
Knowledge Transfer Model for the Development of Software Requirements Analysis CASE Tools to Be Used in

Cross Time-Zone Projects

Zenon Chaczko, Jenny Quang, Bruce Moulton

Knowledge Transfer Model for the Development of Software

Requirements Analysis CASE Tools to Be Used in Cross Time-Zone

Projects

Zenon Chaczko

*1
, Jenny Quang

1
,

Bruce Moulton

*2

*1

Corresponding author

 School of Electrical, Mechanical and Mechatronic Systems,
2,

School of Computing and Communication,

Faculty of Engineering and IT, University of Technology, Sydney, Australia

brucem@eng.uts.edu.au
doi: 10.4156/jdcta.vol4.issue1.1

Abstract

This article describes work undertaken to evaluate an

approach for developing collaborative requirements-

analysis CASE tools that are specifically designed to

address the needs of cross-time-zone development

teams, that is, teams spread across different

geographical locations around the world. Few of the

software requirements analysis computer assisted

software environment (CASE) tools readily available

are designed specifically for cross-time-zone

development activities. We propose a specifically

tailored data and knowledge-transfer model, and

investigate its suitability for the development of a

cross-time-zone oriented CASE tool. The approach

was used to develop a working prototype. The

approach and prototype will be further evaluated in a

collaborative undertaking involving the Wroclaw

University of Technology, the University of Technology

Sydney and the University of Arizona (UA).

Keywords

Knowledge transfer, requirements analysis, CASE,

cross-time-zone

1. Introduction

It is well known that doubling the size of a team

does not halve the development time. To reduce

development time, organizations have increasingly

been adopting a practice which makes use of additional

teams located in various spots around the world. This

“24 hour” mode of working is commonly found in

open source development projects, and increasingly

used by large companies. While one team sleeps,

another can continue the development during its

daylight hours. The Open Source community (For

example the Linux kernel and Apache web server

projects) has worked in this fashion for years. Many

large organizations including IBM, Sun Microsystems,

Cisco Systems, Nokia and Google also use

geographically and temporally spaced development

teams [1]. Twenty four hour continuous development

is ideal for tasks that have hard-deadlines or require

work completed as soon as possible. If a functional or

security bug is discovered in a mission critical

application, there is a need to find a solution within the

shortest period of time. For example, the approach

might enable a “three day solution” to be completed in

a 24-hour period. The two day difference might be

extremely valuable in terms of down-time costs.

However, the process whereby teams work in

different locations has significant effects on the way

that the work is structured and organized. For example,

the project leader is not available to the “night” team.

Each team must work independently of the other, and

each must hand over the work to the other at the end of

the shift.

The emerging trend in cross-time-zone

development is sufficiently prevalent that several

curriculum developers are exploring ways of enabling

students to gain experience in this mode of working

(e.g. [2][3][4]).

It is proposed that the development process might

benefit from efforts to acknowledge and convey both

explicit knowledge and tacit knowledge. Tacit

knowledge can be understood as un-codified

knowledge that leaves when employees leave the

project). This problem is ordinarily handled by

attempting to “convert” tacit knowledge into codified

knowledge, by way of documentation. However prior

research suggests certain aspects of tacit knowledge

can only be transferred through face-to-face contact

[5]. Nonaka and Nishiguchi suggest that most

knowledge is created not by individuals, but by

interaction and dialogue among several people [6].

Distributed teams have limited opportunities for face to

face contact, so such knowledge transfer issues are

10

International Journal of Digital Content Technology and its Applications

Volume 4, Number 1, February 2010

particularly relevant for cross-time-zone development

projects.

Prior work suggests that certain environments have

specific characteristics that render formal methods of

knowledge transfer inadequate. For example, one study

suggests that some engineering sites experience

difficulties during attempts to codify/document certain

aspects of their more experienced employee‟s

knowledge for simulation or formal training purposes

[7]. It has been proposed that inability to transfer

knowledge can be a hazard where there are safety

critical operations, and that this must be taken into

account during the design of workflow processes

[8][9]. Brown and Duguid suggest that knowledge

transfer is less facilitated by converting tacit to

declarative knowledge than by aligning the goals and

practices of employers and employees [10].

A vast range of computer assisted software

environment (CASE) tools can be used to assist

knowledge management during software development.

Many of the tools focus on providing support for a

range of complex abstract concepts and

representations, for example, UML, SDL, Z-spec etc.

A characteristic ordinarily exhibited by such tools is

that the complex levels of functionality can cause the

tool to be a hindrance to split teams where each hands

over work to the other at the end of each shift. At the

time of writing, very few of these tools appear to be

specifically designed to support cross-time-zone

software development, and this was the motivation for

evaluating a data/knowledge management approach for

the development of a software requirements analysis

CASE (SRAC) tool.

2. Method

A primary goal was to investigate the suitability of

a data/knowledge-transfer model for the development

of a SRAC tool. The work was to focus not on just the

analytical parts of the documentation, but rather the

entire shape of it. It was envisaged that the SRAC tool

should be suitable for diverse skill sets, and suitable for

the support of requirements analysis involving a

minimum of overhead while facilitating effective

document standardization and sharing of information

(requirements artifacts). The process was to draw from

IEEE Recommended Practice for Software

Requirements Specifications (IEEE 830-1998) [11].

The tool was intended to provide a framework for

standardization of system/software requirements

documentation at both local and global levels, and at

the same time remain a shared data repository that

enables exchange of information across different

locations, time zones, system development

environments and documentation formats.

The approach included considerations relating to

iterative and incremental development processes that

would be suitable for a cross-time-zone collaborative

development environment. It was proposed that such

teams would benefit from a structure for documenting

small iterations in development (8 hour shifts) and

methods for allowing for periodic resynchronization. It

was envisaged that it would be valuable to permit a

way for inter site issues arising from shift to shift to be

identified, documented and perhaps isolated and

planned to be rectified by the same or successive shifts.

An agile software development methodology known as

Scrum was chosen, in part because it focuses on

managing complex development processes iteratively.

Issues relating to handover-synchronization can be

handled using the Scrum process skeleton. From a

project management perspective, it was proposed that

the Scrum methodology may assist in synchronizing

intensive development tasks.

It was proposed that it would be useful from an

organizational knowledge point of view if data (for

example files) that was produced during a shift, and if

subsequent alterations to this data, could be captured

and correlated against work done in previous shifts.

The approach viewed the modifications to data as

being similarly noteworthy as the data itself. This

approach is different from existing tools, which over a

long period of time record only the persistent data of

the project.

It was noted that decision making in distributed

teams can also be fragmented, and individual teams

may make decisions that affect the entire project and

must be recorded and distributed to all teams.

To handle the above considerations we introduced

the concept of Eventflows. The Eventflows concept is

an adaptation of the Lifestreams concept coined by

Freeman and Gelernter [12]. Where Lifestreams record

the digital events of a single person, Eventflows record

the digital events of a project and the project artifacts.

Eventflows capture events and periods within the

project‟s global system, and capture and distribute

project knowledge (Figure 1). Events were classified as

any significant occurrence on the project that can be

captured or recorded by a development environment,

for example the login or logout of a system, the

commit of changes to a version control system or the

modification of a project artifact. A period is the

linking of two key events where on their own has little

or no value. Eventflows can be captured through

automated systems or through manual creation from

users. Eventflows can also be linked against individual

or groups of tasks defined in project management tools

such as Microsoft Project, thereby showing the actual

work that was required and accomplished to complete

the task.

11

Knowledge Transfer Model for the Development of Software Requirements Analysis CASE Tools to Be Used in

Cross Time-Zone Projects

Zenon Chaczko, Jenny Quang, Bruce Moulton

3. Evaluation of the approach

Considerations relating to the Eventflow methodology

led to the following attributes/constraints: (1) an

Eventflow must consist of both human readable and

application readable data; (2) it must include date and

time of creation; (3) it must include a human readable

description of event; (4) it must include a machine

readable description of event (implemented as

serialized object); (5) it must include a project

identifier; (6) it must include an artifact identifier.

The evaluation suggests that the database design

plays a crucial role in the design of a SRAC, because it

decides what data will be stored in the system, what

type of user queries will be easily provided and how

the rest of the system will interaction with the

database. Key data persistent components identified

during the evaluation of the approach include: (1)

account information and details pertaining to a user are

stored in a table, and each user is identified by a unique

key; (2) templates are stored table, each has a unique

id, entire templates are kept in text/XML format, each

has a reference to the XML stylesheets in an „XSLs‟

table; (3) documents created from templates are stored

in a „Documents‟ table, and documents are kept in

text/XML format and updated each time the document

is revised. Like the templates, each document has a

reference to the XML style-sheets in the „XSLs‟ table;

(4) to capture the historical changes made to an

existing document, when a change occurs, it is logged

in a “Change Log” table.

Figure 1. Entity Relationships arising considerations relating to the data/knowledge-transfer model

12

International Journal of Digital Content Technology and its Applications

Volume 4, Number 1, February 2010

c
la

s
s

 D
o

c
u

m
e

n
t

M
a

n
a

g
e

m
e

n
t

D
a

ta
b

a
s

e
C

o
n

n
e

c
ti

o
n

M
a

n
a

g
e

r

-
D

B
_D

E
LI

M
:

S
tri

ng
 {r

ea
dO

nl
y}

-
D

B
_N

A
M

E
_S

P
A

C
E

:
S

tri
ng

 {r
ea

dO
nl

y}
-

D
B

_P
A

S
S

W
O

R
D

:
S

tri
ng

 {r
ea

dO
nl

y}
-

D
B

_P
O

R
T

:
S

tri
ng

 {r
ea

dO
nl

y}
-

D
B

_U
R

L_
P

R
E

FI
X

:
S

tri
ng

 {r
ea

dO
nl

y}
-

D
B

_U
S

E
R

:
S

tri
ng

 {r
ea

dO
nl

y}
-

db
C

on
ne

ct
io

n:
 D

at
ab

as
e

=
nu

ll

+
cl

os
eA

llO
je

ct
s(

) :
 v

oi
d

+
D

at
ab

as
eC

on
ne

ct
io

nM
an

ag
er

()
-

du
m

pt
O

bj
ec

tH
an

dl
e(

O
bj

ec
tH

an
dl

e)
 :

vo
id

+
ge

tD
at

ab
as

eC
on

ne
ct

io
n(

) :
 D

at
ab

as
e

+
ge

tS
in

gl
eD

bO
bj

ec
tH

an
dl

e(
S

tri
ng

, S
tri

ng
) :

 O
bj

ec
t

+
pr

in
tS

er
ve

rIn
fo

()
: v

oi
d

H
tt

p
S

e
rv

le
t

M
a

in
C

o
n

tr
o

ll
e

r

~
fil

eM
ap

:
H

as
hM

ap
 =

 n
ew

 H
as

hM
ap

()
-

se
ria

lV
er

si
on

U
ID

:
lo

ng
 =

 1
L

{re
ad

O
nl

y}

+
do

G
et

(H
ttp

S
er

vl
et

R
eq

ue
st

, H
ttp

S
er

vl
et

R
es

po
ns

e)
 :

vo
id

-
do

G
et

P
os

t(H
ttp

S
er

vl
et

R
eq

ue
st

, H
ttp

S
er

vl
et

R
es

po
ns

e)
 :

vo
id

+
do

P
os

t(H
ttp

S
er

vl
et

R
eq

ue
st

, H
ttp

S
er

vl
et

R
es

po
ns

e)
 :

vo
id

P
a

re
n

tA
c
ti

o
n

G
e

tX
S

L
A

c
ti

o
n

-
se

ria
lV

er
si

on
U

ID
:

lo
ng

 =
 1

L
{re

ad
O

nl
y}

+
ex

ec
ut

e(
H

ttp
S

er
vl

et
R

eq
ue

st
, H

ttp
S

er
vl

et
R

es
po

ns
e)

 :
R

eq
ue

st
D

is
pa

tc
he

r

D
o

c
u

m
e

n
tD

a
ta

A
c

c
e

s
s

+
ad

dD
oc

um
en

t(S
tri

ng
, S

tri
ng

) :
 S

tri
ng

+
de

le
te

D
oc

um
en

t()
 :

bo
ol

ea
n

+
D

oc
um

en
tD

at
aA

cc
es

s(
)

+
ge

tD
oc

um
en

tID
()

: i
nt

+
ge

tD
oc

um
en

tL
is

t()
 :

A
rra

yL
is

t
+

ge
tD

oc
um

en
tX

M
L(

S
tri

ng
) :

 S
tri

ng
+

ge
tH

is
to

ry
()

: v
oi

d
+

se
tD

oc
um

en
t()

 :
bo

ol
ea

n
+

se
tH

is
to

ry
(S

tri
ng

, S
tri

ng
) :

 v
oi

d
+

up
da

te
D

oc
um

en
t(S

tri
ng

, S
tri

ng
) :

 v
oi

d

P
ro

c
e

s
s

D
o

c
u

m
e

n
t

+
co

nv
er

tD
oc

C
on

te
nt

(S
tri

ng
, S

tri
ng

) :
 S

tri
ng

+
is

D
ig

it(
ch

ar
[])

 :
bo

ol
ea

n
+

P
ro

ce
ss

D
oc

um
en

t()
+

w
rit

eT
xt

(S
tri

ng
, S

tri
ng

[],
 S

tri
ng

[],
 S

tri
ng

) :
 v

oi
d

P
a

re
n

tA
c
ti

o
n

D
o

c
u

m
e

n
tG

e
tX

M
L

A
c

ti
o

n

-
se

ria
lV

er
si

on
U

ID
:

lo
ng

 =
 1

L
{re

ad
O

nl
y}

+
ex

ec
ut

e(
H

ttp
S

er
vl

et
R

eq
ue

st
, H

ttp
S

er
vl

et
R

es
po

ns
e)

 :
R

eq
ue

st
D

is
pa

tc
he

r

P
a

re
n

tA
c
ti

o
n

D
o

c
u

m
e

n
tL

is
tA

c
ti

o
n

-
se

ria
lV

er
si

on
U

ID
:

lo
ng

 =
 1

L
{re

ad
O

nl
y}

+
ex

ec
ut

e(
H

ttp
S

er
vl

et
R

eq
ue

st
, H

ttp
S

er
vl

et
R

es
po

ns
e)

 :
R

eq
ue

st
D

is
pa

tc
he

r
+

ge
tT

em
pl

at
eL

is
t()

 :
A

rra
yL

is
t

P
a

re
n

tA
c
ti

o
n

G
e

tN
e

w
D

o
c

u
m

e
n

tA
c

ti
o

n

-
se

ria
lV

er
si

on
U

ID
:

lo
ng

 =
 1

L
{re

ad
O

nl
y}

+
ex

ec
ut

e(
H

ttp
S

er
vl

et
R

eq
ue

st
, H

ttp
S

er
vl

et
R

es
po

ns
e)

 :
R

eq
ue

st
D

is
pa

tc
he

r

P
a

re
n

tA
c
ti

o
n

S
a

v
e

D
o

c
u

m
e

n
tA

c
ti

o
n

-
se

ria
lV

er
si

on
U

ID
:

lo
ng

 =
 1

L
{re

ad
O

nl
y}

+
ex

ec
ut

e(
H

ttp
S

er
vl

et
R

eq
ue

st
, H

ttp
S

er
vl

et
R

es
po

ns
e)

 :
R

eq
ue

st
D

is
pa

tc
he

r

T
e

m
p

la
te

D
a

ta
A

c
c

e
s

s

+
ge

tT
em

pl
at

eI
D

()
: i

nt
+

ge
tT

em
pl

at
eL

is
t()

 :
A

rra
yL

is
t

+
ge

tT
em

pl
at

eX
M

L(
S

tri
ng

) :
 S

tri
ng

+
T

em
pl

at
eD

at
aA

cc
es

s(
)

F
ig

u
re

 2
.

D
ia

g
ra

m
 r

eg
ar

d
in

g
 d

o
cu

m
en

t
m

an
ag

em
en

t,
 a

ri
si

n
g

 f
ro

m
 c

o
n

si
d

er
at

io
n

s
re

la
ti

n
g

 t
o

 t
h

e
d

at
a/

re
p
re

se
n

ta
ti

o
n

 m
o
d
el

13

Knowledge Transfer Model for the Development of Software Requirements Analysis CASE Tools to Be Used in

Cross Time-Zone Projects

Zenon Chaczko, Jenny Quang, Bruce Moulton

Each entry is identified by a unique identification

number and also holds the identification number of the

document it corresponds to; (5) templates and

documents are kept as XML in the data tables. XML is

human readable, however it is not aesthetically

formatted for viewing. To provide styles and

formatting for XMLs, the „XSLs‟ table contains XSL

style sheets.

The evaluation considered diagrams providing

views of document management and associated

entities, including those given in Figures 1 and 2. The

relationships between significant components of the

system architecture can be best described using

collaboration diagrams, and the basic dynamics can be

demonstrated using high level sequence diagrams. For

example, the Participants component is shown using

collaboration diagrams, and its dynamic is visualized

using in high level sequence diagrams. The approach

was evaluated for its suitability for implementing

views of various layers. The View layer contains all

the components associated with presenting the user

interface that allows the end-user to view and interact

with the system. Of the two distinct interfaces that

make up the interaction screens to the tool, first

enables the user to manage the application users, and

the second is for the creation, and viewing of the

templates and documents. The Controller layer brings

the model and view together and integrates the

application. The Model layer contains the business

logic and components that access the data in the

database and manipulates the data. The Data View

depicts the key persistent elements of the system.

For the purposes of this project, we estimated that

the average number of users supported by the tool on

the project would be 100, while the rate of document

creation is 3 per day. (The expected volumes of traffic

would vary depending on the type and size of the

development project.) Even though the functions

available within the tool are not strictly time critical,

the performance of the system is still expected to be

responsive to a user‟s actions. It was estimated that the

system would easily respond to a user‟s action in less

than 0.5 seconds.

The evaluation also considered the extent to which

the approach was suitable for the development of a

system that is scalable, secure, reliable and portable.

The prototype was a web based application, so security

was imperative to ensure that any confidential

information and intellectual property is more accessed

by any unauthorized parties. The prototype was

secured via authentication and authorization

mechanisms. Following the MVC architecture will

provide another level of security, where users cannot

directly access specific sections of the CASE Tool.

Reliability was also a key consideration because the

prototype was intended to be available 24 hours a day.

Portability was also a consideration so that developers

in different locations could access the tool from

different environments. The IEEE Recommended

Practice for Software Design Descriptions (IEEE 1016-

1998) [11] served as the basis for which the design

description was written, and the design is customizable

according to the particular attributes of the project. The

design description describes the various classes to be

built, how the database will be set up, what the system

graphical user interfaces will look like, and what the

interactions within the system are. Components

relating to the View Layer of the system are made up

customizable JSP/CSS files. The Template

Management section of the system handles all the

functionality surrounding the use of templates.

The approach was found to be suitable for

producing documentation in accordance with IEEE

standards for software design descriptions.

The resulting tools appear to be suitably scalable,

and a range of features can be added including

uploading of ready documents, incorporating an

integrated help, notation toolkit, and interoperability

with other products/systems.

Overall, the evaluation suggested that the data and

knowledge-management approach had successfully led

to the development of a simple and effective prototype.

4. Conclusion

This article considers a new approach for

developing software requirements analysis CASE tools

specifically intended to suit the particular needs of

cross-time-zone development projects. The approach

was evaluated in light of a data/knowledge-transfer

model. The model is intended to enable developers to

focus on issues relating to the codification and transfer

of critical events and knowledge within and between

development teams. The preliminary evaluation

suggests that the model is suitable for informing

relevant development-related considerations. This

finding is consistent with the prior research. However

further work is required to explore the limits of the

model and determine the extent to which the model is

appropriate for the development of tools that are

scalable for large numbers of users.

5. References

[1] Gupta A. (2007) “Expanding the 24-Hour Workplace”,

The Wall Street Journal, September 15, 2007.

[2] Chaczko, Z., Davis J. D., and Scott C. (2004) New

Perspectives on Teaching and Learning Software

Systems Development in Large Groups -

14

International Journal of Digital Content Technology and its Applications

Volume 4, Number 1, February 2010

Telecollaboration”, IADIS International Conference

WWW/Internet 2004 Madrid, Spain 6-9 October 2004.

[3] Chaczko, Z., Klempous, R., Nikodem, J. and Rozenblit,

J. (2006) “24/7 Software Development in Virtual

Student Exchange Groups: Redefining the Work and

Study Week”, ITHET 7th Annual Conference

Proceedings, pp. 698-705.

[4] Gupta, A. and Seshasai, S. (2004) Toward the 24-Hour

Knowledge Factory, MIT Sloan School of Management.

USA. Available at

http://papers.ssrn.com/sol3/papers.cfm?abstract_id=486

127

[5] Roberts, J. (2000), „From know-how to show-how?

Questioning the role of information and communication

technologies in knowledge transfer‟ Technology

Analysis & Strategic Management, 12, 4, 429-444.

[6] Nonaka, I. and Nishiguchi, T. (2001), Knowledge

Emergence: Social, Technical, and Evolutionary

Dimensions of Knowledge Creation (New York: Oxford

University Press).

[7] Moulton, B. and Y. Forrest (2005) Accidents will

happen: safety-critical knowledge and automated

control systems. New Technology, Work and

Employment, Vol. 20, No. 2, 102-114.

[8] Moulton, B. (2009) Enabling safer design via an

improved understanding of knowledge-related hazards;

a role for cross disciplinarity. Australasian Journal of

Engineering Education [in press, accepted 22.12.2008].

[9] Moulton, B. (2009) Conventions to achieve safer design

and reduce catastrophic and routine harm to the

environment 2009 International Conference on

Environmental and Computer Science (ICECS 2009)

Singapore 22-24 Jan 2009.

[10] Brown, J.S. and P. Duguid (2001) „Structure and

Spontaneity: Knowledge and Organization‟ in I. Nonaka

and D.J. Teece (eds), Managing Industrial Knowledge:

Creation, Transfer and Utilization (London: Sage), 44-

67.

[11] Institute of Electrical and Electronics Engineers, (1998)

IEEE Recommended Practice for Software Design

Descriptions (IEEE 1016-1998), IEEE, New York.

[12] Freeman, E. and Gelernter, D. (1996) “Lifestreams: A

Storage Model for Personal Data”, SIGMOD Record,

vol. 25, no. 1, pp. 80-86.

15

