4223 0.5172 0.2415
LEO [5] 0.6676 0.7689 0.4318 0.5129 0.6413 0.3106 0.3948 0.4757 0.2301
MMAML [13] 0.6797 0.7738 0.4521 0.5536 0.6728 0.3534 0.4812 0.5528 0.2949

MetaGB-1 0.6394 0.7579 0.4228 0.5241 0.6435 0.3002 0.4277 0.5209 0.2533
MetaGB-2 0.6501 0.7633 0.4270 0.5503 0.6750 0.3459 0.4531 0.5374 0.2682
MetaGB-5 0.6834 0.7830 0.4426 0.5611 0.6897 0.3568 0.4725 0.5530 0.2956

significantly affect the prediction results. There is a noticeable
improvement with using ResNet [32] on miniImageNet dataset,
which contributes to the pretraining strategy of the ResNet that
may contain the prior information of the datasets. Such effects
become less significant on the other two datasets, while a deeper
and more complex model structure can still achieve better
performance with more parameters capturing the information
from the datasets. Second, the task-adaptive frameworks obtain
better results than the traditional meta-learning frameworks,
which indicates the task-adaptive frameworks secure more
task-specific information by introducing task-aware parameter
space. And last, the proposed MetaGB framework performs
well on nearly all datasets, and generally, such improvements
are coming with more gradient boost modules. Overall, the
results suggest the proposed MetaGB works efficiently on the
uni-mode classification tasks.

2) Multi-mode Task Adaptation: For multi-mode image
classification, each task of the training and testing tasks can
be generated from either one of the four image datasets. We
resize the image for each dataset into 84×84 so that the model
can share across the four datasets. Besides, we map images in
the Omniglot dataset (which only has one image channel) to a
layer with three channels so that they can be learned by the
sharing model. Other settings are the same as in single-mode
learning.

We compare the proposed MetaGB with three optimization-

based methods, i.e., MAML [6], LEO [5], and MMAML [13].
MAML is one of the pioneer frameworks for meta optimization.
For each task, the parameter θ of the task model Fθ is initialized
by the global sharing parameter φ and is updated by learning
from the support set DS . The meta parameter φ will be updated
by learning from the loss on the query set L(DQ). LEO uses
an external encoder-decoder to initialize the parameter θ of
the task model Fθ. The external encoder encodes the inputs
to the latent code z and will be updated by learning on the
support set. The decoder will decode the updated latent code ẑ
to obtain the task-specific parameter θ. In particular, LEO uses
pretrained embedding as input to statistically generate means
and variances for the predictor in its encoder-decoder structure.
The predictor can be regarded as one fully-connected layer that
takes the pretrained embedding [39] as input. The weights of
the predictor are sampled from a distribution specified by the
means and variances generated by LEO. Since LEO cannot be
updated via classic back-propagation, we use similar measures
as presented by [5]. But we additionally use our strategy
for generating the embeddings. MMAML uses a modulation
network gφh to obtain the mode information v of a sampled
task, i.e., v ← gφh(x), which will be further used to provide
the modulation vectors τ by τ ← gφg (v). Suppose the task
model Fθ includes I sub-parameters {θi|i ∈ I}, then each
sub-parameter will be initialized by θi ← θi � τ i.

We evaluate the model on two modes (Omniglot and



miniImageNet), three modes (Omniglot, miniImageNet, and
FC100), and four modes (all four datasets) tasks with one
(MetaGB-1), two (MetaGB-2), or five (MetaGB-5) gradient-
boosting modules. For each task, we consider 1-shot and 5-shot
learning for 5-way classification and 1-shot learning for 20-
way classification. According to the results in Table III and
the reports in [40], the model backbone can significantly affect
the classification results. To ensure a fair comparison, we use
CONV4 [6] as the backbone for all comparison methods on
multi-mode classification tasks. Table IV shows the comparison
results. Overall, the proposed MetaGB performs well on multi-
mode tasks. Compared with MMAML, our method works better
on most scenarios except on 1-shot 20-way classifications,
where MMAML includes an external network that can store
more parameters. Similar to the regression tasks, MetaGB with
more gradient-boosting modules shows better performance,
while MetaGB-1 can make only a slight improvement over
MAML because images contain more complex information than
real numbers. More modes of tasks increase the performance
gap between MAML and the other methods, which suggests
the other methods (which consider multiple conditions) can
handle multi-mode tasks better than MAML. Under the same
experimental settings, i.e., with the same image embedding
modules, LEO does not perform well on tasks with more modes,
partially because it is largely impacted by the quality of the
learned image embedding—first, LEO’s learning strategy [5]
pre-trains the dataset-specific image embedding [39] before
meta-learning; then, LEO uses an encoder-decoder structure
to generate parameters for the classifier from the learned
embedding.

V. DISCUSSION

Our experimental results on both regression and classification
tasks suggest our method can adapt to the optimal results with
few gradient-boosting modules. In this section, we take a further
step to discuss i) the configuration of the gradient-boosting
modules and ii) the sharing ability of the base learner during
the back-propagation through meta-gradient-boosting modules.
The results are presented for 5-way 1-shot 4-mode image
classification tasks. There are two gradient boost modules
of the MetaGB framework by default. All experiments are
implemented on a single NVIDIA Tesla V100 32GB GPU,
which will take seconds to tens of seconds for running over a
single task and require few hours to obtain the optimal results.

A. Configuration of the gradient-boosting modules

1) Settings for the weak learner: Our MetaGB framework
consists of a series of weak learners, where the first or the
first few weak learners serve as the base learner to be shared
among tasks. Type and dimension of the weak learner are
two key factors that may affect the final results. [13] find that
LSTM models perform better than linear models in regression
tasks. [40] show the choice of feature extractor for images
has a strong correlation with the final results, and using a pre-
trained network or network structure can improve the results
significantly. For example, it improves the accuracy by about
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Fig. 3. Model performance under different settings about (a) the number of
gradient boost modules and (b) the updating strategy of the gradient boost
modules.

6% [24], [41] to use ResNet-12 as the feature extractor on
the MiniImageNet dataset (see Table III. In this work, we
use linear layers for regression tasks and either CONV4 [6]
or ResNet [32] for classification tasks. For classification
tasks, each weaker learner includes a feature extractor and a
predictor. We use several fully connected layers as the feature
extractor for mapping the extracted feature representation to an
embedding space. We find that a larger embedding size (e.g.,
400-800) provides better performance than a relatively small
embedding size (e.g., 100-200). All these findings suggest
a deeper and wider model delivers better prediction results,
whereas the model will take more computation cost for those
extended network structures. For the proposed MetaGB, the
previous experimental results indicate the improvements by
many gradient boost modules become insignificant with the
growing number of gradient boost modules, which demonstrates
the model requires only few gradient-boosting steps to obtain
optimal results. Under the case of a model that includes
three gradient boost modules with each contains a CONV4
feature extractor and several fully connected layers, the whole
framework will take about 6G video memory during the training
process.

2) Settings for the gradient-boosting modules: The number
of gradient-boosting modules and the updating strategy for
the gradient-boosting modules are two important factors in



1  200  400  600  800  1000
Training Epochs

0.20

0.25

0.30

0.35

0.40

0.45

A
cc

u
ra

cy
 o

n
 T

e
st

in
g
 D

a
ta

se
t

1 base learner

2 base learners

3 base learners
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constructing the whole framework. Since the prediction is
based on the summation of a series of weak learners, more
gradient-boosting modules will reduce the contribution of each
weak learner. According to the results shown in Figure 3 (a), the
model with only one gradient boost module cannot well handle
multi-mode tasks; more gradient boost modules improves the
results while takes more time to learn the task information. The
traditional gradient boost module greedily updates the whole
framework at each step, while for MetaGB, we can adjust the
contribution of the base learner and gradient-boosting modules
to the final results by allowing them to update with different
iterations in each learning step. Intuitively, if we fine-tune on the
base learner (i.e., updating multiple times on the base learner),
the model may get stuck in a local optimal and decrease the
impact of gradient-boosting modules on the model performance;
conversely, if we conduct more updates on the gradient-boosting
modules, the model may need more training epochs from all
training tasks to grasp the general sharing information that
assists the model in fast-adaptation. The results under different
settings of the updating times for base learner and gradient-
boosting modules are shown in Figure 3 (b). We can see
the updating strategy significantly affects model performance,
where updating more steps on the gradient modules raises
the model’s robustness. The performance tends to become
unstable if we conduct more updates for the base learner,
which observation aligns with our analysis above.

B. Sharing ability of the base learner

The base learner of our MetaGB framework is shared across
tasks for capturing the general sharing knowledge. Three factors
may affect the sharing ability of the base learner: 1) which
part to share; 2) how to share; 3) how the shared base learner
contributes to MetaGB. We discuss these three components as
follows.

1) Single weak learner v.s. Multiple weak learners: Instead
of choosing a single weak learner as the base learner, we can
choose the first few weak learners as the base learner to be
shared across tasks. We present the results of MetaGB with
one, two, or three weak learners as the base learner and one
gradient-boosting module in Figure 4. Generally, when more
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Fig. 5. Model performance with static or dynamic base learner during the
task training

weak learners used as the base learner (more than the number of
gradient boost modules), MetaGB faces difficulties in capturing
multi-mode patterns and achieves degraded generalization
performance at the beginning of the training process; the
performance increases with more training epochs but fluctuates
more than the one with only one weak learner as the base
learner.

2) Static base learner v.s. Dynamic base learner: The base
learner is initialized using the global sharing parameter φ.
It can be either static (if we keep its parameter unchanged)
or dynamic (if we update the ensemble of base learner and
gradient boost modules during the training process). The results
(shown in Figure 5) reveal that keeping the shared information
(i.e., using static base learner) unchanged can improve the
stability of the model.

3) Boosting rate α: The boosting rate α is probably the
most vital component for the MetaGB framework because
it directly indicates the contribution of each weak learner
to the final prediction. We test the performance of MetaGB
under various settings of the boosting rate α, where the rate
is either decayed (i.e., αk = αk−1/c, where c is a constant),
automatically learned, or equally contributed (i.e., α∗ = 1
for all weak learners). The result suggests that using the
automatically learned α or equally contributed α leads the
better performance, while a decayed α causes difficulty in
model convergence, which indicates the importance of the
gradient boost modules in capturing the task information.

TABLE V
SETTINGS FOR THE BOOSTING RATE α

Settings Accuracy

Decayed, c=2 0.3923
Automatically learned 0.4525

Equally contributed 0.4267

VI. CONCLUSION

In this work, we aim to learn an optimized set of initial
parameters that fit diverse tasks, which is a key challenge
confronting current meta-optimization approaches. We propose



a meta gradient boosting framework that uses a series of
weak learners to make predictions and a base learner to grasp
shared information across all tasks. Our extensive experiments
show the effectiveness of our framework in handling diverse
tasks, demonstrating the model’s ability to capture meta
information and task-specific information on both regression
and classification tasks. Our results also reveal the necessity
of selecting the weak learner carefully according to task types.
An example is that the pretrained image processing networks
outperform convolutional neural networks (CNNs) on image
classification problems. The extended parameter space engages
more task-aware knowledge but takes more computation cost.
In future work, we will analyze the weak learner options in-
depth to discover how to obtain well and stable performance
with the least effort in tuning on external networks.
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