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Abstract. This paper considers the application of Bayesian optimi-
sation to the well-known multidimensional knapsack problem which is
strongly NP-hard. For the multidimensional knapsack problem with a
large number of items and knapsack constraints, a two-level formulation
is presented to take advantage of the global optimisation capability of the
Bayesian optimisation approach, and the efficiency of integer program-
ming solvers on small problems. The first level makes the decisions about
the optimal allocation of knapsack capacities to different item groups,
while the second level solves a multidimensional knapsack problem of re-
duced size for each item group. To accelerate the Bayesian optimisation
guided search process, various techniques are proposed including variable
domain tightening, initialisation by the Genetic Algorithm, and optimi-
sation landscape smoothing by local search. Computational experiments
are carried out on the widely used benchmark instances with up to 100
items and 30 knapsack constraints. The preliminary results demonstrate
the effectiveness of the proposed solution approach.

Keywords: Bayesian optimisation · Multidimensional knapsack prob-
lem · Meta-heuristics.

1 Introduction

The Bayesian optimisation (BO) is a powerful machine learning based method
for the optimisation of expensive black-box functions, which typically only allow
point-wise function evaluation [23, 22]. Although BO has been widely used in the
experimental design community since the 1990s [15, 13], it is not until the last
decade that BO has become extremely popular in the machine learning com-
munity as an efficient tool for tuning hyper-parameters in various algorithms,
e.g., deep learning [5, 7], natural language processing [29], and preference learn-
ing [10]. The BO is also embraced by new areas such as robotics [16], automatic
control [1], and pharmaceutical product development [21].

The Multidimensional Knapsack Problem (MKP) is an extension of the clas-
sic Knapsack Problem (KP). It comprises of n items and m knapsacks with
limited capacities. Each item contributes a certain amount of profit if selected
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and consumes “resources” simultaneously in each knapsack. The MKP aims for
a subset of items that achieves the highest total profit while abiding by the ca-
pacities of all knapsacks. The MKP is a well-known, and strongly NP-hard com-
binatorial optimisation problem, and has found applications in many practical
areas involving resource allocation [11, 17]. In spite of the tremendous progress
made in exact solution techniques, many instances from the widely used Chu
and Beasley MKP test set [4] cannot be solved to optimality [8, 12, 28], espe-
cially when the number of knapsacks is large. The best known solutions on the
hard instances are all obtained by specialised meta-heuristics which require ex-
orbitant computation time [24, 25, 27, 3, 6]. The simplicity of problem statement
and computational hardness makes the MKP an ideal test bed for new solution
ideas and techniques [14, 18].

The BO encounters insurmountable issues to solve the MKP. Firstly, the
BO is designed to solve problems with simple feasible set of continuous vari-
ables [9], while the MKP has only binary variables with many knapsack con-
straints. Whereas a lot of efforts have been committed to consider feasible set
with combinatorial structures, all the reported computational studies investi-
gated problems with just a few dozen categorical/integer/binary variables [2,
19]. Secondly, the BO is only efficient for low dimensional problems with less
than 20 variables, while the MKP can have hundreds of binary variables. Al-
though the BO with random embedding can solve problems with billions of
variables, it relies on the “low effective dimensionality” which can be an issue
for MKP [26]. Finally, the MKP has a linear function which is “cheap” to calcu-
late, which makes it hard for the BO to compete with other meta-heuristic and
artificial intelligence algorithms.

Based on the idea of divide and conquer, a novel two-level model for MKP
(TL-MKP) is proposed in this paper to take advantage of the special structure
of MKP, i.e., the number of items (variables) is much larger than the number
of knapsacks (constraints). In particular, the items are divided into groups, and
the knapsack capacities allocated to each group are determined by the first
level, or master problem, of the TL-MKP. With assigned knapsack capacities,
each group can be solved as a MKP of reduced size in the second-level of TL-
MKP, or subproblem. It is shown in Section 2 that the master problem has
a non-continuous, multi-modal, and expensive to evaluate objective function
with simple feasible set, which is suitable for the application of BO. Since the
subproblem has a much smaller number of binary variables, it can be efficiently
solved to optimality with commercial integer programming solvers.

It is essential to incorporate prior knowledge in the BO, which was designed
to be a black-box global optimisation method. Two novel techniques are pre-
sented in this paper to make use of the information provided by mathematical
programming solver and meta-heuristics. Indeed, when a good solution is known,
e.g., by using other meta-heuristics, an efficient heuristic is proposed in this paper
to tighten the domain bounds of the master problem in the TL-MKP. Inspired
by the simulation approach used in robotics control algorithms to initialise the
BO [20], the Genetic Algorithm (GA) is used in this paper to generate initial
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trial points for the BO. To take advantage of the linear structure of the objective
function of MKP, the GA is run on the MKP instead of the master problem of
TL-MKP. These techniques can significantly accelerate the search process of BO
as demonstrated by the computational experiments in this paper.

The paper is organised as follows. The novel two-level model for MKP is pre-
sented with discussion of the properties of the master problem in Section 2. The
BO based optimisation approach and some acceleration techniques are described
in Section 3. The implementation details are discussed in Section 4. Computa-
tional results are presented in Section 5. The conclusion is given in Section 6.

2 Two-level Model for MKP

Given m knapsacks with capacities bi, i = 1, . . . ,m, and a set of n items I =
{1, 2, . . . , n}, each item j requires a resource consumption of ai,j units in the i-th
knapsack, i = 1, . . . ,m, and yields cj units of profit upon inclusion, j = 1, . . . , n.
The goal is to find a subset of items that yields maximum profit, denoted by
z∗, without exceeding the knapsack capacities. The MKP can be defined by the
following integer linear programming model:

(MKP) z∗ = max{cTx : Ax ≤ b, x ∈ {0, 1}n}, (1)

where c = [c1, c2, . . . , cn]T is an n-dimensional vector of profits, x = [x1, x2, . . . , xn]T

is an n-dimensional vector of 0-1 decision variables indicating whether an item is
included or not, A = [ai,j ], i = 1, 2, . . . ,m, j = 1, 2, . . . , n is an m×n coefficient
matrix of resource requirements, and b = [b1, b2, . . . , bm]T is an m-dimensional
vector of resource capacities. It is further assumed that all parameters are non-
negative integers.

Assume the items are divided into two groups, i.e., I = I1 ∪ I2, and I1 ∩ I2 =
∅. Each group is formulated as a MKP with profit vector ci = cIi , resource
requirement matrix Ai = AIi , and capacity vector bi ∈ Rm. The two groups
share the capacities of the m knapsacks, i.e.,

b1 + b2 = b (2)

The first level of the TL-MKP (the two-level model for MKP), or the master
problem is defined as

(L1-MKP) f∗ = max{f(t) : t ∈ Rm, 0 ≤ t ≤ b}, (3)

where

f(t) = z∗1(t) + z∗2(b− t) (4)

is calculated by solving the second level of the TL-MKP, or subproblems:

(L2-MKP) z∗i (u) = max{cixi : Aixi ≤ u, xi ∈ {0, 1}|Ii|}, i = 1, 2 (5)
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Since each solution of the TL-MKP can be easily converted to a solution to
the MKP with the same objective value, and each solution of the MKP can be
used to define a value of t for the master problem of TL-MKP (3), the following
proposition holds.

Proposition 1. (t∗ = A1x1∗, x1∗, x2∗) is an optimal solution of TL-MKP if and
only if x∗, defined as x∗N1

= x1∗ and x∗N2
= x2∗, is an optimal solution of MKP.

Furthermore, f∗ = z∗.

Example 1. Consider an instance of MKP with three items and one knapsack,
where c = [1, 2, 3], A = [1, 2, 3], and b = 4. The two groups are I1 = {1, 2} and
I2 = {3}. It is straightforward to show that the first level objective function is

f(t) =



3 t ∈ [0, 1)

4 t = 1

1 t ∈ (1, 2)

2 t ∈ [2, 3)

3 t ∈ [3, 4]

.

Example 2. Consider an instance of MKP with 20 items and two knapsacks. The
two groups have the same number of items. Fig. 1 shows the contour graph of
the first level objective function f(t). The optimal value is equal to 75.
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Fig. 1. Contour of the first level objective function f(t); t1(t2) is the capacity allocated
to group 1 from knapsack 1 (2).
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Examples (1) and (2) clearly demonstrate that the objective function of the
master problem in TL-MKP is non-continuous, and can have many local optima.
Although the subproblems have much smaller sizes, they are still more expensive
to evaluate than the linear function of MKP.

It can be observed that f(t) is not differentiable when at least one knapsack
has no slack capacity in one of the subproblems. That leads to the following
proposition,

Proposition 2. f(t) is differentiable almost everywhere in the sense of Lebesque
measure with f ′(t) = 0.

Although f(t) is differentiable almost everywhere, the derivative is constantly
zero and consequently, useless for the design of optmisation algorithms.

3 Bayesian Optimisation and Acceleration

The BO is a promising option to deal with the challenges presented by the
master problem of TL-MKP such as no closed form, non-continuity, multiple
local optima, absense of useful derivatives, and high cost of function evaluation.
In this section, the basic principles of BO are described first [9], then followed
by techniques to incorporate prior knowledge to accelerate the search process.

The BO builds a probabilistic model for the unknown f(t) of the master
problem of TL-MKP. In particular, f(t) is assumed to be drawn from a Gaussian
process (GP), which is determined by a mean function µ0 : Rm → R, and a
positive definite covariance function k0 : Rm×Rm → R, also known as the kernel
of the GP. The BO sequentially generates points to evaluate within the feasible
region of TL-MKP. Assume that n points have been evaluated with observations
Dn = {(t1, f(t1)), (t2, f(t2)), . . . , (tn, f(tn))}. Using Bayes’ rule, the conditional
distribution of f(t) is derived as a Normal distribution:

P (f(t)|Dn, t) = N (µn(t), σ2
n(t)) (6)

µn(t) = Σ0(t, t1:n)Σ0(t1:n, t1:n)−1(f(t1:n)− µ0(t1:n)) + µ0(t) (7)

σ2
n(t) = k0(t, t)−Σ0(t, t1:n)Σ0(t1:n, t1:n)−1)Σ0(t1:n, t) (8)

where f(t1:n) = [f(t1), . . . , f(tn)]T , µ0(t1:n) = [µ0(t1), . . . , µ0(tn)]T , and

Σ0(t1:n, t1:n) =

k0(t1, t1) · · · k0(t1, tn)
...

. . .
...

k0(tn, t1) · · · k0(tn, tn)

 .

The BO selects the next most promising point to evaluate, i.e., tn+1, by opti-
mising an acquisition function, which balances exploration (uncertainty σn(tn+1)
is large) against exploitation (objective expected value µn(tn+1) is large). Differ-
ent types of acquisition function have been proposed in the literature, while the
most commonly used is Expected Improvement (EI). The EI acquisition function
is defined as

EIn(t) = En(max(f(t)−maxni=1f(ti), 0)), (9)
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where En(·) is the expectation taken under the posterior distribution (6).
The next point to evaluate is selected as

tn+1 = argmaxtEIn(t). (10)

With new point (tn+1, f(tn+1)), the conditional probability of f(t) can be up-
dated according to (6), and the iterative process stops when a sampling budget
is reached.

3.1 Variable Domain Tightening

The efficiency of BO depends on the size and dimensionality of the search space
of TL-MKP, which is defined in (3) as [0, b] ⊂ Rm. If a good lower bound of
MKP fL is known, e.g., through a quick meta-heuristic, the search space can
be reduced to F = {t|f(t) ≥ fL, t ∈ [0, b] ⊂ Rm}. However, this will make
the EI acquisition function harder to optimise in (10) since F has no simple
representation. In this paper, an optimisation based approach is employed to
find the smallest hypercube H = [tL, tU ] that contains F , i.e., F ⊂ H. The
upper bound of H along the i-th coordinate, tUi , i = 1, . . . ,m, can be obtained
by solving

tUi = max{A1x1 : cTx ≥ fL, Ax ≤ b, x1 = xI1 , x ∈ {0, 1}n}. (11)

The lower bound of H along the i-th coordinate, tLi , i1, . . . ,m, can be obtained
by solving

tLi = min{A1x1 : cTx ≥ fL, Ax ≤ b, x1 = xI1 , x ∈ {0, 1}n}. (12)

The exact solution of (11) and (12) is time-consuming. Therefore, tU (tL) can
be replaced by a upper (lower) bound of (11) ((12)), e.g., using the linear pro-
gramming relaxation by replacing x ∈ {0, 1}n with x ∈ [0, 1]n.

3.2 Initialisation with Genetic Algorithm

The BO randomly generates the initial trial points in the search space which
can lead to slow convergence. In this paper, The GA is used to generate initial
points that have good solution quality as well as diversity in the search space. The
GA is a population based meta-heuristic which evolves by generations through
genetic operators such as cross-over and mutation. In the early stage of GA the
population has good diversity but low percentage of good solutions; while in the
later stage, the population has high percentage of good solutions but with less
diversity.

It is computationally infeasible to run GA on the TL-MKP since the objec-
tive evaluation involves solving two MIP problems and consequently expensive.
Instead, the GA is directly run on the MKP, and the population is mapped to
initialise the BO for TL-MKP. In particular, let x̃ be a solution from a population
of GA. The mapped solution for TL-MKP becomes

t̃ = A1x̃N1 . (13)
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It is easy to see that

f(t̃) ≥ cT x̃. (14)

3.3 Optimisation Landscape Smoothing

At each sampling point of BO, a feasible solution to the MKP is also generated
according to Proposition 1. This solution can be improved by a local search
which is efficient to cope with large number of items and constraints. We define
the neighbourhood of a solution x as the set of solutions with at most k different
items:

Nk(x) = {y ∈ {0, 1}n : Ay ≤ b, ‖|x− y|‖1 ≤ k}. (15)

For Example 1, with k = 1, the first level objective function becomes

f(t) =

{
4 t ∈ [0, 2)

3 t ∈ [2, 4]
,

which is ”smoother” in terms of the optimisation landscape.

4 Implementation

The BO approach for the MKP (BO-MKP) can be described as in Alg. 1, and
a prototype of BO-MKP was implemented in Matlab R2020b. In Step 1 of BO-
MKP, the linear relaxation of (11) and (12) are solved to tighten the bounds of
the feasible set of TL-MKP using the function linprog in Matlab Optimization
Toolbox. Using the function ga in the Global Optimization Toolbox of Matlab,
an initial set of trial points are generated in Step 2 as input for BO according to
(13). In Step 3, the BO is implemented with the function bayesopt in the Global
Optimization Toolbox of Matlab. The acquisition function is set to “expected-
improvement”, and the maximum number of evaluation, “MaxObjectiveEvalu-
ations”, is set to N which is a user specified parameter. The subproblems of
TL-MKP (5) are solved by the mixed integer programming solver intlinprog in
Matlab Optimization Toolbox. In Step 4, The best solution of TL-MKP found
by BO is converted to a solution of MKP with the same objective function value
according to Proposition 1.

The selection of kernel function for GP can have a strong influence on the
performance of BO. bayesopt uses the ARD Matérn 5/2 kernel

k(xi, xj |σf , σl) = σ2
f (1 +

√
5r

σl
+

5r2

3σ2
l

) exp (−
√

5r

σl
)

where r =
√

(xi − xj)T (xi − xj), and the parameters are estimated by Gaussian
process regression fitrgp.



8 H. Gu et al.

Algorithm 1: The BO approach for the MKP (BO-MKP).

Input: MKP, item groups I1 and I2, lower bound of MKP fL,
maximum number of evaluation N for BO.

Output: a feasible solution of MKP.
Step 1: tighten the bounds of feasible set of TL-MKP based on fL;
Step 2: generate initial trial points using GA;
Step 3: search for the global optimum of TL-MKP using BO within a
sampling budget of N evaluations;

Step 4: convert the best solution found by BO to the solution of MKP;
return

5 Computational Experiments

All experiments are carried out on the widely used Chu and Beasley MKP test
set in [4]. The Chu and Beasley test set contains classes of randomly generated
instances for each combination of n ∈ {100, 250, 500} items, m ∈ {5, 10, 30}
constraints, and tightness ratios α ∈ {0.25, 0.5, 0.75} with smaller α representing
tighter resource capacities. In the Chu and Beasley MKP test set, the resource
consumption values aij are integers uniformly chosen from (0, 1000), which leads
to large values of the knapsack capacities b. Since the search space of BO for TL-
MKP is defined by b in (3), the Chu and Beasley MKP test set is an challenging
test bed for the proposed BO approach.

To show the effect of tightening bounds in section 3.1, the BO is tested on
three selected instances with n = 100, and the results are reported in Table 1.
The rows correspond to the instances with the number of knapsack constraints
m = 5, 10 and 30. The optimal values of these instances are obtained by CPLEX
and reported in the column titled “Opt.” The columns are divided into two
groups for the BO results, one for the cases without bound tightening (“With-
out tightening”) and the other one for the cases with bound tightening (“With
tightening”). To have a better understanding of the convergence behavior of BO,
two values are applied for the maximum number of evaluations, i.e., N = 25, 50.
Since the BO is a stochastic algorithm, the average objective function value of 5
runs is reported for each pair of (m,N) in the columns titled “Ave.”. The rela-
tive gap for the solution found by the BO is calculated as 100× (z∗− f)/z∗ and
reported in the columns titled “gap(%)”. It can be seen that the performance of
BO deteriorates dramatically when m increases. When m = 30, the BO reaches
a massive relative gap of 63.8% after 50 function evaluations. This observation
is consistent with BO’s behavior for other optimisation problems. When bound
tightening technique is applied, the performance of BO is improved on all (m,
N) pairs. The improvement is more dramatic when m becomes large. For m = 10
and N = 50 the relative gap is reduced from 9.8% to 4%. However, the solution
quality for m = 30 is still not satisfactory with a large gap of 31.8%.

Table 2 presents the results of BO-MKP which initialises the BO with GA.
The initial trial points provided by the GA should be diverse enough while also
having good solution quality. Therefore, the maximum number of iterations of
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Table 1. Effects of bound tightening for BO on the TL-MKP.

Without tightening With tightening
N = 25 N = 50 N = 25 N = 50

m Opt. Ave. gap(%) Ave. gap(%) Ave. gap(%) Ave. gap(%)

5 24381 22897 6.1 23849 2.2 23913 1.9 24017 1.5
10 23064 17145 25.7 20806 9.8 20581 10.8 22149 4.0
30 21946 5710.2 74.0 7955 63.8 14659 33.2 14978 31.8

GA is limited to 55 in BO-MKP. It can be seen that the GA initialisation is not
helpful when m = 5, which suggests that the BO has strong global search capa-
bility when the dimension is low. In sharp contrast, the BO-MKP dramatically
reduces the relative gap for larger dimension. Indeed, the relative gap is just 4%
for m = 30 with 50 function evaluations.

Table 2. Effects of GA initialisation for BO on the TL-MKP.

N = 25 N = 50

Opt. w/o GA Ave. gap(%) w/o GA Ave. gap(%)

m = 5 24381 23913 23928 1.9 24017 24063 1.3
m = 10 23064 20581 22471 2.6 22149 22396 2.9
m = 30 21946 14659 20727 5.6 14978 21060 4.0

Table 3 shows the impact of employing the local search in solving the BO-
MKP. With k = 5 for the neighbourhood defined in (15), the three instances
with m = 5, 10 and 30 are all solved to optimality.

Table 3. Effects of local search for BO on the TL-MKP.

N = 25
Opt. w/o LS with LS gap(%)

m = 5 24381 23928 24381 0.0
m = 10 23064 22471 23064 0.0
m = 30 21946 20727 21946 0.0

The overall performance of BO-MKP on all the 90 instances with 100 items,
i.e., n = 100 is presented in Table 4. For the groups with m = 5 and m = 10,
we set N = 25 and k = 5. For all instances with m = 5 and 26 instances
with m = 10, the optimal solutions are obtained. The remaining 4 instances
in the group with m = 10 can also be solved to optimality by increasing N
to 50. We set k = 10 and N = 50 for all instances with m = 30. This group
of instances is particularly challenging to BO due to the high dimensions of
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the search space. However, with a strong local search procedure to smooth the
optimisation landscape, high quality solutions are obtained on all instances.

Table 4. Computational results for all instances with 100 items.

α = 0.25 α = 0.5 α = 0.75

m = 5

Average 24197.2 43252.9 60471.0
Best 24197.2 43252.9 60471.0
Opt. 24197.2 43252.9 60471.0

gap % 0.0 0.0 0.0
time 146.7s 128.8s 83.3s

m = 10

Average 22601.0 42660.2 59555.6
Best 22601.9 42660.6 59555.6
Opt. 22601.9 42660.6 59555.6

gap % 0.0 0.0 0.0
time 191.5s 195.3s 152.3s

m = 30

Average 21638.2 41420.3 59201.8
Best 21652.9 41427.2 59201.8
Opt. 21660.4 41440.4 59201.8

gap % 0.1 0.0 0.0
time 359.0s 359.3s 311.3s

6 Conclusion and Future Work

In this paper, a two-level model is presented for the multidimensional knap-
sack problem. The master problem has much smaller dimensions, which makes
it amenable to Bayesian optimisation. Three techniques are introduced to accel-
erate the search process of BO. Preliminary test results show the effectiveness of
the proposed approach. It strongly demonstrates that incorporating prior knowl-
edge and smoothing the optimisation landscape by the local search are crucial
for the success of BO for large MKP.

Future work includes the investigation of the proper kernels in BO for combi-
natorial optimisation problems, the automatic tuning of hyper-parameters, and
comparison with other meta-heuristics. It is also interesting to extend the models
to combinatorial optimisation problems with more complex structures.
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471. PMLR, Stockholmsmässan, Stockholm Sweden (10–15 Jul 2018)



A Bayesian Optimisation Approach for Multidimensional Knapsack Problem 11

3. Boussier, S., Vasquez, M., Vimont, Y., Hanafi, S., Michelon, P.: A multi-level search
strategy for the 0–1 multidimensional knapsack problem. Discrete Applied Math-
ematics 158(2), 97–109 (2010)

4. Chu, P.C., Beasley, J.E.: A genetic algorithm for the multidimensional knapsack
problem. J. Heuristics 4(1), 63–86 (1998)

5. Dean, J., Corrado, G., Monga, R., Chen, K., Devin, M., Mao, M., aurelio Ranzato,
M., Senior, A., Tucker, P., Yang, K., Le, Q.V., Ng, A.Y.: Large scale distributed
deep networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.)
Advances in Neural Information Processing Systems 25, pp. 1223–1231. Curran
Associates, Inc. (2012)

6. Della Croce, F., Grosso, A.: Improved core problem based heuristics for the 0/1
multi-dimensional knapsack problem. Computers & Operations Research 39(1),
27–31 (2012)

7. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparam-
eter optimization of deep neural networks by extrapolation of learning curves.
In: Proceedings of the 24th International Conference on Artificial Intelligence. p.
3460–3468. IJCAI’15, AAAI Press (2015)

8. Drake, J.: Or library mkp - best known solutions,
http://www.cs.nott.ac.uk/ jqd/mkp/bestresults.html

9. Frazier, P.I.: Bayesian optimization. INFORMS TutORials in Operations Research
p. 255–278 (2018).

10. Freno, A., Saveski, M., Jenatton, R., Archambeau, C.: One-pass ranking models for
low-latency product recommendations. In: Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining. p. 1789–1798.
KDD ’15, Association for Computing Machinery, New York, NY, USA (2015).
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