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Abstract 

Tropical forests provide critical ecosystem services for global climate and 

biodiversity, and sustain the livelihoods of millions of people. Yet, they have become 

hotspots of land-use change. The Southern border of the Brazilian Amazon has been a 

focus of land development with large swaths of tropical forests converted to agriculture. 

Degradation of forests by selective logging and fires has accompanied the advance of the 

frontier and has resulted in significant impacts on Amazonian ecosystems. While the 

agricultural use in the region is well quantified, forest degradation is more challenging to 

study. Given that changes in tree cover and structure have large impacts on forest 

function, there is an urgent need to quantify these properties for degraded forests.  

The overarching goal of this thesis is to investigate the functional and structural 

linkages in degraded forests in the Amazon and assess whether forest structure mediates 

forest responses to disturbance. To achieve this goal, I (1) compared phenological patterns 

of intact and degraded forests using time-series of spectral indices; (2) examined the 

relationship between forest structure and photosynthesis across a gradient of forest 

degradation, by integrating structural variables and solar-induced fluorescence (SIF) data; 

and finally, (3) investigated the influence of forest structure on evapotranspiration and 

land surface temperature. These broad thesis objectives were accomplished using multi-

source remote sensing (MODIS, Landsat and TROPOMI SIF satellite data combined with 

airborne and orbital lidar observations) and statistical methods.  

My results showed that fires had a stronger effect than selective logging on ecosystem 

functioning (e.g., stronger phenological shifts and alterations in evapotranspiration and 

land surface temperature) and caused more dramatic changes in forest structure (e.g., 

lower forest canopy and leaf area index, more abundant understory). I also found that 

shifts in ecosystem functioning related to forest degradation were exacerbated by the dry 

season in the study region. Finally, I found that the most heavily disturbed forests 

presented strong structure-function relationships that do not hold in the least disturbed 

forests, suggesting that forest structure acts as a mediator of forest recovery.   

My findings help to elucidate the effects of human-induced disturbances in ecosystem 

fluxes and can inform public policy related to forest management and land use planning. 

Besides, my results provide inputs regarding the role of phenology and forest structure in 
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degraded forests for ecosystem demography models. The importance of this research is 

underscored by the recent surge in deforestation in the Brazilian Amazon and associated 

forest fires. 
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