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Abstract: The genus Zingiber consists of about 85 species and many of these species are used as
food, spices, and medicines. One of the species, Zingiber montanum (J. Koenig) Link ex A. Dietr.
is native to Southeast Asia and has been extensively used as traditional medicines and food. The
aim of this review was to collect and critically analyze the scientific information about the bioactive
compounds and pharmacological activities of Z. montanum with focus on one of the main components,
zerumbone (ZER). Various studies have reported the analysis of volatile constituents of the essential
oils from Z. montanum. Similarly, many phenylbutanoids, flavonoids and terpenes were also isolated
from rhizomes. These essential oils, extracts and compounds showed potent antimicrobial, anti-
inflammatory and antioxidant activities among others. Zerumbone has been studied widely for its
anticancer, anti-inflammatory, and other pharmacological activities. Future studies should focus on
the exploration of various pharmacological activities of other compounds including phenylbutanoids
and flavonoids. Bioassay guided isolation may result in the separation of other active components
from the extracts. Z. montanum could be a promising source for the development of pharmaceutical
products and functional foods.

Keywords: Zingiber montanum; Zingiber cassumunar; zerumbone; anticancer; anti-inflammatory

1. Introduction

The Zingiberaceae family consists of about 50 genera and more than 1500 species
which are distributed all over the world and most of them are found in Asia, Central
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America, and Africa. Plants belonging to various genera of Zingiberaceae family are used
as food, spice and medicines in many parts of the world [1]. One of the must studied genera
of this family, Zingiber consists of about 85 species [2] and Zingiber officinale Roscoe. is the
most commonly cultivated and used species. There are many other important species of
Zingiber which are widely used as spices, food supplements and as crude drug in traditional
medicines such as Zingiber montanum (J. Koenig) Link ex A. Dietr.

Zingiber montanum (Figure 1, Syns: Amomum cassumunar (Roxb.) Donn, Amomum
montanum J. König, Amomum xanthorhiza Roxb. ex Steud., Cassumunar roxburghii Colla,
Jaegera montana (J. König) Giseke, Zingiber anthorrhiza Horan., Zingiber cassumunar Roxb.,
Zingiber cassumunar var. palamauense Haines, Zingiber cassumunar var. subglabrum Thwaites,
Zingiber cliffordiae Andrews, Zingiber luridum Salisb., Zingiber montanum (J. König ex Retz.)
Theilade, Zingiber purpureum Roscoe, Zingiber purpureum var. palamauense (Haines) K.K.
Khanna, Zingiber xantorrhizon Steud.) [3] is commonly known as “Banada” in Bangladesh,
“Phlai” in Thailand, “Jangliadrak” in India, and “Bangle” in Malaysia. It is reported to
be native to Southeast Asia and has been extensively planted in Thailand, Malaysia, and
Indonesia [4]. The rhizomes of this plant are used in traditional medicines for the treatment
of constipation, dyspepsia, gastritis, stomach bloating and stomach-ache. Various parts
of Z. montanum are used in Thailand as daily diet [5], while the rhizome is used in the
as vermifuge in Malaysia, and applied for abscesses, colic, diarrhea, fever and intestinal
disorders. In Northeast India, the rhizome paste was reported to be used in the treatment
of dyspepsia and stomach bloating [6,7].
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Zerumbone (ZER) (Figure 1c), a sesquiterpenoid, is one of the major compounds in
the essential oils and rhizomes of Z. montanum [4]. In recent years, it has received much at-
tention among researchers as a potent antitumor and anti-inflammatory compound [8–15].
Z. montanum being extensively used in traditional medicine but very few investigations
were found for their bioactive constituents and mechanism based pharmacological actions.
Thus, the main aim of this review is to scientifically analyze the available scientific in-
formation about the chemical constituents and pharmacological activities of extracts and
compounds isolated form Zingiber montanum along with the various activities of ZER.

2. Traditional Uses of Zingiber montanum

Zingiber montanum rhizomes are traditionally used for the treatment of asthma, cough,
colic, constipation, dyspepsia, diarrhea, inflammation, sprains, stomach bloating and
wounds [4,16–31]. It is also used as a tonic and appetizer. It is given along with black
pepper in the treatment of cholera and also used as a vermifuge [32]. The rhizome is also
used to prepare cleansing solution for skin diseases [33]. The rhizome oil is applied in the
treatment of swelling [25]. Rhizomes are also used as anti-inflammatory, antifungal, and
antibacterial agent [19,34].

3. Bioactive Compounds

Phytochemical investigation of rhizomes of Z. montanum revealed the presence of
numerous bioactive chemical constituents such as alkaloids, saponins, tannins, flavonoids,
terpenoids, phenolic compounds, phlobatannins, steroids, and glycosides [35,36]. The gas
chromatography-mass spectrometry (GC-MS) analysis of essential-oil constituents of fresh
rhizomes of Z. montanum reported the presence of various compounds such as α-thujene, α-
pinene, β-mycrene, α-terpinene, p-cymene, β-phellandrene, γ-terpinene, sabinene, sabinene
hydrate, terpinolene, terpinen-4-ol, terpinyl acetate, β-sesquiphellandrene, and 4-(3,4-
dimethoxyphenyl)but-1,3-diene (DMPBD) which were identified on the basis of retention
time and comparison with standard compounds [37]. In another study, GC-MS analysis of
essential oils of Z. montanum revealed the presence of sixty four constituents in leaf oil and
thirty two constituents in the rhizome oil [38]. The major active chemical constituents of the
rhizome oil were sabinene (27–34%), γ-terpinene (6–8%), α-terpinene (4–5%), terpinen-4-ol
(30–5%), DMPBD (12–19%), triquinacene 1,4-bis (methoxy) (26.5%), (Z)-ocimene (22.0%),
and β-phellandrene (1.0–4.4%) [35,37–39]. Whereas, the major constituents in leaf oil
were sabinene (15.0%), β-pinene (14.3%), caryophyllene oxide (13.9%) and caryophyllene
(9.5%) [38]. Kantoyos and Paisooksantivatana analyzed the chemical constituents in the
essential oils obtained from ten Zingiber species in Thailand including Z. montanum. Among
the studied plant species, the oil obtained from Z. montanum rhizomes had highest yield
(0.89 ± 0.14%, v/w) and also showed highest total curcuminoid content (2.633% w/w) and
terpinen-4-ol content (14.5 ± 2.59%) [37]. Structures of some of the main compounds in
essential oils are given in Figure 2.
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There are also various reports on the compounds isolated from the extracts includ-
ing non-volatile compounds from the rhizomes. They include mainly phenylbutanoids
(Figure 3), flavonoids (Figure 4), terpenes and many other compounds. A list of some of
these compounds is provided in Table 1.
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Table 1. List of compounds isolated from the rhizomes of Z. montanum.

Extraction Solvent Compounds References

Hexane extract

(E)-4-(3,4-dimethoxyphenyl)-but-3-en-1-ol
(E)-4-(3,4-Dimethoxyphenyl)-but-3-en-1-yl acetate
(E)-3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-
dimethoxystyryl]cyclohex-1-ene

[40]

Hexane extract

4-(3′,4′-Dimethoxyphenyl)but-3-ene
4-(3′,4′-Dimethoxyphenyl)but-1,3-diene
4-(2′,4′,5′-Trimethoxyphenyl)but-3-ene
4-(2′,4′,5′-Trimethoxyphenyl)but-1,3-diene
(E)-4-(3′,4′-Dimethoxy)but-3-en-1-yl palmitate
(E)-4-(3′,4′-Dimethoxyphenyl)but-3-en-l-y1 palmitate
3,4-Dimethoxybenzaldehyde
2,4,5-trimethoxybenzaldehyde

[41]

Chloroform extract

cis-3-(2′,4′,5′-Trimethoxyphenyl)-4-[(E)-2′′ ′,4′′ ′,5′′ ′-
trimethoxystyryl] cyclohex-1-ene
cis-3-(3′,4′-Dimethoxyphenyl)-4-[(E)-3′′ ′,4′′ ′-
dimethoxystyryl]cyclohex-l-ene
cis-3-(3′,4′-Dimethoxyphenyl)-4-[(E)-2′′ ′,4′′ ′,5′′ ′-
trimethoxystyryl]cyclohex-1-ene
cis-3-(2′,4′,5′-Trimethoxyphenyl)-4-[(E)-3′′ ′,4′′ ′-
dimethoxystyryl]cyclohex-1-ene
(E)-4-(3′,4′-Dimethoxypheny1)but-3-en-1-o1
(E)-4-(3′,4′-Dimethoxypheny1) but-3-en-1-yl acetate
8-(3′,4′-Dimethoxypheny1)-2-methoxynaphtho-1,4-
quinone

[27,42]
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Table 1. Cont.

Extraction Solvent Compounds References

Chloroform extract

cis-4[(E)-3,4-Dimethoxylstyryl]-3-(2,4,5-
trimethoxyphenyl)cyclohex-1-ene
trans-3-(3,4-Dimethoxyphenyl)-4[(E)-3,4-
dimethoxystyryl]-cyclohex-1-ene
trans-3-(3,4-Dimethoxyphenyl)-4-[(E)-2,4,5-
trimenthoxystyryl] cyclohex-1-ene
(E)-4-(3,4-Dimethoxyphenyl) but-3-en-1-yl palmitate
(E)-1-(3,4-Dimethoxyphenyl) but-1-ene
(E)-1-(3,4-Dimethoxyphenyl) butadiene
2-Methoxy-8(2,4,5-trimethoxyphenyl)-naphtho-1,4-
quionone
Curcumin
Vanillic acid
Vanillin
Veratric acid
Terpinen-4-ol

[42]

Toluene extract

Cassumunaquinone 1
Cassumunaquinone 2
Alflabene
Cassumunene
2-(3,4-Dimethoxystyryl) ethanol

[43,44]

Methanol extract
(E)-1-(3,4-Dimethoxyphenyl)but-1-ene
(E)-1-(3,4-Dimethoxyphenyl)butadiene
Zerumbone

[45]

Acetone extract
Cassumunin A
Cassumunin B
Cassumunin C

[46]

Acetone extract
Cassumunarin A
Cassumunarin B
Cassumunarin C

[47]

Acetone extract

(±)-trans-3-(2,4,5-Trimethoxyphenyl)-4-[(E)-3,4-
dimethoxystyryl]-cyclohexene
(±)-cis-1,2-Bis[(E)-3,4-dimethoxystyryl]-cyclobutane
(±)-cis-3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-
dimethoxystyryl]-cyclohexene
(±)-trans-3(3,4-Dimethoxyphenyl)-4-[(E)-3,4-
dimethoxystyryl]-cyclohexene

[48]

Acetone extract

(E)-4-(4-Hydroxy-3-methoxyphenyl)but-3-en-1-yl
acetate
(E)-4-(4-Hydroxy-3-methoxyphenyl)but-2-en-1-ol
(E)-2-Hydroxy-4-(3,4-dimethoxyphenyl)but-3-en-1-ol
(E)-2-Methoxy-4-(3,4-dimethoxyphenyl)but-3-en-1-ol
(E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-ol
(E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-yl acetate
(E)-3-Hydroxy-1-(3,4-dimethoxyphenyl)but-1-ene

[49]

Hexane extract

(E)-4-(3′,4′ Dimethoxyphenyl)but-3-enyl acetate
cis-3-(3′,4′-Dimethoxyphenyl)-4-[(E)-3,′′ ′,4′′ ′-
dimethoxystyryl]cyclohex-l-ene
cis-3-(3′,4′-Dimethoxyphenyl)-4-[(E)-2′′ ′,4′′ ′,5′′ ′-
trimethoxystyryl]cyclohex-1-ene
cis-3-(2′,4′,5′-Trimethoxyphenyl)-4-[(E)-2′′ ′,4′′ ′,5′′ ′-
trimethoxystyryl]cyclohex-l-ene
(E)-4-(3′-4′-dime-thoxyphenyl)but-3-en-l-ol

[50]
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Table 1. Cont.

Extraction Solvent Compounds References

Ethanol extract (E)-4-(3′,4′-dimethoxyphenyl)but-3-enyl acetate
(E)-4-(3′,4′-dimethoxyphenyl)but-1,3-diene [51]

Methanol extract

Phlain I
Phlain II
Phlain III
Phlain IV
Phlain V
Phlain VI
3,4-Dimethoxybenzaldehyde
2,4,5-Trimethoxybenzaldehyde
(E)-1-(3,4-Dimethoxyphenyl)buta-1,3-diene
(E)-1-(2,4,5-Trimethoxyphenyl)buta-1,3-diene
(E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-ol
(E)-4-(3,4-Dimethoxyphenyl)but-3-enyl acetate
(E)-1-(3,4-Dimethoxyphenyl)but-1-ene
(E)-1-(2,4,5-Trimethoxyphenyl)but-1-ene
(±)-cis-3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-
dimethoxystyryl]cyclohex1-ene
(±)-cis-3-(2,4,5-Trimethoxyphenyl)-4-[(E)-2,4,5-
trimethoxystyryl]cyclohex-1-ene
Cassumunaquinone 1
Cassumunaquinone 2
(-)-β-Sesquiphellandrene
Curcumin
Vanillic acid
β-Sitosterol

[52]

Methanol extract

Cassumunol A
Cassumunol B
Cassumunol C
Cassumunol D
Cassumunol E
Cassumunol F
Cassumunol G
Cassumunol H

[53]

Methanol extract

(±)-trans-3-(4′-Hydroxy-3′-methoxyphenyl)-4-[(E)-
3′′ ′,4′′ ′-dimethoxystyryl]cyclohex-1-ene
(±)-trans-3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-
dimethoxystyryl]cyclohex-1-ene
4-(3,4-Dimethoxyphenyl)but-1,3-diene
4-(2,4,5-Trimethoxyphenyl)but-1,3-diene

[54]

Chloroform extract

(E)-4-(3,4-Dimethoxy-phenyl)but-3-en-1-O-β-D-
glucopyranoside
(±)-trans-3-(3,4-Dimethoxyphenyl)-4-[(E)-3,4-
dimethoxystyryl]cyclohex-1-ene
(±)-trans-3-(4-Hydroxy-3-methoxyphenyl)-4-[(E)-3,4-
dimethoxystyryl]cyclohex-1-ene
4-(2,4,5-Trimethoxyphenyl)-but-1,3-diene,
4-(3,4-Dimethoxyphenyl)but-1,3-diene
(E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-ol
(E)-4-(3,4-Dimethoxyphenyl)but-3-en-1-yl acetate

[55]
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Table 1. Cont.

Extraction Solvent Compounds References

Hexane extract

Zerumbone
Zerumbol
Buddledone A
Furanodienone
Germacrone
Borneol
Camphor

[20]

Chloroform extract (E)-8(17),12-labdadiene-15,16-dial
Camphor [20]

Methanol extract

Zerumbone
Kaempferol 3-O-methyl ether
Kaempferol 3-O-α-rhamnopyranoside
Kaempferol 3-O-α-(4′′-O-acetyl)rhamnopyranoside
Kaempferol 3-O-α-(3′′-O-acetyl)rhamnopyranoside
Kaempferol
3-O-α-(3”,4”-di-O-acetyl)rhamnopyranoside

[4]

4. Pharmacological Activities of Z. montanum Extracts and Compounds

Various pharmacological activities such as antimicrobial, anti-inflammatory, antiox-
idant, antihistaminic, smooth muscle relaxant, insecticidal activities are reported for the
essential oils, extracts and some isolated compounds of Z. montanum. Some of these
activities are discussed in detail in following sections.

4.1. Anti-Inflammatory Activity

The hexane extract of Z. montanum showed remarkable inhibitory effect on carrageenan-
induced rat paw edema, acetic acid-inducing writhing reaction in mice and yeast-triggered
hyperthermia in rats [56]. Moreover, phenylbutanoids have been reported as active con-
stituents for anti-inflammatory activities [45]. Sabinene and terpinene-4-ol from essential
oil of Z. montanum significantly reduced nuclear factor-kappa B (NF-κB) protein expres-
sion in human leukemic monocyte lymphoma cells and interleukin-6 (IL-6) secretion in
lipopolysaccharide (LPS) stimulated mice macrophage (RAW264.7) [57]. Methyl t-butyl
ether (MTBE) and methanol extracts of Zingiber were effective to inhibit LPS induced
in vitro production of prostaglandin E2 (PGE2) and TNF-α in human promonocytic U937
cells [58]. The methanol extract and phenylbutanoids of Z. montanum rhizome showed
inhibitory effects on the production of NO from LPS induced peritoneal macrophages from
mouse [52]. Methanol extract and its fractions (petroleum ether, hexane and aqueous) of
Z. montanum showed anti-inflammatory activity in carrageenan-induced edema in rats,
and acetic acid-induced vascular permeability and writhing test in mice [45].

4.2. Antifungal Activity

Jantan et al. reported that the Z. montanum rhizome oil at a dose of 0.75 mg/disc
showed significant fungicidal activity against five dermatophytes fungi (Trichophyton menta-
grophytes, T. rubrum, Microsporum canis, M. nanum and Epidermophyton floccosum) and three
filamentous fungi (Aspergillus niger, A. fumigatus and Mucor sp.) [59]. Another study re-
ported that the essential oil of the rhizome showed antifungal activity against Thanetophorus
cucumeris [60]. Z. montanum exhibited high activity against the yeasts namely Saccharomyces
cerevisiae, Cryptococcus neoformans, Candida albicans, C. tropicalis, C. glabrata [59]. Tripathi et al.
reported the essential oils of Z. montanum at 500 mg/L showed 100% growth inhibition of
fruit fungus Botrytis cinerea [61].
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4.3. Antioxidant Activity

Many studies have demonstrated the antioxidant properties of Z. montanum. Extract
from Z. montanum exhibited potent antioxidant activity hydroxyl radical (OH) scavenging
assay [62]. Anastasia et al. reported the antioxidant activities of different fractions of
Z. montanum by using 1,1-diphenyl-2-picrylhydrazyl (DPPH), hydrogen peroxide (H2O2),
β-carotene bleaching assays. Among different fractions, chloroform fraction showed
highest antioxidant activities in DPPH radical scavenging assay, hexane fraction showed
highest activity in H2O2 assays and ethyl acetate fraction in β-carotene bleaching assay [63].
Masuda et al. studied the antioxidant activity of cassumunins A, B and C isolated from
Z. montanum rhizomes acetone extract using a thiocyanate method which demonstrated that
all cassumunins at a dose of 2.7 µM inhibited accumulation of linoleic acid hyperoxide [64].
Bua-in and Paisooksantivatana reported the antioxidant activity of the extracts obtained
from the rhizomes of Z. montanum collected from various localities in Thailand [65].

4.4. Antibacterial Activity

Z. montanum essential oil showed potent antibacterial activity against a number of
Gram-positive and Gram-negative bacteria. Compared to methanolic extract, chloroform
extract showed significant antimicrobial activity against a wide range of pathogens [66].
The rhizomes of Z. montanum are reported to be rich in essential oil effective against a range
of pathogenic bacteria including Escherichia coli, Klebsiella pneumonia, Salmonella paratyphi,
S. typhi and Shigella flexneri [27]. Z. montanum oil showed potent antimicrobial activity
against seventy-four microbial strains with most potent activity against bacteria as such
Bacillus subtilis, E. coli, and Salmonella typhi evaluated by disc-diffusion broth dilution
method [19]. Boonyanugomol et al. reported significant antimicrobial activity of the
essential oil of Z. montanum against Gram-negative Acinetobacter baumannii strains by agar
disc-diffusion tests [67]. Sesquiterpenes, monoterpenes and diterpenes from Z. montanum
showed various degrees of antimicrobial action against B. cereus, Staphylococcus aureus,
E. coli, and Pseudomonas aeruginosa [68].

4.5. Analgesic and Antipyretic Activity

Plai cream, a water in oil emulsion prepared from the essential oil of rhizomes of
Z. montanum, was reported to reduce the delayed onset of muscle soreness in healthy
volunteers [30,69]. Strong antipyretic action of Z. montanum hexane extract was observed
in yeast induced hyperthermia rats and analgesic activity was observed on acetic acid-
induced writhing response in mice [56]. In another study, strong analgesic activity was
observed in hot plate method compared to the standard pentazocine in case of chloroform
and dichloromethane extract of Z. montanum [70].

4.6. Antiulcer Activity

Al-Amin et al. evaluated the antiulcer activity of methanol extract of Z. montanum
in mice and it showed 62.0% and 83.1% inhibition of stomach lesions induced by 1N
hydrochloric acid (HCl) at doses of 200 mg/kg and 400 mg/kg, respectively. The major
compound isolated from the extract i.e., zerumbone also showed potent antiulcer activity
in ethanol and indomethacin induced gastric lesions in mice [16]. Another study reported
that different concentration of rhizome extracts of Z. montanum showed significant antiulcer
activity in comparison with control group in aspirin-induced rat model [71].

4.7. Anti-Allergic Activity

Ethanolic and aqueous extracts of Z. montanum exhibited the most potent anti-allergic
activity in antigen induced beta hexosaminidase release in RBL-2H3 cell lines [72]. Capsules
prepared from Z. montanum inhibited wheal and flare responses (Type 1 allergic reaction)
induced by the mite skin prick test in allergic rhinitis patients [73].
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4.8. Cytotoxicity Activity

Zulkhairi et al. reported the cytotoxicity activity of different extracts and compounds
from rhizomes in human T-acute lymphoblastic leukemia cancer cells (CEMss) and human
cervical cancer cells (HeLa) [74]. Crude methanolic extract of Z. montanum rhizomes
showed significant cytotoxic activity in NIH 3T3 fibroblast cell line [65].

4.9. Other Activities

Dulpinijthmma et al. reported that Z. montanum capsule had remarkable role in the
treatment of asthma by reducing the bronchial hyperresponsiveness [75]. Crude ethanolic
Z. montanum extracts showed potent inhibitory effect on phorbol 12-myristate 13-acetate
(PMA) induced mucous producing gene (MUC2, MUC5AC) as well as its protein expres-
sion in epithelial cell via inhibition of extracellular signal-regulated kinase pathway [76].
Dichloromethane extract from the rhizome of Z. montanum showed significant mosquito
larvicidal activity [77]. Kato et al. reported the neutrophilic activity of phenylbutanoid
constituents [17]. Okonogi et al. reported that essential oil showed moderate butyryl-
cholinesterase inhibitory [78].

5. Biological Activities of Zerumbone (ZER)

Zerumbone was initially isolated in 1960 from Z. zerumbet [79] and structurally charac-
terized in 1965 [80]. Other than Z. zerumbet [81–84], it has been reported as one of the main
constituents from Z. montanum [4,16,20,85]. It is also reported from many other species
such as Z. aromaticum [84], Z. spectabile [86]. Zerumbone is widely studied for its various
pharmacological activities such as such as anticancer, anti-inflammatory, antioxidant, an-
timicrobial, anti-ulcer, hepatoprotective activities among others [8,87–90]. These activities
are explained in detail in following sections.

5.1. Anticancer Activity

Cancer is one of the leading causes of death worldwide [91]. Various studies have
evaluated the anticancer potential of zerumbone. It was assessed against HeLa cell
line and interestingly it showed a selective inhibition of HeLa cells proliferation (IC50
of 14.2 ± 0.5 µmol/L) via enhancement of cellular uptake compared to the normal cell
line L929 [92]. Moreover, Rosa and co-workers revealed the anticancer mechanism of
ZER on three cell lines including HeLa, B16F10 and undifferentiated Caco-2 cell lines. It
was shown that ZER altered the total lipid and fatty acid profile in cancer cells, inducing
marked changes in the phospholipid/cholesterol ratio [93]. In addition, the anticancer
activity was assessed on Jurkat cells, human T cell leukemia, and it was found that ZER-
pendant derivatives showed antiproliferative effects (IC50 values as low as 1–10 µM for
most derivatives) [94]. A recent study reported that ZER inhibited cell migration of human
esophageal squamous cancer by suppressing Rac1 expression, which is achieved through
promoting Rac1 ubiquitination and degradation [95]. Wide number of studies had reported
the in vivo, in vitro and in silico anticancer activities of ZER. Herein, an in vivo study
showed that ZER significantly controls the growth of tumor and metastasis in BALB/c
female mice injected with 4T1 (6-thioguanine resistant cell line) to spontaneously produce
highly metastatic tumor [96]. Sithara et al. reported the anticancer activity of ZER against
colorectal cancer cells, where they showed that ZER activates caspase 3, caspase 8, and
caspase 9. ZER resulted in cell cycle arrest at the G2/M phase [97]. Similarly, other study
reported induction of apoptosis in hepatoma HepG2 cells by ZER [98]. Eid and co-workers
attempted to explore the underlying mechanism of ZER against breast cancer using in silico
study. Since estrogen mediates several pathophysiological signaling pathways associated
with cancer progression, the author had selected estrogen as a target for breast cancer and
found that the promising molecular interaction, binding interaction, and stability of ZER
and estrogen receptor-β (ERβ) suggests ZER as lead compound for breast cancer [99]. More
details of these activities are given in Table 2.
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Table 2. Anticancer activities of zerumbone (ZER).

Experimental Models Results and Possible Mechanisms Reference

HeLa cells
ZER selectively inhibited the proliferation of HeLa cells
and also enhanced the anti-proliferative activity of
anticancer agents vinblastine and paclitaxel.

[92]

HeLa cells ZER stimulated the apoptosis. [100]
Non-small cell lung cancer (NSCLC)
A549 cells

ZER showed suppression of OPN induced cell invasion
through inhibition of FAK/AKT/ROCK pathway. [101]

NSCLC cells ZER induceed mitochondrial apoptosis and enhanced
the susceptibility to cisplatin. [102]

DU145 prostate cancer cells

ZER exerted anticancer effects against hormone
refractory DU145 prostate cancer cells mediated through
the inhibition of aberrant signaling axis of
IL-6/JAK2/STAT3.

[103]

Triple negative breast cancer (TNBC) cells ZER supressed IL-1β induced cell invasion. [104]

HCT-116 and SW48 cells ZER exerted antimetastatic effects through inhibition of
FAk/PI3k/NF-κB-uPA signaling pathway. [105]

P-338D1 and HL-60 cells and Splenocytes
from CDF1 mice

ZER inhibited the growth of P-338D1 and HL-60 cells
and prolonged the life of P-338D1-bearing CDF1 mice. [106]

PANC-1 cells ZER induced apoptosis through p53 signal pathway. [107]

Breast cancer (MCF-7) cells
Cytotoxicity of ZER against estrogen receptor positive
breast cancer (MCF-7) cells was significantly increased
through co administration with TP5-iRGD peptide.

[108]

CEM-ss cells ZER showed apoptotic activity on T-acute lymphoblastic
leukemia. [109]

PC-3 and DU-145, two human
hormonerefractory prostate cancer
(HRPC) cell lines

ZER inhibited tubulin assembly and induced a crosstalk
between ER stress and mitochondrial insult, leading to
apoptosis and autophagy in HRPCs.

[110]

HCT-116 and SW-48 cells ZER reduces the risk of CRC progression by suppressing
the β-catenin pathway via miR-200. [111]

Jurkat cells
ZER conjugated with salicylic acid and benzoic acid
derivates inhibited the growth of human T-cell
lymphoid Jurkat cells.

[94]

Esophageal squamous cell carcinomas
(ESCC)

ZER inhibited cell migration of human esophageal
squamous cancer by suppressing Rac1 expression
through promoting Rac1 ubiquitination and
degradation.

[95]

EC-109 cells

ZER inhibited the proliferation and induced apoptosis
of esophageal cancer EC-109 cells by upregulating the
mRNA expression of P53 and downregulating the
mRNA expression of Bcl-2.

[112]

Canine mammary
gland tumor (CMT) adenocarcinoma
primary cell line.

ZER loaded into nanostructured lipid carrier (NLC)
exerted CMT cell death via regulation of Bcl-2 and Bax
gene expressions and caspase activation.

[9]

Colorectal cancer cells (SW480) ZER activated caspase 3, caspase 8, and caspase 9 and
resulted in cell cycle arrest at the G2/M phase [97]

Human colonic adenocarcinoma cell lines
(LS174T, LS180, COLO205, and
COLO320DM)

ZER inhibited the proliferation of LS174T, LS180,
COLO205, and COLO320DM cell lines. [113]

SKBR3 breast cancer cells ZER supressed EGF-induced phosphorylation of STAT3. [114]

HCC1806 cells ZER suppressed TGF-β1-induced FN, MMP-2, and
MMP-9 expression. [115]

HepG2 cells ZER induced apoptosis in hepatoma HepG2 cells. [98]

HepG2 cells ZER inhibited the proliferation, and invasion and
migration of hepatoma cells. [116]

Laryngeal carcinoma
cells (Hep-2)

ZER arrested Hep-2 proliferation at S and G2/M phases
and induced cell death. [117]
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Table 2. Cont.

Experimental Models Results and Possible Mechanisms Reference

BALB/c female mice ZER controled the growth of tumor and metastasis via
delayed progression of cancer cell cycle and apoptosis. [96]

Male ICR mice

ZER effectively suppressed mouse colon and lung
carcinogenesis through multiple modulatory
mechanisms of growth, apoptosis, inflammation and
expression of NFκB and HO-1.

[118]

Female Balb/c mice ZER induced apoptosis in cervical tissues from female
Balb/c mice treated prenatally with diethylstilboestrol. [119]

Caov-3 and HeLa cells ZER inhibited cancer cell growth through the induction
of apoptosis and arrested cell cycle at G2/M phase. [120]

Female BALB/c Mice
Combination of ZER and cisplatin modulated the serum
level of interleukin 6 in mice with cervical intraepithelial
neoplasia.

[121]

HeLa cells ZER caused prominent growth retardation of HeLa cells. [122,123]

HepG2 cells
ZER increased apoptosis in HepG2 cells by
up-regulating pro-apoptotic Bax protein and
suppressing anti-apoptotic Bcl-2 protein expression.

[124]

MCF-7 and MDAMB-231cells ZER inhibited the viability of MCF-7 and MDA-MB-231
cells [125]

HepG2 cells

Highly soluble inclusion complex of
ZER-hydroxypropyl-β-cyclodextrin induced apoptosis
of HepG2 via Caspase8/BH3 interacting-domain death
agonist cleavage switch and modulating Bcl2/Bax ratio.

[12]

HepG2, human umbilical vein
endothelial cells (HUVECs)

ZER inhited prolieration and migration of HepG2 cells
and inhibited angiogenesis, and expression of matrix
metalloproteinase-9, vascular endothelial growth factor
(VEGF) and VEGF receptor proteins in HUVECs cell
line.

[126]

MDA-MB-231, MCF-7, and MCF-10A
cells

ZER induced G2/M phase cell cycle arrest and Bax/Bak
mediated apoptosis in human breast cancer cells, and
also retarded the growth of MDA-MB-231 xenografts
in vivo.

[127]

MCF-7 and MDA-MB-231
cells

ZER treatment resulted in increased Notch2 cleavage
accompained by Persenlin-1 protein expression. [88]

Human PaCa cell lines BxPC-3 and MIA
PaCa-2

ZER blocked the PaCa-associated angiogenesis through
the inhibition of NF-κB and NF-κB dependent
proangiogenic gene products.

[128]

Human renal cell carcinoma (RCC) cell
line 786-O and Caki-1 ZER acted as a novel blocker of STAT3 signaling cascade. [129]

Oral squamous cell carcinoma (OSCC)
lines

ZER inhibited the activation of CXCR4-RhoA and
PI3K-mTOR signaling pathways resulting into reduced
cell viability of OSCC cells.

[130]

Mouse epidermal cell line, JB6 Cl41 ZER induced HO-1 expression mediated through
activation of Nrf2 signaling. [89]

MDA-MB-231, MDA-MB-468,
MDA-MB-361, T-47D, MCF-7 and
MCF-10A cells

ZER inhibited the growth of breast cancer call line by
downregulating CD1d overexpression. [131]

Murine leukemia induced with WEHI-3B
cells

ZER-loaded nanostructured lipid carrier (ZER-NLC)
induced mitochondrial-dependent apoptotic pathway in
murine leukemia.

[132]

Human gastric cancer cell line SGC-7901 ZER induced human gastric cancer cells apoptosis. [133]
Human malignant melanoma (MM) A375
cell line

ZER induced apoptosis of A375 cells by activating
Caspase-3. [15]

Human Rac1 were cloned from HEK293
T cells

ZER inhibits cell migration by suppressing Rac1
expression. [95]
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Table 2. Cont.

Experimental Models Results and Possible Mechanisms Reference

Huh-7 and MHCC-LM3 cells and NSG
mice

ZER prevented liver tumorigenesis through regulating
cell metabolism and inducing cell cycle arrest and
apoptosis.

[134]

Human glioblastoma multiforme
(GBM8401) cells

ZER induced apoptosis through inactivation of IKKα,
followed by Akt and FOXO1 phosphorylation and
caspase-3 activation.

[135]

Human skin melanoma cell
line CHL-1

ZER showed chemotherapeutic effects on human
melanoma cells by altering mitochondrial function. [136]

K562 cells

ZER treatment in K562 cells induced apoptosis through
mitochondrial mediated pathway linked to upregulation
of total histone H2AX, increased calcium and ROS
production.

[137]

FAK: focal adhesion kinase, AKT: protein kinase B, ROCK: Rho-associated protein kinase, OPN, IL-6: interleukin-6, JAK2: Janus kinases 2,
STAT3: signal transducer and activtor of transcription proteins 3, IL-1β: interleukin-1β, PI3k: phosphatidylinositol-3-kinase, NF-κB: nuclear
factor kappa B, uPA: urokinase plasminogen activator, MMP: matrix metalloproteinase, ER: endoplasmic reticulum, Rac1: Ras-related
C3 botulinum toxin substrate, mRNA: messenger ribonucleic acid, Bcl-2: B-cell lymphoma 2, TGF-β1: transforming growth factor beta 1,
Bax: Bcl-2-associated X protein, Hsp90/Cdc37: heat shock protein 90 co-chaperone Cdc37, RhoA: Ras homolog family member A, mTOR:
mechanistic target of rapamycin, HO-1: heme oxygenase -1, Nrf2: nuclear factor-erythroid factor 2-related factor 2, IKKα inhibitory-kB
kinase-α, FOXO1: forkhead box protein O1, H2AX: H2A histone family member X.

5.2. Anti-Inflammatory Activity

The anti-inflammatory property of ZER is also reported by many studies in vitro and
in vivo studies using different models. Various cellular mechanisms of anti-inflammatory
activities are also reported. The details of these activities are given in Table 3.

Table 3. Anti-inflammatory activity of ZER.

In Vitro/In Vivo Models Activity References

In vitro
Macrophages differentiated
from human monocyte
(THP-1)

ZER inhibited the secretion of pro-inflammatory cytokines
in lipopolysaccharide (LPS)-activated inflammation in
THP-1 cell-derived macrophages.

[138]

In vivo Mice (endotoxin-treated mice
induce acute lung injury)

ZER reduced leukocytes infiltration into the alveolar space
and inhibited lung edema in LPS-induced aculte lung injury. [139]

In vivo Rats using Paw edema model ZER reduced both λ-carrageenan- and prostaglandin
E2-induced inflammation. [140]

In vitro RAW264.7 murine
macrophages

ZER induced proteo-stress leading to activition of HSF1
resulting into anti-inflammatory activity. [141]

In vivo Wild-type C57BL/6
mice

ZER decreased ETBF-induced colitis through inhibition of
NF-κB signaling pathway. [142]

In vitro U937 monocytes
ZER supressed the activation of inflammatory markers in
the macrophages via MyD88-dependent
NF-κB/MAPK/PI3K-Akt signaling pathways.

[143]

In vivo Adult male pathogen-free ICR
mice

ZER showed protective effect on acute lung injury induced
by LPS via suppression of intracellular adhesion
molecules-1, IL-1β, macrophage inflammatory protein -2,
downregulation of Akt, p38 MAPK/JNK, and IκB/NF-κB
pathways.

[144]

In vivo Adult male pathogen-free ICR
mice

ZER showed protective effect on acute lung injury induced
by LPS- via upregulation of antioxidative enzymes and
Nrf2/HO-1 pathway.

[145]

In vitro RAW 264.7 cells
ZER inhibited proinflammatory gene inducible nitric oxide
(iNOS) and COX2 expression by atteunating IkB
degradation.

[146]

In vitro RAW264.7 cells ZER significantly accelerated spontaneous COX-2
mRNA decay. [147]

In vitro Murine macrophage
RAW264.7 cells ZER stimulated HO-1. [148]
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5.3. Antimicrobial Activity

Various studies have reported the potent antibacterial activity of zerumbone [87,149].
A recent study reported the inhibitory effect of ZER extract and its compounds against
multi-drug resistant and methicillin resistant Staphylococcus aureus [20]. In addition, ZER
has an anti-biofilm potential; where it is reported to significantly suppress the expression
level of BmeB12 along with antibacterial activity against Bacteroides fragilis [150]. Moreover,
a study reported the bactericidal action of ZER against the carcinogenic bacterium Strepto-
coccus mutans (ATCC35668) [151]. Synthetic derivatives of zerumbone are also reported as
potent antimicrobial compounds [152].

5.4. Other Pharmacological Activities

Various other pharmacological activities are also reported for ZER such as immunomod-
ulatory activity, neuroprotective effect, antinociceptive, anti-platelet and anti-melanogenic
activities (Table 4). Different studies reported the immunomodulatory properties of ZER.
Keong et al. revealed ZER activates mice thymocytes, splenocytes and peripheral blood
mononuclear cells (PBMC) at dose dependent pattern [153]. A similar study assessed
a commercially obtained ZER on human peripheral blood, where it showed that ZER
activates human lymphocytes and upregulates interleukin-12p70 cytokine [154]. For neu-
roprotective effect of ZER, Hamdi et al. reported that ZER oxide protects NG108-15 cells
from H2O2 induced oxidative stress [155]. Apart from that, ZER has a gastroprotective
effect, where ZER reduces submucosal edema and leukocyte infiltration. On the other
hand, a recent in vivo study reported the antinociceptive activity of ZER on mouse, where
ZER suppresses inflammatory mediators without any signs of sedation [156]. An in vivo
assessment reported the anti-platelet action of ZER investigated from human blood [157].
For the anti-melanogenic activity, a recent study reported that ZER attenuates melanin
accumulation in α-melanoma cells [158].

Table 4. Other pharmacological activities of ZER.

In Vitro/In Vivo Model Cells/Animals Activity References

Hepatoprotective activity

In vitro C57BL/6 mice
In a chronic liver injury model induced by CCl4, ZER
treatment alleviated the hepatocellular toxicity and
inhibitd activation of primary hepatic stellate cells.

[159]

In vivo Mice

ZER restored the activities of antioxidant enzymes such
as superoxide dismutase and glutathione peroxidase. It
also reduces the release of pro-inflammatory cytokines
such as IL-6 and TNF-α, and inactivated the
TLR4/NF-κB/COX-2 pathway in acute liver injury
induced by CCl4 in mice.

[160]

In vivo Rats ZER possessed protective activity against
paracetamol-induced acute hepatotoxicity. [161]

Immunosuppressive and Immunomodulatory activities

In vivo Male wistar rats
ZER inhibited the migration of neutrophils, expressions
of CD11b/CD18 integrin, phagocytic activity, and
production of reactive oxygen species

[162]

In vitro CD18 integrin expression and
phagocytic engulfment

ZER showed strong inhibition on the phagocytosis of
neutrophils.Z [163]

In vitro Asthmatic mouse model

ZER reduced ovalbumin (OVA)-specific
immunoglobulin E (IgE) and induced IgG2a antibody
production. It also reduced the production of eotaxin,
keratinocyte-derived chemokine (KC), IL-4, IL-5, IL-10,
and IL-13, and promoted Th1 cytokine interferon
(IFN)-γ production.

[164]

In vitro Zymogen and PMA based
chemiluminescence assay

ZER significantly inhibited intracellular and
extracellular reactive oxygen species (ROS) production. [165]
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Table 4. Cont.

In Vitro/In Vivo Model Cells/Animals Activity References

Anti-hypercholesterolemic activity

In vivo Rabbit ZER preventd the development of atherosclerotic
lesions and supressed macrophage aggregation. [166]

Anti-hyperlipidemic activity

In vivo high-fat diet (HFD)-induced
hyperlipidemic hamsters

ZER improved dyslipidemia by modulating lipolytic
and lipogenic pathways of lipids metabolism [167]

Anti-obesity activity

In vivo C57BL/6N
mice

ZER ameliorated diet-induced obesity and inhibited
adipogenesis by restoring AMPK-regulated lipogenesis
and the microRNA-146b/SIRT1-mediated adipogenesis.

[168]

In vivo C57BL/6
mice

ZER decreased the levels of plasma triglycerides well as
plasma insulin and leptin. [169]

Anti-hyperglycemia and related activities

In vitro MDCK cells
ZER increased AMPK phosphorylation at Thr172 under
normal/high glucose without affecting mitochondrial
function.

[170]

In vivo STZ-diabetic rats ZER ameliorated diabetic nephropathy by inhibiting
hyperglycemia-induced inflammation. [171]

In vivo STZ-diabetic rats ZER protected from hyperglycemia-induced retinal
damage. [172]

In vitro INS-1 rat pancreatic β cells ZER protected against high glucose-induced apoptosis
of INS-1 pancreatic β cells. [173]

Wound healing activity

In vivo
ZER treated wound sections showed greater tissue
regeneration and more fibroblasts possibly through the
inhanced expression of VEGF, TGF-β1 and collagen IV.

[174]

Antiallergic activity

In vivo Female BALB/c and C57BL/6
mice

ZER showed antiallergic effect via modulation of
Th1/Th2 cytokines in an asthmatic mouse model [164]

Although zerumbone shows promising biological activities, its low water solubility
and poor bioavailability is one of the limiting factor for wider applications of various
formulations containing zerumbone. Few studies have been reported aimed at improving
the solubility and bioavailability of zerumbone such as formulation inclusion complexes
with cyclodextrin [8,175], nanostructured lipid careers [9], etc.

6. Conclusions and Future Prospects

This review highlighted the traditional food and medicinal uses, bioactive chemical
constituents, and pharmacological activities of Z. montanum. Various bioactive compounds
have been isolated and identified form the different plant parts. The most widely used and
studied part was rhizome. Studies have reported both volatile and non-volatile compounds
from the rhizomes. Sesquiterpene lactone, ZER was one of the main components in the
rhizomes. ZER has been studied widely for its anticancer, anti-inflammatory, and other
pharmacological activities. Future studies should focus on the exploration of various
pharmacological activities of other compounds including flavonoids and phenylbutanoids.
Bioassay guided isolation may result in the isolation of other active components from the
extracts. Future studies should also focus on in vivo studies dealing with pharmacological
and pharmacokinetic evaluations. Moreover, clinical studies should be conducted to
validate the promising biological activities of ZER. Based on these data, Z. montanum can
be a potential source for the development of functional and health beneficial food products.
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