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A B S T R A C T   

Rapid light curves are one of the most widely used methods for assessing the physiological state of photosyn-
thetic organisms. While the method has been applied in a range of physiological studies over the last 20 years, 
little progress has been made in adapting it for the new age of multi-parametric phenotyping. In order to advance 
research that is aimed at evaluating the physiological impact of multiple factors, the Phenoplate was developed: a 
simultaneous assessment of temperature and light gradients. It was used to measure rapid light curves of three 
marine microalgae across a temperature gradient and altered phosphate availability. The results revealed that 
activation of photoprotective mechanisms occurred with high efficiency at lower temperatures, and relaxation of 
photoprotection was negatively impacted above a certain temperature threshold in Tetraselmis sp. It was 
observed that Thalassiosira pseudonana and Nannochloropsis oceanica exhibited two unique delayed non- 
photochemical quenching signatures: in combinations of low light with low temperature, and darkness with 
high temperature, respectively. These findings demonstrate that the Phenoplate approach can be used as a rapid 
and simple tool to gain insight into the photobiology of microalgae.   

Introduction 

Methods based on variable chlorophyll a fluorescence for assessment 
of physiological status in photosynthetic organisms have been the 
preferred techniques for over 50 years of research in plant and micro-
algal studies [1] The measurement directly probes the photosynthetic 
machinery of the cell, specifically Photosystem II (PSII), as well as 
Photosystem I (PSI) to a certain extent [2]. The results can be used to 
understand the organism’s physiology beyond the photosynthetic ma-
chinery, as most biological pathways, directly or indirectly, depend on 
photosynthesis. Over the years, a plethora of chlorophyll a fluorescence 
methods have been developed for a range of applications, for example 
simple flash induced fluorescence [3], pulse amplitude modulated 
fluorescence (PAM) [4], high-resolution fast fluorescence induction [5, 
6], fast repetitive rate fluorescence (fRRF) [7], and terrestrial fluores-
cence observations from satellites [8]. The instruments used were 
initially built by the researchers themselves, but gradually commercial 

versions became available. One such instrument is the WALZ Imaging 
PAM [9], which measures chlorophyll a fluorescence via a 
charged-couple device (CCD) camera. Other commercial [10] and 
custom built instruments [11] that perform similar measurements are 
also available. The advantage provided by the imaging system is that 
multiple samples, or multiple areas of larger photosynthetic organisms, 
can be measured simultaneously and sample heterogeneity can be easily 
evaluated. 

Understanding the interactive effects of multiple stressors, such as 
temperature, light, nutrients, pH and CO2 on the physiological perfor-
mance of photosynthetic organisms is fundamental to predicting re-
sponses to climate change [12]. Assessments of interacting effects of 
such multiple stressors have traditionally been laborious and time 
consuming. Here, an experimental protocol is demonstrated for per-
forming high-throughput photo-physiological measurements along 
multiple stressor gradients, simultaneously. This was achieved by 
combining the Imaging PAM with a widely available laboratory 
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thermocycler, used in polymerase chain reaction (PCR) experiments. 
The experiment was designed to study the short-term response of 
microalgae to the interacting effects of multiple environmental stressors, 
and thus revealing a part of its phenotype. The phosphorus (P) content in 
different samples was altered with the aim of limiting its availability to 
the thylakoid membrane ATP synthase to observe how this limitation 
impacts the photosynthetic response to various temperatures. Phe-
nomics is an emerging discipline in algal research and will yield wide-
spread impact across a range of biotechnology applications; however, 
developing tools to rapidly screen multiple strains/species/mutants 
across a range of conditions remains a technology constraint [13]. The 
Phenoplate will make a contribution to the development of this disci-
pline. The experimental procedure has been termed the Phenoplate 
Analysis. 

Materials and methods 

Cell culture conditions 

Cultures of the marine microalgal species Tetraselmis sp. (CS-91), 
Thalassiosira pseudonana (CS-173), and Nannochloropsis oceanica (CS- 
179) were obtained from the Commonwealth Scientific and Industrial 
Research Organisation (CSIRO; Canberra, ACT, Australia) culture 
collection. All three species belong to different phyla. Tetraselmis sp. 
belongs to Chlorophyta (or green algae), and contains the photosyn-
thetic pigments chlorophyll a and b. T. pseudonana belongs to Bacillar-
iophyta (diatoms) and contains chlorophylls a and c, together with the 
accessory pigments beta-carotene, fucoxanthin, diatoxanthin and dia-
dinoxanthin. N. oceanica belongs to the phylum Ochrophyta, and con-
tains chlorophyll a, as well as the accessory pigments astaxanthin, 
zeaxanthin and canthaxanthin. Inoculum cultures were diluted with 
their respective media, to give an initial optical density (OD750) of 0.08 
for each culture. OD750 was measured with a Tecan Infinite M1000 PRO 
plate reader (Tecan Schweiz AG, Männedorf, Switzerland). All three 
species were grown in 70 ml Corning Falcon tissue culture flasks (REF 
353108, Corning Incorporated, NY, USA), containing 50 ml of either 
standard F/2 marine culture media, containing 1.5 mg L-1 of phosphorus 
(P), F/2 with only 25 % P concentration (0.4 mg L-1) of standard F/2, or 
F/2 with 200 % P concentration (3.0 mg L-1) of standard F/2. The F/2 
media was made according to the recipes in [14] and [15]. The flasks 
were placed on a shaker table (TS-620, Thermoline Scientific, Fairfield, 
NSW, Australia) at 80 rpm, and cultures were grown under 70 μmol 
photons m-2 s-1 of cool white light provided by a Hydra LED lamp (Aqua 
Illumination, Allentown, PA, USA), on a 16:8 h light:dark cycle, at 20 ◦C, 
until late exponential growth was reached (2 weeks). After the two-week 
period in F/2, cells were harvested by centrifugation and transferred to 
new media (described above), while one set of F/2 cultures was trans-
ferred to P-free F/2, and all cultures maintained under the same growth 
conditions for a further week. At the end of the culture period, the OD750 
measurements for 25 % P, standard F/2 and 200 % P treatments were 
0.70, 0.79, and 0.85 for N. oceanica, 0.26, 0.32 and 0.28 Tetraselmis sp. 
and 0.74, 0.82 and 0.84 for T. pseudonana. One tissue culture flask was 
cultured for each condition and each species tested. Each flask was 
sampled 4 times for the Phenoplate measurements. 

Imaging PAM measurement 

Fluorescence measurements were performed using a MAXI PAM 
Imaging system, model IMAG-MAX/L (Walz, Effeltrich, Germany). The 
system is fitted with a 12.5 mm f/1:1.4 Pentax TV Lens attached to a 
Walz digital interface model IMAG-MAX/K. Before measurements, the 
lens was focused on the sample using the focusing ring with the infra-red 
LEDs turned on so that the image was clearly visible on the screen. 
Actinic light and saturation pulses were provided by a blue LED array 
with a peak wavelength at 450 nm. A customised measurement protocol 
was used, which consisted of 30 min dark adaptation and temperature 

acclimation, followed by a rapid light curve (RLC), transition to low 
light, and then dark recovery. The light protocol was as follows: 11 (10 
s), 21 (10 s), 36 (10 s), 56 (10 s), 81 (10 s), 111 (10 s), 146 (10 s), 186 (10 
s), 231 (10 s), 11 (80 s), 0 (180 s) μmol photons m-2 s-1. 

Phenoplate measurement 

The Phenoplate consisted of a relatively simple combination of two 
instruments, each with their own custom protocol. The protocol used to 
assess the physiological status consisted of three consecutive sequences 
that were designed to probe: (i) the response to increasing light intensity 
(rapid light curve), (ii) the transition to low light, and (iii) the dark 
relaxation or recovery (Fig. 1A). Each sequence of the protocol was 
designed to address different photosynthetic response mechanisms. At 
the same time, the influence of various temperatures on these mecha-
nisms was investigated using a relatively short temperature treatment of 
the samples using a thermocycler (Fig. 1C). Each probing saturation 
pulse of the Imaging PAM was used to generate composite images of 
calculated photosynthetic parameters such as quantum yield of PSII (Y 
(II)), quantum yield of regulated non-photochemical quenching of en-
ergy loss in PSII (Y(NPQ)), and quantum yield of non-regulated energy 
loss in PSII (Y(NO)) (Fig. 1D). This data, together with the measured 
light intensity, was used by the Imaging PAM software (Walz, Effeltrich, 
Germany) to calculate the relative electron transfer rates (rETR) and the 
non-photochemical quenching (NPQ). 

For high-throughput measurements of each species, 200 μl of culture 
was added in each well of a PCR 96 microwell plate (HSP9655, Bio-Rad 
Laboratories, Inc, Hercules, CA, USA). The microwell plates were placed 
on the sample block of the thermocycler (ABI Veriti, Applied Biosystems, 
Waltham, MA, USA), while the Imaging PAM was positioned over the 
plate to keep the sample in darkness during the 30 min dark-adaptation 
and temperature treatment. The thermocycler was programmed to 
generate and hold a temperature gradient for every pair of columns of 
the plate, ranging from 10 to 35 ◦C (Fig. 1B). The PAM measurement was 
initiated at the end of the 30 min incubation period. The temperature 
range was chosen so as to provide an upper and lower deviation of at 
least 10 ◦C from the optimal growth temperature of the microalgae, 
which ranges between 19-21 ◦C [16,17]. 

Statistical analyses 

Statistical analyses were performed using either analysis of variance 
(ANOVA) for comparison between treatments, or principal component 
analysis (PCA) for assessment of effects across the treatment matrix. For 
ANOVA, if a main effect was significant, the ANOVA was followed by a 
Tukey’s HSD test at significance p < 0.05 and p < 0.01. All statistical 
analyses were carried out using Statistica software (Statsoft Inc., Tulsa, 
OK, USA) and OriginPro (OriginLab Corp., Northampton, MA, USA). 

Results 

Data generated by the rapid light curve were used to create surface 
plots to visualise the relationship between temperature and rETR under 
P-replete conditions. For all three microalgal species, the highest rETR 
measured was observed at 30 ◦C, for at least one light intensity, but this 
light intensity varied between the species (36 μmol photons m-2 s-1 for 
Tetraselmis sp., 36 μmol photons m-2 s-1 for T. pseudonana, and 56 μmol 
photons m-2 s-1. N. oceanica) (Fig. 2A-C, Supplementary Table 1). At low 
light intensity, rETR increased with increasing temperature, with rETR 
at 10 ◦C significantly lower (p < 0.01) than at 25 and 30 ◦C for Tetra-
selmis sp., although this trend was absent in the other two species 
(Fig. 2A-C, Supplementary Table 1A, B). Statistical analysis of each rETR 
matrix and raw data values are shown in Supplementary Table 1A, B. 

For the interacting effects of P availability and temperature, the rETR 
matrix showed that both deplete (25 % P) and excess P (200 % P) 
concentrations resulted in decreased rETR, relative to the control P 
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(replete P) (Fig. 3A-C). PCA analysis of the 3 data sets indicate that the 
temperature/rETR matrix of the reduced P treatment was the most 
affected, whereas the matrix of the control and excess P were similar, 
despite the reduction in amplitude of rETR for the excess treatment 
(Fig. 3D). Statistical analysis of data points of each rETR matrix and raw 
data values are shown in Supplementary Table 2A-C. 

The PAM protocol was designed to measure both NPQ induction and 
relaxation, thus providing a broader overview of the photoprotective 
process. The Imaging PAM was used to collect 20 composite images of 
the 96 well plate (Fig. 4A) which were transformed into classical plots 
for visualizing NPQ kinetics (Fig. 4B), while a 2D heat map provided a 

better visual representation of the complex data set (Fig. 4C). The results 
showed that NPQ became induced quickly at lower temperatures, while 
the mechanisms of relaxation under low light became inhibited at the 
lowest temperature in Tetraselmis, regardless of P treatment (Fig. 4 B,C). 
Nonetheless, changes in P availability did affect NPQ, with increased 
NPQ occurring in the P deplete treatment and decreased NPQ under 
excess P treatment (Fig. 4C). The NPQ induction and relaxation kinetics 
changed towards lower maximum and fast saturation in temperatures 
>20 ◦C, and higher maximum at temperatures <20 ◦C (Fig. 4B-C). The 
low NPQ at higher temperatures correlated well with the rETR which 
reached its maximum at 30 ◦C (Fig. 2B), which indicates that more 

Fig. 1. The Phenoplate setup and example data. (A) Visual representation of the light exposure protocol of the Imaging PAM. “*” indicates the time point that is 
presented in part D of this figure. The vertical axis shows the intensity of the photosynthetic active radiation (PAR). (B) Temperature layout of 96 well plate 
containing the imaged samples. (C) visual representation of the complete Phenoplate setup which consists of the ABI Veriti thermocycler and the Walz Imaging PAM. 
(D) Example results extracted from the last time point of the transition to low light (marked with “*” in section A). Data shown is the microalga Nannochloropsis 
oceanica grown in standard F/2 media (Control), or F/2 media with excess phosphate (200 % P), or media depleted of phosphate (25 % P), relative to F/2. 

Fig. 2. Relative Electron Transfer Rate of Photosystem II at different temperatures. Cultures of Nannochloropsis oceanica (A), Tetraselmis sp. (B), and Thalassiosira 
pseudonana (C) grown for 3 weeks in standard F/2 media were measured using the Phenoplate. No rETR was observed at higher light intensity due to strong 
development of NPQ (Fig. 5) or closure of PSII reaction centers. Data represents average of 4 measurements (n = 4). 
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energy can be collected and directed towards photochemistry at higher 
temperatures. This observation can be explained by activation of the 
Calvin–Benson–Bassham (CBB) cycle by rubisco activase for which the 
optimum working temperature is 30 ◦C [18]. 

Unlike the NPQ surface plots of Tetraselmis sp. (Figs. 4C, 5 D-F), the 
NPQ surface plots of T. pseudonana and N. oceanica revealed unexpected 
responses, in addition to showing elevated NPQ (Fig. 5A-C, G-I). 
Different temperature and light combinations generated three distinct 
NPQ components, which were seen in almost all measurements, but 
were best observed under phosphate limitation (Fig. 5C, I). These 
different components were the following. (i) A high NPQ response to 
high light, probably driven by energy dependent quenching (qE) [19, 
20], which appeared between 186 and 231 μmol photons m-2 s-1, at the 
end of the RLC and between 20 and 35 ◦C; this component was clearly 
distinguishable in Fig. 5C, I and Supplementary Fig. 1A, C, G, H, I, but 
weakly visible in Fig. 5B and Supplementary Fig. 1B (N. oceanica in F/2 
media); (ii) A delayed low light NPQ response visible after ~1 min 
exposure to low light (11 μmol photons m-2 s-1), which was only detected 

at 10 and 15 ◦C; (iii) A delayed NPQ that appeared only at 35 ◦C in the 
final measurement points, during the dark relaxation (Fig. 5C, I; Sup-
plementary Fig. 1 ABC-GHI). 

Discussion 

Temperature and light are fundamentally connected in modulation 
of cell metabolism. The way these abiotic factors influence microalgae 
are species specific. The Phenoplate approach offers an easy and rapid 
way of assessing how these factors interact, along defined gradients, to 
understand the cell’s photobiology. The Phenoplate offers the possibility 
of adding a third stressor, such as a nutrient or a toxicant, to the 
assessment. Various Phenoplate-like measurements can be found in the 
literature [21] but none as comprehensive, nor in the currently pre-
sented form. The closest approach to the Phenoplate is the PhenoChip 
which uses a similar temperature and imaging approach, but is aimed at 
single cell studies, and uses proprietary equipment not yet available to 
the wider community [22]. The Phenoplate can be used with almost any 

Fig. 3. Relative Electron Transfer Rate of Photosystem II at different temperatures and phosphate availability in Nannochloropsis oceanica. Cultures were grown in (A) 
media with excess phosphate (200 % P relative to F/2), (B) standard F/2 media, and (C) media depleted of phosphate (25 % P relative to F/2) for 2 weeks and 
transferred to media with no available phosphate for 1 week prior to the measurement as described in Materials and Methods. (D) PCA loading plot of the 3 rETR 
matrixes. No rETR was observed at higher light intensity due to strong development of NPQ (Fig. 5) or closure of PSII reaction centers. Data represents average of 4 
measurements (n = 4). 

Fig. 4. NPQ data transformation of Tetraselmis sp. grown under varied phosphorus conditions. (A) Image data from the Imaging PAM. Each one of the 20 groups of 
dots represent one processed image showing NPQ values from each saturation pulse during the measurement. The averaged values are shown in (B) along with the 
light exposure protocol at the top of the figure; white bar indicates exposure to increasing light intensities of the RLC, grey indicates low light, and black indicates 
darkness. C) 2D heat map plots of the corresponding NPQ data from section B. 
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thermocycler, allowing use of precisely timed temperature changes, 
temperature gradients and taking advantage of the medical grade tem-
perature accuracy of the thermocycler. Traditionally, the effects of shifts 
in temperature regime on algal physiology have been investigated using 
temperature adapted cultures (multiple cell divisions) along tempera-
ture gradients [23–25], rather than on cultures temporarily exposed to 
temperature treatments. In the present study, the Phenoplate allowed 
the assessment of short-term photophysiological responses to changes in 
temperature (30 min) combined with additional stressors (in this case, 
light and phosphorus), using a set of widely available instruments. 

The highest rETR recorded at temperatures up to 10 ◦C higher than 
the culture growth conditions, suggests that some constraining factor on 
the cell metabolism, or photosynthetic machinery, relaxed with 
increased temperature. The short duration of the temperature treatment 
was not expected to result in any substantial biological changes, thus 
suggesting that the constraining factor that relaxed during higher tem-
perature treatments was physical in nature. One possibility is that under 
higher temperatures, an increase in membrane fluidity facilitates the 
diffusion processes between PSII and PSI [26], while an alternative is 
that elevated temperature facilitates changes in protein conformation 
required for photosynthesis, thereby removing some constraints on the 
electron transfer chain [27]. The addition of a P availability treatment 
demonstrated the utility of the Phenoplate to assess the effects of mul-
tiple stressors on photophysiology. While rETR was reduced under P 
deficiency, the overall pattern of the temperature/rETR landscape 
remained unaltered, suggesting that it reflects intrinsic properties of 
these organisms that are not expected to change, even after long-term 
adaptation to new abiotic conditions. Evidence suggests that the 

principal target of phosphate deficiency is a limitation on the activity of 
ATP synthase [28], which was probably the case in the microalgal 
strains we tested. It is interesting to note that the general patterns of 
temperature/rETR and NPQ/rETR were very similar between 
N. oceanica and T. pseudonana. 

To date, few studies have looked in detail at the relationship between 
NPQ and temperature using gradients [29–31], and those that have were 
focused on thermal adaptation rather than short term thermal impacts. 
The advantage of a brief thermal change in the cell’s environment is that 
the measurement determines temperature response rather than adap-
tation. NPQ is the sum of multiple mechanisms, which depend on the 
thylakoid membrane pH gradient [32,33], light harvesting antennae 
phosphorylation [34], membrane architecture [35], ion transporters 
[36,37], phosphate availability [28] and essential NPQ proteins (e.g. 
PsbS, LHCSR) [38,39]. The PAM measurement was designed here to 
probe mainly the energy dependent component (qE) of NPQ [19], as 
well as relaxation kinetics to low light and darkness [36]. The RLC part 
of the protocol was designed to activate the pH and ion transporter 
dependent NPQ mechanisms [40,20]. The protocol continued with 
transition to low light recovery conditions, which has been demon-
strated to be a distinct process dependent on cation proton exchange 
[36], critical for conditions of fluctuating light. The final part of the 
measurement determines if there is any slowly reversible NPQ generated 
during the RLC. 

The Phenoplate measurement revealed that in Tetraselmis sp., once a 
lower temperature threshold was reached (10 ◦C), NPQ relaxation to low 
light appeared to be severely impacted relative to higher temperatures. 
This type of impairment resembles measurements seen in Arabidopsis 

Fig. 5. NPQ surface plots of, Nannochloropsis oceanica, Tetraselmis sp., and Thalassiosira pseudonana. Two weeks old cultures grown with different phosphorus (P) 
availability were measured with the Phenoplate. A, B and C represent measurements of N. oceanica grown in (A) 200 % P concentration (of F/2 media), (B) 100 % P 
concentration, and (C) 25 % P concentration. Figures D, E and F are repeated from Fig. 4C and represent measurements of Tetraselmis sp. grown in (D) 200 % P 
concentration (of F/2 media), (E) 100 % P concentration, and (E) 25 % P concentration. G, H and I represent measurements of T. pseudonana grown in (G) 200 % P 
concentration (of F/2 media), (H) 100 % P concentration, and (I) 25 % P concentration. Surface plots are scaled to maximum and minimum from all 3 treatments for 
each species. Individual scaled plots are shown in Supplementary Fig. 1. Data represents average of 4 measurements (n = 4). 
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thaliana mutants that have a thylakoid potassium proton antiporter 
knocked out [36,37]. If a similar process exists in Tetraselmis it may 
indicate that proteins responsible for this type of ion exchange have a 
specific range of temperature that they can tolerate. No other NPQ 
component appeared to be negatively impacted at 10 ◦C, and the cells 
generated a high NPQ which eventually completely relaxed in darkness, 
suggesting that low temperature targets a specific and limited number of 
processes required for dynamic adaptation to fluctuating light 
conditions. 

Another interesting finding regarding the relationship between NPQ 
and temperature was that T. pseudonana and N. oceanica developed 
unique NPQ responses at different combinations of temperature and 
light. To the best knowledge of the authors, the low light (11 μmol 
photons m-2 s-1) with low temperature (10 and 15 ◦C) NPQ response in 
Tetraselmis sp. has not been documented before. NPQ is known to occur 
in low light, but it is very unusual for it to exceed the amplitude of the 
NPQ in high light [41,42]. Furthermore, this type of NPQ appears to be 
fully reversible since it completely relaxed in darkness. A 
time-dependent buildup of ATP due to temperature inactivated CBB and 
a subsequent acidification of the thylakoid lumen could explain the 
result. Nonetheless, this finding merits further experimentation to 
elucidate the precise nature of the underlying process and any impli-
cations it may have in conditions of fluctuating temperature and light. 

Lastly, signs of a delayed NPQ response were observed after the 
illumination steps that appeared at higher temperatures, 35 ◦C and 
potentially above. This can be seen at the edge of the temperature/NPQ 
matrix at highest temperature and final dark relaxation points. The fact 
that it developed in darkness suggests that temperature may be the main 
element driving this process, and it could be a mechanism similar to the 
super-quenching state observed in Symbiodinium [43]. The manganese 
cluster of the oxygen-evolving complex has also been shown to be 
particularly sensitive to high temperature which, in combination with 
light, could also generate the observed NPQ [44,45]. Migration of light 
harvesting antennae from PSII to PSI, also known as state transition to 
State 2 [46], as well as enhanced chlororespiration [47] induced by 
elevated temperature [48] can result in an apparent increase in NPQ in 
the dark. 

Limitations 

There is experimental evidence from plant research showing that 
there is a lag phase in the activation kinetics of the CBB cycle as well as a 
temperature dependence of the activation rate [49]. Furthermore, in 
vitro research has shown that ribulose-1,5-bisphosphate carbox-
ylase-oxygenase (RuBisCo) activity increases linearly with temperature 
and that the activity of rubisco activase follows closely, but stops 
working at elevated temperatures [18]. It is extremely difficult to 
determine with certainty if the temperature impact on the CBB cycle has 
a major effect on the results of the RLC and/or NPQ. Decoupling the 
effect of temperature on the CBB cycle and light harvesting can be 
accomplished in vitro, but that is beyond the scope of this research. 
Therefore, the impact of the CBB cycle on rETR and NPQ was not 
considered in interpretation of the results. 

Different cell density, or total chlorophyll content per sample, can 
have an impact on chlorophyll a fluorescence measurements. The 
principal phenomenon that affects the measurement is light attenuation 
due to high cell density [50]. This is particularly problematic when 
multiple samples are measured simultaneously using a PAM imaging 
system. Samples with large differences in cell density are almost 
impossible to measure at the same time since the camera sensitivity 
needs to be adjusted for each sample to avoid over- or under-exposure of 
the camera. To avoid such problems sample density can be adjusted 
prior to measurements. In the present work this was not possible since it 
would have resulted in an additional change in P content in the media. 
Nonetheless, an almost 10-fold difference in chlorophyll concentrations 
of algal suspensions have been documented to result in less than 5% 

variability using a similar imaging system [51]. 
To avoid any misinterpretation that could have resulted from the 

possible effect of different sample concentration, direct comparisons 
between different phosphate treatments were minimized and instead 
conclusions were drawn from the general patterns that emerged from 
each treatment. Exceptions to this are instances were raw data from the 
Phenoplate was presented and where statistical analysis was performed 
on all samples. 

Application 

This investigation has demonstrated how the Phenoplate can provide 
high-throughput assessment of multiple stressors on the photo-
physiology of microalgae, under short-term incubations (30 min). This 
technique could allow for the assessment of multiple stressor effects on 
wild populations of microalgae without the complication of adaptation 
to laboratory conditions that longer-term incubations would create. 
High-throughput assessment of multiple stressors, using the Phenoplate, 
could also be applied to toxicology studies to assess acute effects and 
interactions. Currently, such studies involve using a limited range of test 
species, grown under standardised light and temperature conditions and 
exposure to one toxicant [52]. These conditions are not representative of 
the changing environment in nature and the interactive effect of variable 
light and temperature on the toxicant are missed. Improved methodol-
ogies for multi-stressor assessments, such as the Phenoplate, will help 
improve our knowledge on these interacting effects for improved envi-
ronmental outcomes. 

Conclusions 

In the present research, the Phenoplate was used to reveal multiple 
unique NPQ responses that have not been previously documented, each 
appearing at precise phosphate, temperature and light combinations. 
These findings are in agreement with a previously documented NPQ 
response to phosphate starvation [53] and the NPQ response to various 
temperatures [54]. The findings will form the basis of additional projects 
aimed to elucidate the nature of the mechanisms involved. To meet the 
requirements of the emerging field of algal phenotyping, the Phenoplate 
method upgrades the classic rapid light curve measurement that has 
remained unchanged for over 20 years [55]. The use of a thermocycler 
together with the Imaging PAM make multiparametric measurements 
easily available and opens up a multitude of new types of experiments. 
Future work using this system could expand the temperature range used 
to anywhere between 0 ◦C and 100 ◦C, the PAM protocol can also be 
altered to answer specific questions, and the measurement could be 
extended to measure 384 samples simultaneously. Furthermore, the 
Phenoplate measurement has important implications for research in 
microalgae ecology and biotechnology, where fast and sensitive mea-
surement methods are needed to gain insights into the interactive effects 
of multiple stressors on the organism. 
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