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Abstract

This paper addresses the incremental and decremental maintenance

of the frequent pattern space. We conduct an in-depth investigation

on how the frequent pattern space evolves under both incremental and

decremental updates. Based on the evolution analysis, a new data struc-

ture, Generator-Enumeration Tree (GE-tree), is developed to facilitate the

maintenance of the frequent pattern space. With the concept of GE-tree,

we propose two novel algorithms, Pattern Space Maintainer+ (PSM+)

and Pattern Space Maintainer- (PSM-), for the incremental and decremen-

tal maintenance of frequent patterns. Experimental results demonstrate

that the proposed algorithms, on average, outperforms the representative

state-of-the-art methods by an order of magnitude.
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1 Introduction

Updates are a fundamental aspect of data management. Updates allow obsolete

and incorrect records to be removed and new records to be included. When

a database is updated frequently, repeating the pattern discovery process from

scratch during each update causes significant computational and I/O overheads.

Therefore, it is important to analyze how the discovered pattern may change

in response to updates, and to formulate more effective algorithms to maintain

the discovered pattern on the updated database.

Pattern maintenance is also useful for interactive mining applications. For

example, pattern maintenance can be used to interactively analyze the evolution

trend of a time series data. This type of trend analysis usually focuses on a

certain period of time, and patterns found before the targeted period are first

extracted as a reference. Then records within the targeted period are inserted

one by one in time sequence. The patterns before and after the insertion are

then compared to find out whether any new patterns (trends) have emerged

and how the existing patterns (trends) have changed. This interactive study

is a useful tool to detect significant events, like the emergence of new trend,

changes of the existing trends, vanishing trends, etc. More importantly, through

the study, we can also identify the time when the significant events happened,

which allows further investigation on the causes of the events. This type of

“before vs. after” analysis requires intensive pattern discovery and comparison

computation. Solving the problem using the conventional pattern discovery

methods involves large amount of redundancies, and pattern maintenance can

be used to effectively avoid these redundancies.

This paper addresses the maintenance of the frequent patterns space. Fre-

quent patterns (Agrawal and Imielinski, 1993) are a very important type of

patterns in data mining. Frequent patterns play an essential role in various
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knowledge discovery tasks, such as the discovery of association rules, corre-

lations, causality, sequential patterns, emerging patterns, etc. The frequent

patterns space, consisting all the frequent patterns, is usually very large. Thus

the maintenance of the frequent pattern space is computational challenging.

In this paper, we focus on two major types of updates in data manage-

ment and interactive mining. The first type, where new transactions are in-

serted into the original dataset, is called an incremental update. The asso-

ciated maintenance process is called incremental maintenance. The second

type, where some transactions are removed from the original dataset, is called a

decremental update. The associated maintenance process is called decremental

maintenance.

1.1 Related Work

In the literature, the frequent pattern maintenance algorithms can be classified

into four main categories: the 1) Apriori-based algorithms, 2) Partition-based

algorithms, 3) Prefix-tree-based algorithms and 4) Concise-representation-based

algorithms.

FUP (Cheung et al., 1996) is the first Apriori -based maintenance algorithm.

FUP focuses on the incremental maintenance of frequent patterns. Inspired by

Apriori (Agrawal and Imielinski, 1993), FUP updates the space of frequent pat-

terns iteratively based on the candidate-generation-verification framework. The

key technique of FUP is to makes use of support information in previously dis-

covered frequent patterns to minimize the number of candidate patterns. Since

the performance of candidate-generation-verification based algorithms heavily

depends on the size of the candidate set, FUP outperforms Apriori. FUP is

then generalized as FUP2H (Cheung et al., 1997) to handle both incremental

and decremental maintenance. Similarly, the partition-based algorithm SWF
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(Lee et al., 2005) also employs the candidate-generation-verification framework.

However, SWF applies different techniques to reduce the size of candidate set.

SWF slices a dataset into several partitions and employs a filtering threshold

in each partition to filter out unnecessary candidate patterns. Even with all

the candidate reduction techniques, the candidate-generation-verification frame-

work still leads to the enumeration of large number of unnecessary candidates.

This greatly limits the performance of both Apriori -based and partition-based

algorithms.

To address this shortcoming of the candidate-generation-verification frame-

work, prefix-tree-based algorithms, such as CanTree (Leung et al., 2007), that

involve no candidate generation are proposed. CanTree evolves from FP-growth

(Han et al., 2000) — the state-of-the-art prefix-tree-based frequent pattern dis-

covery algorithm. CanTree arranges items according to some fixed canonical or-

der that will not be affected by data updates. This allows new transactions to be

efficiently inserted into the existing prefix-tree without node swapping/merging.

However, prefix-tree based algorithms still suffer from the undesirably large size

of the frequent pattern space.

To break this bottleneck, concise representations of the frequent pattern

space are proposed. The commonly used representations include “maximal pat-

terns” (Bayardo, 1998), “closed patterns” and “generators” (Pasquier et al.,

1999). Algorithms have also been proposed to maintain the concise representa-

tions. Moment (Chi et al., 2006) is one example. Moment dynamically maintains

the frequent closed patterns. Moment focuses on a special update scenario where

each time only one new transaction is inserted and one obsolete transaction is

removed, and thus it is proposed based on the hypothesis that there are only

small changes to the frequent closed patterns given a small amount of updates.

Due to this unfavorable constraint, the performance of Moment degrades dra-
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matically when the number of updates gets large. ZIGZAG (Veloso et al., 2002),

on the other hand, maintains the maximal patterns. Extended from the max-

imal pattern discovery algorithm GENMAX (Gouda and Zaki, 2001), ZIGZAG

updates the maximal patterns by a backtracking search, which is guided by the

outcomes of the previous maintenance iteration. However, the maximal patterns

are a lossy representation of the frequent pattern space, which do not provide

support information of frequent patterns.

We observe that most of the prior works in frequent pattern maintenance, e.g.

FUP, CanTree and ZIGZAG, are proposed as an extension of frequent pattern

discovery algorithms. Unlike these prior works, we propose our maintenance

algorithms based on an in-depth analysis on the evolution of the pattern space

under data updates. The evolution of the pattern space is analyzed using the

concept of equivalence classes. Different from the maximal pattern in ZIGZAG,

the equivalence class is a lossless 1 concise representation of the frequent pattern

space. Also, unlike Moment, which bears some unfavorable assumptions, our

maintenance algorithms aim to handle batch updates.

1.2 Our Contribution

Our contributions in this paper are as follows. (1) We analyze how the space

of frequent patterns evolves under both incremental and decremental updates.

Based on this space evolution analysis, we summarize the major computation

tasks involved in the frequent pattern maintenance. (2) To effectively address

the maintenance computational tasks, we develop a data structure, Generator-

Enumeration Tree (GE-tree). Inspired by the idea of Set-Enumeration Tree

(SE-tree) (Rymon, 1992), GE-tree efficiently facilitates the frequent pattern

maintenance. (3) We propose two novel maintenance algorithms, Pattern Space

1We say a representation is lossless if it is sufficient to derive and determine the support
of all frequent patterns without accessing the datasets.
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Maintainer+ (PSM+) and Pattern Space Maintainer- (PSM-). With GE-tree,

PSM+ and PSM- effectively maintain the frequent pattern space under incre-

mental and decremental updates. (4) We also demonstrate that PSM+ and

PSM- can be easily integrated to form Pattern Space Maintainer (PSM), and

PSM can be extended to update the frequent pattern space for support thresh-

old adjustment. (5) We have conducted extensive experiments to evaluate the

effectiveness of our proposed algorithms. Experimental results show that the

proposed algorithms, on average, outperform the state-of-the-art approaches by

more than an order of magnitude.

The rest of the paper is organized as follows. In Section 2, we recap the basic

definitions in frequent pattern maintenance. In Section 3, we investigate how the

space of frequent pattern can be structurally decomposed into and represented

by equivalence classes. In Section 4 and 5, we discuss the proposed incremental

and decremental maintenance algorithms. The generalized and extension of the

proposed algorithms are discussed in Section 6, and the experimental results are

presented in Section 7. We conclude the paper in Section 8.

2 Problem Definition

Let I = {i1, i2, ..., im} be a set of distinct literals called “items”, and also

let D = {t1, t2, ..., tn} be a transactional “dataset”, where ti (i ∈ [1, n]) is a

“transaction” that contains a non-empty set of items. Each subset of I is called

a “pattern” or an “itemset”. The “support” of a pattern P in a dataset D is

defined as sup(P,D) = |{t|t ∈ D ∧ P ⊆ t}|. A pre-specified support threshold

is necessary to define frequent patterns. The support threshold can be defined

in terms of percentage and absolute count. For a dataset D, the “percentage

support threshold”, ms%, and the “absolute support threshold”, msa, can be

interchanged via equation msa = dms% × |D|e. For this paper, we assume the
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percentage support threshold is used unless otherwise specified. Given ms% or

msa, a pattern P is said to be frequent in a dataset D iff sup(P,D) ≥ msa =

dms%× |D|e. The collection of all frequent patterns in D is called the “space of

frequent patterns” or the “frequent pattern space” and is denoted as F(D,ms%)

or F(D,msa).

For incremental maintenance, we use the following notations: Dorg is the

original dataset, Dinc is the set of new transactions to be added to Dorg, and

Dupd+ = Dorg ∪ Dinc is the updated dataset. We assume without loss of

generality that Dorg ∩ Dinc = ∅. This leads to the conclusion that |Dupd+| =

|Dorg| + |Dinc|. Given ms%, the task of incremental maintenance is to obtain

the updated frequent pattern space F(Dupd+,ms%) by updating the original

pattern space F(Dorg,ms%).

On the other hand, we use the following notations for decremental main-

tenance: Ddec is the set of old transactions to be removed, and Dupd− =

Dorg −Ddec is the updated dataset. We assume without loss of generality that

Ddec ⊆ Dorg. Thus |Dupd−| = |Dorg|−|Ddec|. Given ms%, the task of decremen-

tal maintenance is to obtain the updated frequent pattern space F(Dupd−,ms%)

by updating the original pattern space F(Dorg,ms%).

3 Structural Decomposition of Pattern Space

Understanding how the frequent pattern space evolves when data is updated is

essential for effective maintenance of the space. However, due to the vast size of

the frequent pattern space, direct analysis on the pattern space is extremely dif-

ficult. To solve this problem, we propose to structurally decompose the frequent

pattern space into sub-spaces.

We observe that the frequent pattern space is a convex space.

Definition 3.1 (Convex Space) A space S is convex if, for all X, Y ∈ S such
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Sample Dataset 

a, b, c, d
b, d
a, c, d
a, c

{}

a : 3 c : 3 d : 3 b : 2

a c : 3 a d : 2 c d : 2 b d : 2

a c d : 2

 a b : 1 b c : 1

a b c : 1 b c d : 1

a b c d : 1

a b d : 1

 a b : 1 b c : 1

a b c : 1 a b d : 1 b c d : 1

a b c d : 1

Generator

Closed Pattern

(a) (b) (c)

Figure 1: Demonstration of the structural decomposition of the frequent pattern
space. (a)The sample dataset; (b) decomposition of the frequent pattern space of
the sample dataset into 5 equivalence classes; (c) the “border” of an equivalence
class.

that X ⊆ Y , it is the case that Z ∈ S whenever X ⊆ Z ⊆ Y .

For a convex space S, we define the collection of all “most general” patterns

in S as a “bound” of S. A pattern X is most general in S if there is no proper

subset of X in S. Similarly, we define the collection of all “most specific”

patterns as another bound of S. A pattern X is most specific in S if there is

no proper superset of X in S. We call the former bound the “left bound” of

S, denoted L; and the latter bound the “right bound” of S, denoted R. We

call the pair of left and right bound the “border” of S, which is denoted by

〈L,R〉. It is easy to show that a convex space can be concisely represented by

its borders without loss of information.

Fact 3.2 (Cf. Li et al. (2005)) F(ms%,D) is convex. Furthermore, it can

be structurally decomposed into convex sub-spaces — equivalence classes.

We further found that, due to its convexity, the frequent pattern space can

be structurally decomposed into sub-spaces, which is mush smaller in terms of

size. The sub-space is called the equivalence class, and it is formally defined as

follows.

Definition 3.3 (Equivalence Class) Let the “filter”, f(P,D), of a pattern P

in a dataset D be defined as f(P,D) = {T ∈ D | P ⊆ T}. Then the “equivalence
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class” [P ]D of P in a dataset D is the collection of patterns defined as [P ]D =

{Q | f(P,D) = f(Q,D), Q is a pattern in D}.

In other words, two patterns are “equivalent” in the context of a dataset D
iff they are included in exactly the same transactions in D. Thus the patterns

in a given equivalence class have the same support. So we extend the notations

and write sup(P,D) to denote the support of an equivalence class [P ]D and P ∈
F(ms,D) to mean the equivalence class is frequent. Furthermore, equivalence

classes are also convex and thus they can be compactly represented by their

borders without loss of information (Li et al., 2005). The right bound of an

equivalence class is actually a closed pattern, and the left bound is a group of

generators (key patterns).

Definition 3.4 (Generator & Closed Pattern (Pasquier et al., 1999))

A pattern P is a “key pattern” or a “generator” in a dataset D iff for every

P ′ ⊂ P , it is the case that sup(P ′,D) > sup(P,D). In contrast, a pattern P

is a “closed pattern” in a dataset D iff for every P ′ ⊃ P , it is the case that

sup(P ′,D) < sup(P,D).

Based on the definition of the border of a convex space, we can define gen-

erators and closed patterns in an alternative way.

Fact 3.5 A pattern P is a key pattern or a generator in a dataset D iff P is a

most general pattern in [P ]D. A pattern P is a closed pattern in a dataset D iff

P is the most specific pattern in [P ]D.

Therefore, the closed pattern and generators form the border of the corre-

sponding equivalence class, and they, furthermore, uniquely define the corre-

sponding equivalence class. This implies that, to mine or maintain generators

and closed patterns, it is sufficient to mine or maintain the borders of equivalence

classes, and vice versa. Figure 1 graphically demonstrates how the pattern space
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can be structurally decomposed into equivalence classes and how an equivalence

class can be concisely represented by its border.

In addition, we observe that generators follow the “a priori” (or anti-

monotone) property.

Fact 3.6 (Cf. Li et al. (2005)) Let P be a pattern in D. If P is frequent,

then every subset of P is also frequent. If P is a generator, then every subset

of P is also a generator in D. Thus, if P is a frequent generator, then every

subset of P is also a frequent generator in D.

The equivalence class is an effective concise representation for pattern spaces.

In the literature, the equivalence class has been used to summarize cells in data

cubes (Li et al., 2004). Here we use equivalence classes to concisely represent

the space of frequent patterns. Structurally decomposing the pattern space into

equivalence classes allows us to investigate the evolution of the pattern space via

studying the evolution of equivalence classes, which is much smaller and easier

to study. Moreover, the structural decomposition simplifies the maintenance

problem from updating the entire space to the update of equivalence classes,

and it also allows us to maintain the pattern space in a divide-and-conquer

manner.

4 Incremental Maintenance of Pattern Space

This section discusses the incremental maintenance of the frequent pattern

space. In the incremental update, a set of new transactionsDinc are inserted into

the original dataset Dorg, and thus the updated dataset Dupd+ = Dorg ∪ Dinc.

Given a support threshold ms%, the task of incremental maintenance is to ob-

tain the updated pattern space by maintaining the original pattern space.

To develop effective incremental maintenance algorithm, we start off with a
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study on the evolution of the frequent pattern space under incremental updates

using the concept of equivalence class. Through the space evolution study, we

summarize the major computational tasks in the incremental maintenance. To

complete the computational tasks efficiently, we develop a new data structure,

Generator-Enumeration Tree (GE-tree). Based on the GE-tree, a novel incre-

mental maintenance algorithm, named Pattern Space Maintainer+ (PSM+), is

proposed.

4.1 Evolution of Pattern Space

We first investigate how the existing (frequent) equivalence classes evolve when

new transactions are added. We observe that, after an incremental update, the

support of an equivalence class can only increase and the size of an equivalence

class can only shrink.

Proposition 4.1 Let P be a pattern in Dorg. Then [P ]Dupd+ ⊆ [P ]Dorg and

sup(P,Dupd+) ≥ sup(P,Dorg).

Proof: Suppose Q ∈ [P ]Dupd+ . Then f(Q,Dupd+) = f(Q,Dorg)∪ f(Q,Dinc) =

f(P,Dupd+) = f(P,Dorg) ∪ f(P,Dinc). Since Dinc ∪ Dorg = ∅, we have

f(Q,Dorg) = f(P,Dorg). Then Q ∈ [P ]Dorg
for every Q ∈ [P ]Dupd+ . Thus

we can conclude [P ]Dupd+ ⊆ [P ]Dorg
. Also, sup(P,Dupd+) = sup(P , Dorg) +

sup(P,Dinc) ≥ sup(P , Dorg). ut

In particular, we discover that, under an incremental update, the existing

equivalence classes evolve in three different ways. The first way is to remain

unchanged without any change in support. The second way is to remain un-

changed but with an increased support. The third way is to split into two or

more classes. In this case, the size of equivalence classes will shrink as described

in Proposition 4.1. On the other hand, an incremental update may induce new 2

2We can an equivalence class is “new” iff the patterns in the class are not in the original
pattern space but in the updated pattern space.
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Incremental 
Dataset, Dinc

a, e
b, d, e+

Frequent equivalence classes: 

EC1: { {a}, {c}, {a, c} } : 3

EC2: { {a, d}, {c, d}, {a, c, d} } : 2

EC3: { {b}, {b, d} } : 2

Frequent equivalence classes: 

EC2': { {c}, {a, c} } : 3

EC1': { {a} } : 4

Updated Dataset 
(ms% = 50%,msa = 3)

a, b, c, d, e
b, d
a, c, d
a, c
a, e
b, d, e

EC5': { {e} } : 3

unchanged

support 
increase

newly emerged

Notation: {.} : x refers to an equivalence class with x as support value and consists of patterns {.}.

Original Dataset 
(ms% = 50%,msa = 2)

a, b, c, d, e
b, d
a, c, d
a, c

EC4: { {d} } : 3

EC2: { {a, d}, {c, d}, {a, c, d} } : 2

EC3': { {b}, {b, d} } : 3

EC4': { {d} } : 4

split

ECorg

C t+

Split 
Up

C t+

: generators

t+: incremental transaction

(a) (b)

Note: Due to the increase in msa, EC2 has become infrequent and thus is removed.

EC'

EC''

C'

C, C' : closed patterns

Figure 2: (a)The evolution of the frequent pattern space under the incremental
update; (b) the splitting up of an equivalence class ECorg after t+ is inserted.

(frequent) equivalence classes to emerge. Figure 2 (a) illustrates how the existing

equivalence classes may evolve in three different ways and how new equivalence

classes may emerge.

To have an in-depth understanding on how the pattern space evolve under

the incremental update, we now investigate the exact conditions for the three

ways that existing equivalence classes may evolve and also the conditions for new

equivalence classes to emerge. We denote the closed pattern of an equivalence

class [p]D as Clo([p]D) and the generators or key patterns of [p]D as Keys([p]D).

We assume the incremental dataset Dinc contains only one transaction t+ for

ease of discussion.

Theorem 4.2 Let Dorg be the original dataset, Dinc be the incremental dataset,

Dupd+ = Dorg ∪ Dinc and ms% be the support threshold. Suppose Dinc consists

of only one transaction t+. For every frequent equivalence class [P ]Dupd+ in

F(ms%,Dupd+), exactly one of the 5 scenarios below holds:

1. P ∈ F(ms%,Dorg), P 6⊆ t+ and Q 6⊆ t+ for all Q ∈ [P ]Dorg
, corresponding

to the scenario where the equivalence class remains totally unchanged. In
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this case, [P ]Dupd+ = [P ]Dorg and sup(P,Dupd+) = sup(P,Dorg).

2. P ∈ F(ms%,Dorg), P ⊆ t+ and Q ⊆ t+ for all Q ∈ [P ]Dorg
, corre-

sponding to the scenario where the equivalence class has remained un-

changed but with increased support. In this case, [P ]Dupd+ = [P ]Dorg and

sup(P,Dupd+) = sup(P,Dorg) + sup(P,Dupd+) = sup(P,Dorg) + 1.

3. P ∈ F(ms%,Dorg), P ⊆ t+ and Q 6⊆ t+ for some Q ∈ [P ]Dorg
, cor-

responding to the scenario where the equivalence class splits. In this

case, [P ]Dorg
splits into two new equivalence classes, and [P ]Dupd+ is

one of them. [P ]Dupd+ = {Q|Q ∈ [P ]Dorg
∧ Q ⊆ t+}, Clo([P ]Dupd+) =

Clo([P ]Dorg ) ∩ t+ and Keys([P ]Dupd+) = {K|K ∈ Keys([P ]Dorg ) ∧K ⊆
t+}.

4. P ∈ F(ms%,Dorg), P 6⊆ t+ and Q ⊆ t+ for some Q ∈ [P ]Dorg
, also

corresponding to the scenario where the equivalence class splits. This sce-

nario is complement to Scenario 3. [P ]Dorg
splits into two new equivalence

classes, [P ]Dupd+ is one of them, and the other one has been described

in Scenario 3. In this case, [P ]Dupd+ = {Q|Q ∈ [P ]Dorg ∧ Q 6⊆ t+},
Clo([P ]Dupd+) = Clo([P ]Dorg

) and Keys([P ]Dupd+) = min{{K|K ∈
Keys([P ]Dorg

) ∧K 6⊆ t+} ∪ {K ′ ∪ {xi}, i = 1, 2, · · ·|K ′ ∈ Keys([P ]Dorg
) ∧

K ′ ⊆ t+, xi ∈ Clo([P ]Dorg ) ∧ xi 6∈ t+}}.

5. P 6∈ F(ms%,Dorg), P ⊆ t+ and Sup(P,Dupd+) ≥ dms% × |Dupd+|e,
corresponding to the scenario where a new frequent equivalence class has

emerged. In this case, [P ]Dupd+ = {Q|Q ∈ [P ]Dorg ∧ Q ⊆ t+} and

sup(P,Dupd+) = sup(P,Dorg) + sup(P,Dupd+) = sup(P,Dorg) + 1.

Proof: Scenario 1 and 5 are obvious.

To prove Scenario 2, suppose (i) P ∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii)

Q ⊆ t+ for all Q ∈ [P ]Dorg
. Point (ii) implies that f(P,Dupd+) = f(P,Dorg) ∪
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{t+}, and point (iii) implies that, for all Q ∈ [P ]Dorg , f(Q,Dupd+) =

f(Q,Dorg) ∪ {t+}. Since, according to the definition of equivalence class (Defi-

nition 3.3), f(P,Dorg) = f(Q,Dorg). Thus f(P,Dupd+) = f(P,Dorg) ∪ {t+} =

f(Q,Dorg) ∪ {t+} = f(Q,Dupd+). This means that, for all Q ∈ [P ]Dorg ,

Q ∈ [P ]upd+. Therefore, the equivalence [P ]Dorg
remains the same after the

update, but sup(P,Dupd+) = |f(P,Dupd+)| = sup(P,Dorg) + 1.

To prove Scenario 3, suppose (i) P ∈ F(ms%), (ii) P ⊂ t+, and (iii)Q 6⊆ t+

for some Q ∈ [P ]Dorg
. Point (ii) implies that f(P,Dupd+) = f(P,Dorg) ∪ {t+}.

Also for patterns Q that satisfy point (iii), f(Q,Dupd+) = f(Q,Dorg) 6=
f(P,Dupd+). This means Q 6∈ [P ]Dupd+ . According to Definition 3.3,

[P ]Dupd+ = {P ′|f(P,Dupd+) = f(P ′,Dupd+)} = {P ′|P ′ ∈ [P ]Dorg
∧ P ′ ⊆ t+},

and [Q]Dupd+ = {Q′|Q′ ∈ [P ]Dorg ∧ Q′ 6⊆ t+}. Since [P ]Dorg = [P ]Dupd+ ∪
[Q]Dupd+ and [P ]Dupd+ ∩ [Q]Dupd+ = ∅, we say that, in this case, the equivalence

class [P ]Dorg
splits into two.

Next, we prove Clo([P ]Dupd+) = Clo([P ]Dorg ) ∩ t+. Let C = Clo([P ]Dorg ) ∩
t+. It is obvious that (1) C ⊆ Clo([P ]Dorg

), (2) C ⊆ t+ and (3) C ⊇ P (for

P ⊆ t+). According to the definition of convex space, point (1) & (3) imply

that C ∈ [P ]Dorg . Combining the facts that C ∈ [P ]Dorg and C ⊆ t+, we have

C ∈ [P ]Dupd+ . We then assume that there exists C ′ such that C ′ ⊃ C and C ′ ∈
[P ]Dupd+ . C ′ ∈ [P ]Dupd+ implies that C ′ ∈ [P ]Dorg

and C ′ ⊆ t+. C ′ ∈ [P ]Dorg

further implies that C ′ ⊆ Clo([P ]Dorg ). Then we have C ′ ⊆ Clo([P ]Dorg ) and

C ′ ⊆ t+, and thus C ′ ⊆ C (for C = Clo([P ]Dorg
) ∩ t+). This contradicts with

the initial assumption. Therefore, C ∈ [P ]Dupd+ and there does not exist C ′

such that C ′ ⊃ C and C ′ ∈ [P ]Dupd+ . According to Definition 3.4, C is the

closed pattern of [P ]Dupd+ .

Then we prove Keys([P ]Dupd+) = {K|K ∈ Keys([P ]Dorg
)∧K ⊆ t+}. First,

let K = {K|K ∈ Keys([P ]Dorg ) ∧ K ⊆ t+} and let pattern X be any pattern
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that X ∈ K. X ∈ K implies that X ∈ [P ]Dorg and X ⊆ t+. This means

X ∈ [P ]Dupd+ . X ∈ K also means X ∈ Keys([P ]Dorg
), i.e. X is one of the most

“general” patterns in [P ]Dorg
(Definition 3.4). Moreover, [P ]Dupd+ ⊂ [P ]Dorg

.

Therefore, X must also be one of the most “general” patterns in [P ]Dupd+ . This

means that X ∈ Keys([P ]Dupd+) for every X ∈ K. Thus we have (A) K ⊆
Keys([P ]Dupd+). Second, we assume that there exists a pattern Y such that

Y ∈ Keys([P ]Dupd+) but Y 6∈ K. Y ∈ Keys([P ]Dupd+) means Y ∈ [P ]Dupd+ .

According to the definition of [P ]Dupd+ , we know Y ∈ [P ]Dorg
and Y ⊆ t+.

Y ⊆ t+ and Y 6∈ K imply that Y 6∈ Keys([P ]Dorg ). This means there exists

pattern K ′ ⊂ Y that K ′ ∈ [P ]Dorg
(Definition 3.4). Since K ′ ⊂ Y and Y ⊆ t+,

K ′ ⊂ t+, which implies K ′ ∈ [P ]Dupd+ . Thus, according to Definition 3.4,

Y 6∈ Keys([P ]Dupd+). This contradicts with the initial assumption. Thus there

does not exists pattern Y such that Y ∈ Keys([P ]Dupd+) but Y 6∈ K. Therefore,

we have (B) K ⊇ Keys([P ]Dupd+). Combining results (A) and (B), we have

Keys([P ]Dupd+) = K = {K|K ∈ Keys([P ]Dorg ) ∧K ⊆ t+}.
Scenario 4 is complementary to Scenario 3. The proof for the splitting of

equivalence class in Scenario 4 follows exactly the same as in Scenario 3. The

definitions of the closed pattern and generators for the equivalence class [P ]Dupd+

follows from Definition 3.4.

Finally, we prove that Theorem 4.2 is complete. For patterns P ∈
F(ms%,Dorg), it is obvious that Scenario 1 to 4 enumerated all possible cases.

For pattern P 6∈ F(ms%,Dorg), Scenario 5 corresponds to the case where

P ⊆ t+ and Sup(P,Dupd+) ≥ dms% × |Dupd+|e. The cases where P 6⊆ t+

or Sup(P,Dupd+) < dms% × |Dupd+|e are not enumerated, because, in these

cases, it is clear that P 6∈ F(ms%,Dupd+). As a result, we can conclude that

Theorem 4.2 is sound and complete.

ut
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Scenario 3 and 4 in Theorem 4.2 describe the cases where an existing equiv-

alence class splits. The splitting up of an equivalence class is a bit complicated.

Thus a graphical example is shown in Figure 2 (b). The original equivalence

class ECorg splits up due to the insertion of transaction t+. The resulting

equivalence class EC ′′ corresponds to the equivalence class [P ]Dupd+ described

in Scenario 3, and EC ′ corresponds to [P ]Dupd+ described in Scenario 4.

Theorem 4.2 summarizes how the frequent pattern space evolves when a

new transaction is inserted. More importantly, the theorem describes how the

updated frequent equivalence classes of Dupd+ can be derived from the exist-

ing frequent equivalence classes of Dorg. Theorem 4.2 provides us a theoret-

ical framework for effective incremental maintenance of the frequent pattern

space. Note that: although the theorem focuses on the case where only one

new transaction is inserted, it is also applicable to batch updates 3. Suppose

Dinc = {t1, · · · , tn}. To obtain the updated pattern space F(Dupd+,ms%), we

just need to update the original space F(Dorg,ms%) iteratively based on The-

orem 4.2 for each ti ∈ Dinc (1 ≤ i ≤ n).

In addition, if the support threshold is defined in terms of percentage, ms%,

an incremental update affects the absolute support threshold, msa. Recall that

msa = dms% × |D|e. Since |Dupd+| > |Dorg|, the updated absolute support

threshold ms′a = dms%×|Dupd+|e ≥ msa = dms%×|Dorg|e. Thus, in this case,

the absolute support threshold, msa, increases after an incremental update.

Moreover, this increase in msa may cause some existing frequent equivalence

classes to become infrequent. EC2 in Figure 2 (a) is an example.

Combining all the above observations, we summarize that the incremental

maintenance of the frequent pattern space involves four major computational

tasks: (1) update the support of existing frequent equivalence classes; (2) split

3A generalized version of Theorem 4.2, which describes how the frequent pattern space
evolves when a batch of new transactions are added, is presented in Feng et al. (2009).
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up equivalence classes that satisfy Scenario 3 and 4 of Theorem 4.2; (3) discover

newly emerged frequent equivalence classes; and (4) remove existing frequent

equivalence classes that are no longer frequent. Task (4) can be accomplished

by filtering out the infrequent equivalence classes when outputting them. This

filtering step is very straightforward, and thus we will not elaborate its de-

tails. We here focus on the first three tasks, and we name them respectively

as the support update task, class splitting task and new class discovery

task. To efficiently complete these three tasks, a new data structure, Generator-

Enumeration Tree (GE-tree), is developed.

4.2 Maintenance Data Structure:

Generator-Enumeration Tree

The Generator-Enumeration Tree (GE-tree) is a data structure inspired by the

idea of the Set-Enumeration Tree (SE-tree). Thus we first recap the concept

of SE-tree. We then introduce the characteristics of GE-tree, and we further

demonstrate how the GE-tree can help to efficiently complete the computational

tasks of incremental maintenance.

4.2.1 Set-Enumeration Tree

Set-Enumeration Tree (SE-tree), as shown in Figure 3, is a conceptual data

structure that guides the systematic enumeration of patterns.

Let the set I = {i1, ..., im} of items be ordered according to an arbitrary

ordering <0 so that i1 <0 i2 <0 · · · <0 im. For itemsets X, Y ⊆ I, we write

X <0 Y iff X is lexicographically “before” Y according to the order <0. E.g.

{i1, i2} <0 {i1, i3} <0 {i1, i2, i3}. We say an itemset X is a “prefix” of an

itemset Y iff X ⊆ Y and X <0 Y . We write last(X) for the item α ∈ X, if the

items in X are α1 <0 α2 <0 · · · <0 α. We say an itemset X is the “precedent”
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{}

1a 2b 
8d 4c 

3ba 5ca 
6cb

7cba 

9da 10db 
12dc

11dba 13dca 
14dcb 

15dcba 
Item-ordering: d <0 c <0 b <0 a 

Figure 3: The Set-Enumeration Tree with item order: d <0 c <0 b <0 a. The
number on the left top corner of each node indicates the order at which the
node is visited.

of an itemset Y iff X = Y − last(Y ). E.g. pattern {d, c} in Figure 3 (a) is the

precedent of pattern {d, c, b}.
A SE-tree is a conceptual organization on the subsets of I so that {} is its

root node; for each node X such that Y1, ..., Yk are all its children from left to

right, then Yk <0 · · · <0 Y1; for each node X in the set-enumeration tree such

that X1, ..., Xk are siblings to its left, we make X ∪X1, ..., X ∪Xk the children

of X; |X ∪Xi| = |X| + 1 = |Xi| + 1; and |X| = |Xi| = |X ∩Xi| + 1. We also

induce an enumeration ordering on the nodes of the SE-tree so that given two

nodes X and Y , we say X <1 Y iff X would be visited before Y when we visit

the set-enumeration tree in a left-to-right top-down manner. Since this visit

order is a bit unusual, we illustrate it in Figure 3. Here, the number besides the

node indicates the order at which the node is visited.

The SE-tree is an effective structure for pattern enumeration. Its left-to-right

top-down enumeration order effectively ensures complete pattern enumeration

without redundancy.
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4.2.2 Generator-Enumeration Tree

The Generator-Enumeration Tree (GE-tree) is developed from the SE-tree. As

shown in Figure 4 (a), GE-tree is constructed in a similar way as SE-tree, and

GE-tree also follows the left-to-right top-down enumeration order to ensure com-

plete and efficient pattern enumeration.

New features have been introduced to the GE-tree to facilitate incremental

maintenance of frequent patterns. In the literature, SE-tree has been used to

enumerate frequent patterns (Wang et al., 2000), closed patterns (Wang et al.,

2003) and maximal patterns (Bayardo, 1998). However, GE-tree, as the name

suggested, is employed here to enumerate frequent generators. Moreover, un-

like SE-tree, in which the items are arranged according to some arbitrary order,

items in GE-tree is arranged based on the support of the items. This means

items i1 <0 i2 if sup({i1},D) < sup({i2},D). This item ordering effectively

minimizes the size of the GE-tree. Also, different from SE-tree, which only acts

as a conceptual data structure, GE-tree acts as a compact storage structure for

frequent generators. As shown in Figure 4, each node in GE-tree represents

a generator, and each frequent generator is linked to its corresponding equiv-

alence class. This feature allows frequent generators and their corresponding

equivalence classes to be easily updated in the response of updates. The most

important feature of GE-tree is that: it stores the “negative generator border”

in addition to frequent generators. For the GE-tree in Figure 4, the “negative

generator border” refers to the collection of generators under the solid line. The

“negative generator border” is a newly defined concept for effective enumeration

of new frequent generator and equivalence classes.

More details of these new features will be discussed as we demonstrate how

GE-tree can help to effectively complete the computational tasks of incremental

maintenance. Recall that the major computational tasks in the incremental
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{}

a : 4 c : 3

ca : 2 da : 2 dc : 2

d : 3 b : 3

ba : 1 bc : 1 bd : 1

Original Dataset 

(ms% = 20%,msa = 2)

a, c, d, e

b, d

a, c, d

b, c

a, b
a

e : 1

Item-ordering: e <0 b <0 d <0 c <0 a 

(a)

EC1: <a , a>: 4

EC4: <b , b>:3

EC2: <c , c>:3

EC3: <d , d>:3

EC5: <ac ad cd , acd>:2

Frequent Equivalence 

Class Table

Insert {b,c,d}

{}

a : 4 c : 4

ca : 2 da : 2 dc : 3

d : 4 b : 4

ba : 1 bc : 2

Updated Dataset 
(ms% = 20%,msa = 2)

a, c, d, e

b, d

a, c, d

b, c

a, b
a

e : 1

Item-ordering: e <0 b <0 d <0 c <0 a 

(b)

b,c,d

bd : 2

bdc : 1

EC1: <a , a>: 4

EC4: <b , b>:4

EC2: <c , c>:4

EC3: <d , d>:4

EC6': <ac ad, acd>:2

Frequent Equivalence 
Class Table

EC5': <cd, cd>:3

EC7: <bc, bc>:2

EC8: <bd, bd>:2

Insert {a,f}

{}

a : 5 c : 4

ca : 2 da : 2 dc : 3

d : 4 b : 4

ba : 1 bc : 2

Updated Dataset 

(ms% = 20%,msa = 2)

a, c, d, e

b, d

a, c, d

b, c

a, b
a

e : 1

Item-ordering: f <0 e <0 b <0 d <0 c <0 a 

(c)

b,c,d

bd : 2

EC1: <a , a>: 5

EC4: <b , b>:4

EC2: <c , c>:4

EC3: <d , d>:4

EC6': <ac ad, acd>:2

Frequent Equivalence 

Class Table

EC5': <cd, cd>:3

EC7: <bc, bc>:2

EC8: <bd, bd>:2

a, f
bdc : 1

f : 1

bca : 0

bca : 0

bda : 0

bda : 0

Figure 4: (a) The GE-tree for the original dataset. (b) The updated GE-tree
when new transaction {b, c, d} is inserted. (c) The updated GE-tree when new
transaction {a, f} is inserted.
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maintenance of the frequent pattern space include the support update task,

class splitting task and new class discovery task.

Support update of existing frequent equivalence classes can be efficiently

accomplished with GE-tree. The main idea is to update only the frequent equiv-

alence classes that need to be updated. We call these equivalence classes the

“affected classes”, and we need a fast way to locate these affected classes.

Since generators are the right bound of equivalence classes, finding frequent

generators that need to be updated is equivalent to finding the equivalence

classes. GE-tree can help us to locate these generators effectively. Suppose a

new transaction t+ is inserted. We will traverse the GE-tree in the left-to-right

top-down manner. However, we usually do not need to traverse the whole tree.

For any generator X in the GE-tree, X needs to be updated iff X ⊆ t+. If

X 6⊆ t+, according to Scenario 1 in Theorem 4.2, no update action is needed for

X and its corresponding equivalence classes. Furthermore, according to the “a

prior” property of generators (Fact 3.6), all the children of X can be skipped for

the traverse. For example, in Figure 4 (c), when transaction {a, f} is inserted,

only node {a} needs to be updated and all the other nodes are skipped.

class splitting task can also be completed efficiently with the help of GE-

tree. The key here is to effectively locate existing frequent equivalence classes

that need to be split. Extended from Scenario 3 and 4 in Theorem 4.2, we have

the following corollary.

Corollary 4.3 Suppose a new transaction t+ is inserted into the original

dataset Dorg. An existing frequent equivalence class [P ]Dorg
splits into two iff

P ⊆ t+ but Clo([P ]Dorg
) 6⊆ t+, where Clo([P ]Dorg

) is the closed pattern of

[P ]Dorg .

Therefore, for an affected class X that has been identified in the support

update step, X splits into two iff Clo(X) 6⊆ t+. In Figure 4, equivalence class
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EC5 splits into two, EC5′ & EC6′, after the insertion of {b, c, d}. This is

because pattern {c, d}(∈ EC5) ⊂ {b, c, d} but Clo(EC5) = {a, c, d} 6⊆ {b, c, d}.
New class discovery task is the most challenging computational task in-

volved in the incremental maintenance of the frequent pattern space. This is

because, unlike the existing frequent equivalence classes, we have little infor-

mation about the newly emerged frequent equivalence classes. To address this

challenge, a new concept — the “negative generator border” is introduced.

4.2.3 Negative Generator Border

The “negative generator border” is defined based on the the idea of “nega-

tive border”. The notion of negative border is first introduced in Mannila and

Toivonen (1997). The negative border of frequent patterns refers to the set of

minimal infrequent patterns. On the other hand, the negative generator border,

as formally defined in Definition 4.4, refers to the set of infrequent generators

that have frequent precedents in the GE-tree. In Figure 4, the generators under

the solid line are “negative border generators”, and the collection of all these

generators forms the “negative generator border”.

Definition 4.4 (Negative Generator Border) Given a dataset D, support

threshold ms% and the GE-tree, a pattern P is a “negative border generator”

iff (1) P is a generator, (2) P is infrequent, (3) the precedent of P in the GE-

tree is frequent. The set of all negative border generators is called the “negative

generator border”.

As can be seen in Figure 4, the negative generator border records the nodes,

where the previous enumeration stops. It thus serves as a convenient starting

point for further enumeration of newly emerged frequent generators. This allows

us to utilize previously obtained information to avoid redundant generation of

existing generator and enumeration of unnecessary candidates.
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When new transactions are inserted, the negative generator border is up-

dated along with the frequent generators. Take Figure 4 (b) as an example.

After the insertion of {b, c, d}, two negative border generators {b, c} and {b, d}
become frequent. As a result, these two generators will be promoted as frequent

generators, and their corresponding equivalence classes EC7 and EC8 will also

be included into the frequent pattern space. Moreover, these two newly emerged

frequent generators now act as starting pointing for further enumeration of gen-

erators. Following the SE-tree enumeration manner, the children of {b, c} and

{b, d} are enumerated by combining {b, c} and {b, d} with their left hand side

siblings, as demonstrated in Figure 4 (b). We discover that, after new transac-

tions are added, the negative generator border expands and moves away from

the root of GE-tree.

The detailed enumeration process is presented in Procedure 1. In Proce-

dure 1 the following notations are used: NG.support denotes the support of

generator NG; EC.close refers to the closed pattern of the equivalence class

EC; EC.keys refers to the generators of EC and GE-tree.ngb refers to the

negative generator border of the GE-tree.

In summary, GE-tree is an effective data structure that not only compactly

stores the frequent generators but also guides efficient enumeration of generators.

We have demonstrated with examples that the GE-tree greatly facilitate the

incremental maintenance of the frequent pattern space.

4.3 Proposed Algorithm: PSM+

A novel incremental maintenance algorithm, Pattern Space Maintenance+

(PSM+), is proposed based on the GE-tree. The pseudo-code of PSM+ is pre-

sented in Algorithm 2 and Procedure 1. In Algorithm 2 and Procedure 1, we use

X.support to denote the support of pattern X or equivalence class X; we use
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Procedure 1 enumNewEC
Input: NG, a starting point for enumeration; F the set of frequent equivalence classes; msa the

absolute support threshold and GE-tree.
Output: F and the updated GE-tree.
Method:
1: if NG.support ≥ msa then
2: //Newly emerged frequent generator and equivalence class.
3: Let C be the corresponding closed pattern of NG;
4: if ∃EC ∈ F such that EC.close = C then
5: NG → EC.keys;

{The corresponding equivalence class already exists.}
6: else
7: Create new equivalence class EC′;
8: EC′.close = C;
9: NG → EC′.keys;

10: EC′ → F ;
11: end if

{Enumerate new generators from NG}
12: for all X, where X is the left hand side sibling of NG in GE-tree do
13: NG′ := NG ∪X;
14: if NG′ is a generator then
15: enumNewEC(NG′, F , msa, GE-tree);
16: end if
17: end for
18: else
19: NG → GE-tree.ngb; {New negative generator border.}
20: end if
21: return F and GE-tree;

X.close to denote the closed pattern of equivalence class X and we use X.keys

to denote the set of generators of equivalence class X. We have also proven the

correctness of PSM+.

Theorem 4.5 PSM+ presented in Algorithm 2 correctly maintains the frequent

pattern space, which is represented using equivalence classes, for incremental

updates.

Proof: According to Theorem 4.2, after the insertion of each new transaction

t+, there are only 5 scenarios for any frequent equivalence class [P ]Dupd+ . We

prove the correctness of our algorithm according to these 5 scenarios.

For Scenario 1, suppose (i)P ∈ F(ms%,Dorg), (ii) P 6⊆ t+ and (iii) Q 6⊆ t+

for all Q ∈ [P ]Dorg . Point (i) implies that [P ]Dorg is an existing frequent equiv-

alence class. Then Point (iii) implies that none of the generators of [P ]Dorg
will

satisfy the condition in Line 4. As a result, [P ]Dorg will skip all the maintenance

actions and remain unchanged as desired.

For Scenario 2, suppose (i)P ∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii) Q ⊆ t+
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Algorithm 2 PSM+
Input: Dinc the incremental dataset; |Dupd+| the size of the updated dataset; Forg the original

frequent pattern space represented using equivalence classes; GE-tree and ms% the support
threshold.

Output: Fupd+ the update frequent pattern space represented using equivalence classes and the
updated GE-tree.

Method:
1: F := Forg ; {Initialization.}
2: msa = dms% × |Dupd+|e;
3: for all transaction t in Dinc do
4: for all generator G in GE-tree that G ⊆ t do
5: G.support := G.support + 1;
6: if G is an existing frequent generator then
7: Let EC be the equivalence class of G in F ;
8: if EC.close ⊆ t then
9: EC.support = G.support;{Corresponds to Scenario 2 of Theorem 4.2.}

10: else
11: //split up EC {Corresponds to Scenario 3 & 4 of Theorem 4.2.}
12: EC.keys = min{{K|K ∈ EC.keys ∧K 6⊆ t} ∪ {K′ ∪ {xi}|K′ ∈ EC.keys ∧K′ ⊆

t, xi ∈ EC.close ∧ xi 6∈ t}};
13: C = EC.close ∩ t;
14: if ∃EC ∈ F such that EC.close = C then
15: EC.support = G.support; {EC already exists.}
16: G → EC.keys;
17: else
18: Create new equivalence class EC′;
19: EC′.support = G.support
20: G → EC′.keys;
21: EC′ → F ;
22: end if
23: end if
24: else if G.support ≥ msa then
25: enumNewEC(NG, F , msa, GE-tree); {Corresponds to Scenario 5 of Theorem 4.2.}
26: end if
27: end for
28: end for
29: Include the frequent equivalence classes in F into Fupd+;
30: return Fupd+ and the updated GE-tree;

for all Q ∈ [P ]Dorg
. Point (iii) implies that the generators of [P ]Dorg

satisfy

the condition in Line 4, and the support of the generators will be updated by

Line 5. Point (i) implies that [P ]Dorg
is an existing frequent equivalence class.

Thus the generators of [P ]Dorg
are existing frequent generators, which satisfy

the condition in Line 6. Then Point (iii) also implies that the closed pattern of

[P ]Dorg
will satisfy the condition in Line 8. Therefore, the support of [P ]Dorg

will be updated in Line 9, but [P ]Dorg remains unchanged as desired.

For Scenario 3, suppose (i) P ∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii) Q 6⊆ t+

for some Q ∈ [P ]Dorg
. Point (ii) implies that some generators of [P ]Dorg

will

satisfy the condition in Line 4, and Point (i) implies the condition in Line 6

is also satisfied. Then Point (iii) implies that the condition in Line 8 is not
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satisfied. Thus the equivalence class will be split into two as desired. [P ]Dupd+

described in Scenario 3 is updated in Line 13 to 22.

For Scenario 4, suppose (i) P ∈ F(ms%,Dorg), (ii) P 6⊆ t+ and (iii) Q ⊆ t+

for some Q ∈ [P ]Dorg . Point (iii) implies that some generators of [P ]Dorg will

satisfy the condition in Line 4, and Point (i) implies the condition in Line 6

is also satisfied. Then Point (ii) implies that the condition in Line 8 is not

satisfied. Thus the equivalence class will be split into two as desired. Being com-

plement to Scenario 3, [P ]Dupd+ described in Scenario 4 is updated in Line 12.

For Scenario 5, suppose (i) P 6∈ F(ms%,Dorg), (ii) P ⊆ t+ and (iii)

Sup(P,Dupd+) ≥ dms% × |Dupd+|. Point (ii) implies that some generators

of [P ]Dupd+ will satisfy the condition in Line 4. Point (i) implies that [P ]Dupd+

is an existing frequent equivalence class, and thus Line 6 is not satisfied. Then

we check Line 24. Point (iii) implies that the generators of [P ]Dupd+ satisfy the

condition in Line 24. Therefore, we will go to Line 25 and go into Procedure 1.

In Line 3 to 11 of Procedure 1, [P ]Dupd+ is then constructed and included as a

newly emerged frequent equivalence class as desired.

Finally, since an incremental update induces the data size and the absolute

support threshold to increase, Line 29 is put in to remove equivalence classes

that are no longer frequent. With that, the theorem is proven. ut

We have proven that PSM+ is correct. Now we demonstrate that PSM+ is

also computational effective. Recall that the incremental maintenance of fre-

quent patterns involves three major computational tasks: the support update

task, class splitting task and new class discovery task. We have demonstrated

that, with the help of GE-tree, the support update task and the class splitting

task can be efficiently completed with little computational overhead. There-

fore, the major contribution to the time complexity of PSM+ comes from the

new class discovery task. For the new class discovery task, the computational
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dataset #PSM+ #FPgrwoth* #GC-growth

bms-pos (ms% = 0.1%) 80 110K 110K

bms-webview1 (ms% = 0.1%) 250 3K 3K

chess (ms% = 40%) 350K 6M 1M

connect-4 (ms% = 20%) 80K 1800M 1M

mushroom (ms% = 0.5%) 10K 300M 165K

pumsb* (ms% = 30%) 2K 400K 27K

retail (ms% = 0.1%) 270 8K 8K

T10I4D100K (ms% = 0.5%) 11 1K 1K

T40I10D100K (ms% = 10%) 7K 70K 55K

Table 1: Comparison of the number of patterns enumerated by PSM+, FP-
grwoth* and GC-grwoth. Notations: #PSM+, #FPgrwoth* and #GC-growth
denote the approximated number of patterns enumerated by the respectively
algorithms.

complexity is proportional to the number of patterns enumerated. As a result,

the time complexity of PSM+ can be approximated as O(Nenum), where Nenum

is the number of patterns enumerated. We have conducted some experiments

to compare the number of patterns enumerated by PSM+ with the ones of

FPgrowth* and GC-growth. FPgrowth* is one of the fastest frequent pattern dis-

covery algorithms, and GC-growth is the fastest discovery algorithm for frequent

equivalence classes. In the experiment, the number of patterns enumerated is

recorded for the scenario where the size of new transactions Dinc is 10% of the

original data size. The comparison results are summarized in Table 1. We ob-

serve that the number of patterns enumerated by PSM+ is smaller than the

other two by a few orders of magnitude. Therefore, based on computational

complexity, PSM+ is much more effective than FPgrowth* and GC-growth.

5 Decremental Maintenance of Pattern Space

This section discusses the decremental maintenance of the frequent pattern

space. In the decremental update, some old transactions Ddec are removed from

the original dataset Dorg, and thus the updated dataset Dupd− = Dorg −Ddec.
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Given a support threshold ms%, the task of decremental maintenance is to

obtain the updated pattern space by maintaining the original pattern space.

To develop effective decremental maintenance algorithm, we start off with a

study on the evolution of the frequent pattern space under decremental updates

using the concept of equivalence class. Through the space evolution study,

we summarize the major computational tasks in the decremental maintenance.

We then demonstrate how these computational tasks can also be completed

efficiently using GE-tree. Finally, a novel decremental maintenance algorithm,

named Pattern Space Maintainer- (PSM-), is proposed.

5.1 Evolution of Pattern Space

There is an obvious duality between incremental updates and decremental up-

dates. In particular, if we first increment a dataset with Dinc and then decre-

ment the result with Ddec = Dinc, we get back the original dataset. Conversely,

if we first decrement a dataset with Ddec and then increment the result with

Dinc = Ddec, we get back the original dataset. Therefore, the decremental

maintenance is actually the reverse process of incremental maintenance.

After an incremental update, new frequent equivalence classes may emerge;

in contrast, existing frequent equivalence classes may become infrequent after a

decremental update. Moreover, for those existing frequent equivalence classes

that are still frequent after the decremental update, they may evolve in three

different ways. The first way is to remain unchanged without any change in

support. The second way is to remain unchanged but with an decreased support.

The third way is to merge with other classes. We know from Proposition 4.1

that an equivalence class may shrink in size and increase in support after an

incremental update. It follows by duality that an equivalence class may increase

in size (by merging) and decrease in support after a decremental update.
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Corollary 5.1 Let P be a pattern in Dupd−. Then [P ]Dupd− ⊇ [P ]Dorg , and

sup(P,Dupd−) ≤ sup(P,Dorg).

To have a deeper understanding on how the frequent pattern space evolves

under the decremental update, we investigate the exact conditions for each

evolution scenario to occur. We denote the closed pattern of an equivalence

class [p]D as Clo([p]D) and the generators or key patterns of [p]D as Keys([p]D).

Theorem 5.2 Let Dorg be the original dataset, Ddec be the decremental dataset,

Dupd− = Dorg − Ddec and ms% be the support threshold. For simplicity, we

assume Ddec consists only one transaction t−. For every frequent equivalence

class [P ]Dorg in F(ms%,Dorg), exactly one of the 5 scenarios below holds:

1. P 6∈ Ddec and there does not exists Q such that Q 6∈ [P ]Dorg
but

f(Q,Dupd−) = f(P,Dupd−), corresponding to the scenario where the

equivalence class remains totally unchanged. In this case, [P ]Dupd− =

[P ]Dorg
, sup(P,Dupd−) = sup(P,Dorg) and [P ]Dupd− ∈ F(Dupd−,ms%).

2. P 6∈ Ddec and f(Q,Dupd−) = f(P,Dupd−) for some Q 6∈ [P ]Dorg
,

corresponding to the scenario where the equivalence class of Q has to

merge into the equivalence class of P . Let all such Q’s be grouped into

n distinct equivalence classes [Q1]Dorg
, ..., [Qn]Dorg

, having represen-

tatives Q1, ..., Qn satisfying the condition on Q. Then [P ]Dupd− =

[P ]Dorg
∪ ⋃

i[Qi]Dorg
, sup(P,Dupd−) = sup(P,Dorg), Clo([P ]Dupd−) =

Clo([P ]Dorg
) and Keys([P ]Dupd−) = min{K|K ∈ Keys([P ]Dorg

) ∨ K ∈
Keys([Qi]Dorg ), 1 ≤ i ≤ n}. Furthermore, [P ]Dupd− ∈ F(Dupd−,ms%),

and [Qi]Dupd− = [P ]Dupd− for 1 ≤ i ≤ n.

3. P ∈ Ddec and sup(P,Dupd−) < dms% × |Dupd−|e, corresponding to the

scenario where an existing frequent equivalence class becomes infrequent.

In this case, [P ]Dorg
6∈ F(Dupd−,ms%).

29



4. P ∈ Ddec, sup(P,Dupd−) ≥ dms% × |Dupd−|e and there does not exists

Q such that Q 6∈ [P ]Dorg
but f(Q,Dupd−) = f(P,Dupd−), corresponding

to the scenario where the equivalence class remains the same but with

decreased support. In this case, [P ]Dupd− = [P ]Dorg , sup(P,Dupd−) =

sup(P,Dorg)− sup(P,Ddec) and [P ]Dupd− ∈ F(Dupd−,ms%).

5. P ∈ Ddec, sup(P,Dupd−) ≥ dms% × |Dupd−|e and f(Q,Dupd−) =

f(P,Dupd−) for some Q 6∈ [P ]Dorg
, corresponding to the scenario where

the equivalence class of P has to merge into the equivalence class of Q.

This scenario is complement to Scenario 2. In this case, the equivalence

class, support, generators, and closed pattern of [P ]Dupd− is same as that

of [Q]Dupd− , as computed in Scenario 2.

Proof: Scenario 1 and 3 are obvious.

We first prove Scenario 4. Suppose (i) P ∈ Ddec, (ii) sup(P,Dupd−) ≥
dms% × |Dupd−|e and (iii) there does not exists Q such that Q 6∈ [P ]Dorg

but

f(Q,Dupd−) = f(P,Dupd−). Point (ii) implies that [P ]Dupd− ∈ F(Dupd−,ms%).

According to Corollary 5.1, every member of [P ]Dorg
remains to be in [P ]Dupd−

after the update. Moreover, point (iii) implies that f(Q,Dupd−) 6= f(P,Dupd−)

for every pattern Q 6∈ [P ]Dorg
. This means no new members will be included into

[P ]Dupd− . Therefore, [P ]Dupd− = [P ]Dorg
and sup(P,Dupd−) = |f(P,Dupd−)| =

|f(P,Dorg)− f(P,Ddec)| = sup(P,Dorg)− sup(P,Ddec).

To prove Scenario 2, suppose (i) P 6∈ Ddec (ii) f(Q,Dupd−) = f(P,Dupd−)

for some Q 6∈ [P ]Dorg
. Point (ii) implies that some new patterns Q 6∈ [P ]Dorg

will

be included into [P ]Dupd− . Moreover, for such Qs, according to Corollary 5.1,

Q′ ∈ [Q]Dupd− for every pattern Q′ ∈ [Q]Dorg
. Thus it is also true that Q′ ∈

[P ]Dupd− for every Q′ ∈ [Q]Dorg
. Therefore, we say that [Q]Dorg

merge with

[P ]Dorg and [Q]Dupd− = [P ]Dupd− . Let all such Q’s be grouped into n distinct

equivalence classes [Q1]Dorg
, ..., [Qn]Dorg

, having representatives Q1, ..., Qn
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satisfying the condition on Q. Then we have [P ]Dupd− = [P ]Dorg ∪
⋃

i[Qi]Dorg .

Point (i) implies that f(P,Dupd−) = f(P,Dorg) and thus sup(P,Dupd−) =

sup(P,Dorg). Also since [P ]Dorg
∈ F(Dorg,ms%), sup(P,Dupd−) =

sup(P,Dorg) ≥ dms% × |Dorg|e ≥ dms% × |Dupd−|e. Therefore, [P ]Dupd− ∈
F(Dupd−,ms%).

Next we prove Clo([P ]Dupd−) = Clo([P ]Dorg
). Let C = Clo([P ]Dorg

) and

assume that there exists pattern C ′ ⊃ C that C ′ ∈ [P ]Dupd− . Since C is the

closed pattern of [P ]Dorg
and C ′ ⊃ C, according to Definition 3.4, we know

C ′ 6∈ [P ]Dorg
and f(C ′,Dorg) 6= f(P,Dorg). Also since P 6∈ Ddec, C 6∈ Ddec

(C ∈ [P ]Dorg) and C ′ 6∈ Ddec (C ′ ⊃ C). Thus f(C ′,Ddec) = ∅. Therefore,

f(C ′,Dupd−) = f(C ′,Dorg)−f(C ′,Ddec) = f(C ′,Dorg)−∅ = f(C ′,Dorg). Com-

bining the facts that f(C ′,Dorg) 6= f(P,Dorg) and f(P,Dorg) = f(P,Dupd−),

we have f(C ′,Dupd−) 6= f(P,Dupd−) and C ′ 6∈ [P ]Dupd− . This contradicts with

the initial assumption. Thus we can conclude that C ′ 6∈ [P ]Dupd− for all C ′ ⊃ C.

According to Fact 3.5, C is the closed pattern of [P ]Dupd− .

Then we prove Keys([P ]Dupd−) = min{K|K ∈ Keys([P ]Dorg
) ∨ K ∈

Keys([Qi]Dorg
), 1 ≤ i ≤ n}. This formula states that the generators of the

equivalence class [P ]Dupd− are the set of minimum (equivalent to the most gen-

eral) generators in the merging equivalence classes. This basically follows from

the definition of generators in Definition 3.4.

Scenario 5 is complement of Scenario 2. Therefore, it can be proven in the

same way as Scenario 2.

Last we prove that the theorem is complete. For patterns P 6∈ Ddec, it is obvi-

ous that Scenario 1 and 2 enumerated all possible cases. For patterns P ∈ Ddec,

it is also obvious that Scenario 3 to 5 enumerated all possible cases. Therefore,

the theorem is complete and correct.

ut
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Theorem 5.2 summarizes how the frequent pattern space evolves after a

decremental update. The theorem also describes how the updated frequent

equivalence classes in Dupd− can be derived from the existing frequent equiva-

lence classes of Dorg. Similar to Theorem 4.2, Theorem 5.2 lays a theoretical

foundation for the development of effective decremental maintenance algorithms.

In addition, opposite to the incremental update, the decremental update

decreases the absolute support threshold if the support threshold is initially

defined in terms of percentage. Let the original absolute support msa = dms%×
|Dorg|e. Since |Dupd−| = |Dorg|−|Ddec|, the updated absolute support threshold

ms′a = dms%×|Dupd−|e < msa. This decrease in the absolute support threshold

induces new frequent equivalence classes to emerge.

Combining all the above observations, we summarize that the decremental

maintenance of the frequent pattern space involves four computational tasks:

(1) update the support of existing frequent equivalence classes; (2) merge equiv-

alence classes that satisfy Scenario 2 and 5 of Theorem 5.2; (3) discover newly

emerged frequent equivalence classes; and (4) remove existing frequent equiva-

lence classes that are no longer frequent. Task (4) is excluded from our discus-

sion, for its solution is straightforward. We here focus on the first three tasks,

and we name them respectively as the support update task, class merging

task and new class discovery task.

5.2 Maintenance of Pattern Space

We investigate here how the major computational tasks in decremental mainte-

nance of the frequent pattern space can be efficiently accomplished.

Due to the duality between the incremental and decremental maintenance,

most of the computational tasks in decremental maintenance can be effectively

handled with the GE-tree. In particular, the support update task in decre-
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mental maintenance is actually the reverse operation of the one in incremental

maintenance. Therefore, the support of existing frequent equivalence classes

can be updated using GE-tree in the same manner described in Section 4.2.2.

Except that, in decremental maintenance, the support is decremented.

For the new class discovery task, newly emerged frequent equivalence

classes and generators can also be effectively enumerated based on the concept

of negative generator border. Details of the enumeration method is presented in

Procedure 1 in Section 4.2.3. Same as in incremental maintenance, the negative

generator border is updated after the removal of each old transactions. However,

different from incremental updates, when old transactions are removed, the

negative generator border shrinks and move towards the root of GE-tree.

On the other hand, the class merging task can not be handled in the same

way as the class splitting task in incremental maintenance. However, extended

from the Scenario 2 in Theorem 5.2, we have the following corollary.

Corollary 5.3 Let [P ]Dorg
and [Q]Dorg

be two equivalence classes in Dorg

such that [P ]Dorg ∩ [Q]Dorg = ∅, P 6∈ Ddec but Q ∈ Ddec. Then

f(P,Dupd−) = f(Q,Dupd−), meaning [P ]Dorg
merges with [Q]Dorg

in Dupd−,

iff (1) sup(P,Dupd−) = sup(Q,Dupd−) and (2) Clo([P ]Dorg
) ⊃ Clo([Q]Dorg

).

Here Clo(X) denotes the closed pattern of equivalence class X.

Proof: We first prove the left-to-right direction. Suppose (i) P 6∈ Ddec,

(ii) Q ∈ Ddec and (iii) f(P,Dupd−) = f(Q,Dupd−). Point (ii) implies that

sup(P,Dupd−) = sup(Q,Dupd−). Combining Point (i),(ii) and (iii), we have

f(P,Dorg) = f(P,Dupd−) = f(Q,Dupd−) = f(Q,Dorg) − f(Q,Ddec). This im-

plies that f(P,Dorg) ⊂ f(Q,Dorg). Therefore, Clo([P ]Dorg
) ⊃ Clo([Q]Dorg

).

We then prove the right-to-left direction. Suppose (i) sup(P,Dupd−) =

sup(Q,Dupd−) and (ii) Clo([P ]Dorg
) ⊃ Clo([Q]Dorg

). Point (ii) implies that

f(P,Dorg) ⊂ f(Q,Dorg). Since P 6∈ Ddec, we have f(P,Dorg) = f(P,Dupd−) ⊂
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f(Q,Dorg). Combining this with Point (i), we have f(P,Dupd−) = f(Q,Dupd−)

as desired. The corollary is proven. ut

Corollary 5.3 provides us a means to determine which two equivalence classes

need to be merged after an decremental update. Based on Corollary 5.3, one

way to handle the class merging task effectively is to first group the equivalence

classes based on their support. This can be done efficiently using a hash table

with support values as hash keys. Then, within the group of equivalence classes

that shared the same support, we further compare their closed patterns. two

equivalence classes are to be merged together, if their closed patterns are su-

perset and subset to each other. Details of this merging process is presented in

Algorithm 3.

5.3 Proposed Algorithm: PSM-

A novel algorithm, Pattern Space Maintenance- (PSM-), is proposed for the

decremental maintenance of the frequent pattern space. The pseudo-code of

PSM- is presented in Algorithm 3 and Procedure 1. In Algorithm 3 and Pro-

cedure 1, we use X.support to denote the support of pattern X or equivalence

class X; we use X.close to denote the closed pattern of equivalence class X and

we use X.keys to denote the set of generators of equivalence class X. We have

also proven the correctness of PSM-.

Theorem 5.4 PSM- presented in Algorithm 3 correctly maintains the frequent

pattern space, which is represented using equivalence classes, for decremental

updates.

Proof: According to Theorem 5.2, after an decremental update, an existing

frequent equivalence class [P ]Dorg may evolve in only 5 scenarios. We prove the

correctness of our algorithm according to these 5 scenarios.
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Algorithm 3 PSM-
Input: Ddec the decremental dataset; |Dupd−| the size of the updated dataset; Forg the original

frequent pattern space represented using equivalence classes ; GE-tree and ms% the support
threshold.

Output: Fupd− the updated frequent pattern space represented using equivalence classes and the
updated GE-tree.

Method:
1: F := Forg ; {Initialization.}
2: msa = dms% × |Dupd−|e;
3: for all transaction t in Ddec do
4: for all generator G in GE-tree that G ⊆ t do
5: G.support := G.support− 1;
6: if G is an existing frequent generator then
7: Let EC be the equivalence class of G in F ;

{Update the support of existing frequent equivalence classes.}
8: EC.support := G.support;
9: end if

10: if G.support < msa then
11: G → GE-tree.ngb; {Update the negative generator border.}
12: Remove all children of G from GE-tree.ngb;
13: end if
14: end for
15: end for
16: for all NG ∈ GE-tree.ngb that NG.support ≥ msa do
17: enumNewEC(NG, F , msa, GE-tree); {Enumerate new frequent equivalence classes.}
18: end for
19: for all equivalence class EC ∈ F do
20: if EC.support ≥ msa then
21: if ∃EC′ that EC′.support = EC.support and EC′.close ⊂ EC.close then
22: for all EC′ that EC′.support = EC.support and EC′.close ⊂ EC.close do
23: EC.keys = min{K|K ∈ EC.keys ∧K ∈ EC′.keys};

{Merging of equivalence classes.}
24: Remove EC′ from F ;
25: end for
26: end if
27: EC → Fupd−;
28: end if
29: end for
30: return Fupd− and the updated GE-tree;

For Scenario 1, suppose (i) P 6∈ Ddec and (ii) there does not exists Q such

that Q 6∈ [P ]Dorg but f(Q,Dupd−) = f(P,Dupd−). In Line 1, [P ]Dorg is included

into F as initialization. Then Point (i) implies that the condition in Line 4

will not be satisfied for all transactions in Ddec. Thus, Line 5 to 15 will be

skipped, and the support of [P ]Dorg
remains unchanged as desired. Also since

[P ]Dorg
∈ F(Dorg,ms%), sup(P,Dupd−) = sup(P,Dorg) ≥ dms% × |Dorg|e ≥

dms% × |Dupd−|e. Therefore, the condition in Line 20 is satisfied. Point (ii)

implies that Line 21 can not be true (Corollary 5.3). As a result, [P ]Dorg
is

included in Fupd− unchanged in Line 27 as desired.

For Scenario 2, suppose (i) P 6∈ Ddec and (ii) f(Q,Dupd−) = f(P,Dupd−)
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for some Q 6∈ [P ]Dorg . In Line 1, [P ]Dorg is included into F as initialization.

Same as in Scenario 1, because of Point (i), the condition in Line 4 is not

satisfied, and thus Line 5 to 15 are skipped. The support of [P ]Dorg
remains

unchanged as desired. With the same reasoning in Scenario 1, Line 20 will be

true. Now Point (ii) implies that Line 21 is also true (Corollary 5.3). As a

result, [P ]Dorg
will be merged with other equivalence classes to form [P ]Dupd− as

desired. Finally, [P ]Dupd− is included in Fupd− in Line 27 as desired.

For Scenario 3, suppose (i) P ∈ Ddec and (ii) sup(P,Dupd−) < dms% ×
|Dupd−|e. As usual, [P ]Dorg

is included into F as initialization. Point (ii)

implies that Line 20 will not be true. Therefore, [P ]Dorg will not be included in

Fupd− as desired.

For Scenario 4, suppose (i) P ∈ Ddec, (ii) sup(P,Dupd−) ≥ dms%×|Dupd−|e
and (iii) there does not exists Q such that Q 6∈ [P ]Dorg

but f(Q,Dupd−) =

f(P,Dupd−). As usual, [P ]Dorg
is included into F as initialization. Point (i) im-

plies that the condition in Line 4 will be satisfied for some transactions in Ddec.

Thus the support of [P ]Dorg
will be updated as desired by Line 8. Point (ii)

then implies that Line 10 is not true, and thus Line 11 to 12 are skipped.

Point (ii) and (iii) also implies that Line 20 will be true but Line 21 will not

be true (Corollary 5.3). As a result, [P ]Dorg
will be include in Fupd− with a

updated support as desired.

For Scenario 5, since it is complement to Scenario 2, patterns of Scenario 5

will also be correctly updated as explained for Scenario 2.

Finally, since an decremental update causes the data size and the absolute

support threshold to drop, new frequent equivalence classes may emerge. In PSM-

, all the newly emerged frequent equivalence classes will be enumerated from the

negative generator border by Line 17. With that, the theorem is proven. ut

Similar to PSM+, the major contribution to the time complexity of PSM-
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comes from the new class discovery task. For the new class discovery task,

the computational complexity is proportional to the number of patterns enu-

merated. As a result, the time complexity of PSM- can also be approximated

as O(Nenum), where Nenum is the number of patterns enumerated. Moreover,

the number of patterns need to be enumerated is proportional to the number

of newly emerged frequent equivalence classes. In general, under decremental

updates, the number of newly emerged frequent equivalence classes is much

smaller than the total number of frequent equivalence classes. This theoreti-

cally demonstrates that maintaining the frequent pattern space with PSM- is

definitely much more effective than re-discovering the pattern space.

6 Pattern Space Maintainer (PSM)

We have proposed a novel algorithm, PSM+, to address the incremental main-

tenance of the frequent pattern space, and we have also proposed a novel al-

gorithm, PSM-, for the decremental maintenance. Although these two mainte-

nance algorithms are discussed separately, PSM+ and PSM- share many similar-

ities and are both developed based on the same data structure — the GE-tree.

Thus the integration of PSM+ and PSM- involves negligible overheads. We

name the integrated version of PSM+ and PSM- the Pattern Space Maintainer,

in short PSM.

PSM is not only a useful tool for incremental and decremental maintenance,

it can also be employed to maintain the space of frequent patterns for support

threshold adjustment. Support threshold adjustment is a common interactive

mining operation, which is used to obtain the appropriate set of frequent pat-

terns. When the support threshold is adjusted up, existing frequent patterns

and equivalence classes may become infrequent. The maintenance for this sce-

nario is very straightforward, and thus we will not discuss it here. On the other
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hand, when the support threshold is adjusted down, new (unknown) frequent

patterns and equivalence classes may emerge. The maintenance for this scenario

is much more challenging, for we have little information on the newly emerged

patterns. In this case, PSM can be used to effectively enumerate the newly

emerged equivalence classes based on the concepts of GE-tree and negative gen-

erator border. The detailed enumeration method is described in Procedure 1 in

Section 4.2.3.

7 Experimental Studies

The computational effectiveness of the proposed algorithms is tested on the

benchmark datasets from the FIMI Repository (http://fimi.cs.helsinki.

fi). The performance of the proposed algorithms are compared with the state-

of-the-art approaches, which includes: FPgrowth* (Grahne and Zhu, 2005), one

of the fastest frequent pattern discovery algorithms, GC-grwoth (Li et al., 2005),

the fastest discovery algorithm for frequent equivalence classes, CanTree (Leung

et al., 2007), a prefix-tree based maintenance algorithm, moment (Chi et al.,

2006), a currently proposed algorithm that maintains frequent closed patterns

and ZIGZAG (Veloso et al., 2002), a frequent maximal pattern maintenance

algorithm. All the experiments are run on a PC with Duo 2.4 GHz processors

and 3.2 GB RAM.

Incremental Maintenance

In real applications, the size of the incremental dataset Dinc is usually much

smaller than the size of the original dataset Dorg, e.g. a daily sales data vs.

an annual sales data, an hourly stock transaction vs. a daily transaction, etc.

As a result, the performance of PSM+ is evaluated for ∆+ ≤ 10%, where

∆+ = |Dinc|/|Dorg|.
Figure 5 compares the performance of PSM+ with the discovery algorithms,
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GC-growth and FPgrowth*. It is obvious that PSM+ is much more effective.

In the best case, PSM+ outperforms both discovery algorithms by three or-

ders of magnitude; in the worse case, PSM+ is still at least twice faster; on

average, PSM+ outperforms the discovery algorithms by more than an order of

magnitude.

Figure 6 compares the performance of PSM+ with the maintenance algo-

rithms, CanTree, moment and ZIGZAG. It is observed that the processing time

of moment increases dramatically as the update size increases. This is because

moment is proposed for the special case where each time only one transaction

is added, and it works based on the hypothesis that there are only minimum

changes to the frequent closed patterns given such a small amount of update.

Therefore, as observed, its performance degrades significantly as the update size

increases. Compared with moment, PSM+ is on average three orders of magni-

tude faster. For some cases, PSM+ outperforms moment by up to six orders of

magnitude. PSM+ outperforms ZIGZAG on average by two orders of magnitude.

Among three maintenance algorithms, CanTree is the most competitive method.

Therefore, let us have a more detailed comparison between PSM+ and CanTree.

Table 2 presents the speed gain achieved by PSM+ compared with CanTree. It

can been seen that, although the performance of CanTree looks pretty close with

the one of PSM+ in Figure 6, PSM+ is at least three times faster than CanTree.

Moreover, PSM+, on average, outperforms CanTree by more than an order of

magnitude.

Decremental Maintenance

With the similar reason of incremental maintenance, the performance of

PSM- is evaluated for ∆− ≤ 10% , where ∆− = |Ddec|/|Dorg|. The performance

of PSM- is also compared with both pattern discovery and pattern maintenance

algorithms, as shown in Figure 7.
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Speed mushroom bms-webview1 bms-pos
Gain (ms% = 0.05%) (ms% = 0.1%) (ms% = 0.1%)

max. 3500 200 51

ave. 1700 43 16

min. 45 3 3

Speed chess T10I4D100K T40I10D100K
Gain (ms% = 40%) (ms% = 0.1%) (ms% = 10%)

max. 112 1500 2300

ave. 32 247 860

min. 3 4 11

Table 2: The speed gain achieved by PSM+ compared with CanTree.

As can be seen in Figure 7 (a), compared with the pattern discovery algo-

rithms, PSM- is at least an order of magnitude faster. According to Figure 7 (b),

PSM- also outperforms ZIGZAG by more than an order of magnitude. More-

over, similar to the results of incremental maintenance, we also observe from

Figure 7 (b) that, the advantage of PSM- over moment gets larger as the update

size increases.

Support Adjustment Maintenance

We have also evaluated the performance of PSM for support threshold ad-

justment. The effectiveness of PSM is tested with various degrees of threshold

adjustment. The experimental results are presented in Figure 8. As can been

seen from Figure 8, PSM outperforms both the pattern discovery and pattern

maintenance algorithms considerably.

Over three different types of updates, we have one common observation. We

observe that the advantage of the proposed algorithms diminishes as the size (or

degree) of update increases. This is because large update size or large variation

in support threshold logically leads to more dramatic changes to the frequent

pattern space and makes the pattern space computational more expensive to

be maintained. It is inevitable that when the amount of update increases to a

certain extent, the changes induced to the pattern space become so significant
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that it becomes more efficient to re-discover the pattern space than to maintain

and update it.

8 Conclusion

This paper has studied the incremental and decremental maintenance of the

frequent pattern space. To develop efficient maintenance algorithms, we started

off by analyzing how the space of frequent patterns evolves under incremental

and decremental updates. Based on this space evolution analysis, we have sum-

marized the major computation tasks involved in frequent pattern maintenance.

To effectively address the maintenance computational tasks, a new data struc-

ture, Generator-Enumeration Tree (GE-tree), is developed. Based on GE-tree,

we proposed two novel algorithms, Pattern Space Maintainer+ (PSM+) and

Pattern Space Maintainer- (PSM-), for the incremental and decremental main-

tenance of frequent patterns. We further demonstrated that PSM+ and PSM-

can be easily integrated and extended to update the frequent pattern space for

support threshold adjustment. We have also evaluated the effectiveness of our

proposed algorithms with extensive experimental studies. Experimental results

show that the proposed algorithms outperform the state-of-the-art approaches

considerably.

This paper studied the evolution of the frequent pattern space. In the future,

we plan to explore the evolution and maintenance of other types of pattern

spaces, e.g. the space of emerging patterns, odds ratio patterns, etc.
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Figure 5: Performance comparison of PSM+ and the pattern discovery algo-
rithms: GC-growth and FPgrowth* . Notations: ∆+ = |Dinc|/|Dorg|.
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Figure 6: Performance comparison of PSM+ and the pattern maintenance al-
gorithms, CanTree, moment and ZIGZAG. Notations: ∆+ = |Dinc|/|Dorg|.

46



10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

∆− (%)

T
im

e 
(s

ec
.)

bms−webview1, ms
%

 = 0.1%

 

 

PSM−
GC−grwoth
FPgrowth*

10
−2

10
−1

10
0

10
1

10
−2

10
0

10
2

∆− (%)

T
im

e 
(s

ec
.)

bms−webview1, ms
%

 = 0.1%

 

 

PSM−
moment
ZIGZAG

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

∆− (%)

T
im

e 
(s

ec
.)

mushroom, ms
%

 = 0.5%

 

 

PSM−
GC−grwoth
FPgrowth*

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

∆− (%)

T
im

e 
(s

ec
.)

mushroom, ms
%

 = 0.5%

 

 

PSM−
moment
ZIGZAG

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

∆− (%)

T
im

e 
(s

ec
.)

T10I4D100K, ms
%

 = 0.1%

 

 

PSM−
GC−grwoth
FPgrowth*

10
−2

10
−1

10
0

10
1

10
−2

10
−1

10
0

10
1

10
2

∆− (%)

T
im

e 
(s

ec
.)

T10I4D100K, ms
%

 = 0.1%

 

 

PSM−
moment
ZIGZAG

(a) (b)

Figure 7: (a) Performance comparison of PSM+ and the pattern discovery al-
gorithms: GC-growth and FPgrowth*. (b)Performance comparison of PSM+
and the pattern maintenance algorithms: moment and ZIGZAG. Notations:
∆− = |Ddec|/|Dorg|.
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Figure 8: Performance of PSM on support threshold adjustment maintenance.
Notations: ∆ms denotes the difference between the original support threshold
and the updated support threshold.
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