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Abstract: This editorial introduces the Special Issue, entitled “Deep Learning Applications with
Practical Measured Results in Electronics Industries”, of Electronics. Topics covered in this issue
include four main parts: (I) environmental information analyses and predictions, (II) unmanned aerial
vehicle (UAV) and object tracking applications, (III) measurement and denoising techniques, and
(IV) recommendation systems and education systems. Four papers on environmental information
analyses and predictions are as follows: (1) “A Data-Driven Short-Term Forecasting Model for Offshore
Wind Speed Prediction Based on Computational Intelligence” by Panapakidis et al.; (2) “Multivariate
Temporal Convolutional Network: A Deep Neural Networks Approach for Multivariate Time Series
Forecasting” by Wan et al.; (3) “Modeling and Analysis of Adaptive Temperature Compensation
for Humidity Sensors” by Xu et al.; (4) “An Image Compression Method for Video Surveillance
System in Underground Mines Based on Residual Networks and Discrete Wavelet Transform” by
Zhang et al. Three papers on UAV and object tracking applications are as follows: (1) “Trajectory
Planning Algorithm of UAV Based on System Positioning Accuracy Constraints” by Zhou et al.;
(2) “OTL-Classifier: Towards Imaging Processing for Future Unmanned Overhead Transmission
Line Maintenance” by Zhang et al.; (3) “Model Update Strategies about Object Tracking: A State
of the Art Review” by Wang et al. Five papers on measurement and denoising techniques are as
follows: (1) “Characterization and Correction of the Geometric Errors in Using Confocal Microscope
for Extended Topography Measurement. Part I: Models, Algorithms Development and Validation” by
Wang et al.; (2) “Characterization and Correction of the Geometric Errors Using a Confocal Microscope
for Extended Topography Measurement, Part II: Experimental Study and Uncertainty Evaluation” by
Wang et al.; (3) “Deep Transfer HSI Classification Method Based on Information Measure and Optimal
Neighborhood Noise Reduction” by Lin et al.; (4) “Quality Assessment of Tire Shearography Images
via Ensemble Hybrid Faster Region-Based ConvNets” by Chang et al.; (5) “High-Resolution Image
Inpainting Based on Multi-Scale Neural Network” by Sun et al. Two papers on recommendation
systems and education systems are as follows: (1) “Deep Learning-Enhanced Framework for
Performance Evaluation of a Recommending Interface with Varied Recommendation Position and
Intensity Based on Eye-Tracking Equipment Data Processing” by Sulikowski et al. and (2) “Generative
Adversarial Network Based Neural Audio Caption Model for Oral Evaluation” by Zhang et al.

Keywords: deep learning; machine learning; supervised learning; unsupervised learning;
reinforcement learning; optimization techniques
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1. Introduction

Machine learning and deep learning techniques have been the crucial tools when it comes
to the feature extracting and event estimating for developing applications in the electronics
industries [1–8]. Some techniques have been implemented in the embedded systems and applied
to industry 4.0 applications, industrial electronics applications, consumer electronics applications,
and other electronics applications. For instance, supervised learning techniques, including neural
networks (NN) [9–19], convolutional neural networks (CNN) [20–26], and recurrent neural networks
(RNN) [27–32], can be adopted for prediction applications and classification applications in
the electronics industries. Unsupervised learning techniques, including restricted Boltzmann
machine (RBM) [33,34], deep belief networks (DBN) [35], deep Boltzmann machine (DBM) [36],
auto-encoders (AE) [37,38], and denoising auto-encoders (DAE) [39], can be used for denoising and
generalization. Furthermore, reinforcement learning techniques, including generative adversarial
networks (GANs) [40,41] and deep Q-networks (DQNs) [42], can be used to obtain generative
networks and discriminative networks for contesting and optimizing in a zero-sum game framework.
These techniques can provide the precise prediction and classification for electronics applications.
Therefore, the aim of this Special Issue is to introduce the readers the state-of-the-art research work on
deep learning applications with practical measured results in electronics industries.

This Special Issue had received a total of 45 submitted papers with only 14 papers accepted.
A high rejection rate of 68.89% of this issue from the review process is to ensure that high-quality papers
with significant results are selected and published. The statistics of the Special Issue are presented
as follows.

• Submissions (45);
• Publications (14);
• Rejections (31);
• Article types: research article (13); review article (1).

Topics covered in this issue include the following four main parts: (I) environmental information
analyses and predictions, (II) unmanned aerial vehicle (UAV) and object tracking applications,
(III) measurement and denoising techniques, and (IV) recommendation systems and education systems.
Four topics with accepted papers are briefly described below.

2. Environmental Information Analyses and Predictions

Four papers on environmental information analyses and predictions are as follows:
(1) “A Data-Driven Short-Term Forecasting Model for Offshore Wind Speed Prediction Based on
Computational Intelligence” by Panapakidis et al. [43]; (2) “Multivariate Temporal Convolutional
Network: A Deep Neural Networks Approach for Multivariate Time Series Forecasting” by
Wan et al. [44]; (3) “Modeling and Analysis of Adaptive Temperature Compensation for Humidity
Sensors” by Xu et al. [45]; (4) “An Image Compression Method for Video Surveillance System in
Underground Mines Based on Residual Networks and Discrete Wavelet Transform” by Zhang et al. [46].

Panapakidis et al. from Greece and Cyprus in “A Data-Driven Short-Term Forecasting Model for
Offshore Wind Speed Prediction Based on Computational Intelligence” considered that the time series
data of wind speed has the characters of high nonlinearity and volatilities. Therefore, an adaptive
neuro-fuzzy inference system (ANFIS) and a feed-forward neural network (FFNN) were constructed to
analyze the nonlinearity and volatilities of wind speed for short-term wind speed prediction. In their
experiments, five cases were selected to predict the wind speeds of the 1-min-ahead and 10-min-ahead
prediction horizons for the evaluation of the proposed method. The results show that all of mean
absolute range normalized errors (MARNEs) of each case by the proposed method were lower than
the MARNEs of each case by other methods (e.g., regression neural network, regression trees, support
vector regression, etc.) [43].
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Wan et al. from China in “Multivariate Temporal Convolutional Network: A Deep Neural
Networks Approach for Multivariate Time Series Forecasting” considered that the long-term
multivariate dependencies of time series data are hard to be captured. Therefore, a multivariate
temporal convolution network (M-TCN) was proposed to combine convolutional layers and residual
block for extracting the spatio-temporal features of environmental data. In the experiments, two
benchmark datasets including a Beijing PM2.5 dataset and an ISO-NE Dataset were used to compare
the M-TCN with other methods for evaluating the proposed method. The results show that the root
mean squared errors (RMSEs) of each case by the M-TCN were lower than the RMSEs of each case with
other methods (i.e., long short term memory (LSTM), convolutional LSTM (ConvLSTM), Temporal
Convolution Network (TCN) and Multivariate Attention LSTM-FCN (MALSTM-FCN)) [44].

Xu et al. from China in “Modeling and Analysis of Adaptive Temperature Compensation for
Humidity Sensors” considered that the nonlinear compensation of sensing data is required because the
humidity sensitive materials may be sensitive to temperature with nonlinear relationships. Therefore,
a genetic simulated annealing algorithm (GSA) was proposed and adopted into a back propagation
neural network (BPNN)-based nonlinear compensation model to compensate the sensing data of
different temperature ranges. In their experiments, 150 practical datasets were collected by a humidity
sensor and used to train the proposed nonlinear compensation model; furthermore, 15 practical datasets
were collected and analyzed to test the trained nonlinear compensation model for the performance
evaluation of the proposed method. The results show that the errors the proposed method were lower
than the errors of other methods (i.e., genetic algorithm-BPNN (GA-BPNN) and artificial fish-swarm
algorithm-BPNN (AFSA-BPNN)) [45].

Zhang et al. from China in “An Image Compression Method for Video Surveillance System
in Underground Mines Based on Residual Networks and Discrete Wavelet Transform” considered
that the image compression can be used to transfer a large number of digital images through lower
bandwidth underground channels for the applications of underground mines. Therefore, a neural
network containing an encoder module and a decoder module with residual units was constructed,
and a metric termed discrete wavelet structural similarity (DW-SSIM) was proposed for the loss
function of the neural network. In the experiments, this study collected the images from the COCO
2014 dataset and the images of underground mines for training and testing. The results show that the
peak signal-to-noise ratio (PSNR) and the structural similarity (SSIM) of the proposed method were
higher than the PSNR and the SSIM of other methods (e.g., denoising-based approximate message
passing (D-AMP), ReconNet and total variation augmented Lagrangian alternating direction algorithm
(TVAL3)) [46].

3. UAV and Object Tracking Applications

Three papers on UAV and object tracking applications are as follows: (1) “Trajectory Planning
Algorithm of UAV Based on System Positioning Accuracy Constraints” by Zhou et al. [47];
(2) “OTL-Classifier: Towards Imaging Processing for Future Unmanned Overhead Transmission
Line Maintenance” by Zhang et al. [48]; (3) “Model Update Strategies about Object Tracking: A State of
the Art Review” by Wang et al. [49].

Zhou et al. from China in “Trajectory Planning Algorithm of UAV Based on System Positioning
Accuracy Constraints” considered that the location information cannot be accurately determined by
UAVs with the limitation of system structure. Therefore, this study considered multi-constraints (e.g.,
vertical errors, horizontal errors, and flight distance) and proposed an improved genetic algorithm
and an improved sparse A* algorithm to find the shortest trajectory length. In their experiments, two
practical case studies were selected to evaluate the improved genetic algorithm and the improved
sparse A* algorithm. The results show that the trajectory length could be reduced by 57.79% by the
proposed methods [47].

Zhang et al. from China in “OTL-Classifier: Towards Imaging Processing for Future Unmanned
Overhead Transmission Line Maintenance” considered that the transmission line-based robots equipped
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with cameras can only travel a line to inspect for maintenance. Therefore, an overhead transmission line
classifier based on ResNet (deep residual network) and Faster-RCNN (faster regions with convolutional
neural network) was proposed to analyze the images from robots for classification and inspection.
In the experiments, 1558 images, which include 406 positive samples and 1152 negative samples, were
collected for evaluating the proposed classification method. The results show that the area under
curve (AUC) of the proposed classification method was higher than support vector machine (SVM).
Furthermore, the precision-recall (PR) curve of the proposed classification method (i.e., ResNet) was
also higher than the PR curve of the combination of VGG and Faster-RCNN [48].

Wang et al. from China in “Model Update Strategies about Object Tracking: A State of the Art
Review” considered that tracking model update strategies were important factors for the robustness
of image recognition. Therefore, the study conducted the literature review of target model update
occasions, target model update strategies, and background model updates. Four update strategy
types, which include (1) update strategies based on correlation filters, (2) update strategies based on
dictionary learning and sparse coding, (3) update strategies based on bag-of-words, and (4) update
strategies based on neural network models, were summarized and presented. The experimental results
of different update strategies from recent publications were discussed, and it was concluded that
the local representation, target re-detection, and background models were important factors for the
improvement of object tracking [49].

4. Measurement and Denoising Techniques

Five papers on measurement and denoising techniques are as follows: (1) “Characterization
and Correction of the Geometric Errors in Using Confocal Microscope for Extended Topography
Measurement. Part I: Models, Algorithms Development and Validation” by Wang et al. [50];
(2) “Characterization and Correction of the Geometric Errors Using a Confocal Microscope for
Extended Topography Measurement, Part II: Experimental Study and Uncertainty Evaluation”
by Wang et al. [51]; (3) “Deep Transfer HSI Classification Method Based on Information Measure
and Optimal Neighborhood Noise Reduction” by Lin et al. [52]; (4) “Quality Assessment of Tire
Shearography Images via Ensemble Hybrid Faster Region-Based ConvNets” by Chang et al. [53];
(5) “High-Resolution Image Inpainting Based on Multi-Scale Neural Network” by Sun et al. [54].

Wang et al. from Spain and China in “Characterization and Correction of the Geometric Errors
in Using Confocal Microscope for Extended Topography Measurement. Part I: Models, Algorithms
Development and Validation” and “Characterization and Correction of the Geometric Errors Using
a Confocal Microscope for Extended Topography Measurement, Part II: Experimental Study and
Uncertainty Evaluation” considered that the measurement accuracy and error compensation are
important issues for measuring machines. Therefore, Wang et al. proposed a mathematical model
based on system kinematics for building the scale calibration of the X-coordinate and Y-coordinate
in Part I; two experiments were designed based on Monte Carlo method to evaluate the proposed
mathematical model and measure different target areas in Part II. In their experiments, 35 cylinders of
point cloud were established in a 5 × 7 area and generated for evaluating the proposed mathematical
model. The results show that the mean residuals and squared residuals of the proposed method were
higher than those of other methods [50,51].

Lin et al. from China in “Deep Transfer HSI Classification Method Based on Information Measure
and Optimal Neighborhood Noise Reduction” considered that high redundant spectral information in
the hyperspectral images (HSIs) may interfere with the accuracy of image classification. Therefore, a
deep learning method based on a dimensionality reduction method and convolutional neural networks
was proposed to improve the accuracy of HIS classification. In the experiments, the dataset of Indian
Pines and Salinas which were obtained by Airborne Visible/Infrared Imaging Spectrometer (AVIRIS)
sensors were collected for evaluating the proposed method. The results show that the accuracy of
the proposed method was higher than that of other methods (e.g., principal component analysis
(PCA)) [52].
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Chang et al. from Taiwan and India in “Quality Assessment of Tire Shearography Images via
Ensemble Hybrid Faster Region-Based ConvNets” considered that the bubble defect detection is an
important issue to filter out defective tires for the improvement of driving safety. Therefore, the
combination of ensemble convolutional neural network and Faster-RCNN was proposed to detect
bubble defects in the shearography images of tires. In their experiments, for the evaluation of the
proposed method, 3279 tire images were selected as training data; 797 tire images were selected as
testing data. The results show that the accuracy, sensitivity and specificity of the proposed method
were higher than those of other methods (e.g., SVM, random forest, Haar-like AdaBoost, etc.) [53].

Sun et al. from China in “High-Resolution Image Inpainting Based on Multi-Scale Neural Network”
considered that the blurred textures and the unpleasant boundaries may be obtained by the image
inpainting method based on GAN in the cases of high resolution images. Therefore, this study applied
the super-resolution using a generative adversarial network (SRGAN) to inpaint image and extract the
features of textures for the improvement of image recognition. In the experiments, COCO and VOC
datasets which included 135,414 images as training data and 200 images as testing data were selected
to evaluate the proposed method. The results show that the PSNR and SSIM of the proposed method
were higher than the PSNR and SSIM of other methods [54].

5. Recommendation Systems and Education Systems

Two papers on recommendation systems and education systems are as follows: (1) “Deep
Learning-Enhanced Framework for Performance Evaluation of a Recommending Interface with Varied
Recommendation Position and Intensity Based on Eye-Tracking Equipment Data Processing” by
Sulikowski et al. [55] and (2) “Generative Adversarial Network Based Neural Audio Caption Model
for Oral Evaluation” by Zhang et al. [56].

Sulikowski et al. from Poland in “Deep Learning-Enhanced Framework for Performance
Evaluation of a Recommending Interface with Varied Recommendation Position and Intensity Based on
Eye-Tracking Equipment Data Processing” considered that high correlations may exist between users’
gaze data and interests in human-computer interaction for recommendation inferences. Therefore,
this study collected eye-tracking data to train a deep learning neural network model for building an
e-commerce recommendation system. In the experiments, 15,922 fixation records were generated by
eye-tracking devices from 52 participants. The results show that the accuracies of training dataset and
testing dataset were 98.4% and 98.2%, respectively [55].

Zhang et al. from China in “Generative Adversarial Network Based Neural Audio Caption Model
for Oral Evaluation” considered that the massive human work is required by oral evaluation for testing
children’s language learning. Therefore, an automated expert comment generation method based
on gated recurrent units (GRUs), LSTM networks and GANs was proposed to extract the features of
orals and generate expert comments. In their experiments, the proposed neural audio caption model
(NACM) and the proposed GAN-based NACM (GNACM) were implemented and compared; several
oral audios from the children of 5-6 years old were collected for evaluating the proposed models.
The results show that scores of GNACM were higher than the scores of NACM; furthermore, the
average response time of GNACM was lower than that of NACM [56].

6. Conclusions and Future Work

Four main parts, including (I) environmental information analyses and predictions, (II) UAV and
object tracking applications, (III) measurement and denoising techniques, and (IV) recommendation
systems and education systems, are collected and discussed in this Special Issue. These articles utilized
and improved the deep learning techniques (e.g., ResNet, Fast-RCNN, LSTM, ConvLSTM, GAN, etc.)
to analyze and denoise measured data in a variety of applications and services (e.g., wind speed
prediction, air quality prediction, underground mine applications, neural audio caption, etc.). Several
practical experiments were given in these articles, and the results indicated that the performance of
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the improved deep learning methods could be higher than the performance of conventional machine
learning methods [43–56].

In the future, the federated learning techniques can be considered to train deep learning and
machine learning models across multiple decentralized servers for data privacy and data security in
electronics industries. Furthermore, the optimization techniques (e.g., gradient descent algorithm,
Adam optimization algorithm, particle swarm optimization algorithm [57,58], etc.) can be improved
for finding the global optimal solution.
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Abstract: Wind speed forecasting is an important element for the further development of offshore
wind turbines. Due to its importance, many researchers have proposed different models for wind
speed forecasting that differ in terms of the time-horizon of the forecast, types and number of inputs,
complexity, structure, and others. Wind speed series present high nonlinearity and volatilities, and
thus an effective model should successfully deal with those features. An approach to deal with the
nonlinearities and volatilities is to utilize a time series processing technique such as the wavelet
transform. In the present paper, an ensemble data-driven short-term wind speed forecasting model
is developed, tested and applied. The term “ensemble” refers to the combination of two different
predictors that run in parallel and the prediction is obtained by the predictor that leads to the lowest
error. The proposed model utilizes the wavelet transform and is compared with other models that
have been presented in the related literature and outperforms their accuracy. The proposed forecasting
model can be used effectively for 1 min and 10 min ahead horizon wind speed predictions.

Keywords: computational intelligence; offshore wind; forecasting; machine learning; neural networks;
neuro-fuzzy systems

1. Introduction

1.1. Motivation and State-of-the-Art

The rapid implementation of wind turbines across the globe corresponds to a set of challenges
during power systems operation and planning. This is due to intermittent nature of wind potential.
By the end of 2018, the total European Union-installed offshore wind capacity reached 19 GW.
Total investments in offshore wind in 2018 were more than 10.3 billion € (WindEurope [1], 2018).
This includes investments in construction of projects, transmission assets, and refinancing. More than
91% of all offshore wind installations were located in shallow or intermediate water depths with a
mean water depth equal to 27.1 m. The capacities span from few to hundred megawatts and the
installations differ in terms of hub site, distance to shore, water depth and others (Snyder et al. [2],
2009). The reduction of installation and maintenance costs but also the reliable assessment of energy
production of offshore wind parks will signify the next phase of their deployment.

Wind energy leads to disturbances of the balance between generation and demand sides. A wind
speed prediction system is a potential solution to the aforementioned situation. Apart from the
balance, accurate predictions can lead to lower costs during the installation in the offshore field of wind
turbines and can strengthen their reliability during their operation (Soman et al. [3], 2010). A large
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number of papers exist in the literature aiming at developing robust forecasting systems of wind speed.
The literature can be divided to research that focuses on (a) wind speed predictions, (b) wind farm
power predictions, and (c) both wind speed and farm power predictions.

According to (Jung and Broadwater [4], 2014) the forecasting horizon can be classified into the
following categories; (a) very short-term: few minutes up to 30 min ahead; (b) short-term: 30 min up
to 6 h ahead; (c) medium-term: 6 h to 1 day ahead; and (d) long-term: 1 day up to 1 week (or more)
ahead. Short-term forecasts are exploitable in day-ahead power system operations such as scheduling
and commitment of power units.

The forecasting models are distinguished into physical and statistical. Physical models take into
consideration parameters like the topology of the ground (for on-site parks) and topology of the wind
park and temperature. They use the outputs of a Numerical Weather Prediction (NWP) model and
provide final forecasts. NWP models are used by meteorologists and usually they provide predictions
for the next 48 up to 172 h ahead. For the case of wind power predictions, the wind speed prediction
is obtained directly by the NWP and the wind power prediction is obtained by using the power
curve of a wind turbine. Physical models are appropriate for long-term predictions. However, it is
difficult to scale the forecasts per wind turbine or per wind farm. Also, physical models are complex in
terms of inputs requirements and execution time. On the other hand, statistical models are favored
in short-term prediction horizons. The wind is treated as a regression of its past values. A relatively
large number of historical values are needed to train the models and define their optimal composition.
Statistical models refer to time series models, Artificial Neural Networks, Bayesian Networks, Support
Vector Machines, and others. Time series models refer to autoregressive models, autoregressive models
with moving average, and others. The main advantages are their potential for removing the trend of
time series and their availability in software packages. However, there is a difficulty in extracting the
optimal structure of the model. Also, time series models require a large number of historical values
and are not definitely suitable for highly nonlinear series. Neural networks are suitable for nonlinear
series and are a favorable scheme in many forecasting problems. Support vector machines are also a
well-known forecasting engine but they demand large durations for their training and their parameters
are optimized by a relatively complex process. Bayesian networks are more appropriate for small data
sets. Finally, various statistical models can be integrated to form ensemble forecasting models [4–11].

In (Sfetsos [12], 2002), a comparison takes place between a persistent model, autoregressive
integrated moving average (ARIMA) and neural network. The latter outperforms the rest. No external
variables are considered. The comparison takes place in two different sets that refer to one month
each. In (Başaran and Filik [13], 2017) the authors consider three cases of inputs for the neural network,
i.e., using only past wind speed values, using past wind speed values and temperature and, finally,
using wind speed, temperature, and pressure. The test refers to five days and two intervals for
predictions are taken into account, namely 30 and 90 s ahead. The case with wind speed, temperature,
and pressure leads to the lower errors. No comparison with other models is presented. In (More
and Deo [14], 2003) the authors test a feed-forward neural network, a recurrent neural network, and
an ARIMA model to forecast daily, weekly, and monthly wind speeds at two coastal locations in
India using only past wind speed values. The feed-forward neural network wins the competition.
In (Li and Shi [15], 2010), the authors examine three types of neural networks, namely, the adaptive
linear element, backpropagation, and radial basis function. The wind data used are the hourly mean
wind speed collected at two observation sites in a United States of America (USA) location. The results
show that even for the same wind dataset, no single neural network model outperforms others
universally in terms of all evaluation metrics. Moreover, the selection of the type of neural networks for
best performance is also depends upon the data sources. In (Zeng and Qiao [16], 2011) a support vector
machine model is presented for wind power forecasting. Instead of predicting wind power directly,
the model first predicts the wind speed, which is then used to predict the wind power by using the
power–wind speed characteristics of the wind turbine generators. Simulation studies are carried out to
validate the proposed model for very short-term and short-term predictions by using the data obtained
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from the National Renewable Energy Laboratory of USA. The model is compared with feed-forward
neural network and radial basis network. The prediction is held using only past wind speed values.
In (Zhou et al. [17], 2011), the authors present a least-squares support vector machine for one-step
ahead wind speed forecasting. Three kernels, namely linear, Gaussian, and polynomial kernels,
are implemented. The support vector machine‘s parameters considered include the training sample
size, order, regularization parameter, and kernel parameters. The support vector machine‘s version are
compared with a persistence model and provide better forecasts. The Adaptive Neuro-Fuzzy Inference
System (ANFIS) is utilized in (Fazelpour et al. [18], 2016), and is compared with a feed-forward neural
network and radial basis network in hour-ahead forecasting in a location in Tehran, Iran. No exogenous
parameters are used. ANFIS results in better forecasts. In (Fortuna et al. [19], 2016), the clustering
tool is used to form wind speed classes. Then, two models, namely the Hidden Markov Model and
the Nonlinear Autoregressive are compared for predicting the class of each new wind speed data
entry. In general, wind speed series present volatilities and stochasticity. Depending on the data set,
an analysis on the wind speed characteristics can take place. For instance, in (Fortuna et al. [20], 2014),
the authors provide a fractal analysis on wind speed observations. Exploitable information can be
derived for such analysis for further modeling.

1.2. Contribution of the Present Paper

A variety of forecasting techniques have been proposed so far from different research groups.
In the present paper a relatively simple yet efficient model for short-term wind speed forecasting based
on real measured wind speed data is developed, applied, and proposed. The used data set involves
inconsistencies of the time sequence of the wind speed series due to missing data. Various experiments
take place that refer to different input combinations. Also, the Discrete Wavelet Transform (DWT) is
utilized in order to decompose the initial series into a set of wavelet components for strengthening
the forecasting credibility [21,22]. The model is composed by an ANFIS and a Feed-Forward Neural
Network (FFNN) [23,24]. In the majority of the studies of the literature, the prediction is accomplished
using only past values. In order to fully examine the level of influence of external variables such
as temperature and speed directions on the prediction accuracy, in the present paper various input
combinations of wind speed, wind direction, and air temperature are examined. Overall, the purpose
of the paper is to test the performance of a proposed hybrid computational intelligence model in the
wind speed forecasting problem under the limitation of using incomplete data for the training and
validation of the model.

2. Short-Term Wind Speed Forecasting Hybrid Model

2.1. Description

In this section, an efficient forecasting model is developed and proposed. The model consists of
an FFNN trained by the Levenberg–Marquardt algorithm and an ANFIS [25]. Neural network-based
forecasting systems are a favorable scheme in recent years in predictions over traditional time series
models. Numerous applications in load and price forecasting studies have brought forth the advantages
of neural networks. Recently, neural networks have been used in wind power predictions. For full
mathematical description of the FFNN the reader is referred to (Graupe [24], 2007). A general
illustration of an FFNN is shown in Figure 1.
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Figure 1. A Feed-Forward Neural Network (FFNN) with 4 inputs, 4 outputs, and 2 hidden layers.

Another common forecasting system is ANFIS [23]. ANFIS is based on a fuzzy rule-based
inference mechanism. It is composed of five layers and each layer contains several nodes. The nodes
are described by a node function. Let Oj

i be the output of the i-th node in layer j. In the 1st layer,
every node I is an adaptive node with node function:

O1
i = μAi(x), i = 1, 2 (1)

or
O1

i = μBi−2(y), i = 3, 4 (2)

where x or y is the input of the ith node and Ai or Bi−2 is a linguistic label associated with the node.
Hence, Oj

i is the membership grade of a fuzzy set A1, A2, B1 or B2 and it specifies the degree to which
the input x or y satisfies the quantifier A or B. Any continuous and piecewise differential function can
be used as node function in the 1st layer. In the 2nd layer, each node Π multiplies the inputs and sends
the product in output:

O2
i = wi = μAi(x)μBi(y), i = 1, 2 (3)

In the 3rd layer, each node N computes the ratio

O3
i = wi =

wi
w1 + w2

, i = 1, 2 (4)

In the 4th layer, each node computes the contribution of the ith rule to the overall output:

O4
i = wizi = wi(aix + biy + c), i = 1, 2 (5)

where wi is the output of the 3rd layer and ai, bi, c are a set of parameters.
Finally, in the 5th layer, the node Σ computes the final output as the summation of all inputs:

O5
i =

∑
i

wizi =

∑
i

wizi∑
i

wi
(6)

ANFIS topology is displayed in Figure 2.
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Figure 2. A general illustration of Adaptive Neuro-Fuzzy Inference System (ANFIS).

The proposed forecasting model combines the independent forecasts of FFNN and ANFIS.
A schematic representation of the hybrid model is shown in Figure 3. The models are trained separately.
The training set is used to define the optimal model parameters. For instance, for the case of the FFNN
the parameters that need to be defined are the number of hidden layers, the number of neurons in the
hidden layer, and the type of activation function in the hidden and output layers. While for the case
of ANFIS the required parameters that need to be defined are the type of inference mechanism, the
training epochs, the number of fuzzy rules, the type of membership function, and the values of ai, bi, c.
Real monitored environmental data measured with a monitoring system are used in the present paper
for developing the forecasting model. The monitoring system is placed in the coastal area of Neos
Marmaras, Greece. Details about the monitoring system (e.g., sensors used and verification) can be
found in (Michailides et al. [26], 2013). The training and test sets cover the periods 01/04/2013–10/08/2013
and 01/09/2013–24/12/2013, respectively. The test set is used for the comparison of the models. No filling
of incomplete or missing data took place. Also, no other preprocessing of the data took place. The aim
is to build a model applied to raw data obtained from a real measurement system.

Figure 3. Structure of the proposed forecasting model.

The proposed model is applied to two different predictions test examples, i.e., 1 min-ahead and
10 min ahead. Five cases with different types of inputs are examined, namely Case#1, Case#2, Case#3,
Case#4, and Case#5. The inputs considered in each case are described in the following.
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- Case#1: wind speed
- Case#2: wind speed and wind direction
- Case#3: wind speed and temperature
- Case#4: wind speed, wind direction and temperature
- Case#5: wavelet components of wind speed.

The topology of the proposed model using the wavelet components is shown in Figure 4.

Figure 4. Structure of the proposed forecasting model using the wavelet components.

Therefore, we examined ten different cases referring to the two prediction horizons.

2.2. Performance Assessment

The performance assessment includes a set of mathematical criteria that measure the prediction
errors. To fully examine the proposed model performance, we used a set of different mathematical
criteria. Let pa

m and pf
m be the actual and predicted wind speed values of the m-th day of the test set,

m = 1, 2, . . . , M, respectively. The indicator considered for the assessment are the Absolute Error (AE),
the Mean Absolute Error (MAE), the Root Mean Squared Error (RMSE), and the Mean Absolute Range
Normalized Error (MARNE) as defined in Equation (10). The AE is defined as

AE =
M∑

m=1

∣∣∣pa
m − pf

m

∣∣∣ (7)

The MAE corresponds to the sum of all AEs:

MAE =
1
M

M∑
m=1

∣∣∣pa
m − pf

m

∣∣∣ (8)
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The RMSE is expressed as

RMSE =
1
M

√√√ M∑
m=1

(
pa

m − pf
m

)2
(9)

The MARNE is the absolute difference between the actual and forecast wind speed, normalized to
the maximum wind speed:

MARNE =
1
M

M∑
m=1

∣∣∣pa
m − pf

m

∣∣∣
max(pa

m)
× 100 (10)

As benchmarks for the proposed model test, the individual applications of FFNN and ANFIS
are used.

3. Simulation Results

3.1. Wind Speed Forecasting

Computational intelligence-based systems are a favourable scheme in recent years in various
variable predictions, such as electric load, over traditional time series models. However, a careful
selection of inputs and a proper training phase are essential for the model’s successful implementation
and utilization. The selection of the types of inputs is crucial to the forecasting success. In the
present study, various input combinations are examined. The objective is to test computational
intelligence-based models for the case of incomplete data. Three models are compared that refer
to an FFNN, an ANFIS, and a proposed FFNN-ANFIS. After the decision of the types of inputs,
i.e., Case#1–Case#5, the next test is to define the number of inputs. This number refers to the historical
values of the used parameters: wind speed, temperature and wind direction. With the application of
the Sample Autocorrelation Function (SAF), the historical values are evaluated based on the correlation
of the present value. Figure 5 displays the SAF that resembles the minute-ahead wind speed set.
Only the first 20 values are displayed. It is shown that the correlation is decreasing progressively
when the lagged value becomes more time distant. The same conclusions are drawn from the 10 min
ahead set. The first five values are selected as inputs for the models. Also, the corresponding values of
temperature and wind direction are proportionally selected.

Figure 5. Sample autocorrelation function values of the wind speed data set.

Employing the minute-ahead set and the data set of Case#1, a series of experiments were conducted
for the purpose of defining the optimal FFNN and ANFIS structures. The optimal FFNN structure
has one hidden layer. The tangent sigmoid function is used both for the hidden and output layers.
The number of training epochs is set equal to 100. The optimal number of neurons in the hidden
layer is defined also by series of simulations. It differs among the various cases. Thus, a series of
FFNN executions took place to track the number of hidden layers that minimize the RMSE indicator.
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Concerning the optimal ANFIS topology, the Sugeno inference method is selected together with
Gaussian membership functions.

The scores of the forecasting models on the assessment indicators are presented at Tables 1 and 2.
Table 1 refers to the 1-min-ahead horizon and Table 2 to the 10-min-ahead horizon. The rows of the
Tables correspond to the different cases. According to the results of Table 1, the proposed model
outperforms the FFNN and ANFIS in all test cases, highlighting the significance of using combined
forecasts. The prediction accuracy improvement that is obtained with the proposed model is more
evident in the data sets of Case#3, Case#4, and Case#5. FFNN leads to better results compared
to ANFIS in Case#2, Case#3, and Case#5 when using the MAE indicator. Also, the FFNN leads
to better results in Case#1 according to the RMSE and MARNE measures. However, it scores in
MARNE = 4.2353% in Case#2, a value that is higher than the respective of ANFIS. While in most
experiments the FFNN appears more robust, it can be suggested over the ANFIS in the minute-ahead
wind speed prediction problem.

Table 1. Comparison of the forecasting models considering the minute-ahead horizon.

MAE RMSE MARNE (%)

FFNN ANFIS FFNN-ANFIS FFNN ANFIS FFNN-ANFIS FFNN ANFIS FFNN-ANFIS

Case#1 0.3683 0.3675 0.3673 0.5576 0.5578 0.5563 2.3365 2.3311 2.3298
Case#2 0.3676 0.3682 0.3664 0.7510 0.5592 0.5551 2.5952 2.3356 2.3242
Case#3 0.4123 0.4443 0.3887 0.7237 0.9163 0.6435 2.6153 2.8185 2.4658
Case#4 0.4406 0.4210 0.4091 0.9206 0.8044 0.7511 2.7947 2.6703 2.5952
Case#5 0.1021 0.1324 0.0812 0.1528 0.2052 0.1301 0.6477 0.8403 0.5601

Table 2. Comparison of the forecasting models considering the 10-min-ahead horizon.

MAE RMSE MARNE (%)

FFNN ANFIS FFNN-ANFIS FFNN ANFIS FFNN-ANFIS FFNN ANFIS FFNN-ANFIS

Case#1 0.4316 0.4296 0.4287 0.6258 0.6265 0.6240 4.2280 4.2088 4.2008
Case#2 0.4323 0.4295 0.4292 0.6253 0.6263 0.6239 4.2353 4.2077 4.2054
Case#3 0.4706 0.4985 0.4605 0.7569 0.9373 0.6851 4.6104 4.8841 4.5115
Case#4 0.4654 0.4936 0.4528 0.7155 0.8719 0.6689 4.5594 4.8363 4.4367
Case#5 0.1227 0.1572 0.1101 0.1693 0.2226 0.1556 1.077 1.5409 0.9967

Among the types of data inputs, Case#5 leads to considerably lower errors indicating the benefit
of transforming the volatile wind data into the wavelet domain. This is evident in all measures and
especially in MARNE. Considering the MAE indicator, Case#2 leads to better predictions if the latter
is held with FFNN or the hybrid model. On the contrary, the data of Case#1, i.e., using only wind
speed values is more suitable for ANFIS. Using wind speed, temperature, and wind direction as
inputs, the prediction is less credible. This implies again for FFNN and the proposed model. ANFIS
scores MAE = 0.4443 with the data of Case#3. The aforementioned conclusions are identical when
the evaluation is held with the RMSE or MARNE. Therefore, by combining wind speed and direction
data the forecasting procedure is strengthened. The use of temperature is not recommended for the
test set under study. According to the above analysis, the combination of the FFNN and ANFIS that
is fed with the wind speed data transformed in the wavelet domain is the recommended model for
minute-ahead forecasts under the limitation of many incomplete data entries.

According to the findings presented in Table 2, it is evident that the 10-min-ahead wind speed
prediction problem is a more difficult task. A possible reason for this is the decrease that is accomplished
between current and past values of the minute time frame measurements. This means that the 10-min
data are less correlated since the minute correlation lowers due to the averaging of the one-minute
data for the purpose of transforming them in the 10-min intervals. The proposed FFNN-ANFIS model
is more accurate than the rest in all types of data sets. Again the 10-min-ahead problem benefits from
the implementation of the wavelet transform. The data of Case#5 provide more robust predictions
independently of the model used.
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A further comparison of the models is held via the AE distribution over time. The MAE indicator
receives one value for a specific prediction, for example for a given number of neurons in the hidden
layer. It is essential to examine the error distribution over the focusing period. Using the AE
indicator, the analysis can be scaled to minutes. This concept strengthens the conclusions drawn
from the models comparison. Figure 6 presents the AE distribution per Case. The figure refers to the
1-min-ahead prediction horizon while the forecasting is achieved with the proposed FFNN-ANFIS
model. The discrete peaks correspond to large error values, which can be considered as indicators
of the model’s poor performance for the specific minute. The data of Case#1–Case#4 lead to some
high peaks of the AE shape. These are mainly met in December days. The lowest errors are mostly
gathered in September days. As the time horizon progresses, the peaks become more frequent. Hence,
extreme weather conditions worse the credibility of the predictions. Some late autumn and winter
wind speeds are difficult to effectively be predicted in the coastal site under study. The mean values
of AE are 0.3673, 0.3664, 0.4123, 0.4210, and 0.1021 for Case#1, Case#2, Case#3, Case#4, and Case#5,
respectively. Some parallel conclusions with the above results can be made for the 10-min-ahead
horizon. The corresponding results are graphically presented in Figure 7. In the 10-min-ahead problem,
the implementation of the wavelet transform is more advantageous compared to the minute-ahead
case. Case#5 increases the accuracy by a large portion. The mean values of AE are 0.4288, 0.4293,
0.4706, 0.4654, and 0.1227 for Case#1, Case#2, Case#3, Case#4, and Case#5, respectively.

 

 

 

Figure 6. Absolute error of the proposed model corresponding at (a) Case#1, (b) Case#2, (c) Case#3,
(d) Case#4, and (e) Case#5 of the 1-min-ahead prediction horizon.
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Figure 7. Absolute Error per time frame of the proposed model corresponding at (a) Case#1, (b) Case#2,
(c) Case#3, (d) Case#4, (e) Case#5 of the 10-min-ahead prediction horizon.

In order to examine the relationship between the accuracy and the direction of the wind,
we measured the AE per direction degree. Figure 8 shows the comparison among Case#2 and
Case#5 for the 1-min-ahead forecasts. Case#2 refers to the combination of wind speed and direction.
The predictions refer to the proposed model. Case#5 involves only to the transformed wind speed
data. It is plotted here for the sake of comparison. The lowest AE of Case#2 is 5.97 × 10−6 and
occurred for 312.48◦. The next lowest AE degrees are 200.73◦, 104.56◦, 151.90◦, and 281.14◦. The
larger values of AE are presented for 162.47◦, 42.17◦, 55.08◦, and 222.70◦. According to these findings,
a preliminary conclusion is that there is no strong correlation between the direction and the forecasting
error. For example, it can be strongly supported that normal to the monitoring system winds (e.g., 90◦)
are less predictable compared to other directions. This statement is also supported from the data of
Case#5. The lowest errors refer to 134.67◦, 122.06◦, 73.07◦, 317.51◦, and 46.48◦ directions, while, the
highest ones are occurred for 27.01◦, 35.56◦, 41.31◦, 57.65◦, and 31.57◦. In this data set, the less accurate
prediction is presented for wind direction degrees below 60◦.
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Figure 8. Absolute error per wind direction of the proposed model corresponding at (a) Case#2 and
(b) Case#5 of the 1-min-ahead prediction horizon.

As illustrative examples of the proposed model’s behavior, Figures 9 and 10 present the actual
and forecasted wind speed curve of the test set for 1-min- and 10-min-ahead horizons, respectively.
The forecasted wind speed sequences of the two figures succeed by a large portion to accurately
simulate the actual data, which is another one indicator of the robustness of the model.

 
Figure 9. Cont.
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Figure 9. Forecasted and actual series of the test set referring to the 1-min-ahead prediction horizon
for all the examined time period (a), between 0 and 10,000 s (b), between 20,000 and 30,000 s (c),
and between 40,000 and 50,000 s (d).

 

 
Figure 10. Forecasted and actual series of the test set referring to the 10 min ahead prediction horizon
for all the examined time period (a), between 0 and 1000 s (b), between 2000 and 3000 s (c), and between
4000 and 5000 s (d).

3.2. Comparison with Other Forecasting Models

To fully evaluate the proposed model, a comparison is made with the following models; Group
Method of Data Handling Neural Network (GMDHNN) [27], Regression Neural Network (GRNN) [28],
Regression Trees (RTs) [29], Relevance Vector Machine (RVM) [30], and Support Vector Regression
(SVR) [31]. Tables 3 and 4 present the scores of GMDHNN, GRNN and RTs, RVM and SVR, respectively,
on the error metrics, for the 1-min-ahead predictions. Correspondingly, Tables 5 and 6 present the
scores of GMDHNN, GRNN and RTs, RVM and SVR, respectively, on the error metrics MAE, RMSE,
and MARNE for 10-min-ahead predictions. Among these models, SVR and GMDHNN display
comparative results with the hybrid model. The latter outperforms all the other models. It can
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be noticed that GRNN and RTs result in high errors and thus, for the problem under study are
not recommended.

Table 3. Evaluation of Group Method of Data Handling (GMDH), Regression Neural Network (GRNN),
and Regression Trees (RTs) considering the 1-min-ahead horizon.

MAE RMSE MARNE (%)

GMDHNN GRNN RTs GMDHNN GRNN RTs GMDHNN GRNN RTs

Case#1 0.3688 0.3846 0.4432 0.5689 0.5721 0.6331 2.3411 2.3869 3.1256
Case#2 0.3701 0.3910 0.4509 0.7051 0.7644 0.8109 2.4578 2.4771 3.2672
Case#3 0.3698 0.4256 0.4781 0.7189 0.7367 0.7992 2.5871 2.6225 3.4155
Case#4 0.3944 0.4201 0.4541 0.8902 0.9012 1.1091 2.7112 2.9904 3.6203
Case#5 0.1094 0.1388 0.1692 0.1481 0.1556 0.2012 0.6289 0.6552 0.7154

Table 4. Evaluation of Relevance Vector Machine (RVM) and Support Vector Regression (SVR)
considering the 1-min-ahead horizon.

MAE RMSE MARNE (%)

RVM SVR RVM SVR RVM SVR

Case#1 0.3721 0.3704 0.5614 0.5377 2.3482 2.3345
Case#2 0.3933 0.3865 0.7597 0.7029 2.4754 2.3419
Case#3 0.3885 0.3893 0.7408 0.6911 2.6172 2.5678
Case#4 0.3821 0.3783 0.8928 0.8709 2.9232 2.6213
Case#5 0.1277 0.1178 0.1542 0.1421 0.6524 0.5772

Table 5. Evaluation of GMDH, GRNN, and RTs considering the 10-min-ahead horizon.

MAE RMSE MARNE (%)

GMDHNN GRNN RTs GMDHNN GRNN RTs GMDHNN GRNN RTs

Case#1 0.4292 0.4525 0.5898 0.6258 0.6553 0.8093 4.2051 4.4326 5.7812
Case#2 0.4302 0.5597 0.5901 0.6272 0.6715 0.8095 4.2149 4.5031 5.7812
Case#3 0.4704 0.6927 0.6157 0.6862 0.7342 0.8461 4.6334 4.7862 6.0319
Case#4 0.4601 0.6056 0.6108 0.6715 0.6989 0.8012 4.5130 4.6902 5.7568
Case#5 0.1238 0.1624 0.1799 0.1601 0.1833 0.2109 1.2671 1.4884 1.6117

Table 6. Evaluation of RVM and SVR considering the 10-min-ahead horizon.

MAE RMSE MARNE (%)

RVM SVR RVM SVR RVM SVR

Case#1 0.4342 0.4298 0.6359 0.6268 4.2541 4.2206
Case#2 0.4351 0.4307 0.6440 0.6268 4.2630 4.2198
Case#3 0.5370 0.4681 0.8649 0.7529 5.2605 4.5365
Case#4 0.4988 0.4644 0.7898 0.7459 5.1133 4.5301
Case#5 0.1424 0.1308 0.2037 0.1654 1.5893 1.1276

4. Discussion and Concluding Remarks

Offshore wind turbine installations are continually gathering the research interest since they
are considered an efficient mechanism for covering the electrical needs of various isolated loads.
The present study emphasizes on the development of an effective method for very short-term wind
speed forecasting under the limitation of wind speed series that do not present consistency in time,
i.e., there are interruptions in the date sequence. Real measured data are used for the training of the
developed method. An ensemble data-driven short-term wind speed forecasting model is developed,
tested, and applied. The term “ensemble” refers to the combination of two different predictors that run
in parallel and the prediction is obtained by the predictor that leads to the lowest error. The proposed
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model utilizes the wavelet transform and is compared with other models that have been presented in
the related literature. The main conclusions of the present study:

• The proposed forecasting model can be used effectively for 1 min and 10 min ahead horizon wind
speed predictions.

• The exogenous variables (i.e., wind speed direction and air temperature) decrease the prediction
accuracy. The best results are obtained using the DWT.

• The highest errors are met on winter days and especially in instances with high wind speed.
• There is no correlation among the forecasting error and the wind direction.
• The hybrid model (combination of FFNN and ANFIS) leads to better forecasts in all examined

data set cases.
• The proposed model outperforms the accuracy of other forecasting models that have been

presented in the related literature.

The research of the present paper will be further expanding by checking the implementation
of the forecasting problem in the Wind Farm Layout Optimization (WLFO) problem incorporating
wake effects with the use of specific mathematical or numerical models. Forecasted wind speed time
series can serve as inputs to the problem. By estimating future wind speed values, the WLFO can be
modified to a scenario-based problem where different wind speed forecasts can lead to various WLFO
solutions and thus, assessing the level of influence of the future wind speed variations in the outputs
of the optimization problem.
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Abstract: Multivariable time series prediction has been widely studied in power energy, aerology,
meteorology, finance, transportation, etc. Traditional modeling methods have complex patterns
and are inefficient to capture long-term multivariate dependencies of data for desired forecasting
accuracy. To address such concerns, various deep learning models based on Recurrent Neural
Network (RNN) and Convolutional Neural Network (CNN) methods are proposed. To improve
the prediction accuracy and minimize the multivariate time series data dependence for aperiodic
data, in this article, Beijing PM2.5 and ISO-NE Dataset are analyzed by a novel Multivariate
Temporal Convolution Network (M-TCN) model. In this model, multi-variable time series prediction
is constructed as a sequence-to-sequence scenario for non-periodic datasets. The multichannel
residual blocks in parallel with asymmetric structure based on deep convolution neural network is
proposed. The results are compared with rich competitive algorithms of long short term memory
(LSTM), convolutional LSTM (ConvLSTM), Temporal Convolution Network (TCN) and Multivariate
Attention LSTM-FCN (MALSTM-FCN), which indicate significant improvement of prediction
accuracy, robust and generalization of our model.

Keywords: deep learning; multivariate time series forecasting; multivariate temporal convolutional
network

1. Introduction

With the explosive growth of Internet of Things (IoT) applications and big data, multivariate
time series is becoming ubiquitous in many fields, e.g., aerology [1], meteorology [2], environment [3],
multimedia [4], power energy [5], finance [6], and transportation [7]. The precise trend forecasting,
as well as for potential hazardous events, based on historical dynamical data are a major challenge,
especially for aperiodic multivariate time series. One of the crucial reasons is aperiodic and nonlinearity
among variables, which is incapable by models to capture and have self-adaption of the complex
data features. Traditional methods such as Autoregressive (AR) [8] models and Gaussian Process
(GP) [9] may fail. As an important part of the field of artificial intelligence, deep neural networks
(DNNs) provide state-of-the-art accuracy on many tasks [10] and has been developed intensively
in natural language processing (NLP), computer vision (CV), time series classifications and time
series forecasting.

Enlightened by algorithms used in NLP (i.e., Sequence to Sequence [11,12] and Attention
mechanism) and CV (i.e., Dilated convolution network [13] and residual structure [14]), in this paper,
the M-TCN model is proposed for aperiodic multivariate time-series prediction, which constructs

Electronics 2019, 8, 876; doi:10.3390/electronics8080876 www.mdpi.com/journal/electronics24
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the aperiodic data as sequence-to-sequence and a novel multichannel and asymmetric residual
blocks network. The model is cross validated by a rich set of existing competitive models with
an aperiodic time series dataset. The reminder of the article is organized as follows: Section 2 reviews
the background work. Section 3 presents the methodology of the proposed model. In Section 4,
the experiment is analyzed and discussed. Finally, conclusions and outlook are drawn in Section 5.

2. Background

One of the major challenges of multivariate time series forecasting is nonlinearity and aperiodic
of data originated by short-term and long-term dynamical behavior. Various models have been
established based on classical statistic methods or machine learning algorithms.

The prominent classical univariate time series model is Autoregressive (AR) with classical statistic
algorithms, as well as its progeny. The AR method is well used to stationary time series. The improved
models, such as autoregressive integrated moving average (ARIMA) [15], autoregressive moving
average (ARMA) [16], and vector auto-regression (VAR) [17], were developed by including flexible
exponential smoothing techniques. However, for long-term temporal patterns, these models are
inevitably prone to overfitting and high computational cost, especially for high-dimensional inputs.

Alternative methods by treating the time series forecasting problems as general regression
with time-varying parameters were applied by machine learning models, e.g., linear support vector
regression (SVR) [18], random forest [19], ridge regression [20] and LASSO [21] models. Those models
are practically more efficient due to high quality off-the-shelf solutions in machine learning community.
Still, machine learning based models may be incapable of including complex nonlinearity dependences
of multivariate large datasets.

Meanwhile, the well-built deep neural networks of Convolutional Neural Networks (CNNs)
and Recurrent Neural Networks (RNNs) have been widely applied in time series forecasting, which
are attributed to the open source deep learning frameworks, such as Keras (Keras, available online:
https://keras.io), TensorFlow (TensorFlow, available online: https://tensorflow.org) and PyTorch
(PyTorch, available online: https://pytorch.org), including flexible and sophisticated mathematical
libraries. Some representative models are long short-term memory (LSTM) [22] and its inheritors,
convolutional LSTM (ConvLSTM) [23] and Multivariate Attention LSTM-FCN (MALSTM-FCN) [24],
which overcome the challenges involved in training a recurrent neural network for a mixture of long
and short-term horizons. However, these models are time consuming and non-robust for aperiodic
data forecasting.

Another novel method for time-series forecasting is a hybrid multiscale approach, such as
empirical mode decomposition (EMD) [25], ensemble EMD (EEMD) [26], multi-level wavelet
decomposition network (mWDN) [27] and variational mode decomposition (VMD) [28]. These methods
are used to decompose data into different frequencies’ components to facilitate forecasting. However,
the pre-design decomposition K value is an essential prerequisite as an input of training models, which
is not versatile for complicated multivariate time series prediction.

Recently, a general architecture for a predictive sequences model by convolutional and recurrent
architecture on sequence modeling tasks, the Temporal Convolution Network (TCN) [29], is proposed.
The prominent characteristics of TCNs are casualness in convolution architecture design and sequence
length. In addition, it is also convenient to build a very deep and wide network by a combination of
residual network and extended convolution. Under this background, our model is designed based on
TCN and tested for PM2.5 and electric power forecasting.

For comparison, Table 1 contrasts the advantages and challenges of some common methods for
multivariate time series prediction.
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3. Methodology

In this section, the time series forecasting problem is formulated first. In addition, then the
baseline models, ConvLSTM and Multivariate LSTM FCN are presented to be used as the methods in
our comparative evaluation. Finally, M-TCN model is introduced.

3.1. Sequence Problem Statement

From the nature of machine learning, to minimize the expected error, it requires obtaining an
ideal nonlinear mapping from a historical dataset to a current state, especially for hazard events
forecasting. The prerequisite is to employ enough characteristic parameters to feature the various
phenomena, which makes the current state strictly dependent on the historical dataset. The problem
of multivariable time series prediction is defined as the problem of sequence to sequence in this
paper. Before defining the network structure, more formally, given an input sequence time series
signal X = (x1, x2, · · · , xT) with xt ∈ Rn, where n is the variable dimension, we aim at predicting
corresponding outputs Y = (y1, y2, · · · , yh) at each time. The target of sequence modeling network is
to obtain a nonlinear mapping to the prediction sequence from the current state as:

(y1, y2, · · · , yh) = f (x1, x2, · · · , xT) . (1)

3.2. Baseline Test

To build a baseline test benchmark, the traditional models, naive forecast, average approach
forecast and seasonal persistent forecast models are included for a cross evaluation.

Naive forecast model: It takes the value from the last hour prior to the forecast period (e.g., 24 h)
and uses it as the value of a dataset for each hour in the forecast period (e.g., 1 to 24 h). Using the naive
approach, forecasts are produced that are equal to the last observed value. This model is defined as:

ŷT+1 = yT , (2)

where yT is the past data, and ŷT+1 is the next time value.
Average approach forecast model: In this model, the predictions of all future values are equal

to the mean of the past data. This method can be used for any type of data available in the past and
defined as:

ŷT+1 = y = (y1 + . . . + yT) /T, (3)

where (y1, y2, · · · , yT) is the past data, and ŷT+1 is the next time predicted value.
Seasonal persistent forecast model: It defines the same time period a year ago as the predicted

value. This method accounts for seasonality by setting each prediction to be equal to the last observed
value of the same season. This model is defined as:

ŷT+1 = yT−Y, (4)

where yT−Y is the past data, and ŷT+1 is the next time predicted value.

3.3. ConvLSTM Encoder–Decoder Model

A convolutional LSTM (ConvLSTM) encoder–decoder network is built in this work, which
reconstructs the input sequence and predicts the future sequence simultaneously. The ConvLSTM
input layer is designed to be a 4D tensor [timestep, row, column, channel], where timestep is the number
of subsequences, row is the one-dimensional shape of each subsequence, column is the hours in each
subsequence and channel is the features that we are working with as input. The encoding ConvLSTM
compresses the whole input sequence into a hidden state tensor and the decoding LSTM unfolds this
hidden state to give the final prediction. An overview of the ConvLSTM is shown in Figure 1.
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Figure 1. An overview of the ConvLSTM Encoder–Decoder network (ConvLSTM).

Multivariate ALSTM Fully Convolutional Networks models are comprised of temporal
convolutional blocks and an LSTM block, as depicted in Figure 2. The feature extractor consists of
three stacked temporal convolutional blocks. In addition, the first two convolutional blocks conclude
with a squeeze and excite block.

Figure 2. Modified multivariate attention LSTM-FCN (MALSTM-FCN) network structure for time
series forecasting.

We consider this model structure as a parallel structure of CNN (temporal convolutional blocks)
and RNN (LSTM block). In order to study the regression problem, the final softmax layer used for
classification is changed to a fully connected layer with 24 nodes.

3.4. M-TCN Model

The main characteristic of CNN is a local feature by convolving filters. For time series forecasting,
the local correlation is reflected in the continuous change over a period of time within a small time slot.
In addition, RNN models, such as LSTM, have always been considered as the best standard method
to solve sequence problems; however, RNNs cannot be parallel, resulting in huge time-consumption
compared to that of CNN. From those considerations, the overall framework of the model is designed
based on CNN. Our aim is to distill the best practices in designing convolutional networks to be flexible
and stable frameworks with a simple architecture and high efficiency for multivariate time series
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forecasting. The distinguishing characteristics of M-TCN are: (1) the input and output lengths of our
network could be determined to be flexible for various scenarios; (2) M-TCN uses the 1D convolution
instead of causal convolutions; (3) M-TCN augmented with two different asymmetric residual blocks;
(4) M-TCN constructs a sub-model for each feature of input data, and the prediction is accomplished by
a combination of all sub-models. We call this typical structure a multihead model. In this work, what
we emphasize is the methodology on how to build effective networks (i.e., Multihead model) using
a combination of network (augmented with two different residual blocks) and dilated convolutions.
The following are details of the network structure.

3.4.1. 1D Convolutions

TCN uses causal convolutions, where an output at time t is convolved only with elements from
time t and earlier in the previous layer. In Figure 3, causal convolution is used to assume that all
data must have a one-to-one causal relationship in chronological order. Given an input sequence
time series signal X = (x1, x2, x3, x4, x5) with xt ∈ Rn where n is the variable dimension, xt does not
strict causality in chronological order. While x1 and x5 may have a direct logical connection, causal
convolution will make the relationship between x1 and x5 affected by x2, x3, x4. This design was
limited by the absolute order of time-series and inefficient for accurate characteristics learning at a
relative time. Thus, in our model, only a 1D convolutional network is adopted to avoid this situation.

Figure 3. Visualization of a stack of causal convolutional layers.

3.4.2. Dilated Convolutions

The dilated convolutions algorithm [13] is used in our model. Since the traditional convolution
operation process is to convolute the sequence once and then pool, which reduces the size of the
sequence and enlarges the receptive field at the same time. One of the main faults is that some
sequential information will be lost during the pooling process, while the advantage of dilated
convolutions is that they don’t need the pooling process and gradually increase the field of perception
through a series of dilated convolutions, thus leading to the output of each convolution encompasses
rich information for long-term tracking. Thus, the dilated convolutions could be well applied in the
problem of long information dependence of sequence, such as voice and signal processing, environment
forecasting, etc. Dilated convolution is defined as

F(s) = (x ∗d f ) (s) =
k−1

∑
i=0

f (i) · xs−d·i, (5)

where d is the dilation factor, k is the filter size, and s − d · i accounts for the direction of the past.
A filter f : {0, . . . , k − 1} → N. Figure 4 depicts dilated 1D convolutions for dilations 1, 2 and 4.
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Figure 4. Visualization of 1D convolutions with different dilation factors.

3.4.3. Residual Block

A novel structure is designed by a multilayer and sequential residual network and parallel residual
blocks. The core of ResNet [14] is to create a shortcut for information dissemination in front and
back layers. A basic Residual block is used in the TCN network; however, the jump connection in
ResNet, resulting in only a small number of residual blocks’ learning useful information, and thus
the basic residual block structure is not adapted for time series prediction. An alternative way is to
increase the convolution kernel size for a better prediction; however, the computational load increases
sharply. In [31], an asymmetric block structures were introduced both for MobileNetV3-Large and
MobileNetV3-Small. By this way, asymmetric factors will be generated in the whole network structure
and may make a positive impact on the in-depth learning models. The optimal asymmetric structure
needs Neural Architecture Search(NAS) [32,33]; however, it is computationally expensive. In a more
direct way, two asymmetric residual blocks in parallel are constructed. The architectural elements in
our model are shown in Figure 5.

Figure 5. Residual Block in our network. (left) details of the Unit architecture. (middle) Residual
Block 1; (right) Residual Block 2.

The Unit for our model is shown in Figure 5 (left). The Unit has two channels. Each channel
has dilated convolution and nonlinearity, for which we used the rectified linear unit (ReLU) [34].
The residual block 1 is shown in Figure 5 (middle). Within a residual block, the model has three units.
The output is the sum of the results of two channel operations. The residual block 2 is shown in
Figure 5 (right), which has the same basic structure as residual block 1, but one more unit layer is
implemented. To be more precise, a dilated convolution with different dilation factors and filter size
k = 3 are constructed both for residual blocks. In addition, an optional 1 × 1 convolution is introduced
to adjust the dimensions of different feature maps (see Figure 5 (middle, right)) for summation.

The Unit takes the same input with two different convolutions, and then adds up the results.
The convolutional layer consists of multiple kernels with different sizes. The k-th filter sweeps through
the input data X, which can be formulated as:

ReLU(x) = max(0, x), (6)
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h1k = ReLU (W k ∗ X + bk) , (7)

h2k = ReLU (W k ∗ X + bk) , (8)

hk = h1k + h2k, (9)

where h1k is the result of channel 1, h2k is the result of channel 2, and hk is result of unit. * stands for a
convolutional operation.

A residual block contains a channel, which passes through a series of conversion functions F ,
and the final output is added to the input X of the block:

o = (x +F (x)). (10)

3.4.4. Fully Connected Layers

Fully connected layers can be replaced by global average pooling (GAP) for better efficiency and
accuracy in image recognition tasks. However, fully connected layers are essential in prediction tasks
and can easily change the length of the output sequence. Formally, a statistic z ∈ RC is generated by
shrinking X through its spatial dimensions H × W, such that the output z is calculated by:

z = GAP (xc) =
1

H × W

H

∑
i=1

W

∑
j=1

xc(i, j). (11)

The whole spatial feature on a channel is averaged as a global feature. Each feature map is averaged
into one value, thus the local information of the whole feature value is lost, which has a negative
impact on the prediction problem.

The full connection layer is shown in Figure 6, which not only establishes the position relationship
between feature maps, but also retains the internal feature information of the same feature map.
This will have a beneficial impact on the prediction problem. The disadvantage is that the parameters
are greatly increased.

Figure 6. Relation between full connection layers and feature maps.

3.4.5. Multi-Head Model

The model is further extended so that each input variable has a separate sub-model, named after
a multi-headed model. This sub-model for each input variable has to be defined first. Each sub-model
learns the information with different features in the sequence separately. In addition, the outputs
of those models are then combined in series to form a very long vector, which is interpreted by
some fully connected layers before the prediction is made. An overview of multi-head temporal
convolutional network (M-TCN) architecture is shown in Figure 7. To provide more detail, an overview
of convolutions is shown in Figure 8.
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Figure 7. An overview of the M-TCN network.

Figure 8. An overview of convolutions.

3.5. Training Procedure

The training procedure can be described as Algorithm 1.
Meaning represented by each parameter. min−lr: minimum learning rate; initial−lr: initial

learning rate; factor: factor by which the learning rate will be reduced; wait: number of epochs with no
improvement after which learning rate will be reduced; new−lr: new learning rate; epoch: number of
epochs to train the model; best−score: minimum RMSE.
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Algorithm 1: Training procedure.

1: min−lr = 1e-4; epoch = 200; initial−lr = initial−lr
2: factor
3: for n < epoch do

4: wait += 1
5: if best−score > RMSE
6: best−score = RMSE
7: save model
8: if wait >= 10
9: if initial−lr > min−lr
10: min−lr = initial−lr × factor
11: new−lr = max(new−lr, min−lr)
12: wait = 0

4. Experiments

In this section, we first describe two datasets for empirical studies. All of the data are available
online. Then, the parameter settings of model and evaluation metrics are introduced in our studies.
Finally, the proposed M-TCN model against different baseline models is compared.

4.1. Datasets

Two benchmark datasets are used which are publicly available. Table 2 summarizes the
corpus statistics.

Beijing PM2.5 Dataset (available online: https://archive.ics.uci.edu/ml/datasets/Beijing+PM2.
5+Data): It contains hourly PM2.5 data and the associated meteorological data in Beijing, China.
The exogenous time series include dew point, temperature, and atmospheric pressure, combined
wind direction, cumulated wind speed, hours of snow, and hours of rain. In total, we have 43,824
multivariable sequences. For this dataset, the hourly PM2.5 data are used as a predictive value.

ISO-NE Dataset (available online: https://www.iso-ne.com/isoexpress/web/reports/load-and-
demand): The time range of the dataset is between March 2003 and December 2014. The ISO-NE
Dataset includes hourly demand, prices, weather data and system load. The dataset contains two
variables, which are hourly electricity demand in MW and dry-bulb temperature in ◦F. For this dataset,
the hourly electricity demand is used as a predictive value.

Table 2. Dataset statistics.

Datasets Length of Time Series Total Number of Variables Sample Rate

ISO-NE 103,776 2 1 h
Beijing PM2.5 43,824 8 1 h

In our experiments, ISO-NE datasets have been split into training set (from 1 March 2003 to
31 December 2012), valid set (the whole year of 2013) and test set (the whole year of 2014) in a
chronological order. In addition, the Beijing PM2.5 Dataset has been split into a training set (from
January 2, 2010 to December 31, 2012), valid set (the whole year of 2013) and test set (the whole year of
2014) in a chronological order.

4.2. Data Processing

According to the characteristics of each dataset, it is necessary to preprocess the data. Each of the
datasets is normalized with a mean of 0 and a standard deviation of 1.

For the Beijing PM2.5 Dataset, PM2.5 is NA in the first 24 h. We will, therefore, need to remove
the first row of data. There are also a few scattered “NA” values later in the dataset, and we use zero
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to fill in missing values. The wind speed feature is label encoded (integer encoded). We apply the new
dataset to every algorithm in later experiments.

4.3. Evaluation Criteria

Three evaluation metrics, root mean squared error (RMSE), root relative squared error (RRSE)
and empirical correlation coefficient (CORR) for multivariate forecasting, are used and defined as:

RMSE =

√√√√ 1
N

N

∑
i=1

(
yi

t − ŷi
t

)2
, (12)

RRSE =

√
∑(i,t)∈ΩTest

(Yit − Ŷit)2√
∑(i,t)∈ΩTest

(Yit − mean(Y))2
, (13)

CORR =
1
n

n

∑
i=1

∑t(Yit − mean(Yi))(Ŷit − mean(Ŷi))√
∑t(Yit − mean(Yi))2(Ŷit − mean(Ŷi))2

, (14)

where Y, Ŷ ∈ Rn×T are ground value and system prediction value, respectively, and Ω Test is the set
of time stamps used for testing. For RMSE and RRSE, the lower value is better, while, for CORR,
the higher value is better for evaluation.

4.4. Walk-Forward Validation

In the test set, the Walk-Forward Validation method is adopted, but the model is not updated.
In this case, a model is needed to predict a period of time, and then the actual data of the current
period is provided to the model, so that it can be used as the basis for the prediction of subsequent
periods. This is not only applicable to the way the model is used in practice, but also conducive to the
model using the best available data.

In the experiment, the output length is set to 24. For multi-step prediction problems, we evaluate
each prediction time step separately. Table 3 summarizes the actual value and predicted value. Models
can be trained and evaluated as follows.
Step 1: Starting at the beginning of the test set, the last set of observations in the training set is used as
input of the model to predict the next set of data (the first set of true values in the validation set).

Step 2: The model makes a prediction for the next time step.
Step 3: Get real observation and add to history for predicting the next time.
Step 4: The prediction is stored and evaluated against the real observation.
Step 5: Go to step 1.

Table 3. Dataset Statistics, where h is hour, d is day.

Input (Actual Value) Output (Predicted Value)

Current 24 h Next, 24 h
1d 1 h–1 d 24 h 2 d 1 h–2 d 24 h
2d 1 h–1 d 24 h 3 d 1 h–2 d 24 h
. . . . . .

4.5. Experimental Details

To be more specific, most models chose input length from {24, 72, 168}, and the batch size is set to
100. The mean squared error is the default loss function for forecasting tasks. Adam [35] is adopted as
optimization strategy, with an initial learning rate set to 0.001. In addition, the learning rate is reduced
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by a factor of every 10 epochs of no improvement in the validation score, until the final learning rate
was reached.

For the LSTM model, a single hidden layer with {50, 100, 200} units is defined. The number of
units in the hidden layer is unrelated to the number of time steps in the input sequences. Finally, an
output layer will directly predict a vector with 24 elements, one for each hour in the output sequence.
SGD [36] is adopted as an optimizer. The learning rate is set to 0.05 with a reduction rate by a factor
of 0.3.

In the ConvLSTM Encoder–Decoder model, input data have the shape of [timestep, row, column,
channel]. Timestep is chosen from {1, 3, 7}. Row is set to 1. Column is chosen from {24, 72, 168}. Channel
is chosen from {2, 8}. SGD is adopted as the optimization algorithm. The learning rate is set as the
same in LSTM. For this network, the 1-layer network contains one ConvLSTM layer with 64 hidden
states, the 2-layer network contains one ConvLSTM layer with 128 hidden states, and the 3-layer
network has 200 hidden states in the LSTM layers. All the input-to-state and state-to-state kernels are
of size 1 × 3.

For the MALSTM-FCN network, the optimal number of LSTM hidden states for each dataset was
found via grid search over {8, 50, 100, 200}. The FCN block is comprised of three blocks of 128-256-128
filters. The models are trained using a batch size of 128. The convolution kernels are initialized
following the work of [24].

For the TCN network, the optimal number of hidden units per layer for each dataset was found
via grid search over {30, 50, 100}. The convolution kernels are of size 1 × 3.

In our M-TCN model, Adam is adopted as an optimization strategy with an initial learning rate
set to 0.001(ISO-NE Dataset), while, for Beijing PM2.5, SGD is adopted as an optimization strategy
with an initial learning rate set to 0.05.

The implementations of M-TCN are built based on Keras library with the Tensorflow backend.
We run all the experiments on a computer with a single NVIDIA 1080 GPU (Santa Clara, CA , USA).

4.6. Experimental Results

Table 4 summarizes the results on multivariate testing sets in the metrics RMSE, RRSE and CORR
across all forecast hours. The output sequence length is set to 24, which means that the horizons were
set from the 1st hour to the 24th hour for forecasting over the Beijing PM2.5 and ISO-NE Electricity
data. In the time series forecasting, larger horizons shall make the prediction harder. Thus, our
experiments give a detailed analysis of the results in this large horizon. The best results for each data
and metric pair are highlighted in bold. To demonstrate the effectiveness of the models, the results are
compared with three baseline methods by the Naive, Average and Seasonal persistent model, as well
as four competitive algorithms of LSTM, ConvLSTM, TCN and MALSTM-FCN. For RMSE and RRSE,
the lower value is better, while the higher value is better for CORR. Overall performance of neural
network based models is better than traditional methods. The performance of M-TCN is comparable
with LSTM and MALSTM-FCN and outperforms both of them by about 10%∼20% for both datasets.
Furthermore, the ConvLSTM model has weak generalization ability, and its prediction ability varies
greatly on different datasets.

Figure 9 presents the results on RMSE for both datasets at a larger horizon from the 1st hour to
the 24th hour. It is obvious that M-TCN is better than others and RRSE maintains a steady increase
without obvious fluctuation in the long-term forecasting period.
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Table 4. Results summary (in RMSE, RSE and CORR) of all methods with two datasets.

Methods Metrics Beijing PM2.5 Dataset ISO-NE Dataset

Length = 24 Length = 24
Naive RMSE 80.55 2823.35

RRSE 0.8608 1.0526
CORR 0.6736 0.5330

Average RMSE 87.89 2363.07
RRSE 0.9393 0.8810
CORR 0.4972 0.4885

Seasonal Persistent RMSE 123.45 1654.38
RRSE 1.3193 0.6168
CORR 0.1722 0.8314

LSTM RMSE 68.07 783.90
RRSE 0.7275 0.2923
CORR 0.6877 0.9573

ConvLSTM RMSE 82.32 687.17
RRSE 0.8798 0.2562
CORR 0.4873 0.9670

TCN RMSE 112.35 720.12
RRSE 1.1453 0.2685
CORR 0.0075 0.9636

MALSTM-FCN RMSE 71.54 680.95
RRSE 0.7646 0.2539
CORR 0.6463 0.9677

M-TCN RMSE 65.35 648.48
RRSE 0.6984 0.2418
CORR 0.7163 0.9707

Figure 9. The RMSE for each lead time from hour 1 to hour 24 vs. different algorithms over Beijing
PM2.5 (left) and ISO-NE Dataset Dataset (right).

4.7. Spectrum Analysis

In order to further study the performance of the model, we analyzed the spectrum of the test set
and the prediction data. Spectrum refers to the representation of a time domain signal in frequency
domain, which can be used for discrete Fourier transform of sequence data. Discrete Fourier Transform
(DFT) of k points are computed as:

X(k) = DFT[X(n)] =
N−1

∑
n=0

X(n)Wnk (0 ≤ k ≤ N − 1), (15)

W = e−j( 2π
N ), (16)
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where X(k) is the time series.
More detailed calculations include:

X (k f1) = DFT [x (nTs)] =
N−1

∑
n=0

X (nTs) e−j( 2π
N )nk, (17)

f1 =
1
T1

, (18)

Ts =
T1

N
, (19)

where T1 is signal time, f1 is the frequency interval, N is the number of signal sampling, and Ts is the
signal sampling interval time.

The amplitude spectrum analysis of these datasets is performed, so as to check the existence of
repetitive patterns in the datasets. The hourly PM2.5 and ISO-NE data of test set and predictions are
plotted in the frequency domain as shown in Figures 10 and 11 separately, where Freq is the frequency
with a unit of 1/Hour and Am is the amplitude in dB. Sampling frequency is set to 8760 (the same as
test set time variable length). Sampling frequency is set to 8760 (the same as the time variable length
set by the test), which ensures that the frequency and time correspond to each other numerically. Both
figures show that frequency domain is irregular continuous waveform indicating a non-periodic of
PM2.5 and ISO-NE datasets. As can be clearly seen, PM2.5 data have no periodicity, which brings great
errors to accurate prediction. Since the ISO-NE data change regularly from 1 to 1000 h, the prediction
effect is the best.

Figure 10. Amplitude Spectrum of Beijing PM2.5 Dataset. Freq: the hourly data in frequency domain
(1/Hour); Am: the amplitude of data in both datasets.
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Figure 11. Amplitude Spectrum of ISO-NE Dataset. Freq: the hourly data in frequency domain (1/Hour);
Am: the amplitude of data in both datasets.

4.8. Ablation Tests

Furthermore, to demonstrate the efficiency of our model structure, a careful further study is
performed. Specifically, we add each component one at a time in our framework. M-TCN with
different components are defined as follows:

Model/w/BN: The model adds a Batch Normalization (BN) [37] component. In this test, Batch
Normalization was applied to the input of each nonlinearity, in a convolutional way, while keeping
the rest of the architecture constant. Figure 12 (left) describes this model in detail.

Model/r/GAP: In the model, the full connection layer is replaced by the global average pooling.
Figure 12 (right) describes this model in detail.

Figure 12. (left) Model/w/BN: detail architecture of the Unit. (right) Model/r/GAP: the full connection
layer is replaced by the global average pooling.
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The test results measured using RRSE are shown in Figure 13. Comparing the results, we see that,
in both datasets, BN cannot help the network achieve higher accuracy. Adding the BN components in
(Model/w/BN) caused big performance drops on both datasets. All of the components of the M-TCN
model together lead to the robust performance of our approach on the Beijing PM2.5 dataset.

Figure 13. (left) RRSE of models over the Beijing PM2.5 dataset. (right) RRSE of models over the
ISO-NE dataset.

4.9. Model Efficiency

s/epoch denotes the time required for each epoch (in seconds). Boldface indicates the best result.
In Table 5, M-TCN proves to be quite competitive.

Table 5. Model training efficiency.

Methods Beijing PM2.5 Dataset ISO-NE Dataset

s/epoch s/epoch
M-TCN 29 39
LSTM 95 270

ConvLSTM 33 99

5. Conclusions

The multivariate time series forecasting is investigated by introducing a novel M-TCN model, in
order to compare with traditional models and especially deep learning (generic recurrent architectures
such as LSTM; generic convolutional architecture such as TCN; hybrid architectures such as ConvLSTM
and MALSTM-FCN.). In M-TCN, the dilated network is employed as a meta-network and asymmetric
residual blocks are constructed. The proposed approach significantly improved the results in time
series forecasting on benchmark datasets of Beijing PM2.5 and ISO-NE. Our research focuses on the
trade-off between implementation complexity and prediction accuracy. With in-depth analysis and
empirical evidence, the results indicate a prominent efficiency of M-TCN.

For future research, we will focus on the extraction technology based on higher-order statistical
features instead of fully connected layers, which can reduce the parameters of the model and
training time.
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Abstract: In addition to being sensitive to humidity, humidity sensors with moisture sensitive
elements are also sensitive to ambient temperature. The fusion of temperature and humidity data is
an effective way to improve the accuracy of humidity sensors. In view of the problem of insufficient
adaptive ability and poor universality in the current compensation algorithm, a piecewise processing
of measured error at different temperatures by using multiple linear regression is proposed in
this paper. The least squares method and back propagation (BP) neural network improved by a
genetic simulated annealing algorithm (GSA-BP) were used to compensate the measured humidity
data of different temperature ranges. The efficiency of the GSA-BP algorithm was tested, and the
compensation function model was established. The compensation accuracy was also compared
with the accuracies obtained by other methods. The experimental results show that the adaptive
segmentation compensation method can significantly improve the measured error of the humidity
sensor over a wide temperature range.

Keywords: humidity sensor; data fusion; nonlinear optimization; multiple linear regression; GSA-BP

1. Introduction

Automatic weather stations monitor changes in the climate environment in real time.
The meteorological sensors are susceptible to ambient influences and their measurement errors
exist objectively [1]. Usually, the humidity sensor used in automatic weather stations is a voltage
output type polymer film humidity sensitive capacitance sensor, which senses the humidity through
the humidity sensitive capacitor and then converts it into a voltage amount by the conversion
circuit [2]. The humidity sensitive capacitor is mainly composed of an upper electrode, a humidity
sensitive material, a lower electrode and a glass substrate. The humidity sensitive material is a
high-molecular-weight polymer with a dielectric constant that changes with the relative humidity
of the external environment. In addition to being sensitive to ambient humidity, humidity sensitive
materials are also sensitive to temperature. The temperature coefficient is not a constant but a variable.
Nonlinear compensation for measured data of the sensor is often required [3,4].

The humidity sensor manufacturer and meteorological calibrator will compensate for the influence
of temperature on the measurement results, but the compensation effect is not ideal under low
temperature (−20 ◦C) or high temperature (+50 ◦C) conditions, and the compensation algorithm
is not universal over a wide temperature range. It is important to study an efficient and adaptive
compensation method for improving the calibration efficiency.

In recent years, many scholars have compensated sensors using both hardware and software
and have achieved some notable results. References 5 and 6 proposed using a conditioning chip and
concentric wheatstone bridge circuit to compensate [5,6], but this hardware compensation circuit is
subject to electronic components’ temperature drift and process technology constraints, which results

Electronics 2019, 8, 425; doi:10.3390/electronics8040425 www.mdpi.com/journal/electronics42



Electronics 2019, 8, 425

in high cost and poor compensation. Software compensation has become a research hotspot because
of its low cost, strong applicability and high compensation accuracy. In 2014, reference 7 proposed
a combination of hardware and software. The circuit was first designed and compensated by the
extreme learning machine (ELM) [7]. The hardware compensation circuit itself would be affected by
the ambient temperature, the ELM algorithm easily produced the over fitting problem, and the optimal
effect could not be obtained. Reference 8 proposed using principal component analysis (PCA) to
improve the back propagation (BP) neural network for nonlinear compensation [8]. PCA was the most
widely used method of reducing the dimension and error correction. In practical applications, when
gross corruptions existed, PCA could not grasp the real subspace structure of the data well, and the
algorithm had no universality. In 2015, reference 9 used a particle swarm optimization (PSO) algorithm
to optimize the nonlinear compensation method of the BP neural network. PSO had no crossover
and mutation operations [9], and the search speed was fast, but it lacked dynamic speed adjustment
and would easily fall into a local extremum. The ability to adapt to ambient temperature was not
strong. In 2016, reference 10 proposed using the least squares support vector machine (LS-SVM)
to compensate [10]. Compared with the artificial neural network, the LS-SVM could overcome the
shortage of long training time and was faster than SVM in solving equations. The solution satisfied the
extreme condition, but it could not guarantee that it was a global optimal solution, and there was still
the problem of easily falling into a local extremum. All of these compensation methods simply applied
an algorithm to the sensor compensation and did not account for the influence of temperature, making
the compensation method less adaptive, and making it difficult to guarantee the superiority of the
compensation algorithm over a wide temperature range.

In recent years, we have conducted considerable research on the nonlinear compensation
of humidity sensors. From 2012 to 2017, we proposed an improved BP neural network
nonlinear compensation method, which used a genetic algorithm (GA) to optimize the weight
and threshold [11,12]. The method avoided the BP neural network plunging into a local extremum,
but the compensation speed was slow when the amount of humidity data was large. Furthermore,
combined with the influence of temperature on the humidity sensor, a method of segmentation
compensation was proposed, and the compensation speed was fast [13], but the segmentation node
was artificially selected. The intelligence and adaptive ability were not high. On the basis of our
previous research, and inspired by the idea of a multi-information approach, this paper proposes an
adaptive nonlinear compensation method for humidity sensors. According to the influence regularity
of temperature on humidity sensors, the sensor was compensated by adaptive segmentation, and the
effects of various compensation methods were compared and studied.

2. Principle of Compensation

Through a large number of experimental tests, the measured error of the humidity sensor has
been shown to be linear near room temperature and nonlinear at high and low temperatures. Some
sensors are also nonlinear near room temperature. In the experiment, the humidity sensor was put
into the temperature and humidity test chamber, which can adjust the temperature and humidity
simultaneously. The standard humidity value was calculated from the measured values of the
precise dew point instrument, temperature sensor and pressure gauge. The temperature at which
the water vapor in the air becomes dewdrops is called the dew point temperature. The dew point
temperature is a means of expressing air humidity. The standard humidity value can be calculated
by the experimentally measured dew point value, temperature value and pressure value. In this
experiment, the data acquisition range of the data collector was 0.1 uV–100 V, the sensitivity was
100 nV, and the error was ±0.002%. The temperature was measured by a second-class standard PT100
temperature sensor with an allowable error value of ±0.15 ◦C. During the experiment, all equipment
and instruments were verified with high measurement accuracy and could obtain accurate, scientific
and reasonable data. The measured value of the humidity sensor was read by the high precision data
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acquisition unit. The temperature and humidity test chamber was adjusted, and the points near the
preset value were observed and recorded. The experimental principle is shown in Figure 1.

Figure 1. Error experiment of humidity sensor at different temperatures.

The humidity-sensitive capacitive sensor was placed in the temperature and humidity regulating
chamber. The humidity was set to 10% RH, and the temperature was changed. After the temperature
was stabilized, the measured value of the humidity sensor was read. The humidity was set to 30% RH,
50% RH, 70% RH and 90% RH, and the above steps were repeated. The measuring error curve of the
humidity sensor at different temperatures was obtained as shown in Figure 2.

Figure 2. Measured error curve of the humidity sensor at different temperatures.

From the error curve of Figure 2, it can be seen that the error of the humidity sensor obviously
increases in low and high temperature regions and has nonlinear characteristics. The original
measurement value of the sensor was compensated according to different ambient temperatures, such
that the compensated value was close to the standard value. Setting the ambient temperature T, the
relationship between the original measured value of the humidity sensor HI and the compensated
humidity value HC is Equation (1).

HC = f (HI, T) (1)

HC and T are both single-valued functions of HI, then the inverse function HI = f−1(HC, T)
exists. So the introduced influence parameter T and the measured value HI were used as data to be
compensated, and the regression analysis was performed by the binary linear regression function. The
regression effect and the value of the segmentation point T1, T2 were determined based on the value
of the coefficient of determination R2. The least squares method and GSA-BP neural network were
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used to compensate the different temperature intervals. The function of segmentation compensation is
similar to Equation (2).

HC = f (HI, T) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f1(HI, T), T ∈ [T0, T1]

f2(HI, T), T ∈ [T1, T2]

f3(HI, T), T ∈ [T2, T3]

(2)

Among these values, T0 ≤ T1 ≤ T2 ≤ T3, f2(HI, T) is the compensation function of the temperature
range with good linear regression effect. A simple and efficient least squares method was used for line
fitting. f1(HI, T) and f3(HI, T) are compensated functions at low temperature and high temperature,
respectively, and the GSA-BP neural network was used. The influence of temperature T was effectively
reduced, and the measured data were approximated to the stand value of humidity. The overall idea
of optimal compensation is shown in Figure 3.

Figure 3. Compensation principle of humidity sensor.

3. Adaptive Segmentation Based on Multiple Linear Regression

For the humidity measurement errors at different temperatures, the key to improve the accuracy
of compensation is to judge whether the segmentation compensation is necessary and find the best
segmentation point. The linear regression method mainly determines how to obtain the best fitting
line through the sample. The process is a mathematical optimization method, and it searches for the
best function of data by minimizing the square of error [14]. In the regression analysis, two or more
independent variables were included, and these independent variables can be approximated by a
straight line. As seen from Figure 2, in the temperature experiment of the humidity sensor, there is a
certain linear relationship between the measured error of humidity sensor and the temperature value
in some intervals. The multivariate linear regression method can be used to analyze and compensate
errors in linear intervals [15]. The regression model between the expected ideal humidity value, the
measured value and the temperature was established. The coefficient of determination was calculated
and whether it needed segmentation compensation according to its value was determined.

A multiple linear regression model for temperature compensation was established, such as
Equation (3).

HOi = β0 + β1HIi + β2Ti (3)

where HOi is the expected humidity value of the regression, HIi is the measured value of the humidity
sensor, Ti is the value of the ambient temperature, i represents the i-th group data, i = 1, 2, 3, · · · , n,
there are n sets of data, and β0, β1, β2 are the regression coefficients. The actual regression model can
be expressed as Equation (4).

ĤOi = β̂0 + β̂1HIi + β̂2Ti (4)

where β̂0, β̂1 and β̂2 are the estimated values of β0, β1 and β2, respectively. ĤOi is the estimated value of
HOi, and the residual of them is εi. It can be known from the least squares method that β̂0, β̂1 and β̂2

should minimize the sum of squares of the residuals εi.

Q =
∑
εi

2 =
∑(

HOi − ĤOi
)2

=
∑(

HOi − β̂0 − β̂1HIi − β̂2Ti
)2

(5)
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According to the extremum principle of multivariate function, when Q gets the minimum value,
the partial derivatives of Q to β̂0, β̂1 and β̂2 are all equal to zero. Then there is Equation (6).⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂Q
∂β̂0

= 2
∑(

HOi − β̂0 − β̂1HIi − β̂2Ti
)
(−1) = 0

∂Q
∂β̂1

= 2
∑(

HOi − β̂0 − β̂1HIi − β̂2Ti
)
(−HIi) = 0

∂Q
∂β̂2

= 2
∑(

HOi − β̂0 − β̂1HIi − β̂2Ti
)
(−Ti) = 0

(6)

Then Equation (7) is derived.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

nβ̂0 + β̂1
∑

HIi + β̂2
∑

Ti =
∑

HOi

β̂0
∑

HIi + β̂1
∑

HIi
2 + β̂2

∑
TiHIi =

∑
HIiHOi

β̂0
∑

Ti+β̂1
∑

TiHIi + β̂2
∑

Ti
2 =

∑
TiHOi

(7)

Its matrix form is ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
n

∑
HIi

∑
Ti∑

HIi
∑

HIi
2 ∑

TiHIi∑
Ti

∑
TiHIi

∑
Ti

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
β̂0

β̂1

β̂2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

∑
HOi∑

HIiHOi∑
TiHOi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

In Equation (8), two of the matrices can be written as

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
n

∑
HIi

∑
Ti∑

HIi
∑

HIi
2 ∑

TiHIi∑
Ti

∑
TiHIi

∑
Ti

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
HI1 HI2 · · · HIn

T1 T2 · · · Tn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 HI1 T1

1 HI2 T2
...

...
...

1 HIn Tn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑

HOi∑
HIiHOi∑
TiHOi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 · · · 1
HI1 HI2 · · · HIn

T1 T2 · · · Tn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

HO1

HO2
...

HOn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (10)

Assume ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
1 HI1 T1

1 HI2 T2
...

...
...

1 HIn Tn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = X (11)

Then, Equations (9) and (10) can be rewritten as⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
n

∑
HIi

∑
Ti∑

HIi
∑

HIi
2 ∑

TiHIi∑
Ti

∑
TiHIi

∑
Ti

2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = X′X (12)

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
∑

HOi∑
HIiHOi∑
TiHOi

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = X′HO (13)
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Substitute Equation (12) and Equation (13) into Equation (8)

X′X

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
β̂0

β̂1

β̂2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = X′HO (14)

Thus, the regression coefficients are obtained by Equation (15)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
β̂0

β̂1

β̂2

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ = (X′X)−1X′HO (15)

By taking the regression coefficients into the multiple linear regression model, a compensation
function can be obtained. To verify the rationality of the model, the coefficient of determination R2

is used to estimate the fit of the model to the measured data. In multiple regression analysis, the
coefficient of determination is the square of the path coefficient, that is

R2 =
SSR
SST

=

∑
i
(ĤOi −HOi)

2

∑
i
(HOi −HOi)

2 (16)

In Equation (16), HOi is the average expected humidity value of HOi. The total dispersion
square sum SST reflects the discrete state of all expected humidity values HOi. The regression square
sum SSR reflects the difference after regression. The sum of squared residuals is SSE =

∑
i
εi

2, so

SST = SSR + SSE. Then, Equation (16) can be rewritten to Equation (17)

R2 =
SSR

SSR + SSE
= 1− SSE

SST
= 1−

∑
i
ε2

i∑
i
(HOi −HOi)

2 (17)

The coefficient of determination R2 represents the interpretation degree of the estimated value
ĤOi to the ideal value HOi. The larger the R2, the closer the regression curve is to the ideal humidity
value [16].

Therefore, the regression coefficients β̂0, β̂1, β̂2 and coefficient of determination R2 are calculated
by using the actual measured humidity value HI, temperature value Ti and the expected ideal humidity
value HOi.The coefficient of determination R2 is used to judge whether to segment and to determine
the segmentation point. The specific implementation steps are as follows.

1. The error curve of humidity sensor is linear at room temperature. So the initial temperature
value Tx is determined to be about 25 ◦C. The measured error of humidity sensor at the ambient
temperature 25 ◦C is −6%–−1% when the humidity is 10%–90% RH.

2. Read the previous temperature value Tx−1 and the next temperature value Tx+1 and their
respective humidity values.

3. Each time a set of temperature and corresponding humidity data are read, a regression is
performed to obtain a coefficient of determination R2.

4. If R2 ≥ 0.911, return to step 2, if R2 < 0.911, get the segmentation points T1 and T2.
5. When the temperature interval of the linear interval is greater than 5 ◦C, that is, T1 − T2 > 5, the

segmentation compensation will be performed according to Figure 3. If T1 − T2 ≤ 5, the whole
process will be compensated by GSA-BP. An adaptive segmentation flowchart based on multiple
linear regression is shown in Figure 4.
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Figure 4. Flow chart of searching segmentation point.

The multiple linear regression method is used to analyze the humidity measurement errors at
different temperatures. For the intervals with better linearity, the multiple regression model established
by Equation (4) is used to compensate the errors.

4. Nonlinear Compensation Model

The nonlinear interval adopts the BP neural network with strong nonlinear mapping ability to
compensate. The input of the BP neural network is temperature T and the measured value HI, and the
output is the compensated humidity value HC. The humidity sensor temperature compensation model
was established, and the BP neural network was trained by multiple sets of data. To improve the local
minimum of the BP neural network, a genetic simulated annealing algorithm was used.

The genetic simulated annealing algorithm is an optimization algorithm that combines a genetic
algorithm and a simulated annealing algorithm. The local search ability of the genetic algorithm is
limited, but the ability to grasp the overall search process is strong. The simulated annealing algorithm
has strong local search ability and can prevent the search process from falling into the local optimal
solution. However, little is known regarding the state of the entire search space. It is inconvenient to
make the search process enter the optimal search area, which makes the simulated annealing algorithm
less efficient. However, if the genetic algorithm is combined with the simulated annealing algorithm, a
global search algorithm with excellent performance can be developed [17,18].

The BP neural network based on the genetic simulated annealing algorithm (GSA-BP) is mainly
divided into the determination of BP network structure and the selection of weight and threshold. The
specific compensation steps are the following:

1. Determine the topology structure of the BP neural network. The BP neural network is set to
a three-layer network structure. The original measured value of temperature T and humidity
sensor HI are the network inputs, and the number of input nodes n1 is 2. The number of hidden
layer nodes n2 is set to 7 according to the compensation effect. The output of the network is the
humidity value HC after compensation, and the number of output nodes n3 is 1. The number of
optimized parameters of the genetic simulated annealing algorithm is determined as follows:
(n1 + 1)n2 + (n2 + 1)n3 = 29.

2. Initialize the genetic simulated annealing algorithm. The population size with weights and
thresholds M is 60; the maximum number of iterations MAXGEN is 2000; the crossover probability
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Pc is 0.6; the mutation probability Pm is 0.1; the initial temperature T0 is 100; the end temperature
Te is 0.99; the temperature cooling coefficient ∂ is 0.99.

3. Initialize the weights and thresholds of the BP neural network and calculate fitness. The initial
population of the genetic simulated annealing algorithm is generated by combining the initial
weights and thresholds of the BP neural network initialization with the original measured values
HI and temperature T. Each individual in the genetic simulated annealing algorithm represents
all the weights and threshold of a network, and the algorithm then calculates the fitness of
each individual through a fitness function. The fitness function of this paper adopts the fitness
stretching method, and the fitness of the i-th individual after improvement is calculated by
Equation (18).

f it(i) =
e fi/T

M∑
i=1

e fi/T
(18)

Among these values, fi is the i-th individual fitness before improvement, fi = 1
HOi−HCi

. T0 and
T are the initial temperature and the current temperature in the simulated annealing algorithm
respectively, T = T0(0.99gen−1). gen is the current genetic evolution algebra, and M is the
population size. HOi and HCi are the standard humidity values expected and the humidity values
actually obtained by the network of the i-th individual.

4. The genetic simulated annealing algorithm finds individuals with optimal fitness based on a
series of operations such as selection, crossover, mutation and annealing. Compare the current
fitness and historical best fitness of each individual in the population. If the current value is
better, the current value is the best value of the history, and save the individual as the best value
of history, otherwise the best value will not change.

5. The genetic simulated annealing algorithm obtains the optimal individual as the initial weight
and threshold of the BP neural network. The optimized BP neural network is used to train the
humidity data at different temperatures.

Figure 5 shows the process of the compensation method of the humidity sensor. After inputting
the original measured values of the humidity sensors and ambient temperature, the GSA optimizes the
weights and thresholds of the BP neural network. Finally, the compensated humidity value is obtained.
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Figure 5. Flow chart of compensation algorithm based on genetic simulated annealing (GSA-BP).

5. Experimental Results and Analysis

5.1. Performance Analysis of Optimized Compensation Algorithm GSA-BP

The variables of the segmentation compensation function are the actual measured value of the
humidity sensor and the ambient temperature value. GSA is a random search algorithm. The number
of iterations is uncertain. The representative training process was compared with the BP neural
network, which is not optimized.

It can be seen from Figure 6 that when the GSA-BP neural network evolves to 70 generations, its
adaptation value reaches a minimum, the optimal weight and threshold of the BP neural network are
found, and the number of termination iterations is 77. In Figure 7, the number of iterations of the BP
neural network is 229. It can be seen that under the same conditions, the number of iterations of the BP
neural network optimized by GSA is small, and the training speed is fast, which indicates that the BP
neural network optimizes the operation efficiency significantly.

 
Figure 6. Training iterations of GSA-BP neural network.
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Figure 7. Training iterations of back propagation (BP) neural network.

Figure 8 is the humidity compensation effect curve of the GSA-BP neural network. It can be seen
from the figure that the errors between the predicted output and the expected output are very small,
and the BP neural network optimized by GSA has a good compensation effect.

Figure 8. Compensation curve of GSA-BP neural network.

5.2. Segmentation Optimization Compensation Model

Through the above theoretical analysis and verification of experimental data, the influence of
temperature on the humidity sensor can be seen. One hundred and fifty sets of data obtained by
repeating experiments on the same humidity sensor were used as training samples, and 15 sets of data
were used as network test samples. The process of establishing a humidity compensation model is as
follows:

1. Read the measured data set and interpolate it. The temperature points set in the experiment
have some discreteness. So the continuous function is added on the basis of the discrete data and
that the continuous curve passes all the given discrete data points. The interpolated data will be
compensated for later.

2. Read two groups of temperature and corresponding humidity in sequence from the temperature
of 25 ◦C, use the binary linear regression function to regress the data after interpolation, and
determine the regression effect according to the value of the criterion R2. When R2 ≤ 0.911, the
regression is stopped. The value of R2 is 0.8468 when the experimental data stops returning. The
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temperature value at this time is the temperature segmentation points T1, T2, which are 22.36 and
29.98, respectively.

3. Determine whether the interval of the temperature segmentation point is greater than 5. The
experimental data satisfy this condition; therefore, segmentation compensation is made. The
least squares method is used for linear fitting of the temperature range [22.36, 29.98] . Taking the
straight line fitting effect of 30% RH as an example, the fitted straight line is: ε = −0.2695T+ 4.4723,
where ε is the compensation value, and T is the temperature value. When the value of measured
humidity is 30% RH, input the value of temperature and obtain the corresponding humidity
compensation value, then add the measured value to obtain the compensated value.

4. Use GSA to optimize the weight and threshold of the BP neural network, train the neural network,
and compensate the data in the nonlinear interval.

5. The compensation function model is shown in Figure 9. The compensation effect diagram is
shown in Figure 10. It can be seen from Figure 10 that the compensated humidity value has a
good linear relationship with the standard humidity such that the measured value is closer to the
true value.

Figure 9. Compensation function model.
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Figure 10. Compensation effect.

The original measurement data of the same humidity sensor were compensated by using reference
11, reference 13 and the method proposed in this paper. Reference 11 used a genetic algorithm (GA)
improved BP neural network without segmentation compensation, where GA is a population-based
optimization algorithm [19]. Reference 13 used a least squares and BP neural network to compensate.
In this paper, the BP neural network improved by adaptive selection and combined with genetic
simulated annealing was used for compensation. To avoid the randomness of the algorithm, the same
group of data was run many times, and the compensation effect was the same; therefore, the average
value of the same group of data after multiple runs was taken. The three methods compensate the data
as shown in Table 1, and the corresponding error curve is shown in Figure 11.

Table 1. Error after compensation of three methods.

Environment
Temperature (◦C)

Standard Value of Relative
Humidity (%RH)

Error of Different Methods of Compensation (%)

Reference 11 Reference 13 This Paper

−19.68 11.79 −0.34553 −0.3857 −0.2912
−14.98 11.56 −0.25367 −0.2678 −0.2198
−9.65 11.15 −0.24591 −0.1783 −0.1423
−4.78 9.26 0.0321 −0.0026 0.0035
3.45 9.61 0.0056 −0.0098 0.0102
20.01 23.55 −0.1785 0.0728 0.0128
24.58 25.05 −0.0148 −0.0118 0.0021
29.98 25.95 0.04726 0.0248 0.0219
38.89 27.8 0.0147 0.0975 0.0175
51.21 29.25 0.0947 0.0752 0.0642

It can be seen from Table 1 and Figure 11:

1. The overall trend of the compensation effects of the three methods is the same. The compensation
error used in reference 11 is large, and the error at the segmentation node significantly increased.
The compensation effect of the method in this paper is relatively stable. In particular, the curve
between 0 and 40 ◦C tends to be gentle and close to zero.

2. The adaptive segmentation compensation method combines the simplicity and efficiency of the
least squares method with the high precision of the GSA-BP neural network. The measurement
error of humidity significantly improved over the entire temperature range. In the vicinity of the
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segmentation point (22.36 ◦C, 29.98 ◦C) obtained by the adaptive calculation, the compensation
effect is particularly significant.

Figure 11. Error curve after compensation by three methods.

6. Conclusions

We use this method to compensate for humidity sensors of different temperature ranges and
different individual temperatures. According to the error curve under different ambient temperatures,
multiple linear regression analysis was used to determine the segmentation points, and different
algorithms were used to compensate. The results show that the method has strong universality and is
effective for different temperature ranges and individual measurements.

In addition, the introduction of independent component analysis method into the reconstruction
of measured error might further improve the compensation effect [20]. It should be added that the
initial temperature is 25 ◦C when determining the segmentation point in this method. This temperature
is employed because the humidity error of the sensor used in this experiment is relatively linear at
approximately 25 ◦C after multiple measurements. If other sensors are used, the initial values will be
determined according to the humidity curves of those different sensors. However, the initial values
will be not very strict, and the nearby values can be adaptively processed as initial values.

Author Contributions: Conceptualization, W.X. and X.F.; Methodology, W.X.; Software, X.F.; Validation, X.F. and
W.X.; Data Curation, H.X.; Writing-Original Draft Preparation, X.F. and W.X.; Writing-Review & Editing, W.X.;
Supervision, W.X.; Project Administration, H.X.; Funding Acquisition, W.X.

Funding: This work is supported by the National Key R&D Program of China (2018YFC1506102) and the National
Natural Science Foundation of China (Grant NO. 41605121 and NO. 61671248).

Conflicts of Interest: The authors declare no conflicts of interest.

References

1. Weiwei, L.V.; Xiaohua, L.V.; Zuoyang, T.; Xiaohua, X.; Yong, X. Fault Analysis and Maintenance of DZZ
Series of Automatic Weather Stations. Meteorol. Environ. Res. 2018, 9, 35–37.

2. Hai, M.; Wen, F.; Wang, C.; Li, X.J. Capacitive humidity sensing properties of CdS/ZnO sesame-seed-candy
structure grown on silicon nanoporous pillar array. J. Alloys Compd. 2017, 11, 94–98.

3. Lob, V.; Geisler, T.; Brischwein, M.; Uhl, R.; Wolf, B. Humidity sensor using a single molecular transistor.
J. Appl. Phys. 2015, 118, 135–171.

54



Electronics 2019, 8, 425

4. Wang, D.F.; Lou, X.; Bao, A.; Yang, X.; Zhao, J. A temperature compensation methodology for piezoelectric
based sensor devices. Appl. Phys. Lett. 2017, 111, 083502. [CrossRef]

5. Ruirong, D.; Hongwei, Z.; Nan, S.; Bo, D.; Dengyue, W. Compensation and calibration of the high temperature
and pressure downhole pressure sensor. Chin. J. Sci. Instrum. 2016, 43, 737–743.

6. Hsieh, C.; Hung, C.; Li, Y. Investigation of a Pressure Sensor with Temperature Compensation Using Two
Concentric Wheatstone-Bridge Circuits. Mod. Mech. Eng. 2013, 10, 104–113. [CrossRef]

7. Zhou, G.; Zhao, Y.; Guo, F. A Smart High Accuracy Silicon Piezoresistive Pressure Sensor Temperature
Compensation System. Sensors 2014, 4, 74–90. [CrossRef] [PubMed]

8. Li, T.; Liang, S.; Hong, Y.; Pan, L. Simulation of Temperature Compensation of Pressure Sensor Based on
PCA and Improved BP Neural Network. Adv. Mater. Res. 2014, 846–847, 513–516. [CrossRef]

9. Li, Y.; Li, Y.; Li, F.; Zhao, B. The Research of Temperature Compensation for Thermopile Sensor Based on
Improved PSO-BP Algorithm. Math. Probl. Eng. 2015, 3, 1–6. [CrossRef]

10. Zhu, L.; Xie, B.; Xing, Y.; Chen, D.; Wang, J. A Resonant Pressure Sensor Capable of Temperature Compensation
with Least Squares Support Vector Machine. Procedia Eng. 2016, 168, 1731–1734. [CrossRef]

11. Jiwei, P.; Wenhua, L.V.; Hongyan, X.; Xiangjuan, W. Temperature compensation for humidity sensor based
on improved GA-BP neural network. Chin. J. Sci. Instrum. 2013, 34, 153–160.

12. Guo, M.; Xing, H.; Zhang, D.; Zhang, L. Temperature Compensation for Humidity Sensor Based on the
AFSA-BP Neural Network. Instrum. Tech. Sens. 2017, 8, 6–10.

13. Xing, H.Y.; Peng, J.W.; Lv, W.H. A fusion algorithm for humidity sensor temperature compensation. Chin. J.
Sens. Actuators 2012, 25, 1711–1716.

14. Kutner, M.; Nachtsheim, C.; Neter, J. Applied Linear Regression Models; McGraw-Hill/Irwin Education:
New York, NY, USA, 2004.

15. Dos Soares, T.S.; Mendes, D.; Rodrigues, T.R. Artificial neural networks and multiple linear regression
model using principal components to estimate rainfall over South America. Nonlinear Process. Geophys.
2016, 23, 1317–1337.

16. Xu, W.; Li, F.; Liu, F. Optimality and Recursive Algorithm of General Least Squares Estimator of Seemingly
Unrelated Linear Regression Models. In Proceedings of the 2010 International Conference on Computational
Intelligence and Software Engineering, Wuhan, China, 10–12 December 2010.

17. Shidrokh, G.; Hassan, W.H.; Hossein, M.; Seyed, A.; Soleymani, A. MDP-Based Network Selection Scheme
by Genetic Algorithm and Simulated Annealing for Vertical-Handover in Heterogeneous Wireless Networks.
Wirel. Pers. Commun. 2017, 2, 399–436.

18. Örkcü, H.H. Subset selection in multiple linear regression models: A hybrid of genetic and simulated
annealing algorithms. Appl. Math. Comput. 2013, 5, 11018–11028.

19. Wang, K.; Luo, X.; Shen, H.; Zhang, H. GSA-BP neural network model for back analysis of surrounding rock
mechanical parameters and its application. Rock Soil Mech. 2016, 37, 631–638.

20. Chen, X.; Ma, D. Mode Separation for Multimodal Ultrasonic Lamb Waves Using Dispersion Compensation
and Independent Component Analysis of Forth-Order Cumulant. Appl. Sci. 2019, 9, 555. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

55



electronics

Article

An Image Compression Method for Video
Surveillance System in Underground Mines Based on
Residual Networks and Discrete Wavelet Transform

Fan Zhang 1,2,*, Zhichao Xu 1, Wei Chen 3,4, Zizhe Zhang 3, Hao Zhong 1, Jiaxing Luan 1 and

Chuang Li 1

1 School of Electrical and Information Engineering, China University of Mining and Technology (Beijing),
Beijing 100083, China; generalxzc@hotmail.com (Z.X.); anatole_hao@163.com (H.Z.);
sqt1800407113@student.cumtb.edu.cn (J.L.); zqt1800407138g@student.cumtb.edu.cn (C.L.)

2 Institute of Intelligent Mining and Robotics, China University of Mining and Technology (Beijing),
Beijing 100083, China

3 School of Computer Science and Technology and Mine Digitization Engineering Research Center of the
Ministry of Education, China University of Mining and Technology, Xuzhou 221116, China;
chenwdavior@163.com (W.C.); z32000@126.com (Z.Z.)

4 School of Earth and Space Sciences, Peking University, Beijing 100871, China
* Correspondence: zf@cumtb.edu.cn

Received: 28 November 2019; Accepted: 13 December 2019; Published: 17 December 2019

Abstract: Video surveillance systems play an important role in underground mines. Providing clear
surveillance images is the fundamental basis for safe mining and disaster alarming. It is of significance
to investigate image compression methods since the underground wireless channels only allow low
transmission bandwidth. In this paper, we propose a new image compression method based on
residual networks and discrete wavelet transform (DWT) to solve the image compression problem.
The residual networks are used to compose the codec network. Further, we propose a novel loss
function named discrete wavelet similarity (DW-SSIM) loss to train the network. Because the
information of edges in the image is exposed through DWT coefficients, the proposed network
can learn to preserve the edges better. Experiments show that the proposed method has an edge
over the methods being compared in regards to the peak signal-to-noise ratio (PSNR) and structural
similarity (SSIM), particularly at low compression ratios. Tests on noise-contaminated images also
demonstrate the noise robustness of the proposed method. Our main contribution is that the proposed
method is able to compress images at relatively low compression ratios while still preserving sharp
edges, which suits the harsh wireless communication environment in underground mines.

Keywords: underground mines; intelligent surveillance; residual networks; compressed sensing;
image compression; image restoration; discrete wavelet transform

1. Introduction

1.1. The Image Compression Demand from Underground Mines

Coal is one of the major resources in China. In the foreseeable future, China will still be the largest
consumer and the producer of coal [1]. Therefore, it is of great importance to research into technologies
that contribute to the advancement in intelligent mine monitoring and safe mining practices.

One of the key components of intelligent mine monitoring is the video surveillance system since
visual information plays a key role in how a human perceives the world. Because digital images
usually require large storage, it is natural to think of transmitting images with high bandwidth
channels, like cable networks. Although cable networks could potentially provide enough bandwidth,
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they are inflexible in that the cable networks are fixed and have to expand as the working surface
expands. In favor of mobility, wireless networks are usually chosen as the information channel in mines.
However, the bandwidth can be limited because of relatively limited narrow spaces, harsh environment
diffraction, attenuation, and multi-path effect in underground mines. The problem can be especially
serious when disasters such as explosion and collapse occur [2]. Therefore, it is necessary to investigate
image compression methods in order to save the transmission bandwidth.

1.2. From Conventional Image Compressing to Compressed Sensing

There have been vast investigations into the field of image compression. Among the researches,
JPEG (Joint Photographic Experts Group) [3] has been quite popular and influential. JPEG mainly
employs discrete cosine transform (DCT) and entropy coding techniques to compress the images.
While the JPEG compression method has gained widespread popularity, it does introduce visible
artifacts including blurring, ringing and blocking [4]. JPEG2000 [5] is proposed forward to address
the problems in JPEG. JPEG2000 adopts 2D wavelet transform and arithmetic coding to achieve higher
compression efficiency.

Besides utilizing transforms and entropy coding techniques, a theory framework known as
compressed sensing (CS) [6–8] was proposed to overcome the limitation that a signal must be sampled
at the Nyquist sampling rate [9]. The CS theory has shed light on the problem of compression and
reconstruction. Optimization techniques such as total variation (TV) minimization [10] and approximate
message passing (AMP) [11] can be used in the recovery phase in the CS framework. TV minimization
for image denoising was first introduced in [12]. TV minimization takes the advantage that it can
better accurately preserve the edges or boundaries at certain compression ratios. In [13], the method
“total variation minimization by augmented Lagrangian and alternating direction algorithms” (TVAL3)
is proposed and has been used widely in image recovery problems. Comparisons in [14] suggest that the
TVAL3 solver turns out to be fast and efficient so long as the reconstruction parameters are sufficient
for a satisfying reconstruction. Meanwhile, based on the AMP [11] recovery algorithm, the D-AMP [15]
algorithm is proposed to enhance CS recovery. In the scheme of D-AMP, the existing rich knowledge
of signal denoiser is utilized to design the solver. Tests in [15] show that the D-AMP maintains a low
computational footprint. Compressed sensing- based techniques have been explored in real-life scenarios
like mine monitoring image compression [16] and landslide monitoring system [17]. The non-learning
compressed sensing methods do achieve some success, but they struggle to produce sound recoveries at
low compression ratios.

1.3. Data-driven Approaches

Due to the advancement of information technology, more data is within the reach of researchers.
The data-driven approaches have found their way into various fields including signal processing [18],
control systems [19–22] and especially vision tasks [23–27]. In particular, the deep learning-based
method has stood out among the data-driven approaches. This section explores the recent development
of deep learning-based image compression methods.

1.3.1. Convolution Neural Network based Image Compression

In more recent years, convolution neural networks (CNNs) has gained great attention due to the
improvement of computing devices. As for image compression utilizing CNN, it generally involves
designing image codecs with neural networks and constructing appropriate loss functions.

One genre of compression method combines the ideas of compressed sensing into CNN.
For instance, the network DeepInverse proposed in [28] uses fully connected layers to simulate the
compression process and stacks convolution layers for decompression. Back-propagation is applied to
train the networks. This idea is extended further by ReconNet [29] which uses more convolution layers
to attack the decompression problem. In [30], a deep residual reconstruction network is proposed
to recover images more accurately. However, this series of methods are more likely to blur edges
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in the recovered image especially at low compression ratios, according to the results reported by
their authors.

Another genre of CNN based compression methods utilize the semantic information in images,
since preserving semantic information will render the recovered image more eye-pleasing. Ballé et al.
introduce an end-to-end optimized CNN image compression network in [31]. The method is based on
non-linear coding rather than linear coding used by JPEG. One important contribution of [31] is that
the authors propose an method which simulates the quantizer in the training procedure to deal with
the problem of zero derivatives due to quantization. Li et al. point out that in [4] it is inappropriate to
allocate the same number of codes for each spatial position in an image. They propose the importance
map to guide the spatially variant bit allocation. To further compress the data, they introduce
the convolutional entropy encoder to compress the binary codes and the importance map. In [32],
the authors combine the deep-learning-based image semantic analysis into image compression as well.
Unlike [4] which focuses more on the edge of objects, the method in [32] emphasizes the semantic
analysis of the whole region. Results in their experiments show the method can improve the visual
quality under the same compression overhead. However, it can be quite complicated to adjust the
compression ratios of this genre of methods. Moreover, these methods are rarely applied at very low
compression ratios.

1.3.2. Recurrent Neural Network Based Image Compression

Unlike the feed-forward CNN, the recurrent neural network (RNN) is state-aware. The output
of an RNN is not only related to current input, but also the previous input. Lyu et al. propose to
combine the knowledge of block-sparsity recovery into RNN deep learning in [33]. Their method
acquires the spatial correlations between nonzero elements of block-sparse signals. It is applied to not
only images but also audio data. However, the method proposed in [33] requires the input data to
be sparse, which limits its compression capability. In [34], Toderici et al. combine the scaled-additive
coding framework into RNN-based image compression scheme. The highlight in [34] is that the
architectures proposed can provide variable compression rates during deployment without retraining
the network. In [35], Minnen et al. propose a spatially adaptive image compression framework with
quality-sensitive bit rate adaptation. However, though their method outperforms JPEG, it is still
inferior to JPEG2000 [36].

1.3.3. Generative Adversarial Network Based Image Compression

Generative adversarial network (GAN) is another promising deep learning method developed
during recent years. In the GAN scheme, a generator network and a discriminator network are
optimized simultaneously. The discriminator network is trained to determine whether a sample is
generated by the generator network, while the generator network needs to fool the discriminator
into wrong decisions. In regards of image compression utilizing GAN, Ripple and Bourdev in [37]
propose an architecture of autoencoder featuring pyramidal analysis, an adaptive coding module,
and regularization of the expected code length. It produces images 2.5 times smaller than JPEG and
JPEG2000, while achieving realtime performance using GPU. Jia et al. in [38] propose a light filed
image compression framework driven by a GAN-based sub-aperture image generation and a cascaded
hierarchical coding structure. Their method outperforms the state-of-the-art learning-based light field
image compression approach with on average 4.9% BD-rate [39] reductions. In [40], Agustsson et al.
propose a GAN-based framework targeting extremely low bitrate compression. Their method pushes
the bitrate below 0.1 bpp while still achieves eye-pleasing results.

1.4. The Objectives and the Organization of the Paper

Considering the demand of image compression at very low compression ratios in underground
mines, in this paper, we propose an image codec network based on CNN and a new loss function
based on discrete wavelet transform. The new loss function is dedicated to preserving edges in the
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images of underground mines. The remaining of the paper is organized as follows: Section 2 elaborates
the proposed method by discussing the network architecture and the construction of the loss function.
Section 3 provides experiments which demonstrate the performance and analysis of the proposed
method. Section 4 concludes the paper with further discussion about the proposed method.

2. The Proposed Image Compression Method

2.1. Overview

Before introducing the network architecture, it is necessary to understand the workflow of the
proposed compression method. As shown in Figure 1, a gray-scale image or one of the channels of an
RGB color image is taken as the input. We view the input image as a matrix x. For simplicity, we assume
the input image is square, which means x has the same number of rows and columns. The image
matrix x is “vectorized” into one vector xv by concatenating each row of the matrix. The encoder
module compresses xv to a feature vector y. Then the decoder module is applied to approximate x

using the feature vector y. The approximation of x is denoted as x̂. During training, both the recovered
image and the original image are fed into the loss function. Back-propagation will try to minimize the
value of loss by updating the weights in the encoder and decoder module.

Input image
Feature vector

Recovered imageVectorized image

Update

Vectorize Encoder Decoder

Loss 
function

Figure 1. The workflow of the proposed method.

If there are N numbers in the image matrix x and M numbers in the feature vector y, then we
define the compression ratio r as

r = M/N. (1)

In short, the encoder module is responsible for compressing the image and determining the
compression ratio, while the decoder module takes care of the recovery process.

2.2. The Network Architecture

2.2.1. The Encoder Module

The weight matrix W of size M × N is multiplied by the “vectorized” image xv. Then the product
is added by the bias vector b to derive the feature vector y:

y = Wxv + b. (2)

In Equation (2), both the weight matrix W and the bias vector b are parameters to be learnt during
back-propagation. W is initialized using He initialization [41], while b is initialized with zeros.
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2.2.2. The Decoder Module

The network architecture of the decoder module is illustrated in Figure 2. The feature vector y

is first upsampled to y′ using nearest-neighbor interpolation [42]. The length of y′ is determined by
Equation (3):

length(y′) = 

√

M�2
, (3)

where M is the length of vector y. The symbol 
z� means rounding number z to the nearest integer
more than or equal to z. The vector y′ is then reshaped into the initial feature map F using Equation (4):

F[i, j] = y′[(i − 1)× 

√

M�+ j], 1 ≤ i, j ≤ 

√

M�. (4)

Afterwards, the initial feature map F is convolved with 96 filters of size 3 × 3. We empirically
add a batch-normalization [43] layer after the first convolution layer to accelerate training. Then the
feature maps go through several residual units. Some residual units are followed by nearest-neighbor
upsampling operation as in Figure 2. Finally, the feature maps are convolved with one filter of size
1 × 1 to derive the recovered image x̂.

Residual 
unit (1)

Residual 
unit (2)

Residual 
unit (1)

...

Residual 
unit (2)

Upsample

Feature
vector Feature maps Feature maps

Feature mapsRecovered image

Convolution
BatchNorm

96

Convolution

1

Initial
feature map

Upsample

Upsample

Reshape
...

Upsample

...

Feature maps

...

Figure 2. The network architecture of the decoder module.

The residual units. The introduction of residual units is inspired by [44]. As depicted in Figure 3,
two types of residual units are used. Both types follow the two-branch connection pattern. The feature
maps go through the two branches and add up at the output summator. The upper branches of the two
types are identical. The lower branches differ in that residual unit (1) connects the input and the output
with a stack of layers, but residual unit (2) connects the input and the output directly. Each convolution
layer that appears in Figure 3 is composed of 96 filters of size 3× 3. After each convolution layer, there is
a batch-normalization layer [43]. Each batch-normalization layer is then followed by a Leaky ReLU
activation layer [45] if the batch-normalization layer is not directly connected to the output summator.

The nearest-neighbor upsampling operations. If the input image x is of size n × n, then the second,
third, and fourth upsampling operation in Figure 2 resize the feature maps to size 1

2 n × 1
2 n × 96,

3
4 n × 3

4 n × 96, and n × n × 96, respectively.
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Convolution
BatchNorm
Leaky ReLU

96

Convolution
BatchNorm

96

Input Output

Convolution
BatchNorm
Leaky ReLU

96

Convolution
BatchNorm

96

(a)

Convolution
BatchNorm
Leaky ReLU

96

Convolution
BatchNorm

96

Input Output
Convolution
BatchNorm
Leaky ReLU

96

(b)

Figure 3. The residual units: (a) residual unit (1); (b) residual unit (2). All convolution layers in the two
types of residual units employ filters of size 3 × 3.

2.3. The Proposed Loss Function

2.3.1. Combination of Two Types of Loss Functions

Image recovering problems are conventionally seen as optimization problems that minimize the
l2 loss between the recovered and original image. However, from the perspective of image recovery
quality assessment, l2 metric does not reflect every aspect of signal fidelity [46]. Therefore, it is
necessary to combine other metrics that compensate for what is missing in l2 loss when constructing
the loss function.

In this section, we propose a metric termed discrete wavelet structural similarity (DW-SSIM) that
focuses the recovery of edges of the images. Our loss function is the weighted sum of DW-SSIM loss
and l2 loss:

L(x, x̂) = ∑
x∈Ω

(β1LF(x, x̂) + β2LS(x, x̂))

β1 + β2 = 1

0 ≤ β1, β2 ≤ 1,

(5)

where Ω represents a set of training image, LF(x, x̂) denotes the l2 loss, LS(x, x̂) denotes the DW-SSIM
loss, and β1 = 0.5 and β2 = 0.5 are weights. Both LF(x, x̂) and LS(x, x̂) are set up to fall in range [0, 1).
Section 2.3.2 will provide the expression of LF(x, x̂), while Section 2.3.3 will explain LS(x, x̂) in details.

2.3.2. l2 Loss

We propose to use Frobenius norm in LF(x, x̂) to derive the l2 loss:
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LF(x, x̂) =
‖x̂ − x‖2

2
‖x‖2

2
. (6)

It is worth noting that the denominator of Equation (6) cannot be zero. However, since x is taken
from the natural images instead of artificial generated matrices, it is impossible for x to be a zero matrix.

2.3.3. Discrete Wavelet Similarity (DW-SSIM) and DW-SSIM Loss

Inspired by structural similarity (SSIM) [47] and complex-wavelet structure similarity
(CW-SSIM) [48], we propose to use two-dimensional discrete wavelet transform (2D-DWT) [49]
to analyze the similarity between the recovered image and the original image. The similarity is termed
DW-SSIM which stands for discrete-wavelet similarity.

2D-DWT. The 2D-DWT is able to decompose an image into different levels of subbands. The first
level is the decomposition of the original image. Each level is composed of four subband images which
can be referred to as low–low (LL), low–high (LH), high–low (HL) and high–high (HH). The LL image
at each level can be further decomposed into the next level of subbands. The LH image represents the
variation along the vertical direction, HL image the horizontal direction, and HH image the diagonal
direction [49]. The high-frequency LH, HL, and HH subband images altogether form the details of
the original image. As the decomposition level goes higher, the subband images become coarser,
thus details of different scales can be analyzed. Figure 4 provides an example of a three-level 2D-DWT
decomposition of an image.

(a)

LH HL HH

Level 1

LL

Level 2

Level 3
(b)

Figure 4. Illustration of 2D-discrete wavelet transform (DWT) image decomposition. (a) Original
image. (b) Three-level decomposition of the image. For clarity, every intermediate low–low (LL) image
is put in its place, yet DWT only preserves the LL image of the highest level.

DW-SSIM. We divide the calculation of DW-SSIM between the original image and the recovered
image into two stages. The first stage involves figuring out the local DW-SSIM, where a “window”
slides through the original image and the recovered image. 2D-DWT is performed on the image patches
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within the “window” to derive the decomposition. We define the local low frequency DW-SSIM SL,t
and high frequency DW-SSIM SH,t of the image patches as

SL,t(c
(1), c(2)) =

2
∣∣∣∑u ∑v c

(1)
LL [u, v]c(2)LL [u, v]

∣∣∣+ K

∑u ∑v

∣∣∣c(1)LL [u, v]
∣∣∣2 + ∑u ∑v

∣∣∣c(2)LL [u, v]
∣∣∣2 + K

, (7)

SH,t(c
(1), c(2)) =

1
J

J

∑
j=1

2
∣∣∣∑i ∑u ∑v c

(1)
i [u, v]c(2)i [u, v]

∣∣∣+ K

∑i ∑u ∑v

∣∣∣c(1)i [u, v]
∣∣∣2 + ∑i ∑u ∑v

∣∣∣c(2)i [u, v]
∣∣∣2 + K

, i ∈ {LHj, HLj, HHj}. (8)

In Equations (7) and (8), K is a small positive constant for arithmetic robustness and K is set to
0.01. c(1) and c(2) refer to the corresponding subband images of the original image patch and the
recovered image patch after 2D-DWT, respectively. The wavelet function we use is the Haar wavelet.
t is the patch index. J = 3 is the maximum decomposition level, and cLHj , cHLj , cHHj are high frequency
subband images at the j-th level.

To better understand Equation (7), one can ignore K, “vectorize” (as in Section 2.2.1) c into cv and
rewrite it as

SL,t(c
(1), c(2)) = SL,t(c

(1)
v , c

(2)
v ) = 2

|c(1)v · c
(2)
v |

‖c
(1)
v ‖2

2 + ‖c
(2)
v ‖2

2

= 2
‖c

(1)
v ‖2‖c

(2)
v ‖2

‖c
(1)
v ‖2

2 + ‖c
(2)
v ‖2

2

∣∣∣∣∣ c
(1)
v · c

(2)
v

‖c
(1)
v ‖2‖c

(2)
v ‖2

∣∣∣∣∣
= 2

(
‖c

(1)
v ‖2

‖c
(2)
v ‖2

+
‖c

(2)
v ‖2

‖c
(1)
v ‖2

)−1

|cos (θ)| .

(9)

In Equation (9), the first term is determined by the energy of the subband images. It will reach

its maximum value 1 only if ‖c
(1)
v ‖2 = ‖c

(2)
v ‖2. In the second term, cos (θ) = c

(1)
v ·c(2)v

‖c
(1)
v ‖2‖c

(2)
v ‖2

is the cosine

similarity [50]. If c
(1)
v and c

(2)
v point to roughly the same direction, the cosine similarity will be close

to 1. However, the cosine function falls in range [−1, 1]. Therefore we are taking the absolute value
so that it falls in [0, 1]. The interpretation of Equation (8) is largely the same with that of Equation (7).
Equation (8) additionally averages the contribution of each level of subband to the high frequency
DW-SSIM in order to cope with the patterned noise in underground mine images. This can be better
understood through the discussion in Section 3.3.

In the second stage, a weighted sum of SH,t and SL,t is figured out to form the final DW-SSIM S:

S(x, x̂) =
1
T

T

∑
t=1

(γ1SL,t + γ2SH,t) , (10)

where T is the total number of image patches, γ1 and γ2 are parameters to adjust the weight of low
frequency subband and high frequency subbands. Since we want to emphasize high frequency details
such as edges and spikes in the image, we set γ1 = 0.2 and γ2 = 0.8.

The computation of DW-SSIM is summarized with Algorithm 1. The window length l in the
proposed method is set to 15. The stride s that the window will move in each iteration is set to 8.
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Algorithm 1: The procedure to compute discrete wavelet similarity (DW-SSIM).
Input: The original image img-ori and the recovered image img-rec of the same height H and

width W (H > 0, W > 0); the decomposition level J; the stride s that the window will
move in each iteration; the window length l; the weights γ1 and γ2 in Equation (10)

Output: The DW-SSIM similarity S between img-ori and img-rec

S ← 0 ;
t ← 0 ;
up ← 0 ;
left ← 0 ;
while up < H do

down ← up + l;
while left < W do

t ← t + 1;
right ← left + l;
Get image patch patch-ori within the window [up, down, left, right ] from img-ori;
Get image patch patch-rec within the window [up, down, left, right ] from img-rec;
Derive c(1) by performing 2D-DWT on patch-ori;
Derive c(2) by performing 2D-DWT on patch-rec;
Derive SL,t from Equation (7);
Derive SH,t from Equation (8);
S ← S + γ1SL,t + γ2SH,t;
left ← left + s;

end

up ← up + s;
end

S ← S/t;
return S;

DW-SSIM loss. The DW-SSIM defined in Equation (10) falls in range (0, 1]. The more the original
image and the recovered image matches each other, the closer DW-SSIM S is to 1. However, the loss
should be near 0 if the model has done a perfect recovery. Moreover, the loss should fall in range [0, 1).
Therefore, we define the DW-SSIM loss as:

LS(x, x̂) = 1 − S(x, x̂). (11)

2.4. Learning the Parameters

The encoder module and the decoder module can be trained in an end-to-end manner using the
proposed network architecture and the proposed loss function. Mini-batch gradient descent is used to
train the model with the batch size being 64. The Adam [51] optimizer is utilized as well. We set the
initial learning rate to 5 × 10−4. The learning rate is multiplied by 0.2 when the loss is not going down
during training. The training is stopped if the learning rate drops below 1 × 10−6.

3. Results

3.1. Overview

In order to generalize the recovery capability, the network of the proposed method is trained on
both images from video images we have collected in underground mines and images from the COCO
2014 dataset [52]. We build the training set by extracting the 100 × 100 center-crop patches from the
images, and converting them to grayscale images.
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After the model is trained, test images (as in Figure 5) are passed to the model to perform the
compression and recovery. We test our method on both standard images of Barbara, Fingerprint,
and Lena to verify its effectiveness. In addition, we test the proposed method on images of coal cutter
and tunnel boring machine (TBM) which are from real underground mines to evaluate the performance
in the application-specific environment.

The recovery quality is quantitatively evaluated with peak-signal-to-noise ratio (PSNR) and
structural similarity (SSIM) [46]:

PSNR(x, x̂) = 10 log10
d2

1
N ∑N

i=1(x[i]− x̂[i])2
, (12)

SSIM(x, x̂) =

(
2μxμx̂ + C1

μ2
x + μ2

x̂ + C1

)
·
(

2σxσx̂ + C2

σ2
x + σ2

x̂ + C2

)
·
(

σxx̂ + C3

σxσx̂ + C3

)
. (13)

In Equation (12), d is the dynamic range of pixel intensities, and N is the number of pixels in the
image. In Equation (13), μx and μx̂ are means of x and x̂, and σ2

x and σ2
x̂ are variances of x and x̂. σxx̂ is

the cross correlation of x and x̂. The small positive constants C1 = C2 = C3 = 0.01 prevent numerical
instability of each term.

To verify the effectiveness of the proposed method, the quantitative evaluation at compression
ratios of 0.25, 0.20, 0.15, 0.10, 0.04 and 0.01 is carried out, with the compression ratio defined in
Equation (1). In addition, the proposed method is compared to the algorithms of D-AMP [15],
ReconNet [13] and TVAL3 [29] at different compression ratios. For simplicity, we do not re-implement
the algorithms but use the demo code provided by the authors’ websites instead.

Further, visual quality evaluation of recovery is presented at some specific compression ratios.
Finally, the robustness of the proposed method is tested by recovering images contaminated by

different levels of Gaussian noise.
The proposed method was implemented with Pytorch [53] and pytorch_wavelet package (https:

//github.com/fbcotter/pytorch_wavelets). The training process is carried out on Ubuntu 18.04.2,
with Nvidia Tesla K80 GPU and Intel Xeon CPU. More details about the implementation can be found
in the code which we have made public on the Internet (https://github.com/y0umu/ResCSNet).

(a) (b) (c) (d) (e)

Figure 5. The test images: (a) Barbara; (b) Fingerprint; (c) Lena; (d) Coal cutter; (e) Tunnel boring
machine (TBM).

3.2. Quantitative Evaluation

Tables 1 and 2 provide quantitative measurements of the proposed method and other algorithms
at different compression ratios. As the compression ratio r decreases, all the algorithms being compared
have PSNR and SSIM decreased. It can be interpreted from Table 1 that the proposed method is second
only to D-AMP at compression ratio r ≥ 0.20 for both standard test images and real underground
mine images. Yet the proposed method achieves the highest PSNR compared to other algorithms at
a compression ratio r ≤ 0.15. It should be also noted that for the recoveries of images of coal cutter
and TBM at compression ratios r ≤ 0.04, the proposed method has an edge over other algorithms by
a margin of at least 1.8 dB, indicating the potential of the application-specific usage in mines of the
proposed method.
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Table 1. Peak signal-to-noise ratio (PSNR) (in dB) comparison for different algorithms on test images.
r is the compression ratio.

Image Algorithm r = 0.25 r = 0.20 r = 0.15 r = 0.10 r = 0.04 r = 0.01

Barbara D-AMP 26.61 25.37 24.00 21.73 15.37 7.23
ReconNet 25.14 22.80 21.41 21.79 19.74 16.20

TVAL3 22.40 21.28 19.76 18.87 16.19 15.15
DR2-Net 25.43 21.64 19.86 20.99 18.34 16.08
Proposed 27.23 27.62 26.50 24.15 21.76 17.86

Fingerprint D-AMP 20.99 20.64 19.41 19.07 11.65 5.24
ReconNet 17.56 17.20 17.25 16.68 16.10 15.55

TVAL3 18.25 17.45 17.04 15.57 14.08 9.68
DR2-Net 18.30 16.57 15.98 17.16 16.26 15.20
Proposed 19.76 19.80 19.70 19.39 19.17 18.68

Lena D-AMP 30.28 28.40 26.57 24.38 11.71 6.57
ReconNet 23.83 22.65 21.58 20.32 18.50 15.90

TVAL3 21.26 20.68 19.51 17.81 16.37 15.17
DR2-Net 26.37 21.93 20.02 21.82 19.07 15.77
Proposed 28.82 29.01 28.44 25.48 24.08 19.47

Coal cutter D-AMP 21.81 21.86 20.90 19.10 14.36 8.14
ReconNet 18.78 18.35 17.67 17.24 16.26 14.52

TVAL3 12.52 10.94 9.87 8.17 10.48 12.50
DR2-Net 20.22 17.71 16.65 17.76 16.19 14.78
Proposed 21.78 21.84 21.40 20.05 18.08 17.34

TBM D-AMP 29.68 28.02 26.30 24.51 17.63 8.76
ReconNet 23.89 22.95 22.13 21.21 19.24 17.65

TVAL3 17.27 16.17 14.88 14.35 13.16 13.71
DR2-Net 25.65 22.11 20.87 22.04 19.50 17.53
Proposed 27.67 27.27 27.12 24.95 22.46 20.03

Table 2. SSIM comparison for different algorithms on test images. r is the compression ratio.

Image Algorithm r = 0.25 r = 0.20 r = 0.15 r = 0.10 r = 0.04 r = 0.01

Barbara D-AMP 0.8570 0.7781 0.7583 0.6189 0.0624 0.0129
ReconNet 0.7449 0.7037 0.6062 0.5506 0.3805 0.2226

TVAL3 0.7391 0.6834 0.6154 0.4692 0.3134 0.2281
DR2-Net 0.8165 0.7396 0.6774 0.6137 0.3947 0.2283
Proposed 0.8823 0.8950 0.8648 0.7832 0.6087 0.2859

Fingerprint D-AMP 0.5530 0.4063 0.2709 0.2288 0.1050 0.0029
ReconNet 0.2438 0.2245 0.1890 0.1871 0.1412 0.0970

TVAL3 0.3448 0.2884 0.2496 0.1948 0.1339 0.0774
DR2-Net 0.3030 0.2291 0.2115 0.2044 0.1484 0.0976
Proposed 0.3464 0.3742 0.3307 0.2871 0.2103 0.1498

Lena D-AMP 0.8867 0.8667 0.8174 0.7550 0.4343 0.0235
ReconNet 0.7412 0.7084 0.6436 0.5997 0.4558 0.3181

TVAL3 0.7420 0.7145 0.6596 0.5370 0.3735 0.2869
DR2-Net 0.8200 0.7771 0.7052 0.6597 0.5119 0.3352
Proposed 0.8930 0.9040 0.8879 0.8301 0.7437 0.4440

Coal cutter D-AMP 0.6854 0.6793 0.6376 0.5148 0.1735 0.0363
ReconNet 0.5470 0.4947 0.4377 0.4267 0.3371 0.2431

TVAL3 0.3830 0.3146 0.2574 0.1838 0.2110 0.1608
DR2-Net 0.6358 0.5482 0.4672 0.4899 0.3467 0.2634
Proposed 0.7320 0.7476 0.7049 0.6303 0.4923 0.3498

TBM D-AMP 0.8711 0.6793 0.8027 0.7187 0.2829 0.0634
ReconNet 0.7728 0.7319 0.6771 0.6522 0.5460 0.4318

TVAL3 0.5445 0.4868 0.5069 0.4127 0.3794 0.3372
DR2-Net 0.8184 0.7523 0.7171 0.6755 0.5714 0.4456
Proposed 0.8793 0.8764 0.8639 0.8058 0.6921 0.5359
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From Table 2, it can be learned that the proposed method achieves the highest SSIM at every
compression ratio for all the images except the Fingerprint image. Since the SSIM metric describes
structural similarity between the recovered and the original images, it can be drawn to the conclusion
that the proposed method preserves specific characteristics of the images better.

3.3. Visual Quality Evaluation

Figures 6 and 7 illustrate the recovered images of the proposed method and the algorithms being
compared. The green boxes zoom in the image patches within the red boxes so that the details can
be viewed clearly. As can be seen in most of the pictures, the proposed method recovers sharper
edges with less blurring compared to other algorithms. In Figure 7 where the compression ratio
is relatively low, the edges can still be discerned in the recovered image of the proposed method,
while other recoveries tend to be more blurred. Combined with Tables 1 and 2, it can be found that the
characteristic which the proposed method preserves is the edges in the image.

Figures 6 and 7 also demonstrate an interesting phenomenon. In the recovery of the Fingerprint
image, the proposed method fails to recover the details either at a compression ratio r = 0.15 or
r = 0.04. This is intended behavior and actually the proposed method deliberately “blurs” dense
patterns in the recovered images to cope with the noise which is often seen in underground mine
images. To explain the rationale behind this, suppose we take the image patches of size 15 × 15 at the
same location from the recovered image and the original image of Fingerprint. Then 3-level 2D-DWT
is applied on both patches and it can be discovered that the level 2 or level 3 subband images are
almost identical. The major difference of the subbands lies in the level 1 decomposition. Recall that
in Equation (8) each level is given the same significance, the difference between the recovered and
original patch in level 1 decomposition is in effect “averaged out”. Therefore the DW-SSIM loss of the
original dense patterned patch and the recovered blurred patch will be small, leading the proposed
network to learn to blur the dense patterns.

3.4. Robustness against Noise

Since the tests in previous sections indicate that the proposed method takes an advantage when
the compression ratio is low, we then test the noise robustness of the proposed method at a compression
ratio r = 0.04 in this section. As depicted in Figures 8 and 9, Gaussian noise is added to the Lena and
TBM test images to simulate the dusty environment in underground mines. The noise is zero-mean.
The standard deviation σ of the noise is set to 5, 10, 15, 20, 25 and 30 to emulate different levels of noise.
The noise-contaminated images are compressed at ratio r = 0.04. Then the similarity of the recovered
images between the original test images is evaluated using the PSNR and SSIM measurement.
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Original
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Figure 8. Comparison of recoveries of the Lena image at the presence of noise. σ denotes the standard
deviation of the noise. The compression ratio r is 0.04.

As in Figure 8 and Figure 9, at all noise levels, fewer artifacts can be seen yet sharp edges are
preserved in the recovered images of the proposed method. Further, Figure 10 plots the PSNR and
SSIM curves as σ varies. The PSNR and SSIM of all algorithms drop as σ increases, yet PSNR and
SSIM of the proposed method are higher than those of the algorithms being compared. As σ grows
from 5 to 30, the decrease of PSNR and SSIM of the proposed method, which is no more than 1.6 dB
and 0.11, is the least among the algorithms. Therefore, it can be concluded that the proposed method
features noise robustness when the compression ratio is low.

70



Electronics 2019, 8, 1559

σ
Original

image with
noise

D-AMP ReconNet TVAL3 DR2-Net Proposed

σ = 5

σ = 10

σ = 15

σ = 20

σ = 25

σ = 30

Figure 9. Comparison of recoveries of the TBM image at the presence of noise. σ denotes the standard
deviation of the noise. The compression ratio r is 0.04.

(a)

Figure 10. Cont.
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(b)

Figure 10. Plots of PSNR and SSIM against σ for the recoveries of noise contaminated (a) Lena image,
(b) TBM image. The PSNR and SSIM are checked between the original test image (no noise added) and
the recovered images. The compression ratio r is 0.04.

4. Conclusions

In this paper, we propose a CNN based image codec network which acts as the basis for the
compression and recovery of images. We also propose a novel loss function that combines the
knowledge of discrete wavelet transform to attack the problem of edge blurring in the recovered
images. The proposed method is more suitable for the compression and recovery of underground
mine images in that:

• The proposed method recovers sharp edges in the images. For underground mines, edges in the
image are the key component to distinguish the foreground and background. By determining the
boundaries of miners and equipment, it is possible for further image analysis to carry out.

• The proposed method features noise robustness. By blurring the dense patterns, the proposed
method can filter out the noise especially seen in underground mines.

• Compared to other algorithms, the proposed method excels at low compression ratios. General
image compression methods tend to strike a balance between the compression ratio and the
recovery quality. They do not have to work at extremely low compression ratios as the transmission
bandwidth available is comparably high. However, the proposed method is designed to work at
low compression ratios to adapt to the harsh communication environment in underground mines.

In future work, we will combine other denoising techniques into the work presented in this paper
is an attempt to achieve noise robustness without blurring the patterned areas. The current design of
the DW-SSIM loss is not perfect in that the merits of cosine similarity is not fully preserved. Thus it
is worth further investigating into the design of loss function. We will also train the model on other
datasets in order to expand the application of the proposed method.
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Abstract: This paper describes a novel trajectory planning algorithm for an unmanned aerial vehicle
(UAV) under the constraints of system positioning accuracy. Due to the limitation of the system
structure, a UAV cannot accurately locate itself. Once the positioning error accumulates to a certain
degree, the mission may fail. This method focuses on correcting the error during the flight process of
a UAV. The improved genetic algorithm (GA) and A* algorithm are used in trajectory planning to
ensure the UAV has the shortest trajectory length from the starting point to the ending point under
multiple constraints and the least number of error corrections.

Keywords: unmanned aerial vehicle; UAV; trajectory planning; GA; A*; multiple constraints

1. Introduction

An unmanned aerial vehicle (UAV) is an aircraft capable of completing missions with the
autonomous flight capability. UAVs are currently widely used in vision systems, such as cargo
transfer [1], object detection [2–4], and vision-assisted navigation [5–7].

The idea for scientists to develop UAVs is to fly autonomously and accomplish specific tasks.
In modern warfare, the air defense system is constantly improving, and air defense technology is
becoming more and more advanced. Thus, improving the autonomy of unmanned aerial vehicles is
an important trend for the future. Trajectory planning is a key technology to improve the autonomy
of a UAV and an effective means to implement flight missions. It has important significance in both
theoretical and practical applications. The aircraft path planning can effectively ensure the operational
performance of a UAV, which provides technical support for a UAV to successfully complete the flight
mission, realize the autonomous control of a UAV, and to complete the autonomous flight.

Trajectory planning refers to the planning of an optimal flight path of the aircraft between the
starting point and the ending point, considering factors such as fuel consumption, maneuverability,
arrival time, flight area, and threat level. Trajectory planning is an important guarantee for the
successful completion of a UAV and one of the key technologies for mission planning systems.

Due to technical limitations, in the early 1980s, trajectory planning relied heavily on manual
operations by technicians. With the continuous development and improvement of the prevention
and control system and technology, the accuracy requirements of a UAV for planning the trajectory
are getting higher and higher, and artificial path planning has become more and more difficult to
meet the requirements. With the rapid development of communication technology, various methods
for detecting flight environment information have emerged endlessly, which makes the information
obtained by the trajectory planners more and more abundant. In order to improve flight accuracy,
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the planned trajectory should satisfy the requirements of terrain following, terrain avoidance, and
threat avoidance while satisfying the performance constraints of the aircraft. Due to the complexity
and variety of these constraints, it is difficult to handle and complete such complex tasks in manually.

In order to realize the autonomous trajectory planning under different planning environments,
scientists have carried out in-depth research on the trajectory planning of an UAV, and proposed
various algorithms, such as the Voronoi diagram method [8–11], A* algorithm [12–14], particle swarm
optimization (PSO) algorithm [15–17], genetic algorithm [18–20], neural network algorithm [21,22],
artificial potential field method [23–25], simulated annealing algorithm [26], and so on.

The process of finding the best trajectory includes consideration of constraints. The optimal path
must produce an optimal objective function and satisfy multiple constraints. However, conventional
methods can only handle one objective function at a time, and they cannot handle optimization
problems involving two or more objective functions. Thus, a combined objective function is formed
by mathematically aggregating two or more separate objective functions. The weighted values are
introduced into the combined objective function formula to reflect its relative importance. In this
work, we propose a trajectory path planning algorithm of a UAV based on genetic algorithm and A*
algorithm under multiple constraints, and then satisfied the system positioning accuracy conditions.

The paper is organized as follows: Section 2 provides the necessary background: problem
statement, model assumptions, and multiple constraints. Section 3 describes in detail an UAV trajectory
planning Problem 1 based on positioning accuracy constraints, and uses an improved genetic algorithm
to design a trajectory planning algorithm, and finally get the results of the trajectory planning. Section 4
describes in detail an UAV trajectory planning Problem 2 based on Problem 1, and uses an improved A*
algorithm to design a trajectory planning algorithm, and finally get the results of the trajectory planning.
Section 5 presents the performance comparison of the proposed algorithm with the traditional swarm
intelligence algorithm. Section 6 concludes the paper and gives the further work.

2. Background

2.1. Problem Statement

In practical applications, the planning scope is often up to one million square kilometers, and the
planning area environment is very complicated. In addition to the topographical factors, the planning
process needs to consider various constraints such as aircraft maneuverability, penetration requirements,
and flight missions. This research is a simplified version of the actual problem, without considering
the aircraft’s maneuverability, penetration requirements, threats, and many other factors. However,
there are multiple constraints.

In this research, we mainly consider the trajectory error correction problem of an UAV based on
system positioning accuracy constraints. Due to system structure limitations, the positioning system of
such aircraft cannot accurately locate itself. Once the positioning error accumulates to a certain extent,
the task may fail. Therefore, correcting the positioning error during flight is an important task in
UAV trajectory planning. The trajectory planning problem of an UAV is a complex multi-constrained
optimization problem. UAV trajectory planning refers to considering the positioning error during
the flight due to a series of factors such as the environment and weather during the flight. Therefore,
some safe positions are assumed in the flight area (called correction points) for safety correction.
In order to enable a UAV to follow the original trajectory planning from the starting point to the ending
point, several correction points are needed in the flight area to correct the trajectory error of an UAV.

Under the premise of many constraints, the correct point is selected to correct the error of a UAV,
and the best flight path from the starting point to the ending point is planned for an UAV, so that the
number of times a UAV is corrected by the correct points during the flight is as small as possible, and the
trajectory length is as small as possible. How to ensure that a UAV meets the various constraints and
the optimal trajectory requirements, and to quickly and accurately obtain the true flight trajectory is
the problem that needs to be solved urgently. In the aircraft trajectory planning problem, the standard
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planning problem is usually to establish a flight trajectory with the optimal cost function value through
a pre-set cost function.

2.2. Model Assumptions and Multiple Constraints

The aim of this study is to find the best optimal trajectory planning for an UAV under the limit of the
positional accuracy of a UAV system, which is a multi-constraint combinatorial optimization problem.

Assume that the flight area of an UAV and the safe positions is as shown in Figure 1. The starting
point is A and the ending point is B. The constraints of its trajectory are as follows:

(1) A UAV needs real-time positioning during flight, and its positioning error includes vertical
error and horizontal error. For every 1m flight, the vertical error and horizontal error will be increased
by δ dedicated units, respectively. The vertical error and horizontal error should be less than θ units
when reaching the ending point, and for the sake of simplification, assume that when the vertical error
and the horizontal error are both less than θ units, an UAV can still follow as the planned trajectory
to fly.

(2) A UAV needs to correct the positioning error during flight. There are some safety positions in
the flight area (called correction points) can be used for error correction. The type of the correction
point includes horizontal and vertical correction points. If a UAV reaches the correct point, the error
can be corrected based on the type of the correct points, assuming that the safety positions in the
flight area (i.e., the position of the correction points) is determined before flight trajectory planning.
Figure 1 is a schematic diagram of a certain trajectory. If the vertical error and the horizontal error
can be corrected in time, a UAV can fly according to the predetermined trajectory, and finally reaches
the destination.

Figure 1. Schematic diagram of an UAV trajectory planning area. The yellow points are the horizontal
error correction point, the blue points are the vertical error correction point, the starting point is point
A, and the destination is point B. The black curve represents a trajectory.

(3) At the starting point A, the vertical and horizontal error of an UAV are both zero.
(4) After the correction of the vertical error correction point, the vertical error will become zero

and the horizontal error will remain unchanged.
(5) After the correction of the horizontal error correction point, the horizontal error will become

zero and the vertical error will remain unchanged.
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(6) Vertical error correction can be performed when the vertical error of the aircraft is not greater
than α1 units and the horizontal error is not greater than α2 units.

(7) Horizontal error correction can be performed when the vertical error of the aircraft is not
greater than β1 units and the horizontal error is not greater than β2 units.

(8) An UAV is limited by the structure and control system during the turn and cannot complete
the immediate turn (i.e., the direction of an UAV cannot be changed abruptly), if the minimum turning
radius of an UAV is 200 m [27].

3. Problem 1

To plan a trajectory for an UAV from point A to point B, for the above-mentioned conditions (1) to
(7), and comprehensively consider the following optimization goals: (A) the trajectory length is as
small as possible; (B) the number of corrections through the correct points is as small as possible.

If the above-mentioned parameters of the data are:
α1 = 25, α2 = 15, β1 = 20, β2 = 25, θ = 30, δ = 0.001.
A data set contains the location and type of correction points. Table 1 shows some data of the

data set. The unit of the coordinate is meter. There are 613 points in the data set. The number 0 is the
starting point, the number 612 is the ending point, and the rest is correction points. The spatial position
of each correction point is determined by the three-coordinate information of x, y, and z. For the type
of the correction points, 0 represents the horizontal error correction point and 1 represents the vertical
error correction point.

Table 1. Some data of the data set [27].

The Number of the
Correction Points

X-Coordinate Y-Coordinate Z-Coordinate
The Type of the

Correction Points

0 0.00 50,000.00 5000.00 The Starting Point

1 33,070.83 2789.48 5163.52 0
2 54,832.89 49,179.22 1448.30 1
3 77,991.55 63,982.18 5945.82 0
4 16,937.18 84,714.34 5360.29 0
5 339.69 14,264.46 3857.85 1
6 3941.93 74,279.86 9702.92 1
7 45,474.01 26,849.48 6411.72 1
8 86,806.90 5351.31 4409.85 0
9 23,602.88 68,460.10 88.47 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
610 14,870.60 95,939.17 8248.84 0
611 93,009.57 4549.33 7882.61 1
612 100,000.00 59,652.34 5022.00 The Ending Point

3.1. Multi-Constraints Optimization Problem

The focus of this research is to plan a trajectory for an UAV from the starting point to the ending
point, and finding the optimal trajectory satisfied with the multi-constraints in Problem 1, so we build
mathematical models of the problem.

3.1.1. Correction Area

The trajectory planned by a UAV is three-dimensional, and it is a space with many correction
points. (x, y, z) is defined as the coordinates of correction point in the correction area, where x is the
error in the horizontal direction, y is the error in the vertical direction, and z indicates the altitude.
The physical space of the trajectory planning can be expressed as a set:

S =
{
(x, y, z)

∣∣∣0 ≤ x ≤ Xmax, 0 ≤ y ≤ Ymax, 0 ≤ z ≤ Zmax
}

(1)
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where Xmax,Ymax and Zmax refer to the maximum values of the corresponding coordinates, which can
be obtained from the data set. Moreover, from the data set, we can dram the vertical error correction
point and the horizontal error correction point in three-dimensional space. Figure 2 is the result we
have drawn with MATLAB.

Figure 2. The physical space and the correct point. The blue point is the vertical error correction point,
the yellow point is the horizontal error correction point, the red pentagram indicates starting point, the
green pentagram indicates ending points. The range of axes comes from the data set.

3.1.2. Objective Function

Two objective optimization functions are proposed for minimizing the trajectory length of a UAV
and the number of times an UAV has been corrected:

F1 = min(
m∑

i=1

(ηi + λi + hi)) (2)

F2 = min(
m∑

i=1

(ai + bi)) (3)

where F1 represents the trajectory length of an UAV from the starting point A to the ending point B,
F2 represents the number of times an UAV has been corrected through the correction area, m represents
the total number of corrections of an UAV throughout the flight, ηi represents the distance of an
UAV’s i-th flight, λi represents the correction distance of the i-th flight to the vertical error correction
point, hi represents the correction distance of the i-th flight to the horizontal error correction point,
ai represents an UAV’s i-th flight reaches the vertical error correction point, and bi represents a UAV’s
i-th flight at the horizontal error correction point.
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3.1.3. Multi-Constraints

The vertical and horizontal errors will increase by δ units when a UAV flies one meter each
time. The vertical and horizontal errors should be less than θ units when the ending point is reached.
Therefore, the total value of the vertical and horizontal errors of an UAV during the entire flight must
be less than θ, and the distance ηi of each flight of a UAV will not exceed the displacement lAB of the
entire trajectory:

m∑
i=1

aiηiδ < θ (4)

m∑
i=1

biηiδ < θ (5)

0 ≤ ηi ≤ lAB (6)

For the correction distance λi meters of a UAV’s i-th flight to the vertical error correction point,
when a UAV reaches the vertical error correction point, it is assumed that a UAV’s i-th flight, ηi meters
will increase its vertical error by δηi units:

λi = aiηiδ, i = 1, . . . , m (7)

For the correction distance hi meters of an UAV’s i-th flight to the vertical error correction point,
when a UAV reaches the horizontal error correction point, it is assumed that a UAV’s i-th flight, ηi meters
will increase its horizontal error by δηi units:

hi = biηiδ, i = 1, . . . , m (8)

During the flight, a UAV is either corrected after reaching the vertical error correction point or
reaching the horizontal error correction point. In order to perform error correction more accurately
according to the type of error correction of the correction point, for the i-th flight, the binary variables
ai and bi are introduced. The vertical error correction can be performed when a UAV’s vertical error is
not greater than α1 units and the horizontal error is not greater than α2 units. The horizontal error
correction can be performed when a UAV’s vertical error is not greater than β1 units and the horizontal
error is not greater than β2 units. The binary variables ai and bi can be expressed as follows:

ai =

{
1, when UAV reaches the vertical error correction point,

0, when UAV does not reach the vertical error correction point,
(9)

bi =

{
1, when UAV reaches the horizontal error correction point,

0, when UAV does not reach the horizontal error correction point,
(10)

Then, the objective function should also meet the following constraints, which must be satisfied
when an UAV performs vertical error correction:

λi ≤ α1, hi ≤ α2 (11)

Further, the objective function must be satisfied when an UAV performs horizontal error correction:

λi ≤ β1, hi ≤ β2 (12)

where λi is the corrected distance of an UAV to the vertical correction point on the i-th flight, hi is the
corrected distance of an UAV to the horizontal correction point on the i-th flight, α1, β1 is the vertical
error of an UAV, and α2, β2 is the horizontal error of an UAV.
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For Problem 1, the objective function is to make the times of corrections through the correction
area as small as possible while the trajectory length is as small as possible.

In summary, we get a two-objective optimization model with multiple constraints:

F1 = min(
m∑

i=1
(ηi + λi + hi))

F2 = min(
m∑

i=1
(ai + bi))

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

aiηiδ < θ

m∑
i=1

biηiδ < θ

0 ≤ ηi ≤ lAB
λi = aiηiδ,
hi = biηiδ,
ai, bi = 0, 1,
ai + bi = 1,

λi ≤ α1, hi ≤ α2,
λi ≤ β1, hi ≤ β2,

, i = 1, . . . , m

(13)

3.2. Trajectory Planning Algorithm for the Problem 1

In order to solve the two-objective optimization model, it should be transformed into a
single-objective programming model. In order to weigh the optimization goals of F1 and F2, we can
choose a combination that takes into account both of them. The two are given a weight α(α ≤ 1), and α
is called a preference coefficient. So, the objective function F can be expressed as:

F = min(α
m∑

i=1

(λi + ηi + hi) + (1− α)
m∑

i=1

(ai + bi)),α ≤ 1 (14)

We have successfully established the objective function and constraints for Problem 1, and we
will begin to solve it. The trajectory planning problem is a nonlinear programming problem with
multiple constraints, which needs to consider the overall optimization, and to minimize the calculation
amount while avoiding falling into a local optimum, and our study is to find the optimal flight path
of an UAV from the starting point to the destination in three-dimensional space. Then we use the
genetic algorithm. The basic idea of a genetic algorithm is to simulate the evolutionary process of
biological genetics. Based on the principles of “survival of the fittest”, with the help of selection,
crossing, and mutation, the problem to be solved approaches the optimal solution step by step from the
initial solution. In trajectory planning, each chromosome (individual) of a genetic algorithm represents
the trajectory of a UAV. The coding method of genes is also the coding method of trajectory nodes.
The fitness function is changed by the cost function.

In this research, a UAV trajectory planning problem is combined with the idea of the genetic
algorithm, and the real number gene coding method and specific genetic operator are used to meet the
flight path trajectory of various constraint parameters to achieve the approximate optimal solution.
The specific operation process is as follows:

The first step: using the real number gene coding. Use the fixed-length real number gene coding
method showed in Figure 3 to convert the position information of an UAV in three-dimensional space
into the chromosomal gene structure (as shown in Figure 4). Each gene of the chromosome contains
the three-dimensional spatial coordinate (x, y, z) information of the gene, which records the following
information of the spatial gene: one is whether the gene is feasible, and the other is whether the
connecting line segment between the gene and the next gene is feasible. This gene sequence is only
feasible if the above conditions are acceptable.
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Figure 3. Fixed-length real-valued gene.

Figure 4. Chromosome structure.

As can be seen from Figure 3, fixed-length real number gene coding is used to convert the position
information of a UAV in three-dimensional space into the chromosomal gene structure, and the
advantages of the fixed-length real number gene coding method are: one is to avoid increasing the
number of the error correction points which let the coding length is too long, and the second is that in
the genetic process, high frequency encoding and decoding operations are not required, the calculated
amount is reduced, and the search efficiency of the algorithm is improved.

As for a UAV trajectory planning problem, each chromosome represents a complete sequence of
trajectory points of a UAV, and this point sequence may or may not be feasible. Therefore, from the
chromosome structure diagram of Figure 4, each chromosome contains information on the start and
end positions, plus the gene composition H1, H2, H3, . . . , Hn that does not repeat.

The second step: the initialization of the population. During the conversion of trajectory nodes to
genetic algorithm chromosomes, in order to make the generated random nodes as close as possible to
the planning area, the generated nodes can be evenly and effectively distributed in the planning space.
In this research, we use a specific initialization method to complete the initialization work. It mainly
uses a starting point and an ending point as the center of symmetry as a rectangular area, and the
length of the rectangle is the length of the line connecting the starting point and the ending point,
and the width is the length of the rectangle, and the rectangular area is the planning area. The planning
area is evenly divided into m grids, and the trajectory nodes are uniformly generated in the planning
area using a loop statement as shown in Figure 5:

Figure 5. Trajectory initialization principle.

Figure 5 shows the generation process of the trajectory node when i = 0: the starting point A to the
ending point B can determine the slope of the line, and then find the function equation of the four sides
of the area, use the Random function to generate the random number x of the specific area, and then
in the three cases, the Random function is used again to combine the functions of the four sides to
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generate y, and then the height z of a UAV is generated within a specific range, thereby obtaining the
first gene of the trajectory, which is calculated in turn, and will be obtained at that time. For the last
gene of the trajectory, we save these genes one by one and form the gene sequence of the trajectory,
then the gene sequence is a chromosome. In the next work, this method is used to cycle through,
thus completing the entire trajectory initialization work.

The third step: determine the trajectory fitness function. Suppose that A can determine that the
trajectory of B is represented by z1, and its cost function is composed of optimization item f1(z1) and
penalty item f2(z1), so:

f (z1) = f1(z1) + f2(z1) (15)

Among them, the optimization term of the trajectory cost function:

f1(z1) = ω1[g1(z1)] +ω2[g2(z1)] (16)

where g1(z1) denotes the cost function value of the horizontal error on the arc of the trajectory A
to B, g2(z1) denotes the cost function value of the vertical error on the arc of the trajectory A to B,
ω1 represents the weight of the horizontal error in the total cost of the horizontal error and the vertical
error, w2 represents the weight of the vertical error in the total cost of the horizontal error and the
vertical error, they should satisfy ω1 +ω2 = 1 and the weight distributions of ω1 and ω2 are similar.

The penalty of the trajectory cost function:

f2(z1) = ω1[p1(z1)] +ω2[p2(z1)] (17)

where p1(z1) denotes the trajectory which the flight height of an UAV exceeds the maximum flight
altitude of an UAV, p2(z1) denotes the trajectory which an UAV trajectory length is greater than the
maximum range of an UAV, pi denotes a penalty function for the i-th term, and ωi denotes a penalty
factor for the i-th term, i = 1, 2.

Take the trajectory fitness function:

f itness(z1) =
1

f (z1)
(18)

where f (z1) represents the cost of the trajectory chromosome z1, that is to say, the trajectory planning
problem will be transformed from the cost minimization problem to the trajectory fitness maximization
problem in genetic evolution.

The fourth step: Solve the fitness value of the formula of the fitness function, as shown in Figure 6.
Figure 6 shows the process of solving the fitness value of the trajectory population. First, each

trajectory in the population is extracted in turn, and the trajectory is segmented. Each trajectory is
equally divided by 10 points, and the actual length of the trajectory segment and all penalty items is
calculated. Ten points respectively ask for the penalty value and are accumulated for averaging. Then,
calculate the length, vertical error, and horizontal error of the trajectory segment, and combine the
constraints determined by the adjacent trajectory nodes to meet the requirements of each segment. Then,
calculate the cost function and punishment for the trajectory segment. The values are accumulated.
If the current trajectory is calculated, we need to save their value and penalty value separately,
then calculate each trajectory in turn, and finally, when all the trajectories are calculated, find the fitness,
which is the maximum value of the cost. The given constraints are used to determine if the trajectory is
feasible and to save it.
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Figure 6. Solution process of trajectory fitness value.

The fifth step: determination of crossover probability and mutation probability. To prevent the
genetic algorithm from converging prematurely, an improved adaptive genetic algorithm is used to
solve the optimal flight path. The improved adaptive genetic algorithm adjusts the corresponding
cross-probability Pr and genetic probability Pm according to the change of fitness during the evolution
process. In the improved adaptive genetic algorithm, Pr and Pm are adaptively adjusted as follows:

Pr =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Pr1 − (Pr1 − Pr2)( f ∗ − f)
fmax− f

, f ∗ ≥ f

Pr1, f ∗ ≤ f
(19)

Pm =

⎧⎪⎪⎪⎨⎪⎪⎪⎩ Pm1 − (Pm1 − Pm2)( f − f)
fmax − f

Pm1, f ≤ f
, f ≥ f (20)

where fmax represents the maximum value of the population fitness, f represents the average value
of the current population fitness, f ∗ represents the fitness value of the larger of the two individuals
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currently used to cross, and f represents the fitness value of the individual which needs to perform
mutation operation. The improved adaptive genetic algorithm mainly makes the Pr, Pm of the optimal
individual in the early stage of evolution not zero, and it is not easy to fall into the local optimal
solution, as shown in Figure 7:

 

Figure 7. Improved adaptive crossover probability and mutation probability.

Because adaptive adjustment may cause the population to fall into a local optimal solution,
we adopt an improved method to improve Pr, Pm so that the optimal individuals Pr, Pm in the early
evolution stage are not zero. The specific improvement process is to increase the population’s maximum
fitness value Pr to Pr1 and Pm to Pm1. As shown in Figure 6, this will make the individual with the
largest fitness value in the initial stage of evolution in a constant state, and check and mutate according
to the size of Pr1, Pm1.

The above five steps are an UAV trajectory planning algorithm process of Problem 1. The overall
algorithm flow can be expressed in Figure 8.

Figure 8. Flow chart of an UAV trajectory planning algorithm based on an improved genetic algorithm.

Figure 8 shows the combination of genetic algorithm and trajectory planning and the entire
planning process. In Problem 1, we used the real number coding method to transform the trajectory
planning problem into a genetic algorithm chromosome problem. Under multiple constraints and
driven by the fitness function, the evolution operation of each generation is completed through
operations such as genetic crossover and mutation, and finally decoded to obtain the required track
node and complete the solution of the optimal solution for the trajectory planning.

3.3. Simulation Results and Analysis of the Trajectory Planning Algorithm for the Problem 1

According to the above algorithm, the results of the Problem 1 are calculated by using the data set.
For the parameters of the data set, the vertical error and horizontal error will increase by δ

dedicated units for each flight of 1 m; when a UAV reaches the ending point, the vertical error and
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horizontal error should be less than θ units; when vertical error correction is performed, the vertical
error of an UAV is not more than α1 units, and the horizontal error is not more than α2 units; when the
horizontal error correction is performed, the vertical error of an UAV is not more than β1 units, and the
horizontal error is not more than β2 units. Under these parameters, we calculate the shortest path of the
trajectory under the given constraint condition, and calculate the minimum number of times an UAV
corrected by the correct area. The trajectory planning path map of the data set is shown in Figure 9.

Figure 9. Trajectory planning path for the Problem 1.

Figure 9 shows the trajectory planning path of the data set. Firstly, the data of the data
set is filtered and processed, and imported into MATLAB software. The discrete point maps of
these three-dimensional spaces are drawn according to the type of correction points of an UAV.
The mathematical model is established by given multiple constraints and designed objective function,
and then the idea of genetic algorithm is used to analyze the feasibility of the horizontal error correction
point and the vertical error correction point in the discrete point respectively. After the screening,
through the fitness function, some fitness values are determined in turn, and the trajectory formed by
the fitness function values is the optimal trajectory length.

Before determining the above-mentioned trajectory planning path and the number of times an
UAV through the correct area for correction, the position of the corrected vertical and horizontal errors
can be determined, and the error correction point number and the path planning of the error before the
correction are obtained. The optimal trajectory length is 16,972.695304 m. The results are shown as
Table 2.

It can be seen from Table 2 that the shortest path to the trajectory set of the data set is according to
the process of the above algorithm, that is, to initialize a gene, save these genes and form the gene
sequence of the trajectory, then the gene sequence is a chromosome. Using this method to cycle
back and forth, we can get a lot of chromosomes, then get the appropriate function value from the
determined moderate function, and use the given constraints to determine whether the chromosome is
feasible, to get the optimal trajectory length. On this basis, the number of times of correction of the
correction area is calculated to be nine, and the error correction point number is obtained from the
starting point.
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Table 2. Corrects result for Problem 1.

The Number of
the Correction Points

The Type of
the Correction Points

0 The Starting Point

504 1
295 0
124 1
76 0
34 1
12 0
404 1
595 0
398 1
612 The Ending Point

4. Problem 2

In addition to the constraints including Problem 1, Problem 2 including the above-mentioned
condition (8) in Section 2. That is to say, the condition that an UAV is restricted by the structure and
control system when turning is unable to complete the instant turn. And, comprehensively consider
the following optimization goals: (A) the trajectory length is as small as possible; (B) the number of
corrections through the correct points is as small as possible.

If the above-mentioned parameters of the data are:
α1 = 25, α2 = 15, β1 = 20, β2 = 25, θ = 30, δ = 0.001.

4.1. Multi-Constraints Optimization Problem

4.1.1. Objective Function

The focus of this research is to plan a trajectory for a UAV from the starting point to the ending
point, and finding the optimal trajectory satisfied with the multi-constraints in Problem 2, so we build
mathematical models of the problem.

F1 = min(
m∑

i=1

(ηi + λi + hi +
∑

1≤ j≤i

l j)) (21)

F2 = min(
m∑

i=1

(ai + bi)) (22)

where F1 represents the trajectory length of an UAV from the starting point A to the ending point B,
F2 represents the number of times an UAV has been corrected through the correction area, m represents
the total number of corrections of an UAV throughout the flight, ηi represents the distance of an
UAV’s i-th flight, λi represents the correction distance of the i-th flight to the vertical error correction
point, hi represents the correction distance of the i-th flight to the horizontal error correction point,
l j represents the distance that an UAV turns during the j-th flight, ai represents an UAV’s i-th flight
reaches the vertical error correction point, and bi represents an UAV’s i-th flight reaches the horizontal
error correction point.

4.1.2. Multi-Constraints

The above objective function should satisfy the constraints of Problem 1 and the
following constraints:
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(1). When a UAV is flying from position Hi to position Hi+1, due to the limitation of the UAV’s
maneuverability, it will move in an arc segment Hi Hi+1. At this time, the circle is centered on the
intersection of the mid-permanent line of the distance from position Hi to position Hi+1 and the ideal
trajectory of Hi to Hi+1, so the radius ri can be expressed as:

ri =
ηi

2
cosφ, i = 1, . . . , m (23)

where ηi represents the distance of an UAV which flies from position Hi to position Hi+1,ri represents
the turning radius of an UAV’s i-th flight, and φ is the maximum yaw angle that an UAV is allowed to
fly. During the flight of a UAV, it will be limited by the structure and control system, and it will not be
able to complete the instant turn, so the turning distance of the j-th flight of an UAV can be obtained by:

l j = πrj − 2rj, 1 ≤ j ≤ i (24)

(2). Due to the limitation of the UAV’s own maneuverability, a UAV can only turn within a certain
range of yaw angle, that is, its yaw angle is less than or equal to the maximum allowed yaw angle
before it can fly to the next trajectory point. The yaw angle limit is the minimum turning radius limit.
The smaller the turning angle, the more smoothly a UAV can fly. Therefore, suppose the horizontal
projection of the i-th trajectory segment is γi = (xi − xi−1, yi − yi−1), and the maximum yaw angle
allowed by a UAV to fly is φ, then the constraint condition can be expressed as:

cosφ ≤ γi
Tγi+1

‖γi‖‖γi+1‖ , i = 1, 2, . . . , m (25)

(3). A UAV is limited by the structure and control system during the turn and cannot complete the
immediate turn. The minimum turning radius of an UAV is 200 m in Section 2.1, then the constraint
condition can be expressed as:

200 ≤ rj ≤
η j

2
γi

Tγi+1

‖γi‖‖γi+1‖ , j = 1, 2, . . . , i (26)

In summary, the model for Problem 2 can be established as:

F1 = min(
m∑

i=1
(ηi + λi + hi +

∑
1≤ j≤i

l j))

F2 = min(
m∑

i=1
(ai + bi))

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

m∑
i=1

aiηiδ < θ

m∑
i=1

biηiδ < θ

0 ≤ ηi ≤ lAB
λi = aiηiδ, i = 1, . . . , m
hi = biηiδ, i = 1, . . . , m
ai, bi = 0, 1, i = 1, . . . , m
ai + bi = 1, i = 1, . . . , m

λi ≤ α1, hi ≤ α2, i = 1, . . . , m
λi ≤ β1, hi ≤ β2, i = 1, . . . , m

lj = πrj − 2rj,

cosφ ≤ γi
Tγi+1

‖γi‖‖γi+1‖ , i = 1, . . . , m

200 ≤ rj ≤ η j
2
γi

Tγi+1
‖γi‖‖γi+1‖ , j = 1, . . . , m

(27)
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4.2. Trajectory Planning Algorithm for the Problem 2

Problem 2 has a constraint on the minimum turning radius. Therefore, we adopt an improved
sparse A* algorithm, which is an effective method to avoid useless trajectory nodes in space and reduce
the time to search for feasible successor nodes. Using trajectory constraints to search only the effective
space reduces the search space and speeds up the search. So, for Problem 2, we propose a trajectory
planning problem based on the improved sparse A* algorithm. First, we plan the division of space.
Attention should be paid to reducing the number of divided cells as much as possible, thereby reducing
the amount of calculation and improving the algorithm’s convergence speed, so that the algorithm
can plan the feasible trajectory of a UAV in the shortest time. Then, there is the determination of the
cost function.

If g(n) represents the actual cost of a UAV at the current trajectory node n in space:

g(n) = q1Rn(P) + q2Sn(P) (28)

where R,S represents the flight cost of a UAV respectively, the horizontal and vertical error correction
costs of a UAV, and q1, q2 each represent the weight coefficient of R,S.

Rn =
m∑

i=1

ηi (29)

Sn =
m∑

i=1

(ai + bi)ηiδ (30)

where ηi represents the distance of an UAV’s i-th flight, ai represents an UAV’s i-th flight to the
vertical correction point, bi represents an UAV’s i-th flight to the horizontal correction point, and δ
indicates that the horizontal error and vertical error increase by δ units each time an UAV flies 1 metre.
Let h(n) represent the Euclidean distance from the current trajectory node to the target trajectory node
B(xB, yB, zB), and q3 represent the weight coefficient of h(n), then:

h(n) =
√
(xn − xB)

2 + (yn − xB)
2 + (zn − xB)

2 (31)

Therefore, the improved cost function f (n) can be determined as:

f (n) = q1Rn(P) + q2Sn(P) + q3h(n) (32)

A UAV’s online real-time trajectory planning task requires an improved sparse algorithm to
complete the trajectory planning in a short time and a small memory space. The node can be expanded
by an improved cost function, nodes can be expanded with an improved cost function, using two
linked lists, of which the open table stores the nodes to be expanded, and the close table stores the
nodes already. The specific algorithm flow is as follows and can be seen in

Step 1: The search space is divided according to the requirements of the aircraft for the accuracy
of the trajectory.

Step 2: Put the starting point A into the open table, and the closing table is initially empty.
Step 3: If the open table is empty, it means that the search failed, and the algorithm exited.
Step 4: Remove the least costly trajectory node in the open table as the current trajectory node,

and store the point in the closing table.
Step 5: If the current node is midpoint B, the search is ended, and the algorithm exits successfully.

Starting from point B and going back to point A, we get the optimal path from point A to point B.
Otherwise, go to the next step.

Step 6: The successor node of the node with the least expansion cost. Point the parent pointer of
the succeeding node to the node with the least cost.
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Step 7: Calculate the generation value of the successor node according to the improved cost
function formula, and insert the successor node into the open table according to the generation value.

Step 8: Return to step 3. Figure 10:

 

Figure 10. Flow chart of the improved sparse A* algorithm.

Step 6 is to classify the successor nodes of the node with the least expansion point cost as follows:
The first type: If the successor node already exists in the open table, the successor node is discarded;

the node is added to the node table with the least cost; and then calculate and compare the actual cost
g value of the point, determine whether the parent node of the point needs to be relocated, and if so,
update the generation value;

The second type: If the subsequent node is in the closing table, call the Step 7 to calculate the path
cost. If it is smaller, update the total generation value f and actual generation value g of the parent
node. If find that there is a better path to reach this point in the path search, extend this step to the
subsequent nodes of this point;

The third type: If the successor node is not in the open table and the closing table, then the node is
placed in the open table.

4.3. Simulation Results and Analysis of the Trajectory Planning Algorithm for the Problem 2

According to the above algorithm, the results of the Problem 2 are calculated by using the data
set. As the Problem 2 is based on the Problem 1, considering that an UAV is limited by the structure
and control system when turning, it cannot complete the instant turn. According to the Problem 2,
the minimum turning radius of the aircraft is 200 m. Then, use the improved A* algorithm to calculate
its maximum yaw angle, and use MATLAB software to make a path planning path map of the data set.
Figure 11 shows the trajectory planning path map of an UAV.

91



Electronics 2020, 9, 250

Figure 11. Trajectory planning path for the Problem 2.

Figure 11 shows that both the horizontal error correction point and the vertical error correction
point are evenly distributed in the three-dimensional space. This question considers that when a UAV
turns from the current trajectory node in the horizontal direction to the next trajectory node, due to
the limitations of the UAV’s own performance, it can only turn within a certain yaw angle range.
Therefore, through the above algorithm, the feasible correction point is searched in turn. Connect these
feasible correction points, that is, get a trajectory planning path, use this method to cycle back and
forth, which constitutes the optimal trajectory length in Figure 11.

Under the constraint condition that a UAV is turning within a certain yaw angle, the position of
the trajectory planning path and the number of times a UAV passes the correct area for correction can
be determined before the correction of the vertical and horizontal errors, and a UAV starts from the
starting point. The error correction point number and the trajectory planning result table of the error
before correction are shown in Table 3.

Table 3. Corrects result for Problem 2.

The Number of the
Correction Points

The Type of
the Correction Points

0 The Starting Point

346 1
200 0
294 0
136 1
108 1
74 0
462 1
543 0
369 1
457 0
388 1
436 0
612 The Ending Point
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Obtaining the optimal trajectory length from starting point to ending point is 14957.842315 m.
From the table, the number of times of correction of the correction area is calculated 12 times, and the
error correction point number passing through the starting point from the starting point is obtained.

5. Performance Comparison of the Proposed Algorithm with Traditional Swarm
Intelligence Algorithm

5.1. For the Problem 1

For the data set, we compare the proposed improved GA algorithm with the traditional GA
algorithm in trajectory planning. Figure 12 shows the fitness change of traditional GA algorithm:

Figure 12. Fitness curve of traditional GA algorithm for the Problem 1.

Figure 13 shows the fitness change of the proposed improved GA algorithm:

Figure 13. Fitness curve of the proposed improved GA algorithm for the Problem 1.
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In order to compare the performance of the two algorithms more clearly, draw the fitness curves
of Figures 12 and 13 into a unified coordinate system, as shown in Figure 14:

 
Figure 14. Two algorithms for fitness.

It can be seen from Figure 14 that: (1) the proposed improved GA algorithm converges significantly
faster than the traditional GA algorithm, (2) the proposed improved GA algorithm has a lower overall
cost for the optimal trajectory search, (3) during the search of the proposed improved GA algorithm,
the shock is small. Therefore, the proposed improved GA algorithm in the paper is significantly better
than the traditional GA algorithm.

5.2. For the Problem 2

Experiments were performed using the basic A* algorithm and the improved A* algorithm, and the
superiority of the algorithm was verified by comparing the path length of the trajectory planning and
the number of correction points passed. Using the data set, the two weight coefficients q1, q2 and q3 of
Formula (32) are set, respectively, as shown in Table 4.

Table 4. The weight coefficient of the improved cost function f (n).

Number q1 q2 q3

1 0.3 0.2 0.5
2 0.3 0.5 0.2

In the course of trajectory selection, the smaller the value of the cost function, the better the
trajectory. Table 5 compares the experimental performance of the proposed improved sparse A*
algorithm and the basic A* algorithm in the same environment.

Table 5. Performance comparison of A* algorithm and the proposed improved sparse A* algorithm.

Number Algorithm Number of Correction Points Passed Trajectory Length

1
Before improvement 31 35,436.632176
After improvement 12 14,957.842315

2
Before improvement 39 41,258.581392
After improvement 15 19,513.452647
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In Table 5, before improvement means that the basic A* algorithm, and after improvement means
that the proposed improved sparse A* algorithm in this paper is used. Numbers 1 and 2 represent
the weight coefficients of numbers 1 and 2 in Table 4. It can be seen from Table 5 that the larger q2

is, the larger correction points are passed, and the larger q3 is, the shorter the trajectory length is.
Therefore, the values of these weighting factors can be adjusted from different needs. Furthermore,
it can be seen that the performance of the improved sparse A* algorithm is significantly better than the
basic A* algorithm.

6. Conclusions

The proposed method allows for multiple constraints optimal trajectory planning using the
improved genetic algorithm (GA) and A* algorithm. The conclusions of this research work are: (1) The
numerical results of the experiment proved that the improved genetic algorithm (GA) and A* algorithm
are good for optimal trajectory planning. (2) All essential constraints like the correction and turning
radius of a UAV are satisfied with all solutions obtained from the trajectory planning algorithm.

Future work should take into account more complex and realistic constraints, such as threats
to the ground or in the air, the avoidance of obstacles, and other constraints of the UAV itself (such
as its own battery life), improve the algorithm optimization model and objective functions (such as
considers flight time [28]), and ensure that UAVs are able to adapt to more complex environments.
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Abstract: The global demand for electric power has been greatly increasing because of industrial
development and the change in people’s daily life. A lot of overhead transmission lines have
been installed to provide reliable power across long distancess. Therefore, research on overhead
transmission lines inspection is very important for preventing sudden wide-area outages. In this
paper, we propose an Overhead Transmission Line Classifier (OTL-Classifier) based on deep learning
techniques to classify images returned by future unmanned maintenance drones or robots. In the
proposed model, a binary classifier based on Inception architecture is incorporated with an auxiliary
marker algorithm based on ResNet and Faster-RCNN(Faster Regions with Convolutional Neural
Networks features). The binary classifier defines images with foreign objects such as balloons and
kites as abnormal class, regardless the type, size, and number of the foreign objects in a single
image. The auxiliary marker algorithm marks foreign objects in abnormal images, in order to provide
additional help for quick location of hidden foreign objects. Our OTL-Classifier model achieves a
recall rate of 95% and an error rate of 10.7% in the normal mode, and a recall rate of 100% and an
error rate of 35.9% in the Warning–Review mode.

Keywords: smart grid; foreign object; binary classification; convolutional network

1. Introduction

Nowadays, people’s daily life and industrial facilities are highly dependent on electric power.
Therefore, research on electric power facilities inspection and maintenance is very important for
ensuring a stable power supply. A lot of overhead transmission lines have been installed to distribute
energy across long distances in the world. It is meaningful to prevent sudden wide-area outages
caused by foreign objects suspended on uninsulated overhead transmission lines.

At present, foreign objects could be detected by foot patrol, piloted helicopter patrol,
drones inspection, and transmission line robots inspection. Foot patrol is risky or unable to pass
through complex areas such as highways, rivers, and mountains. Helicopter inspection is expensive
and also limited by the shortage of pilots. Though unmanned drones and specialized robots are still
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not used in practice for various limitations such as path planning, law, and regulations. However, they
are still highly considered by the electric power field for future maintenance of smart grids.

The main challenges of using drones for UAV (Unmanned Aerial Vehicles) maintenance are
automatic pilot, flight time and communication bandwidth. The authors in [1] aim at solving automatic
transmission line tracking problems. The authors in [2,3] face path planning and routing challenges
when UAVs are flying along power transmission lines. The authors in [4,5] study wireless charging
techniques for the increasing of drone’s flight time. The authors in [6] focus on UAV communication
toward 5G, which supports high-speed camera data transmission.

The PTL (Power Transmission Line, PTL) maintenance robot equipped with cameras can walk
through transmission line for inspection. It is possible to perform inspection and maintenance work at
a low cost in the future. Recently, transmission lines have been built with bundled conductors because
of the increasing power demand. However, conventional robots can only inspect a line while traveling
along it [7]. Thus, most research focused on developing new robot architectures for smart navigation
over bundle transmission lines [8–10].

With the rapid hardware development of smart drones and PTL maintenance robots, the demand
of automatic data processing for transmission line inspection will increase quickly. A number of
research works have been carried out to extract transmission lines, insulators, and foreign objects
from aerial images automatically. The authors in [11] use Robot LiDAR data for cable inspection, [12]
extracts power lines based on Markov Random Field theory, foreign objects are detected with a
morphology-based approach [13] and a motion compensation based method [14], and all of them use
traditional algorithms. As reviewed in [15], the potential of deep learning in power line inspection
is promising. For example, the automated inspection of insulator [16], transmission towers [17], and
transmission lines [18] based on deep learning have already been carried out. The detection of foreign
objects on transmission lines based on Faster-RCNN and YOLO (You Only Look Once) were also
studied in [19,20] respectively. However, the foreign object image used for the experiment are images
with foreign objects by default, so the algorithm does not have the classification function. In addition,
the amount of data they use for experiments is very small, and the number of images in our dataset
is more than 10 times that of them. There are also some detection algorithms for the detection of
insulators. It is more challenging to detect foreign objects without a fixed shape compared to insulators
with regular shapes.

Enlightened by image classification and object detection architectures based on deep learning
(i.e., VGG [21], ResNet [22], Inception [23,24], Faster RCNN [25], and SSD (Single Shot MultiBox
Detector) [26]), a two-stage

approach is proposed for automated image processing, which detects and marks foreign objects in
the image. The model is trained, fine-tuned, and tested with images collected by electric maintenance
departments. The reminder of the article is organized as follows: Section 1 reviews related work.
Section 2 presents the methodology of the proposed model. Section 3 describes the preparation of data
set. In Section 4, the experiment is analyzed and discussed. Finally, conclusions and contributions of
this work are drawn in Section 5.

2. Methodology

2.1. Problem Statement

Detecting foreign objects on overhead transmission lines is a very important work regarding
power system maintenance. Overhead transmission lines are a primary method for transmitting
high-voltage power across long distances. The high energy of transmission lines requires very thick
insulation to prevent the insulating material from catching fire itself. If they are insulated, the insulation
would make power distribution lines too costly and very heavy and thus unlikely to set up in air. Thus,
unlike low-voltage cable, overhead transmission lines don’t have insulation, they are insulated by air.
During high-wind events, foreign objects such as plastic greenhouses, kites, and balloons blew onto
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overhead transmission lines, thus prone to short-cuts or electrical sparks, causing power trips during
humid seasons or wildfires during dry seasons.

In this study, we collected and sorted out the images that were retained during the manual cleaning
of foreign objects in the transmission line, as shown in Figure 1. In addition, in the classification and
marking, whether it is balloons, kites, or plastic greenhouses, we are uniformly classified as one class
foreign object.

(d)

Figure 1. Cont.
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Figure 1. Sample images in the data set. (a) Balloons, kites and agricultural plastic which are the
main foreign objects hanging on overhead transmission lines. (b) Images without foreign objects
which have been used as negative samples of the classification task.These negative sample images also
contain high-voltage towers and transmission lines, as well as daily images collected by inspection
equipment. (c) Foreign objects of different sizes. Some tiny foreign objects are not easy to detect.
(d) Data we collected included not only colorful balloons and kites, but also translucent plastic and
black agricultural greenhouses. (e) The contrast between the translucent plastic and the sky is not so
obvious, and the black plastic shed is easily confused with the trees.

2.2. Warning–Review Strategy

In the first part, the algorithm workflow that constitutes the whole ’foreign object image
classification-warning-personnel review’ is introduced. We also introduce the framework used in the
image classification algorithm and the target detection algorithm. In the second part, the preparation
and division process of the data used in the experiment are described.

All of the test images in references [19,20] are images with foreign objects, which is equivalent to
artificially removing the interference image without foreign objects before their foreign object detection
algorithm detects it.

However, the images collected by the current intelligent inspection equipment contain a large
number of images without foreign objects. In order to get closer to the real inspection situation, in this
paper, the images used for training and testing algorithms are composed of the image with foreign
objects and the image without foreign objects. The whole process is shown in Figure 1, which is the
biggest difference between the research work of this paper and the previous research. After the mixed
inspection image passes the classification algorithm of the first stage, the image with a foreign object
may be marked by the classification algorithm, thereby alerting the power grid staff and prompting
the staff to review the image with the alarm.

In the first stage, this paper focuses on the 100% recall rate algorithm and trains and tests SVM
(Support Vector Machine), InceptionV3-retrain, InceptionV3-fine-tuning, and InceptionV4-fine-tuning.
In the second stage, the inspection image marked as the presence of foreign object is sent to the target
detection algorithm, and the region where the foreign object exists in the image is located and marked
with a rectangular frame. The significance of this step is to assist the staff to quickly determine the
type of foreign object and locate the position of the suspended foreign object. This paper has trained
and tested SSD, Faster-RCNN , Faster-RCNN, and Faster-RCNN in this section. All the algorithm
structures are concentrated in Figures 2 and 3. Please note that the rectangular block in the network
structure is only indicative and does not represent the true size of a layer in the actual network.
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Figure 2. Warning–review strategy.

When we test the algorithm, all of the 753 images in the testing set are first input into the classifier
of the first stage, and then according to the set classification threshold, a part of the images in the
testing set are marked as “images with foreign objects” by the classifier. Finally, only the image marked
by the classifier is sent to the foreign object indicator of the second stage for foreign object detection.
The entire algorithm flow is shown in Figure 3.

Figure 3. Two-stage foreign object detection flow chart.

2.3. Binary Classification Module

2.3.1. SVM

The SVM algorithm flow can be represented as the first part of Figure 4. SVM is a generalized
linear classifier that classifies data according to the supervised learning method. Its decision boundary
is the maximum margin hyperplane for solving learning samples. The purpose of the SVM is to find a
hyperplane to divide the samples into two categories with the largest interval. The ω obtained by the
algorithm represents the coefficient of the hyperplane that the algorithm needs to find. In mathematical
terms, it can be described as Label (1),

max
1

‖ω‖ , s.t., yi(ω
Txi + b) ≥ 1, i = 1, . . . , n, (1)
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where yi ∈ {−1, 1}. The larger the score obtained by yi (ω
T xi + b), the greater the probability of

predicting the category. Each image input into the SVM is compressed into a matrix of [1 × 3072].
There are two categories in the power line image classification. Therefore, the size of the matrix ω is
[2 × 3072], and the size of the matrix b is [2 × 1].

Figure 4. Classification network structure.

2.3.2. Inception Retrain

The InceptionV3-retrain algorithm flow can be represented as the second part of Figure 4.
This method using InceptionV3-retrain as a foreign object classification model for power lines mainly
utilizes the PB file derived from the InceptionV3 model based on ImageNet image training. The last
softmax layer of the model is changed to the foreign object image classifier, and the Bretleneck feature
of the pre-training network is used as training data for the new classifier. When the new two-class
network is trained by the retrain method, the parameters of all the layers in the previous part of the
network are fixed. The program first loads the pre-training model of InceptionV3, and then stores the
Bottleneck file generated after the training data set is input into the network. Then, use the feature
data stored in the Bottleneck file to train the modified softmax layer as a classifier for the new task.
Except for the last layer, the parameters of the other layers are all solidified and cannot be updated,
so the training speed is faster and less time-consuming.

2.3.3. Inception Fine-Tuning

The InceptionV3/V4-fine-tuning algorithm flow can be expressed as the third part of Figure 4,
and the foreign object classification model is fine-tuned under the InceptionV3 and InceptionV4 models
provided by Google. The fine-tuning mode is to use a CKPT (checkpoint) file, which derived from the
InceptionV3 or InceptionV4 model based on ImageNet image training. During the training process, the
parameters of the entire network can be modified accordingly, not only limited to the replaced softmax
layer. The fine-tuning for InceptionV3/V4 is done by loading the pre-trained model without loading the
parameters of the Logits layer and AuxLogits layer, and then fixing the parameters of all layers before.
The foreign object training data set only trains the newly created Logits layer and AuxLogits layer.
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When fine-tuning the model, restoring checkpoint weights requires attention. In particular, when a new
task is fine-tuned with an output tag different from the number of ImageNet detection tasks, the final
classification layer cannot be restored. Therefore, this paper uses the ′checkpoint_exclude_scopes′ flag,
which prevents certain variables from being loaded. For example, if the ImageNet trained model
is fine-tuned on the foreign object classification dataset, the pre-trained logits layer has dimensions
[2048 × 1001], but the new logits layer has dimensions [2048 × 2]. Therefore, the flag indicates that the
TF-Slim avoids loading these weights from the checkpoint.

2.4. Auxiliary Marking Module

2.4.1. SSD with VGG16

The SSD (with VGG16) algorithm flow can be represented as the first part of Figure 5.
When training the target detection algorithm, the training data used are manually labeled foreign
object images. The VGG-16 (Visual Geometry Group Network 16) model has sixteen convolutional
layers and five pooled layers and three fully connected layers connected to a softmax layer. Conv4,
Conv7, Conv8, Conv9, Conv10, and Conv11 are extracted separately in SSD as the feature layer of
classification and box regression. In the SVM model experiment, each image is scaled to a size of
300 × 300, and the number of predicted classifications (ClassesNum) of the six feature layers according
to Formula (2) is 2,

ClassesNum = ObjectNum + 1, (2)

where ObjectNum represents the number of manually labeled categories, and one represents an
additional background classification.

Figure 5. Foreign object indication based on a target detection algorithm.

2.4.2. Faster-RCNN with VGG16

The Faster-RCNN (with VGG16) algorithm flow can be represented as the second part of Figure 5.
In the framework of the Faster-RCNN algorithm, the input image is extracted by the convolutional
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network of the feature extraction layer, and the feature map output by the specified convolution layer
is used as the input of the RPN. The feature map obtained under different convolutional structures
has different characterization capabilities for input images. In this experiment, the Faster-RCNN
structure using VGG16 as the feature extraction network is first tested. This paper standardizes the
image size to 1000 × 600 as input, which is consistent with the original author’s parameter settings
in [18]. The feature map output by the convolution layer Conv5 is used as the input of the RPN,
and nine different size anchor boxes are generated according to the regulations at each anchor point.
All bounding boxes with high confidence in the anchor box are selected as a region proposal and sent
to the full convolution layer through ROI (Region of Interest) Pooling to obtain the category confidence
and regression box of the detected image.

2.4.3. ResNet

The Faster-RCNN (with ResNet50/ResNet101) algorithm flow can be represented as the third part
of Figure 5. The overall algorithm flow of Faster-RCNN (with ResNet50/ResNet101) is basically the
same as the previous one. The original VGG16 network is replaced by the ResNet network in the feature
extraction layer. At the same time, considering the performance of the experimental server, the input
image is adjusted. The image size of the input algorithm is 500 × 300, which enables the experimental
server to completely load a large network such as ResNet in a relatively low hardware configuration.

3. Data Set Preparation

When we divide the data set, the ratio of positive and negative samples in the training set is about
1:1.6. This division belongs to a balanced division mode, which helps the algorithm to learn more key
features of the classification in the learning phase. However, the ratio of positive and negative samples
on the test set is about 1:6, which is to simulate the real situation that the foreign object accident is
a low-frequency high-risk electric accident. Most of the real inspection images are images without
foreign objects.

As shown in Table 1, in the training of the classification algorithm, 305 images with foreign
objects are used as positive samples, and 500 images without foreign objects are used as negative
samples. Because we prepare training and testing data for SVM based on the cifar-10 data format, in
this paper, only the amount of data used by SVM has been trimmed. There are 300 images with foreign
objects and 500 images without foreign objects in the SVM training set; 100 images with foreign objects
and 500 images without foreign objects in the SVM testing set. In this paper, the image is processed
according to the rules into a dictionary format that Python can read quickly, as shown in Figure 6.

Table 1. Division of training and testing dataset.

Foreign Object No Foreign Object

Training set 305 500
Testing set 101 652

Total 406 1152

Figure 6. Cifar-10 data storage rules. The data stored in the [32 × 32 × 3] matrix are the compressed
data of the original image. Labels store image tags, image with foreign objects is 1, and image without
foreign objects is 0. File names are stored in filenames. The batch label stores the image as being
divided into training or test tags.
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For the training of the target detection algorithm in the foreign object indicator, this paper only
used 305 foreign object images, and the images were manually labeled. This is because the target
detection algorithm uses anchors for training. The positive samples during training are taken up by
the proposal region with the artificially labeled ground truth IOU (Intersection over Union) value
being the largest or larger than the set threshold. The negative sample is assumed by the proposal
region with the ground truth, whose IOU value is less than the set threshold. Therefore, there can be
no negative sample input during training. The experimental environment of the above experiment is
one server, and its specific parameters are as follows: The Tensorflow experimental framework is the
Linux and Windows10 environment. The software environment is Python3.6, CUDA9.0, cuDNN7.0,
and Tensorflow1.8; and the hardware environment is a Lenovo ZHENGJIUZHE REN7000 desktop PC
produced in China, it is equipped with Intel i7-8700 Core , 8 GB memory and NVIDIA GeForce GTX
1060 GPU.

4. Results

4.1. Calculation of Various Evaluation Indicators

4.1.1. Calculation Formula for Classifier Evaluation

After the above test, the paper analyzes the classification results of the first stage, and
draws the receiver operating characteristic (ROC) curves of the SVM, InceptionV3-retrain,
InceptionV3-fine-tuning and InceptionV4-fine-tuning models, as shown in Figure 7. The abscissa of the
ROC curve is false positive rate (FPR), the ordinate is true positive rate (TPR), and the area under curve
(AUC) is defined as the area under the ROC curve. When a positive sample and a negative sample are
randomly selected, the probability that the current classification algorithm ranks the positive example
before the negative example based on the calculated score is the AUC value. Therefore, the larger the
value of AUC, the more likely the current classification algorithm is to sort the positive samples before
the negative samples, which enables better classification. The above values can be calculated using
Equations (3), (4) and (5), respectively,

TPR =
TP

TP + FN
, (3)

FPR =
FP

FP + TN
, (4)

AUC =
∫ 1

0
TPRdFPR, (5)

where TP : True positive; TN : True negative; FP : False positive; TN : True negative. At the same
time, the point selected according to the Youden index is plotted in Figure 7. The ROC curve is often
used as an evaluation curve for medical diagnosis. When a comprehensive evaluation of the diagnosis
results is required, the sensitivity and specificity can be given the same weight in the medical field. It is
characterized by the same significance of the missed diagnosis rate and the misdiagnosis rate of the
research object. The larger the Youden index, the better the screening ability. See (6) for the calculation
method. The x-axis of the ROC curve is (1 − speci f icity), so the final formula can be simplified to
Label (7):

Youden index = max(sensitivity + speci f icity − 1), (6)

Youden index = max[sensitivity − (1 − speci f icity)] = max(TPR − FPR). (7)
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4.1.2. Calculation Formula for Evaluation of Foreign Object Indicator

The foreign object indicator performance index based on the target detection algorithm is the
recall rate and accuracy rate, where TP + FN = 126. AveragePrecision(AP) is the integral of the
PR-curve, which is the area under the curve (8)–(10):

Precision =
TP

TP + FP
, (8)

Recall =
TP

TP + FN
, (9)

Average Precision =
∫ 1

0
Precision(Recall)dRecall. (10)

4.2. Classification Performance Evaluation

In Figure 7, the blue dashed line is referred to as the “random chance”, which means that the
probability of the sample being classified as a positive or negative sample is random. In the ROC
coordinate system, the classification threshold at the (0, 0) point is the largest, and the classification
threshold at the (1, 1) point is the smallest. According to the ROC curve, it can be clearly observed that
when the classification recall rate is 100% (corresponding to the ordinate value is 1), the InceptionV3-retrain
model has the lowest error rate. At the same time, the InceptionV3-retrain model reduced the AUC value
by 0.4% compared to the InceptionV3-fine-tuning model, but reduced the error rate by 8%.

Figure 7. ROC of the classifier. (1) in the case of a 100% recall. The threshold points of the classifier are
marked with triangles, indicating that all images with foreign objects can be screened when the images
are classified by the threshold corresponding to the points. The abscissa value corresponding to the
threshold point is the misclassification rate, which means that the triangle mark closer to the left side
corresponds to the lower classification error rate, and the performance of the algorithm is better. (2) We
calculate the optimal classification threshold by using the Yoden index. The optimal threshold point of
the classifier is marked by a pentagon, which means that only a part of the foreign object image can be
selected when the image is classified by the threshold value of the mark point, and the classification
error rate is also decreased. (3) InceptionV3-fine-tuning has AUC = 0.977 as the maximum value and
SVM has AUC = 0.843 as the minimum value.
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In the foreign object image detection task, the paper should focus more on finding out all the
foreign objects in the image. InceptionV3-retrain, as the first stage classifier, can maintain the lowest
error rate among the four classification algorithms under the premise of 100% recall. Although the
error rate of InceptionV3-retrain is reduced by 25% at the optimal threshold classification point, the
algorithm cannot classify all the foreign object images, and there is a security risk in the scene of the
foreign object inspection of the transmission line.

4.3. Automate Marking Performance Evaluation

In Table 2 this paper, the InceptionV3-retrain algorithm is selected as the classifier when the recall
rate is 100%, and the corresponding classification threshold is 0.102. The remaining 233 sheets are all
misclassified images with an error rate of 36%. In addition, 334 classified images are used as the input of
the second stage target detection algorithm. The target detection algorithm PR curve is shown in Figure 8.

Table 2. Classification algorithm data.

SVM InceptionV3-Retrain InceptionV3-Fine-Tuning InceptionV4-Fine-Tuning

Recall 100%
recall rate 100% 100% 100% 100%
error rate 94% 35.9% 43.9% 100%
threshold 0.264 0.102 0.092 0.0

Optimal threshold

recall rate 83% 95% 91% 86%
error rate 29% 10.7% 5.8% 5%

Yoden index 0.54 0.843 0.853 0.811
threshold 0.428 0.546 0.503 0.4

Figure 8. Target detection algorithm PR (Precision-Recall) curve. (1) In the figure, each target detection
algorithm draws two PR curves. One is a PR curve that is directly input with 753 sheets as an algorithm
without going through the classification process. The other is the PR curve drawn with 334 images as
the algorithm input. (2) After using the two stages framework, each algorithm has a different degree of
increase in the AP value, which is since the first stage classifier filters out 60% of the negative samples.
(3) The SSD has the highest 0.7485 AP value, while the Faster-RCNN (with VGG16) AP is the lowest
0.64 of all experiments.
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When 0.5 is used as the display threshold, only the bounding box whose confidence is higher
than this threshold is displayed on the test picture. The specific values are shown in Table 3. The total
box indicates the total number of bounding boxes that the algorithm ultimately presents to the power
grid staff, and the TP number indicates the number of targets that are correctly found. The missed
target indicates the number of bounding boxes that the algorithm missed. Target detection precision
and Target detection recall are calculated according to Equations (8) and (9), respectively.

Table 3. Target detection algorithm data.

Total Box TP Number Missed Target Target Detection Precision Target Detection Recall

ResNet50 218 106 20 48.62% 84.13%
ResNet101 183 106 20 57.92% 84.13%

VGG16 122 90 36 73.77% 71.43%
SSD 150 93 33 62.0% 73.81%

5. Conclusions

In this paper, we introduce an OTL-Classifier, a binary classifier with an auxiliary automate
marker module. Compared to recent research, our method is much more application oriented. We have
three main differences:

• Our OTL-Classifier module can classify images with and without foreign objects. However,
recent research only processes images with foreign objects; they focused on detecting the type
and location of the foreign objects in the abnormal images. However, aerial images return
by drones and robots inspection include much more normal images than abnormal images.
Searching abnormal images manually is not only time-consuming, but also has poor precision
due to attention feature of human. Therefore, it is much more important to design a module
which could automatically extract abnormal images directly from original images returned by
unmanned vehicles.

• During the evaluation phase, we consider recall rate as more important than precision in our
application. A sudden wide-area outage caused by even one undetected foreign object will
affect people’s lives and industrial production seriously and may lead to a lot of economic loss.
Therefore, we think it is very critical to have a recall rate of 100%, so no abnormal images will be
missed during classification.

• Most recent research evaluated detection speed. For example, RCNN4SPL module spends 230 ms
per frame, YOLOv3 based module is 46 ms in average, Morphology based module is 95.8 ms
in average, and Motion compensation-based module is 64 ms. We didn’t test execution time
because it is highly dependent on the hardware. In addition, in our application, we don’t have a
very high timing requirement as path planning for automatic drive.

In this article, we have evaluated the classification performance of SVM and three Inception
variants, and the marking performance of SSD, Faster-RCNN with VGG, and ResNet. Experiments
shows our module based on Inceptionv3-retrain, and Faster-RCNN with ResNet101 achieves best
performance on the data set we collected from electric maintenance departments.

We summarize our contributions as follows:

• We proposed an OTL-Classifier module; it can classify images with and without foreign objects.
It can work in either Warning-Review mode or Normal mode.

• In the normal mode, the OTL-Classifier works the same as most common classification tasks,
the module uses optimal parameters that balances recall rate and error rate. It can achieve a recall
rate of 95% and an error rate of 10.7%.

• In the Warning-Review mode, the OTL-Classifier achieves a recall rate of 100% and an error rate
of 35.9%. It has a two-stage workflow. In the first stage, the binary classifier module provides the
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warning. In the second stage, the automated marker module helps electric workers review the image
quickly. This strategy can prevent outage caused by foreign objects and save more than half of the
time on image checking. Our future work will focus on decreasing the error rate with a recall rate
of 100%.
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Abstract: Object tracking has always been an interesting and essential research topic in the domain of
computer vision, of which the model update mechanism is an essential work, therefore the robustness
of it has become a crucial factor influencing the quality of tracking of a sequence. This review
analyses on recent tracking model update strategies, where target model update occasion is first
discussed, then we give a detailed discussion on update strategies of the target model based on the
mainstream tracking frameworks, and the background update frameworks are discussed afterwards.
The experimental performances of the trackers in recent researches acting on specific sequences are
listed in this review, where the superiority and some failure cases on each of them are discussed, and
conclusions based on those performances are then drawn. It is a crucial point that design of a proper
background model as well as its update strategy ought to be put into consideration. A cascade update
of the template corresponding to each deep network layer based on the contributions of them to the
target recognition can also help with more accurate target location, where target saliency information
can be utilized as a tool for state estimation.

Keywords: visual tracking; update occasion; update mechanism; background model; network layer
contribution; saliency information

1. Introduction

With the progress of computer vision technology, moving target tracking is being increasingly
popularly researched, which has become a challenging topic in the area of smart application. As the
development of computerÿ hardware devices and rapid progress of machine learning and deep learning
techniques, researches on each respect of moving target tracking has been endowed with great essence.
Object tracking has been greatly related to many applications in modern life, i.e., player identification,
vehicle monitor, smart human-computer interactions [1]. The mechanism of tracking a moving target
is that the target, which is distinguishable from the background, is separated out and marked by a
bounding box, which is usually regarded as a classification issue that target samples and background
ones should be from different classes. Nowadays, lots of frameworks of image classifiers, i.e., support
vector machine (SVM) [2], extreme learning machine (ELM) [3], Integrated Circulant Structure Kernels
(ICSK) [4], etc., have been widely utilized for researches of visual tracking. Furthermore, deep learning
is getting more and more popularly concerned, trackers using which framework have gained more
excellent performances due to the development of neuroscience.
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Diverse variations regarding the target usually occur in the process of tracking, i.e., variations
arise from changes of the outside environment, such as view angle, camera orientation, environmental
illumination, etc., and inherent changes of the object, such as self-rotation, self-deformation, and
self-variation of target appearance; therefore, a tracker with more robust capacity has to be designed,
whose framework structure and sample learning strategy are of key importance, which guarantees
its real-time and accuracy. Consequently, researching an update strategy with higher robustness and
efficiency has been of greater essence.

Object tracking framework can be usually typed into two categories: generative frameworks
and discriminative ones, where, for the former framework, i.e., particle filter, sparse coding, linear
predictions [5,6], Kalman filter, etc., target and background models are established at the beginning and
the features of them are extracted for the search of similar target or background features in succeeding
frame images to iteratively locate the target; The latter, i.e., deep neural networks, correlation filter,
random forest, feature bagging [7], etc., gets the object location by drawing candidate target patches
within a region and then select one that is distinguished from given background patches. With the
progress of researches on machine learning and deep learning tracking frameworks, the model update
has become a widely concerned part in recent researches. A good update mechanism is a crucial respect
measuring the reliability of a tracker. On the one hand, template models of the target and background
should be constantly updated to catch up with the their variation, which is a fundamental requirement
of model adaptation. On the other hand, the parameter model must be adjusted with the same pace
of the variations of the samples to satisfy the real-time requirement. Generally speaking, when and
how to update make the major parts of the update task. In general, a less-frequent update cannot
make sure that the target model can catch up with the change of target appearance, which gives rise to
tracking failure, while much too frequent update makes it excessively adaptive to new characteristics
of targets but neglects the influences of historical ones, which leads to background drift after a sudden
occlusion comes across, thus incurring fatal errors. Up to now, specific update methods are designed to
deal with tracking under irregular situations, such as occlusion and background clutter. For instance,
more attention will be given to the background analysis when partial occlusion occurs. Although
model update technology of visual tracking is gaining rapid progress and has obtained substantial
break through at present, there are too few reviews about it compared to other works of tracking, as
most reviews still focus on model construction and mathematical algorithms. This review will provide
discussions on recently-proposed model update mechanisms and talk about the merits and drawbacks
of them. Measures of improvement based on the superiority of existed update strategies and the
remaining challenging tracking problems are proposed at the end of this paper. The remaining part of
this paper is organized, as follows:

In Section 2, target update occasions in recent researches are talked about, in which three common
tools—occlusion detection, response map, and similarity judgement—and two complementary update
occasions—conservative update and long-short-term update (LST)—are respectively discussed in
detail. In Section 3, the update strategies of target models are illustrated, where recent strategies under
four commonly used frameworks—correlation filter (CF), dictionary sparse coding, bag-of-words
(BoW), and deep neural network—are respectively analyzed in detail. Background update mechanisms
are then illustrated in Section 4, where a new background update framework, called tracking with
background estimation (TBE), is briefed. In Section 5, tracking experiment performances of recent
trackers are listed, afterwards superior performances under several challenge factors of each typical
tracker and some failure cases are exampled and analyzed. Specific conclusions regarding the update
mechanisms are drawn from the testing statistics, and improvement measures of model update are
briefly summarized in Section 6.

2. Review on Target Model Update Occasions

Determination of the model update occasion is a key part of the update process. Low-frequency
update makes it difficult for a tracker to adapt to variations of target appearance, while too frequent
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update might make the target model introduce too much newest bounding box information that
increases the probability of background drift, meanwhile datum calculation burden grows, which cuts
down the tracker′s efficiency. In general, update occasions often embodies the types below:

(1) update frame-by-frame;
(2) update for every certain amount of frames;
(3) update when the target response is higher than a threshold; and,
(4) update when the target becomes less distinguished from the background.

Generally, the method that to merely update for every certain period neglects the distinction of the
target variation and its response, as well as the consideration of dealing with wrong updates, which
makes the tracker update too frequently when the target appearance remains stable for quite a long
period or update less frequently if the target constantly changes it appearance, which gives rise to error
accumulation that leads to tracking drift. Therefore, trackers with this kind of update method have
less robustness. Though update frame-by-frame, i.e., correlation filter, might well make the model
tightly pace with the variation of the target, this kind of update unavoidably brings about calculation
burden, thus lengthening the datum processing time, incurring unnecessary troubles to some extent.
Accordingly, to speed up the calculation, Fast Fourier Transmission (FFT) and Kernelized Correlation
Filter (KCF) have been recently proposed that are usually combined with the traditional correlation
filter method for image procession. For the construction of a more robust tracker that can pace with
target appearance variation as well as avoid error accumulation that is caused by improper update and
decrease calculation burden, mere frame-by-frame update or updating with a fixed time interval is
rarely adopted in recent researches, hence lots of target response assessment mechanisms, i.e., response
maps, foreground and background histogram, multiple-class dictionaries, etc., are proposed. Once the
tracked target in a frame is regarded as responsible, target the model update is then enabled, otherwise
the tracked object has less responsibility and model update is temporarily stopped.

2.1. Update Using Occlusion Detection

Occlusion is one of the most challenging factors in the process of tracking. It is unavoidable
that information of the occluding background part will be integrated into the target model if mere
frame-by-frame or fixed-time-interval update is adopted, which makes the tracker mistakenly detect
the occluding background part as the target, thus the bounding box stops at the occluding part [8].
Therefore, occlusion detection is required for judging whether the target has been occluded. Occlusion
comprises of partial occlusion and full occlusion. In the latter case, almost all of the pixels in the view
are background, which means that the target has temporarily disappeared. It is hardly possible to
observe the variation of the target’s appearance, so target model update is usually stopped when full
occlusion happens. However, when the target is partial occluded, only a part of it is visible, hence
part of the pseudo target information can be mixed with the target one in the target model if the
regular update mode is still used in this case. A special update mode should be utilized in the case of
partial occlusion.

There are increasing researches dealing with occlusions in recent year. Although it is easy for
the tracker to identify whether the target is under full occlusion, partial occlusion or no occlusion, in
quite a few researches, the update is only enabled when there is no occlusion, while it is disabled if
partial occlusion happens. For instance, several small patches will be drawn within and around the
bounding box after the target is located in a frame in [9] and the patches are classified into three types,
where the patches from class #A do not overlap with the bounding box at all, while those from class #B
overlap with the bounding box with higher target response and class #C with lower target response.
The target is regarded to be occluded if the number of patches from class #C reaches the threshold,
thus the target model is prohibited. Conventional correlation filter model update method is adopted
in [10], where the fixed learning rate is used for target appearance model update when there is no
occlusion; otherwise, the appearance model remains unmodified. Similar strategy is utilized in [11]
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for target occlusion detection, in which the occluding coefficient of each patch is calculated after the
target is located. An update is disabled when the sum of the coefficients is above a given threshold.
Complementary features, histogram of oriented gradient (HoG) and Hue, Saturation, Value (HSV), are
used in [12] for tracking, where templates that are related to HoG and HSV are respectively established.
Background pixel masking is carried out when there is occlusion and target’s accurate position and
scale is further calculated when partial occlusion happens. Still, the update of two feature templates is
enabled only if the target undergoes no occlusion. The Bhattacharyya Distance between the candidate
filters and the template in [13] has been used to identify occlusion in this research. Occlusion happens
if the distance is above a threshold and thus the template is no updated.

Although the conservative update strategy that target model update is prohibited when the target
is partial occluded can well prevent background patches from contaminating target templates, the
probability of target appearance variation in each frame never equals to zero, even if the target is in
the status of occlusion, therefore if the appearance model of the target is not properly updated at this
stage, the tracker might also be unable to pace with the change of the target, thus losing the tracking
before the target completely disappears. Local patterns are commonly used in some works to solve the
problem of target model update under partial occlusion. In the framework of local patterns, a target
model is departed into multiple non-overlapped patches, each of which is respectively tracked to
alleviate the impact of pseudo targets. In order to use local information of a target while remaining the
holistic structure under the situation of partial occlusion, local tracking that integrates holistic patch
and local ones is utilized in [14], in which a tracked object is departed into seven patches, including a
global one. The contribution score of each patch is calculated after it is tracked in a frame; afterwards,
patches with larger score will be selected for model retraining. To make use of available features of
unoccluded parts, in [15], part-based tracking that is similar to the idea in [14] is employed in the
state of partial occlusion. Key feature points are extracted to construct the target Gaussian map to
obtain the number of patches, thus the correlation filter of each patch is defined. Note that mere global
pattern is still utilized when the target is not occluded. For the recovery of a target after full occlusion,
owing to the fact that important target information has been preserved by the ICSK model in [4] at the
moment before the period of full occlusion, it is usually essential to use the information of the target in
the frames before full occlusion, after all of this period belongs to partial occlusion. To preserve the
important target information, detected object samples are still selected to update the classifier when
the target is partial occluded thanks to the ability to determine scale and position of ICSK, meanwhile
ICSK parameters are also preserved. During full occlusion, the parameter set of the optimal classifier
is selected according to the energy formulation to identify the reappearance of the target.

The tracked target cannot be identified as being completely responsible, as background pixels may
exist together with foreground ones in the bounding box more or less. Even though the background
pixel masking process [15] can help to alleviate the interference of background pixels, the existence
of noise might not ensure the correct mask of each pixel, thus the background-removed foreground
template might not be credible. Up to now, many frameworks, such as dictionary learning (DL) and
sparse coding (SC), utilize multiple-class and local-representation structures, i.e., local background
and foreground dictionaries are respectively modeled to check out how much background information
takes up in the representation of a tracked target so as to correctly track unoccluded parts of a target
and enhance the ability to discriminate the background from foreground of some generative models.
Owing to the sparsity of image information during partial occlusion, visible parts of the tracking
result are used for the encoding of template patches [16], where the corresponding template patches
less represent the occluded parts and other parts are regularly updated. Three types of dictionaries
are constructed in [17], namely D, Do, and Db, which respectively donate the tracking dictionary,
target dictionary, and background dictionary to enhance the ability to separate the background from
foreground for better target locations. A tracking result is classified into three types of patches, namely
stable patches, valid patches, and invalid patches, in which a stable patch is constantly represented by
the patch at the same region of the template during some period, while valid ones are the patches that
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are represented with less error by foreground template patches than background ones and invalid
ones are more frequently represented by background template patches. A tracking result is regarded
as reliable when the number of valid patches is no less than an extent and the total number of valid
patches and stable ones is also no less than a certain threshold; therefore, D and Do are respectively
updated, in which Do is updated while using valid patches.

2.2. Update Using Response Maps

To judge the responsibility of a tracked object, in the past two years, response maps have been
widely utilized in the field of visual tracking. A response map shows the probability of each pixel
belonging to the target, whose maximum value point is near to the center of the Gaussian map of the
target when the target is normally tracked, and when it is projected to a three-dimensional coordinate,
it appears to have only one sharp peak around which the values sharply decrease with farther distance
to it. When occlusion or background clutter comes across, more than one peak value can appear in the
same response map, or even there is only one peak, the peak appears not so high enough or it is not
sharp enough. Processed forms of the response map i.e., PSR, PAR, APCE, etc., are widely adopted in
some researches to identify the presence of occlusion or background clutter, which are the derived
parameters that measure the responsibility of a tracking result.

A tracking result is only judged to be reliable when the three-dimensional (3-D) response map of
the frame image has only one sharp peak. PAR [18] is defined to represent the fluctuation of a response
map to reflect the reliability of a tracked target, whose formulation is

PAR =
R2

max

mean(
∑
w,h

R2
w,h)

, (1)

in which Rmax represents the maximum response value, Rw,h is the value at a specific position, and the
mean function calculates the average value of the map. Higher PAR indicates a more reliable tracking
result. When the PAR and Rmax are both greater than a predefined threshold, the result is judged as
reliable, thus the correlation filter model in [18] is updated. Similarly, APCE is defined in [19], as

APCE =
(Fmax − Fmin)

2

mean(
∑
w,h

(Fw,h − Fmin)
2)

, (2)

where Fmax and Fmin, respectively, denote the maximum and minimum value of the response map, and
this parameter also reflects the fluctuation of the map. The context correlation filter in [12] is updated
when APCE and Fmax are both higher than the threshold.

The parameter PSR is also similarly defined, except that the sharpness of the peak is not put
into consideration, which is calculated by firstly subtracting the mean value and then dividing by the
standard deviation, as (3) in [20]

PSR =
Rmax − μ
σ

, (3)

where μ and σ, respectively, represent the mean value and the standard deviation of the response map.
A tracking result is regarded as responsible when the PSR is above 10 [20], and thus the long-term and
short-term filter memory models are updated; otherwise, the target is occluded and then further face
recognition is started.

However, most researches merely take the response map of the target in the frame justly tracked into
account, in other words, the influence of the maps in the previous frames are neglected. To be specific,
parameters, like PAR and APCE, etc., vary with different trends during different periods’—usually the
variation goes faster when the target is being gradually occluded or it moves away from the occluding
background object during the period of partial occlusion. So as to capture the process of the variation
of the response map under partial occlusion, the parameter FCDS is proposed in [21] to learn the
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variation feature of the APCE in all past frames for the identification of occlusion or background drift,
which is formulated as in (4)

FDCS =
mean(maxN(APCE[0 : n])) −APCEt

mean(maxN(APCE[0 : n]))
, (4)

where maxN(APCE[0 : n]) is the largest N values of APCE in all previous frames and APCEt is the
value in frame t. The correlation filter is regarded as not so reliable when its FDCS, namely FDCSc f ,
reaches a threshold, thus an update of the filter tracker and the color tracker is stopped. Otherwise, the
two trackers are respectively updated according to their discrimination scores.

2.3. Update Using Similarity Measurement

Multiple-template models are usually adopted in generative models, i.e., sparse coding, in which
template sets are updated along with the appearance variation of targets-in usual cases, a target
appearance model is updated when the appearance of the tracking result is similar enough to the
templates, while it needs to be updated when the similarity is not too low but relatively lower than
the normal value, which indicates an apparent appearance change. Commonly adopted similarity
measurements are cosine similarity, L1 norm, Euclidean distance, etc.

A template set can well represent a tracking result if the similarity values between it and the
majority of candidates are high enough; therefore, it needs to not be updated for calculation reduction,
while drift might occur when the similarity falls below a degree. Cosine similarity [22] is used for
measurement of the similarity between the tracking result and the templates, where the template with a
low similarity value is replaced by the tracked object when the similarity value is between 0.65 and 0.85
to avoid excessive mixture of background pixels. Similar update mechanism is utilized by the extreme
learning machine (ELM) framework in [23]; however, the ELM model need not be updated only when
the similarity is above the threshold, since the semi-supervised learning mode of ELM model and its
strong discrimination ability guarantees the quality of the tracked targets. Soft cosine similarity [24]
is defined for the measurement rather than conventional cosine similarity to cope with combined
challenging factors, i.e., out-of-plane rotation and apparent scale change simultaneously occur during
a period. In [24], a tracking result is departed into several parts, anyone of which does not contain too
many background pixels when the soft cosine similarity between it and the corresponding template is
no less than a predefined value, therefore that template part is updated in a linear interpolation way,
otherwise the update is prohibited. Of the multiple-feature pattern, the absolute error gets lower as the
similarity between the specific feature template and the corresponding feature of the tracked target
goes larger. The sum value of L1 norm of the subtraction matrix of all the template features and the
tracking result is used to reflect the total difference, which is greater than a certain threshold when
some of the features have undergone evident variance to measure the difference between the result and
the templates. The feature template with the smallest weight is then updated to adjust to the change of
this feature of the target.

2.4. A Conservative Updating Strategy

Usually, the reliability of the tracked object needs to be estimated no matter how frequently the
model is updated in the regular cases. However, drifts may occur when the surrounding patches
that are similar to the object are mistakenly identified as foreground, incurring fatal impacts in the
consequent frames if the errors are not erased in time. Under this situation, it is sometimes hard to
discriminate true appearance change and occlusion when the difference between the tracked target
and the template gets bigger.

A conservative update strategy is proposed in [25], in which the reliability of the tracked object is
not considered, to reduce impacts of drifts under background interference. During tracking, a whole
sequence is departed into several long time periods, each of which is further divided into smaller ones,
and several rather than one trackers are established, of which the amount is equal to the amount of
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small time periods within each larger ones. Each tracker is distributed with a specific update policy,
but the public update must be performed frame-by-frame in the first small period of each big ones,
thus each tracker stops updating after a certain amount of small periods and then restarts.

The beginning of the next big period is shown in Figure 1. The tracking framework in [25] is
named MT.

s
tra
c

Figure 1. Update Policy of MT.

At the end of a big period, each tracker might track to a position different with which tracked by
other ones-some trackers are able to correctly capture the target, while others might fail; therefore, how
to select an optimal tracker needs to be further considered. So as to measure the trackers’ performances,
each one of them tracks the object backwards from the terminal position for a long period equaling to
which in the forward tracking, of which the update policy is also the same as in the forward tracking
stage. Trajectories of the forward and backward tracking of each tracker are both recorded after the
entire process. For a tracker with better performance, the distance between the trajectories of the two
different directions is usually comparably lower than others, thus the tracker with the least distance in
a big period is selected as optimal.

The tracker that is composed of feature-specific ones named MTM is designed on the basis of the
single-feature tracker model named MTS when considering that different features can also bring about
different influences to the tracking effect, thus the total amount of trackers equals the product of the
amount of features and that of the small periods. The optimal tracker is chosen from all those ones
after a round of forward and backward tracking process.

2.5. Combination of Long and Short Term Update

For trackers in many researches, the target model is also updated when a sudden appearance
variation or occlusion occurs in addition to when the scheduled update time is up in order to resist
drifts that are caused by abrupt target appearance changes or partial occlusion brought about from
fixed-time-interval update. It is called update in combination of long and short terms (LST).

For the resistance of impacts of scale variation, deformation, and some other sudden factors,
“semantic segmentation” mechanism is introduced in [26], where the correlative parameters of HoG
and RGB feature maps between target-based “segmentation map” and position-based “tracking map”
are respectively calculated. As long as the target state suddenly changes, the correlation parameter
between the “segmentation map” and the hybrid feature map goes higher than that between the
“tracking map” and the hybrid feature map, thus the “segmentation signal” is comparably more reliable
than the “tracking signal”. An immediate target model update is needed to satisfy the real-time changes
in this case. Unlike conventional fixed-time-interval update, in this research a frame is regarded as a
key frame when the tracking result is judged to be reliable, hence the tracking network is updated
when the number of key frames reaches a certain amount rather than frame of a specific index is
reached. To avoid erroneous update aroused from occlusion or background clutter, a kind of drift and
occlusion detection method is proposed in [27], in which the target model and dual network model are
short-term updated while using the best latest tracking results; In addition, the long-term update is
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performed every ten frames. For adequate use of earlier target information, the score of a tracked target
is calculated in [28], which is above 0.5 if the result is regarded as responsible, thus the frame number is
added into both the long-term frame number queue (contains 100 frames for most) and the short-term
frame number queue (contains 20 frames for most). Appearance variation is detected when the positive
classification score is less than 0.5; hence, positive samples from the frames in the short-term queue are
used for the network update to meet the demand of pacing with the instant variation. The long-term
update is also performed every constant ten frames, when the positive samples from the long-term
queue that are rich of previous target information are selected to update the network.

2.6. Module Summary

This module discusses commonly utilized model update occasions. Basic update occasions are
listed at the beginning and limitations about time-scale-based update method are briefed next. Recently
adopted update occasion determination methods are then illustrated in detail that three kinds of
tools for measurement of target’s responsibility—occlusion detection, response map, and similarity
measurement—and two kinds of newly-proposed hybrid updated occasions—the so-called MT with
a conservative update mechanism and LST are respectively illustrated. A reliability check of the
tracked object ahead of track can well prohibit erroneous update of the target and tracker model.
Additionally, the mixture of long and short term update that fuses the advantages of different update
occasions further enhances the adaptability of the trackers. Further solutions to disturbance of similar
objects in the target’s surrounding area are required in future researches. According to this problem,
response check on surrounding background regions should be utilized for the recognition of the true
target-the real position can be obtained by comparison of the similarity between the characters of the
surrounding background and which of the surroundings templates or utilizing the response maps of
the surroundings patches, which might help to alleviate background drifts.

3. Review on Target Model Update Strategies

The design of the model update strategy is a hard project in the work of target tracking. The strong
abilities to discriminate the foreground and the background and recover the target after temporary
disappearance are not the only requirements for a robust tracker, lower time, and memory consumption
as well as an excellent data structure are also essential demands of a good update strategy. In recent
years, increasing researches on object tracking have focused on how to balance the robustness of
a tracker and low expense of time and memory space. Updated strategies that are based on four
commonly-used tracking frameworks—correlation filter (CF), sparse coding (SC), bag-of-words (BoW),
and neural network are respectively illustrated below.

3.1. Update Strategy Based on Correlation Filter

Correlation filter (CF) has become one of the most popular utilized models for moving target
tracking, especially since Kernelized Correlation Filter (KCF) was first proposed in 2015, and nowadays
a large number of researchers have paid attention to the design of filter models with much higher
speed, owing to the character of fastness, preciseness, and low expense of time and memory space.
Improvement measures of CF model update are also proposed in recent years, having created great
breakthroughs over the traditional CF model update method.

Traditional CF target and parameter model update is the linear interpolation of the previous
model and the model just trained by the samples from the current frame, as in (5) and (6), which
respectively formulates the update of the target model and the parameter model

x∗t = (1− α)xt−1 + αxt, (5)

A∗t = (1− μ)At−1 + μAt, (6)
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where xt and At respectively represents the tracking result in the current frame and the tracker
parameters, α and μ respectively means the learning rate of the appearance and parameter model.
Constant learning rate is widely used in early models [15,29–33]; however, fixed learning rate cannot
properly reflect the real variation of the target appearance, owing to the uncertainty of target variation.
If the rate remains high when the target is occluded, some background characters will unavoidably
mix into the appearance model; otherwise, if it remains a lower value, the target model will not be able
to catch up with faster variations of the target [8,28]. Most recent researches have adopted adaptive
learning rates that are adjusted to the extent of target appearance variation and the reliability of the
tracking result, which increases the robustness of the tracker model to a great extent, in order to avoid
drawbacks of the constant learning rate.

In the last two years, response maps are widely utilized to measure the reliability of the tracking
results, of which the simplest method is to use the maximum value. A parameter in [34] is defined to
adjust the learning rate according to the response of the tracked target, which is equal to the ratio of
the maximum value of the response map in current frame to the maximum of all the response values
in previous frames in order to avoid impacts aroused from drastic target appearance variations led by
background drift, as formulated in (7)

μ =
F(t)

max
{
F( i)}t−1

i=1

, (7)

in which F(t) denotes the maximum value of the response map in frame t; μ gets smaller when
improper background drift or heavy occlusion happens, so as to prevent the template model from
being contaminated by the tracking result in current frame. The target appearance model is updated as
(8), where γinit is the initial learning rate.

x̂t = μγinitxt + (1− μγinit) ˆxt−1, (8)

Owing to the fact that target appearance varies in a continuous form, the variation remains
stable as time goes on in normal situations; hence, response maps in each frame of a sequence are not
independent, especially relevant between two adjacent frames. The reliability parameter (denoted
as St in (9)) is defined in [35], which is the product of negative exponent of the distance between
the target center in the adjacent frames and the PSR value in the current frame, to more effectively
represent the stability of the appearance variation of a tracking result. Additionally, to put the temporal
stability into consideration, previous movement information is further assembled and an increasing
sequence W = {θ0, θ1, . . . , θΔt−1}, (θ > 1) is introduced for providing the latest scores with more weights.
The learning rate keeps unchanged when the value in the current frame is above μ (is set to 0.7 in the
experiment) time of the weighted average of it in the last Δt (=5) frames; otherwise, it decays to the
ratio of the reliability value in the current frame to ì time of the weighted average of it in the last five
frames, as in ((9), (10) and (13))

St = exp(− 1
σ2 ||C(bt) −C(bt−1)||2) × PSRt, (9)

_
S =

1
Δt

∑
i

ωiSi, (10)

At = (1− η)At−1 + ηA∗t , (11)

xt = (1− η)xt−1 + ηx∗t , (12)

where C(bt) denotes the center of the tracked target in frame t PSRt is the PSR value that is introduced
in the second module of Section 2; ωi is the weight in frame i, where the index i ∈ [t − Δt + 1, t], and
ωi = θi/(

∑
i θ

i), θi is the (i – t + Δt)-th element in the sequence W;
_
S is the weighted average reliability
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of the last Δt frames. (11) and (12) are, respectively, the formulation of parameter and target appearance
model update, η is the adaptive learning rate, which can be formulated as in (13)

η =

⎧⎪⎪⎨⎪⎪⎩ ηinit St > μ
_
S

ηinit[St/(μ
_
S)]
β

other
, (13)

where μ is the fixed parameter that equals to 0.7 and β is the decay factor. This update strategy works
well during the process of partial occlusion—when the target is being gradually occluded, the size of
its visible part is getting smaller. The shape of the response map become increasingly irregular and
the target response value goes lower correspondingly; therefore, the reliability value St also drops,
and the learning rate is adapted lower to avoid improper update (as the lower formulation in (13)
when St ≤ μ_

S). For the other case, when the target is leaving off the occluding background, the size of
the visible part continuously grows, and the response map gradually recovers to the normal shape,
thus the reliability value St increases. However, the learning rate remains unchanged in this period to
inhibit the excessive integration of new target characters that cuts down the universal usage of the
model (as the upper formulation in (13) when St > μ

_
S).

The decrease of response parameters might not be only related to the interference of pseudo
targets, self-variation of the target appearance can also bring about the temporary drop in the current
and last few frames. The target model is badly in need of an instant update at the moment but it
might be disabled if this decrease is mistakenly regarded as the consequence of unreliable variation.
The authors in [36] believe that the variation of the target is proportional to its instant speed. Hence,
dynamic update of the target model should also be paced with the variation of the speed of the target in
addition to the changes of its characters. The learning rate in [36] is determined by two aspects—target
moving speed and its feature variation. To get over the problem of partial occlusion that makes it
difficult to update, as well as avoid the defect of the speed measurement by distance description, it is
believed that the variation of target speed and appearance features are complementary; therefore, the
learning rates that are relevant to them ought to be respectively defined, i.e., θ1 and θ2 respectively
in (14) and (15), which increases with the speed and similarity between the template and the tracked
target, respectively. The final learning rate is formulated, as in (16)

θ1 =
1

1 +
(

6
1+v

)5 , (14)

θ2 =
1
2

e5c− 5
2 − e

5
2−5c

e5c− 5
2 + e

5
2−5c

, (15)

θ = αθ1 + βθ2, (16)

in which v and c denotes the speed that is measured by the distance between target centers in two
adjacent frames and the similarity between the tracking result and the template, respectively; e is the
natural exponent base; α and β respectively denotes the adaptive coefficients of θ1 and θ2. To learn
more about the derivation of θ1 and θ2, please refer to [36] for more detail.

The linear interpolation update calculation makes the model sustain the old target appearance
as well as introduce new appearance features. The single template model is not able to adequately
reflect historical target appearances, although the learning rate can be real-time adjusted according to
the response of the target. To overcome this limitation, multiple-template structure, which is being
more commonly adopted in generative models, is utilized in some CF trackers, as in [8], to get over the
difficulty of calculating the learning rate. Two sets of templates H∗f =

{
H∗i
}n
i=1

and H∗s =
{
H∗i
}n
i=1

are
established respectively for the first and second tracking in [8], the former of which is asserted by the
tracking result Xt in each frame, i.e., H∗f = H∗f ∪ {Ht}, Ht = G/Xt, where G denotes the trained filter
parameter image. In the meantime, a template with a relatively larger difference from the result and
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lower confidence value is removed from the set. Similar to the representation form of sparse coding,
the tracking result is linearly represented by the target template set F =

{
fi
}n
i=1

ft ≈ Fa =
∑

i

fiai, (17)

in which the coefficient vector a can be solved through sparse coding and it is used for the generation
of candidate regions for the first track in the next frame. The second track template is acquired by
the combination of the first track template and the original template in the next frame, which is used
for the selection of the optimal candidate as the tracking result. The formulation of the second track
template is as in (18)

H∗si = (1− p)H∗t + pH∗f i, (18)

where p is the proportion parameter.
A multiple-filter template structure is adopted in [37] to form a strong CF classifier based on

the CFs from current and previous frames in order to utilize historical parameter models. To reduce
calculation complexity and memory consuption led by storing similar CFs from adjacent frames, CFs
are clustered. After the target in frame n is tracked, the CFs in the last r frames, including #n, are firstly
added into the CF set while those in other n-r frames are clustered into K classes; afterwards, the CF
with the lowest classification error in each cluster is added into the CF set. The K + r CFs are combined
with different weights to form the final strong CF, which can be formulated as in (19), and ρi

n is the
weight of the i-th filter in frame #n calculated as in (20), where ei denotes the training error of the filter
calculated as in (21), in which (xt, yt) is the new training sample of the t-th frame, whose spatial size is

M × N and each sample x(k)t of xt is a d-dimensional vector [x(k)(i)t ]
l

i=1 x̂t and f̂t are Discrete Fourier

Transforms (DFT) of xt and ft and wk denotes the weights of all samples x(k)t , which is defined as in (22).
However, the CF set is updated every certain frames rather than in each frame to cut down calculation
burden and prevent useless operations.

f strong
n =

K+r∑
i=1

ρi
n f i

n, (19)

ρi
n =

1
2

ln
(

1− ei
ei

)
, (20)

ei =
M×N∑
k=1

wk

⎛⎜⎜⎜⎜⎜⎝F−1

⎧⎪⎪⎨⎪⎪⎩ d∑
l=1

x̂(k)(l)n • f̂ i(k)(l)
n

⎫⎪⎪⎬⎪⎪⎭− y(k)n

⎞⎟⎟⎟⎟⎟⎠
2

, (21)

wk =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
Yk/

∑
m,n

exp
(
−σ

(
(m−M/2)2 + (n−N/2)2

))
at the beginning

wk∑
k wk

exp

⎡⎢⎢⎢⎢⎢⎣ρi
n

(
F−1

{
d∑

l=1
x̂(k)(l)n • f̂ i(k)(l)

n

}
− y(k)t

)2⎤⎥⎥⎥⎥⎥⎦ others,
(22)

3.2. Update Strategy Based on Dictionary Learning and Sparse Coding

Dictionary learning (DL) and sparse coding (SC) are common generative frameworks of visual
tracking. The template set is usually made up of the tracking results from each frame, while at the
beginning stage of tracking it consists of the positive and negative samples drawn in the first frame.
Two common ways generates the dictionary [38], one of which is through learning methods, i.e.,
principal component analysis (PCA), where the dictionary is acquired by the form of iterative training
of samples in specific frames, the other is to directly insert the tracking result into the template set and
then select a subset. The latter method is more popularly adopted in the recent year.
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The dictionary model needs to be constantly constructed with the appearance variation of the
target and background. When considering that there are some slight differences between two adjacent
frame images, from each frame positive and negative samples should be added into the sample set.
However, there are at least two variables must be iteratively solved in the normal dictionary learning
framework—the dictionary and the sparse coefficients, obviously calculation burden will increase if
the dictionary is updated every frame that unnecessary updates may have consumed a lot of time.
For the balance of tracking accuracy and efficiency, in [39], foreground and background samples are
preserved after tracking in each frame, but the dictionary is updated every T (=15) frames, which is
mainly trained while using the target and background samples in the last 15 frames and is emptied
whenever the dictionary update is finished. Target samples in the first frame and the sample that is
calculated as the mean image of all the best tracked results are also used for training and never deleted
after updates to overcome the impacts of bad positive samples arouse from occlusion or background
drifts. Similar dictionary learning way is utilized in [40], whereas background samples are not used
for dictionary training, and the method in [40] is the improvement of the space sparse learning (SSL),
which fixes too much attention to positive samples in the latest frames while ignoring the contributions
of distant tracked frames, which might unavoidably make the template integrate with too many newest
characters that makes the tracker hard to re-detect the target after full occlusion or out-of-view.

Currently, the latter dictionary construction method that selects a set of reliable tracking results
as the dictionary has been more popularly utilized, which is termed as sparse coding, in order to cut
down the calculation burden brought about by dictionary training and alleviate the impact arouse
from irregular sample distribution generated from fixed-time-interval update. The simplest way is to
directly use the tracking result in the current frame as the new template and insert it into the set or
replace one with the least similarity in the set with it. However, owing to the reality that the image of a
tracked object is often interfered by pseudo target pixels or noises aroused from irregular illumination,
the target model might get distorted if the raw tracking result is directly added to the set. To eliminate
the influence of noises, trivial templates [41,42] are usually used for target image representation, which
is expressed as in (23)

min
z
||g−Bz||22 + k||z||1, s.t. B = [E, I], z = [a′, h′], (23)

in which g denotes the raw target image, B is the template set that is composed of a denoised template
set E and a trivial template I, and a’ and h’ are their coefficients correspondingly. The denoised target
image T = Ea’ rather than the raw image is used to update the template model. So as to overcome the
defect of less enough contribution of the denoised templates due to the excessive sparsity effect on
them, the sparsity constraint is only imposed on the trivial template set in [42], which is formulated as
in (24)

min
q,e
||p−Uq− e||22 + k||e||1, (24)

where p is the image of the raw tracking result, q and e are respectively the coefficients of the denoised
template set and the trivial template set, and U is the eigenbasis of p. The final image

∼
p = Uq is inserted

into the template set. Although the template set is also updated every a few (=5) frames, to make it
more representative that it should not contain too much newest characters or too old ones, the set
composed of 10 templates is established, where the target in the first frame is permanently preserved
in the first room, while tracking results are stored in other nine rooms in time order. The templates in
room 2, 5, and 8 are removed and the denoised results in three editions are added at the rear.

A global update of templates makes the model less complicated and the calculation burden is thus
alleviated. However, the representation of each target part should not be the same due to the truth that
different features are contained in different regions of a target image. Besides, the sparsity constraint
does not work well if a template set that can only globally represent image is used. When considering
different variation form of each part and the effect of partial occlusion, target dictionaries are not
only the subset of a template set according to the theories in newest researches, patch dictionaries are
usually established instead of holistic ones that a specific region of the templates are used to construct
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the local dictionary of that target region [16,17,41,42]; therefore, different update policies are utilized
on different local patches. For more robust representation of visible object parts when other parts of
the object are occluded, the object is represented in a different form from the situation of no occlusion
in [16]. During partial occlusion, the contribution of each template patch is calculated while using
the tracking result—occluded patches contribute much less to the representation, therefore template
patches with a higher contribution value can be effectively updated while the update of other patches
is temporarily prohibited. To eliminate the impact of background pixels in a target image and make the
tracker model more robust to deformation and rotation, object patches are classified into three types:
stable patches, valid ones, and invalid ones, and three types of dictionaries, called total dictionary,
object dictionary, and background dictionary are constructed in [17], which has been illustrated in the
first subsection of Module 2. The target dictionary Do is updated while using valid patches.

3.3. Update Strategy Based on Bag-of-Words

Objects in each frame of a tracking sequence can be only classified into two classes—object and
background. In terms of animal’s vision mechanism, the classification of two different types of objects
is usually according to the characters that are not the same among them, which gives the inspiration of
bag-of-words (BoW) model in the domain of visual tracking, for the fact that in general characters
contained in the foreground are distinguished from that in the background, thus there should be
plenty of symbolic features to assist in object classification. However, there have not been too many
tracking algorithms that are based on this framework when compared to other ones up to now, and
less robustness has been shown in the tracking performances, for the reason that most of them neglect
the consideration of the holistic structure of the target and background.

Visual “words” are the visual characters from the area of the target and background in a tracking
frame that are used as training samples in discriminative frameworks. For instance, in [42], the “words”
are classified in a supervised way while using SVM. During the update process, new visual foreground
“words” and background ones are extracted from the region of the object and a random background
patch, respectively.

However, the background and foreground in one frame might share some “words” with similar
features, therefore a background character might be mistakenly classified as a target if it is much too
similar to some features in the target feature bag. Hence, the target “words” like these cannot be used
for discrimination. In [7], the authors believe that target occlusion might well happen when there exist
features in the bounding box that are similar to or even the same as those in the surrounding area.
If the number of these features is larger than usual, occlusion can be surely regarded to have occurred.
In usual condition where no occlusion happens, foreground and background features in the bounding
box are respectively merged into the target feature set and the background one; afterwards, other
background features are searched from the surrounding background in the past few frames and then
merged into the new background feature set, which has made the background more distinguishable
that false targets have lower probability to be misidentified as the true one. A similar unsupervised
way is utilized in [43], in which if the distance between a word vi in the context bag Mt

B and its nearest
neighbor word vn from the bag of the last frame is lower than the threshold τB, a new word vnew

in combination of the two words is added into the word bag in the current frame, as in (25), where
C denotes the flag of background or object and á is the proportion parameter; otherwise, when the
background word bag Mt

B is updated, vi is directly merged into the bag: MB
t = MB

t ∪ vi. If it is time to
update the object word bag MO

t , there is a need to check whether the current word vi is reliable, which
is measured by the distance between it and its neighbor word vm from the newly updated background
word bag Mt

B and that between it and the neighbor vn from object bag MO
t−1 of the last frame. The word

is regarded as reliable if the latter distance d(vi, vn) is smaller than the former, named d(vi, vm); thus, it
is merged into the object word bag in the current frame: MO

t = MO
t ∪ vi; otherwise, no bag is expanded.

In addition, when any of the two bags is full, some words are randomly removed from the bag.
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vnew = (1.0− α)vn + αvi,
MC

t = MC
t ∪ vnew,

(25)

3.4. Update Strategy of Neural Network Models

A series of neural network framework have been widely adopted in researches of visual tracking
because of its strong capability of feature extraction and image classification, of which researches on the
improvement of accuracy, speed, as well as the structural layouts are gaining rapid progress. Quantities
of labeled images are used for iterative training and during training features of different depths that
describe the trained samples from different aspects are extracted, thus a set of parameters with high
validity are finally determined thanks to the neural structure of it, which greatly alleviates the tedious
process of handcrafted feature extraction in traditional machine learning models. A huge challenge
of visual tracking under neural network framework today lies in the shortage of training samples as
well as in the sensitivity to irregular sample distribution and noisy samples [44], of which the sample
distribution and quality of training samples decides the capacity of a network to a large extent. So as
to further boost the capacity of tracking networks, the hot topic of tracking under deep neural network
has recently transferred to the further procession of training samples, which is a credible mark of
progress in the research of deep learning.

The distribution of foreground and background stays stable during tracking in a short period.
The samples used for model update should possess two characteristic to make the network adjust to
the appearance change of the target: firstly, the frames that the positive samples are selected from
should be as close as possible to current frame to ensure the real-time requirement; secondly, it must
contain a correctly tracked object that is without the influence of occlusion or drift. In other words, it
must be responsible enough. Based on these two characteristics, during the stochastic (short term)
update reliable samples are picked out for model retraining in [27]. To make the target model less
dependent on newest appearances and cope with the lack of positive samples when temporary target
loss occurs during periodically (long term) update, positive samples from the first frame are also used
for the update as supplement in addition to from the best tracked frames. The similar method that
takes the samples in the first frame into account is also utilized in [45], where Gaussian maps of each
frame image also take part in the update training.

The initial appearance is preserved in a network model if the target samples drawn from the
first frame are put into consideration when updated, which is helpful for target re-detection after its
reappearance after temporary disappearance. Pessimistically believed in [46], from the author’s point
of view, only the positive sample from the first frame is completely reliable, whereas contamination and
decision mistake must exist in other frames to some extent, which is also deemed to be true in [47] that
there must exist error a bit or too much in each frame, except in the first one. However, optimistically
speaking, thanks to the close appearances from the two adjacent frames, a trend of the variation can be
foreseen within a small period (no above than three frames); therefore, there exists a high confidence of
making sure whether the tracking result is responsible. As a matter of fact, the target appearance might
have undergone variances plenty of times after hundreds of frames of tracking, it is not sufficient to
achieve re-detection only through the target appearance in the first frame; since, in usual cases, the real
appearances of the target in the last few frames are much closer to that in the re-detection frame, as the
assumption that target samples that satisfy the two conditions listed in last paragraph should be more
important. Target reliability detection is utilized in some researches so as to use more reliable samples,
whereas the best-fitted positive samples are selected for retraining. A read-and-write memory structure
is established in [46], to which the tracked object is inserted and the sample with the lowest confidence
is removed from it unless it is full. During the update, scores of importance are given to the selected
samples from the memory for calculation of the gradient descent parameters. For adequate use of the
reliable samples in the past frames, the self-paced selection model is adopted in [48] to control the
selection of positive samples, those with the lowest loss value based on the current loss function are
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selected for network retraining, and the criterion of the samples to be selected for retraining in a frame
is based on the overall reliability of the samples in the previous frame.

3.5. Module Summary

In this module, the update strategies under four mainstream tracking frameworks—correlation
filter, sparse coding (dictionary learning), bag-of-words (features), and deep neural network—are
discussed, and the progresses are illustrated according to the specific examples in recent researches.
Questions regarding the challenges that remain in the existed update strategies are summarized as
below: (1) How to build a template set structure that includes more abundant information about the
target but consumes the least amount of memory as possible; (2) How to more effectively choose
training samples that contain various kind of target appearances and control the distribution of the
sample set for deep neural network update; (3) How to deal with visible parts of the occluded target
and make good use of them for update to boost the network’s adaptation to newest appearances; and,
(4) How to separately use different features of the target and utilize feature-specific update methods to
make the tracker more robustly adjust to the variation of each feature. Contributions of each feature or
convolution layer should also be considered for the update at the global level.

4. Background Model Update

The environment of the target existence is background. With the movement of the target, the
background also varies its appearance, so the correct estimation of targets’ surrounding background is
the premise of correct location of the target. Characters of the background regions that surround the
target are especially essential to prevent drift to similar objects in the background, which should be
distinguished from the characters of the target [49]. Compared with the target, the background occupies
much larger area in the view of a frame, whose appearance features appears more complicated, hence
there ought to be plenty of available negative sample sources, therefore how to more credibly select
background samples is also a key part in the work of update. Background model update occasion and
strategies are discussed below.

4.1. Background Sampling Methods

Sampling of background samples is the key part of the update work, owing to the fact that the
number of background patches is far larger than that of foreground patches. Random selection is
adopted in some researches, for instance, background “words” are extracted from random regions
outside the target area in [31]. Yet, an object must exist in a specific environment—it must possess an
exact position in the background area. Based on this truth, the authors in [2] hold the view that all
non-overlapped background patches are not equal, and background regions with different features
affect apparently differently on the sample classification. In this research, sampled background patches
are clustered into multiple groups; afterwards, the specific SVMs are trained using each group of the
background and target samples. Negative samples distant from the target area are drawn for update
to make the foreground samples more distinguishable, where the sampling method is often utilized in
extreme learning machine (ELM) [3,50] frameworks. Some SC based trackers also use background
patches faraway from the object, i.e., [41,51].

Nevertheless, not all of the background characters are of valuable use. On the basis of animal’s
visual tracking mechanism, the background regions near to the area of the moving object contain
the most valuable information that can help with target location; hence, they ought to be the most
available parts through the entire background, while the influence of the information of background
far from the position of target are of far less importance. The examples of background sample selection
policies in last paragraph overlook the relationships between the target and its context, which violates
the mechanism of animal’s selective attention, despite the fact that the ELM frameworks are robust
enough to fight against the diversity of sample appearances. Luckily, there are an increasing number
of researchers who have realized that mechanism that background characters close to the target area

125



Electronics 2019, 8, 1207

ought to be given the highest importance. For instance, background samples that are drawn near to the
target region are used for the dictionary model update in [52], which is the spatial constraint of the data
sampling in the article, in which the temporal constraint is that the samples selected for training should
be from the latest few frames. This distance constraint is also satisfied in [46] by the update of the
network model. Of the bag-of-words (features) based tracking frameworks, as in [7] and [43], words or
features in the surroundings near to the target are used to update the context (background) bags when
the foreground bags are usually updated in parallel, which has been illustrated in detail in the third
subsection of Module 3. The parameter of intersection over union (IoU) is usually used to identify
whether the patch that is selected around the target is foreground, the patch is regarded as a positive
sample when which is above a higher threshold, or a negative one if below a lower threshold. In [28]
and [53], IoU is used to help draw positive and negative samples for network update. Samples whose
IoU are between the two thresholds are also picked out for network retraining in order to increase the
robustness of target position and make abundant use of visible parts of a tracked target when partial
occlusions occur.

Dense sampling is commonly utilized as for the density of sampling, like some particle filter based
sampling methods, i.e., [51]. Dense sampling means that positive and negative samples are drawn
within a length of radius according to a given distribution, i.e., Gaussian Distribution, in which there
is a large overlap between any two of the samples of the same class. The advantage of this kind of
sampling approach lies in that it not only makes abundant use of the background information around
the target thus strengthen the discrimination capability of the tracker, but it also helps to provide more
sufficient source of samples, which boosts the robustness of deep networks.

4.2. A Kind of Background Unity Estimation Approach: TBE

Up to now, most tracking algorithms have concentrated a lot on the construction and update
of target models, while those of background models have been rarely researched. The distribution
of the feature of the target’s surrounding area is usually irregular, owing to the complexity of the
background. Therefore, the requirement of accurate target location cannot only be satisfied through
simple target matching methods. When the target is occluded, its appearance has gotten incomplete that
available target characters have become less, which makes it hard to distinguish from the background.
An original method, named Tracking by Background Estimation (TBE), is proposed in [12], which
includes the approach of background modeling and update strategy by which foreground pixels are
extracted out for target detection and location, to achieve more accurate target location especially in
the state of partial occlusion.

TBE is based on the principle of background subtraction, through which the preserved area of
foreground pixels is used for target detection and location; afterwards, the appearance model of the
target is learned. Suppose that the entire image fi is composed of a target ti and a background bi i.e.,
fi = {t i, bi}, where i is the frame index, and the mask of the background bi in frame i is identified as mi.
All the pixels in the image domain of fi compose the set Pi. Given a pixel x ∈ Pi, if x belongs to the
background, there is bi(x) = fi(x) and mi(x) = 1; otherwise, bi(x) = 0 and mi(x) = 0. To eliminate

the influence of background illumination, “mean-background” is defined and suppose
∼
bi is the

mean-background in frame i, the corresponding mask of which is
∼
mi. All of the pixels in the image

domain of
∼
bi compose the set

∼
Pi.

Assume that the camera is stationary, the background in two adjacent frames is completely the
same, thus ti = fi − bi−1, and the target can be recognized by means of the subtraction of the frame
images. Yet, in almost all cases, the camera is in movement sometimes, which brings about the
deformation and scale variation of the background. Based on this factor, the warped image in frame i
is identified as b̂i, which is transformed from the mean-background in the last frame, as in (26)

b̂i= Hi ∗
∼
bi−1, (26)
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where ∗ is the transform operator and Hi is the calculated homography matrix. The warped b̂i from the
mean-background in frame i − 1 suits to the background in the current frame i, making the background
subtraction applicable. Thus, the mean-background in frame i is calculated by the weighted sum of b̂i
and b̂i, as formulated in (27)

∼
bi(x) = wT

i •
(
b̂i(x), bi(x)) , s.t. x ∈ ∼Pi−1 ∪ Pi, (27)

Some background regions in the previous frame do not appear in the current frame and new
background regions may appear due to the movement of the background. Besides, the target must
exist in the shared parts of the background regions, i.e., x if x ∈ ti; hence, the weight wi is defined as
in (28)

wi =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
(1, 0)T x ∈ ∼Pi−1 ∧ x � Pi

(m̂i(x), mi(x)
T)/(m̂i(x) + mi(x ))

(0, 1)T
x ∈ ∼Pi−1 ∩ Pi

x �
∼
Pi−1 ∧ x ∈ Pi,

(28)

in which
∼
mi is the warped mask. Subsequently,

∼
mi is calculated as in (29)

∼
mi(x) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
m̂i(x), x ∈ ∼Pi−1 ∧ x � Pi

min
{
T, mi−1(x) + m̂i(x)

}
,

mi(x),
x ∈ ∼Pi−1 ∩ Pi

x �
∼
Pi−1 ∧ x ∈ Pi,

(29)

where T is the predefined threshold that upper bounds the maximum of mi(x), ensuring the contribution
of the latest frame, without which the weight of the mean-background might rise to a high value and
the weight of the input frame will be negligible.

An update of the background model is performed after the target is tracked in every frame that

the parameters
∼
bi and

∼
mi are obtained and the warping operation is done before target detection in

the next frame. Afterwards, background subtraction is conducted for the detection and location of
the target.

4.3. Occasions of Background Update

Because variation of the background mainly relies on its movement, though some of its features
may passively vary with the environment, it must exist in every frame, the reliability of it should not
be given too much consideration, therefore sophisticated discussion regarding the background update
occasions is not necessary. The background appearance is temporarily stable thanks to the variety of
background patches and the movement along with the target. Usually, fixed-time-interval background
update is adopted in SC based and deep neural network based models, and unsupervised models, like
BoW (or BoF), update the background model along with the target model frame-by-frame. Negative
samples drawn from the latest frames are used for model retraining, which is the guarantee of the
requirement of the adaptation of the tracker to the newest background features.

4.4. Module Summary

This module discusses background update strategies and occasions, including a new background
model update strategy named TBE. Although the update of background model seems to be much
simpler than that of target model, there are still needs of improvements in many respects. The questions
remaining about the background update are as below. (1) How to utilize the background information
that is useful for discriminating the target and the surroundings for the extraction of key background
characters that can help with target location; (2) How to determine the density of background patch
sampling. Background regions containing much more valuable information ought to be more densely
sampled to boost the efficiency of the tracker; (3) How to build the holistic structure of the background.
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Algorithms about the background update in the global level should better be designed in future
tracking researches, as patches or visual words drawn from background are placed in order in the
original image.

5. Analysis on Experimental Results

Challenging factors in visual tracking include occlusion, in-plane and out-of-plane rotation,
illumination variation, background clutter, fast motion, abrupt deformation, and scale variation, etc.
The robustness of a tracker is measured by its performances under these situations on specific sequences.
A successful track means that a tracker is able to track the target without drift through the whole
sequence in spite of any of those factors in the video. Whether a tracker can successfully track the
target in a sequence depends on the quality of the model update to a large extent. This Section will
discuss the tracking experiments from recent researches, where performances under those challenging
factors are talked about in detail. The advantages in contrast to the benchmark trackers as well as some
failure cases are listed and analysis on the merits and drawbacks with respect to the update strategies
are then illustrated. Improvement measures are proposed among the analysis.

5.1. Update Strategies from Recent Researches

Some typical tracker models are listed in this subsection to illustrate the merits and drawbacks of
recent trackers, as in Table 1. Table 2 lists abbreviations for the names of the listed frameworks.
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Table 2. Abbreviations for name of the frameworks.

Abbreviations Full Name

PF particle filter
DNN/CNN deep/convolutional neural network

(K)CF (kernelized) correlation filter
SC sparse coding
DL dictionary learning

BoW/BoF bag-of-words/bag-of-features
ELM extreme learning machine
LR linear regression
SD saliency detection

5.2. Qualitative Advantage Analysis of Some Trackers’ Performance on Typical Sequences

To evaluate the quality of a tracker, its performances under those challenging situations, such as
occlusion, in-plane or out-of-plane rotation, etc., are usually the accordance, which essentially depends
on the quality of the model update strategy. This subsection gives analysis on specific cases where
the performances as well as advantage analysis of the recent trackers under the factors of occlusion,
background interference, rotation, scale variation, and deformation are respectively illustrated.

(1) Occlusion: Occlusion is a hard problem that almost occurs in all sequences, the update strategy
under which situation measures the robustness of a tracker to a maximum degree. In sequences
of Jogging-1 and Subway, the walkers are respectively occluded by the telephone pole and other
passers-by, only the tracker in TPS [14] and the benchmarks of TGP, SCM, and KCF are able to stably
track them, which explains that updating in local patterns has provided assistance in tracking partial
occluded objects via visible parts. Local feature representation is adopted in [54], where the global
feature pattern is fused with local ones to represent the tracked object. In the sequence of Walking
when the walking woman reappears after occluded by the man, the tracker in [54] can successfully
recapture the woman, while the compared benchmarks, like OAB, MIL, and COM, fail to retrack it.
The local-patterned update is also adopted by L3SCM [24], which has gained better performances
than the compared benchmarks. SC based LSA [17] shows strong robustness in handling occlusion
thanks to the use of stable patches and valid ones for update. In the sequence of Jogging2, after the
occlusion of the walker by the telephone pole, the compared KCF and DSST fail to cope with the drift
problem. Different template patches are used to represent the tracked object by NMC [42], whereas the
distribution of foreground and background templates is used for the detection of occlusion, which
shows its superiority in occlusion handling in Suv and Jogging2.

Utilization of background models is the key of correct target localization. The target is completely
occluded in the frames #27 to #36 of Uav, thanks to the constant utilization of background model in
TBE [12], the appearance of the target is preserved before the start of its full occlusion; therefore, it is
able to be retracked after it reappears, while other compared trackers fail to re-detect it. In the sequence
of Thuyx, the characters of the surrounding is similar to that of the target, still only the proposed
TBE can correctly track it while drifts to the surroundings occur when using other compared trackers.
These cases have given us the inspiration that the background model is typically essential in dealing
with occlusions. Bag-of-feature based ALIEN [7] effectively prohibits the drift problem in the sequence
of FaceOCC1 due to the use of the background characters. The background information in the tracking
bounding box are used to describe the reliability of the tracking result in [40], thus the target model
update is prevented if there is too much background information, so for the sequences where there are
partial occlusions, i.e., Coke, Girl, Lemming and Tiger1, the tracker performs well.

Valuable use of positive training samples plays an essential role in dealing with target re-detection.
In frame #131 of Girl2, where the man’s head moves away and the girl’s head return visible, DSARCF [56]
is able to perfectly retrack the girl’s head while other trackers fail, due to the reliability check of
target training samples that are used for the spatial weight update; PMC [59] also performs well on
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this sequence, even though the face slightly rotates in the process of being occluded, which can be
attributed to the complementary update policy of the three classifiers. For Human3 after the entire
occlusion of the target, CLIP [34] is able to recover the correct track, while drift occurs when using the
compared trackers, like MUSTer and LCT, which, thanks to the preserved long-term target appearance
information that can help to re-detect the targets after recovery. Due to the target samples from the
first frame that are used for model retraining, ELMAE [3] shows excellent results in the sequences of
Jogging and Suv. Positive samples in the first frame are also used for the network update by DNCT [45],
which is able to recapture the recovered targets, even if they are much smaller than normal, i.e.,
Skiing. The targets in Lemming and Jogging2 simultaneously rotate and change their appearance, in
the meantime both of them are in the state of occlusion. Owing to the dynamic reliability parameter
that is used for occlusion detection, SRKCF [35] can more effectively handle those more complicated
occlusion problems, the center location error (CLE) of which is relatively lower than its compared
benchmark trackers.

(2) Background interference: Background clutter is also one of the most challenging factors,
performances of a tracker under which situation is a key point of the measurement of its robustness.
For Basketball and Bolt2, where there exist objects sharing too many characters with the true target in
the surroundings, SRKCF [6,60] is able to track the true target while other compared trackers, like
SRDCF, LCT, and SAMF, drift to the false ones. This is because of the fact that SRKCF has made
use of the distribution of foreground and background pixels that is useful to feature update, which
is combined with the parameters of the target location distance and the PAR to prevent similar but
unrelated background pixels from contaminating the target template. MLFF [18] adopts integrated
features extracted by multiple network layers to distinguish the true objects when considering that
the true target is not completely the same as the false one in the background, which performs well
on the challenging sequencesm such as FaceOCC2, Football, Sylvester, CarDark, and Singer2. Cluttered
backgrounds in some frames, like frame #51 of Davidoutdoor, frame #146 of Bicycle, frame #53 of Thusy,
and frame #105 of Gymnastics may impact the feature extraction of the targets therefore drifts probably
appear when the sequences are tracked while using some benchmark trackers. Thanks to the approach
utilized in TBE [12] that separates the target from the background and regards the background as the
Gaussian model, which is able to resist many kinds of background interference, hence the appearance
information of the targets can be correctly used for more concise target location. For instance, for the
sequences of Bicycle and Uav, owing to the fact that initial location of the target might be incorrect
because of background noises, the separated target appearance model can be used to obtain the more
accurate location. For the framework of dictionary learning based ODLR [39], target dictionary and
background dictionary are independently constructed while using positive and negative samples
respectively describing the target and the background, which is helpful in the detection of complicated
backgrounds. The tracker performs well on Deer sequence, while the benchmarks, such as ALSA, IVT,
SCM, and VTD, do comparably poorly. The distance of the estimated target locations in two adjacent
frames might be larger than normal due to the interference of the false target in the background, based
on which problem, the relocation mechanism in LSHR [33] makes good use of target features that are
extracted by different layers, hence it is able to accurately track some videos with background clutters
i.e., Ironman entirely, while the benchmark trackers cannot perfectly handle the problems.

(3) Illumination variation: Illumination variation of a target is a kind of passive appearance change
that the illumination of the target is influenced by the environment it exists in. For example, some
noises, such as too light or too dark spots, caused by unusual environment illumination may appear in
the target area. Due of the samples from the past latest frames used for the target dictionary update
in [40], the dictionary can well encode the latest appearance of the target, especially when there are
intensive changes on some features. In frame #127 of Davidindoor, when the tracked man suffers intense
illumination variation, the proposed tracker in [40] is able to more perfectly capture his immediate
appearance change as compared to SSL. Strong performances are shown by LSA [17] on the sequences
of Sylvester and Shaking, in both of which there are tense illumination changes, which can be attributed

133



Electronics 2019, 8, 1207

to the stable patches and valid ones that are of excellent use for the representation of deformed objects.
MSRBT [54] gives more concern about the features that are more apparent for target and background
discrimination, while repressing the ones not so available. It makes use of those distinguishable
features for the detection of the targets in the frames with illumination variation, i.e., frame #156 of
Singer2, frame #22 of Crowds, and frame #408 of David, while the compared benchmarks SCM, L1APG,
and ALSA perform worse owing to the use of illumination-sensitive gray features. By fusing the
features of color names (CN), color histograms (CH), and HoG in appropriate proportions, CLIP [34]
is able to encode the appearance of a target from diverse aspects, which performs apparently better
than HCF and SiamFC on Singer2, in which drastic illumination variation comes across, for the reason
that the benchmarks have made excessive use of semantic features that are not of good use for the
discrimination in that situation. Illumination-insensitive HoG feature is emphasized by TPS [14],
which shows strong robustness on the frames of #528, #615, and #703 of Sylvester. The use of the
“mean-background” that eliminates the influence of illumination variations makes TBE [12] more
robust, which shows excellent results on frame #177 of Bicycle and frame #202 of Woman.

(4) Rotation: Rotation of a target can be regarded as a type of target appearance variation; however,
other challenging factors, such as occlusion or scale variation, may occur in the meantime during
target’s rotation, thus in-plane and out-of-plane rotations are also hard problems to tackle with. In the
sequence of Skating, the target athlete is rotating in-plane and out-of-plane alternatively, in addition in
frame #304, it suffers intensive illumination variation; SALSC [41] is still able to capture the athlete
after frame #304, while its compared benchmarks have lost the target. Excellent performance is also
shown on Car4 by SALSC. These good performances are thanks to the template update mechanism that
gives new target appearances and old ones with equal importance. When considering that rotation is
the appearance change of a target that its local parts are rearranged within the target area of an image,
LSA [17] makes use of valid target patches for the representation of newest target appearances that
have undergone in-plane or out-of-plane rotation. It tracks the targets in the sequences of Basketball and
Bolt, in which out-of-plane rotation happens much more favorably correctly as compared to L1APG and
Struck, which do not have the capability of rotation handling. Among the network of LSHR [33], the
midst layer does the best in coping with the rotation problems, in addition features that are extracted
by the shallowest layer are also adopted, thus the network is able to deal with challenging situations
in mixture of low resolution and rotation, whereas excellent tracking results are performed on the
sequences of David and FleetFace. In-plane rotated targets can be spontaneously separated from the
surroundings, owing to the background subtraction mechanism of TBE [12]. Though new characters
of the target can appear if it has undergone out-of-plane rotation, because of the principle that TBE
has acquired abundant background information that is of valuable use of background discrimination,
newly appeared target characters are detected as background correctly; therefore, TBE also performs
much better under this situation. Robust performances are shown on frames #309 and #353 of Polarbear
and frames of #101 and #961 of Lemming, whereas other benchmark trackers can hardly achieve such
correct tracking.

(5) Scale variation and deformation: The scale of a target varies continuously with indeterminacy
in frames, the shape of which might also vary along with its initiative scale change, because of the
movement of targets and the camera. In the sequence Sylvester, the tracked doll severely deforms in
frames #676 and #1078; DSARCF [56] can well capture the doll and precisely estimate its scale and
shape, while the compared trackers lose the target or wrongly calculate the size during tracking. This is
owed to the saliency information DSARCF adopts when updating the spatial weight map, after all the
saliency map of a target can naturally reflect the size and shape of it. For the sequence of Bolt where
the player deforms his body, MSRBT [54] does excellent in tracking him, owing to the local multiple
feature pattern. In Singer1 the size of the target singer constantly varies due to frequent camera distance
variation between him LSA [17] tracks the singer much more correctly than the benchmarks due to
the state search mechanism based on PF. However, it lacks the capability to deal with more drastic
scale variations.
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5.3. Analysis of Failure Cases

Target re-detection is an essential part in the whole process of tracking, into which consideration
has to be put by all model update strategies. There are some failure tracks that the reappeared targets
that have ever been out of the scene are retracked in vain due to the lack of re-detection mechanism by
the tracker or improper update methods serving for re-detection. For instance, the walker reappears
in the scene after long time of out-of-view in Pedrstrian2. ODLR [39] fails to capture it again due to
the use of false positive samples for the dictionary construction. This is attributed to the lack of the
re-detection process that ODLR has poor ability in relocating targets after heavy background drifts or
target losses. Additionally, for Suv, where the target reappears after occlusion, MSRBT [54] does poorly
in recognizing it. HCF [29] fails to recapture the targets in Girl2 and Lemming when they return visible.

There remains a question of making use of valuable features of small targets in visual tracking.
ODLR performs not so well on Skiing, owing to the fact that there is not sufficient target information
for the construction of the target dictionary because of much too small size of the target, thus the
target cannot be properly described by the model. For TBE [12], which puts important attention to the
background, the background occupies nearly the entire image when the target is excessively small,
hence appearance features of the target are hard to learn by the tracker, thus drift problems exist in
some snatches of the sequences where the targets are comparably much smaller.

There are also some failure cases in some videos where situations of fast motion, rotation,
background clutter, irregular illumination distribution, etc. exist. Although DSARCF [56] can handle
scale variation and deformation problems perfectly due to the use of saliency information, it fails in
utilizing the feature information of targets with faster moving speed, especially when the background
moves together with the target, where the saliency map loses its function. For instance, the background
moves upwards or downwards along with the diving athlete in Jump, in which the backgrounds in
the adjacent frames have more differences than in the normal conditions, which prohibits the filter
in the previous frame from valid detection in the current frame. The saliency map cannot work well
either on the sequence of Matrix, where there are influences of low resolution and background clutter,
bringing about target loss in tracking the later part of the sequence. For Dragonbaby, where the face of
the baby disappears and its arm becomes distinct, the bounding box permanently drifts to the region
of the arm. CLIP [34] is not to able to cope with the rotation problems in which handcrafted target
features are used, leading to the drift in MotorRolling where the target rotates and translates rapidly
simultaneously, which is also failed to track by MSRBT that also utilizes handcrafted features with
limited robustness only, owing to the fact that target rotation implies the transformation of its spatial
orientation. Despite the capability that PF can well calculate the states of targets in silent videos, it does
not work well in estimating the states of moving objects, thus performs much poorer in the videos
where targets move much more drasticly. For instance, LSA [17] wrongly estimates the target’s states
in CarScale. Besides, LSA has poor ability in distinguishing responsible patches from occluded ones
owing to the mechanism of linear regression, hence it has poor performances on the sequences with
mixed challenging factors, such as Ironman and MotorRolling. Due to the fact that deeper layers of a
network extract more semantic features, HCF can not discriminate the dark target singer and the bright
background, since the features that are extracted by the first layer are reliable enough to complete
the classification.

5.4. Module Summary

In this module, approaches of model construction and update strategies that are based on paper
researches in recent years are listed and some typical performances of the trackers are briefed in the first
subsection. In the second subsection, excellent performances of the recent trackers under challenging
factors, which are occlusion, background interference, illumination variation, rotation, scale variation,
and deformation are illustrated in order in detail. Advantages of the update strategies of each tracker
are illustrated based on specific tracking cases and analyses regarding model construction and update
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mechanism are given to account for those merits. In the third subsection, some failure tracking cases
are listed and the remaining problems of the listed trackers are explained.

Through the performance results, we can draw a conclusion that the framework of a tracker
lays the foundation of its basic quality, while the update approach reflects its robustness and
adaptability. Detailed conclusions are drawn by the analysis of diverse update mechanisms, which are
illustrated below.

(1) Local representation of a target makes the tracker much easier to detect the local parts of
the target. An independent update of each local patch guarantees that the tracking model can well
capture more reliable local appearances of target local parts. On the basis of animal′s selective attention
mechanism, it is not necessary to fix attention on the whole object when tracking it, whereas only
the typical characters of the target rather than others are sufficient for use as the attention for visual
detection. In addition, it is better to design a multiple-tracker framework that each part of a target is
independently tracked to reduce the complexity of training samples and the irregularity of sample
distribution. Lots of researches have proved that frameworks with local patterns perform stronger
robustness under many challenging situations as compared to that with mere global patterns, especially
under the state of partial occlusion, although of which state the occluded parts of the target template
cannot be updated, the remaining visible parts can still be used for detection and location and their
corresponding parts of the template can be dynamically updated to make the model adapt to the
newest target appearance. Examples of L3SCM [24], TPS [14], MSRBT [54], etc., have verified the
robustness of tracking under partial occlusions. In addition, rotation problems can also be dealt with
by local patterns. When in-plane rotation happens, all of the target parts remain visible and there is just
the rearrangement of places order of the parts, while during out-of-plane rotation, some of target parts
remain visible. Under these cases, the old visible parts contain valuable information regarding the
location of target parts, thus independent update of each target part makes sure that symbolic target
parts provide the most assistance for the location of the whole target. Some researches also have shown
the effectiveness of local patterns in dealing with rotations, as for the instance of LSA [17], where the
valid patches provide a lot of contributions to the target detection under the states of in-plane and
out-of-plane rotations.

(2) The utilization of multiple features makes the tracker much more excellent in figuring out the
target under some special situations. Independent update of different feature parameters can make the
tracker avoid the disturbances of environmental changes, which is also an approach that disassembles
the complexity of initial training samples. As different features describe a target from diverse respects,
the contribution of each feature is not constant in different periods of tracking [58]; hence, it is better
to adopt feature-specific update methods. As for the instance of illumination variation, the target
passively changes its appearance along with the illumination change of the environment, during which
period some features have undergone apparent changes, i.e., gray feature [54], while some do not
change so much, i.e., HoG [14]. In this case, illumination-insensitive features, like HoG, are of better use
for target detection and larger weights should be given on it, while features sensitive to illumination,
such as gray feature, should be given smaller weights to reduce the impact of noise.

(3) Features that are extracted by layers of different depths in a deep neural network also do
different performances on tracking, and the highest-level features are not always the most effective.
In the process of visual tracking, the only work is to separate the target from the background and then
locate it, rather than obtaining the semantic features of the target and its surroundings, thus sometimes
features that are extracted by deeper layers are less important than shallower ones. The failure case of
tracking the actor in Singer2 by HCF [29] has indicated the drawback of the high-level feature extracted
by deep layers, whereas the features that are extracted by the first layer do the best performance on the
contrary under this situation. The example of LSHR [33] has also explained that each layer has its own
excellence in the discrimination, where features that are extracted by the first layer are best at dealing
with low resolution problems, while features by the third layer do the best in handling with rotations
and features by the fifth (deepest) layer performs best in occlusion cases. The update strategy that
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takes the contribution of each layer into consideration and gives full play to the advantages of each
layer improves the robustness of the tracking network to a great extent.

(4) Target re-detection is an especially essential part in tracking, and the positive samples from
the first frame reused for update help with recovery of the target. Tracking failures of MSRBT [54],
HCF [29], and ODLR [39] have explained this significance. The positive and negative samples are
used for the dictionary construction in [51], in which the dictionaries are adopted for the target
re-detection. The RDLT tracker does perfectly under the situations of out-of-view and full occlusion
thanks to the re-detection mechanism and update policy. Due to the fact that a target might also vary
its appearance in the process of temporary leaving off from the scene or being fully occluded, it is not
responsible enough to merely use the latest appearance models in the moment before its disappearance.
Like the training approach in object detection, theoretically target images, including all of the target
appearances ever appeared, should be used as the retraining sample set. However, though positive
samples from some best tracked frames can also help with re-detection, target samples from the first
frame are believed as the most credible and share some characters with the recovered target, even
if the appearance of them may not be so close due to the impact of noise and other environmental
disturbances, thus the update methods that take the positive samples from the first frame into account
make better performances on target re-detection. Instances of ELMAE [29] and DNT [27] have also
verified this effectiveness.

(5) An excellent update strategy of the background models helps with more precise target
location. Owing to the continuity of target movement in the background, positions of the target in the
surroundings in adjacent frames are very close; hence, characters of the surroundings of the target
contain valuable information for target location in the next frame. Examples of BoW (BoF) based
models are supportive of this conclusion. It is good to adopt dense sampling to make each surrounding
region more representative since the background has more diversity appearances.

(6) The saliency feature of the target provides the tool for the estimation of target scale and shape.
The scale and shape of the target in the saliency map highly reflects those in the original image due
to the characteristic of the target that it should be a salient object, thus the saliency feature does well
in handling scale variation and deformation. The precise estimation of the target scale and shape by
DSARCF [56] shows its function.

6. Summary and Outlooks

This review has given detailed analysis of the visual tracking model update approaches in recent
years, where discussions about target model update occasions and strategies as well as approaches of
background model update are illustrated in order, and specific performances of sequence tracking are
then exampled. The merits and drawbacks of the listed trackers in recent researches are illustrated
afterwards and conclusions regarding the performances with respect to model construction and update
are briefed. In light of the problems remaining in the latest tracking performances posing challenges
to future researches, to make future tracker frameworks more applicable, focuses with respect to the
model update training of visual tracking should be fixed on the following aspects.

(1) Adoption of the background information should be further enhanced and algorithms for
dynamic background appearance model update need to be designed. In view of the truth that a target
must exist in a specific environment, information regarding the background that surrounds the target
provides sufficient information for target location, which can wonderfully help with discriminating the
true target and the similar objects in the surroundings. Encoding and updating the background model
should well be respectively conceived from the angles of the global pattern and local ones, of which
the former gives the requirement that relationships among each background parts should be encoded
for the holistic description, which provides useful information for the rough location of the target.
When the tracked target becomes much too smaller than that in the first frame, the holistic character of
the surrounding background rather than the target itself is better to be tracked, hence the problem of
the model construction of small targets can be greatly alleviated. Besides, the hard problem of rapidly
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moving background can also be well settled. Therefore, a network that has the ability to recognize
the position and distance relationships among different background parts should better be designed,
which should be an application in object position recognition. The latter namely local patterns requires
that the set of characters in the regions of surroundings which includes the most evident symbols
for target location should be searched out as the auxiliary feature, which is close to the mechanism
of animal’s selective visual attention that symbolic background areas ought to be given more visual
attentions, thus the moving speed of a target can be well estimated with the help of these background
auxiliaries. Based on the tool of the target response map, the response map of background regions
should be made use of to decide whether the holistic model or the local model needs to be updated.

(2) Saliency information should be adopted as an important feature. As random variations of
the target scale and shape also constitute the challenging factors, though some target state estimation
models, like PF, scale CF, etc., perform well in calculating the size and shape of targets, they are not
always credible due to the extent of target movement and restriction of datum complexity, whereas the
saliency map of the target naturally represents the shape and size of it in the original image; therefore, it
can be regarded as a responsible feature for the state estimation of the target, which gives the guidance
of target detection under partial occlusions that lays the foundation of target appearance update in this
situation. Although there are failures that the saliency map does not work well on some sequences, it
is better to be used after the raw detection of the target for further state estimation instead of using as
an appearance template before target search, and it should be preserved as a state template for the
reference of target state calculation in the next frame.

(3) It makes a tracker more robust to make adequate adoption of features extracted by different
layers to achieve more responsible target detection and location, and a multiple-feature based template
model should be utilized. Like handcrafted features, neural network features that are extracted by
different layers express the target and background from different aspects, making different contributions
to the tracking performance, hence the tracking performances by different layers ought to be considered
for update. To make deep neural network frameworks give more adequate play in many computer
vision applications, it ought to be an excellent idea to make use of layers of any depth for specific
usages. In light of the fact that the feature that was extracted by one deeper layer is further processed
and extracted from that by the previous shallower layer, the complexity of the feature information
increases with the depth of the layer. Yet, the feature information by the higher level sometimes
provides more contribution, while in other cases lower level features contribute the most on the
contrary. Inspired by the cascade template update approach in [61], cascade adoption of the features
by different depth of the layers should be taken into consideration to assess the tracking performance
using the performance score of each layer in depth order. Meanwhile, the template corresponding to
each layer should be set up. If the performance score of the shallower layer is higher than a predefined
threshold, the template corresponding to this layer needs to be updated meanwhile update of the
templates corresponding to deeper layers should be temporarily disabled. Target matching should also
be done in the cascade mode. if the template corresponding to a layer matches to the target candidates
with too high confidence, those to the matching of the templates corresponding to the higher levels
should also be stopped in this turn. The proposed cascade method is able to prohibit the interference
from irrelevant features, thus time expense aroused from feature selection can be reduced.
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Abstract: This work presents a method for characterizing and correcting the geometric errors of
the movement of the lateral stage of Imaging Confocal Microscope (CM) in extended topography
measurement. For an extended topography measurement, a defined number of 2D images are taken
and stitched by correlation methods. Inaccuracies due to linear displacement, vertical and horizontal
straightness errors, angular errors, and squareness errors based on the assumption of the rigid body
kinematics are described. A mathematical model for the scale calibration of the X- and Y- coordinates
is derived according to the system kinematics, the axis chain vector of CM, and the geometric error
functions and their approximations by Legendre polynomials. The correction coefficients of the
kinematic modelling are determined by the measured and certified data of a dot grid target standard
artefact. To process the measurement data, algorithms for data partitions, fittings of cylinder centers,
and determinations of coefficients are developed and validated. During which methods such as form
removal, K-means clustering, linear and non-linear Least Squares are implemented. Results of the
correction coefficients are presented in Part II based on the experimental studies. The mean residual
reduces 29.6% after the correction of the lateral stage errors.

Keywords: geometric errors correction; kinematic modelling; lateral stage errors; Imaging Confocal
Microscope; K-means clustering; data partition; Least Squares method

1. Introduction

The calibration of measuring machines is both important for test acceptance and error
compensation [1]. Use of software techniques started from the very beginning for the correction of
the systematic errors of measurement instruments, as the mechanical accuracy is expensive while
repeatability cost little [2]. Over the last several decades, measurement accuracy and error compensation
have been an area of intensive investigation [3–5].

Lateral calibration of the X- and Y- coordinates serves as a calibration of the magnification of the X-
and Y-axis scale [6]. Lateral calibration/correction of confocal microscope (CM) can be classified mainly
into two groups: imaging system calibration and machine system calibration [7]. Calibrations of the
imaging system studies aberrations of refractive systems of objective lenses [8–10], axial distortion by
point spread function or refractive-index mismatches [11,12], etc. The machine system calibrations
investigate geometric errors generated by the movement of probes [2,13,14]. The first study of using
kinematic geometric errors for error compensation of coordinate measurement traces back to the work
of G Zhang et al. [15]. From then on, characterization and correction of kinematic geometric errors has
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mainly focused on coordinate measuring machines (CMM) [16,17], and has seldom been applied for
optical measurement instruments.

However, areal measurement by CM is realized by both imaging systems and machine systems.
CM scan in the lateral and vertical directions using different physical mechanisms [18]. To obtain a
surface topography, CM captures a series of two-dimensional images by stepping either the specimen
holding base or the objectives along the Z-stage [19]. For a single topography measurement, the 2D
images are acquired in lateral directions either all at once by a CCD array (Imaging CM) or by a raster
scan (Laser Scanning CM) [20,21]. For an extended topography measurement, a defined number
of 2D images are taken and stitched by correlation methods. Accordingly, calibrating the imaging
system only is not sufficient for a CM, as its measurement is realized by both imaging and machine
systems. Lateral calibration or machine system calibration is necessary and important. It is worth
mentioning that some works have been carried out on characterization of metrological characteristics
defined in ISO 25178-600 [22], such as amplification coefficient, linearity deviation, x-y perpendicularity
deviation, etc. [23–26]. These metrological characteristics imply the whole instrumentation system’s
characteristics to some extent.

In this work, we present a method to characterize and correct the geometric errors of the lateral
stage of the CM, with implementation of a standard artefact of dot grid target. Extended topography
measurements are influenced by kinematic errors of the measurand holding base, which moves
horizontally in the X- and Y-directions. This work first introduces the theory and mathematics of the
21 rigid body geometric errors applied generally in the study of error compensations for CMM and
machine tools in Section 2 Afterwards, we develop our own kinematic modelling based on the theory
of kinematic and geometric errors for the lateral stage movement of CM in the same Section. Section 3
introduces the methodology of the study. Mathematical models and algorithms for measurement
data processing are presented in Section 4. Section 5 validates our developed models and algorithms
using synthetic data. Section 6 draws the conclusions. Experimental studies of the calibration and
uncertainty evaluation are presented in Part II, published as another paper in the same journal.

2. Mathematical Model for the X- and Y-Scale Calibration

For each of the three axes there exist three translational deviations, i.e. the linearity deviation,
the straightness deviation and the ortoganality deviation. The straightness deviation is defined as
the displacement orthogonal to the axis of motion, with two straightness deviation functions for
each of the orthogonal directions. Rotational movements of stages are roll, yaw and pitch, with roll
denoting a screw like movement, and pitch and yaw denoting angular deviation functions that describe
movements within a plane [1,15,27]. Some parameters of mechanical systems, such as bearing spacing
and guideway geometric errors, determine axis motion errors of machine axes [28]. T. O. Ekinci
et al. categorized machine errors into three levels, i.e., geometric errors, joint kinematic errors, and
volumetric errors [29]. This work clarifies the terminologies and highlights the usefulness of a machine
error modeling approach.

For the measurement of a specimen using the 3D Imaging CM, the workpiece is placed on the
X- and Y-stage above the supporting base, which is usually made of granite. As shown in Figure 1a,
to focus the laser beam onto the measurand surface, two movements are carried ou, i.e., movement
along the X- and Y-axis, controlled by the lateral stage, and movement along the Z-axis, controlled by
the vertical stage. For example, to measure the point P on the measurand surface, its position can be

denoted as
→
P(Px, Py, Pz) with respect to its coordinate origin

→
O(0, 0, 0). For the focus of the probe and

the point of workpiece, the first movement include translation of X carriage followed by the translation
of Y carriage; the second movement is the translation of Z carriage. It can be suggested that vectors
⇀
X,
⇀
Y and

⇀
Z represent the translations of X, Y and Z carriages, the rotation matrices R(X), R(Y) and

R(Z) denote the angular motion errors caused by the translations of X, Y and Z carriages, the vector
⇀
T

represents the X, Y and Z abbe offsets of the probe with respect to the carriage to which the probe is

143



Electronics 2019, 8, 733

attached. For our Imaging CM, the probe is attached to the Z-stage. Therefore, it is obvious that the

translation of the X and Y carriage, with an offset of the position
→
P , stops at the same point reached by

the translation of the Z carriage with a probe offset
⇀
T, which can be understood as the focus of the

probe with the measurand. According to this conclusion, a diagram of the axis chain vector of 3D
imaging microscopy is plotted and shown in Figure 1b.

(a) (b)

Figure 1. Manifestation of the vectors in 3D Imaging CM: (a) 3D view; (b) diagram of the axis
chain vector.

As shown in Figure 1b, there are two kinematical paths from the coordinate origin
→
O(0, 0, 0) to the

laser beam focus, i.e.,
⇀
Z→⇀T and

⇀
X→⇀Y→→P . In each kinematical path, the actual movement of that axis

is affected by the rotational error of its predecessors. The movement of
⇀
T is affected by the rotational

error of the movement of
⇀
Z.
⇀
Y is affected by the rotational error of

⇀
X.
→
P is affected by the rotational

errors of
⇀
X and

⇀
Y. Therefore, the chain vector shown in Figure 1b for the two kinematical paths, from

the same origin reaching the same laser beam focus, can be expressed by Equation (1).

⇀
Z + R-1(Z)

⇀
T =

⇀
X + R-1(X)

⇀
Y + R-1(X)R-1(Y)

⇀
P (1)

After rearrangement of the above equation, vector
→
P can be expressed by all the other vectors and

matrices, as the same result presented by G. Zhang et al. [1].

The rotation can be expressed by the infinitesimal rotation matrix. The vectors
⇀
X,
⇀
Y,
⇀
Z and

⇀
T can

be substituted by their position matrix. This has been widely accepted and implemented by many
former investigators [1,15,27,30].

In the 3D Imaging CM, there are no real X- and Y-carriages, the workpiece is carried by a lateral
stage mounted on a fixed base [13,27], the Z-stage is mounted on another fixed base. In addition to
that, the beam focus is considered to be the probe. As the focus is always on the workpiece surface and
the information is acquired exactly at that point, there is no Abbe offset on x, y and z, nor is there an

angular term. This means
⇀
T = 0 and R(Z) = 0.

In this work, only geometric errors along the X- and Y-directions are studied. After dropping out
the Z-stage variables, the geometric error functions for X- and Y-stage are:

Px = x + δx(x) + δx(y) − y · σz(y) (2)

144



Electronics 2019, 8, 733

Py = y + δy(x) + x · σz(x) + δy(y) + x · σz(y) (3)

Those errors in Equations (2) and (3) are functions, which can be simulated by Legendre
polynomials. Implementation of Legendre polynomials is computationally simpler and provides a
reduction of around 2% higher than using Chebyshev polynomials [31]. After substituting the error
functions in Equations (21) and (22) by using the approximation of Legendre polynomials, the final

mathematical models for the beam focus point
→
P(Px, Py, 0) with error corrections can be acquired:

Px = x + a1x + 3
2 a2x2 + 3

2 a3(5x3 − 3x)+
+b1y + 3

2 b2y2 + 3
2 b3(5y3 − 3y)−

−y · (c1y + 3
2 c2y2 + 3

2 c3(5y3 − 3y))
(4)

Py = y + d1x + 3
2 d2x2 + 3

2 d3(5x3 − 3x)+
+x · (e1x + 3

2 e2x2 + 3
2 e3(5x3 − 3x))+

+ f1y + 3
2 f2y2 + 3

2 f3(5y3 − 3y)+
+x · (c1y + 3

2 c2y2 + 3
2 c3(5y3 − 3y))

(5)

3. Methodology and a Brief Introduction of Experimental Design

To calibrate the kinematic geometric errors of the lateral stage of a dual core 3D CM, a standard
artefact with dot grid target on glass is measured and a series of algorithms are developed for the
process of the raw measurement data, which include separations of cylinders and flat, fitting of cylinder
centers, determination of coefficients, etc. Figure 2 illustrates the standard, which was provided by
Max Levy Autograph, Inc. Those dots are deposited on the substrate, which is glass with a thickness
of 1.5 mm. Table 1 gives an indication of the size, the dot spacing, the diameter, the accuracy, etc., of
the dot pattern.

Figure 2. Illustration of the standard artefact of the dot grid target.

Table 1. Detailed information about the dot grid target standard artefact.

Width [mm]
Dot Diameter

[mm]
Dot Spacing

[mm]

X and Y Axis
Accuracy [mm]

Dot Array

X Y Total

25 0.0625 0.125 ±0.001 201 201 40401

This work aims at characterizing and correcting the kinematic geometric errors of the movement
of the lateral stage, by calculating and applying the coefficients of Equations (4) and (5). To calculate the
coefficients, the introduced dot grid target standard is measured, the measurement data are processed
for obtaining the coordinate values (xi, yi) of the dots’ centers, the coordinate values (xi, yi) and their
corresponding certified values are put into Equations (4) and (5), the coefficients are obtained by solving
the equations using non-linear Least Squares method. The obtained coefficients and Equations (4)
and (5) are implemented for correcting the new measurement data. Another different area of the
introduced dot grid target standard is measured, and the measurement data is corrected. By comparing
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the residuals before correction and after correction, the significance and practicality of our model for
kinematic geometric error correction can be observed.

The algorithms used for measurement data processing and for calculating the coefficients are
introduced in Section 4. Validations of those algorithms are introduced in Section 5. The details of
the experimental procedures, parameters, and analysis are presented in Part II, which is published in
another paper in the same journal.

4. Algorithms and Procedures for Measurement Data Processing

4.1. Algorithm and Procedure for the Separation of Flats and Cylinders

The raw measurement data usually contains defects, outliers, unmeasured points, etc. [32].
The measured surface often inclines, as it is impossible to locate the measurand surface perfectly
perpendicular to the Z-axis. Figure 3 gives an example of the measurement of the dot grid target,
implementing an objective of magnification 50×, numerical aperture of 0.90. The acquisition parameter
of measurement area was defined as the topography stitching measurement, with 8 × 8 extended
topographies, covering an area of 1.78 × 1.33 mm2. The parameter of the overlapping area is 25%,
and the correlation takes the XYZ option. The level of resolution is 2, and the measured extended
topographies contain 2673 × 2003 pixels.

(a) (b)

Figure 3. Reconstruction of the measured surface with its raw measurement data: (a) contour plot; (b)
surf plot.

This measurement has many unmeasured points in the right-top corner due to the Z-range
parameter setting. The first step is to choose an area of this raw surface with appropriate size and
location, targeting at minimizing the influence of defects and removing outliers [32] by selecting
valid grid positions with loss of the uniformity of the grid. Figure 4 shows a surface reconstruction
by trimming the raw data with 10% edges along the X- and Y-directions. As there are too many
measurement defects when y > 800 μm, this part is also abandoned.
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(a) (b)

Figure 4. Reconstruction of the surface with trimmed raw data: (a) contour plot; (b) areal plot.

After obtaining an appropriate area for analysis, it is necessary to eliminate its form. The principal
axes of the distribution of data points of the measured point cloud are determined by solving the eigen
value problem. The data are rotated by principal axis transformation to align them in the direction of
the eigen vectors. Figure 5 gives an example of the rotated surface, which is rotated from the surface
shown in Figure 4. Figure 5a was plotted by the Matlab® function ‘plot3′, while Figure 5b was plotted
by the function ‘surf’. It can be found that after rotation, the range of the Z-axis is much smaller, and
many details of the surface can be observed. It is obvious that this surface is constructed using point
clouds, which form a flat plane and many cylinders perpendicular to this flat.

(a) (b)

Figure 5. Reconstruction of the rotated surface: (a) point plot; (b) surfplot using Z for the color data.

This rotated surface is now ready for the separation of flats and cylinders. Figure 6 gives an
indication of the distribution of the heights of the surface. Figures 7 and 8 give examples of the
separations of the rotated surface shown in Figure 5.
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Figure 6. Histogram of the Z values of the rotated surface.

(a) (b)

Figure 7. The separated flat plane of the rotated surface: (a) 3D view; (b) view from top down.

(a) (b)

Figure 8. The separated cylinders of the rotated surface: (a) 3D view; (b) view from top down.

After separating the cylinders from the flat, the next step is to obtain the three coordinates of
each cylinder point cloud. Figure 9 gives an example of the separation of cylinders into individual
clusters, characterizing the cylinders with different colors. Here the squared Euclidean distance metric
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is applied for distance calculation, as shown in Equation (6). Moreover, each centroid of the point
cloud is the mean of the coordinates’ values of the points.

d(x, c) = (x− c)(x− c)T (6)

where x is the initial observations, c is the centroid.

Figure 9. Separation of cylinders into individuals.

According to the previous investigations, there are several efficient algorithms for data partitioning,
such as the K-means clustering algorithm [33,34] and Lloyd’s algorithm [35]. These two algorithms are
iterative data-partitioning algorithms, which assign the initial observations into k clusters according
to the squared Euclidean distance metric and the centroids. The number of clusters k is defined
before data partition. In our work, the Lloyd’s algorithm is used for finding the centroids of k clusters
while the K-means clustering algorithm is used for partitioning the initial observations into k clusters
according to the squared Euclidean distance metric with respect to the centroid of each cluster. The
K-means clustering algorithm requires the input as a matrix of M points in N dimensions as well as
a matrix of K initial cluster centers in N dimensions. Denoting the number of points in cluster L is
NC(L), and the Euclidean distance between point I and cluster L is D(I, L), the general procedure of
the K-means clustering algorithm is to find a K-partition of clusters with locally optimal within-cluster
sum of squares by changing the initial observations from one cluster to another [33], as indicated by
Equation (7).

min
D2

K∑
i=1

NC(L)∑
j=1

D2(I, L) (7)

The procedures of the algorithm for partitioning the filtered cylinders into individuals are
shown in Figure 10, which consists of 6 steps. It is worth mentioning that the data are subjected
to dimensionality reduction before data partitioning. These cylinders are a point cloud of three
dimensions. The aim of dimensionality reduction is to produce a compact low-dimensional encoding
of a given high-dimensional data set [36]. The dimensionality can be reduced in two ways [37]. The
first is by only keeping the most relevant variables from the original dataset, which is called feature
selection. The second way is to exploit the redundancy of the input data and to find a smaller set of new
variables, each being a combination of the input variables containing basically the same information as
the input variables. In this work, the dimensionality of the data is reduced to 2D from 3D by projection
along Z-axis.
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Figure 10. Flowchart of the algorithm for data partition.

Since the equations characterizing lateral linearity deviations, Equations (4) and (5) are independent
of the vertical axis z, the dimension of the 3D point cloud is reduced to the two dimensions of
the x-y-plane.

4.2. Algorithm for Determination of Coefficients

This section aims at the determination of the coefficients, a1, a2, a3, b1 . . . , f3, defined in Equations (4)
and (5). The objective is to fit the 18 coefficients to obtain the least squared residuals between the
corrected X- and Y- coordinates and the nominal position. That is:

n∑
i=1

‖Pnom
i(x, y) − Pi

corr(x, y)‖22 = min (8)

where, Pnom
i(x, y) represents the ith nominal position defined by the X- and Y- coordinates, Pcorr

i(x, y)
denotes the ith corrected position obtained from the measured data and Equations (4) and (5).

Therefore, the objective function is

minF(x, y)
∣∣∣
a1,a2,..., g3

= min
n∑

i=1
‖Pnom

i(x, y) − Pi
corr(x, y)‖22

= min
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xi
nom − xi
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)2
+
(
yi

nom − yi
corr

)2)
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(9)

The minimum value of F arrives when the gradient is zero [38,39], i.e.,:

∂F
∂βi

= 0 (10)
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where F is the objective function, βi represents the parameters of coefficients to be determined. There
are 18 coefficients in this part of the work, and hence there are 18 partial derivatives:
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2
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(13)

These equations can first be solved by solving the equation for the initial solutions. The initial
solutions might be far from the correct solutions, as there are too many more constraints than unknown
coefficients. Those initial solutions can be used as the starting point for iteratively finding the nonlinear
least squares solutions. Extensive work has been done on the nonlinear least squares algorithms [40,41].
Let the model for data fitting be [41]:

E(y) = f (x1, x2, . . . , xm; b1, b2, . . . , bk)

= f (x, b)
(14)

where x1, x2, . . . , xm are independent variables, b1, b2, . . . , bk are k parameters of coefficients to be
determined, E(y) is the expected value of the dependent variable y. Denote the data points as:
(Yi, X1i, X2i, · · ·Xmi), where, i = 1, 2, · · · , n. The objective is to calculate the k parameters of coefficients
which will minimize the squares of the residuals:

min
n∑

i=1

(
Yi − Ŷi

)2
= min‖Y-Ŷ‖2 (15)

This problem can be written as an objective function which aims at optimizing the coefficients of
each function Yi− Ŷi, denoting the vector of the parameters to be optimized as t, where t = [a1, a2, · · · , f3]
in this work. The objective function is:

minF(t) =
k∑

i=1

f 2
i (t) (16)

where, fi(t) are functions of the to-be-optimized vector t. When fi(t) are nonlinear functions with
respect to t, this problem is about nonlinear optimization. The solution is to use Taylor expansion
to convert fi(t) into linear functions. As only the first order of the Taylor series is linear, here we
approximate it by the first order:

ϕi(t) = fi(t(k)) + ∇ fi(t(k))
T
(t− t(k))

= ∇ fi(t(k))
T

t−∇ fi(t(k))
T

t(k) + fi(t(k))
(17)

151



Electronics 2019, 8, 733

where ∇ fi(t(k)) is the value of the first derivative of fi(t(k)) on vector t evaluated at the point t(k).
Substituting fi(t) in Equation (16) with its Taylor Expansion approximation indicated by

Equation (17), the approximation of F(t) is:

minφ(t) =
k∑

i=1
ϕ2

i (t)

=
k∑

i=1

(
∇ fi(t(k))

T
t−∇ fi(t(k))

T
t(k) + fi(t(k))

)2 (18)

To simplify the above equation, use Ak to represent ∇ fi(t(k))
T

, and b to represent ∇ fi(t(k))
T

t(k) −
fi(t(k)). Equation (18) is simplified into:

minφ(t) =
k∑

i=1

(Ak − b)

2

(19)

where,

Ak =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∇ f1(t(k))

T

...

∇ fm(t(k))
T

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∂ f1(t(k))
∂t1

∂ f1(t(k))
∂t2

· · · ∂ f1(t(k))
∂tn

...
...

...
...

∂ fm(t(k))
∂t1

∂ fm(t(k))
∂t2

· · · ∂ fm(t(k))
∂tn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (20)

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
∇ f1(t(k))

T
t(k) − f1(t(k))
...

∇ fm(t(k))
T

t(k) − fm(t(k))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ = Akt(k) − f(k) (21)

f(k) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
f1(t(k))
f2(t(k))

...
fm(t(k))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (22)

Therefore, it can be obtained:
φ(t) = (Akt− b)T(Akt− b) (23)

The solution of this equation is:

t(k+1) = t(k) − (Ak
TAk)

−1
Ak

T f (k) (24)

This solution can be simplified as:

t(k+1) = t(k) −Hk
−1∇F(t(k)) (25)

where, Hk is the Hessian matrix:
Hk = 2AT

k Ak (26)

∇F(x(k)) = 2Ak
T f (k) (27)

Equation (25) can be solved iteratively by starting with an initial solution.
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5. Validation of the Algorithms with Synthetic Data

5.1. Validation of the Algorithm for Determination of Dots’ Centers and Distance

To validate the algorithm for determination of dots’ centers, synthetic data with known cylinder
centers and point cloud distributions is generated. This generated data contains 35 cylinders of point
cloud, distributed as 5 × 7 along the X-axis and Y-axis, as shown in Figure 11.

(a) (b)

Figure 11. Plot of the created data for algorithm validation: (a) 3D view of the point cloud; (b) view
from the Z-axis.

For each point cloud, the radius of the cylinder is 31.25 μm, with a uniform distribution of r ~ U
(−0.1, 0.1) μm. The values of the Z-coordinate of each point follows a standard normal distribution z ~
N (0, 1) μm. The centers of each cylinder, as indicated by red asterisks in Figure 11b, have an interval
of 125 μm. Their X-coordinates are [0, 125, 250, 375, 500] μm and the Y-coordinates are [0, 125, 250, 375,
500, 625, 750] μm. The generated data contains X-, Y-, and Z-coordinates’ values. Those data are saved
in a Matlab® file with the suffix name ‘.mat’ for processing.

The generated data are processed using our developed algorithm for the determination of dots’
centers. The first step is to separate the data into individual point clouds. The results of the point cloud
separation are shown in Figure 12, with each individual being indicated by numbers and different
colors. In this step, the algorithm not only separates the point cloud into individuals, but also gives an
indication of the initial centroids of each cloud.
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Figure 12. The separation of cylinders into individual point clouds.

After the separation, each individual point cloud is processed by our developed algorithm in order
to fit the circle centers. The calculated centers are exactly the same with the generated ones. Figure 13
makes a plot of the calculated centers of the synthetic data generated for algorithm validation.

Figure 13. Plots of the calculated centers of the generated data.

The results indicate that the algorithm developed in this work for the determination of the centers
of cylinder point cloud is valid.

5.2. Validation of the Algorithm for Determination of Coefficients

Here, we use two methods for the validation of the algorithm for the determination of
the coefficients.

The first method is to create a dataset containing points with intervals of 125 μm as certified
positions, while making a little displacement with each point. Calculate the correction coefficients and
correct the points with the displacement using the algorithm defined in Section 4.2. The points with
the displacement with respect to the certified points represent the measured points in the experiments.
Therefore, two residuals can be obtained, i.e., the residual between the certified points and the points
with displacement as well as the residual between the certified points and the corrected points.
Compare those two residuals to check whether the correction is meaningful.

The algorithm first creates the two data described above. Then it rotates the points with
displacement to the certified points, aiming at making the axis parallel. This arises from the methodology
of this work, which requires locating the standard artefact that is parallel with the axis. As it is impossible

154



Electronics 2019, 8, 733

to realize it manually, the coordinate axes are adjusted mathematically. After that, the error coefficients
are calculated by the algorithm. With those coefficients, the values of the X- and Y-coordinates of
the corrected points can be obtained. Figure 14 shows a comparison of the positions of the certified,
measured and corrected points. The contour of the errors between certified and measured points is
displayed in Figure 15. The contour of the errors between the certified and corrected points is shown
in Figure 16. It is obvious that almost all of the errors are smaller after correction.

 

Figure 14. Comparison of the positions of certified, measured and corrected points.

Figure 15. Contour of the errors between the certified and measured points.

Figure 16. Contour of the errors between the certified and corrected points.
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The error is calculated by the Euclidean distance between the certified point and its corresponding
point with displacement. The same goes with the error between the certified point and the corrected
point. Table 2 makes a comparison of the error before correction and after correction. The difference is
calculated as:

Di f f (i) = Errc(i) − Errm(i) (28)

where, Di f f (i) is the difference between the error after correction and before correction. When Di f f (i)
is negative, it means the error is smaller after correction. Errc(i) is the Euclidean distance between
the certified point and corrected point. Errm(i) is the Euclidean distance between the certified point
and the measured point. The mean residual after correction is 5.60 μm, while the mean error between
the measured and the certified point is 9.65 μm. The square residual of all the 35 corrected points is
1587.99 μm2, while it was 3684.85 μm2 before correction. It can be found that some points are more
distorted after correction. This is because the fitting method used is the nonlinear least squares, the
objective function of which aims at finding the sum of least squares of the residuals of all points, but
does not ensure that every residual is smaller after fitting.

Table 2. The values of the error of each individual point.

Point No. i
Errc(i)
[μm]

Errm(i)
[μm]

Diff (i)
[μm]

Point No. i
Errc(i)
[μm]

Errm(i)
[μm]

Diff (i)
[μm]

1 0 0 0 19 4.66 7.65 −2.99
2 2.92 4.35 −1.43 20 4.72 12.64 −7.93
3 4.87 9.20 −4.31 21 4.16 13.09 −8.94
4 6.36 12.48 −6.12 22 8.26 13.13 −4.87
5 5.55 13.25 −7.70 23 12.87 9.05 3.82
6 5.27 13.13 −7.86 24 13.52 13.92 −0.41
7 2.63 9.64 −7.01 25 3.56 9.58 −6.01
8 3.08 5.16 −2.08 26 14.17 11.12 3.04
9 2.86 5.85 −2.99 27 3.39 7.24 −3.86

10 5.36 10.66 −5.31 28 1.61 8.03 −6.43
11 4.63 11.28 −6.65 29 7.47 13.86 −6.39
12 11.90 11.32 0.59 30 3.73 13.14 −9.41
13 4.17 7.38 −3.20 31 2.88 8.69 −5.81
14 3.82 11.99 −8.17 32 15.93 13.78 2.15
15 7.19 10.38 −3.20 33 6.59 14.88 −8.28
16 0.62 3.85 −3.23 34 4.15 8.68 −4.53
17 3.99 8.23 −4.25 35 4.49 3.82 0.67
18 4.72 7.36 −2.64 -

mean error [μm] 5.60 9.65
Sum of Squared

error [μm2] 1587.99 3684.85

The second method creates another 10 data by varying the displacement from the certified
positions based on this data. In these 10 simulations, the certified positions are all the same with those
certified positions introduced above. The measured points’ positions are assigned with displacements,
the values of which are shown in Table 3.

Table 3. Further displacements of the measured points of the 10 simulations.

Simulation No. 1 No. 2 No. 3 No. 4 No. 5 No. 6 No. 7 No. 8 No. 9 No. 10

X [μm] −20 −16 −12 −8 −4 0 4 8 12 16
Y [μm] −15 −12 −9 −6 −3 0 3 6 9 12

The 10 data are processed by this algorithm. The results of each simulation are compared and
analyzed. Figure 17 indicates the positions of the certified, measured, and corrected points of those 10
simulations. It is obvious that almost all of the corrected points are closer than the measured points to
the certified points.
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Figure 17. Comparison of the certified, measured, and corrected positions of the 10 simulations.

Table 4 lists two mean residual and two squared residuals. One of the mean residuals arises from
the displacements of the measured points from the certified points, while the other mean residual comes
from the corrected points from the certified points. The mean residual is calculated by Equations (29)
and (30):

Resmeas
M =

1
n

n∑
i=1

‖Pcert(i) − Pmeas(i)‖2 (29)

Rescorr
M =

1
n

n∑
i=1

‖Pcert(i) − Pcorr(i)‖2 (30)

where, Resmeas
M and Rescorr

M represent the mean residual of the measured points and the mean residual
of the corrected points, respectively, Pcert(i) represents the position of the ith point of the certified
positions, Pcorr(i) represents the position of the ith point of the corrected positions.

Table 4. Mean residuals and squared residuals of the measured and corrected points to the
certified points.

No. Simulation
Mean Residuals [μm] Squared Residuals [μm2]

Measured Corrected Measured Corrected

1 17.94 8.11 12155.65 3287.68
2 13.13 8.45 6961.49 3269.41
3 8.56 8.13 3517.33 2986.80
4 5.81 5.23 1823.17 1206.33
5 6.42 5.96 1879.01 1288.29
6 9.65 5.60 3684.85 1587.99
7 13.93 6.40 7240.69 1903.75
8 18.53 8.20 12546.53 3101.98
9 23.31 9.66 19602.37 4179.53
10 28.18 11.06 28408.21 5389.67

The two squared residuals include the squared residual of the measured points to the certified
points and the squared residual of the corrected points to the certified points. The squared residual is
calculated by:

Resmeas
S =

n∑
i=1

(‖Pcert(i) − Pmeas(i)‖2)2 (31)
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Rescorr
S =

n∑
i=1

(‖Pcert(i) − Pcorr(i)‖2)2 (32)

Figures 18 and 19 plot the mean residuals and squared residuals of the 10 simulations. It can be
observed that both the mean residual curve and the squared residual curve of the measured points are
concave in the middle and convex at the two sides. The two residuals of the corrected points are much
smoother. The larger the original residuals, the more the correction can be realized.

Figure 18. Comparison of the mean residuals before correction and after correction.

Figure 19. Comparison of the squared residuals before correction and after correction.

The results of the Simulation No. 10 are shown. Figure 20 compares the positions of the certified,
measured, and corrected points of Simulation No. 10. Figures 21 and 22 presents contours of the
mean residual and the squared residual between certified and measured points of Simulation No. 10.
Figure 23 shows the error vectors between the measured and corrected points of Simulation No. 10.
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Figure 20. Comparison of the positions of the certified, measured, and corrected points of Simulation
No. 10.

Figure 21. Contour of the mean residual between certified and measured points of Simulation No. 10.

Figure 22. Contour of the mean residual between certified and corrected points of Simulation No. 10.
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Figure 23. Comparison of the error vectors between the measured and corrected points of Simulation
No. 10.

As the results above show, all the measured values are improved after geometric error correction.
It can be concluded that our developed algorithm for the determination of correction coefficients
is valid.

6. Conclusions

The work presented herein is Part I of the whole work, describing our methods for characterization
and correction of lateral stage geometric errors. With implementation of the 21 parametric errors
based on the assumption of the rigid body kinematics for calculating the machine volumetric errors
of a three-axis machine, a mathematical model for correcting the lateral stage deviations of the CM
was developed.

According to the measurement principle of CM, a diagram of the axis chain vector was drawn.
Equation (1) was developed according to the kinematic path of the chain vector. After the rearrangement

of Equation (1) and its simplification by dropping
⇀
Z and

⇀
T, this equation was further simplified due

to the study specifications and characteristics of the CM. The function errors were approximated by
Legendre polynomials. Finally, Equations (4) and (5) for corrections of kinematic geometric errors were
obtained. The methodology for calculation and application of the corrections coefficients defined in
Equations (4) and (5) are introduced afterwards. Experiments on a dot grid target standard artefact
will be measured and studied in Part II, published in the same journal.

The algorithms that will be implemented for the measurement data processing are presented
and validated. These algorithms apply a lot of methods, including form removal, K-means clustering,
linear and non-linear Least Squares. Their mathematical models were also introduced. The results of
the validation based on synthetic data imply that our mathematical models and algorithms are reliable.
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Abbreviations

CM confocal microscope
CCD charge-coupled device
CMM coordinate measuring machine
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Abstract: This paper presents the experimental implementations of the mathematical models and
algorithms developed in Part I. Two experiments are carried out. The first experiment determines
the correction coefficients of the mathematical model. The dot grid target is measured, and the
measurement data are processed by our developed and validated algorithms introduced in Part
I. The values of the coefficients are indicated and analyzed. Uncertainties are evaluated using
the Monte Carlo method. The second experiment measures a different area of the dot grid target.
The measurement results are corrected according to the coefficients determined in the first experiment.
The mean residual between the measured points and their corresponding certified values reduced
29.6% after the correction. The sum of squared errors reduced 47.7%. The methods and the algorithms
for raw data processing, such as data partition, fittings of dots’ centers, K-means clustering, etc., are
the same for the two experiments. The experimental results demonstrate that our method for the
correction of the errors produced by the movement of the lateral stage of a confocal microscope is
meaningful and practicable.

Keywords: geometric errors; rigid body kinematics; lateral stage errors; imaging confocal microscope;
MCM uncertainty evaluation; dot grid target

1. Introduction

The increasing demands for manufacturing accuracies and quality control due to the rapid
development of nanotechnology, ultraprecision machining, micro-, and nanofabrications, etc. [1,2]
and the requirements for precision in surface finishing in different technologies such as additive
manufacturing [3], mechanical parts with structured surfaces [4], etc., require the use of increasingly
sophisticated measurement systems and measurement traceability from a metrological point of view.

Calibration provides a wide range of information about microscope performances.
The ever-increasing demand for improved surface quality and tighter geometric tolerances has
led to augmentations in the investigations of manufacturing technologies [5]. Measurements using
optical microscopes are often affected by common path noise, disturbance in light source and ambient
lighting, etc., which cause measurement defects and outliers [6,7], as well as attract investigations
on noisy data processing [8]. The need for standardization is becoming ever greater as the range of
capturing three-dimensional (3D) information of microscope techniques continues to increase [5,9].
For optical confocal microscopes, the Z-calibrations at nm levels are typically good, while the X- and
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Y-accuracies are often left, without further notice than resolution limits of the optics [10,11]. Among the
investigations of lateral calibrations, many studies focus on the optical system [12]. For example,
H. Ni et al. proposed a new method to achieve structured detection using a spatial light modulator,
which modulates the Airy disk amplitude distribution according to the detection function in the
collection arm [13] and B. Wang et al. presented confocal microscopy with structured detection in
a coherent imaging process to achieve a higher resolution with a comparably large pinhole [14],
however, the systematic geometric errors which adversely affect the relative position and orientation
between measuring probes and measurands are usually neglected [15,16]. B. Daemi et al. designed
a comprehensive verification test by using a high precision metrology method based on subpixel
resolution image analysis [17]. The calibration of confocal microscopes usually relies on traceable
standard artefacts, which are commonly made up of regular patterns [10].

This paper describes the experimental studies based on the kinematic modeling and algorithms
for the correction of the geometric errors developed in Part I [18]. Sections 2 and 3 introduce the
methodologies for experiments and uncertainty evaluation individually. Section 4 presents the
experiment on a dot grid target for correction coefficients determination and their corresponding
uncertainty evaluation. Section 5 implements an experiment and corrects the measured data with
determined coefficients, comparing the residuals with respect to certified values before and after
corrections. Section 6 presents the conclusions. Following Section 6, acknowledgements and references
are included.

2. Methodology for the Experimental Study

The purposes of this experimental study were to, first, determine the error correction coefficients,
i.e., defined in the kinematic geometric error correction model developed in Part I [18] and, secondly,
apply the determined parameters of coefficients and the correction mathematical model for new
measurement data calibration. The dot grid target standard artefact was implemented as the measurand
of the experiments. By comparing the residuals of measured points and corrected points with respect
to the certified values, the practicality and significance of our developed models and algorithms for
lateral stage error calibration were observed.

Two experiments were carried out with our imaging confocal microscope, which is a Leica
Confocal Dual Core 3D Measuring Microscope (Leica DCM-3D), at the “Laboratorio de Investigación de
Materiales de Interés Tecnológico” (LIMIT) of the Technical University of Madrid. The first experiment
measured the dot grid target standard for the determination of the correction coefficients. The second
experiment measured another area of the dot grid standard, processing the measurement data with
the same developed and validated algorithms implemented in the first experiment. The purpose
of this experiment was to observe whether the corrected data improved as compared with the raw
measurement data. Because the second experiment used the same measurement parameters, data
processing algorithms, and procedures, and measured a different area of the same dot grid standard,
this comparison is important as other factors, which might influence the results, could be excluded
majorly, such as the uncertainties or inaccuracies generated by algorithms of cylinder separation, center
fitting, and movement scope of the lateral stage, etc.

3. Methodology and Procedures for Uncertainty Estimation

A statement of measurement is complete only if it provides an estimate of the quantity concerned,
as well as a quantitative evaluation of the estimate’s reliability, i.e., the associated uncertainty [18].
Accompany measurement results by quantitative statements about their accuracy is very important
particularly when the result are part of a measurement chain tracking back to national standards or
when decisions about product specifications are taken [19].

The document issued by BIPM, Guide to the Expression of Uncertainty in Measurement (GUM) [20]
provides a method and procedure for the evaluation and expression of measurement uncertainties [21].
This method is termed the GUM uncertainty framework in supplement 1 and supplement 2 (GUM-S1
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and GUM-S2) [22,23] and other bibliographies [19,24]. The GUM uncertainty framework has two main
limitations [2,25]. The first limitation is the lack of generality of the procedure to obtain an interval
to contain the values of the measurand with a stipulated coverage probability [25]. In the GUM
uncertainty framework, the way a coverage interval is constructed to contain values of the measurand
with a stipulated coverage probability is approximate [22]. The second limitation is that insufficient
guidance is given for the multivariate case in which there is more than one measurand, namely, more
than one output quantity [22,25]. In order to address these limitations, Working Group 1 of the Joint
Committee for Guides in Metrology (JCGM) has produced two specific guidance documents, namely
GUM-S1 and GUM-S2 [23,24], on the Monte Carlo method (MCM) for uncertainty evaluation and
extensions to any number of measurands (output quantity), respectively [22].

The MCM provides a general approach to obtain a numerical representation G of the distribution
function GY(η) for Y. The heart of the approach is making repeated draws from the probability density
functions (PDFs) for the input variables Xi (or joint PDF for X) and the evaluation of the output quantity.
Assignment of the PDFs for the input variables is dependent on each experiment. The same case applies
to the evaluation of the output quantity. The distribution function GY(η) encodes all information
known about the output quantity Y. Properties of Y can be approximated using GY(η). The quality of
G depends on the number of draws made. The symbol y represent the output measurement results.
It is determined by the input measurement results xi:

y = f (x1, . . . , xN) (1)

The relationship between the PDF of output measurement results and input measurement results is:

gY(η) =

∫
gX1,...,XN

(ξ1, . . . ,ξN) × δ[η− f (ξ1, . . . ,ξN)]dξ1 . . . dξN (2)

where η denotes possible values that can be distributed to Y, δ[· · · ] denotes the Dirac delta function.
Figure 1 provides an illustration of the propagation of distributions for input and output quantities.

The expectation of the output quantities can be obtained by its PDF gY(η) as:

E(Yi) =

∫ ∞

−∞
ηigYi(ηi)dηi (3)

 

Figure 1. Illustration of the propagation of distributions for input quantities and the obtained output
quantities [19].

The variance of the output quantities can be obtained by its PDF gY(η) as:

V(Yi) =

∫ ∞

−∞
[ηi − E(Yi)]

2

gYi(ηi)dηi (4)
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The covariance of the output quantities can be obtained by its PDF gY(η) as:

Cov(Yi, Yj) = Cov(Yj, Yi) =

∫ ∞

−∞

∫ ∞

−∞
[ηi − E(Yi)]

[
η j − E(Yj)

]
gYi,Yj(ηi, η j)dηidη j (5)

where gYi,Yj(ηi, η j) is the joint PDF for the two random variables Yi, Yj.
The correlation of the output quantities can be obtained by its PDF gY(η) as:

Corr(Yi, Yj) = Corr(Yj, Yi) =
Cov(Yi, Yj)√
V(Yi)V(Yj)

(6)

4. Experiment for Determination and Uncertainty Evaluation of the Error Correction Coefficients

The first experiment is the measurement of the standard artefact of the dot grid target. The purpose
of this experiment is to obtain the parameters of the coefficients of the kinematic rigid body errors.
Uncertainties of the obtained correction coefficients are also evaluated.

4.1. Determination of Error Coefficients

The standard artefact of the dot grid target is introduced in Part I of [18]. This artefact was measured
in an environment under a controlled temperature of 20 ± 1 ◦C, using the Leica DCM-3D Confocal
Microscopy at the Metrology Laboratory of the Technical University of Madrid. A magnification
objective of 50x was used, with a numerical aperture of 0.9. The acquisition parameter of measurement
area was defined as the topography stitching measurement, with a 4 × 4 extended topographies,
covering an area of 0.828 × 0.621 mm2. The parameter of overlapping area was 25% and the correlation
takes XYZ option. The level of resolution was 1, and the measured extended topographies contained
2496 × 1872 pixels.

After the measurement, the confocal system generated a file with suffix name ”.dat”, containing
three vectors, which are values of the X, Y, and Z coordinates. Data of this file was imported and
analyzed by our developed algorithms. The raw measurement data is shown in Figure 2, which is an
inclined surface with some outliers. This surface was aligned to be parallel with the X and Y coordinate
plane using our developed surface rotation methods introduced in Part I [18]. The aligned surface is
shown in Figure 3. The distribution of the values of the X, Y, and Z coordinates of the surface after
rotation is shown in Figure 4.

 
(a) 

Figure 2. Cont.
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(b) 

Figure 2. Surface reconstruction by the raw measurement data: (a) two-dimensional (2D) contour and
(b) three-dimensional (3D) surf.

  
(a) (b) 

Figure 3. Surface reconstruction after rotation of the raw measured surface: (a) 2D contour and
(b) 3D surf.

 

Figure 4. Histograms of the X, Y, and Z coordinates of the aligned surface.
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After rotation, the data were separated into surface plane and cylinders. The surface reconstruction
of the data of cylinders is shown in Figure 5. It is obvious that this data has many outliers. Those outliers
are detected and deleted by the method introduced in our previous work [8]. The distribution of the
measurement values of the X and Y coordinates, as well as the threshold for outlier detections are
shown in Figures 6 and 7 individually. The surface reconstruction by the data of cylinders with outliers
removed is shown in Figure 8.

 

Figure 5. Surface reconstruction of the data of cylinders.

 

Figure 6. Distribution of the X coordinate values and the thresholds for outlier detection.

 

Figure 7. Distribution of the Y coordinates values and the thresholds for outlier detection.
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Figure 8. Surface reconstruction of the data of cylinders with outliers removed.

The separated cylinders are shown in Figure 9. They are denoted by different colors and numbers.

 

Figure 9. Separation of the cylinders.

Those individual point clouds of cylinders are processed by our introduced algorithms.
Their centers are fitted and shown in Figure 10, in comparison to their corresponding certified positions.

 

Figure 10. Plot of the cylinders’ centers and their corresponding certified positions.
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The measured cylinder centers, shown in Figure 10, are all distorted in one direction. This might
be caused by the location of the measurand, as it is impossible to locate the measurand parallel with the
x-axis. Therefore, those measured centers are first aligned to be parallel with the x-axis. Then, they are
calibrated to the certified points using our developed mathematical models and algorithms. From this,
the results of the coefficients defined in the mathematical model, i.e., Equations (4) and (5) in Part I [18],
can be obtained. The results are indicated in Table 1. Moreover, rotation of the calibrated values of the
cylinder centers to align them with the measured ones are also carried out for the validation of the
rotation capability.

Table 1. Parameters of the coefficients of the mathematical models for lateral geometric error correction.

Parameter Value Parameter Value Parameter Value

a1 7.38 × 10−3 c1 4.36 × 10−6 e1 6.00 × 10−6

a2 −1.46 × 10−6 c2 1.05 × 10−8 e2 −6.24 × 10−9

a3 3.19 × 10−11 c3 −1.20 × 10−12 e3 9.69 × 10−14

b1 1.05 × 10−3 d1 −7.22 × 10−3 f1 −2.01 × 10−2

b2 −1.11 × 10−5 d2 4.00 × 10−6 f2 1.25 × 10−5

b3 −3.15 × 10−11 d3 −1.01 × 10−10 f3 −3.10 × 10−9

With those obtained parameters of the coefficients, the corrected points are calculated according to
Equations (4) and (5) in Part I [18]. Figure 11 shows the corresponding positions of certified, measured,
and corrected points. The results of the mean errors, maximum errors, sum of squared errors, and
standard deviations of the errors are indicated in Table 2.

 
Figure 11. Comparison of the positions of certified, measured, and corrected points.

Table 2. Errors with respect to the certified positions before correction and after correction.

Data Types
Mean Error

[μm]
Maximum Error

[μm]
Sum of Squared

Errors [μm2]

Standard
Deviations of the

Errors [μm]

Measured points 18.3 33.1 1.4 × 104 7.0
Corrected points 3.8 8.9 628.1 1.9

The Euclidean residuals of each point are plotted by contours, as shown in Figures 12 and 13,
which is the contour of the Euclidean residuals of the measured and corrected points with respect to
the certified values.
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Figure 12. Contour of the Euclidean residuals between each certified and measured points.

Figure 13. Contour of the Euclidean residuals between each certified and corrected points.

It can be concluded that the determined coefficients for kinematic geometric error correction
works very well in this measurement.

4.2. Uncertainty Evaluation

Uncertainty evaluation of the geometric error coefficients is based on the algorithms introduced
in Section 3. The heart of the approach is making repeated draws from the PDFs for the input variables
Xi (or joint PDF for X) and the evaluation of the output quantity. Here, we define the determinations
of the number of repeated draws, namely, the number of simulation trials, the PDFs for the input
variables, and the evaluation of the output quantity.

According to GUM-S2 [23] the main stages of uncertainty evaluation constitute formulation,
propagation, and summarizing describes as follows:

1. The first stage of formulation includes:

(a) Define the output quantity, namely, the geometric error correction coefficients Cc =

(a1, . . . g3);
(b) Determine the input quantity upon which Cc depends, namely, the measurement results

(x, y) and their corresponded certified values (Px, Py);
(c) Develop a measurement function f or measurement model relating the input and output

quantities, namely, Equations (4) and (5);
(d) On the basis of available knowledge, assign PDFs to the components of the input

quantities. As indicated by Table 2 in Part I [18], the certified values (Px, Py) follow
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a rectangular distribution U(−1, 1) μm. As there is no more information about the sources
of uncertainties for (Px, Py) or information for the measured values of X and Y coordinates
(x, y), here does not assign more uncertainties to the input quantities, for not introducing
unnecessary uncertainties.

2. The second stage, propagation, includes: Propagate the PDFs for the components of input
quantities through the model to obtain the (joint) PDF for the output quantity.

3. The final step, summarizing, includes: Use the PDF for the output quantity to obtain the expectation
of the output quantity, the uncertainty matrix, also named covariance matrix, associated with the
expectation of the output quantity, and a coverage region containing the output quantity with
a specified probability p(the coverage probability).

The simulation was repeated 1 × 104 times. Mean values, expanded uncertainties (k = 2), as well
as lower and upper boundaries for a 95% coverage interval are listed in Table 3. Distributions for the
output quantities are shown in Figure 14 and we observe that non-symmetric distributions and not
assimilable to normal distributions are obtained.

Table 3. Parameters of the coefficients of the mathematical models for lateral geometric error correction.

Parameter Mean Value Expanded Uncertainty
95% Coverage Interval

Lower Boundary Upper Boundary

a1 7.50 × 10−3 4.74 × 10−3 5.07 × 10−3 1.61 × 10−2

a2 −2.13 × 10−6 5.41 × 10−6 −1.28 × 10−5 −6.12 × 10−8

a3 2.00 × 10−10 7.14 × 10−10 −1.35 × 10−10 1.21 × 10−9

b1 −5.91 × 10−6 8.85 × 10−3 −1.62×10−2 2.99 × 10−3

b2 −9.91 × 10−6 9.19 × 10−6 −1.50 × 10−5 2.08 × 10−6

b3 −6.86 × 10−12 2.36 × 10−9 −8.94 × 10−10 2.67 × 10−9

c1 3.41 × 10−6 7.89 × 10−6 −6.22 × 10−6 7.41 × 10−6

c2 1.26×10−8 1.86 × 10−8 2.21 × 10−10 3.86 × 10−8

c3 −8.16 × 10−13 3.44 × 10−12 −5.74 × 10−12 1.56 × 10−13

d1 −6.57 × 10−3 4.97 × 10−3 −8.53 × 10−3 3.52 × 10−3

d2 3.93 × 10−6 1.94 × 10−6 1.39 × 10−6 5.37 × 10−6

d3 −5.88 × 10−11 3.78 × 10−10 −4.59 × 10−10 1.53 × 10−10

e1 5.89 × 10−6 2.95 × 10−6 2.00 × 10−6 8.04 × 10−6

e2 −6.57 × 10−9 6.71 × 10−9 −1.44 × 10−8 −4.88 × 10−11

e3 −2.34 × 10−15 3.80 × 10−13 −2.36 × 10−13 3.30 × 10−13

f 1 −2.21 × 10−2 1.42 × 10−2 −5.15 × 10−2 −1.43 × 10−2

f 2 1.40 × 10−5 1.73 × 10−5 6.71 × 10−6 4.98 × 10−5

f 3 −2.94 × 10−9 2.92 × 10−9 −5.37 × 10−9 −1.14 × 10−11

 
Figure 14. Cont.
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Figure 14. Distributions of the uncertainties of some geometric error correction coefficients.

5. Experimental Study of the Applications of Determined Coefficients

This section aims to verify the applicability of the determined error correction coefficients and the
residuals of measured and corrected points with respect to certified points are compared.

This experiment measures the dot grid target standard used in Section 4. The measured area of
this standard is different from those in Section 4. All the environmental and operational parameters
are the same as those in Section 4. The measurement data are processed using the same algorithms
and procedures, until the fitted cylinder centers are approximated parallel with the x-axis. Then the
fitted centers are corrected by the error correction coefficients determined. By comparing the mean
residuals, the sum of all squared residuals, and the standard deviation of residuals of measured points
and corrected points with respect to certified positions, the effectiveness of the calculated coefficients
and our model can be observed.

Measurement data are processed using our developed and validated algorithms. The raw
measurement data with form removed are shown in Figure 15, implementing the form removal method
presented in the pair publication Part I [18] Section 4.1. The cylinders are separated from the base
with our developed algorithms, with results demonstrated in Figure 16. Figure 16a shows the initial
separated cylinders, Figure 16b shows the cylinders with outliers removed and with clusters classified,
and Figure 17 shows the histograms of the three coordinates of the cylinders.
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(a) (b) 

Figure 15. The measured surface with form removed: (a) 3D reconstruction and (b) 2D reconstruction.

 
(a) (b) 

Figure 16. Separation of the cylinders: (a) The separated cylinders from the base and (b) separate
cylinders into individual clusters.

 

Figure 17. Histogram of the three coordinates of the separated cylinders.

The separated clusters are fitted for their centers. The coordinate values of the fitted cylinder
centers are shown in Table 4. Figure 18 shows the fitted cylinder centers, as well as the centroids of
each cluster data.
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Table 4. The raw coordinate values of the fitted cylinder centers.

Cluster N◦ X Coordinate
[μm]

Y Coordinate
[μm]

Cluster N◦ X Coordinate
[μm]

Y Coordinate
[μm]

1 47.3 42.6 19 541.8 298.1
2 172.3 42.9 20 667.7 301.3
3 294.8 44.0 21 796.8 298.4
4 425.1 49.5 22 40.2 420.6
5 544.9 48.1 23 163.3 417.8
6 669.2 46.6 24 291.1 421.0
7 796.4 48.3 25 415.9 424.6
8 42.4 166.5 26 538.9 423.9
9 167.7 171.9 27 666.1 430.0
10 292.6 172.3 28 794.6 430.3
11 419.3 172.6 29 41.2 530.7
12 544.1 175.2 30 163.3 548.3
13 666.6 174.6 31 289.5 546.6
14 797.0 176.0 32 415.0 548.2
15 40.1 295.9 33 539.9 551.7
16 163.4 294.6 34 662.6 550.7
17 293.0 294.5 35 796.9 550.8
18 417.9 295.3

 

Figure 18. Comparison of the fitted circle center and the centroid of the data.

As shown in Figure 18, the cluster numbered 29 has too many outliers. Here, we only choose the
first 28 clusters for the kinematic geometric error correction. The correction employs the mathematical
model Equations (4) and (5), as well as our calculated error coefficients. Before correction, the data
are aligned to be parallel with the X coordinate as much as possible. Table 5 shows the aligned
measurement data and the corrected data.

Table 5. The aligned and corrected measurement data.

Cluster N◦ Rotated Measurement Data Corrected Data by Error Coefficients

X Coordinate [μm] Y Coordinate [μm] X Coordinate [μm] Y Coordinate [μm]

1 47.2 42.8 47.5 41.6
2 172.2 43.4 173.4 41.7
3 294.7 44.8 296.7 42.7
4 425.1 50.6 427.7 48.2
5 544.8 49.5 548.2 46.8
6 669.0 48.3 673.1 45.2
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Table 5. Cont.

Cluster N◦ Rotated Measurement Data Corrected Data by Error Coefficients

X Coordinate [μm] Y Coordinate [μm] X Coordinate [μm] Y Coordinate [μm]

7 796.2 50.3 800.9 46.4
8 42.0 166.6 42.1 163.2
9 167.2 172.3 168.2 168.3
10 292.1 173.1 293.9 168.9
11 418.9 173.6 421.3 169.3
12 543.7 176.6 546.8 172.1
13 666.2 176.3 669.9 171.5
14 796.6 178.1 801.0 172.6
15 39.3 296.0 39.1 290.6
16 162.6 295.0 163.2 289.3
17 292.3 296.4 293.7 289.6
18 417.2 299.4 419.3 290.7
19 541.0 303.0 543.8 293.7
20 666.9 300.4 670.4 297.2
21 796.1 420.7 800.2 294.2
22 39.1 418.2 38.6 413.4
23 162.2 418.2 162.5 410.9
24 290.0 421.7 291.1 414.6
25 414.8 425.7 416.7 418.8
26 537.9 425.3 540.4 418.6
27 665.1 431.7 668.3 425.1
28 793.5 432.2 797.4 425.5

The aligned and corrected measurement data are both adjusted to a beginning of (0, 0). The results
of the measured and corrected positions are compared with the certified positions in Table 6. Figure 19
illustrates the measured, corrected, and the certified positions. The mean error, the maximum error, the
sum of the squared errors, and the standard deviations of the errors are indicated in Table 7. The mean
error and residual between the measured positions and the certified positions is 8.1 μm, while the
mean error and residual between corrected positions and the certified positions is 5.7 μm, improved
29.6%. The maximum error between the measured positions and the certified positions is 15.6 μm,
while the maximum error between corrected positions and the certified positions is 11.5 μm, reduced
26.3%. The sum of squared errors reduced from 2173.3 μm2 to 1136.2 μm2, which is 47.7%. It can be
observed that all four types of errors are much smaller after correction with the error coefficients.

Table 6. Comparison of the certified, measured, and corrected positions.

Cluster N◦
Certified Position

Measured Position
(Alignment Rotated)

Corrected Position

X Coordinate
[μm]

Y Coordinate
[μm]

X Coordinate
[μm]

Y Coordinate
[μm]

X Coordinate
[μm]

Y Coordinate
[μm]

1 0.0 0.0 0.0 0.0 0.0 0.0
2 125.0 0.0 125.1 0.6 125.9 0.1
3 250.0 0.0 247.6 2.0 249.2 1.1
4 375.0 0.0 377.8 7.8 380.2 6.6
5 500.0 0.0 497.7 6.7 500.7 5.2
6 625.0 0.0 621.9 5.5 625.6 3.6
7 750.0 0.0 749.1 7.5 753.4 4.9
8 0.0 125.0 −5.1 123.8 −5.4 121.6
9 125.0 125.0 120.1 129.5 120.7 126.8

10 250.0 125.0 245.0 130.3 246.4 127.3
11 375.0 125.0 371.7 130.9 373.8 127.8
12 500.0 125.0 496.5 133.8 499.3 130.5
13 625.0 125.0 619.0 133.5 622.4 129.9
14 750.0 125.0 749.4 135.2 753.5 131.0
15 0.0 250.0 −7.8 253.2 −8.4 249.0
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Table 6. Cont.

Cluster N◦
Certified Position

Measured Position
(Alignment Rotated)

Corrected Position

X Coordinate
[μm]

Y Coordinate
[μm]

X Coordinate
[μm]

Y Coordinate
[μm]

X Coordinate
[μm]

Y Coordinate
[μm]

16 125.0 250.0 115.5 252.2 115.7 247.8
17 250.0 250.0 245.1 252.5 246.2 248.0
18 375.0 250.0 370.1 253.6 371.8 249.1
19 500.0 250.0 493.9 256.6 496.3 252.2
20 625.0 250.0 619.8 260.2 622.9 255.6
21 750.0 250.0 748.9 257.7 752.7 252.6
22 0.0 375.0 −8.0 377.9 −8.9 371.8
23 125.0 375.0 115.1 375.4 115.1 369.3
24 250.0 375.0 242.9 378.9 243.7 373.0
25 375.0 375.0 367.7 382.9 369.2 377.2
26 500.0 375.0 490.7 382.5 492.9 377.0
27 625.0 375.0 617.9 388.9 620.8 383.5
28 750.0 375.0 746.4 389.5 749.9 383.9

 

Figure 19. Comparison of the certified, measured, and corrected positions.

Table 7. Errors with respect to the certified positions before correction and after correction.

Data Types
Mean Error

[μm]
Maximum Error

[μm]
Sum of Squared

Errors [μm2]

Standard
Deviations of the

Errors [μm]

Measured points 8.1 15.6 2173.3 3.5
Corrected points 5.7 11.5 1136.2 2.8

Figures 20 and 21 show the contour of the mean errors of the measured data and the corrected
data individually. Figure 22 shows the comparison of the error vectors from the certified positions to
the measured positions and the vectors from the certified positions to the corrected positions.

177



Electronics 2019, 8, 1217

 

Figure 20. Contour of the Euclidean residuals between each certified and measured points.

 

Figure 21. Contour of the Euclidean residuals between each certified and corrected points.

 

Figure 22. Comparison of the error vectors between the measured and corrected points.

According to the above results, we found that the errors and residuals between the corrected
positions and the certified positions are much smaller than the errors and residuals between the
measured positions and certified positions. This indicates that our method for the X and Y coordinate
calibration and correction is effective and useful.
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6. Conclusions and Future Work

This paper implemented two experiments for the illustration and the verification of our proposed
method for the correction of the kinematic geometric errors produced by the movement of the lateral
stage of confocal microscopes. The experimental results indicate that the mean residual reduced 29.6%,
the maximum error reduced 26.3%, and the sum of squared errors reduced 47.7%.

The first experiment measured the dot grid targets with extended topography. After processing the
measurement data, the error correction coefficients defined in the mathematical model, i.e., Equations (4)
and (5) presented in Part I [18] were determined. The uncertainties of the values of those coefficients
were also evaluated using the Monte Carlo method. The simulation number was 1 × 104. Distributions
of the uncertainties of each coefficient, as well as their lower and upper boundaries of a 95% interval,
were indicated.

The second experiment measured a different area of the same standard artefact. By correcting the
measurement data using our mathematical model and the determined coefficients, the corrected results
were obtained. The residuals between the raw measured points and their corresponding certified
values were compared to those between the corrected points and the certified values.

The data processing algorithms and procedures, such as separations of the flats and cylinders, data
partitions, outlier eliminations, K-means clustering, cylinder centers fittings, etc. were the same for the
two experimental studies. The difference between the data processing for the two experiments was in
the final procedures. The first experiment fitted the values of the coefficients used the nonlinear least
squared method. The second method applied the mathematical models and the determined values of
the coefficients to the measured data for obtaining the corrected coordinate values of the points.

Results of the experiments demonstrated that our proposed method for lateral stage kinematic
geometric error correction is efficient and useful.

Among the next practical steps for improving the proposed method is a focus on the stitching
algorithm of the optical element [26], which highly needs a calibration and correction of the
stitching result.
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Abstract: Land environment is one of the most commonly and importantly used synthetical
natural environments in a virtual test. To recognize the ground truth for the construction of
virtual land environment, a deep transfer hyperspectral image (HSI) classification method based
on information measure and optimal neighborhood noise reduction was proposed in this article.
Firstly, the information measure method was used to select the most valuable spectrum. Specifically,
three representative bands were selected using the combination of entropy, color matching function,
and mutual information. Based on the selected bands, a patch containing spatial-spectral information
was constructed and used as the input of the convolutional neural networks (CNN) network. Then,
in order to address the problem that a large number of labeled samples were required in deep learning
method, the HSI classification method based on deep transfer learning was proposed. In the proposed
method, the transfer of parameters ensured the classification performance with small training samples
and reduced the training cost. Moreover, the optimal neighborhood noise reduction was used as the
post-processing method to effectively eliminate the salt-and-pepper noise and further improve the
classification performance. Experiments on two datasets demonstrated that the proposed method in
this article had higher classification accuracy than similar methods.

Keywords: CNN; hyperspectral image classification; information measure; transfer learning;
neighborhood noise reduction

1. Introduction

In recent years, hyperspectral image (HSI) analysis has been widely used in various fields [1],
such as the monitoring of land cover change [2,3] and the environmental science and mineral
development [4]. As an advanced machine learning technology, deep learning has been widely used
in image classification to learn the hierarchical features of a deep neural network from low-level
to high-level [5]. The image classification methods based on the convolutional neural networks
(CNN) have shown the ability to detect local features of the hyperspectral input data and obtain the
classification results with high accuracy and stability. Rachmadi et al. proposed an adaptation of a
convolutional neural network (CNN) scheme proposed for segmenting brain lesions with considerable
mass-effect, to segment white matter hyperintensities (WMH) characteristic of brains with none or
mild vascular pathology in routine clinical brain magnetic resonance images (MRI) [6]. Krizhevsky et
al. proposed a large, deep convolutional neural network to classify the 1.2 million-high resolution
images in the ImageNet LSVRC-2010 contest into the 1000 different classes [7]. In addition to the
application in common image classification, many CNN-based hyperspectral image classification
methods have been developed in recent years. Ma et al. proposed a context deep-learning algorithm for
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learning the features, which can better characterize the information than the extraction algorithms with
predefined features [8]. Zhang et al. proposed a region-based diversified CNN, which can semantically
encode context-aware representations to obtain valuable features and improve the classification
accuracy [9]. Chen et al. first proposed the Stack Automated Encoder (SAE) framework to incorporate
the features with the special-spectral information. Firstly, the validity of SAE was verified by the
classical spectral information-based classification method. Secondly, a new classification method
based on spatial principal component information was proposed [10]. Slavkovikj et al. proposed a
CNN framework for hyperspectral image classification in which spectral features were extracted from
a small neighborhood [11]. Makantasis et al. proposed an R-PCA CNN classification method [12],
in which PCA was first used to extract the spatial information, and then CNN was used to encode
spectral and spatial information. The CNN classification methods with the combined spectral and
spatial information have shown better classification performance.

The hyperspectral image contains all of the spectral information of the ground objects, with the
typical high-dimensional features. However, the spectral information with high redundancy may
interfere with the classification process and reduce the classification accuracy. Therefore, it is very
important to reduce the spectral dimensionality of the hyperspectral image before the classification
process. Two typical dimensionality-reduction methods have been reported, i.e., feature extraction and
band selection methods. The feature extraction method mainly included principal component analysis
(PCA) [13], linear discriminant analysis (LDA) [14], and multidimensional scaling [15]. The band
selection method mainly included examining correlations [16], calculating mutual information [17,18],
etc.. In recent years, information-based band selection has been a very popular research topic, in which
the Shannon entropy or its changes, such as mutual information (MI), were usually used as the basis
of image information measure. Bajcsy proposed a band selection method under the constraints of
classification accuracy and computational requirements, in which the optimal number of bands was
determined by the unsupervised method of entropy [19]. Adolfo proposed a clustering method
for automatic band selection based on the mutual information in multispectral images [20]. Wang
proposed a supervised classification method for band selection based on spatial entropy [21]. Le Moan
et al. proposed a new spectral image visualization method to achieve band selection by the first-order,
second-order, and third-order information measure [22]. Manel proposed a frequency band selection
method based on the hierarchical clustering of spectral layer, and used mutual information measure
to reduce the dimensions of the image. Then a new c-means clustering algorithm was proposed to
integrate the spatial spectrum information [23]. Hossain et al. proposed a dimensionality reduction
method (PCA-nMI) that combined principal component analysis (PCA) with normalized mutual
information (nMI) under two constraints [24]. The proposed method maximized the general correlation
and minimized the redundancy in selected subspaces.

In the application of the deep neural networks to the classification of hyperspectral images,
there were some difficulties in the process of model training, such as the high demand for training
samples and the time complexity of computing models. Transfer learning can address the above
difficulties to some extent. In transfer learning, the learned knowledge or experience from the
source tasks is applied to the object tasks. Based on transfer learning, Li et al. proposed a CNN
framework for the anomaly detection [25] and the training of multi-layer CNNs using the differences
between adjacent pixels generated from the source image dataset. The experimental performance
showed that the proposed algorithm was superior to the classical Reed-Xiaoli [26] and the most
advanced representation-based detectors, such as sparse representation-based detectors (SRD) [27]
and cooperative representation-based detectors [28]. Wang proposed two architectures to extract the
general features of remote scene classification from the pre-trained CNNs [29]. Wang Liwei et al.
proposed a hyperspectral image classification method by applying transfer learning in deep residual
networks [30], and shared the shallow network weight parameters of deep residual networks. At the
same time, in order to address the over-fitting problem in the process of transfer shallow network
parameters from the large source dataset to the small object dataset, the strategy of fine-tuning the
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residual network was proposed, in which the deep layer of deep residual network was randomly
initialized and retrained in the object dataset.

The method studied in this article is to construct a virtual land environment for virtual test, which
is also one of the research fields of the author’s team. In order to build a virtual land environment which
can be used as the basis of other natural environment modeling and sensor sensing, the most important
thing is to accurately acquire the information of ground truth. So, we propose a scheme to construct the
virtual land environment using multi-source satellite’s earth observation data. The method proposed
in this paper is the key step of ground truth recognition. In this article, the hyperspectral image
classification method based on CNN was investigated. In addition, the information measure was
used to select the bands and reduce the dimensionality of hyperspectral images, thus, reducing the
redundant information. At the same time, the spatial-spectral features were extracted to improve
the classification performance of hyperspectral images. Furthermore, the classification method based
on deep transfer learning and neighborhood noise reduction was used to achieve high classification
accuracy for small-sized samples and reduce the training complexity of the object dataset.

2. The Related Work

The method studied in this article is to build a virtual land environment, which belongs to the
field of virtual tests. Virtual test technology is a new test technology. Because of its low cost, high
efficiency and ability to support test in a complex environment, virtual test technology has been more
and more widely used, such as automobile test [31], building design [32], weapon system test [33] and
so on. The virtual test is inseparable from the virtual environment, so in order to meet the needs of
the virtual test in a complex environment, it is an important research content to study the modeling
theory and method of all kinds of complex environments. The synthetic natural environment, which
is composed of land, atmosphere, ocean and space environment, is the space for various human
activities [34]. The virtual land environment is one of the important components of the virtual natural
environment. The current virtual land environment, which is often used in virtual reality [35] and
visual simulation [36], is mainly concerned about visualization and pays attention to the immersion.
However, the new virtual test puts higher demands on the virtual land environment, as follows.

(1) Providing support for the construction of other types of natural environment. The synthetic
natural environment is an interrelated and interactive organic whole, especially the interaction
between the land environment and the atmospheric environment. For example, the MM5 atmospheric
model needs six types of land environmental data, such as land surface type, water body, vegetation
composition, etc. [37].

(2) Providing a sensing basis for virtual sensors. For example, when using infrared imaging
sensors to detect the ground, it is necessary to support the high-precision three-dimensional land
environment with the information of ground truth, material, etc.

Based on the above analysis, the virtual land environment used in the virtual test is more important
to be used as the modeling basis of other natural environments and the sensing basis of various sensors.
What is more, it is a three-dimensional land environment which contains various information, such
as ground truth, objects material, color, texture, etc. Therefore, as shown in Figure 1, we propose
a scheme to construct a virtual land environment using multi-source satellite earth observation
data, which is a joint application of multi-sensor data [38]. Based on hyperspectral, multispectral,
panchromatic, and other optical earth observation data and radar earth observation data, such as InSAR,
the construction of virtual land environment is completed through four steps: Temporal-spatial-spectral
fusion (A), ground truth recognition (B), elevation extraction (C) and synthesis (D). Among them,
ground truth recognition (B) is a key step, which is responsible for providing accurate information,
such as ground truth, material, etc for the virtual land environment. The HSI classification method
proposed in this article belongs to this step, and the ground truth information is obtained through the
classification of HSI.
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Figure 1. The process of constructing a virtual land environment using multi-source satellite Earth
observation data.

In the virtual test, according to the test requirements, a specific space range of virtual land
environment is usually constructed, which may use the earth observation data obtained by different
sensors. At the same time, the method of ground truth classification based on machine learning needs
a large number of marked data as training samples. It is not easy to prepare a large amount of marked
data for the images of different scenes obtained by different sensors. Therefore, transfer learning is
adopted in this article. After training the classification network in all kinds of typical scenes, we can
transfer to a specific scene and do a little training.

3. Dimensionality Reduction of Hyperspectral Image Based on Information Measure

3.1. Spectral Band Preprocessing Based on Entropy and Color Matching Function (CMF)

Based on the information theory, Shannon first proposed the concept of entropy in 1948 [39],
in which the amount of information with uncertainty, i.e., the probability of the occurrence of discrete
random events was measured. The greater amount of information indicated a smaller redundancy.
The information measure based on Shannon’s communication theory has been proven very effective in
identifying the redundancy of high-dimensional datasets.

The entropy of a random variable is defined as

H(X) = −
n∑

i=1

pX(xi) logb[pX(xi)], (1)

where xi is the event of X, pX(xi) is the probability density function of X, and b is the logarithmic order.
Assume X and Y are two random variables, where X has n values and Y has m values. Then their

joint entropy is

H(X, Y) = −
n∑

i=1

m∑
j=1

pX,Y
(
xi, yj

)
log pX,Y

(
xi, yj

)
, (2)

where pX,Y
(
xi, yj

)
is the joint probability density function of X and Y.

When these measurements are applied to hyperspectral images, it is generally assumed that each
channel (spectral band) is equivalent to a random variable X, and each pixel in the channel is an event
xi. In the preprocessing step for the spectral band of the hyperspectral image, the channel with less
information is eliminated based on Shannon entropy, which are described as follows:
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Firstly, the entropy H(Bi) of each spectral band of the hyperspectral image is calculated.
The random variable Bi is the i-th spectral band (i = 1, 2, ... n), xi is the pixel of the i-th spectral band,
and pBi(xi) is the probability density function of the band Bi.

H(Bi) = −
n∑

i=1

pBi(xi) logb

[
pBi(xi)

]
. (3)

Secondly, the local average entropy of each spectral band is defined as Equation (4), where m is
the window size, indicating the size of the neighborhood.

Hm(Bi) =
1
m

m/2∑
p=−m/2

H
(
Bi+p

)
. (4)

Finally, the bands Bi that meet the following conditions are retained.

H(Bi) ∈
[
Hm(Bi) × (1− σ), Hm(Bi) × (1 + σ)

]
, (5)

where σ is the threshold factor. The spectral band with higher or lower entropy than the range of σ of
the local average entropy Hm(Bi) is considered to be irrelevant.

The blue line in Figure 2 is the entropy curve, in which the horizontal axis represents the spectral
dimension and the vertical axis represents the entropy of each spectral band. The smoothness of
the entropy curve determines the window size m and the threshold factor σ. If the entropy curve
is smooth, the change of the adjacent spectral band information, i.e., the uncertainty of the band
information is small; thus, the number of bands outside the relevant range, i.e., the probability of
having an uncorrelated band, is also small. In this condition, few spectral bands are redundant, thus,
smaller σ and m values should be chosen to improve the ability of excluding redundant bands. On the
contrary, if the entropy curve fluctuates greatly, the change of the adjacent spectral band information,
i.e., the uncertainty of the band information, is large; thus, the number of bands outside the correlation
range, i.e., the probability of having an uncorrelated band, is also large. In this case, more spectral
bands are redundant, thus, larger σ and m values should be chosen to exclude the redundant bands
and retain the bands with valid information.

Figure 2. Exclusion of the unrelated spectral bands of the Indian pines dataset.

The color matching function (CMF) in CIE 1931 standard chromaticity observer [40] described
the human eye visual color characteristics. This function was used to achieve the complete process of
preliminary selection of spectral bands based on the calculation of entropy. At a specific wavelength,
the CMF determined the number of the three primary lights (red, blue and green), which must be
mixed in a certain order to achieve the same visual effect as the corresponding monochrome light at
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that wavelength. By applying the CIE color matching to hyperspectral images in the visible range,
hyperspectral images can be represented by the corresponding color matching [41].

As shown in Figure 3, the wavelength of the first effective spectral band was λ = 360 nm, and the
wavelength of the last effective spectral band was λ = 830 nm. Then a linear interpolation was
performed between the first and last effective spectral band.

 
Figure 3. CIE 1931 color matching curve between 360 nm and 830 nm.

In order to obtain the band selection sets, the thresholds t for the CMF coefficients of the three
primary colors were set, i.e., Sett

R, Sett
B and Sett

G were set based on the optical channels of the three
primary colors.

In Figure 4, two spectral thresholds (t = 0.1, t = 0.5) were set for the coefficient variation curve
of the CMF of the red light. When the CMF coefficient is above the threshold, the corresponding
spectral bands were preserved. It was challenging to set the value of the parameter t without a specific
application. In this article, an automatic threshold method was used to define the optimal threshold t
to maximize the amount of discarded information. Use St

discard to label the set of channels which are
discarded by threshold processing of the CMF and St

selected to label the complementary set of St
discard.

The optimal threshold topt is defined as

topt = argmax(t), H
(
St

discard

)
< H

(
St

selected

)
, (6)

where H
(
St

discard

)
is the total entropy of the discarded spectral bands obtained by the above derivation,

and H
(
St

selected

)
is the total entropy of the selected spectral bands. Using the above describe method,

the initially selected spectral bands can be obtained.

 
Figure 4. Color matching function (CMF) coefficient changes of red light.
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3.2. Band Selection Based on Mutual Information

Mutual Information (MI) is a measure of the useful information, which is defined as the amount
of the information contained in a random variable about another random variable. The MI between
two random variables X and Y is defined as

I(X, Y) =
∑

i = 1 . . . n
j = 1 . . .m

pX,Y
(
xi, yj

)
log

pX,Y(xi,yj)
pX(xi)·pY(yj)

= H(X) + H(Y) −H(X, Y)

(7)

where pX(xi) is the probability density function of X, pY(yi) is the probability density function of Y,
and pX,Y

(
xi, yj

)
is the joint probability density function of X and Y. H(X) is the entropy of the random

variable X, and H(Y) is the entropy of the random variable Y, which is calculated by Equation (1).
H(X, Y) is the joint entropy of two random variables X and Y, which can be calculated by Equation (2).

Furthermore, Bell proposed the mutual information of three random variables X, Y and Z, as
shown in the following [42]:

I(X, Y, Z) = H(X, Z) + H(Y, Z) −H(X, Y, Z)
= −H(Z) − I(X, Y)

(8)

where H(X, Y, Z) is the third-order joint entropy of three random variables X, Y and Z.
The above principle is equally applicable in hyperspectral images. The information of one channel

can increase the mutual information between the other two channels. In this case, as the overlapped
information between the two channels is less, the interdependence degree between the two random
variables is lower, and the amount of contained information is greater. In the dimensionality reduction
of hyperspectral images, it is necessary to consider both criteria, i.e., the largest amount of information
and the least amount of redundancy.

Pla proposed the application of standardized mutual information [43]. In this article, we used
the k-th order normalized information (NI) of the band S = {B1, · · · , Bk} as the standardized mutual
information, in which NI is defined as

NIk(S) =
K × I(S)
k∑

i=1
H(Bi)

, (9)

where I(S) is the mutual information of the bands B1 to Bk, and H(Bi) is the entropy of the band Bi.
Three parts, Sett

R, Sett
B and Sett

G, were obtained by setting threshold t for the CMF coefficients of
the three primary colors. As the value of the mutual information NI3(S) was smaller, the amount of
contained information in the selected spectral bands was larger, and the dimensionality reduction effect
on the hyperspectral image was better. The spectral bands, xR, yB, zG (xR ∈ Sett

R,yB ∈ Sett
B,zG ∈ Sett

G),
were obtained to minimize NI3(xRN∗ , yBN∗ , zGN∗) and selected as the most valuable bands.

3.3. Two Strategies for CNN Inputs

Three spectral bands, xR, yB, zG, were selected for the dimensionality reduction of hyperspectral
image based on the information measure, and three grayscale images were obtained. There were two
strategies to enter the CNN network, as shown in Figure 5. In the first strategy, the three spectral
bands xR, yB, zG were directly used to extract the neighborhood around the pixel and classify the
pixel into a patch of m × m × 3, which was put into the CNN for classification. This method was
also called the information measure classification method (IM for short) because it directly used the
dimensionality reduction results based on the information measure. In the second strategy, all the
spectral information of the pixel was superimposed and classified on the above patch to form a patch
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of m×m× 6. All the spectral information of the central pixel of the patch was extracted, combined,
intercepted, and reshaped. Then three layers of spectral information were obtained, which had the
same shape and size as the three-dimensional spatial-spectral information extracted by the IM method.
Then, the patch generated by the IM method and the new m×m× 6 patch were superimposed and
put into CNN for classification. In this article, the proposed method was called the information
measure-spectral (IM-SPE for short) classification method.

Figure 5. The principle of dimensionality reduction based on the integration of information measure
and spectral information.

The spectral information was processed as follows: Assume that the size of hyperspectral data
was I1 × I2 × I3. At first, the one-dimensional spectral information of the central pixel with the size
of 1 × 1 × I3 was superimposed by n times to obtain the one-dimensional spectral information of
1× (n× I3). Then a one-dimensional spectral vector equal to m×m was intercepted and reshaped to a
two-dimensional spectral matrix of m × m. Then a m×m× 6 spatial-spectral patch was obtained by
superimposing three spectral information layers and combining the superimposed information with
the three spatial-spectral information extracted by the IM method.

4. Hyperspectral Image Classification Method Based on Deep Transfer Learning

The classification of hyperspectral image based on deep transfer learning can be used to better
solve the problem that the sample data is insufficient or relatively small. The specific classification
principle is shown in Figure 6.
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Figure 6. Principle of hyperspectral image classification based on deep transfer learning.

Training was performed on the source dataset to obtain the network model and parameters.
The shallow layer structure and parameters were directly transferred to the object dataset, and the
deep layer parameters were randomly initialized. Taking the CNN network structure of Figure 6 as an
example (including two convolutions and pooling layers, and two fully connected layers), if the source
hyperspectral dataset is highly similar to the object hyperspectral dataset, the adjustment of the deep
parameters should be in the following order: The last fully connected layer (full-connected2), the first
fully connected layer (full-connected1). If the source hyperspectral dataset is not highly similar to the
object hyperspectral dataset, the convolutions and pooling layers (conv2 and pooling2) that extract the
deep features may also need the random re-initialization of the weighting parameters. Specifically,
in the proposed hyperspectral image classification process based on deep transfer learning in this
article, the following two situations were mainly considered:

In the first situation, the object dataset has a small number of samples and is similar to the source
dataset. In this case, first, the last fully connected layer of the pre-trained layers should be removed,
and then a fully connected layer that matches the number of feature classes of the object dataset is
added. The weight parameters of other pre-training layers are kept unchanged, and only the weights
of the newly added layers are randomly initialized. When the sample size of the object dataset is small,
only the new-added fully connected layer is trained using the object dataset to avoid the problem of
over-fitting. In details, the learning rate of the previous layers of CNN to 0 and only the last fully
connected layer on the object dataset is trained.

In the second situation, the object dataset has a large number of samples, but the number of
samples relative to the source dataset is small, and the relative dataset are similar to the source dataset.
In this case, first, the last fully connected layer of the pre-training network layers should be removed,
and then a fully connected layer that matches the number of feature classes of the object dataset
is added. Only the weights of the newly added layers are randomly initialized, while the weight
parameters of other pre-training layers are kept unchanged. Since the object dataset has a large amount
of data and is not prone to overfitting, the entire network can be retrained. Meanwhile, the features
extracted by the original convolutional layer can be used to speed up the training for the object dataset.
The entire network can be trained by the specific method through setting the learning rate of the front
layeres of the CNN to 0.001.
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The classification process of hyperspectral image based on deep transfer learning is shown in
Figure 7.

 
Figure 7. Hyperspectral image classification process based on deep transfer learning.

5. Optimal Neighborhood Noise-Reduction Method

In order to reduce the salt-and-pepper noise in the initial classification results, an optimal
neighborhood noise reduction method based on the eight-neighbor mode label was proposed in this
article. The optimal neighborhood noise reduction method was used to reprocess the initial classification
result of the hyperspectral image. In the method, the hyperspectral image classification label data was
used as the input, and the central pixel label was compared to the label of its eight-neighborhood pixel.

If L(i, j) is used to represent the classification result label of a central pixel p(i, j) of the hyperspectral
image, the class labels of the central pixel p(i, j) and the eight neighborhood pixels are shown in Figure 8.
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Figure 8. Class labels of the central pixel and its eight neighborhood pixels.

As shown in Figure 8, based on the traversal of all the pixel labels of the hyperspectral image,
the class label L(i, j) of one central pixel p(i, j) and the class labels of the eight neighborhood pixels were
combined into a 3×3 matrix. The 3×3 matrix was transformed into a 1×9 one-dimensional vector. Then
the mode M of the nine labels and the number m of the mode labels were calculated. The threshold was
set to N (0 ≤N ≤ 9), and the pixel label of the hyperspectral image that did not need to be classified was
set to 0. The central pixel is considered to be noise when the following conditions are met: The class
label L(i, j) of the central pixel is not equal to the mode of the nine pixel labels, the mode label is not 0,
and the number of the mode labels is m ≥ N. Since the label of 0 means that the pixel does not need to
be classified, the mode label with the value of 0 is excluded to avoid the edge misjudgment. If the
central pixel p(i, j) is confirmed to be noise, it is replaced with the mode label of the eight neighborhood
pixels. The initial value of the threshold N is generally set to 5. When the central pixel label L(i, j) is not
equal to the mode label of the nine pixels, the mode label is not 0, and the number of the mode labels is
m ≥ 5, the central pixel is considered to be noise. The threshold N can be modified according to actual
conditions. If the threshold is too large, the noise-reduction effect may not be obvious; if the threshold
is too small, the actual information may be misjudged as noise.

The pseudo-code of the optimal neighborhood noise reduction process is shown as follows:

Input: The classification result dataset X of the hyperspectral image, the label of 0 for the pixels that do not
need to be classified, and the threshold N=5
Output: The noise-reduced classification result data set X of the hyperspectral image and classified image with
noise reduction.
Load classification result dataset X
for i=1; i< X.shape[0]; i++
for j=1; j<X.shape[1]; j++
loop traversing each pixel label L(i, j)
Transforming the 3×3 matrix composed of the central pixel label L(i,j) and its eight neighborhood pixel labels
into a 1×9 one-dimensional vector
Calculating the mode M and its number m of central pixel label and the eight neighborhood pixels labels.
if the class label L(i, j) of the central pixel is not equal to the mode number M of the nine labels
if the mode label is not 0 and the number of the mode label is m≥N
The central pixel p(i, j) is noise
Replace the central pixel label L(i, j) with the mode label M to remove the noise
end if

end if

Update the hyperspectral image classification result label L(i, j) of each pixel p(i, j)
end loop L(i, j)
end for

end for
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6. Experiments and Analysis

6.1. Dataset

In order to verify the proposed method in this article, the experiments were conducted on the
datasets with similar characteristics. The selected dataset included the Indian Pines dataset, the Salinas
dataset, the Pavia University dataset, and the Pavia Center dataset. Both the Indian Pines dataset
and the Salinas dataset were acquired by AVIRIS sensors. The corrected spectral dimensions for both
datasets were 200 and 204, respectively, which were very close. The real ground objects were divided
into 16 classes [44]. The Pavia University dataset and the Pavia Center dataset were collected by
ROSIS sensors. The corrected spectral dimensions of these two datasets were 103 and 102, respectively,
and the real ground objects were divided into nine classes [45]. The datasets are gotten from the
website (http://www.ehu.eus/ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes).

The Indian Pines dataset and the Salinas dataset were similar, and the Pavia University dataset
and the Pavia Center dataset were similar. In addition, the former two datasets had a smaller sample
size than the latter two datasets. Therefore, the Salinas dataset and the Pavia Center dataset were used
as the source datasets in the transfer learning method, while the Indian Pines dataset and the Pavia
University dataset were used as the corresponding object datasets. First, the structures and parameters
of the shallow network were obtained and validated from the training on the Salinas dataset and
Pavia Center dataset. Then the obtained structure and parameters were transferred to the Indian Pines
dataset and Pavia University dataset with relatively small sample sizes. Finally, the structure and
parameters of the network were fine-tuned.

There was a big difference between the Indian Pines dataset and the Pavia University dataset,
which could be used to validate the proposed classification method fully. The Indian Pines dataset
had a small sample size and can mainly reflect the vegetation information, including rich species and
mostly regular block distribution, rich spectral information and low spatial resolution. The Pavia
University dataset had a large image size and can mainly reflect the landscape information of the urban
landscape. Although there were few species, the shape of the object was irregular, and the spatial
resolution was high.

6.2. Experiments and Result Analysis

6.2.1. Experiments of Dimensionality Reduction Methods

In order to test the effectiveness of the proposed methods in the dimensionality reduction and
noise reduction for the hyperspectral images, the classification performance of IM, IM_SPE methods,
and these methods superimposed with optimal neighborhood noise-reduction method (IM_DN,
IM_SPE_DN methods) were tested and compared with that of the spectral information based CNN
classification method (SPE) [46], the spatial information based CNN classification method (PCA1, PCA
first principal component) [47], the CNN classification method based on the integration of the spectral
information and the first principal component of the spatial information (PCA1_SPE), and the CNN
classification method based on PCA’s first three principal components of the spectral information
(PCA3) [48]. We use OA, AA and Kappa coefficients to evaluate the performance of different methods.

(1) Experiments on Indian pines dataset
The classification performance on the Indian pines dataset is shown in Table 1. From Table 1,

for the Indian pines dataset, the PCA1_SPE, PCA3, IM, and IM_SPE classification methods provided
the best classification accuracy. Moreover, the OA, AA and Kappa coefficients of IM and IM_SPE
methods were superior to those of SPE, PCA1, PCA1_SPE, and PCA3 methods, which indicated that the
information measure-based classification method (IM and IM_SPE) had better performance than the
spectral information-based classification method (SPE) and the PCA-based classification method (PCA1,
PCA1_SPE and PCA3). Among all classification methods, the IM_DN and IM_SPE_DN methods had
the best OA, AA, and Kappa coefficients, due to the combination of the dimensionality reduction based
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on information measure and the optimal neighborhood noise reduction. It has been demonstrated
that the optimal neighborhood noise reduction method had a significant effect on the treatment of
salt-pepper-noise of the classification results, and can greatly improve the classification accuracy.

Table 1. The classification results on Indian pines dataset (%).

Class SPE PCA1 PCA1_SPE PCA3 IM IM_SPE IM_DN IM_SPE_DN

1 92.30 79.33 99.97 97.80 92.38 98.91 93.48 98.91
2 89.10 94.05 91.85 97.18 97.78 98.20 98.76 98.71
3 87.43 94.02 94.90 98.34 96.17 96.91 96.90 97.46
4 88.39 94.98 90.80 98.27 97.51 95.44 97.74 96.56
5 96.59 95.96 97.13 97.01 95.54 99.36 96.17 99.58
6 97.81 98.47 98.35 98.20 96.84 99.01 97.41 99.08
7 91.07 98.18 98.19 98.21 99.95 98.18 99.96 98.18
8 98.06 99.76 99.95 99.77 99.89 99.78 100.00 99.89
9 79.98 77.49 100.00 74.97 79.95 72.48 82.46 72.48
10 90.28 96.37 95.01 96.73 98.17 95.97 98.96 96.62
11 91.08 94.67 95.61 97.09 98.50 98.35 99.00 99.23
12 87.61 94.18 96.24 95.87 97.78 98.62 98.35 99.16
13 99.23 97.52 99.24 98.70 99.45 99.50 99.71 99.76
14 95.81 98.24 98.90 99.45 99.47 99.45 99.59 99.65
15 78.79 94.08 97.09 98.12 99.69 99.30 99.71 99.84
16 96.76 96.74 93.54 98.30 91.92 98.36 93.01 99.45
OA 85.31 92.39 93.06 95.79 96.39 96.90 97.36 97.82
AA 91.28 94.01 96.67 96.50 96.31 96.74 96.95 97.16
Kappa 83.23 91.33 92.08 95.21 95.88 96.46 96.99 97.52

Figure 9a–i show the classification results of the SPE, PCA1, PCA1_SPE, PCA3, IM, IM_SPE,
IM_DN, and IM_SPE_DN methods on the Indian pines data set. Figure 9i shows the ground truth of
Indian pines dataset.

   

(a)               (b)               (c) 

   

(d)               (e)               (f) 

   

(g)               (h)               (i) 

Figure 9. The classification results on Indian Pines dataset: (a) SPE; (b) PCA1; (c) PCA1_SPE; (d) PCA3;
(e) IM; (f) IM_SPE; (g) IM_DN; (h) IM_SPE_DN; (i) the ground truth.
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From Figure 9, the classification accuracy of the IM and IM_SPE methods was superior to that of the
SPE, PCA1, PCA1_SPE and PCA3 methods on the Indian pines dataset. In addition, the dimensionality
reduction method based on information measure played an important role in improving the image
classification performance. The salt-pepper-noise of the hyperspectral image was significantly reduced
by IM_DN and IM_SPE_DN methods, indicating that the optimal neighborhood noise reduction
method can provide a more accurate classification effect.

(2) Experiments on Pavia University dataset
The classification performance of the SPE, PCA1, PCA1_SPE, PCA3, IM, IM_SPE, IM_DN,

and IM_SPE_DN methods on the Pavia University data set is shown in Table 2. From Table 2, the OA
values of the IM and IM_SPE methods were 6.49% and 7.04% higher than the SPE method on the
Pavia University dataset, respectively. Compared with the PCA1 method, the OA values of the
IM and IM_SPE methods were increased by 3.76% and 4.31%, respectively. Compared with the
spatial-spectral fusion methods (PCA1_SPE and PCA3), the OA values were increased by 0.2%~3.43%
and 0.75%~3.98%, respectively. Thus, the spectral selection method based on information measure
can significantly improve the classification accuracy. Among all classification methods, the IM_DN
and IM_SPE_DN methods, which combined the dimensionality reduction based on the information
measure and the optimal neighborhood noise reduction, had the best OA, AA, Kappa coefficients.
The AA of IM_SPE_DN method reached as high as 99.20%. Therefore, when the sample size is
sufficiently large, the optimal neighborhood noise reduction method can improve the classification
performance to a large extent.

Table 2. The classification results on Pavia University dataset (%).

Class SPE PCA1 PCA1_SPE PCA3 IM
IM_
SPE

IM_DN IM_SPE_DN

1 94.45 96.13 96.92 97.20 98.50 98.51 99.03 99.30
2 93.36 95.27 95.04 97.00 97.17 97.60 98.10 99.12
3 90.30 92.73 92.75 96.38 97.93 97.50 98.77 98.10
4 95.49 97.95 98.72 97.74 97.83 99.03 98.13 99.12
5 99.66 99.83 99.88 98.89 99.71 100.00 99.72 100.00
6 90.43 94.06 91.66 96.99 96.72 96.67 98.14 98.83
7 95.50 92.88 95.13 98.21 98.47 98.90 98.84 99.39
8 93.16 96.95 96.59 97.76 98.92 98.82 99.16 99.02
9 99.87 98.64 99.88 98.04 98.08 99.94 98.31 99.94

OA 89.76 92.49 92.82 96.05 96.25 96.80 97.44 98.56
AA 94.69 96.05 96.29 97.58 98.15 98.55 98.69 99.20

Kappa 86.55 90.18 90.55 95.11 95.05 95.77 96.63 98.10

Figure 10a–i show the classification results of the SPE, PCA1, PCA1_SPE, PCA3, IM, IM_SPE,
IM_DN, and IM_SPE_DN methods on the Pavia University data set, and Figure 10i is the ground truth
of Pavia University dataset.

As can be seen in Figure 10, it is obvious that the information measure-based CNN classification
method (IM and IM_SPE) can achieve higher classification accuracy on the Pavia University dataset.
Moreover, the optimal neighborhood noise reduction method (IM_DN and IM_SPE_DN) can effectively
reduce the salt-pepper-noise.
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(a)            (b)             (c) 

   
(d)            (e)             (f) 

   
(g)            (h)             (i) 

Figure 10. The classification results on Pavia University dataset: (a) SPE; (b) PCA1; (c) PCA1_SPE;
(d) PCA3; (e) IM; (f) IM_SPE; (g) IM_DN; (h) IM_SPE_DN; (i) the ground truth.

The experimental results show that the band selection method based on information measure is
better than the feature extraction method based on PCA on Indian pines dataset and Pavia University
dataset. As we all know, besides PCA, there are some common dimensionality reduction methods,
such as Kernel-PCA (KPCA), independent component correlation (ICA) [49], locally linear embedding
(LLE) [50], etc. Research shows that machine learning by feature extraction can achieve better
generalization performance than that without feature extraction. This demonstrates the fact that
dimensionality reduction can improve generalization performance. Generally speaking, KPCA and
ICA perform better than PCA—which is explained by the fact that KPCA and ICA can explore
higher order information of the original inputs than PCA. Instead of the sample covariance matrix,
(the second-order information) as used in PCA, the negentropy in ICA could take into account the
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higher order information of the original inputs. By using the kernel method to generalize PCA into
nonlinear, KPCA also implicitly takes into account the high order information of the original inputs.
A higher number of principal components could also be extracted in KPCA, eventually resulting
in the best generalization performance. LLE is much better than PCA in dealing with so-called
manifold dimensionality reduction. LLE maps its inputs into a single global coordinate system of lower
dimensionality, and its optimizations do not involve local minima. By exploiting the local symmetries
of linear reconstructions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text. So, in the future research, we can try to use
KPCA, ICA, LLE to replace the methods based on information measurement, or compare our in this
paper with the classification methods based on these dimensionality reduction methods for further
experimental testing.

Moreover, entropy and mutual information are used to select the most representative band of
the hyperspectral image, in order to reduce the dimension. From the introduction, we can see that
some hyperspectral image classification methods based on RBMS or DBN have appeared in the past
few years. It is known that Restricted Boltzmann Machines (RBMs) based on unsupervised learning
can be used to preprocess the data and basically to help the "machine learning" process become
more efficient. Mousas et al. used RBMs to preprocess the motion features of a character’s hand to
enhance the estimation rate [51]. Nam et al. used sparse RBM to encode the preprocessed data into
high-dimensional feature vectors in the field of music annotation and retrieval [52]. The classification
methods based on RBMS or DBN generally take all spectral information of each pixel as the input of the
network, and realize the classification of hyperspectral images only according to spectral information.
In recent years, some classification methods using spatial-spectral information have achieved better
classification results. For feature extraction of the image after dimensionality reduction, the reason
why we use CNN instead of RBMS or DBN is that we want to use spatial-spectral information to
classify hyperspectral images in order to improve classification accuracy. The validity of this method is
also proved by the experiments.

6.2.2. Experiments of Deep Transfer Learning Methods

(1) Transfer experiment from Salinas to Indian pines
Salinas was used as a source dataset to pre-train CNN. Then the shallow layers’ weight parameters

were transferred to the object dataset, Indian Pines. In addition, the fine-tuning of the parameters
in the network and the optimal neighborhood noise reductions were performed. In this experiment,
5% of the Salinas dataset samples were randomly selected to pre-train CNN, 10% of the Indian Pines
dataset were selected as the training set, and the rest of the dataset were used as the test samples.

In order to fully verify the effectiveness of the transfer learning method, the classification method
based on all spectrum data of hyperspectral images (that is, No Dimensionality reduction, NDR), the IM
method, and the IM_SPE method were combined with the deep transfer learning method (MIG) to obtain
the NDR_MIG, IM_MIG, and IM_SPE_MIG methods, respectively. Then the NDR_MIG, IM_MIG,
and IM_SPE_MIG methods were compared with the classification methods without transfer (i.e., NDR,
IM, IM_SPE). At the same time, in order to further verify the effectiveness of the proposed noise
reduction method, NDR_MIG, IM_MIG, IM_SPE_MIG, were combined with the optimal neighborhood
noise reduction method (DN) to obtain the NDR_MIG_DN, IM_MIG_DN, and IM_SPE_MIG_DN
methods, respectively. The classification result of each method is shown in Table 3.

From Table 3, on the Indian Pines dataset, the three classification evaluation indicators (OA, AA,
and Kappa coefficients) of the classification methods combined with transfer learning (NDR_MIG,
IM_MIG and IM_SPE_MIG) were better than those of the non-transfer learning classification method.
Especially, the classification accuracy of the NDR_MIG method was 1.77% higher than that of the
NDR method. Among all classification methods, the classification methods combined with transfer
learning (IM_MIG, IM_SPE_MIG and NDR_MIG) showed the best OA, AA, and Kappa coefficients.
In particular, the classification accuracy of NDR_MIG_DN method was higher than that of the NDR
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method by 2.73%. The problem of the low classification accuracy, due to the insufficient training
samples and serious noise was addressed to some degree.

Table 3. The classification results on Indian pines (%).

Class NDR IM
IM_
SPE

NDR_MIG
IM_
MIG

IM_SPE_MIG NDR_MIG_DN IM_MIG_DN IM_SPE_MIG_DN

1 93.47 92.38 98.91 93.48 93.46 95.65 93.48 94.55 95.65
2 95.08 97.78 98.20 96.65 96.99 97.22 97.21 97.62 98.00
3 97.06 96.17 96.91 98.92 98.98 98.47 99.21 99.32 99.03
4 95.95 97.51 95.44 99.72 99.99 99.53 99.95 99.99 99.75
5 98.09 95.54 99.36 98.00 98.43 98.70 98.66 98.67 99.23
6 98.35 96.84 99.01 98.78 98.78 98.95 99.20 99.20 99.17
7 99.95 99.95 98.18 98.18 98.20 99.98 98.19 98.21 99.99
8 99.87 99.89 99.78 99.47 99.69 99.79 99.68 99.69 99.79
9 99.98 79.95 72.48 97.48 99.97 97.48 99.98 99.98 97.48

10 96.70 98.17 95.97 97.34 97.38 97.28 97.90 98.02 97.97
11 97.35 98.50 98.35 98.27 98.71 98.79 99.05 99.20 99.19
12 94.22 97.78 98.62 95.88 96.07 96.48 96.99 97.36 97.82
13 99.48 99.45 99.50 99.51 99.48 99.74 99.76 99.49 99.74
14 98.55 99.47 99.45 99.40 99.64 99.43 99.69 99.77 99.63
15 96.74 99.69 99.30 98.51 97.51 98.23 98.80 97.78 98.76
16 92.40 91.92 98.36 95.09 98.79 96.72 95.10 98.81 97.81

OA 94.89 96.39 96.90 96.66 97.08 97.15 97.62 97.86 98.02
AA 97.08 96.31 96.74 97.79 98.25 98.28 98.30 98.60 98.69

Kappa 94.18 95.88 96.46 96.20 96.67 96.74 97.29 97.56 97.75

Figure 11a–i are the classification results of the NDR, IM, IM_SPE, NDR_MIG, IM_MIG, IM_SPE_MIG,
NDR_MIG_DN, M_MIG_DN, and IM_SPE_MIG_DN methods on the Indian Pines data set

   

(a)                  (b)                  (c) 

   

(d)                  (e)                 (f) 

   

(g)                 (h)                  (i) 

Figure 11. The classification results on Indian Pines dataset: (a) NDR; (b) IM; (c) IM_SPE; (d) NDR_MIG;
(e) IM_MIG; (f) IM_SPE_MIG; (g) NDR_MIG_DN; (h) IM_MIG_DN; (i) IM_SPE_MIG_DN methods.
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From Figure 11, it is obvious that the overall classification results on the Indian Pines dataset
with small sample size using the classification method with transfer learning are significantly better
than those using the classification method without transfer learning. The optimal neighborhood noise
reduction method can be used to remove the salt-pepper-noise of the hyperspectral image. Among
all the methods, the classification method based on both the deep transfer learning and the optimal
neighborhood noise reduction showed the best and most stable classification performance.

(2) Transfer Experiments from Pavia Center to Pavia University
Pavia Center was used as the source dataset to pre-train CNN. Then the weight parameters of the

shallow layers were transferred to the object dataset, Pavia University. In addition, the fine-tuning
of the network and the optimal neighborhood noise reduction were performed. The Pavia Center
and Pavia University datasets were used to represent the datasets with general and sufficient sample
sizes, respectively. In the experiment, 9% of the source dataset, Pavia Center samples, were randomly
selected to pre-train CNN, 9% of the Pavia University samples were selected as the training set of the
object dataset, and the rest samples of the datasets were used as the test samples.

The classification results of the NDR, IM, IM_SPE, IM_MIG, IM_SPE_MIG, NDR_MIG,
IM_MIG_DN, IM_SPE_MIG_DN, and NDR_MIG_DN methods on the Pavia University dataset
are shown in Table 4.

Table 4. The classification results on Pavia University (%).

Class NDR IM
IM_
SPE

NDR_MIG
IM_
MIG

IM_SPE_MIG NDR_MIG_DN IM_MIG_DN IM_SPE_MIG_DN

1 96.95 98.50 98.51 98.42 98.60 98.98 98.74 99.00 99.17
2 96.96 97.17 97.60 99.27 99.77 99.84 99.80 99.89 99.93
3 97.95 97.93 97.50 98.26 99.13 99.02 98.92 99.34 99.39
4 99.53 97.83 99.03 99.57 99.69 99.70 99.60 99.69 99.73
5 99.66 99.71 100.00 99.85 99.74 99.85 99.85 99.78 99.85
6 98.27 96.72 96.67 99.26 99.75 99.84 99.79 99.92 99.93
7 99.17 98.47 98.90 98.68 99.53 98.12 99.33 99.83 98.83
8 98.36 98.92 98.82 99.28 99.37 99.35 99.54 99.52 99.56
9 99.56 98.08 99.94 99.67 99.72 99.77 99.67 99.78 99.77

OA 95.87 96.25 96.80 98.48 99.12 99.22 99.19 99.41 99.47
AA 98.49 98.15 98.55 99.14 99.48 99.39 99.47 99.64 99.57

Kappa 94.59 95.05 95.77 97.99 98.83 98.97 98.93 99.22 99.29

From Table 4, the transfer learning and optimal neighborhood noise reduction methods increased
the overall classification accuracy (OA) to above 99% on the Pavia University dataset. In particular,
compared with the NDR method, the proposed NDR_MIG and NDR_MIG_DN methods increased the
OA by 2.61% and 3.32%, respectively. In addition, the classification and noise-reduction effect of this
method was more prominent for the dataset with a larger sample size. The Kappa coefficient of the
NDR_MIG_DN method achieved 98.93%, which indicated that almost all the samples were correctly
classified based on the consistency check.

Figure 12a–i show the classification results of the NDR, IM, IM_SPE, NDR_MIG, IM_MIG,
IM_SPE_MIG, NDR_MIG_DN, M_MIG_DN, and IM_SPE_MIG_DN methods on the Pavia
University dataset.

From Figure 12, the classification method with both the deep transfer learning and the
optimal neighborhood noise reduction had outstanding performance on the Pavia University dataset.
The classification performance of the proposed classification method with both the deep transfer
learning and the optimal neighborhood noise reduction was significantly better than that of the
non-transfer learning method (IM, IM_SPE) and NDR). In particular, the hyperspectral images
processed by the classification method with both deep transfer learning and optimal neighborhood
noise reduction (IM_MIG_DN, IM_SPE_MIG_DN, and NDR_MIG_DN) were almost completely
noise-free and correctly classified.

From the above two groups of experiments, i.e., transfer learning classification and neighborhood
noise reduction experiments, the classification method based on the transfer learning and neighborhood
noise reduction exhibited significant advantages in solving the problem of low classification accuracy
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under the condition of insufficient training samples, thus, can avoid the over-fitting phenomenon
in the training of small CNNs. By transfer between two similar datasets with a large sample size,
the computational complexity can be reduced, and the accurate and stable classification results can be
obtained. At the same time, through the optimal neighborhood noise reduction, the final classification
result was almost noiseless. The results indicated that the transfer learning classification method
and the optimal neighborhood noise reduction method could significantly improve the classification
performance for the hyperspectral image.

   
(a)            (b)             (c) 

   
(d)            (e)             (f) 

   
(g)              (h)             (i)

Figure 12. Classification results on the Pavia University dataset: (a) NDR; (b) IM;
(c) IM_SPE; (d) NDR_MIG; (e) IM_MIG; (f) IM_SPE_MIG; (g) NDR_MIG_DN; (h) IM_MIG_DN;
(i) IM_SPE_MIG_DN methods.
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7. Conclusions

In this article, a deep transfer HSI classification method based on information measure and optimal
neighborhood noise reduction was proposed. In this method, the information measure was used to
reduce the dimension of the hyperspectral image. Then the fusion of the key spectral information and
spatial information of the hyperspectral image was achieved, and the redundant spectral information
was processed. On this basis, a classification method based on deep transfer learning and neighborhood
noise reduction was proposed. The obtained classification accuracy for small samples was higher than
98% on average. Compared with the non-transfer learning method, the total classification accuracy
was improved by at least 3%. For the Pavia University dataset with more samples, the classification
accuracy of above 99% was obtained. The proposed method can both reduce the computational
complexity to some degree and solve the problem of lower classification accuracy caused by insufficient
training samples and salt-pepper-noise.

This method is suitable for HSI classification with insufficient training samples. When this
situation occurs, we can use labeled samples in similar scenarios to train the network initially, and then
adjust the network by transfer learning and a small number of labeled samples to achieve accurate
classification of object scenarios. In addition, another advantage of this method is that by dimensionality
reduction based on information measure, a pseudo-color image of the hyperspectral image can be
obtained, and the hyperspectral image can be visualized. It is worth noting that the core of this
method is based on transfer learning, so its limitation is that, at first, we need to get good training
on a source scene similar to the target scene, which requires a sufficient number of training samples
in the source scene. In the application of constructing a virtual land environment, it is necessary to
select some typical scenes for common sensors, mark the samples in these typical scenes, and train the
initial network. When constructing the virtual land environment for a specific area in the virtual test,
the initial network trained by appropriate scene is selected, and then the high accuracy ground truth of
the task area can be obtained by using the proposed method. In this paper, we make the validation by
using public datasets. In future work, we will acquire relevant satellite data according to the actual
task requirements, and use the proposed method to achieve high-precision ground feature information
in the construction of a virtual land environment.
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Abstract: In recent times, the application of enabling technologies such as digital shearography
combined with deep learning approaches in the smart quality assessment of tires, which leads to
intelligent tire manufacturing practices with automated defects detection. Digital shearography is
a prominent approach that can be employed for identifying the defects in tires, usually not visible
to human eyes. In this research, the bubble defects in tire shearography images are detected using
a unique ensemble hybrid amalgamation of the convolutional neural networks/ConvNets with
high-performance Faster Region-based convolutional neural networks. It can be noticed that the
routine of region-proposal generation along with object detection is accomplished using the ConvNets.
Primarily, the sliding window based ConvNets are utilized in the proposed model for dividing the
input shearography images into regions, in order to identify the bubble defects. Subsequently, this is
followed by implementing the Faster Region-based ConvNets for identifying the bubble defects in
the tire shearography images and further, it also helps to minimize the false-positive ratio (sometimes
referred to as the false alarm ratio). Moreover, it is evident from the experimental results that the
proposed hybrid model offers a cent percent detection of bubble defects in the tire shearography
images. Also, it can be witnessed that the false-positive ratio gets minimized to 18 percent.

Keywords: intelligent tire manufacturing; digital shearography; faster region-based CNN; tire bubble
defects; tire quality assessment

1. Introduction

Industry 4.0 is the novel digital technology meant for industries, and this paradigm enables
the communication, collection, and analysis of data through machines, thereby allowing quicker,
more agile, and efficient processes for making superior quality goods with minimal expenditure.
Moreover, this digital industrial technology will assist in enhancing productivity, enabling industrial
development, and revamping the profile of the personnel involved, thereby nurturing changes in the
competence of business organizations and states. Further, this paradigm will foster superior efficiencies
and will modify the conventional production associations between the suppliers, manufacturers,
and clients and also the communication amongst humans and machines. Besides, due to the phenomenal
growth in technology and agile expansion of Industry 4.0, several manufacturing firms have embraced
automation, thereby replacing labor-intensive tasks in conventional production units [1]. Also, it can
be observed that enabling technologies for smart tire quality assessment for realizing intelligent
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tire manufacturing has been gaining prominence to address challenges such as automated tire
defects detection.

Generally, it can be witnessed that in the modern-day scenario, there is a humongous and swift
growth in the gadgets, equipment, and devices connected to the internet. These devices, gadgets,
and equipment have profound computing characteristics, and at the same time, they are exceedingly
performance-oriented [2]. Due to all these facts, the concept of deep learning has evolved into a newer
dimension, and it plays a significant part in processing and recognizing images, speech, and video,
and so on. Furthermore, the implementation of a deep learning paradigm for automation in conventional
manufacturing units significantly minimizes the usage of physical labor, and it also enhances the overall
competence and efficacy of these units. Digital shearography is a laser-based measuring approach that
relies on the processing of digital data, interferometry, and phase-shifting paradigm [3–5].

A shearography system was developed by applying a spatial light modulator for controlling the
amount of shearing and the direction of the phase light automatically and accurately. The system
eliminates the nonlinear random error and enhances the efficiency of testing [6]. A system was
developed using shearography to examine the exterior heatproof covering of a cylinder, and defect
detection was done using an artificial intelligence-based recognition algorithm for deep learning,
namely Faster R-CNN, which detects the bounding defects [7]. A model was developed using a deep
convolutional neural network for the detection of defects captured in the X-ray images. Moreover,
the fully convolutional network was selected for the pixel-wise prediction of defect location and
segmentation [8]. A binary classification model was established using a convolutional neural network
to classify the defects in pipes into two classes, such as minor defects and major defects, and the case
study was conducted from 256 shearography images [9]. An algorithm was developed based on deep
learning for the classification of defects in tires using the proposed multi-column convolutional neural
network (CNN) by integrating several CNNs [10].

Our research primarily focuses on the deep learning-based bubble defects detection in tire
shearography images, which plays a significant role in the automation of the tire manufacturing
industries. Figure 1 portrays the digital shearography set-up for capturing tire shearography images
utilizing a digital computer.

The tire manufacturing process includes five substantial stages compounding, mixing, shaping,
and vulcanizing, testing. Further, in the course of tire production, there is a chance for the bubble
defects to appear in the tires, as the air might not be entirely removed from the tires.

Consequently, when the car is driven at high speed, such defective tires seem to suffer a greater
chance of bursting, hence this scenario might place the human lives at risk. Therefore, in order to
overcome this issue, the tire manufacturing units ensure that the tire is tested successfully by using
several quality control mechanisms, prior to its dispatch and delivery. During the testing process,
detecting the bubble defects that are present internally within the tires, turns out to be a substantial
task. Moreover, the bubble defects in the four different shearography images are portrayed in Figure 2.
The operator identifies the bubble detects in the shearography images and assesses whether the size of
the bubble is passable. Nevertheless, the quality of inspection significantly relies on the experience
and expertise of the operator. As a result, the bubble defect detection process might need substantial
human expertise. Besides, the lassitude of the operator might lead to poor judgment and discrepancies
in detecting the defects.
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Figure 1. Digital shearography set-up for capturing tire shearography images.

Since 2012, there has been rapid progress in the convolutional neural networks-based research on
image, visual, and computer-vision-based tasks [11,12]. The approach presented in the preliminary
study [13] establishes two CNN architectures for tire bubble-defects diagnosis. Although, the scheme
presented in [13] provides a precise identification of the bubble defects, however, the false alarm
ratio, also known as the false positive ratio—more than twenty percent—is significant. The Faster
R-CNN comprises two networks, primarily for generating the region proposals it makes use of a region
proposal network (RPN) and secondly, a network that utilizes these region proposals for detecting the
bubble defects [14].

The key contributions of this work are summarized as follows:

• The substantial contribution of this work lies in improving the architecture established earlier
in [13] for effectively realizing intelligent tire manufacturing with automated defects detection.

• A Faster Region-based convolutional neural networks (R-CNN) is combined along with the
architecture described in [13] for minimizing the false positive ratio.

• Further, this significant modification to the CNN architecture helps in minimizing the labor cost
involved in the tire manufacturing industry.

• The results of the proposed hybrid model indicate that this approach asserts a hundred percent
detection of bubble defects in the tire shearography images.

• From the results, it can be perceived that the false alarm ratio can be minimized to 18 percent.

Figure 2. Cont.
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Figure 2. Shearography images of tires, where (a,b) portray bubble defects present in the shearography
images of the tire treads, and (c,d) illustrate bubble defects present in the shearography images of the
tire sidewalls.

2. Materials and Methods

A two-stage hybrid model for detecting bubble defects in tires is proposed in this work. The primary
stage includes a CNN architecture for diagnosing tire bubble-defects, and the second stage makes use
of a Faster Region-based ConvNets architecture for minimizing the false positive or the false alarm
ratio (FAR). A flow diagram of the proposed two-stage ensemble hybrid model is portrayed in Figure 3.

2.1. Faster Region-Based Convolutional Neural Networks

A model referred to as Regions with CNN features (R-CNN), which is a scalable object detection
approach that enhances the mean average precision, was established by the research in [15]. In the
research desscribed in [16], another improved version of the R-CNN model known as the Fast R-CNN
was deployed with various novelties for enhancing the training and testing speed at the same time
augmenting the accuracy of detection. Further, the work presented in [17] established a Faster R-CNN
that introduced an RPN which shares the convolutional features of the full image with the network
responsible for detection; hence, this ensures that the region proposals are achieved at a low cost. It can
be observed that the RPN approach is deployed instead of the Selective Search (SS) technique [18] in the
case of Faster R-CNN/ Faster Region-based ConvNets. Further, this method considerably reduces the
time-period necessary for extracting the candidate regions and also for increasing the overall efficiency.
Figure 4 illustrates the architectural model of the Faster R-CNN network.

The Faster R-CNN network with a ZF-net exhibits the detection results with an accuracy of
59.9% for the PASCAL VOC 2007 test set [19–21]. Besides, for the same test set, the Faster R-CNN
network with VGG16 architecture accomplishes the detection results with 73.2% accuracy [19–21].
Henceforth, it can be observed that the Faster R-CNN with VGG16 architecture achieves superior
accuracy, which makes it the most sought after approach. Moreover, this technique is utilized in this
research to enhance the detection accuracy of the tire bubble defects. In Figure 5, the architectural
model of the fully convolutional region proposal network [22] is depicted.

Figure 5 portrays the fact that the fully convolutional region proposal network applies a 3 × 3
window over the feature maps received from the ConvNets. Subsequently, for assessing the candidate
regions, we make use of the anchors with various areas and ratios. Additionally, the chosen candidate
expanses are placed into the 256-dimensional trajectory, and further, they are passed on as the inputs to
the box regression layer (reg) and a box-class layer (cls). For each proposal, the outcome of the box-class
layer approximates the target object or the non-target object probabilities. Consequently, a positive
label will be allocated for an anchor with an Intersection-over Union (IoU) overlay proportion more
significant than the value 0.7 in comparison to some ground truth box. Besides, the negative label
will be allocated for the non-positive anchor with an Intersection-over Union proportion lesser than
0.3 for the remaining ground truth boxes. It can be clearly noted that the anchors which are neither
positive nor negative have no role in the training for accomplishing the target. In the box regression
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layer, the positive sample co-ordinates achieved by the box-class layer are modified to suit the ground
truth’s bounding box aptly.

2.2. Image Enhancement

The classification capability and competence of the convolutional neural networks rely heavily
on the two vital parameters, namely, the quality and quantity of the training samples. Nevertheless,
the arduous task for this research is the identification of speckle patterns encompassing the bubble
defects. In order to overcome this issue; hence, the blocks from the speckle patters encompassing the
bubble defects were randomly chosen. Also, the chosen data were rotated horizontally and vertically,
and then the resultant dataset helps in achieving the essential dataset required for the training process.
The imperfect bubble blocks were detached physically. In this way, this research could achieve about
ten times the training data. Hence, this approach makes sure that the patterns of the tire bubble defects
were adequate for the training process.

Figure 3. Flow diagram of the proposed two-stage ensemble hybrid model.
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Figure 4. The architectural model of the Faster R-CNN network.

Figure 5. The architectural model of the fully convolutional region proposal network.

2.3. Classification of the Bubble Defects in Tires

It can be noticed from [13] that two convolutional neural network architectures were established for
diagnosing the bubble-defects available in the treads and sidewalls of the tires. Though this approach
accurately classifies the tire bubble-defects, nevertheless, the FAR seems marginally more significant
than 20 percentage. Thus, our work enhances the approach in [13] by incorporating a Faster-RCNN
network for reducing the false alarm ratio. The modified hybrid Faster Region-Based Convolutional
Neural Networks architecture is illustrated in Figure 6. The various components of the proposed hybrid
model are presented in Table 1. In the CNN, the hyper-parameters settings for tire tread are learning
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rate = 0.01, epoch = 30,000, batch size = 40, gamma = 0.001, power = 0.75, and momentum = 0.9.
The hyper-parameters settings for tire sidewall are learning rate = 0.00001, epoch = 18,000, batch size = 18,
gamma = 0.001, power = 0.75, and momentum = 0.9. In the Faster-RCNN, the learning rate, step size,
and momentum are set as 0.00001, 50,000, and 0.9, respectively, for both tire tread and tire sidewall.

 

(a) 

(b) 

Figure 6. (a) The proposed hybrid Faster Region-Based ConvNets architecture for diagnosing the
bubble-defects in treads and (b) The proposed hybrid Faster Region-Based ConvNets architecture for
diagnosing the bubble-defects in sidewalls of tires.

Table 1. The various components of the proposed hybrid model.

Convolutional Neural Networks

(a) Tread of Tires (b) Sidewall of Tires

ConvNet3-16
ConvNet3-16

ConvNet3-16
ConvNet3-16

Max-pooling process

ConvNet3-32
ConvNet3-32

ConvNet3-32
ConvNet3-32

Max-pooling process

ConvNet3-64
ConvNet3-64

ConvNet3-64
ConvNet3-64
ConvNet3-64

Max-pooling process

ConvNet3-128
ConvNet3-128
ConvNet3-128

ConvNet3-128
ConvNet3-128
ConvNet3-128
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Table 1. Cont.

Max-pooling process

Fully Connected-1000

Fully Connected-1000

Fully Connected-2

Softargmax function

Faster Region-based Convolutional Neural Networks

ConvNet3-64
ConvNet3-64

Max-pooling Process

ConvNet3-128
ConvNet3-128

Max-pooling Process

ConvNet3-256
ConvNet3-256
ConvNet3-256

Max-pooling Process

ConvNet3-256
ConvNet3-256
ConvNet3-256
ConvNet3-512
ConvNet3-512
ConvNet3-512
ConvNet3-512

Reshape process

Soft-max function

Reshape process

Proposal

ROI pooling layer

Full-connection

Bbox_pred
Softmax function

Cls_prob

2.4. The Sliding Window Phase

In this work, the original shearography image had a size of 1360 × 1024 pixels. In order to facilitate
bubble defect detection, the shearography tire images are fragmented into a variety of blocks via
the sliding window phase. Subsequently, it is evident that the location of the tire bubble defects is
not known; consecutive sliding windows with 50% overlapping regions for the extraction of speckle
patterns are used to avoid fragmenting the bubble defects and causing erroneous results.

The overlapping threshold has been selected to poise the time-period required for processing
and also for the efficient detection of bubble defects. The abstract depiction of the sliding window
indicating the overlap is presented in Figure 7.

Figure 7. The abstract depiction of the sliding window indicating the overlap.
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Further, this research establishes a classifier that performs the process of detection of bubble
defects in treads and sidewalls of tires, which is presented in Section 2.3. Moreover, the sliding window
described in Section 2.4 is used to check the segmented block images sequentially for bubble defects.
If the classifier classifies a block as containing bubbles, the Faster R-CNN is used to determine if
the result is a false positive. If the resultant image is not false positive, then in the original image,
the respective location of the block is encircled. As a result, this image is passed on to the professional
operators for assessing the quality of the tires and also for removing the defective piece. Furthermore,
this devised semi-automated assessment process offers cost-leadership when compared with the
traditional manual inspection and also improves the reliability of the inspection process.

3. Results

In this work, the diagnosis of bubble defects in tires established in [13] and the Faster Region-based
Convolutional Neural Networks approach is amalgamated for obtaining 100% detection of defects and
also aiding in reducing the false alarm ratio. The evaluation metrics, such as the accuracy, sensitivity,
and specificity, are used for assessing the performance of the proposed hybrid model. These metrics
are computed using the following expressions:

Accuracy = (TP + TN)/(P + N) (1)

Sensitivity = TP/P (2)

Speci f icity = TN/N (3)

where TP stands for true positive, it represents the amount of diagnosed bubble patterns, which really
possesses the bubble defects, and FP stands for false-positive and, it indicates the amount of not bubble
patterns, which are wrongly diagnosed as bubble defects. True negative (TN) illustrates the amount of
not bubble patterns, which are diagnosed as not bubble defects. Positives (P) represents the real bubble
defects and negatives (N) denotes the not bubble defects. Among the evaluation metrics, sensitivity is
the most necessary measure for achieving the complete detection of bubble defects.

Moreover, a tire company provided the shearography images deployed in this research. Usually,
the tire bubble defects were physically delineated with the assistance of experienced professionals.
The amount of training images and blocks are clearly organized in Table 2. Further, it is evident that
for the training process, the tire manufacturer supplied the 325 tire shearography images with bubble
defects. Subsequently, the image enhancement approach is deployed for imitating 8596 and 5052 blocks
from 223 tire tread images and 102 tire sidewall images containing bubble defects. Additionally, Table 3
indicates the test dataset, it comprises of 541 tire shearography images deprived of bubble defects and
256 tire shearography images having bubble defects.

Table 2. Training Dataset Details.

Tire Treads Tire Sidewalls

No. of Images No. of Blocks No. of Images No. of Blocks

Shearography without bubble 1409 8811 1545 10514
Shearography with bubbles 223 8596 102 5052

Table 3. Testing Dataset Details.

Tire Treads Tire Sidewalls

No. of Images No. of Images

Shearography without bubble 262 279
Shearography with bubbles 136 120

212



Electronics 2020, 9, 45

An area with bubble defects is expected to be smaller than the area of the default anchor of the
Faster R-CNN. Therefore, in this work, the anchor’s ratio and scale are adjusted according to the area
of the bubble defects. Table 4 shows the ratio and scale adjustment of the anchors. Twelve anchor
configurations are used for candidate regions in the marking of bubbles.

Table 4. Anchors Configuration.

Original Proposed Ensemble Hybrid Model

Ratios [0.5,1,2] [0.3,0.4,0.5,0.75]
Scale [8,16,32] [8,16,32]

The proposed hybrid model has been compared with various classifiers including the Support
Vector Machine (SVM) [23], Random Forest Model [24], Haar-like AdaBoost Method [25], Chang’s
method [13], and the integrated model comprising of SVM, Random Forest Model, AdaBoost method.
Besides, the proposed model was compared with these methods for verifying its performance. Table 5
illustrates the diagnosis of bubble-defects in treads of tire shearography images for several existing
methods in comparison with the proposed ensemble hybrid model in terms of the evaluation metrics
such as accuracy, sensitivity, and specificity. Additionally, Table 6 depicts the diagnosis of bubble-defects
in sidewalls of tire shearography images for numerous prevailing approaches in comparison with
the proposed ensemble hybrid model in terms of the assessment metrics such as accuracy, sensitivity,
and specificity. Further, it can be witnessed from these tables that the work in [13] and the presented
ensemble hybrid approach achieve 100 percent sensitivity, by successfully identifying each and every
bubble-defect. Also, it can be observed that the presented ensemble hybrid approach surpasses all
other existing approaches in terms of specificity. However, the presented ensemble hybrid approach
requires a processing time of approximately 7 seconds/image, whereas the approach established in [13]
takes only a processing-time of roughly 6 seconds/image. Nevertheless, the presented ensemble hybrid
model is superior in other means and also in terms of specificity, when compared with the other
existing approaches.

Figure 8a–d illustrate the shearography images or the speckle patterns acquired using digital
shearography, and Figure 8e–h depict the detection of bubble defects in tires using the proposed
hybrid Faster Region-based convolutional neural networks model. Figure 8e–h indicate the fact that all
bubble defects in tires have been detected successfully. Figure 9a–d depict the false positive or the false
alarm inspection results in [13], where the shearography images do not have bubble defects; however,
they get misrepresented as possessing the bubble defects. Figure 9e–h illustrate the assessment results
of the hybrid Faster Region-based convolutional neural networks model using the same set of input
images. It can be witnessed in Figure 9e–h that the shearography images have no bubble defects.
Besides, it reveals the fact that the proposed hybrid Faster Region-based convolutional neural networks
model effectively reduces the false-positive ratio or the false alarm rate.

Table 5. Diagnosis of Bubble-defects in Treads of Tire Shearography Images.

Measurement
Methods

Accuracy (%) Sensitivity (%) Specificity (%)

Support Vector Machine [23] 55.53 92.65 36.26
Random-Forest Model [24] 59.3 96.32 40.08

Haar-like Ada-Boost Method [25] 62.81 97.06 45.04
Integrated Model comprising of Support Vector Machine,

Random-Forest Model, Ada-Boost Method
79.15 96.32 70.23

Chang’s method [13] 87.94 100 81.68
Proposed Hybrid Faster Region-based Convolutional Neural

Networks Model
89.16 100 83.09
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Table 6. Diagnosis of Bubble-defects in Sidewalls of Tire Shearography Images.

Measurement
Methods

Accuracy (%) Sensitivity (%) Specificity (%)

Support Vector Machine [23] 50.13 81.67 36.56
Random-Forest Model [24] 44.61 85.83 26.88

Haar-like Ada-Boost Method [25] 46.37 82.5 30.82
Integrated Model comprising of Support Vector Machine,

Random-Forest Model, Ada-Boost Method
61.9 85 51.97

Chang’s method [13] 85.46 100 79.21
Proposed Hybrid Faster Region-based Convolutional

Neural Networks Model
86.87 100 80.15

Figure 8. (a–d) the shearography images or the speckle patterns acquired using digital shearography,
(e–h) the detection of bubble defects in tires using the proposed hybrid Faster Region-based
convolutional neural networks model.

 
Figure 9. Chang’s model misclassification results [13] and the Proposed Hybrid Faster Region-based
Convolutional Neural Networks Model. (a–d) diagnosis outcomes of tire bubble defects using Chang’s
model, (e–h) the Proposed Hybrid Faster Region-based Convolutional Neural Networks Model’s
bubble defects detection results.

4. Conclusions

In the tire manufacturing process, the diagnosis of bubble-defects in the treads and sidewalls
of shearography tire images represents a significant task. Therefore, enabling smart tire quality
assessment seems to be an essential way of realizing intelligent tire manufacturing practices that can
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ensure automated detection of defects. Further, an ensemble hybrid combination of the CNN with a
high-performance Faster Region-based ConvNets for classifying and diagnosing the bubble-defects
present in the tire shearography images. The proposed hybrid Faster Region-based convolutional
neural networks model reduces misjudgments caused by human errors and achieves high consistency
in the quality of bubble-defect detection. It is clearly evident from the results that in addition to
thoroughly diagnosing the bubble-defects in tires, the hybrid Faster Region-based convolutional neural
networks model decreases the false alarm ratio of not-bubble defects in tires from 20% to a rate of 18%.
Also, it has to be noted that this hybrid system model was deployed in a tire manufacturing unit, and it
produced efficient results in automatically diagnosing the bubble-defects in treads and sidewalls of
tires. In the future work, more advanced CNN enabled approaches can be implemented for automated
detection of defects [26–30], thus ensuring and realizing a sustainable tire manufacturing process.
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Abstract: Although image inpainting based on the generated adversarial network (GAN) has made
great breakthroughs in accuracy and speed in recent years, they can only process low-resolution
images because of memory limitations and difficulty in training. For high-resolution images, the
inpainted regions become blurred and the unpleasant boundaries become visible. Based on the
current advanced image generation network, we proposed a novel high-resolution image inpainting
method based on multi-scale neural network. This method is a two-stage network including content
reconstruction and texture detail restoration. After holding the visually believable fuzzy texture, we
further restore the finer details to produce a smoother, clearer, and more coherent inpainting result.
Then we propose a special application scene of image inpainting, that is, to delete the redundant
pedestrians in the image and ensure the reality of background restoration. It involves pedestrian
detection, identifying redundant pedestrians and filling in them with the seemingly correct content.
To improve the accuracy of image inpainting in the application scene, we proposed a new mask
dataset, which collected the characters in COCO dataset as a mask. Finally, we evaluated our method
on COCO and VOC dataset. the experimental results show that our method can produce clearer
and more coherent inpainting results, especially for high-resolution images, and the proposed mask
dataset can produce better inpainting results in the special application scene.

Keywords: image inpainting; content reconstruction; instance segmentation

1. Introduction

Every day, about 300 million pictures are captured and shared on social networks, and a large
part of them are human-centered pictures (including selfies, street photos, travel photos, etc.,). Many
human-related research directions have been produced in computer vision and machine learning
in recent years. Among them, target tracking [1] (including pedestrian detection [2], pedestrian
reidentification [3], human pose estimation [4], etc.,), face recognition [5], and face image inpainting
(including pet eye fix [6], eye-closing to eye-opening [7], etc.,) are the research hotspots. Many
researchers devote themselves in improving the performance of the existing network. However,
integrating existing researches and enabling them to solve common problems in life is also of high
practical significance.

Electronics 2019, 8, 1370; doi:10.3390/electronics8111370 www.mdpi.com/journal/electronics217
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In our social networks, we can often see street photos as shown on the left of Figure 1, but
actually, the original images seem as shown on the right side of Figure 1. We can see redundant
pedestrians in their background destroying beauty and artistic conception of the image. So the purpose
of our study is to delete the redundant pedestrian in the image and ensure the reality of background
inpainting. It involves pedestrian detection, identifying redundant pedestrians and filling in them with
the seemingly correct content. This is a challenging problem because (1) the result largely depends
on the accuracy of redundant pedestrian detection; (2) the diversity of background information
under the redundant pedestrian area is difficult to recover; (3) the training data lacks real output
samples to define the reconstruction loss. We want to deploy our work in the real world as a working
application, so we took an interactive approach, removing unnecessary sections by manually selecting
unnecessary pedestrian areas after pedestrian detection. After the user removed the unnecessary parts,
our algorithm successfully filled the remaining holes with the surrounding background information.

 

 
(a) 

 

 
(b) 

Figure 1. Street photo of the paper’s special application scene. (a) The repaired figure, (b) the figure
that is not repaired.

To counter the problems above, we combine the research of instance segmentation, image
inpainting. Firstly, we need to complete the instance segmentation of human which detects the regions
existing characters. Then it needs us to identify the target character and “protect” the region existing
the target character. Finally, we use an image inpainting algorithm to repair other regions. To further
improve the inpainting result of the task, we build a new mask dataset, which collects the characters
in COCO dataset as a mask, representing various pose. The new mask dataset can produce a better
inpainting result on character filtering tasks.

In recent years, deep network has achieved high-quality results in instance segmentation, image
inpainting, and so on. Instance segmentation is the combination of object detection and semantic
segmentation. First, it uses an object detection algorithm to locate each object in the image with
positioning boxes. And then it adapts a semantic segmentation algorithm to mark the target objects
in different positioning boxes to achieve the purpose of instance segmentation. The latest instance
segmentation is Mask-R-CNN [8], which adds a mask branch of predictive segmentation for each
region of interest based on Faster-R-CNN [9]. The mask branch only adds a small computational
overhead but supports rapid systems and quick experiments.

Image inpainting can be defined as entering an incomplete image and filling in the incomplete area
with semantically and visually believable content. Since Deepak [10] et al. adapts encoder-decoder
to complete the inpainting of face images, image inpainting has two transformations from dealing
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with a fixed shape region to dealing with any non-central and irregular region [11,12], and from
distortion to a smooth and clear inpainting result [13,14]. Image inpainting based on GAN network
has made great progress in recent years, but for the high-resolution images, the inpainting results will
still appear blurred texture and the unpleasant boundaries that are inconsistent with the surrounding
area. We found SRGAN [15] has proved superiority on restoring finer texture details, therefore we
put forward a new method based on deep generative model. The methods is a two-stage network
consisting of content reconstruction and texture detail restoration. We further restore the finer texture
details inspired by the architecture of SRGAN after holding the visually believable fuzzy texture. It
can effectively solve the problem of structural distortion and texture blur to improve the quality of
image inpainting.

In this paper, we propose a high-resolution image inpainting method based on the multi-scale
neural network and build a new mask dataset for the special application scene. The main contributions
of this paper are:

(1) Based on the current most advanced image inpainting network, we build a texture detail
restoration network to restore the details of high-resolution images inspired by SRGAN. The
experimental results show that our method can generate a smoother, clearer and more coherent
inpainting result than other methods.

(2) To remove unnecessary pedestrians from the image, we proposed a new mask dataset, which
collected various pose and could produce better inpainting results in the task of character filtering.

To train our network, we applied the new mask dataset to simulate the real pedestrian. Although
we just built the mask dataset to represent the removed pedestrian area, we achieved good results in
the real-world data.

The rest is organized as follows. The second part introduces the research status of instance
segmentation and image inpainting at home and abroad. The third part describes the improved image
inpainting network, and describes the construction of the mask dataset and the special application
scene. The fourth part gives the experimental results. The fifth part gives the conclusion.

2. Related Works

In the past ten years, computer vision has made great progress in image processing tasks such
as classification, target detection, segmentation, and so on. The performance of deep network has
been greatly improved in these tasks, which lays a foundation for the new research difficult problems
of image processing and provides support for image inpainting in this paper. We briefly review the
relevant work in various sub-areas related to this article.

Instance segmentation integrates image classification, image segmentation, and target detection in
computer vision. The earliest region-based CNN(R-CNN) [16] detecting object with a bounding box is
to process a certain number of candidate object regions on each ROI independently. Faster-R-CNN [9]
based on R-CNN improves by learning the attention mechanism of Region Proposal Network (RPN).
Faster-R-CNN is flexible and robust for many later improvements [17–19], and leads the several current
benchmarks. Li [20] et al. combines the two types of score map [21] and the target detection [22]
to realize “full convolution instance segmentation” (FCIS). Different from the usual method, which
predicts a set of position-sensitive channels with full convolution, this method abandons full connected
layers for the shared subtasks of image segmentation and image classification, making the network
more lightweight. In addition, no trainable parameters exist in either the integrated score map or
the result, only the classifier exists. The Mask-R-CNN [8] used in the paper adds a mask branch of
predictive segmentation to each region of interest based on Faster-R-CNN [9]. The mask branch only
adds a small computational overhead and supports rapid systems and quick experiments.

Traditional inpainting approaches based on diffusion or patch typically use variational algorithms
or patch similarity to spread information from background to holes, such as [23,24]. One of the most
advanced methods for image inpainting at present is PatchMatch [25], without the use of deep learning,
which fills in holes with statistical data of available images through iterated search for the most suitable
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patch. Although it produces a smoother result, it assumes the texture of the inpainting area can be
found elsewhere in the image. This assumption does not always hold. Therefore, it is good at restoring
patterned regions, such as background reconstruction, but has difficulty in reconstructing locally
unique patterns.

Generative adversarial network makes the research of image inpainting to a peak. Vanilla
GANs [26] shows good performance in generating clear images, but has difficulty extending to
higher-resolution images due to the instability of training. Several techniques for stable training
processes have been proposed, including DCGAN [27], energy-based GAN [28], Wasserstein GAN
(WGAN) [29,30], WGAN-GP [31], BEGAN [32], and LSGAN [33]. A more relevant task of image
inpainting is conditional image generation. For example, Pix2Pix [34], Pix2Pix HD [35], and
CycleGAN [36] transform images in different domains using paired or unpaired data.

The commonly used loss function of image inpainting based on generative adversarial network is
a combination of adversarial loss and L2 loss. L2 loss can excite the output of the generated network
with variance computing, but cannot capture the high-frequency details and repair the clear texture
structure. So the introduction of adversarial loss can effectively solve the problem.

The basic model of image inpainting based on generative adversarial networks is the
encoder-decoder used by Deepak [10] et al. To improve the inpainting result of face images, it
combines L2 loss with adversarial loss. The latest and effective image inpainting models based on deep
learning are mostly developed on this basis. However, the shape of the repaired region is fixed so it
has a strong limit in practical application. In response to this question, Liu [12] et al. introduces partial
convolution, which can process any non-central, irregular region. However, the method still needs
to establish a mask dataset based on deep neural network and conduct pre-training on the irregular
masks of random lines. Iizuka [11] uses dilated convolution to increase the receptive field, which
obtains the image information in a larger range as much as possible without missing extra information.
This method is suitable for solving the inpainting problem of non-center and irregular region, but it
has poor inpainting result on structural objects. In recent years, GAN has made a great breakthrough
in the application of image inpainting. In the future, there will be more research progress on image
inpainting based on deep learning.

Yu [14] et al. improves the generated network of image inpainting based on Iizuka’s research [11],
and proposes a unified feedforward generation network with a novel context attention layer. The
proposed network consists of two phases. The first phase is to roughly extract the missing content
after reconstruction loss training with dilated convolution. The second phase is to integrate the context
attention. The core idea of context attention is to use the characteristics of known patch as convolution
filters to generate patch. The two generating networks are similar to UNET.

Inspired by [14], the issue is divided into two subtasks: (1) The first subtask uses the context
encoder (CE) [10] to fill in the large areas need repaired according to the environmental information.
(2) As CE cannot recover high-frequency details, the second subtask uses a network similar to SRGAN
to capture high-frequency details.

3. The Approach

3.1. Improved Image Inpainting Network

We first constructed our generated network of image inpainting by copying and improving
the most advanced inpainting [14] model recently. The network shows a good inpainting result in
natural images.

Our improved image inpainting network is shown in Figure 2. We follow the same input and
output configurations as in [14] for training and inference. The improved generated network takes an
image with white pixels filled in the holes A and a binary mask indicating the hole regions as the input
pair, and it outputs the final repaired image. The size of the input image is 256 × 256 and the size of the
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output image is also 256 × 256. We trained our improved image inpainting network on two datasets
including COCO and VOC datasets, as described in the Section 4.

 
Figure 2. Improved image inpainting network.

To further improve the visual effect of high-resolution image inpainting and reduce the blurred
texture and the unpleasant boundaries that inconsistent with the surrounding area, the network we
introduced consists of two stages: 1) content reconstruction network, 2) texture details restoration
network. The first network is a completion network used to complete the image and obtain the
rough prediction results, and it adopts reconstruction loss when training. The second network is a
refinement network. It takes coarse prediction results as input to further restore finer texture details of
high-resolution images without changing semantic information of coarse prediction results, and it
adopts reconstruction loss and adversarial loss when training. The goal of the texture details restoration
network is to ensure that the image texture of the holes is “similar” to the surrounding area.

Content Reconstruction Network (Completion Network): Different from [14], we use the VGG
network as the encoder, which can better obtain the detailed features of the images. We use continuous
3 × 3 convolution kernels (using small convolution kernels is superior to the use of bigger convolution
kernels) for a given receptive field. Also, we alternately use four layers of dilated convolution (rate
16, 8, 4, 2, corresponding feature map size 128, 64, 32, 8) in the intermediate convolution layer. The
purpose of dilated convolution is to capture a larger field of view with fewer parameters so that the part
under the remaining holes is consistent with its surrounding environment. Then we take the output
information of the encoder through the decoder. In our implementation, the content reconstruction
network adapts to the context encoder network.

As shown in Figure 2, the five-layer encoder gradually samples down, and each layer of the encoder
is composed of Convolution, Relu, BN, and Dilated Convolution. The rate of dilated convolution
decreases with the decrease of the size of the feature map. The decoder gradually samples features up
to the input image scale. We use transposed convolution instead of convolution in the decoder.

Texture Details Restoration Network (Refinement Network): Inspired by SRGAN, we add multiple
residual blocks and skip connections between input and output in the middle layers of the texture detail
restoration network. Each residual block uses two 3 x 3 convolution layers, 64 characteristic figures, and
the batch normalized layer (BN) after every convolution layer, and uses ReLU as the activation function.
The texture detail restoration network uses two sub-pixel convolution layers instead of deconvolution
to enlarge the feature size. Reducing invalid information through the sub-pixel convolution layer can
make the high-resolution image smoother, reduce the blurred texture and the unpleasant boundaries
that inconsistent with the surrounding area, and obtain a better visual result.
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3.2. Loss Function

Inspired by Iizuka [11], this paper uses L1 loss while attaching the loss of WGAN-GP [31] to the
global and local output of the second-stage network, so as to enhance the consistency between the global
and local. The original WGAN used the Wasserstein distance W(Pr, Pg) to compare the distribution
differences between the generated data and the actual data. Wasserstein is defined as follows:

W(Pr, Pg) = inf
Y∈Π(Pr,Pg)

E(x,y)∼Y[‖x− y‖] (1)

Of which, Π(Pr, Pg) is the set of all possible joint distributions combined by Pr and Pg. For each
possible joint distribution Y, we can sample (x, y) ∼ Y from it to get a real sample x and a generated
sample y. Then we calculate the distance ‖x− y‖ between the samples. Finally, we calculate the
expected value E of the distance between sample pairs in the joint distribution Y. On this basis, the
objective function based on WGAN is established:

min
G

max
D∈DEx∼Pr [D(x)] − Ex̃∼Pg [D(x̃)] (2)

where,D is a set of 1-Lipschitz functions, Pg is the model distribution implicitly defined by x̃ = G(z),
and z is the input of the generator. In order to realize the Lipschitz continuity condition, the original
WGAN clip the updated parameter of the discriminator to a smaller interval [−c, c], so the parameter
gathers at two points of −c and c, which limits the fitting ability to some extent.

WGAN-GP has improved on the basis of WGAN, replacing weight clipping with gradient penalty:
λEx̃−Px̃

(‖∇x̃D(x̃)‖2 − 1)2. WGAN-GP uses the penalty limits the value of gradient.
For image inpainting, we only try to predict region A need repaired, therefore gradient penalty

should only be applied to pixels in region A. We can achieve it by gradient multiplication and mask m.
Format is as follows:

λEx̃∼Px̃
(‖∇x̃D(x̃) � (1−m)‖2 − 1)2 (3)

where, the mask value is 0 for missing pixels and 1 for pixels at other locations. λ is set to 10 at all LABS.
The improvement also addresses the problem of the disappearance of training gradient and

gradient explosion. Moreover, it has a faster convergence speed in deep learning than the original
WGAN. It can also generate higher quality images and reduce the time of parameter adjustment in the
training process.

3.3. Generation of Mask Data Sets

In WeChat or other social networks, some photos of scenic spots with a comfortable and clean
background are shared by tourists. However, there will be more redundant pedestrians in background
destroying the beauty and artistic conception of the images, especially in popular tourist resorts. So
we propose an image inpainting task of retaining the target character in the image while filtering out
the redundant pedestrians in background. In order to complete the image inpainting task described
above, we construct the relevant mask dataset of image inpainting, which must contain various pose
to produce a better inpainting result on the character filter task. This paper uses the COCO dataset to
construct the mask dataset, which is a large and rich dataset of object detection, segmentation, and
caption. The dataset includes 91 types of targets, which contains more than 30,000 images of human,
mainly from the complex daily scenes to meet the needs of various pose.

We select images with multiple pedestrians in COCO dataset to construct the irregular mask
dataset. As shown in Figure 3, first we take the picture C through the Mask-R-CNN network to find all
the people in the image. Mask-R-CNN is a general instance segmentation framework, which can not
only find all the target objects in the image but also accurately segment them. We could segment them
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after finding all the people, and the instance segmentation result is expressed as M. So mask Cmask can
be expressed as:

Cmask(x, y) =
{

255
0

C(x, y) ∈M
otherwise

(4)

Figure 3. Construction of irregular mask dataset.

We can generate 34,980 irregular masks Cmask through the method with COCO dataset. Among
the 34,980 irregular masks, we randomly selected 23,500 masks used for training and 11,480 masks for
testing. To confirm that our mask dataset is true and reliable, we designed an experimental framework
for the image inpainting task. As the entire network is shown in the following figure, the input used
for training is a real image named IMAG with one character at most, and the size of the input image is
256 × 256. Image IMAG first detects the target pedestrian through the Mask-R-CNN network. Then
we randomly select a mask Cmask applied to image IMAG from the 23,500 masks for training. Finally,
image IMAG and Mask Cmask can be used as input repair to train the image inpainting network.

However, in the actual application scene, the target character of the street photography is often
prominent and unobtrusive. So we should try our best not to destroy the structure of the target
character, and simply perform in background. In order to make the training more consistent with the
actual application scene, we need to “protect” the target pedestrian when applying the binary mask to
the target image IMAG to simulate real pedestrians. The protection mechanism can be defined as:

A(x, y) =
{

255
A(x, y)

A(x, y) � P and Cmask(x, y) = 255
otherwise

(5)

where, A(x, y) represents an image with the area need repaired, and P is the area of detected
target pedestrian.

In this way, the experimental method to test the performance of our irregular mask dataset is
complete. The entire network to train is shown in Figure 4. The network integrates the existing
research of instance segmentation and image inpainting. It can solve the common problem of more
unnecessary pedestrians in image background destroying the beauty and artistic conception of the
images in daily life.
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Figure 4. Network framework for pedestrian removal.

4. Result

4.1. Improved Inpainting Network

We evaluate our proposed image inpainting model on VOC2017 and COCO dataset without using
tags or other information related to these images. The COCO dataset contains 118,288 images for
training and 100 test images. VOC dataset contains 17,126 images for training and 100 test images.
These test images are randomly selected from the validation dataset.

We compared the experimental results with PatchMatch [25] and contextual attention (Yu J [14]).
PatchMatch [25] is one of the most advanced methods in patch synthesis, and contextual attention
(Yu J [14]) is currently a relatively advanced image inpainting network based on deep learning. To be
fair, we use all the methods to train on our dataset. Yu J [14] trained the model to handle the fixed
hole. Therefore, we used fixed holes on the testing dataset to make it easy to compare the results with
PatchMatch [25] and contextual attention (Yu J [14]). The fixed hole is located in the center of the input
image, with the size 128 × 128. All results are generated from directly exported training models, and
no post-processing is performed.

First of all, the display comparison between our results and PatchMatch [25], contextual attention
(Yu J [14]) in high-resolution images is shown in Figure 5. It can be seen, the inpainting results of
our model are more realistic, smoother and more similar to the texture of the surrounding area than
the other two methods. Next, the quantitative comparison in Table 1 also shows the results of the
comparison between our method and PatchMatch [25], contextual attention (Yu J [14]). We use three
evaluation indexes: peak signal-to-noise ratio (PSNR), structural similarity index (SSIM), and average
error (L1 loss). The unit of PSNR is dB, and the larger the value is, the smaller the image distortion
is. The value range of SSIM ranges from 0 to 1, and the larger the value is, the smaller the image
distortion is. L1 loss is the sum of the absolute difference between input and output, and the smaller
the value is, the smaller the image distortion is. As you can see from the table, the methods based
on deep learning have a better performance than the traditional methods based on patch in three
indexes including PSNR, SSIM and L1 loss. Our model has improved in terms of data compared with
contextual attention (Yu J [14]). And it is obvious in Figure 5 that our model can effectively reduce
the blurred texture and the unpleasant boundaries that inconsistent with the surrounding area. Our
results are superior to contextual attention, which prove the effectiveness of our model in recovering
texture details in image inpainting.

224



Electronics 2019, 8, 1370

     

Real 

     

Input 

     

PatchMatch 
[25] 

     

Yu J [14] 

     

Our method 

（ ）

Figure 5. Comparison diagram of the results of our algorithm, PatchMatch [25] algorithm and
Yu J [14] algorithm.

Table 1. The results of image inpainting using three methods.

Method PSNR SSIM L1 Loss (%)

PatchMatch [25] 17.36 0.5908 8.78
Yu J [14] 19.14 0.7090 5.06

Our method 19.78 0.7205 5.52

Our full model is implemented on TensorFlow v1.3, CUDNN v7.0, CUDA v9.0 and run on
hardware of CPU Intel(R) Xeon(R) gold 5117 (2.00 GHz) and GPU GTX 1080 Ti. We introduced
16 residuals into the texture detail repair network. However, in the training, these 16 residual blocks
consume a lot of memory and slow down the training speed. After trying to lessen 16 residual blocks
to 5 residual blocks, we found that our full model run 0.2 s per frame on the GPU, with significant
improvement in speed and no significant change in performance.

In addition, the proposed inpainting framework can also be applied to conditional image
generation, image editing, and computational photography tasks, including image-based rendering,
image super-resolution, boot editing, and so on

4.2. Mask Experiment

We also evaluated our proposed mask dataset on two dataset including VOC2017 and COCO
dataset. In the previous section, our model is trained to handle fixed holes to make it easy to compare.
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While the model in [13] was trained to handle random holes and used the irregular mask dataset
proposed by Liu [12], which can meet our experimental requirements. So we used the inpainting model
proposed in [13] to prove the reliability of proposed mask dataset in removing redundant pedestrians
in the image background.

We compared our mask dataset with the mask dataset proposed by Liu [12], the mixed mask
dataset by training with the inpainting model [13]. Our mask dataset contains 23,500 masks for
training and 11,480 masks for testing which are randomly generated from COCO dataset. The mask
dataset proposed by Liu [12] contains 55,115 masks for training. The mixed mask dataset has a total
of 78,615 masks (including 23,500 training masks that we randomly generated and 55,115 masks for
training in Liu [12]).

Our comparison results are shown in the Table 2, from which we can see that we have improved
the data in processing the image inpainting in a special application scene. We preserved the target
character while filtering out redundant pedestrians by using our randomly generated masks. Although
using our mask dataset and mixed mask dataset have similar results, it performes poorly without using
our mask dataset. The comparison proves the reliability of our mask dataset in removing redundant
pedestrians from image background.

Table 2. The results of image inpainting using different mask datasets.

COCO Dataset PSNR SSIM L1 Loss (%)

Liu mask [12] 26.59 0.9146 2.31
Liu mask [12] + our mask 27.55 0.9233 2.01

our mask 27.54 0.9230 2.02

Figure 6 shows the intermediate results of our test, from top to bottom, which are the original
picture, the instance segmentation result about people, the result of removing redundant pedestrians,
and the result of image inpainting. The visualization results show that our experiment can easily
screen out one or more redundant pedestrians in background and remove them.

     

Input 

     

Examples of 
segmentation 

     

Input of 
inpainting 

     

Output 

Figure 6. The result with our proposed mask dataset.

But our experiment still has some limitations. (1) When the target character is “glued” to the other
characters, as shown in the left-most figure, it produces poor results even if the redundant pedestrians
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can be detected. (2) Although the instance segmentation can segment the redundant pedestrians
in background, it is not accurate enough to leave the hands or shoes of the redundant pedestrians,
affecting the visual result. This requires further study of the experiment.

Finally, we randomly downloaded some travel photos from the internet for testing. The photos
contain mountain scenery, buildings, streets, coast, and other areas. As we can see from Figure 7, the
method proposed in the paper also has a high visual result in real life. In the future, we can apply it
to mobile phone application to detect pedestrians in background of personal travel photos, wedding
photos, and other photos. At the same time users filter unnecessary pedestrians with one key and
share the beautiful travel photos in real time.

   

 

  

   

   

   

Figure 7. Cont.
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Figure 7. The actual application effect in network image.

5. Conclusions

Image inpainting based on GAN has made great progress in recent years, but they can only process
low-resolution images because of memory limitations and difficulty in training. For high-resolution
images, the inpainted regions become blurred and the unpleasant boundaries become visible. Many
researchers are committed to improve the existing image inpainting network framework. We propose
a novel high-resolution image inpainting method based on deep generative model. It is a two-stage
network including content reconstruction and texture detail restoration. After obtaining the visually
believable fuzzy texture, we further restore the finer texture details improve the image inpainting
quality. Meanwhile, we integrate the existing research of instance segmentation and image inpainting
to delete the unnecessary pedestrians in background and ensure the reality of background restoration.
To improve the accuracy of image inpainting in the special application scene, we proposed a new
mask dataset, which collected the characters in COCO dataset as a mask, and could produce better
inpainting results for the special application scene.

In our future work, we will experiment with convolutional deep belief network (CDBN) [37] and
PCANET [38] based on the paper. Like the CNN, CDBN can extract the high-frequency features of
images. According to the latest research, CDBN performs better than CNN in the classification task
of large-size images, so it may be better to use CDBN instead of CNN for high-resolution images. In
addition, PCANET can conduct feature fusion of feature maps of different sizes in encoder, which
strengthens the correlation between input and output. However, the better result of PCANET may
come at the cost of speed.
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Abstract: The increasing amount of marketing content in e-commerce websites results in the limited
attention of users. For recommender systems, the way recommended items are presented becomes as
important as the underlying algorithms for product selection. In order to improve the effectiveness
of content presentation, marketing experts experiment with the layout and other visual aspects
of website elements to find the most suitable solution. This study investigates those aspects for a
recommending interface. We propose a framework for performance evaluation of a recommending
interface, which takes into consideration individual user characteristics and goals. At the heart
of the proposed solution is a deep neutral network trained to predict the efficiency a particular
recommendation presented in a selected position and with a chosen degree of intensity. The proposed
Performance Evaluation of a Recommending Interface (PERI) framework can be used to automate an
optimal recommending interface adjustment according to the characteristics of the user and their
goals. The experimental results from the study are based on research-grade measurement electronics
equipment Gazepoint GP3 eye-tracker data, together with synthetic data that were used to perform
pre-assessment training of the neural network.

Keywords: recommender system; human computer interaction; eye-tracking device; deep learning

1. Introduction

Fast e-commerce development inspires increasing attention to sales-boosting solutions, especially
recommending systems, which aim to replace salespeople from traditional shops. Shopping online
offers the benefit of convenience, but on the other hand it is lacking the personal touch of salespeople,
especially when a customer has to select from a very large number of alternatives. Thus, the optimization
of user experience, including personalization and implementing recommending interfaces, has a
crucial role in e-commerce website design. While, in a physical store, a salesperson may directly
recommend products, in an online shopping environment it is the recommending interface that helps
promote products which may be interesting to the customer. Recommender systems play a vital role in
motivating purchase decisions and usually prove successful in enhancing sales [1].

In a recommender system, a user model is usually created, constituting a description of a user,
in order to facilitate interactions between the user and the system [2]. A digital representation of a
user model is a user profile, which reflects their preferences, transactions, online behavior, etc. [3].
Online systems process a wide stream of user data [4–7] essential to build user profiles and recommend
items which are optimal in terms of fit and, as a consequence, resulting sales. A lot of effort has been
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made to analyze that data spectrum and discover user preferences and needs [8,9]. Early solutions
were founded on content-based and collaborative filtering algorithms [10], which were then extended
towards explanation interfaces [11] with the use of context [12] and other approaches such as social
media data inclusion [13,14].

The final performance of a recommending system, however, depends on factors that go beyond
the recommendation algorithms themselves [15]. While there is substantial research in the area
of those algorithms, there are substantially fewer studies in the area of the stages which follow in
the online recommending process, such as item recommendation presentation. Human-computer
interaction with recommending interfaces can be analyzed using DOM-events-based solutions [4] or
gaze tracking [16–18]. Results from eye-tracking studies show that gaze data are a valuable source
for inferring user interest, and the examination of the visual aspects of organizing a recommending
interface may allow to better integrate those interfaces in e-commerce platforms [1,19,20]. In order to
optimize the interface, a number of factors can be analyzed, such as the number of recommendations,
recommendation item images, descriptions and layouts [21,22]. Since customers are inundated with
information, especially marketing content, the habituation effect usually appears, which ends in the
banner blindness phenomenon. As a result, even recommendations that are optimal from the algorithm
perspective may provide insignificant results unless they are shown to the user in a wise way [23–25]:
in the right part of a website, at the right moment of the selection and purchase process, with the right
level of content intrusiveness [26–28], and considering personal preferences [29].

This paper is a substantial extension of a conference paper [30] and proposes a validated
framework for the performance evaluation of a recommending interface, to optimize its efficiency
considering individual user characteristics. The evaluation is based on a deep learning neural network
trained on experimental data from an eye-tracking study on the varying visual intensity and position
of a recommendation and enhanced with data from implicit user tracking and synthetic data for
missing measures. The framework can be implemented as part of e-commerce personalization engine
responsible for recommending interface adjustment.

The remainder of the article is structured as follows: the conceptual framework is presented
in Section 2. The structure of the experiment and empirical results are provided in Section 3 and
conclusions are presented in Section 4.

2. Conceptual Framework

The main objective of this paper is to present a framework for performance evaluation of the
positioning of a recommendation within a recommending interface of a website and the varying
visual intensity of a recommendation with regard to attracting customer interest. In order to evaluate
the viability and usefulness of the framework in terms of user experience and marketing goals,
a pre-assessment study is performed. This evaluation is based on a deep neural network model built
on data from a study performed with research-grade measurement electronics equipment Gazepoint
GP3 eye-tracker and synthetic data to perform pre-assessment training of the neural network.

The main assumption behind our proposed framework for Performance Evaluation of a
Recommending Interface (PERI) is that different variants of a recommendation interface can have
different impact on different users depending on their cognitive abilities [31,32], their way of interacting
with a website and their goals of the visit to an e-commerce website. These assumptions have been
confirmed by several studies [22,33–35].

In order to determine user interest, one can ask the user explicitly or observe them implicitly.
While explicit questioning often disrupts natural behavior and constitutes an extra burden on the
user [3,36,37], implicit measures are unobtrusive and therefore better suited to the purpose of the study.
The subjects may focus on normally performed tasks, no extraneous cognitive load is generated and
no additional motivation is required to provide explicit ratings [38–41].

The methodology of the research assumes the use of gaze tracking for user behavior observation.
Eye tracking is a powerful method used to generate implicit feedback and one of the most popular
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techniques of observing human–computer interaction. Within the scope of the study, gaze-based data
are analyzed and interpreted in a basic e-commerce scenario. Eye movements are used to discover
which areas of an e-commerce website are most looked at, and which of them are the most relevant to
the user, attracting user attention the most. Raw data collected by the eye-tracker device are processed
with eye-tracking software and analytics algorithms.

Eye movements may be unordered in nature and unconscious, yet they are generally tightly
connected with cognitive processes [42]. Therefore, inference about user attention and interest is
possible based on gaze data. A literature review by Buscher et al. confirms that data from gaze-tracking
equipment is an excellent source of information on how much attention is paid to particular content on
the screen [43].

For the pre-assessment study, total fixation duration is the main gaze-based measure, used together
with the buying action. Total fixation is used as an indicator of attractiveness by a number of research
studies [35,44–47]. It is calculated as the sum of fixation durations aggregated on a section of a website,
in particular the recommendation content (RC) section and the main section, with editorial content
(EC). In the study, in addition to experimenting with the position of a recommending interface on
a website and the location of a particular recommendation item (RI) within that interface, changes
in visual intensity are also taken into account. Three basic levels of intensity are used. Changing
the visual intensity of an item is a popular marketing technique used to counteract habituation and
attract more attention [48]. Data from the eye-tracking study have been supplemented with features
generated on the basis of those data.

Figure 1 depicts the architecture of the framework for the performance evaluation of a
recommending interface utilizing certain recommendation positions and intensities. Its key components
include the following:

• User demographic data. Demographic data about users (i.e., age, education, interests) which
can be used to identify user cognitive abilities. These data can be gathered through
registration questionnaires;

• User activity implicit and explicit data gathering. This module is responsible for collecting data
about user behavior and preferences in an untrobusive way by implicitly tracking their activity,
and explicitly by gathering opinions expressed mainly in the form of rating stars;

• User goal identification. This module is responsible for the identification of the user’s goal. In the
case of e-commerce websites, visitors can represent different stages of the purchase funnel. A user
may be exploring the offer without having buying in mind. User goals can be identified based
on a phrase typed in a search engine, the redirections source, and the relation between the items
visited by user, usage of product filter utility and history of previous visits;

• User cognitive abilities identification. The role of this module is to assess user’s cognitive abilities
and classify them at one of a number of selected levels. As current cognitive abilities can influence
the way a user interacts with a website and processes the provided information, presentation
methods should be tailored to user abilities;

• User preference reasoning. The role of this module is to infer user personal preferences about
particular products, product features and product categories in general. Those preferences are
used to construct a user model which is the input for the recommender system;

• Personalized recommendation engine. This module is responsible for generating the most accurate
personalized product recommendations for individuals, which fit their preferences and also can
reach website goals;

• Performance Evaluation of a Recommending Interface (PERI). This module is the core of the proposed
framework. It is responsible for the evaluation of the performance of a possible set of different
ways in which recommendations can be presented. The process of evaluation is carried from
the perspective of individual user’s goals, cognitive abilities and website goals. The heart of
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this module is a prediction model based on a multi-layer deep neural network, which is trained
preliminarily on the basis of eye-tracking data.

Figure 1. The framework for performance evaluation of a recommending interface.

The proposed framework can be used for any e-commerce site to automatically adjust the
recommending interface to the needs, preferences, goals, etc., of individuals and optimize the interface
performance, optimally setting up the positions and visual intensities. The prediction model is
based on a deep neural network, due to the multi-dimensionality of the preference evaluation task,
as this modeling technique handles such sophisticated regression problems in the most accurate way.
In real-world solutions, PERI may produce complex evaluation measures by incorporating different
user goals. For example, in a scenario where a user is only browsing, without having buying in mind,
the success of RC can be defined as clicking on an RC and then exploring a product page, or just by
looking at the product description. Moreover, simply attracting user interest to RC, represented by
fixation time, can also be of huge importance, as users rely on recommender systems to enhance their
confidence in purchase decisions [1].

3. Experimental Results

3.1. Eye-Tracking Experiment Structure and Procedure

This section describes the experiment performed to collect the eye tracking and behavior data
used to train the neural network responsible for the evaluation of recommending interfaces.

Task. Each participant was given the task to shop online in order to furnish a studio apartment
with six types of furniture. Each subject was asked to move between product categories and select one
item from each category, according to their individual preference.

Website. The experiment was composed of a recommending interface within a dedicated
e-commerce website, developed using Drupal CMS. The website was available in Polish and consisted
of a title, menu, product images and short descriptive text. It covered functions such as product list,
buying cart and recommendations.

The editorial content (EC) was placed in the central area of the screen, under the main menu.
It contained product lists about three screens long with 10 products in each product category.
Each product had three unique features: name, product image and price. There were six product
categories (PCj): wardrobes, chests of drawers, beds, bedside cabinets, tables and chairs. Products in a
category were quite similar visually and similarly priced. In addition, under the furniture description
there was an ‘Add to Cart’ button that stored customer choices in a database. Upon selection of a
product, its short description was available in the cart preview and on the main cart page. Of course,

234



Electronics 2020, 9, 266

it was possible to remove the product from the cart in order to allow the user to make changes to the
final selection of purchases.

Recommending interface. There were two alternative recommendation interface layouts, i.e.,
horizontal and vertical recommending mode. This means that the recommendation content (RC)
section was anchored in one of two dedicated parts of the screen below the main menu: either on the
left side of the page, next to the general product list (in vertical mode), or at the top of the page, above
the general product list (in horizontal mode). Only one recommendation layout was available at a time,
so, when horizontal mode was on, the vertical one was deactivated and vice versa. Figure 2 shows
variants of the recommendation content (RC) location.

 
(a) 

 
(b) 

Figure 2. Recommendation layouts of the recommending interface: (a) vertical; (b) horizontal.

The RC section consisted of four recommendation items—RC1 to RC4,—randomly selected from
all products in a category. The section in each variant did not change its location on the screen
when browsing products in the product category, regardless of the user scrolling the EC section.
In fact, only general product lists were made scrollable to ensure reliable subject exposure to the
recommendation interface.

It was ensured that product features, i.e., name, image and price, would not stand out from other
products in the category. It was assumed that the possible distinction of a particular RCi location
would be achieved only by means of visual intensity VI. Three levels of intensity were used: standard
(without any highlight)—VI1, flickering (slowly disappears and reappears every 1–2 s)—VI2 and
background in red—VI3. There was a maximum of one RCi at VI2 or VI3 for each product category.
An example of visual intensity of the last kind (VI3) is shown in Figure 3.

Measurement equipment. Research-grade Gazepoint GP3 eye tracker, a 60 Hz update rate system,
was utilized. The device’s nominal accuracy is 0.5–1 degree of visual angle. It allows for ±15 cm range
of depth movement and offers 5- and 9-point calibration. It is powered by USB.

Procedure. The experiment proceeded as follows. First, the test person was sitting at the test stand
in such a way that their eyes were in the optimal range of the eye-tracking device’s camera. It was
explained what the device for tracking eyeball movements is, and then the eye tracker was calibrated
with Gazepoint Control software and a 9-point calibration method. For greater accuracy, calibration was
always performed twice, the first time just to familiarize the subject with the process. There was a dual
monitor setup with the operator screen invisible to the participant. Thanks to the correct calibration,
the device was able to determine the coordinates of the place where the user was looking.

The participant was then informed of their task but was not told about the purpose of the study.
After this introduction, the subject had to furnish the apartment. After choosing one item from a
category, the subject clicked ‘Next’ and was automatically moved to the next category. Category by
category, the visual intensity of recommendation items changed every time. In addition, for the first
three categories, the layout of RC was vertical and, after moving to the fourth category, it changed to
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horizontal and remained thus for the following categories. In general, each participant was presented
with at least six subsequent webpages with different recommendation options.

 
Figure 3. Example of visual intensity VI3 (red background) in the vertical recommending interface.

Each session was monitored live and recorded using Gazepoint Analysis software. We constantly
double-checked the operator’s monitor to ensure the eyes of the subject were in the optimal position
relative to the camera, etc. After the participant had completed the task, basic data such as age
were collected, and a question was asked about whether the subject felt they were influenced by the
recommendations. Finally, all data were saved and stored by the eye-tracking system for further
analysis. One experimental run typically lasted about 12 min.

Participants. The initial experimental group of users consisted of 52 people who produced valid
eye-tracking data. Most of them were undergraduate or graduate students invited in person or
attracted to advertisements for the study, and they were native Polish speakers. They ranged in age
from 14 to 54 years (mean = 25.2, σ = 8.0).

3.2. Performance Evaluation of a Recommending Interface Experiment Structure and Procedure

This section relates to the next stage of the experiment necessary to preliminarily implement
the proposed framework for Performance Evaluation of a Recommending Interface (PERI). In line
with the character of the study, the presented implementation does not cover the full spectrum of
data described in the proposal, related to goal identification and preference reasoning modules which
were not used since participants were given only one particular task. For the ultimate measure of
interface performance, the add-to-cart action was chosen in this implementation. As mentioned in
the framework proposal, other performance measures could alternatively be employed, e.g., fixation
time on the recommending interface, time spent on a product page accessed via the recommending
interface, etc.

Data. Data collected using the eye-tracking device were used to build a deep learning solution and
perform our pre-assessment study. Fixation data collected with Gazepoint Analysis software constitute
lines containing information about all fixations performed by participants. In total, 15,922 fixation
records were generated.
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Preprocessing. Data were preprocessed in order to extract fixations concerning individual
RCi locations for every product category PCj and every user who was efficiently involved
in the study. As a result, 593 rows were generated, each containing the following features:
RC layout (horizontal/vertical)—rc_layout, RCi location (1-4)—rc_location, recommendation position
intensity level (1-3)—rc_location_intensity, total fixation time for RC layout—fixation_time_layout,
total fixation time for RCi location—fixation_time_location, total time spent on product category
page—fixation_time_category, percentage of time while fixation was registered inside the RC layout
in relation to total time spent on category page—share_time_layout_category, percentage of time
while fixation was registered inside RCi location in relation to total time spent on category
page—share_time_location_category, percentage of time while fixation was registered inside RCi location
in relation to total time spent on RC layout—share_time_location_layout, user age—user_age, level of
user’s cognitive abilities—user_cognitive_ability_level, adding the product to cart action (and its purchase)
from RC—add_to_cart. The features concerning the time spent looking at RC were introduced to
measure interest in the recommending interface.

All the features beside the last one were used to predict the add-to-cart action, which, in the
case of our study, was selected as the ultimate efficiency measure. This measure was selected due to
the purchase task given to participants. In another scenario, a different efficiency measure could be
applied, for example, interest level generated by recommending interface, measured as time spent on
recommended product pages.

Neural network. The preprocessed data were used to train a neural network responsible for the
evaluation of recommending interfaces. Multi-layer perceptron deep neural network architecture was
chosen as most suitable for the classification problem with a low number of features and training
records. It allowed for the deep learning of the relationship between interactions with different
recommending interfaces and their efficiency, where success was measured as the add-to-cart action.
IBM SPSS Statistics was utilized for building the deep learning network.

4. Results

4.1. Eye-Tracking Results of Recommending Interface Efficiency

After completing the task, 33% of participants responded that they felt their selection was
influenced by the RC areas of the site (6% felt strongly about it), while others claimed the opposite,
including 52% who strongly felt they did not care about recommendations on the website. The last
group did indeed seem to show strong resistance to the recommendations—some of those participants,
when shown the RC sections after the test, were surprised that they might have neglected most of them
at all, treating them comparably to adverts, which confirms the prevalence of the habituation effect.

The analysis of eye-tracking data shows that the task took, on average, 2.3 min to complete. In the
study, 312 products were selected for purchase in total. Fixation time on the recommending interface
was, on average, 16.3 s per person, which is 12% of the average task completion time. The mean
amount of time devoted by subjects to observing RC was 8.2 s and 8.1 s for the vertical and horizontal
layouts, respectively. Thus, in terms of fixation time, the two presented variants of the recommending
interface layout offered equal performance.

Table 1 shows in more detail the distribution of these times for all locations of recommendation
items. It was found that the first three locations, RCi, were the most favorable, irrespective of the
layout. The least eye-catching locations took fourth place on the list, next to the bottom bar of the
website (vertical layout) or next to the right edge of the screen (horizontal layout). The most popular of
all was the RC3 location in the horizontal arrangement (3.9 s). This was probably influenced by the fact
that this recommendation item was placed directly above the general product list. The second most
popular location was RC2 and the third was RC1, both in the vertical layout. The apparent popularity
of RC2 in this arrangement was impacted by the fact that, in one product category, this item was shown
as flickering (VI2), and the popularity of RC1, although always shown with standard visual intensity
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(VI1), may be influenced by the fact that a lot of people perceive the first location on a list as the best
one. It should be noted that, in the case of the vertical layout, this first position still worked better
than RC3, which, for one product category, was presented with dazzling intensity VI3. Item RC3 in
vertical mode performed on a par with item RC2 in the horizontal layout, the latter being supported by
flickering effect (VI2) for one product category.

Table 1. Average fixation time(s) for each recommendation location.

Recommendation Location
Time (s)

Vertical RC Horizontal RC

RC1 2.4 1.3
RC2 3.1 2.1
RC3 2.1 3.9
RC4 0.6 0.8

Total 8.2 8.1

An aggregated heatmap for all participants is presented in Figure 4. It illustrates the views of
users in website areas. The areas that received the most attention have a warmer color, while those
that were less attractive have a colder one. This map shows that the recommending interface received
some attention in relation to the total time spent on completing the task, but less than the main product
list. We can also notice some differences in the attractiveness of recommendation items in different
locations to the disadvantage of RC4 for both layout options.

 
Figure 4. Aggregated heatmap for all participants in the study.

From a sales perspective, 12% of products in all carts were selected directly from the
recommendation items. Oddly, this is exactly the same proportion as the one of the recommending
interface fixation time to task completion time, which shows the importance of focusing attention on
recommended items. Vertical RC layout was responsible for 62% of product selections, while the others
were due to the horizontal RC layout—the vertical layout turned out to be almost twice as effective as
the other. This may be related to banner blindness, where banners have historically often been placed
in the very same area of a website as horizontal recommendations in the experiment. In the case of the
vertical layout, for RC with all RCi at the standard intensity level (VI1), the recommendation-driven
purchases (RDPs) were evenly distributed among the recommended products. In the case of RC with
RC2 at the flickering intensity level (VI2), the item attracted four out of nine RDPs in the product
category; in the case of RC with RC3 on a red background (VI3), the item surprisingly attracted only
one out of eight RDPs in the product category. On the whole, RC2 was the most effective, which means
that the second recommendation on the vertical list brought the most sales (48% of RDP’s for vertical
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RC, and 30% of all RDP’s). The recommendation-driven purchase volume is presented in more detail
in Table 2.

Table 2. Recommendation driven purchase and visual intensity for each recommendation location
(RCi) and product category (PCj).

Recommendation Location
Vertical RC Horizontal RC

PC1 PC2 PC3 PC4 PC5 PC6

RC1 1 (VI1) 1 (VI1) 0 (VI1) 2 (VI1) 0 (VI1) 4 (VI1)
RC2 2 (VI1) 4 (VI2) 5 (VI1) 0 (VI1) 3 (VI2) 0 (VI1)
RC3 1 (VI1) 4 (VI1) 1 (VI3) 0 (VI1) 1 (VI1) 2 (VI3)
RC4 2 (VI1) 0 (VI1) 2 (VI1) 0 (VI1) 2 (VI1) 0 (VI1)

Total 6 9 8 2 6 6

It has to be noted that only direct recommendation driven purchases were considered, that is,
purchases initiated directly from RC. It was not feasible to reliably assess non-direct RDPs, that is,
the amount of purchases committed from the general product list, yet inspired by recommendation
items. Therefore, non-direct RDPs were not analyzed in this study. However, it was noticed in the
visual analysis that a few subjects glanced at a recommendation item and, sometime later, decided to
select the same product from the general product list, with causation not confirmed.

Another side remark after visual analysis is connected with the fact that the flickering effect (VI2) of
a recommendation item seemed to have a prolonged effect on fixation after moving to the next product
category. This means that, despite the visual intensity changing to standard, this recommendation
location continued to attract attention.

4.2. Results of the Pre-assesment Study of the Proposed Framework for Performance Evaluation of a
Recommending Interface (PERI)

Using data described in Section 3.2, the deep neural network was trained for the goal of predicting
the performance of recommending interfaces. As a performance measure, the action of adding a
product to cart from the RCi location was used. In total, 40 products were selected directly from RCi
locations. A custom multilayer perceptron with two hidden layers for the binary classification of
adding a product to cart was built, the number of neurons being computed automatically. The resulting
neural network consisted of four layers (one input, two hidden and one output). The parameters of
the neural network are presented in Table 3. Variables rc_location and user_cognitive_ability_level were
treated as categorical variables and, thus, one-hot encoding was performed, resulting in one input
neuron for each variable value. In both hidden layers and the output layer, sigmoid function was
used as activation function. For training the neural network, the gradient descent algorithm was used,
with an initial learning rate of 0.4 and momentum of 0.9. The number of neurons in each hidden layer
was determined automatically by using iterative estimation algorithms (IBM SPSS Statistics). All input
variables were normalized before training of the network.

A test sample of 168 records (around 28.3%) was put aside for the accuracy validation of the
neural network. Due to unbalanced data there, were ten positive samples randomly selected. The
confusion matrix on the training and testing sample is shown in Table 4. Overall classification accuracy
is high for both training and testing datasets, at 98.4% and 98.2%, respectively. The best results are
achieved for the not-buying action, with 98.7% and 99.4% of accuracy for both training and testing sets.
Regarding predicting the buying action, the accuracy is also quite high—92.9% and 80.0% for the same
sets, respectively. Precision and recall accuracy equal 80% and 89%, respectively, and they are the most
appropriate metrics for the accuracy evaluation of the model.
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Table 3. Parameters of multilayer perceptron neural network.

Network Information

Input Layer

Factors

1 rc_location

2 rc_layout

3 rc_location_intensity

Covariates

1 fixation_time_category

2 fixation_time_layout

3 fixation_time_location

4 share_time_layout_category

5 share_time_location_category

6 share_time_location_layout

7 user_age

8 user_cognitive_ability_level

Number of Units 17

Rescaling Method for Covariates Normalized

Hidden Layer(s)

Number of Hidden Layers 2

Number of Units in Hidden Layer 1 8

Number of Units in Hidden Layer 2 6

Activation Function Sigmoid

Output Layer

Dependent Variables 1 add_to_cart

Number of Units 2

Activation Function Sigmoid

Error Function Sum of Squares

Table 4. Confusion matrix for multilayer perceptron for predicting efficiency of recommending interface.

Classification

Sample Observed
Predicted

0 1 Percent Correct

Training
0 392 5 98.7%

1 2 26 92.9%

Overall Percent 92.7% 7.3% 98.4%

Testing
0 157 1 99.4%

1 2 8 80.0%

Overall Percent 94.6% 5.4% 98.2%

Other metrics show overall good accuracy of the resulting network, with AUC 0.991 for both
actions (buying and not-buying) with high sensitivity and specificity (Figure 5).

The most important variables for the deep neural network are fixation_time_location,
fixation_time_layout, share_time_location_layout, share_time_location_category and rc_location (Table 5).
The importance of each predictor was calculated with the SLRM algorithm by removing each predictor
variable in turn from the model and verifying how that affects the model’s accuracy.
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Figure 5. Sensitivity and specificity for the multilayer perceptron.

Table 5. Confusion matrix for multilayer perceptron for predicting the efficiency of the
recommending interface.

Independent Variable Normalized Importance

fixation_time_location 100%
fixation_time_layout 42%

share_time_location_layout 12%
share_time_location_category 8%

rc_location 7%
rc_layout 4%

rc_location_intensity 4%
user_cognitive_ability_level 2%

fixation_time_category 1%
user_age 1%

share_time_layout_category 1%

5. Conclusions

E-commerce platform designers, together with marketers, seek ways of attracting the attention of
web users and encouraging them to commit to purchases, in particular with the use of recommending
interfaces. The presented study showed the influence of the layout of a recommending interface,
the position of a recommendation item and various levels of visual intensity applied to it, on user
behavior in a simply structured shopping website. Thanks to the research-grade measurement
electronics equipment Gazepoint GP3 eye tracker, as well as tracking participants’ purchase decisions,
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the attractiveness of selected website areas was analyzed. A framework for the Performance Evaluation
of a Recommending Interface (PERI) was proposed.

There are several major conclusions. In the experiment, an average of 12% of task completion
time was used to look at the recommending interfaces and, coincidentally, exactly the same percentage
of goods were purchased directly from recommendations. While comparing the vertical and horizonal
recommending interface modes, in terms of fixation time, they performed equally, but from the point
of view of purchase commitments, the vertical layout proved to be almost twice as effective as the
horizontal one. It is speculated that the worse sales performance of the horizontal layout is related to
banner blindness, because banners usually occupy a similar rectangular space at the top of the screen.
In the better performing vertical arrangement, the most attractive in terms of fixation time was the
position on the list, where the effect of slow flickering was used to increase visual intensity. On the
other hand, the high visual attractiveness of the first item on the list, despite the lack of any visual
distinction, may be due to the preconception that the first is always the best (similar to search engines).
The level of attractiveness of the dazzling red back background was relatively low, probably due to
the excessively high content intrusiveness that turned out to be counterproductive. It was also found
that the first three locations in a recommending interface were the most eye-catching, regardless of
the layout, with the least popular locations being the last ones, bordering the bottom or right edge
of the website, respectively, for vertical and horizontal layouts. The study justifies considering a
vertical rather than horizontal layout when designing a recommending interface and suggests that
it is necessary to search for balanced rather than radical visual intensity solutions to counteract the
habituation effect without adversely affecting buyers.

The results, based on deep learning solutions used to implement the framework for Performance
Evaluation of a Recommending Interface (PERI), showed that the obtained multilayer perceptron
has a very good overall prediction accuracy (precision: 80%, recall: 89%) and can be used to assess
the performance of different recommending interfaces for users with different characteristics. The
prediction accuracy of the adding a product to basket action is a little lower but still high, which
is understandable, considering the preliminary character of PERI implementation and the fact that
the results were obtained based on a relatively small dataset with a selected number of features.
Nevertheless, we showed that the PERI framework can be used to automate an optimal recommending
interface adjustment, including adjusting the recommendation position and visual intensity, according
to the characteristics of the user. We are planning to perform an extended research with more
complex e-commerce stores’ websites and subsamples of users of those stores in order to get a wider
representation of user characteristics; users will also be given different tasks, from searching to buying,
in order to include the goal identification and preference reasoning modules, and further validate the
framework. We are also planning to test more types of deep learning networks with more hidden
layers and neurons, as well as other machine learning techniques, in order to seek the best-performing
architectures for this sophisticated and multidimensional problem.
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7. Jankowski, J.; Ziemba, P.; Wątróbski, J.; Kazienko, P. Towards the tradeoff between online marketing resources
exploitation and the user experience with the use of eye tracking. In Intelligent Information and Database
Systems, Proceedings of the 8th Asian Conference, ACIIDS 2016, Da Nang, Vietnam, 14–16 March 2016; Part I.
Lecture Notes in Artificial Intelligence; Nguyen, N.T., Trawiński, B., Fujita, H., Hong, T.P., Eds.; Springer:
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Abstract: Oral evaluation is one of the most critical processes in children’s language learning.
Traditionally, the Scoring Rubric is widely used in oral evaluation for providing a ranking score
by assessing word accuracy, phoneme accuracy, fluency, and accent position of a tester. In recent
years, by the emerging demands of the market, oral evaluation requires not only providing a single
score from pronunciation but also in-depth, meaning comments based on content, context, logic,
and understanding. However, the Scoring Rubric requires massive human work (oral evaluation
experts) to provide such deep meaning comments. It is considered uneconomical and inefficient
in the current market. Therefore, this paper proposes an automated expert comment generation
approach for oral evaluation. The approach first extracts the oral features from the children’s audio
as well as the text features from the corresponding expert comments. Then, a Gated Recurrent Unit
(GRU) is applied to encode the oral features into the model. Afterwards, a Long Short-Term Memory
(LSTM) model is applied to train the mappings between oral features and text features and generate
expert comments for the new coming oral audio. Finally, a Generative Adversarial Network (GAN) is
combined to improve the quality of the generated comments. It generates pseudo-comments to train
the discriminator to recognize the human-like comments. The proposed approach is evaluated in a
real-world audio dataset (children oral audio) collected by our collaborative company. The proposed
approach is also integrated into a commercial application to generate expert comments for children’s
oral evaluation. The experimental results and the lessons learned from real-world applications show
that the proposed approach is effective for providing meaningful comments for oral evaluation.

Keywords: oral evaluation; generative adversarial network; neural audio caption; gated recurrent
unit; long short-term memory

1. Introduction

Oral evaluation is a language-testing process, which includes pronunciation accuracy, fluency,
integrity, logical ability, understanding ability and so on. Among them, the evaluation of logical ability
and understanding ability generally requires more personalized expert comments, rather than a single
score. Oral evaluation plays an important role in the process of language learning. Now there are
some products and standards available in the market for oral evaluation [1–3]. However, most of these
approaches are based on the Scoring Rubric [4] that only focuses on the pronunciation characteristics
but ignoring the semantic characteristics, such as context, content, logic, or understanding, of the
oral expression. It leads to current oral evaluation that can only provide a single ranking score [2].
It cannot provide meaningful comments for the oral evaluation. In order to improve the quality of the
oral evaluation, some companies thus hire massive experts to generate comments for the evaluation
manually. However, it is expensive and inefficient that not all companies could bear it. Therefore,
automated comment generation in oral evaluation becomes the emerging demand that markets are
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chasing. The emerging demand requires machines to imitate expert to generate expert comments for the
oral expressions. It is a comprehensive problem that combines speech recognition [5], natural language
generation [6], and deep learning [7]. This new interdisciplinary study is challenging. It not only
requires the machine to recognize the audio features from oral speech but also requires the machine
to understand the relationships between audio features and corresponding comments. There is
still no mature product/method in the market that can automatically generate expert comments for
oral evaluation.

With the rapid development of artificial intelligence technology [8–10], a new possible solution
for automated oral evaluation emerges gradually. Our previous work had tried to apply the caption
generation model to generate expert comment for the oral evaluation [11]. In this work, we optimize
the previous model. In detail, a Neural Audio Caption Model (NACM) is proposed to generate
expert comments from the oral audio. In NACM, based on Gate Recurrent Unit [12], an elaborate
encoder-decoder structure is designed for the mapping learning between audio features and text
features. Afterwards, a recurrent structure is designed by combing Generative Adversarial Network
(GAN) [13] with NACM. The new model is called Generative Adversarial Network-based Neural
Audio Caption Model (GNACM). Compared with the previous work, GNACM can produce more
accurate and complete expert comment for the oral evaluation. Figure 1 shows the overall framework
of the proposed approach.

As shown in Figure 1, the input of the model is the oral audio to be evaluated. Section 3.1 will
introduce the detail of audio feature extraction. The output of the model is the generated comments
according to the input oral audio. The mappings between oral audio and comments are trained in
NACM. Section 3.2 will provide the structure of NACM. The generated comments are further trained
through the Discriminator to improve the quality of the comments. Section 3.3 will explain the detail
of GNACM. In summary, the work has the following contributions:

• We propose a model called NACM that can generate expert comment for the oral audio.
• Based on NACM, we propose an improved model called GNACM that can generate more accurate

and complete expert comment for the oral audio.
• Beyond the Scoring Rubric approach, the work is the early try to generate expert comments for

the oral evaluation.

Figure 1. The overview of the proposed approach for the oral evaluation.
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2. Related Work

In the related works, we first discuss the typical image caption generation model. The basic
idea of image caption generation is also applied in the audio comments generation. Then, related
technologies are discussed, including audio feature extraction and text generation approaches.

2.1. Caption Generation Model

Caption generation model is widely used in visual recognition for image description
generating [14,15]. In the typical caption generation model, encoder-decoder architecture usually
applies to generate captions for each feature vector. In the architecture, the encoder relies on deep neural
networks to encode images, audio, or video to generate intermediate vectors. Then, the decoder accepts
the intermediate vectors as input, perceives the intermediate vectors in turn, outputs the words one by one,
and finally generates captions [16,17]. Vinyals O, et al. [18] proposed an encoder-decoder image caption
generation method based on Convolutional Neural Network (CNN) [19] and Long Short-Term Memory
(LSTM) [20] network. The approach extracts image features through a convolutional neural network.
It then generates the target language through a long short-term memory network, whose objective
function is the maximum likelihood estimation of the maximum objective description. Since the classic
Neural Image Caption (NIC) model only accepts images as input at the beginning of the LSTM model.
As the length of caption grows, LSTM will gradually lose the correspondence between caption and
image features. Jia X, et al. [21] uses semantic information to guide the LSTM to generate descriptions
at various moments. Here, descriptions indicate image caption. Various moments mean each moment
of LSTM for words generation. You Q, et al. proposed a novel semantic attention model [22], which
combines the mechanisms of top-down and bottom-up. The model uses responses from intermediate
filters of the classification CNN to build a global visual description. In addition, the model runs a set
of attribute detectors to obtain a list of visual attributes or concepts that are most likely to appear in
the image. The advantage of this semantic attention model is the focus on these aspects and the use
of global and local information to generate better caption. The sequence-to-sequence learning model
for generating image captions has become popular, but systems for generating audio captions in the
speech field are indeed rare. Therefore, this paper study the audio caption model to solve the problem
of audio caption generation.

2.2. Audio Feature Extraction Model

The capture of audio feature information is closely related to the generated captions. Therefore,
feature extraction is a crucial step in the caption generation task. With the development of deep
learning, researchers have proposed a large number of acoustic model (AM) methods based on deep
neural networks in speech recognition, which is generally divided into hybrid acoustic models and
end-to-end acoustic models. Hinton G, et al. presented a pioneering work that applied deep neural
networks in speech recognition tasks, and achieved a significant progress [23]. Alex Graves and
Navdeep Jaitly described a system [24]. The system combined a deep bidirectional LSTM network
structure and a connectionist temporal classification (CTC) [25] objective function. When the network
is used in combination with the baseline system, compared with the training dataset used in the
experiment (LDC corpus LDC93S6B and LDC94S13B in the Wall Street Journal corpus), the word
error rate is reduced to 6.7%. Yangyang Shi, et al. proposed a method that replaces the traditional
projection matrix with a higher-order projection layer [26]. Experimental results show that compared
with the traditional LSTM-CTC end-to-end speech model, a higher-order LSTM-CTC model can bring
a 3–10% decline in relative word error rate. It can be seen that the field of speech recognition is
developing rapidly. Audio caption generation requires speech recognition-related technologies for
speech processing, thereby completing the task of audio feature extraction.
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2.3. Text Generation Model Based on Deep Learning

Text generation is an essential subtask of natural language processing. According to different
inputs, automatic text generation can include text-to-text generation, meaning-to-text generation,
data-to-text generation, and image-to-text generation. In the process of image-to-text generation at the
generated text, a Recurrent Neural Network (RNN) or a recursive neural network is usually used to
model the process of natural language sentence generation [27]. Socher, et al. [28] used recurrent neural
networks to model sentences and used syntactic parse trees to highlight the model of actions (verbs).
This method jointly optimized the image and text ends to characterize the relationship between objects
and actions better. To unify the data of two different modalities under one framework, Chen and
Zitnick [29] combined text information and image information into the same recurrent neural network
and realized image-to-text and text-to-image bidirectional representation. To improve the quality of
the generated text, Fedus W, et al. employed a Generative Adversarial Network (GAN). Compared
with the maximum likelihood training model, this method can produce more realistic conditional and
unconditional text samples to achieve good results [30]. The audio caption model studied in this paper
is an essential branch of natural language text generation. The fidelity of the generated text determines
the quality of the model.

3. The Approach

The design details of the method are described in this section. The preprocessing method for
audios and comments is designed in Section 3.1. The neural audio caption model (NACM) is described
in Section 3.2. A Generative Adversarial Network (GAN) is considered adding to the NACM structure.
The GAN-based generative model (GNACM) is designed in Section 3.3.

3.1. Data Preprocessing

Data preprocessing is a critical step in model research. The input of this model is audio data,
and the output is natural language. The specific methods for processing audio data and comment data
will be described in the section.

3.1.1. Audio Feature Extraction

Audio feature extraction base on Mel Frequency Cepstral Coefficient (MFCC) features [31].
The first step is to divide the original audio into frames in time series, and then extract the MFCC
features of each frame. MFCC simulates the processing characteristics of human ear to speech to a
certain extent and is designed according to the knowledge of human ear auditory system. It is a general
method for feature extraction in speech processing. MFCC feature extraction mainly comprises the
following steps: Pre-emphasis, Framing, Windowing, FFT, Mel filter bank, computing DCT. After the
audio above processing, each audio can be represented as a two-dimensional matrix (Ntime × Nm f cc),
where Ntime represents the number of frames in each audio, Nm f cc represents the feature dimension of
MFCC. Next, according to the MFCC features of the first N frames and the next N frames of each frame,
we calculate the deltas and delta-deltas for personalized features that preserve dynamic information
effectively [32]. The approach through this step increases the connection between the previous and
subsequent frames, thereby improving the representation of the feature. The length of different voice
files causes the number of frames Ntime to be different after feature extraction. To be suitable for batch
calculation, it needs to uniform the number of frames in each audio. Thus, we set a hyperparameter
Nmax to indicate the maximum number of frames. Therefore, for audio with frames less than Nmax,
we pad zero to its feature matrix until the length reaches Nmax. Finally, the MFCC feature sequence
A = (�a1, �a2, ..., �an) is obtained after the source audio processing. Where �ax represents the MFCC feature
vector of each frame of an audio.
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3.1.2. Text Preprocessing

Text preprocessing converts natural language into vector form. The comments in the training
set are first segmented in the text processing process, and the segmented result is loaded into the
thesaurus. All the words appeared in the training set together to be a thesaurus. In the thesaurus,
the first word is coded 0, and the second word is coded 1, and so on. The thesaurus holds a series of
correspondences between words and codes. Therefore, the sentence corresponding to each audio can
be expressed as �S = (S1, S2, ..., Sn). Where Sx represents the xth word’s code in a sentence. When the
model performs natural language to vector conversion, the corresponding content can be retrieved by
directly accessing the thesaurus.

3.2. Neural Audio Caption Model

The model is based on the neural audio caption method. The basic idea of the model is: input the
audio MFCC feature sequence A = (�a1, �a2, ..., �an) and encode it into a fixed-length �K, then decode the
fixed-length vector and output the predicted evaluation R = ( �R1, �R2, ..., �Rn). The encoder of the model
encodes MFCC features into learnable feature vectors. Then, these feature vectors are used to learn
the correspondences with the training comments. Afterwards, the decoder of the model decodes the
feature vector into comments. The complete structure of the neural audio caption method is shown in
Figure 2. The model is divided into an encoder part and a decoder part.

Figure 2. Neural Audio Caption Model. The encoder of the model encodes the MFCC feature sequence
into a learning representation. Because one oral audio corresponds to multiple comments, a random
vector with a Gaussian distribution is added after audio information encoding. The decoder model gets
the input learnable audio features and corresponding comment vectors, and finally outputs comments.

3.2.1. Encoder

The feature encoder part in Figure 2 shows that the information encoding of the NACM model
uses our Bi-GRU model. The Bi-GRU model is composed of GRU cells. Given the audio MFCC
feature token sequence A = (�a1, �a2, ..., �an), we use the encoder to encode the sequence information and
generate a single representation �K. A GRU unit takes each token as input and outputs a hidden state
computed by Equations (1)–(4). Then, a hidden state sequence is generated after the GRU network
has computed from left to right along the input sequence. Meanwhile, a counterpart is calculated by
another GRU unit computing in the reverse direction. By concatenating the last hidden state vectors
and connecting the fully connected layer with activation, we finally get the encoded audio feature �K
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with a dimension of 256. In this way, we obtain the holistic information of the sequence forward and
backward. This process can be represented by Equation (5).

�rt = σ(Wr · [�ht−1,�at]) (1)

�zt = σ(Wz · [�ht−1,�at]) (2)

�̃ht = tanh(Wh̃ · [�rt ◦�ht−1,�at]) (3)

�ht = (1 −�zt) ◦�ht−1 +�zt ◦�̃ht (4)

The formula and output of GRU forward propagation are shown in Equations (1)–(4). Where �at

represents the current input vector at time t,�ht−1 and�ht represent the hidden layer states at time t − 1
and time t respectively. In Equations (1)–(4), W terms denote weight matrices and the weight matrices
are defined in Equation (13), σ represents the sigmoid function and sigmoid is a non-linear function in

neural network,�zt and�rt represent update gate and reset gate, �̃ht is the candidate hidden state at time
t. ◦ indicates element-wise multiplication.

�K = tanh(WK ·�ht +�bK) (5)

where WK is weight matrix and�bK is bias vector. The bias vector is initialized to be 0. The weight
matrices are defined in Equation (13).

3.2.2. Decoder

The decoder part designed in Figure 2 consists of LSTM cells. In practice, the same audio will
be evaluated by different experts. In our training set, one audio corresponds to multiple evaluations.
Thus, we concatenate a random vector�z of a Gaussian distribution to the encoded audio feature �K
and use them as the initial hidden state to the LSTM network. Gaussian vector enables Decoder to
generate multiple comments with the same input feature vector. During the training, Gaussian vector
is initialized by standard normal distribution and we use the embedding of expected output from the
training dataset as the input of LSTM network. The procedure can be formulated as Equations (6)–(11).
Then we can get a hidden state sequence h = (�h1,�h2, ...,�hn) after the LSTM unit has finished loop
computing. Finally, we use a compositional operation to change the dimension to Nvoc, and then
getting the probability distribution for word in �Rn. The calculation formula is shown in Equation (12).

�ft = σ(W f · [�ht−1,�xt] +�b f ) (6)

�it = σ(Wi · [�ht−1,�xt]] +�bi) (7)

�̃ct = tanh(Wc · [�ht−1,�xt]] +�bc) (8)

�ct = �ft ◦�ct−1 +�it ◦�̃ct (9)

�ot = σ(Wo · [�ht−1,�xt]] +�bo) (10)

�ht =�ot ◦ tanh(�ct) (11)

�Rn = so f tmax(WR ·�ht +�bR) (12)

The calculation formula and output of LSTM forward propagation are shown in Equations (6)–(11).
Where σ is the sigmoid function,�ht−1 is the hidden layer output at time t − 1, �xt is the input at time
t,�ct−1 is the cell state at time t − 1,�̃ct is the candidate value of cell state at time t, �ft,�it and�ot are the
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forget gate, input gate and output gate respectively. In Equation (12), WR is weight matrix and�bR is
bias vector. The bias is initialized to be 0 and the weight is initialized as Equation (13).

W ∼ U[− 1√
n

,
1√
n
] (13)

where U denotes the uniform distribution, n is the size of the previous layer.
According to the probability distribution for the output word in R = ( �R1, �R2, ..., �Rn) and the

coding vector �S = (S1, S2, ..., Sn) of the actual sample, we can calculate the loss via L Equation (14) and
update the parameters of this model.

L =
1
n

n

∑
i=1

−log(Ri[Si]) (14)

where vector �S = (S1, S2, ..., Sn) represents real reviews from experts, each word is numbered.
Si denotes the code of the word whose index is i in the sentence and Ri[Si] is the probability of
the word whose index is Si in �Ri.

3.3. Generative Adversarial Network-Based Neural Audio Caption Model

The neural audio caption method based on data transformation can generate understandable and
appropriate evaluations. To make the generated comment closer to the expert comment, a Generative
Adversarial Network (GAN) is combined [33,34].

GAN-Based Neural Audio Caption Model is composed of two neural networks, a generative
neural network and a discriminative neural network. It uses the NACM as its generator, which
generates comments. Meanwhile, the discriminator evaluates them for authenticity. The goal of the
generator network is to generate comments that are as similar to the samples in the training set as
possible. The input of the discriminator network is the real sample or the output of the generator
network. Its purpose is to distinguish the output of the generator network from training data as much
as possible. Thus, GAN builds a sort of feedback loop where the generator is helping to train the
discriminator, and the discriminator is helping to train the generator. They both get better together.
With this structure, the generated comment is closer to the real evaluation. The structure of the model
is shown in Figure 3.

Figure 3. GAN-Based Neural Audio Caption Model. The model is divided into a generator and a
discriminator. Among them, the generator follows the Neural Audio Caption Model. The discriminator
uses an embedding layer, a deep LSTM layer and a fully connected layer.
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3.3.1. Discriminator

The discriminator network of the model is composed of an embedding layer, a LSTM unit and a
fully connected layer. The goal of training the discriminator is to maximize the probability of correctly
classifying a given input as real or fake. The inputs of the discriminator are generated pseudo-expert
comment and real comment. First, the fake/real comment is embed to be a matrix E = (�e1,�e2, ..,�en)

by a embedding layer, then a LSTM unit takes the embedding�ei of each word as input and outputs a
hidden state�h

′
t computed by Equations (14)–(19). Last, we feed the last hidden state vector into a fully

connected layer with sigmoid activation, outputting a scalar probability that the input comment is real.

�ft = σ(W f · [�ht−1,�et] +�b f ) (15)

�it = σ(Wi · [�ht−1,�et] +�bi) (16)

�̃ct = tanh(Wc · [�ht−1,�et] +�bc) (17)

�ct = �ft ◦�ct−1 +�it ◦�̃ct (18)

�ot = σ(Wo · [�ht−1,�et] +�bo) (19)

�h
′
t =�ot ◦ tanh(�ct) (20)

The loss function for the discriminator is used to judge the ability of the discriminator. The loss
function is defined as:

LD
real/ f ake = −(E(logDreal/ f ake(�T)) + E(1 − log(Dreal/ f ake(G(A,�z))))) (21)

where G(A,�z) represents the comments generated by the generator. Dreal/ f ake(x) is the discriminator
which outputs the scalar probability that x came from the truth sample rather than the generator, �T
represents the real sample.

3.3.2. Generator

The generator of the model inherits the structure from the Neural Audio Caption Model.
The generator is divided into an encoder and a decoder. The encoder encodes the MFCC features into
learnable feature vectors. Then, a Gaussian-distributed random vector�z is connected to the encoded
features. The decoder takes the encoded features as input and then generates comments.

The similarity between the real samples and the comments generated by the generator is the
primary standard for measuring the generator compliance. Therefore, the comments generated by the
generator must be similar to the real data to deceive the discriminator. The generator loss function is
designed to evaluate this ability of the generator. The goal of training the generator is to maximize
D(G(A,�z)). The loss of the generator is defined as:

LG
real/ f ake = E(−logDreal/ f ake(G(A,�z))) (22)

where G(A,�z) represents the comments generated by the generator, and Dreal/ f ake(x) represents scalar
probability that x came from the truth sample rather than the generator.

The results of supervision using only discriminators are uncertain. Therefore, we turn the learning
problem into an optimization problem. Define a loss function to measure the distribution difference
between the result and the actual sample to minimize the loss. The loss function is as follows:

LG
dis =∝ ×(G(A,�z)− �T)2 (23)

where α is the balance factor and �T represents the real sample.
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Finally, we can calculate the loss via Equation (23) and update the parameters of generator network.

LG = LG
real/ f ake + LG

dis (24)

4. Case Study

This section describes the application of the Neural Audio Caption Model (NACM) and the
Generative Adversarial Network-Based Neural Audio Caption Model (GNACM) to actual cases in
detail. In Section 4.1, we describe the application scenario of the oral evaluation system. We explain
the dataset required for model training and performance testing of the system in Sections 4.2 and 4.3.
We introduce the application of the system in the entity enterprise, which fully shows the oral evaluation
system’s practical application and significance value in Section 4.4. The advantages and disadvantages of
the model are thoroughly analyzed according to the experimental results in Section 4.5.

4.1. Scenario

At present, the education and training industry has maintained a high growth rate of nearly
one trillion Chinese Yuan. According to statistics, the scale of China’s training market in 2015 was
about 882.1 billion Chinese Yuan. Language training institutions account for a large proportion in the
training market, around 17.3%. The size of the education and training market in 2016 has exceeded
one trillion Chinese Yuan, maintaining a growth rate of 13.1% per year. After investigation, the types
of language training institutions are increasing in the market. The language training institutions
mainly includes four categories: comprehensive curriculum education institutions, spoken language
institutions, study abroad institutions, and minor language institutions. According to the survey of the
language education market, we find that language training institution will be a long-standing industry
in the future market.

The development prospects of artificial intelligence language training institutions are
excellent [35–37]. Online language education directly hits the pain points of the industry. It solves
many problems, such as time-consuming, labor-intensive, expensive, and one-to-one teaching.
Although online language training systems overcome the disadvantages of manual education, it still
has a lot of obstacles. For example, most current online language training systems can only score
speech according to the principle of the Scoring Rubric or give a single evaluation according to
the unified Scoring Rubric standards. Figure 4 shows the test process of the traditional language
evaluation system.

Figure 4. Test process of the traditional language evaluation system. The language standard test
interface displays the four parts of the language test. The test contents marked by the red rectangle are
made based on the gauge. The Test results interface displays the audio test results of “Read aloud”.

With the continuous advancement of science and technology, artificial intelligence products have
entered human life [38–40]. To solve the problems of the online education systems, we apply artificial
intelligence technology to the online language evaluation systems. The development of an artificial
intelligence online language evaluation system will solve the problems in the language education
market. The Neural Audio Caption Model (NACM) and Generative Adversarial Network-Based
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Neural Audio Caption Model (GNACM) in the paper can generate meaningful expert comments for
the oral audio evaluation. The system based on NACM and the system based on GNACM meet the
needs of the language training market. NACM and GNACM are applied in the oral evaluation system,
which will realize the automation and intelligence of language evaluation.

4.2. Dataset

The first step in the development of the intelligent oral evaluation system is collecting relevant
datasets, including audios and expert comments corresponding to audios. The data set affects the
accuracy and professionalism of the comments generated by the final model. Therefore, the training set
and testing set should include the objective phonemes of different people, different ages, and different
environments. The data set was provided by children’s language education institutions for this paper
and is not publicly available. With the consent of the child’s guardian, the oral audio of children
5–6 years old was manually collected. During the collection process, the children watch a cartoon
video and say their thoughts. After the audio collection is complete, the relevant children’s language
experts are invited to comment accordingly. This dataset is called the children oral audio dataset.

4.3. Performance Testing

The NACM and GNACM proposed in this paper will be an essential model of the oral evaluation
system. The oral evaluation system is used in enterprise software. Application software has particular
evaluation indicators. Therefore, NACM and GNACM are tested using applied evaluation indicators.
The evaluation indicators and evaluation results of the model are introduced in detail below in
this paper.

4.3.1. Evaluation Metrics

The evaluation metrics of models include three aspects in this paper. The model evaluation
metrics are the quality score of model generation comments, the average response time, and the
scalability. The quality score of the model-generated reports will be manually reviewed and scored by
language education experts. For the performance of the model, we assessment the model from the
response time and scalability.

4.3.2. Evaluation Results

The experiments study two models NACM and GNACM. The dataset used is children oral audio
dataset. The experimental process is shown in Figure 5. Children 5–6 years old watch cartoon video
and answer questions. The child’s oral audio is input into two models, and the models automatically
generate comments. During the experiment, we assessment the model using the model evaluation
metrics proposed in Section 4.3.1.

Relevant language experts evaluate the quality score of the comments generated by the models,
as shown in Figure 6. The Score represents the score of the generated comment graded by human
experts. The Expert number of the chart represents the expert number. The figure shows the
comparison between the quality score of evaluation generated by the baseline model NACM and the
quality score of evaluation generated by the GNACM model. The two systems output audio comments
by inputting different audios. Multiple experts score the corresponding comments of the output
multiple audios. The average score obtained is the system evaluation quality score corresponding
to each expert. The process of collecting expert comments is that we first get the test results, then
send the audio and generated comments to the anonymous experts, and then the experts send their
score results to us, and finally sort out each expert score on the quality of the generated evaluation.
Among them, we asked experts to rate the audio and comments given on a 100-point scale. As Figure 6
shown, we can find that the quality score of the comment generated by GNACM is better than NACM.

255



Electronics 2020, 9, 424

Figure 5. Experimental of an oral evaluation test for children. The participants are asked to watch a
cartoon. In the cartoon, there are well designed oral questions. The participants answer the corresponding
questions orally. Then, the system will automatically generate the expert comments for the participants.

Figure 6. Quality score of evaluations generated by manual assessment models.

The average response time of the model intuitively reflects the performance in the application
environment, as shown in Table 1. We tested all audio samples for NACM and GNACM and then
calculated the average response time. The NACM model and the GNACM model run and tested on
Windows10. The software environment is anaconda3, PyTorch V1.3.1, cuDNN V7.0, and CUDA V10.1.
According to the data in Table 1, the model can meet the requirements for practical production.

Table 1. Average response time (ms) of the proposed models.

NACM GNACM

129.75 125.50

The scalability of the model describes the system’s ability to respond to load growth, as shown
in Figure 7. The Response time of the chart represents the total time consumption. The Number of
samples of the chart represents the number of test samples. The scalability of the model describes
the system’s ability to respond to load growth, as shown in Figure 7. The Response time of the chart
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represents the total time consumption. The Number of samples of the chart represents the number
of test samples. For scalability evaluation, samples are called increasingly. The evaluation is used to
test whether the models suitable for large scale deployment. As the number of test samples increases,
the total response time is rising linearly. It means, in the deployment, response time for each audio
sample can always be stable by applying acceptable computing resources. The scalability of the model
can fully meet the needs of the online language education system.

Figure 7. Scalability evaluation for NACM and GNACM.

4.4. Application

The artificial intelligence oral evaluation system is devoted to creating an online testing software
that enhances human language proficiency. The software is convenient, fast, comprehensive,
and inexpensive. With the development of computer technology, online education has become routine.
Therefore, the intelligent oral evaluation system we develop has met the needs of human language
education and reduced the cost of human and material resources. In this section, we will apply NACM
and GNACM to the oral evaluation system on the market. The NACM is applied to the baseline system
of the intelligence oral evaluation for children system. The example of GNACM is compared with
NACM in application software.

4.4.1. Baseline System Based on NACM

Language education is an essential part of children’s learning and life development. The design
of the intelligence oral evaluation for children system will provide each child with a language-centric
education platform with fluent language skills. The research and development of this artificial
intelligence product is an important step to integrate intelligent technology in the field of children’s
education. The development of the intelligence oral evaluation system provides a solution to
personalized services for children’s home education and early childhood school education. Each child
can use the software according to their own needs. Under the guidance of parents and teachers,
they can test the development level of language skills. The system can also provide suggestions for
children’s language skills development. At the same time, parents and teachers can monitor the
progress of children’s language skills in real-time.

This paper proposes an NACM that automatically generates expert comments, which is first
applied to the intelligence oral evaluation for children system. We apply the trained NACM to the
“Speaking Practice” section of the intelligent oral evaluation for children system. The basic operating
environment of the model is as follows. The software environment is anaconda3 (based on Python
3.7), PyTorch V1.3.1, cuDNN V7.0, and CUDA V10.1. The hardware environment is Intel (R) Core
(TM) i7-9700 CPU @ 3.00 GHz (8 CPUs) 3.0 GHz, NVIDIA GeForce RTX 2070 SUPER 8 GB, 16 GB
RAM. The system imitates a language expert to assess the user language ability and give personalized
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comments. Through the experimental research, the NACM-based generated comment is incomplete.
In the next section, we introduce the use of the GNACM model to solve this problem.

4.4.2. GNACM for Children Oral Evaluation

The intelligent oral evaluation system is currently equipped with GNACM on the market.
The server hardware environment is E5-2680v2 CPU @ 20 cores and 40 threads, the main frequency
is 2.80 GHz, 128 G memory, four GeForce RTX TM 2080 Ti GPUs. To simplify the calling method,
we deploy a web service on the server. Web service can quickly provide data transmission services to
third parties due to the advantages of cross-platform and cross-language. The enterprise establishes
a web service client and initiates a connection with our server, which transmits audio information.
Then the web service program calls our deep learning module and returns the evaluation result to the
client. We provide a web service interface to outside companies, and they can call the corresponding
model and apply it to the corresponding function module of the system. Figure 8 shows a language
education company that accesses our model by invoking the web APIs of the model. The enterprise
uses the API we provided to call the model. The user can use the model with a mobile phone or
PC and other devices, input oral audio, and transfer the data to the layers. The server and the
model give comments, and the comments data is transmitted layer by layer and fed back to the user.
Finally, the display interface displays comments. GNACM gives the audio comment for children oral
evaluation is more accurate, similar to expert comment.

Figure 8. The way the third-party users to access the proposed model for an oral evaluation.

4.5. Lesson Learned

The study finds that people pay attention to the development of language education. There is
a great demand for intelligent systems for language evaluation in the market. Therefore, this paper
proposes two models of NACM and GNACM and applies them to the intelligent oral evaluation
system. Through case analysis, we can find that the intelligent oral evaluation system has many
advantages. (1) The development of the intelligent oral evaluation system will solve the problem of
time-consuming manual participation of oral evaluation in the market. Compared with traditional
online systems, the comments generated by the model are personalized and comprehensive. (2) The
extraction and encoder of audio features are difficult. This paper uses the MFCC feature extraction
to extract audio features and uses the Bi-GRU model to encoder audio features to solve these two
problems. Moreover, in the audio preprocessing process, we use the method of setting the maximum
frame and zero-padding to solve the problem of different lengths of audio feature sequences. (3) After
NACM is completed, the GAN method is added to the NACM, which significantly improves the
accuracy of the evaluation. The intelligent oral evaluation system is more applicable in the business
model. (4) The performance test results of the model indicate that the proposed approach can generate
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meaningful expert comments for the oral audio evaluation. It is suitable for language learning and
testing market. By adjusting the parameters and training set, the approach can be also applied in
industrial applications. (5) Oral audio evaluation is widely used in various domains, including
education, security, finance, and industry. The proposed approach can be further applied to worker
status evaluation through analyzing oral questions and answers in many industrial environments.

The development of the intelligent oral evaluation system solves the pain points of intelligent
evaluation of language education. However, deficiencies are also found during the research of the
model. (1) Audio features are extracted through MFCC feature extraction. In the encoder, the accuracy
of the audio feature encoding needs to be further improved. Encoder of the model can still be optimized
in the future. At the time of comment generation, as the audio feature layer deepens, the audio features
gradually weaken. It may lead the generated comment, to some extent, deviates from the audio.
(2) The generated comments have a high similarity with the trained expert comments, resulting in
inflexible generated comments. We want the model to generate a more personalized comment for
different participants. GAN-based model is hard to generate varieties beyond the training set. Based on
the deficiencies of the model, we will continue to study the model to improve the accuracy of the
generated evaluation.

5. Conclusions

This paper proposes a generative model for the oral evaluation. Compared with the traditional
method, the proposed model is more effective and efficient in oral evaluation. It can generate
meaningful comments according to the oral audio without manual works. The proposed approach
consists of two parts. The first part is Neural Audio Caption Model (NACM). It applies a Gated
Recurrent Unit (GRU) to encode the audio features into the neural network. It also applies a Long
Short-Term Memory (LSTM) model to discover the mappings between audio features and text features.
The second part of the approach is the Generative Adversarial Network-Based Neural Audio Caption
Model (GNACM). It uses the output of NACM as its input to improve the quality of generated
comments. The proposed approach is evaluated in a real-world dataset. It also is applied in a
commercial application. The evaluation results and the lessons learned from the application show that
the proposed approach is effective and efficient in oral evaluation. In the future, we plan to apply the
knowledge graph to process the content and context of oral audio. Therefore, the model will consider
not only the audio analysis but also the semantic analysis for the oral evaluation.
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The following abbreviations are used in this manuscript:

NACM Neural Audio Caption Model
GNACM Generative Adversarial Network-Based Neural Audio Caption Model
MDPI Multidisciplinary Digital Publishing Institute
GRU Gated Recurrent Unit
LSTM Long Short-Term Memory network
NIC Neural Image Caption
NAC Neural Audio Caption
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CNN Convolutional Neural Network
AM Acoustic Model
CTC Connectionist Temporal Classification
RNN Recurrent Neural Network
GAN Generative Adversarial Network
MFCC Mel Frequency Cepstral Coefficient
BP Error Back Propagation
APP Application
AI Artificial Intelligence
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