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Abstract: This paper presents a novel iterative learning sliding mode controller (ILSMC) with1

application to trajectory tracking of quadrotor unmanned aerial vehicles (UAVs) subject to model2

uncertainties and external disturbances. Here, the proposed ILSMC is integrated in the outer loop3

of a controlled system. The control development, conducted in the discrete-time domain, does4

not require a priori information of the disturbance bound as with conventional SMC techniques.5

It involves only an equivalent control term for the desired dynamics in the closed-loop and an6

iterative learning term to drive the system state toward the sliding surface to maintain robust7

performance. By learning from previous iterations, the ILSMC can yield very good tracking8

performance when a sliding mode is induced without control chattering. The design is then9

applied to the attitude control of a 3DR Solo UAV with a built-in PID controller. Simulation results10

and experimental validation with real-time data demonstrate the advantages of the proposed11

control scheme over existing techniques.12

Keywords: Iterative Learning, Sliding Mode Control, Unmanned Arial Vehicles, Trajectory Track-13

ing.14

1. Introduction15

In recent years, the interest in developing and utilizing unmanned aerial vehicles16

(UAVs) has been growing with numerous applications in practice, such as mapping17

[1,2], inspection, search and rescue [3,4], construction automation [5], and agricultural18

surveillance [6]. When a quadrotor drone performs a desired trajectory, accurate tracking19

is highly required. In trajectory tracking control, feedback linearization (FL) has been20

widely used [7,8]. This control method works well under the assumption of known sys-21

tem dynamics. In the face of large uncertainties and disturbances, FL-based approaches22

may lead to poor tracking performance, and other advanced control laws are required.23

The adaptive feedback linearization controller is applied in [9], allowing for adjustments24

of the control parameters to enhance control performance. Robust control methods have25

also been developed to improve control performance [10]. A backstepping controller is26

introduced in [11] to improve the tracking accuracy and robustness of UAVs’ attitude27

control, wherein the external disturbances are estimated using a nonlinear disturbance28

observer.29

Sliding mode control (SMC), a well-known control method for improving system ro-30

bustness, has been successfully applied to various control systems [12,13] in general, and31

particularly to UAVs [14,15]. However, information on disturbance bound is required32

in these techniques. Adaptive SMC has been developed to overcome this requirement33

[16]. This approach, on the other hand, still reveals the main disadvantage of SMC, i.e.,34

control signals usually present a chattering behavior, especially when dealing with large35

uncertainties and disturbances that often require excessively high control gains. Various36
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techniques have been suggested as a remedy, mostly using an approximation of the37

sign function to avoid or reduce chattering with some trade-offs on system robustness38

for control signal smoothening. Deep learning-based SMC has recently been proposed39

to handle highly complex and time-varying uncertainties, such as deep convolutional40

neural network-based fractional-order terminal SMC [17] and integrated deep learning41

recurrent neural network with terminal SMC [18]. Although these methods achieve42

high performance with continuous control signals, a major disadvantage is the high43

computational cost incurred for implementing a deep neural network.44

Iterative learning control (ILC) is an effective technique in dealing with repetitive45

tasks. It allows for learning from system data to update the control input repeatedly to46

improve system performance [19]. Through trial-based learning, ILC is able to achieve47

high tracking performance even in the face of large model uncertainties and disturbances.48

Indeed, unlike non-learning control techniques, the system in ILC is reset to zero after the49

system has reached the final time, and then repeatedly follows the same reference again.50

Thereby, the control input can be adjusted through the repetitions to result in perfect51

tracking. Since ILC can learn from the system response to provide feedforward control52

in the iteration domain, it is more robust and can effectively compensate for model53

uncertainties and unknown disturbances, particularly iteration-invariant disturbances54

[20].55

The application of iterative cybernetics, first proposed in [21], has emerged to56

iterative learning control in robotic systems [22] and later been developed for industrial57

control [23]. In the last decades, ILC has become an effective tool in various control58

systems, such as robot arm manipulators [24], chemical batch processes [25], wafer59

scanner systems [26], and video-rate atomic force microscopy [27]. Unlike other learning60

techniques such as artificial neural networks, which obtain the inverse dynamics from61

a training set [28], or adaptive controller, which tunes the control parameters [29,30],62

requiring a time-consuming process, ILC updates the control input from information63

from previous executions, and hence, can converge quickly after a limited number of64

repetitions [19]. Moreover, as ILC does not require a system model, it is quite beneficial65

in practical applications that deal with unknown characteristics.66

In this paper, integrating the learning capacity of ILC with the strong robustness of67

SMC, we propose a novel iterative learning sliding mode controller (ILSMC) to achieve68

high accuracy of trajectory tracking for UAVs while retaining strong robustness as well69

as alleviating control chattering. In terms of iterative control, several existing techniques70

have been introduced for UAVs. In [31], a plug-in controller has been designed and71

implemented in aerial robots. Although the average tracking error is reduced for periodic72

reference trajectories, the technique does not concern the effect of disturbances. In [32],73

fuzzy PID-typed ILC has been introduced where fuzzy logic is used to tune the control74

parameters, high tracking performance is hard to reached in comparison to other rigorous75

control strategies. In [33], optimization-based ILC is developed to improve the UAV76

trajectory tracking performance. In this approach, learning and filtering schemes are77

formulated into convex optimal problems. Although the two-step convex optimization78

problem can be solved using software, it involves high computational complexity.79

The proposed ILSMC offers a simpler design, thus more robust and effective. The80

main contributions of this work includes (i) the comprehensive development of an81

iterative learning term with fast convergence after several iterations, to compensate for82

system uncertainties and unknown disturbances, and (ii) the integration of ILC and83

SMC schemes to a built-in PID controller in cascade to yield high performance for the84

quadcopter trajectory tracking.85

This paper is structured as follows. The control development for ILSMC is presented86

in Section 2. Convergence and stability analysis of the proposed learning algorithm87

is also provided in this section. Next, Section 3 presents system modelling, including88

kinematic and quadcopter dynamics. Then, the integration of ILSMC with PID control89

for the UAV is described in Section 4. Section 5 provides numerical simulation results,90
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and Section 6 presents experimental validation with real-time data. Finally, a conclusion91

is drawn in Section 7.92

2. Iterative learning sliding mode control93

Iterative Learning Control (ILC) is a tracking control strategy for systems perform-94

ing repetitive tasks, which are commonly required in industry. This technique aims to95

generate a feed-forward control signal so that the system can learn from the previous96

responses to improve tracking performance and eliminate disturbance repeatedly after97

each iteration. The basic structure of an ILC is depicted in the diagram of Fig. 1 for an98

iteration number j. At this iteration, the input u(j)(k) and the deviation e(j)(k) between99

the reference yd(k) and the output y(j)(k) are stored to compute the control signal for the100

next iteration, with k starting from an initial time instant (k = 0). In this section, an itera-101

tive learning sliding mode control scheme is designed to deal with large uncertainties102

and disturbances.103

Figure 1. Basic structure of ILC

2.1. ILSMC design104

Consider the following general discrete-time control system:x1(j)
(k + 1) = x1(j)

(k) + ∆tx2(j)
(k),

x2(j)
(k + 1) = f (x(j)(k)) + ∆tB

[
u(j)(k) + d(j)(k)

]
,

(1)

where k is the time instant, ∆t is the sampling period. The subscript j denotes the105

iteration index, also called trial, run, cycle, or repetition in the ILC literature. The system106

state vector is x(j)(k) =
[

x1(j)
(k) x2(j)

(k)
]T
∈ R2m, where m is the dimension of state107

x1(j)
(k), x2(j)

(k) is its derivative, u(j)(k) ∈ Rm is the control signal, B ∈ Rm×m is a positive108

definite matrix, and f (.) is a vector function. The influence of parameter variations and109

loading conditions, model uncertainties and external disturbances can be lumped into110

a vector d(j)(k). In each iteration, the input and state variables comprise an N-sample111

sequence each, where N is a finite number of samples.112

Definition. At iteration j, an exogenous input δ(j)(k) is called iteration-invariant if it occurs113

repeatedly over iterations, or persistent within the iteration domain. That is, δ(1)(k) = δ(2)(k) =114

... = δ(j)(k) for all k = {0, 1, ..., N − 1}.115

To proceed with the ILC methodology, the following assumption [20,27,34] is made.116

Assumption. In this study, the lumped disturbance d(j)(k) is assumed to be iteration-invariant.117
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In this paper, an ILSMC law is developed aiming to drive the tracking error asymp-118

totically to zero from any initial condition and under external disturbances d(j)(k). The119

control algorithm consists of two steps. The first step is to induce a desired sliding120

surface to drive a learning sliding function to zero after some iterations regardless of121

external disturbance and system uncertainties. In the second step, the tracking error122

of the system is driven to zero in the sliding mode associated with the control sliding123

function. Instead of using a discontinuous gain as in the conventional SMC methodology,124

here an iteration learning process will be involved, and hence a priori information of the125

disturbance bound is not required while chattering can be fully alleviated.126

The control design is initiated by considering the tracking error in an iteration as

e(j)(k) =
[
e1(j)(k) e2(j)(k)

]T
= x(j)(k)− xd(k), (2)

where xd(k) =
[
x1d(k) x2d(k)

]T is the desired trajectory vector, which is also iteration-127

invariant during the execution of repetitive tasks.128

Let us define the control sliding function as below:

σ(j)(k) = e2(j)(k) + ce1(j)(k), (3)

where c = diag(ci) ∈ Rm×m, ci > 0.129

By denoting
∆σ(j)(k) =

[
σ(j)(k + 1)− σ(j)(k)

]
∆−1

t , (4)

we have from (3) :

σ(j)(k + 1) = e2(j)(k + 1) + ce1(j)(k + 1)

= x2(j)(k + 1)− x2d(k + 1) + ce1(j)(k + 1).
(5)

Substituting (1), (3) and (5) into (4) yields:

∆σ(j)(k) =
[

f (x(j)(k)) + ∆tB
[
u(j)(k) + d(j)(k)

]
− x2d(k + 1)

+c
[
e1(j)(k + 1)− e1(j)(k)

]
− e2(j)(k)

]
∆−1

t .
(6)

By using the forward Euler method for discretization, we also have

e1( j)(k + 1) = e1(j)(k) + ∆te2(j)(k)⇒ e1( j)(k + 1)− e1(j)(k) = ∆te2(j)(k). (7)

Applying (7) into (6) gives:

∆σ(j)(k) = [ f (x(j)(k)) + ∆tB(u(j)(k) + d(j)(k))

− x2d(k + 1) + (c∆t − 1)e2(j)(k)]∆
−1
t .

(8)

2.1.1. Equivalent Control130

Now let us consider the following dynamics to be induced by the learning process:

S(j)(k) = ∆σ(j)(k) + µσ(j)(k) = 0, (9)

where µ > 0 is a control parameter. Substituting (8) into (9) yields:

[ f (x(j)(k)) + ∆tB(u(j)(k) + d(j)(k))− x2d(k + 1)

+ (c∆t − 1)e2(j)(k)]∆
−1
t + µσ(j)(k) = 0.

(10)
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In nominal conditions of the system under no model error and disturbance, the equiva-
lent control of the system is given by:

ueq(j)(k) = (∆tB)−1
[
− f (x(j)(k)) + x2d(k + 1)− (c∆t − 1)e2(j)(k)− ∆tµσ(j)(k)

]
. (11)

2.1.2. Learning control131

In the learning step, to drive the system trajectories toward the sliding surface (9)
regardless of disturbances, an iterative learning scheme is introduced using the stored
data from previous iterations as below:

uilc(j)
(k) = (∆tB)−1

j−1

∑
i=0

λS(i)(k)

= uilc(j−1)
(k)− (∆tB)−1λS(j−1)(k),

(12)

where the initial iteration uilc(0)(k) = 0 and λ > 0 is a design parameter for the learning132

rate.133

From (11) and (12), the ILSMC law is given by:

u(j)(k) = ueq(j)(k) + uilc(j)
(k). (13)

We summarize the ILSMC design in the following theorem.134

Theorem. For the discrete-time system (1) with sampling period ∆t subject to iteration-invariant135

disturbance d(j)(k), under the iterative learning sliding mode control (13) comprising the136

equivalent control (11) and learning control (12), if the control parameter µ and learning rate137

λ are respectively chosen such that 0 < µ < 2/∆t, 0 < λ < 2 and λ 6= 1, then the tracking138

error (2) is driven to zero at a sufficiently large number of iterations and the control system is139

asymptotically stable.140

Proof. By substituting (8), (11), (12) and (13) into (9), we obtain:

S(j)(k) = −
j−1

∑
i=0

λS(i)(k) + ∆tBd(j)(k). (14)

Similarly,

S(j−1)(k) = −
j−2

∑
i=0

λS(i)(k) + ∆tBd(j−1)(k). (15)

According to the Assumption, as d(j)(k) is iteration-invariant, from (14) and (15), we
have:

S(j)(k)− S(j−1)(k) = −λS(j−1)(k)

⇔ S(j)(k) = (1− λ)S(j−1)(k) = (1− λ)2S(j−2)(k)

= ... = (1− λ)jS(0)(k).

(16)

From (16), the iterative learning algorithm will converge to 0 at large values of
the iteration number under the condition |1− λ| < 1. Therefore, if the learning rate λ
selected to satisfy, 0 < λ < 2 and λ 6= 1, we can have

lim
j→∞

S(j)(k) = lim
j→∞

(1− λ)jS(0)(k) = 0. (17)

By substituting ∆σ(j)(k) into S(j)(k), Eq. (9) can be rewritten as141

S(j)(k) = ∆−1
t σ(j)(k + 1)− (1− µ∆t)∆−1

t σ(j)(k), (18)
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whereby, as S(j)(k)→ 0 with a proper selection of the learning rate λ and at an adequate
number of iterations j, the sliding function (3) becomes:

σ(j)(k)→ (1− µ∆t)σ(j)(k− 1)

= (1− µ∆t)
2σ(j)(k− 2) = ... = (1− µ∆t)

kσ(j)(0),
(19)

where σ(j)(0) is the initial value of σ(j)(k) at the j-th iteration. Therefore, given a positive
constant µ with 0 < µ < 2/∆t, the sliding function σ(j)(k) in (19) will approach zero at a
sufficiently large value of k. Thus, since the sliding funtion σ(j)(k) as defined in (3) is
driven to zero after some iterations j, a sliding mode is induced from the selection of
parameter c > 0. It follows that

lim
j,k→∞

e(j)(k) = 0. (20)

Notably, the asymptotic convergence of the tracking error e(j)(k) here does not142

come from the switching of the control signal with a high discontinuous gain as in143

conventional SMC but is a result of the proposed learning process (12). Hence, the144

sliding mode (3) induced for the tracking error can retain system robustness in face145

of uncertainties and disturbances while avoiding the high-frequency switching of the146

control signal. That is the reason why the proposed ILSMC can achieve highly accurate147

tracking without control chattering. The tracking performance then depends on the148

convergence of the learning process, governed by the learning rate λ.149

To verify the system stability, let us consider the control sliding function σ(j)(k) at
iteration j. According to [35], the discrete-time control system will be asymptotically
stable if for all its entries [σ(j)(k)]:{

[σ(j)(k + 1)− σ(j)(k)]Sign([σ(j)(k)]) < 0,
[σ(j)(k + 1) + σ(j)(k)]Sign([σ(j)(k)]) ≥ 0,

(21)

where Sign(·) is the signum function.150

To verify the above conditions, we have from (18),

σ(j)(k + 1) = (1− µ∆t)σ(j)(k). (22)

We obtain, accordingly

σ(j)(k + 1)− σ(j)(k) = −µ∆tσ(j)(k). (23)

Therefore, the first condition of (21) is satisfactory as

− µ∆t[σ(j)(k)]Sign([σ(j)(k)]) < 0. (24)

From (22), we also have

σ(j)(k + 1) + σ(j)(k) = (2− µ∆t)σ(j)(k), (25)

and with the choice 0 < µ < 2/∆t, the second condition of (21) is also satisfactory since

(2− µ∆t)[σ(j)(k)]Sign([σ(j)(k)]) ≥ 0. (26)

Therefore, the control system is asymptotically stable. The proof is completed.151

Remark 1. From (16), to fast induce a sliding surface, a high rate of convergence is required,152

subject to the condition |1− λ| < 1. This condition is similar to the ILC convergence condition153

presented in the frequency domain [36]. On one hand, the closer λ to 1, the faster the convergence154

in the learning step. On the other hand, under the effect of noise and nonrepeating disturbances,155
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a rapid learning rate could affect robustness. In practice, one can choose λ close to 1 for fast156

convergence and gradually lower this value if required to reduce the system sensitivity.157

Remark 2. The learning process can be terminated upon satisfaction of a required tracking158

performance index (TPI), e.g., when the integral time absolute error (ITAE) of the control error159

satisfies the requirement on tracking performance for a specific task of the system.160

3. System description and modelling161

The UAV employed in this article is a quadcopter having a symmetric rigid structure162

and driven by four motors, as shown in Figure 2. For the quadcopter, the pitch angle,163

varying in accordance with the quadcopter’s longitudinal motion, is controlled by164

adjusting the front and rear propellers’ velocities, which generate the force F1 and F3.165

Meanwhile, its lateral displacement is governed by the roll angle, which is controled166

through the right and left rotors’ speeds, resulting in the forces F2 and F4. Finally, the167

yaw angle, associated with the UAV yaw motion, is regulated by the difference between168

torques generated by these pairs of rotors. In this work, we focus on the attitude tracking169

control, and thus, only the quadcopter orientation is concerned here. The torques acting170

on the quadcopter include the thrust forces τ, the gyroscopic torques caused by the171

rotation of the quadcopter’s rigid body τb and of four propellers τp, as well as the torque172

due to aerodynamic friction τa. Here, the propellers’ gyroscopic effects and the drag173

from air resistance are considered as external disturbances.

Figure 2. Configuration of a quadcopter

174

3.1. Kinematics175

As shown in the configuration of Fig. 2, an earth frame, {xe, ye, ze}, is fixed at176

the ground and a body frame, {xb, yb, zb}, is attached to the CoG of the quadcopter,177

both with the z axis pointing downward. The position of the UAV’s mass center in the178

earth frame is defined by a vector P = (x, y, z)T . The UAV orientation is represented by179

angles (φ, θ, ψ)T , respectively corresponding to roll, pitch, and yaw motion. For attitude180

control, these angles are limited as φ ∈ [−π/2, π/2], θ ∈ [−π/2, π/2] and ψ ∈ [−π, π].181

With respect to the earth frame, the orientation of the quadcopter is obtained a rotation182

transformation resulting from suscessively rotating around xb, yb and zb axes, and183

characterized by an orthonormal rotation matrix R [37]:184

R =

cψcθ cψsθsφ − sψcθ cψsθcφ + sψsθ

sψcθ sψsθsφ + cψcθ sψsθcφ − cψsθ

−sθ cθsφ cθcφ

, (27)

where sx and cx denote sin x and cos x, respectively.185
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Denoting the angular velocity vector of the quadcopter in the body frame as186

(ωφ ωθ ωψ)T , the rotational kinematics can be obtained as follows [38]:187 [
φ̇ θ̇ ψ̇

]T
= W−1[ωφ ωθ ωψ

]T , (28)

where

W−1 =

1 sin φ tan θ cos φ tan θ
0 cos φ − sin φ
0 sin φ sec θ cos θ sec θ

.

3.2. Quadcopter dynamics188

From the quadcopter description, the components of torque vector τ = [τφ τθ τψ]T ,
corresponding to rotation in the roll, pitch and yaw directions, are calculated as

τφ = l(F2 − F4), (29a)

τθ = l(−F1 + F3), (29b)

τψ = β(−F1 + F2 − F3 + F4), (29c)

where l is the distance from each rotor to the CoG, and β is the apparent radius for189

converting the force into the yaw torque.190

From (29), the control inputs are given as:191 
uφ

uθ

uψ

uz

 =


τφ

τθ

τψ

F

 =


0 l 0 −l
−l 0 l 0
−β β −β β

l l l l




F1
F2
F3
F4

, (30)

where uφ, uθ and uψ are respectively presents the roll, pitch and yaw torques, F =192

∑4
n=1 Fn is the lift force, representing the total thrust utilizing from the four motors. As193

the only attitude of quadcopter will be controlled, uz is assumed to balance with the194

gravity.195

The gyroscopic torque due to the rotation of the symmetric body of the quadcopter
is given by [29]:

τb = −S I
[
ωφ ωθ ωψ

]T , (31)

where

S =

 0 −ωψ ωθ

ωψ 0 −ωφ

−ωθ ωφ 0


is a skew-symmetric matrix. As shown in the configuration of Fig. 2 with the body frame
assigned to the quadcopter, given a mass point mi with its coordinates (xi, yi, zi) in the
body, the quadcopter’s inertia can be obtained as a diagonal matrix:

I =

∑i(y2
i + z2

i )mi 0 0
0 ∑i(x2

i + z2
i )mi 0

0 0 ∑i(x2
i + y2

i )mi

 =

Ixx 0 0
0 Iyy 0
0 0 Izz

. (32)

Accordingly, Eq. (31) can be rewritten as

τb =
[
(Iyy − Izz)ωθωψ (Izz − Ixx)ωφωψ (Ixx − Iyy)ωφωθ

]T . (33)

The gyroscopic torque due to the rotation of four propellers is determined as [29]:

τp =
[
Irωrωθ −Irωrωφ 0

]T , (34)
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where Ir is the moment of inertia of the rotor of each motor, ωr = −ωr1 +ωr2−ωr3 +ωr4196

is the residual angular velocity, in which ωr1, ..., ωr4 are correspondingly the angular197

velocities of the propellers.198

The air drag torque is calculated as [29]:

τa =
[
kaxω2

θ kayω2
φ kazω2

ψ

]T
, (35)

where kax, kay, and kaz are aerodynamic friction factors.199

The dynamics of the quadcopter in attitude control can then be represented as:[
ω̇φ ω̇θ ω̇ψ

]T
= I−1(τb + τ + τp − τa). (36)

Now if the propeller gyroscopic and aerodynamic torques are considered as external
disturbances, i.e.,

d =
[
dφ dθ dψ

]T
= τp − τa, (37)

where dφ, dθ and dψ are disturbance components correspondingly, then substituting (30),
(33), and (37) and into (36) yields:

ω̇φ = I−1
xx
[
(Iyy − Izz)ωθωψ + uφ + dφ

]
, (38a)

ω̇θ = I−1
yy
[
(Izz − Ixx)ωφωψ + uθ + dθ

]
, (38b)

ω̇ψ = I−1
zz
[
(Ixx − Iyy)ωφωθ + uψ + dψ

]
. (38c)

To express the quadcopter dynamics via the orientation angles, the model can be
simplified by considering [ωφ, ωθ , ωψ] ≈ [φ̇, θ̇, ψ̇]. This approximation is acceptable since
a minor model error can be adequately addressed by a good controller. Accordingly, the
quadcopter model is obtained as:

φ̈ = I−1
xx
[
(Iyy − Izz)θ̇ψ̇ + uφ + dφ

]
, (39a)

θ̈ = I−1
yy [(Izz − Ixx)φ̇ψ̇ + uθ + dθ ], (39b)

ψ̈ = I−1
zz
[
(Ixx − Iyy)φ̇θ̇ + uψ + dψ

]
. (39c)

3.3. Discrete-time model200

In the discrete-time domain, by considering the difference approximation for first
and second derivatives using the forward Euler method, the transformed discrete-time
model can be obtained as below:

φ(k + 2) = 2φ(k + 1)− φ(k) + I−1
xx (Iyy − Izz)[θ(k + 1)− θ(k)][ψ(k + 1)− ψ(k)]

+ ∆2
t I−1

xx
[
uφ(k) + dφ(k)

]
,

(40a)

θ(k + 2) = 2θ(k + 1)− θ(k) + I−1
yy (Izz − Ixx)[φ(k + 1)− φ(k)][ψ(k + 1)− ψ(k)]

+ ∆2
t I−1

yy [uθ(k) + dθ(k)],
(40b)

ψ(k + 2) = 2ψ(k + 1)− ψ(k) + I−1
zz (Ixx − Iyy)[φ(k + 1)− φ(k)][θ(k + 1)− θ(k)]

+ ∆2
t I−1

zz
[
uψ(k) + dψ(k)

]
.

(40c)

Now, let consider the system state vector x(k) = [x1(k) x2(k)]T defined by:

x1(k) =
[
φ1(k) θ1(k) ψ1(k)

]T
=
[
φ(k) θ(k) ψ(k)

]T , (41a)

x2(k) =
[
φ2(k) θ2(k) ψ2(k)

]T
=
[

φ(k+1)−φ(k)
∆t

θ(k+1)−θ(k)
∆t

ψ(k+1)−ψ(k)
∆t

]T
. (41b)

From (40) and (41), we obtain the UAV state equation in discrete-time of the form (1) as201

below:202



Version October 4, 2021 submitted to Journal Not Specified 10 of 22

x1(k + 1) = x1(k) + ∆tx2(k), (42a)

x2(k + 1) = f (x(k)) + ∆tB[u(k) + d(k)], (42b)

where f (x(k)) = x2(k) + ∆t I−1τb(k) and B = I−1.203

4. Integrated ILSMC for UAV attitude control204

The proposed ILSMC is now applied to the outer loop of a quadcopter with a205

built-in PID controller in the inner loop for flight control. Here, the ILSMC is integrated206

in cascade control to improve the performance of the UAV trajectory tracking in dealing207

with noise, non-repeating uncertainties and disturbances. Figure 3 shows the block208

diagram of the proposed controller wherein the reference signal of a feedback controller209

is generated by the ILSMC signal û(j)(k) at a time instant k.

Figure 3. ILSMC in cascade PID-controlled quadcopter

210

4.1. Inner-loop PID controller211

As shown in Fig. 3, the output of the quadcopter PID controller is computed as

u(j)(k) = Kp ◦ ê(j)(k) + Ki∆t ◦
k

∑
κ=1

ê(j)(κ) + Kd∆−1
t ◦ [ê(j)(k)− ê(j)(k− 1)], (43)

where ◦ denotes the elementwise Hadamard product, Kp =
[
Kpφ Kpθ

Kpψ

]T
, Ki =[

Kiφ Kiθ Kiψ

]T
, and Kd =

[
Kdφ

Kdθ
Kdψ

]T
are PID control parameters. The error of the

PID feedback loop ê(j)(k) is defined as

ê(j)(k) = û(j)(k)− x(j)(k), (44)

where û(j)(k) is the ILSMC control signal.212

Substituting (44) into (43) yields:

u(j)(k) = D ◦ û(j)(k) + H(k), (45)

where
D = Kp + Ki∆t + Kd/∆t, (46)

H(k) = −D ◦ x(j)(k) + Ki∆t ◦
k−1

∑
κ=1

ê(j)(κ)− Kd ◦ ê(j)(k− 1)∆−1
t . (47)
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4.2. Outer-loop ILSMC213

As mentioned above, the proposed ILSMC is now added to the predesigned PID
controller for improving the UAV tracking performance. Substituting (45) into (10)
yields:

∆−1
t [ f (x(j)(k)) + ∆tB(D ◦ û(j)(k) + H(k) + d(k))− x2d(k + 1)

+ (c∆t − 1)e2(j)(k)] + µσ(j)(k) = 0.
(48)

The equivalent control of the outer-loop is then given by:

ûeq(j)(k) = D−1 ◦ (∆tB)−1{− f (x(j)(k))− ∆tBH(k) + x2d(k + 1)

− (c∆t − 1)e2(j)(k)− ∆tµσ(j)(k)}.
(49)

In the learning step, the iterative learning term is computed as

ûilc(j)
(k) = ûilc(j−1)

(k)− D−1 ◦ (∆tB)−1λS(j−1)(k), (50)

where S(j−1)(k) is obtained from the learning process at a previous iteration (j− 1) as214

per (15).215

That finally leads to the integrated iterative learning sliding mode control law (13)
for the quadcopter:

û(j)(k) = ûeq(j)(k) + ûilc(j)
(k). (51)

4.3. Implementation Procedure216

In summary, a step-by-step procedure to implement the proposed control scheme is217

summarized as below:218

• Step 1: Declare Ixx, Iyy, Izz, Kp, Ki, Kd, c, µ, λ.219

• Step 2: Set xd(k), j = 0, and ûilc(j)
(k) = 0.220

• Step 3: Compute the ILSMC û(j)(k) from (51) as a reference to the inner loop.221

• Step 4: Compute, from the measured states x(j)(k), e(j)(k), σ(j)(k), S(j)(k), and the222

selected TPI.223

• Step 5: Check if the tracking performance requirement is met to terminate the224

learning process. Otherwise, go to Step 6.225

• Step 6: Set j = j + 1, update ûilc(j)
(k) from (50), then return to Step 3.226

5. Simulation Results227

This section provides simulation results of the proposed ILSMC design. The param-228

eters used for simulation are obtained from the 3DR Solo drone [29], as listed in Table229

1. The selected control parameters are given in Table 2. Here, in the learning process, a230

suitable value for λ is chosen to obtain a fast convergence rate so as S(j)(k) is driven to231

zero quickly. In the control phase, coefficients cφ, cθ , cψ and µ are chosen by the desired232

error dynamics described in (3). Initially, the iterative learning control signal is set to233

zero, uilc(0)(k) = 0, and then updated after each iteration. To evaluate performance of234

the proposed controller, we have compared it with other techniques available including235

the PD feedback controller, PD-typed ILC [19], adaptive twisting sliding mode controller236

(ATSMC) [29], and adaptive finite-time control scheme (AFTC) [30].237

5.1. Step response in nominal conditions238

In this section, the performance of the proposed controller is evaluated via step239

responses in nominal conditions where disturbances and uncertainties are set to zeros.240

The desired reference attitude angles are set to φd = −20◦, θd = 20◦, and ψd = 60◦241

at 1s. Simulation results of step responses and control signals are shown in Fig. 4, in242

which the black step signal is the desired angle and responses of ATSMC, AFTC, PD,243
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Table 1: Parameters of the 3DR Solo drone

Parameters Value Unit

m 1.5 kg
l 0.205 m
g 9.81 m/s2

Ixx 9.1× 10−3 kgm2

Iyy 16.4× 10−3 kgm2

Izz 24.1× 10−3 kgm2

Table 2: Control paremeters

Parameter Value Parameter Value

cφ 50 µ 10
cθ 50 λ 0.9
cψ 20 - -

PD-ILC, and the proposed ILSMC controllers are depicted in cyan, green, magenta,244

blue, and red colors, respectively. It can be seen from Fig. 4 for all three orientation245

angles that while the ATSMC and AFTC provide some oscillations in the control, and the246

PD presents a slow response, both iterative learning-based techniques, the ILSMC and247

PD-ILC, exhibit fast responses with zero steady-state error. The PDILC, however, incurs248

a large overshoot, whereas ILSMC is able to maintain the desired dynamics without249

overshoot owing to the merits of sliding mode control. Notably, the fast response of250

ILSMC in comparison to ATSMC, AFTC, PD, ILC and PD is attributed to the choice of251

c = diag(cφ, cθ , cψ) and µ. A faster transient response, however, requires higher control252

efforts that may go beyond the physical limits imposed by the motors and power supply253

for the drone. Moreover, the proposed controller is chattering-free in the steady state.254

5.2. Trajectory tracking performance under disturbances and uncertainties255

To evaluate the tracking performance of ILSMC under the presence of uncertain-
ties and disturbances caused by load variations, the reference attitude angles in this
simulation are set, in degrees, as below:

φd(k) = 20− 20sin(2k),

θd(k) = 20 + 20sin(2k),

ψd(k) = 20 + 60sin(2k).

(52)

For the sake of performance evaluation, the system is injected with a disturbance at
t = 10s whose components are:

dφ = dθ = dψ = −0.2. (53)

Considering 20% loading conditions, the model uncertainties are introduced by
setting:

Îxx = 1.2Ixx, Îyy = 1.2Iyy, Îzz = 1.2Izz, (54)

where Îxx, Îyy, and Îzz are the estimation of Ixx, Iyy, and Izz, respectively.256

Figure 5 shows the tracking performance of the attitude angles while Table 3257

presents the TPI, for which the integral time absolute error (ITAE) is adopted here,258

for all angles. It can be seen that the PD controller cannot cope with disturbances259
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(a) Step response

(b) Control effort
Figure 4. Step response in nominal condition



Version October 4, 2021 submitted to Journal Not Specified 14 of 22

Figure 5. Performance in the presence of disturbances and uncertainties

Table 3: ITAE of UAV attitude control angles

UAV angle (deg) ATSMC AFTC PD PD-ILC ILSMC
Roll 5.03 2.03 3344.2 39.91 0.255
Pitch 3.87 1.40 3468.4 55.60 0.261
Yaw 3.47 2.42 3323.0 149.89 0.444

with large tracking errors at t = 10s and high values of ITAE. As with PDILC, it can260

suppress disturbances but suffers from control overshoot and a noticeable error. Both261

the ATSMC and AFTC techniques present relatively good tracking performance with262

small ITAE, between 1.40 and 5.03. The proposed ILSMC presents a relatively large263

tracking error at the first iteration (since uilc(0) = 0), but owing to the learning ability, the264

tracking error decreases over iterations by updating the iterative learning control term265
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after each iteration. As the tracking performance is improved significantly, at the last266

iteration, ILSMC results in a smallest ITAE among the considered techniques. Besides,267

the absolute error is also smallest, almost zero in steady state, as shown in the zoom-in268

figure, demonstrating the advantage of the proposed ILSMC.269

Figure 6 shows the control efforts in the presence of disturbances and uncertainties.270

It can be seen that its magnitudes increase after 10s, which implies that more energy271

is required to compensate for the external disturbances. More importantly, the control272

efforts of ILSMC display oscillation only in the transient-state, but no chattering in the273

steady-state, which is beneficial for practical implementation.274

Figure 6. Control efforts in the presence of disturbances and uncertainties

To evaluate the effect of the proposed learning mechanism, the ITAE values are275

computed for ILSMC after each iteration with different values of λ. The results up to 15276

iterations are presented in Fig. 7. They indicate that the ITAE of the all three attitude277

angle errors quickly decreases and converges to zero after several iterations. To induce a278

fast system sliding mode, a higher rate of convergence is expected to select. It can be279

seen in Fig. 7 that this can be obtained when λ is close to 1. In this work, λ = 0.9 is280

chosen to achieve the desired control performance.281
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Figure 7. ITAEs of the tracking errors after each

6. Experimental Validation282

This section evaluates the performance of the combined ILSMC and PID control283

algorithm in the trajectory tracking problem for our UAV testbed, in which a built-in284

PID is already employed.285

6.1. Experimental setup286

The setup for experiments is shown in Fig. 8, using a 3DR Solo drone with its287

parameters given in Table 1 [39]. It consists of two Cortex M4 168 MHz processors used288

for low-level control and one ARM Cortex A9 processor used for running the Arducopter289

flight operating system. The drone is equipped with a camera, a laser scanner, and290

environmental sensors for data acquisition. During experiments, communication data,291

including control reference signals and drone sensor outputs, are transmitted to the292

ground control station via the local network established by the drone system. The293

Mission Planner software is connected to the network to upload the flight plan to the294

drone and log flight data for analysis. In experiments, the PID gains are set to their295

default values implemented in the 3DR Solo. From the desired and actual roll, pitch, and296

yaw angles, the tracking error is computed.297

Figure 8. System architecture
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6.2. Real-time data validation results298

The steps for conducting experiments to validate the trajectory tracking perfor-299

mance of the proposed ILSMC are as follows. First, a trajectory is predefined with300

a starting point being set at the home position of the drone in an absolute frame of301

reference, as depicted in Fig. 9. After that, the longitude, latitude, and altitude of the302

waypoints forming the trajectory are imported into Mission Planner as depicted in Fig.303

10. Next, those waypoints are uploaded to the 3DR Solo to fly automatically as shown in304

Fig. 11. Then, the reference and actual attitude angles are logged by Mission Planner as305

shown in Fig. 12 for comparison. The errors between those angles are used to update the306

iterative learning term. Finally, the trajectories of the 3DR Solo drone obtained by using307

the built-in PID controller are compared with the results obtained by using ATSMC,308

AFTC, PD-ILC, and the proposed ILSMC.309

Figure 9. Predefined trajectory

Figure 10. Imported trajectory
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Figure 11. Flying 3DR Solo drone

Figure 12. Logged flight data

The comparison is performed by setting the references obtained from the 3DR310

Solo drone under similar control settings as in the simulation. Figure 13 shows the311

comparison results typically for the UAV roll, pitch and yaw responses. It can be seen312

that the deviation between the reference and the actual roll angle controlled by the built-313

in PID is relatively high due to disturbances. The advanced techniques can improve314

the tracking performance in which ILSMC remains the best by referring to its smallest315

tracking error, as can be seen clearly in the zoom-in insets. The results obtained confirm316

the validity and efficiency of the proposed approach.317
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Figure 13. Tracking performance with real-time data

In real-time experiments, the control efforts recorded are shown in Fig. 14, where318

the steady-state yaw torque is a constant as the quadcopter was controlled to lift up with319

a linearly increasing height while making a circular trajectory during the test.320
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Figure 14. Control efforts with real time data

7. Conclusion321

We have proposed an effective control technique called the ILSMC for the tracking322

control problem of quadcopters subject to disturbances and uncertainties. The control323

signal consists of an equivalent term to control the system states within the desired324

sliding surface, and an iterative learning term to drive the system states toward the slid-325

ing surface and then remain in the sliding surface despite the presence of uncertainties326

and disturbances. The iterative learning signal is updated following some iterations to327

improve the tracking performance by using the data acquired from previous iterations.328

Simulation results show in the case of disturbances and uncertainties that, the iterative329

learning sliding mode controller presents the smallest tracking errors compared to some330

other existing control techniques used for quadcopter control. For UAVs with built-in331

PID controllers, the proposed control scheme can be integrated in a cascade structure332

to improve the trajectory tracking accuracy and robustness. Field tests have been per-333

formed and validation with real-time experimental data has been conducted to confirm334

the advantages of the proposed approach. Our future work will focus on extending the335

learning mechanism to enable the control of multiple UAVs for real-time formation.336
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