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Abstract—In this paper, we present a novel approach that
predicts spatially and temporally crowd behaviour for robotic
social navigation. Integrating mobile robots into human society
involves the fundamental problem of navigation in crowds. A
robot should attempt to navigate in a way that is minimally
invasive to the humans in its environment. However, planning
in a dynamic environment is difficult as the environment
must be predicted into the future. This problem has been
thoroughly studied considering the behaviour of pedestrians
at the level of individuals. Instead, we represent a pedestrian
crowd by its macroscopic properties over space, such as density
and velocity. With this spatial representation, we propose
to learn a convolutional recurrent model to predict these
properties into the future. The key design of a probabilistic
loss function capturing the crowd’s macroscopic properties
empowers the spatio-temporal crowd prediction. Using a social
invasiveness metric defined on these properties predicted by
our convolutional recurrent model, we develop a framework
that produces globally-optimal plans in expectation. Extensive
results using a realistic pedestrian simulator show the validity
and performance of the proposed social navigation approach.

I. INTRODUCTION

We live in a world where robots and humans co-exist;
understanding each other’s intention and behaviour is crucial
for safe interactions. When navigating in a dynamic crowd,
humans tend to anticipate the motion of other nearby agents
and plan accordingly to reach a destination. This behaviour
anticipation allows the humans to manoeuvre in crowds with
minimum social invasiveness. Thus, humans comply to social
norms when traversing pedestrian crowds.

Robots have been deployed in crowded environments
ever since late 1990s at the Deutsches Museum in Bonn,
Germany [1]. They are used in airports [2], museums [3],
downtown side walks [4], shopping malls [5] and numerous
other populated environments. However, socially compliant
robot navigation is a difficult problem.

Robot motion planning in dynamic environments is a
large and active research area, covering a wide variety of
approaches, from potential field [6], velocity obstacle [7], and
graph-based [8] methods to reinforcement learning [9]. In
developing planners for dynamic crowds, different work has
focused on different goals such as reaching the destination
as efficiently as possible [1], [10], or maneuvering through
a crowd with as much human-like motion as possible [9].
Our objective is to develop a planner which reaches the
destination minimising social invasiveness.

In all of these scenarios, the robot’s goal is to reach a
destination, while manoeuvring through a changing environ-
ment. Many approaches can be described as a form of model
predictive control; utilising a receding horizon prediction and
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Fig. 1. A minimally invasive trajectory planned through a dynamic
pedestrian crowd. The predicted crowd density through time is shown in
5 semitransparent slices. The blue cell colour represents the crowd density,
darker being more dense. Note time increases from bottom to top.

optimising over a short window. Such approaches require the
existence of the titular “predictive model”.

Crowd-modelling has been studied in the past with various
objectives [11]: crowd planning, management and evacua-
tion [12]; entertainment (movies and games) [13]; and traffic
flow [14]. It is a complex problem since the crowd can impact
an individual, and an individual can impact the whole crowd.

Crowds can be modelled based on their microscopic or
macroscopic properties. Microscopic modelling focuses on
the behaviour of individual pedestrians and their interactions
with others, while macroscopic modelling techniques focus
on the crowd behaviour as a whole. While microscopic
modelling is more applicable to sparse crowds with small
numbers of pedestrians and few interactions, macroscopic
modelling is more suitable when crowd densities are high
and the total number of pedestrians modelled is large.

Crowd prediction using microscopic properties are often
based on Helbing’s seminal work on social forces [15],
[16], [17], and metrics inspired by social forces such as
interaction feature strings [18]. The main issue with many of
these methods is that they are specifically hand-engineered
to model the crowd.

Data driven approaches have advanced over the last few
decades, providing an alternative to hand-engineering spe-
cific rules. In the space of data driven approaches, crowds
have been modelled by their microscopic properties such
as relative distance between agents in a scene [19]; hid-
den state sharing of nearby agents in a Recurrent Neu-
ral Network (RNN) [20]; or Euclidean distance between



agents, bearing angle of agents, and distance of closest
approach [21].

Analyzing crowds using gas-kinetic and fluid-dynamic
models can be first found in [22] and [23]. Later, [24]
modelled the crowd as a continuum fluid with a density
and flow velocity, while [25] modelled crowd interactions
via a dynamic potential field. In our previous work [26], we
modelled the crowd based on its stationary (constant in time)
macroscopic properties.

One of the major reasons for modelling crowds using
microscopic crowd behaviour is that people tend to have
distinct characteristics and personal goals [25]. However,
when doing so, each individual has to be tracked and
predicted separately. Moreover, computation time grows with
the number of pedestrians in a scene. Microscopic properties,
describing individuals, have less freedom at higher crowd
densities [24] and thus have a low effect on the overall
crowd behaviour. This emphasizes the importance of using
macroscopic properties at larger scales.

Thus, we propose a framework using macroscopic crowd
properties to probabilistically model the behaviour of the
crowd into an uncertain future, and subsequently use the
predictions to plan a trajectory through the crowd minimising
the expected social invasiveness, shown in Fig. 1. This work
extends our previous work [26] from a stationary flow field
to the dynamic flow case, allowing current and ongoing
observations to inform and improve the robot’s trajectory.

We also note that our approach does not suffer from the
[freezing robot problem [27] that occurs with receding horizon
methods. As our predictions effectively capture the future
uncertainty, we are able to plan minimising the expected
invasiveness all the way to the destination. Since the near-
future is more certain, actions in the present are deemed less
costly and actively encouraged.

II. BACKGROUND
A. Continuous Crowd Representation

As per our previous work [26], let us describe the crowd by
a set of macroscopic properties defined as continuous func-
tions over the underlying space. The density function p(x) is
defined as the expected number of pedestrians at position x,
per unit area. This describes how crowded different parts
of the environment are. The mean velocity function p.,(x)
is defined as the expected velocity of pedestrians found at
position x. This describes the predominant flow of the crowd.
Finally, the velocity variance function o2(x) represents
the scalar variance of the velocity of pedestrians found at
position x. This describes the variability or irregularity of
the crowd flow. A visualisation of the crowd representation
is given in Fig. 2.

We assume that such properties can be captured for the
entire environment of interest, such as from an overhead
perspective. However, this is not a troublesome constraint
as many crowded pedestrian spaces of interest (such as train
stations, airports, shopping centres, and popular courtyards)
have high ceilings or other elevated structures amenable to
such sensing modalities.
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Fig. 2. A pedestrian crowd, and its macroscopic properties. The red points
and arrows represent pedestrians at one instance in time. The continuous
crowd representation is shown underneath, on a discretised grid generated
using the method outlined in Section VI. The blue cell colour represents the
density p. The green arrows represent the mean velocities p,,. The green

circles, centered at the head of each arrow, represent the velocity variances,
with radii of one standard deviation o,.
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B. Social Invasiveness Metric

A robot’s presence, at position x, with velocity v,., will
interfere with the crowd. The social invasiveness metric
is derived, crucially depending only on the macroscopic
properties of the crowd representation, as

T = p(x) (e () = vl +03(x,)) - (D

This definition of Z, captures a rate of invasiveness; to
calculate the fotal invasiveness of a trajectory, this value
needs to be integrated over time as in (3).

This definition of invasiveness is proportional to two
factors: the expected number of interactions the robot will
have with the crowd, and the magnitude of the relative
velocity (and thus inversely proportional to the available
time to act). More detail on the derivation of the crowd
representation and the associated social invasiveness metric
can be found in our previous work [26].

Note that Z,. can be rigorously interpreted as an expec-
tation, given the probabilistic nature of the macroscopic
representation, a feature we exploit in Section IV.

C. Spatio-Temporal Prediction

Spatio-temporal learning is a non-trivial problem due to
the dimensionality of the space. It requires learning both the
spatial correlations and their sequential nature to be able to
forecast (by definition: extrapolate) into the future.

A framework for spatio-temporal prediction was presented
in [29] to approach the difficult problem of precipitation
forecasting. A model is learnt to predict future radar echo
maps from previous observations. The approach employs an
encoder-forecaster structure consisting of ConvRNN blocks.
The encoder-forecaster structure was later improved in [28].
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Fig. 3. The ConvRNN encoder-forecaster model. Observations from the
past C_1 and Co are used to generate predictions into the future C; and Ca.
This structure can be repeated for arbitrary input and output sequence
lengths. Figure adapted from [28].

The approach tackles each of the issues of spatio-temporal
prediction in turn. The spatial relationships between fea-
tures are captured by Convolutional Neural Network (CNN)
blocks. Sets of 2-dimensional kernels are applied to the input
images. As is common for convolutional frameworks, higher-
level features are captured by downsampling layers, with
successively lower spatial resolutions. The temporal rela-
tionships are captured by Recurrent Neural Network (RNN)
blocks. In addition to mapping input to output (vertically),
RNN blocks also pass hidden states sequentially through time
(horizontally, see Fig. 3). To capture the spatial and temporal
correlations together, the linear operations of a traditional
RNN block are replaced with convolutional operations; pro-
ducing a ConvRNN block.

A tower of ConvRNN and downsampling blocks is iterated
temporally for each input observation, encoding a sequence
of input images to a set of hidden feature images at multiple
resolutions. A similar tower, reversed with upsampling re-
placing downsampling, transforms the encoded images into
output predictions at future time steps. The recurrent nature
of the encoder-forecaster framework lends itself particularly
well to online usage, as hidden states can be stored, rendering
each observation integration or prediction a constant-time
operation.

We use this architecture as a basis to tackle the problem
of forecasting dynamic pedestrian crowds.

III. PROBLEM FORMULATION

The robot is modeled as a point x, in a 2-dimensional
space X C R? with velocity v, € R2. The robot’s trajectory,
defining both position and velocity through time, is given
by 1, in the space of all continuous trajectories ¥ € R — X:

Xp = Yy (t) >

v, =p(t) .

A pedestrian crowd C exists in the environment, changing
over space and time, described by its macroscopic properties
density p, mean velocity p,, and velocity variance o2
(described in Section II-A). The expected social invasiveness
of the robot Z,., as formulated in Section II-B, is defined in
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terms of these properties, locally at the position and time of
the robot’s presence.
At time t, the robot can observe the crowd properties C;.

Problem 1. Given past observations of the crowd Ci<o,
a measure of expected invasiveness L., the robot’s dynam-
ics (2), its current position X, and goal position Xgoq; find
the trajectory minimising the total expected invasiveness:

T

i, T* = arg min/IE [Z, | Ci<o] dt 3)
TeR>o 0

where

’lpr (O) = Xecurr» and
¢7(T) = Xgoal -

We note that this formulation informs the robot only of
the macroscopic properties of the crowd. As such, to avoid
collision with individual pedestrians, lower-level sensing and
collision avoidance behaviours would need to be incorpo-
rated into any real-world system; this is not considered
further in this paper.

To approach this problem, we first construct a model to
predict the crowd properties into the future. Subsequently, the
optimal trajectory is found using a sampling-based motion
planning algorithm.

IV. PROBABILISTIC CROWD PREDICTION
A. Probabilistic Crowd Representation

Let us emphasise the probabilistic interpretation of the
crowd representation using the properties describe in Sec-
tion II-A. These macroscopic properties describe statistical
moments of a Marked Spatial Point Process. A realisation
of this random process C is a set of positions x; (represent-
ing pedestrian locations), each marked with an associated
velocity v;:

(xi,vi) €C. “)

The crowd density p(x) is the intensity function of the
spatial point process:

EW&BH://mwdﬁ, (5)
xeB

where N¢ is the counting process of the point process. Intu-
itively, the expected number of pedestrians within region B
is given by the total density within that region.

The spatial point process is marked by the addition of
pedestrian velocities. The first and second moments of the
velocity distribution are described as

py(x) =E[v; | x; =X]

2 (6)

og(x)=Var|v; | x; = %],

where Var [-] indicates the scalar variance, defined as the
expected value of the squared Euclidean distance from the
mean: Var[x] = E ||x—IE[x}||2] Note that just as the
intensity function of the point process can vary over space,
so too can the velocity distribution.



In practice, the crowd representation is discretised over
space and time, which could conceivably be captured as a
video stream from an overhead camera. Thus, the crowd
properties p, p,, and o2 are approximated as piece-wise
constant with respect to x and ¢.

B. Learning Crowd Prediction

Based on the ConvGRU model proposed in [28] and
described in Section II-C, we propose a variant where
the input is a sequence of n observations of the crowd
properties C1_ .9, and learn a model fy to estimate h future
observations 61:h:

Crn = fo (C1—n0) - (7)

The input observations: raster images over space of
[p, Ky, crf,] (with a channel dimension size of four: 1 for p,
2 for vector p, and 1 for scalar 02), are fed sequentially
into the encoding tower. The forecasting tower produces a
corresponding sequence of predictions, as raster images like
the input. The density p and velocity variance o2 channels
are exponentiated (element-wise) to constrain their values
positive.

As our predicted quantities represent moments of the
random variables of the crowd, we can optimise the pro-
posed model parameters by Maximum Likelihood Estima-
tion (MLE) if we assume the underlying distributions. Note
that this is largely different from [28], where the loss function
is simply deterministic.

Now let us assume the crowd point process is Poisson, thus
the number of pedestrians found in any region is a Poisson
random variable, independent of neighbouring regions:

Ne¢(B) ~ Poisson // p(x)dx? | . (8)
€B

We also assume p,(x) and o2(x) describe a 2-

dimensional isotropic Normal distribution,
Vi v N (g (%), 0o (x:)Ta) ©)

Then the MLE is formulated by minimising the cross
entropy of the predicted distributions with respect to the true
data. This is equivalent to minimising the forward Kullback-
Leibler (KL) divergence.

The parameters 6 of the model (7) are optimized by

¢)

where & is the prediction horizon used during training.

Taking the KL divergence between point processes is
computed by applying Campbell’s theorem. The nature of
the marked point process requires the velocity terms to be
weighted by the intensity p;

DKL(C"G) :/ Dy (Poisson (p)||Poisson (p))
xeX
+p D (N (g, 0212) [N (fay, 6215)) dx°

(10)

h
f* = argmin Dk, (CT

(11)

Note that p, p., 03, and their estimations all depend on
position x, however this dependence is elided for notational
brevity.

The KL divergence between respectively Poisson random

variables and 2-dimensional isotropic normal variables are:

D 1, (Poisson (p)||Poisson (p))

=pbg§+ﬁ—p> (12)
Dicr (N (pty, 03T2) [V (i1, 6715))
R T s 02 o2 _ (13)

We note that many of these terms can be ignored for the
purposes of minimisation as only the estimated properties C
depend on the model parameters 6.

V. PLANNING AND RE-PLANNING

Once the environment can be estimated into the future, so
too can the associated cost of prospective trajectories into
that future. Using the asymptotically-optimal Probabilistic
RoadMap (PRM*) algorithm, we randomly sample states in
position and time, and connect neighbours forwards in time
to form a graph.

While we do not explicitly consider the existence of any
static obstacles, we note that their inclusion into both the
prediction and planning phases of the framework would be
trivial.

Starting from the robot’s initial position, the graph is
explored using Dijkstra’s algorithm. Edge costs are evaluated
when reached, as per the invasiveness definition (1). The
associated integration is performed along a straight line path
at a constant velocity; values for density p, velocity mean i,
and variance o2 are obtained by ray-tracing through the
raster prediction volume.

Through prediction and planning, the crowd influences the
path of the robot; however the influence of the robot’s path
on the crowd prediction is neglected. As the aim of the
optimisation in (3) is to minimise this interaction, we assume
this influence to be small (from the macroscopic perspective)
and can safely ignore it.

VI. EXPERIMENTS

The predictive model and planning framework is evalu-
ated on a simulated dataset. The well known “pedsim”
pedestrian simulator [2] was used to generate a dense crowd
scenario. This point-based data was rasterised to gridded
volumetric data, with spatial resolution 1m X 1m and tempo-
ral resolution 0.5s. A Hann filter was applied to the spatial
dimension to smooth the result. Positions and velocities were
accumulated over time to generate the required moments:
density p, mean velocity p.,, and velocity variance o2 as in
Fig. 2.

We consider this rasterisation process generates a dataset
similar to one that could conceivably be generated from a
system with an overhead video camera, without tracking
individual pedestrians.
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Fig. 5. Qualitative comparison of predictions between different model
optimisation functions. Two models are informed with 10 observations and
used to predict 10 frames into the future (n = 10, h = 10). The crowd
properties are shown as described in the caption of Fig. 2. From left to
right: the true crowd properties C10, the the predicted crowd properties C10
from the MSE model, and the the predicted crowd properties C1o from the
proposed KL model.

A. Prediction Results

The model (7) for crowd behaviour prediction was de-
signed and optimized as described in Section IV-B. An
example of the models’ output is given in Fig. 4. The model
was trained on input and output sequence lengths (n and
h respectively) of 10 frames (5s), on grids of 12 x 12
(12m x 12m).

It can be clearly seen that the model becomes less con-
fident in it’s predictions over time: the predicted densities
become blurred over space and the velocity variances become
larger while the means reduce.

In Fig. 5, we qualitatively compare the predictions of the
proposed model against a similar model trained using the
deterministic Weighted Mean Square Error (WMSE) loss.
The WMSE model has the error in the velocity prediction
weighted by the (true) density. In this way, the model is not
penalised for its predicted velocity if there are no pedestrians.

It can be seen that the density predictions p are blurry,
indicating that both models are uncertain about the exact
location of pedestrians. Likewise, the predicted mean veloc-
ities ft,, are quite similar. However, the predicted velocity
variances 62 between these models are significantly differ-
ent: the WMSE model is very confident in its velocity predic-
tions whereas the KL model is quite uncertain. Comparing
these predictions to the ground-truth values, it can be seen

Macroscopic crowd prediction. From top to bottom: a time sequence of 10 observations input into the model C_g.0, the 10 successive

that the WMSE model’s confidence is unwarranted. Only
the proposed model, trained using forward KL divergence,
is able to capture the uncertainty of future predictions.

B. Planning Results

Based on the prediction from the model, the planner is
developed as described in Section V.

We analysed our framework by comparing the trajectories
produced by planning with four predictive crowd models:

Stationary flow: The crowd properties are approximated as
constant in time, calculated from the statistical moments
of a large historical dataset of crowd observations. This
is equivalent to the method proposed in [26].

Proposed, once: Given n = 10 past crowd observations,
future crowd properties are estimated using the model
trained in Section VI-A. The plan is performed to
completion, ignoring any further observations of the
crowd.

Proposed, online: Given n = 10 past crowd observations,
future crowd properties are estimated using the model
trained in Section VI-A. As the plan is being executed,
new crowd observations are acquired and are used to
inform the model. At every observation (0.5s), a new
plan is generated optimising with respect to the updated
crowd predictions.

Omniscient: Instead of predictions, the true values of the
future crowd properties are used for planning. This
model is use for comparison, as the perfect solution.

Four different test scenarios were executed with each
of predictive models and the average results compared in

TABLE I
COMPARISON OF PLANNING METHODS. LOWER COST IS BETTER.

planning method trajectory cost

expected actual
stationary flow [26] 4.061 3.784
proposed, once 2.147 3.344
proposed, online 1.140 1.124
omniscient 0.310
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Fig. 6. Planned trajectories through a dynamic crowd environment. Sequentially from left to right, then top to bottom, each frame represents 1 second in
time. The crowd properties are shown as described in the caption of Fig. 2. Four trajectories, from the top-right to the bottom-left, are shown optimising
the expected social invasiveness with differing crowd models: a stationary flow model in purple, the proposed model (run once) in red, the proposed model

run online in orange, and an omniscient model in

. The full trajectories are drawn in every frame semitransparently, while the path segment traversed

in the current frame is drawn opaque. See Section VI-B for details. Figure best viewed in colour.

Table I. Trajectories generated for one such scenario are
shown in Fig. 6.

It can be seen that the proposed planners perform better
than the stationary flow model. We note that the stationary
flow model is informed in a different way to our proposed
methods: the proposed models require only a short horizon
of past observations Cj_,.p, whereas the stationary flow
model is calculated from a large historical dataset from
the specific environment Ci_ps.0 (Where M > n). This
allows the stationary flow model to perform well in the
repetitive simulation environment, however we doubt these
results reflect the potential real-world performance under
more variable conditions.

The proposed online framework drastically out-performs
the other methods. This can be attributed to the fact that
up-to-date observations of the crowd are very important for
correct predictions. Over our test scenarios, this approach
resulted in a 70% reduction in cost over the stationary flow
assumption of [26]. Interestingly, the online planner also
completed its trajectories in half the time (50% on average)
compared to the other models. This can be explained by the
fact that the online model can be more certain about it’s
immediate predictions. Comparatively, the once planner is
uncertain about the distant future, and appropriately travels
at a more conservative velocity.

The omniscient planner, expectedly, performs very well.
We note, however, that the generated trajectory does not
appear very socially-compliant. It waits and then darts
between open spaces narrowly avoiding pedestrians, such
behaviour would probably be quite worrying for the pedes-
trians involved. The proposed framework avoids this issue
because the predictive model is never completely certain
about existence of pedestrians or their velocities.

The solutions generated by the proposed methods min-
imise the expected social invasiveness, and give complete
trajectories to the goal. As shown in Fig. 4, crowd predictions
become more conservative into the future, which (due to

the nature of the invasiveness metric) produces an incentive
for the robot to reach the goal sooner. This property shows
why our approach does not suffer from the freezing robot
problem [27].

VII. CONCLUSION

We present a framework for planning in dynamic pedes-
trian crowds. The key aspect of the proposed framework
is the spatio-temporal forecasting model that enables prob-
abilistic prediction of the macroscopic properties of the
crowd. A measure of invasiveness for a robot navigating in
crowded environments is calculated using these macroscopic
properties. The social navigation problem is formulated as a
search to find the least invasive robot path in expectation, and
is solved using the asymptotically-optimal PRM*. Our results
show that our probabilistic forecaster is able to produce
sequences of crowd behaviour, which are more suitable for
planning under uncertainty than their deterministic counter-
parts. In summary, our approach enables a robot to plan
a path through a dynamic crowd and reach its destination
following a socially complaint trajectory.

In the future we are aiming to test our approach with a
robot navigating a busy train station.
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