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The authors have contributed to and illustrated the need for con-
tinued research into calibration methodologies for complex catch-
ment modeling systems. The search for suitable approaches for
parameter evaluation has resulted in the development of many
new techniques and concepts. The authors have continued the
traditional approach of identifying a unique optimal parameter set
or near optimal parameter set that is assumed to represent the
generic catchment characteristics. There are concerns with this
approach and outlined herein is one of these concerns, namely the
identification of a globally optimal set of parameters that does not
represent the generic catchment characteristics due to the follow-
ing:
• Data errors in the input to the model and that used to assess the

performance of the parameter values;
• Uniformity in the performance of alternative parameter sets.

Many studies have demonstrated the difficulties, if not the im-
possibility, of finding a unique optimal parameter set due to un-
certainty of model structure, errors associated with input and
observed data, and interactions between parameters �Kuczera
1983; Sorooshian et al. 1983; Beven and Binley 1992; Gan and
Biftu 1996�. As a result of these sources of error, an optimal
parameter set for one set of events may not be optimal for other
events. Searching for a unique optimal value may lead to the
parameter evaluation being based on the best “curve fitting”
rather than the best representation of the catchment processes.
This was explored by Choi and Ball �2002� who proposed the use
of monitoring data to define the point where further parameter
modification does not result in additional information being ex-
tracted from the available data. The conceptual basis of this ap-
proach is based on dividing the available data into calibration,
monitoring, and validation data sets and using the monitoring data
at each �or a predefined number of iterations� iteration of the
parameter modification as the optimal set is obtained to ensure
that the objective function used to measure the improvement in
performance decreases for events other than those used for the
calibration. As shown in Fig. 1, the process ends when further
iterations result in a decrease in the performance of the monitor-
ing data even though the performance of the calibration data con-
tinues to improve. Results from an application of this approach
with SWMM to a catchment in Sydney, NSW �Choi and Ball
2002� are shown in Table 1; for this application of the approach
81.25% of the calibrations were concluded prior to reaching the
maximum number of iterations. Choi and Ball �2002� found that
continuing the search beyond the “early stop point” resulted in a
decrease in the performance of the parameter values when applied
to different events to those being used for the calibration and,
hence, they postulated that the perceived improvement in perfor-
mance past the “early stop point” was due to the model perform-
ing as a “curve fitting” transformation rather than one where the
model was replicating the major catchment processes.

The authors have not tested the parameter values developed
during their optimization process with storm events not used as
part of the calibration process. If the authors applied a monitoring
approach to their data set, it would be interesting to see if the
same parameter values were obtained.

This problem of identifying the point where further modifica-
tions to parameter values does not result in the extraction of ad-
ditional information from the available data suggests that there
are many alternative combinations of parameter values that result
in similar performance. This has lead to development of tech-
niques for estimating the parameter uncertainty for simple catch-
ment modeling systems. Simple modeling systems can be
categorized as those systems where evaluation of only a few pa-
rameters is required for application. Examples of these ap-
proaches are:
• Bayesian methodology first explored by Kuczera �1983�,

whereby parameter uncertainty is described by the posterior
distribution, which expresses the probability of the parameter
values given the observed data. Marshall et al. �2004�, how-
ever, claim that while the Bayesian frameworks are widely
used, the implementation of Bayesian procedures has been
hindered due to difficulties in summarizing and exploring the
posterior distribution of parameters for complex catchment
modeling systems.

• Markov Chain Monte Carlo �MCMC� approaches as presented
by Kuczera and Parent �1998�, Bates and Campbell �2001�,
Marshall et al. �2004�, and Gallagher and Doherty �2007�.
While these approaches provide computationally feasible
implementations of Bayesian inference with the aim of gener-
ating samples of parameter values from the posterior distribu-
tion with reasonable efficiency, a priori knowledge about the
proposal distribution of parameters is crucial for effective
implementation of a MCMC algorithm.

• The generalized likelihood uncertainty estimation �GLUE�
method as presented by Beven and Binley �1992�. Application
of a GLUE methodology usually involves making a large
number of Monte Carlo �MC� simulations with different sets
of parameter values, generated randomly from uniform distri-
butions within the feasible parameter space. While the GLUE
methodology is capable of exploring the whole search space, it
is computationally inefficient when very large numbers of ini-
tial parameter sets are required �Spear et al. 1994; Bates and
Campbell 2001�. To mitigate this problem, a number of studies
have investigated methods for improving the efficiency of
MC-based techniques. An approach commonly adopted �Hel-
ton and Davis 2003� has been to use a more efficient sampling

Fig. 1. Early stopping technique �adapted from Choi and Ball 2002�
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algorithm, such as Latin hypercube sampling. Another alterna-
tive was presented by Khu and Werner �2003� who used a
hybrid genetic algorithm and artificial neural network, known
as GAANN to improve the efficiency of a GLUE approach.
Building on these studies into the parameter uncertainty, Fang

and Ball �2007� used a genetic algorithm �GA� within a GLUE
framework to investigate the parameter uncertainty associated
with the application of SWMM for flow prediction in an urban
catchment. In this case the approach was not limited to a simple
catchment modeling system but rather to a complex catchment
modeling system with a significant number of spatially variable
interrelated parameters. Defining a behavioral set as being a set of
parameters where the RMSE in discharge was less than 0.1 m3 /s,
Fang and Ball �2007� found, after 50 generations with 1,000-
parameter sets per generation, approximately 900 alternative sets
of parameter values meeting the criterion. Shown in Table 2 are
the mean and standard deviation of the RMSE for these behav-
ioral parameter sets. Using these values gives a coefficient of
variation of approximately 1.5%, which can be interpreted as sug-
gesting that there is minimal difference in the performance of any
one of the approx. 900 behavioral parameter sets highlighting the
difficulty of selecting one set of parameter values as the most
desirable.

Using the concept that there are multiple alternative sets of
parameter values that result in similar performance, it would be
interesting if the authors could provide information about the
variability in the predicted flows of the best-performing sets of
parameter values. Inclusion of the concept of monitoring the cali-
bration process in determining the best performing set of param-
eter values would be useful also.
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Table 2. Performance of Behavioral Sets of Control Parameter Values
�Adapted from Fang and Ball 2007�

Storm event Jan. 5, 1998 Dec. 14, 1998 Feb. 24, 1999

Average RMSE 0.0783 0.0880 0.0715

Standard deviation of RMSE 0.0012 0.0010 0.0014

Table 1. Occurrence Rate of the Minimum Function Value �Adapted from Choi and Ball 2002�

Event
SP
�%�

ESP
�%�

EP
�%�

Nov. 01, 1994 0 87.5 12.5

Dec. 22, 1994 0 87.5 12.5

Jan. 04, 1995 0 87.5 12.5

Feb. 28, 1995 25 62.5 12.5

Mean 6.25 81.25 12.5

Note: SP=start point; ESP=early stop point; and EP=end point
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