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LIST OF FIGURES 

Main text figures 

Figure 1.1. A thermal tolerance curve of Myorporum montanum illustrating 

determination of the 50% loss of maximum quantum yield to the photosynthesis system 

(T50) with heat stress. The photosynthetic maximum quantum yield (FV/FM) decreases 

with increasing temperatures. The T50 of this species for this assay was 51C. 

Figure 1.2.  Comparison of air vs leaf temperatures of Myoporum montanum leaves 

grown in situ at the Australian Arid Lands Botanic Garden, Port Augusta, South Australia. 

Leaf temperatures of M. montanum exceed air temperatures, repeatedly during a hot 

summer day. 

Figure 1.3. A) Leaf temperatures of Acacia ligulata during a mid-summer heatwave in 

situ under desert conditions, Port Augusta, South Australia, February 2017. Maximum 

leaf temperatures reached 53°C, while canopy air temperature reached 51°C. Leaves 

tended to stay above 44°C from noon to 19:00hr, when plants were eventually in shade. 

Temperatures were measured every 10-sec with 36-guage thermocouples inserted 

under the cuticle of the abaxial side of leaves. B) White leaves from high temperature 

damage on A. ligulata, and C) brown burn marks on Myoporum montanum after the 

heatwave. 

Figure 1.4. Leaf and air temperature of Celmisia costiniana over a 28-hr period in austral 

summer (December). Temperatures were recorded with t-type thermocouples inserted 

into the adaxial surface of leaves and measured every minute. Local air temperature was 

recorded just above canopy height, approx. 20-cm above ground. Maximum air 

temperature recorded at Perisher Valley (7.2 Km away) was 23.3°C. Note that leaf 

temperatures frequently exceeded air temperature. 

Figure 2.1. (a) Daily air temperature during the experimental period. Shaded areas 

indicate sampling period; Tr1) Trial 1 M. montanum and E. socialis, Tr2) Trial 2 M. 

montanum and Tr3) Trial 3 M. montanum. (b) Daily rainfall (mm) during experimental 

period. 

Figure 2.2. Experimental procedure for (a) sustained 30-min stress and (b) 30-min repeat 

stress made up of six 5-min stresses with 10-min reprieves at 28 °C. Black horizontal bars 

indicate dark-adaption, white indicates light adapted. Vertical arrows show when FV/FM 

was measured. Height of the lines indicate temperature change, vertical bars indicate 

exposure to experimental stress temperature (28, 48, 50 or 52°C) and horizontal 

sections prior, after and between vertical bars indicate temperature exposure of 28°C. 

Figure 2.3. The T50 threshold temperatures of M. montanum (A) and E. socialis (B) 

assayed with 15-min standard duration, at the beginning of Trial 1. These thresholds 
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were used to select the test temperatures (48, 50 and 52°C) for the temperature, 

duration and repeat comparisons. Red dot indicates the T50 temperature (50% decline 

of FV/FM) and shaded bands are the 95% confidence intervals. 

Figure 2.4. A) The model estimated mean (±SE) overnight FV/FM response to increasing 

duration (min, x-axis), high temperature (48, 50 and 52°C) and across summer (trials). 

Blue horizontal line indicates the mean model reference leaf 0.784 FV/FM (SE ±0.008).  

Model predictions account for differences in handling effects (Figure A2.1) between 

treatments and minimum temperatures two days prior to leaf collections. B) The mean 

effect (±SE) of repeated stress versus the sustained stress at high temperature within 

each trial. The effect size is the additional change in FV/FM resulting from repeated 

stresses with reprieves when compared to the mean FV/FM of a sustained stress in A) 

(represented as the zero line in B)). Stars indicate significant differences (at α=0.05) 

between sustained and repeated stress at a given temperature treatment. For all 

significance and χ2 values, see Table A2.4. 

Figure 2.5. The standard error relative to the per cent function of Photosystem II (% 

FV/FM of the 28°C control treatments; 100% function = ~0.78) for each treatment 

(temperature intensity, duration and repeated stress combination) across all trials for 

M. montanum. Shapes indicate test duration (minutes); closed symbols = sustained 

stress, open symbols = repeated stress (e.g. 5-min x2). Raw data presented and n= 10. 

Figure 2.6. A) The relationship between T50 thresholds and duration for M. montanum 

and E. socialis throughout summer (Trials: 1, 2 and 3). The slope is the thermal sensitivity 

parameter (z, -1*slope). B) Estimated mean (±95% CI) T50 thresholds at 1-min duration 

(T50:1’) and the thermal sensitivity parameter. Heat tolerance of P. mar (Picea mariana; 

Colombo and Timmer 1992) and P. vul (Phaseolus vulgaris; Yarwood 1961) were tested 

with different methods (see Table A2.6).  

Figure 3.1. Schematic diagram of the maximum repeat heat stress and chlorophyll 

fluorescence measurement sequence (short vertical arrows). Short, filled arrows 

indicate dark adapted measurement; short hollow arrows indicate light-adapted 

measurement. Dark rectangles indicate dark-adaption periods, open areas indicate light 

adapted state under ~370 µmols m-2 s-1. 

Figure 3.2. Effective quantum yield of PSII (EQY, ΔF/Fm’; A-C) and non-photochemical 

quenching (NPQ, Fm/Fm’-1; D- F) responses to six repeated heat stresses 48°C (A, D), 

50°C (B, E) and 52°C (C, F). Points show raw data and lines indicate model predictions. 

Model predictions account for the effects of pre-stress individual leaf variation and 

experimental controls/handling effects. For time points from 5- to 80-min, based on the 

derivative of the fitted equation, slope is significant unless indicated by “ns”.  At the 5-

min time point, “ns” indicates non-significant change in value compared to 0-min. 

Significance taken at p<0.05 level. 
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Figure 3.3. The mean (±SE) effective quantum yield of PSII (EQY, A-C) and the non-

photochemical quenching response (NPQ, D-F) of M. montanum leaves immediately 

after repeated 5-min heat stress for three trials (solid lines = Trial 1 (A, D); dashed lines 

= Trial 2 (B, E); dotted lines = Trial 3 (C, F). Shaded areas indicate heating period (5-min). 

Figure 3.4. Pearson’s moment correlations between non-photochemical quenching 

(NPQ) and effective quantum yield of PSII (EQY) immediately after each temperature 

stress exposure and cooler reprieve. Each panel (A-L) indicates the correlation after each 

successive stress or reprieve (e.g. panel K shows the correlation after the fifth reprieve 

(r5); L shows the correlation after the sixth stress (s6)); t0 indicates pre- heat exposure, 

time 0-min. Coloured lines indicate different temperature treatments. Symbols are raw 

data for different trials. Solid lines indicate a significant correlation (p <0.05) and dotted 

lines indicate non-significant trends. 

Figure 3.5. Post heat stress temporal dynamics of predicted mean (±SE) of the effective 

quantum yield of PSII (EQY, ΔF/FM’) following different regimes of repeated heat stress 

and over three trials. Rows are varying stress repetitions of 5-mins: x1 (A-C), x2 (D-F), x3 

(G-I) and x6 (J-L). Columns are trials: Trial 1 (A, D, G, H); Trial 2 (B, E, H, K) and Trial 3 (C, 

F, I, L). Shaded areas indicate last heat stress period. For each measurement time point, 

number of stresses and temperature, n = 10. Data points are displayed slightly offset at 

each time point to aid visibility of all data points. 

Figure 3.6. Post heat stress temporal dynamics of predicted mean (±SE) of the non-

photochemical quenching (NPQ, FM/FM’ -1) following different regimes of repeated 

stress over three trials. Figure layout and symbols as for Figure 3.5. 

Figure 3.7. Post 90-min heat exposure correlations between the strength of the 

relationship of non-photosynthetic quenching (NPQ relaxation) and the change in 

effective quantum yield of PSII (EQY recovery). Recovery and relaxation changes 

calculated between the last stress and 90-mins post heat stress relative to pre-

experiment values. Rows are trials: Trial 1 (A-D); Trial 2 (E-H) and Trial 3 (I-L) and columns 

are varying stress repetitions of 5-mins: x1 (A, E, I), x2 (B, F, J), x3 (C, G, K) and x6 (D, H, 

L). Solid lines indicate a significant correlation at p <0.05 level determined with a 

Pearson’s moment correlation test. Positive values show recovery (increased EQY) or 

relaxation (decreased NPQ), while zero and negative numbers indicate no change to 

continued recovery or relaxation. Grey vertical and horizontal lines mark the 

intersection of zero, visually showing the area change in positive and negative quadrants 

for the two variables with increased heat dose. 

Figure 3.8. Next day post heat exposure correlations between the strength of the 

relationship of non-photochemical quenching (NPQ relaxation) and the change in 

effective quantum yield of PSII (EQY recovery). Recovery and relaxation changes 

calculated from 90-mins post heat stress and day two relative to pre-experiment values. 

Figure layout and symbols as for Figure 3.7. 
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Figure 4.1. Heat tolerance threshold temperatures (T50) of Luzula modesta, Poa 

costiniana and Oreomyrrhis ciliata under ambient and warmed (+4°C) growth 

temperatures, under current and extended summer durations. Capital italic letters 

indicate significant main effects (p<0.05) of growth treatment; lower-case italic letters 

indicate significant post-hoc differences among species only. 

Figure 4.2. Thermal safety margins (TSM) of Luzula modesta, Poa costiniana and 

Oreomyrrhis ciliata grown under ambient and warmed (+4°C) temperatures. Capital 

italic letters indicate significant post-hoc differences (p<0.05) among species; asterisks 

indicate the main effects between ambient and warmed growth temperatures. 

Figure 5.1. Average local air and leaf temperatures throughout the 12-day summer 

measurement period, recorded every minute. Different coloured lines indicate leaf 

temperatures for well-watered plants (HW, pale blue), water-stressed plants (LW, red), 

local air temperature (black solid line) and regional maximum air temperature at 3pm 

(Air, long dash); vertical grey dashed lines indicate when T50 thresholds were sampled. 

Figure 5.2. Mean (±SE) midday leaf water potentials of well-watered (HW, blue circles) 

and water stressed (LW, red squares) plants over the 12 measurement days. Blue 

shading indicates the starting leaf water potentials before the application of the water 

treatment, 8 days prior to the first experimental measurements. Grey dashed lines 

indicate days on which T50 thresholds were measured and stars indicate a significant 

difference between HW and LW leaf water potentials, based on Tukey post-hoc, where 

p<0.05; n= 6 leaves per watering treatment. 

Figure 5.3. The mean maximum (±SE, n=8) leaf and local air temperatures measured 

every day and mean (±SE, n=3) T50 thresholds every three days during the 12-day 

measurement period. Temperatures were measured every minute. Blue circles indicate 

well-watered leaves (HW); red squares and diamonds indicate water-stressed leaves 

(LW) and black triangles, air temperature. Open symbols are leaf and air temperatures; 

filled symbols are T50 threshold temperatures. Vertical dashed lines indicate days on 

which T50 thresholds were measured. 

Figure 5.4. Relationship between leaf and local air temperatures for well-watered plants 

(A) and low water treated plants (B). Temperatures were measured every day during the 

12-day measurement period. Linear relationship fit to all Tair: Tleaf measurements, 

individual short lines are fits per plant per day to show variability of the relationship 

within each watering treatment. The mean linear fit for well-watered plants was: TLeaf ~ 

3.93°C (±0.01) + 0.76°C (±0.0004) *TAir and water stressed plants: TLeaf ~ -1.26°C (±0.02) 

+ 1.04°C (±0.0006) *TAir.   

Figure 5.5. A) Daily changes in thermal safety margins (TSM, means (±SE)) for 

M. montanum determined with three temperature sources. Sources included maximum 

leaf temperature (circle), mean maximum local air temperature (triangle) and maximum 
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regional temperature (square) for well-watered (blue) and water-stressed plants (red) 

the day of T50 threshold (T50:15’) measurement. Maximum leaf and air temperatures were 

calculated from a 15-min moving average rather than the sampled 1-min data of Figure 

5.3, to match the T50 assay duration of 15-min. Letters indicate significant differences 

within water treatment comparisons (p<0.001) with lower case, HW; and upper case, 

LW.  B) Mean thermal safety margins (±SE and range) calculated on temporally paired 

and temporally unpaired measurements of temperature and physiological heat 

threshold. Paired measurements (closed symbols), those measured on the same day as 

T50, include daily maximum leaf temperature, maximum local air temperature, maximum 

regional air temperature. Unpaired measurements (open symbols) are TSMs calculated 

with regional month of experimentation’s (December) maximum air temperature 

(45.9°C), regional year’s maximum air temperature (47.2°C) and the regional’s long term 

mean maximum summer temperature (33.3°C). Grey bars indicate the range in mean 

TSMs across all experimental days and water treatments. 

Figure 6.1. Thermal sensitivity (z) relationship with the maximum critical temperature 

(CTmax) of insects, bivalves, fishes and plants. CTmax is the estimated heat tolerance at 1-

min exposure, a common comparison amongst animals. Equivalent CTmax values for 

plants were estimated from Chapter 2 and were less than the durations tested, thus are 

subject to greater uncertainty; however, the extrapolated 1-min value is then more 

comparable to that of animals.  Animal data from the original authors are the black, grey 

and white squares; points added for plants (Chapter 2) are the coloured (green) filled 

circles. Adapted figure from Rezende et al. (2014) reproduced with permission from the 

publisher. 

Figure 6.2. A) The relationship between leaf and air temperature (delta, T) for Acacia 

ligulata when air temperatures were above 40°C in situ in desert conditions in Port 

Augusta, South Australia. Measurements were recorded every 10-sec during a heatwave 

in February 2017. B) In subsequent days, leaf bleaching occurred to a proportion of the 

canopy, with subsequent leaf drop. 

Figure 6.3. The time course of FV/FM post heat exposure on attached plants. Heat 

exposure was 15-min in a temperature-controlled bath with subsaturating light. Distal 

leaves on shoots attached to potted plants were submerged in baths for the heat 

exposure as per a standard T50 assay (Chapter 2, section 2.3), then returned to outside 

conditions. FV/FM was measured each morning post stress. Red arrow indicates when 

plants were exposed to heat. Day 1 post heat exposure corresponds to when samples 

were measured for the T50 threshold. Measurements for leaves assayed at 54C were 

not able to continue beyond Day 3, as these leaves died. 

Figure 6.4. Leaf age and seasonal differences in two desert species, A) Acacia 

argyophylla and B) Eucalyptus gillii. A.argyrophylla develop a flush of new leaves around 

July to August each year, E.gillii leaves flush in November to December. The T50 
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thresholds of three leaf age groups of C) A. argyrophylla and D) E.gillii. Ages were based 

on position on stem and leaf morphology, were followed throughout the year. Age 

cohorts were developing (<1 yr), mature (1 yr) and old (>2 yrs). 

Appendix figures 

Figure A1.1. (a) Thermal tolerance techniques are presented in order of appearance 

within the literature for cultivated (left) and wild systems (right). (b) The uptake of 

techniques since the 1960s; a given article may use multiple techniques (studies) 

represented exceeds the total articles identified in the systematic review. Numbers to 

the right of each plotted line refer to the numbered techniques described in (c). (c) 

Definitions for each of the 10 techniques within the scope of this review. Techniques 

displayed with an adjacent circle indicate the capacity for a thermal metric to be 

generated. Additional information on the techniques and references are provided in 

Table A1.2.  

Figure A1.2. The number of studies of thermal tolerance measures on (a) cultivated 

species across types of cultivation and (b) wild species across different biomes that focus 

on either cold tolerance, heat tolerance or both heat and cold tolerance. Inset figures 

highlight the relative uptake of heat, cold, or both heat and cold tolerance approaches 

through time for articles on (c) cultivated and (d) wild species.  

Figure A2.1. A) Model estimated mean (±SE) overnight FV/FM for the sustained 

experimental handling effects (28°C) of extending the temperature treatment duration 

and the influence of sampling period (Trials 1-3). Lower case letters indicate significance 

among durations within trial; upper case letters indicate significance among trial within 

a given duration. B) The additional effect of repeated treatment at 28°C for each trial. 

The effect size is the additional or relative FV/FM change with repeated stress treatment 

when compared to the mean FV/FM in A) (sustained stress, represented as zero in B)). 

Stars indicate significance (at α=0.05) between sustained and repeated stress at any 

given duration. 

Figure A3.1. Mean summer maximum (FM, dark grey fill) of M. montanum were higher 

than other desert species but had similar light adapted maximum fluorescence (FM’, 

white fill). The proportionally higher FM compared FM’ in M. montanum, leads to a high 

non-photosynthetic quenching ratio (NPQ, (FM - FM’)/FM’). Acacia ligulata (A.lig), 

Eucalyptus socialis (E.soc), Myoporum montanum (M.mon), Solanum oligacanthum 

(S.olig) and Solanum orbiculatum (S.orb). Lowercase letters indicate among species 

significant differences for FM; capital letters indicate among species differences for FM’; 

and “*” indicate within species differences between FM and FM’. Significance at the alpha 

0.001 level.  

Figure A3.2. Mean (±SE) FM’ and Fo’ fluorescence parameters during the 5-min x6 

repeated heat stress sequence. Temperatures 48°C (A, D, G); 50°C (B, E , H) and 52°C 
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(C,F, I) for trials 1(A-C); 2 (D-F) and 3 (G-I). n= 10 leaves, values standardised to pre-

experiment dark adapted F0 value. 

Figure A5.1. Potted experimental Myoporum montanum plants under the rainout 

shelter. The roof is made of clear polycarbonate sheeting with fine mesh partially 

covering the sides to reduce rainfall into pots and maintain ventilation. Pots were 

rotated in blocks every two weeks of the eight-week treatment period. 

Figure A5.2. The daily relationship between air and leaf temperatures for individual 

plants. Lines are mean linear relationships per day, temperatures recorded every minute 

for the twelve experimental days. Blue lines, well-watered plants (HW); red lines are 

water-stressed plants (LW). 
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is the peak temperature of dark respiration; and LT50 is the temperature at which 50% 

of visual mortality of a leaf is evident. Assays conducted under light (L) vs dark (D) 

conditions may have different implications with respect to the ability for photosystem 

repair during and following stress. 

Table 2.1. The main trends of leaf FV/FM responses to varying heat stress characteristics: 

temperature intensity, stress duration, sustained or repeated stresses, and across 

summer (trials). The Wald Chi-squared statistic shown for multi-variate tests performed 

within each factor. Arrows indicate general direction (positive or negative) and colours 

indicate strength of trend: green striped, slight positive; yellow, weak; orange, 

moderate; red, strong; purple, very strong effect. For detailed comparisons among 

factor levels see Table A2.4. 

Table 3.1. Summary of key results from ‘Stress only’ and ‘Combined stress and reprieve’ 

models of EQY and NPQ referred to in text (see equations 4 and 5- Methods section 

3.3.4). Wald tests either from factor comparisons effect on the model or Wald post-hoc 

tests. J indicates a Joint Wald test post-hoc statistic. 

Table 4.1. Summary of three-factor ANOVA test for differences in T50 and thermal safety 

margin (TSM) among three species, between two growth temperatures (ambient and 

+4°C elevated) and between two summer durations (current and extended). Bolded 

values indicate significance at a 0.05 α level. The significance between species were 

determined post hoc (α = 0.05). 

Table 4.2. Mean T50 thresholds (±SE) and thermal safety margins (TSM, T50 threshold –

growth temperature (°C)) for Luzula modesta, Poa costiniana and Oreomyrrhis ciliata 

under warmed and ambient growth temperatures. Also displayed is the difference (Δ) 

in T50 and TSM between warmed and ambient treatments for each species. Asterisk 

indicates significance between ambient and warmed T50 thresholds and TSM 

temperatures within species. 

Table 5.1. Linear and linear mixed model results for measured parameters: leaf water 

potential (ΨLeaf), maximum temperature (Tmax) and heat tolerance threshold (T50). For 

variables ΨLeaf and T50, treatment levels were well-watered (HW) and water stressed 

(LW), while for variables Tmax, treatment levels also included air temperature. 
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Table 5.2. Linear model results for thermal safety margins comparisons investigating the 

influence and interaction of plant water availability (Treatment; HW or LW), variability 

between days (Day) and source of temperature (Measurement; Tleaf, Tair, Tregional) on the 

thermal safety margin estimation. 

Appendix Tables 

Table A1.1. Summary of the number of studies (and percentage of articles in 

parentheses) for thermal tolerance research on cultivated species of each type of 

cultivation and for wild species of each biome category investigating cold, heat, or both 

heat and cold tolerance. 

Table A1.2. Extended version of Figure A1.1 glossary of common tools and techniques 

for measuring thermal tolerance in land plants. Techniques used to measure thermal 

tolerance in plant leaves and leaf buds. For each article in our systematic review, we 

assessed what type of thermal tolerance technique was used and whether the results 

could provide a specific temperature at which some physiological threshold is reached; 

we termed this a thermal tolerance metric (TTM). To qualify as a TTM, the metric would 

have to be based on the response of an organ assayed across multiple temperatures. 

Specific metrics vary but are generally critical values for thresholds, e.g. LT50 (lethal 

temperature at which 50% damage ensues). Below, we describe the categories of 

techniques that we included in our systematic review and provide examples of the 

specific measurements and potential TTMs for each technique. We cite a small number 

of papers that we found to be good examples of application of each technique.  

Table A2.1. Temperature, duration, repeats and trials model effect estimates, SE and p-

values. Bold indicates significance at α = 0.05. Interaction effect is in addition to the 

effect at lower order level/s (28°C, Trial 1, 5-min or sustained). 

Table A2.2. Temperature, duration, repeats and trials model random parts estimates 

modelling the heterogeneity between groups.  

Table A2.3. Temperature, duration, repeats and trials model build of the factors and 

their interactions with the -2* log likelihood IGLS value (-2ll IGLS), difference in model 

(Δ-2ll IGLS) and a 1-sided p-value on the difference between models calculated on a χ2 

distribution. The “i” notation indicates where the variances within factor levels were 

allowed to vary. Final model (no. 38) included the non-significant 3-way interaction 

between temperature-reprieve-trial as it contained a significant value, which was of key 

interest to the study. To control for leaf collection over multiple days within each trial, 

which may affect the heat stress response, the model build incorporated the 

environmental temperature of either the cumulative mean temperature of one to five 

days prior, or the maximum or minimum temperatures within the five days prior to the 

day of leaf collection (Table S3). The minimum temperature of two days prior singularly 

had the strongest effect on the model and was included as a co-variable. 
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Table A2.4: Post-hoc Wald contrast tests of model effects. This table corresponds to the 

high-level data presented in Table 1 and Figure 3 & Figure S1. Two controls were used 

in analyses: 1) contrasts at high temperature stress treatments (48, 50 and 52°C) have 

been corrected, by excluding handling effects within a given experiment (see Methods); 

2) all FV/FM responses were compared to the average control FV/FM of 0.784 (SE ± 0.008). 

The table is organised into sections addressing an overall question with a joint Chi 

Square Statistic results for the following contrasts in that group. Functional effect (f-k= 

Δ) indicates the effect size which is the difference in means between the tested groups. 

Table A2.5. Weighted linear regression model results of the relationship of thermal 

tolerance thresholds with duration curve (Figure 2.6A), describing the relationship 

between heat tolerance and stress duration for M. montanum (M. mon) and E. socialis 

(E. soc). M. montanum was measured in three trials (1, early January; 2, late January; 3, 

early February, 2016); E. socialis was measured in Trial 1 only. Bold p-values indicate 

significance at α=0.05. T50:1’ refers to the predicted heat tolerance at a 1-min stress 

duration. 

Table A2.6. Comparisons of threshold temperature (T50:1’ and its equivalent, CTmax) and 

thermal sensitivity (z) of plant species from this experiment and estimated from the 

literature. The plant form, method of damage quantification and growth conditions are 

also reported. CTmax and thermal sensitivity estimates were back-calculated from 

previous reported leaf damage when responses to three or more temperature-duration 

combinations were reported at similar duration scales. 

Table A3.1. Number of leaves (n) per temperature treatment measured at each 

measurement period (occasion) within each trial for linear models ‘Stress’ and 

‘Combined stress and reprieve’ with response variables EQY and NPQ. Repeated three 

times as ‘Trials’.  

Table A3.2. Model estimates for ‘Stress’ models which model the EQY and NPQ response 

pre-stress through to stress six, excluding reprieve measurements. Models accompany 

Figure 3.2. 

Table A3.3. Model estimates for ‘Combined stress and reprieve’ models with separate 

responses of EQY and NPQ between Stress 1 to Stress 6 including the reprieve 

measurements. Models accompany Figure 3.3. 

Table A3.4. Correlations among EQY responses to re-occurring stress and reprieve 

exposures for the Combined stress and reprieve model. The level of photoinhibition 

(decline in EQY) with subsequent high temperature exposure was more strongly 

correlated with the response of previous high temperature exposures than prior cool 

reprieves. The influence of previous exposures diminishes with further stresses (0.840 

to 0.396) while the influence of reprieves diminishes at a lesser rate (0.689 to 0.403). 

Bold = >0.5 correlation. 
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Table A3.5. Correlations among NPQ responses to re-occurring stress and reprieve 

exposures for the Combined stress and reprieve model. The level of non-photochemical 

quenching with subsequent high temperature exposure was strongly correlated with the 

response of previous high temperature exposures and cool reprieves with previous 

reprieves, except for the response after the first stress. The influence of previous 

exposures diminishes with further stresses (0.843 to 0.100) while the influence of 

reprieves diminishes to a lower level (0.843 to -0.03). Bold = >0.5 correlation. 

Table A3.6. Pearson’s moment correlation and p-values for recovery metrics of NPQ 

relaxation and EQY recovery at each Temperature, Repeat and Trial between the last 

stress and 90-mins post heat stress as well as 90-mins to day two. Significant values 

bolded at alpha 0.05 level. 

Table A4.1. Habitat details of the area where seeds were collected for Poa costiniana, 

Luzula modesta and Oreomyrrhis ciliata. 

Table A4.2. Growth conditions and the temperature regimes including the duration of 

each ‘season’ and temperature step, temperature ranges and the day/night hour ratio 

(Satyanti, 2018). The thermal tolerance threshold (T50) was measured at the end of the 

second experimental summer. The difference in season length was changed by reducing 

the number of days comprising ‘winter’ and increasing the number of days in the 

‘summer’ season. 

Table A5.1.  Leaf water potential Tukey post-hoc contrasts of well-watered leaves vs 

water-stressed leaves. 

Table A5.2. Tukey post-hoc contrasts between maximum air and leaf temperatures for 

well-watered (HW) and water-stressed (LW) plants. 
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ABSTRACT 

Photosynthesis supports life on earth and is highly temperature dependent. Extreme 

temperatures can inhibit photosynthesis and damage the photosystem machinery, 

potentially limiting future productivity and plant survival. With increasing risk of 

extreme temperature exposure under climate change, plants may be pushed to the edge 

of their thermal limit, but at what point is a complex question. Temperatures that cause 

substantial damage to photosystems, encapsulated by heat tolerance thresholds, help 

to answer this question. On hot days leaf temperatures can spike multiple times, yet 

what we know of the variability of heat tolerance often comes from tests that vary in 

only one dimension – temperature. In Chapter 2, I demonstrated that varying 

combinations of heat characteristics can accumulate as heat doses and reveal multiple 

heat tolerance thresholds. By varying the heat dose, the thermal sensitivity of tolerance 

can also be examined, which is a first in plants.  In Chapter 3, I followed the temporal 

effects of multiple exposures to extreme high temperatures, which potentially both 

reduced and delayed the capacity for repair to Photosystem II (PSII) with sustained 

photoinhibition present on the following day. Examining plants in less obviously extreme 

environments, alpine summers are predicted to be warmer and longer under climate 

change, potentially increasing heat stress for alpine plants. In Chapter 4, I explored the 

scarcely studied effect of elevated and extended growth temperature on the heat 

tolerance of Australian alpine species. While alpine plant species maintained surprisingly 

high photosynthetic heat tolerance, they only marginally increased their tolerance in 

response to warming, suggesting increased vulnerability to heat stress with long term 

climate change. The application of plant physiological heat tolerance in assessing future 

vulnerability to increasing temperatures under climatic change, however, is 

complicated. As I showed in Chapter 5, water availability plays an important role in the 

relationship between leaf and air temperature, which also influences the level of heat 

tolerance. Considered together, these components can considerably alter species 

predicted vulnerability assessments to high temperature.  Combined, this work 

demonstrates that considering the multiple dimensions of high temperatures as heat 

doses, and the effects of complex relationships of water availability and temperature 

sources, widens the frame of photosynthetic thermal limits in plants experiencing 

extreme environments.  
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GLOSSARY OF KEY TERMS 

Acquired tolerance Increases in heat tolerance in response to immediate prior 

exposure to sub-lethal high temperatures or priming 

conditions. Often involving the upregulation of HSP. In some 

contexts, the term ‘acclimation’ will be used to describe the 

process of reaching acquired tolerance.  

Assay The use of increasing intensity or concentration of an abiotic 

variable to determine organism responses. Herein, it refers to 

exposing leaves to a range of high temperatures used to 

determine the temperature at which a particular change in PSII 

function occurs, either a 50% decline in FV/FM (T50 threshold) or 

the temperature at which F0 increases (Tcrit). 

Basal tolerance Thermal tolerance without priming. Used here to describe 

sampled thermal tolerance measurements without pre-

treatment designed to induce acquired tolerance. 

HSP Heat shock proteins. Here, HSP is used to refer to the entire 

family of proteins, including small heat shock proteins (sHSP), 

induced as a response to stress and serving a range of 

functions to protect and repair proteins from aggregation and 

denaturation. 

PSII Photosystem II, located in the thylakoid membrane, is 

responsible for light reactions of photosynthesis. PSII oxidizes 

water and is at the beginning of the electron transport chain. 

Priming  Conditions that can induce acquired tolerance mechanisms. 

Thermal tolerance 

metric 

A specific temperature at which some physiological threshold 

is reached (e.g. 50%). Such a metric is based on the 

physiological response of an organism or organ (e.g. animal or 

leaf chlorophyll fluorescence) assayed across multiple 

temperatures. In this thesis, T50 and Tcrit are the metrics used. 

See Appendix 1, Table A1.1 for further examples of plant 

thermal tolerance metrics. 
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T50 threshold A 50% decline in the chlorophyll fluorescence measurement 

FV/FM post temperature exposure. A metric used to compare 

the temperature tolerance of PSII in leaves. 

Chlorophyll fluorescence terms: 

F0 Minimum fluorescence of chlorophyll in dark adapted leaves, 

under a minimal measuring light. All PSII reaction centres 

open. 

F The fluorescence level of chlorophyll in light adapted leaves, 

under a minimal measuring light. Some PSII reaction centres 

closed (quenched). 

FM Maximum fluorescence of chlorophyll in dark adapted leaves 

post-saturating light flash. All PSII reaction centres closed. 

FM’ Maximum fluorescence of chlorophyll measured on light 

adapted leaves post saturating light flash. All PSII reaction 

centres closed. 

FV 
Variable fluorescence is the maximum (FM) minus the 

minimum (F0) fluorescence of chlorophyll in dark adapted 

leaves. 

FV/FM Maximum quantum yield of PSII. A chlorophyll fluorescence 

parameter measured on dark adapted leaves. 

EQY (ΔF/FM’) Quantum yield or effective quantum yield of PSII. A chlorophyll 

fluorescence parameter measured on light adapted leaves. 

NPQ (FM-FM’/FM’) Non-photochemical quenching. A unitless value on a scale of 0-

infinity, which describes the difference between maximum 

dark-adapted fluorescence and the maximum fluorescence 

under light conditions. This difference is due to non-

photochemical quenching and is often an indication of 

diversion of energy to protective mechanisms. NPQ is in direct 

competition with EQY and is a linearly related to heat 

dissipation. 
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