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Abstract

Background: Clinical decision support systems (CDSS) have the potential to lower the patient mortality and
morbidity rates. However, signal artifacts present in physiological data affect the reliability and accuracy of the
CDSS. Moreover, patient monitors and other medical devices generate false alarms while processing
physiological data, further leading to alarm fatigue because of increased noise levels, staft disruption, and staft
desensitization in busy critical care environments. This adversely affects the quality of care at the patient
bedside. Hence, artifact detection (AD) algorithms play a crucial role in assessing the quality of physiological
data and mitigating the impact of these artifacts.

Objective: The objective of this study is to evaluate a novel AD framework for integrating AD algorithms with
CDSS. We designed the framework with features that support real-time implementation within critical care. In
this study, we evaluated the framework and its features in a false alarm reduction study. We developed static
framework component models, followed by dynamic framework compositions to formulate four CDSS. We
evaluated these formulations using neonatal patient data and validated the six framework features: flexibility,
reusability, signal quality indicator standardization, scalability, customizability, and real-time implementation
support.

Methods: We developed four exemplar static AD components with standardized requirements and provisions
interfaces that facilitate the interoperability of framework components. These AD components were mixed and
matched into four different AD compositions to mitigate the artifacts’ effects. We developed a novel static
clinical event detection component (CED) that is integrated with each AD composition to formulate and
evaluate a dynamic CDSS for peripheral oxygen saturation (SpO-) alarm generation. This study collected data
from 11 patients with diverse pathologies in the neonatal intensive care unit. Collected data streams and
corresponding alarms include pulse rate and SpO> measured from a pulse oximeter (Masimo SET SmartPod)
integrated with an Infinity Delta monitor as well as the heart rate derived from electrocardiography leads
attached to a second Infinity Delta monitor.

Results: A total of 119 SpO; alarms were evaluated. The lowest achievable SpO; false alarm rate was 39%,

with a sensitivity of 80%. This demonstrates the framework’s utility in identifying the best possible dynamic



composition to serve the clinical need for false SpO; alarm reduction and subsequent alarm fatigue, given the
limitations of a small sample size.

Conclusions: The framework features, including reusability, signal quality indicator standardization,
scalability, and customizability, allow the evaluation and comparison of novel CDSS formulations. The optimal
solution for a CDSS can then be hard-coded and integrated within clinical workflows for real-time
implementation. The flexibility to serve different clinical needs and standardized component interoperability of
the framework supports the potential for a real-time clinical implementation of AD.
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Introduction

Clinical Decision Support Systems

Clinical decision support systems (CDSS) are computerized health care analytic systems that have the
functionality to integrate patient data for their analyses and detect clinically significant patient events. CDSS
has the potential to lower patient mortality and morbidity rates when integrated into critical care workflows [1-
5]. Clinical event detection (CED) algorithms that identify clinically significant events and early onset
indicators of various pathophysiological diseases may be integrated into the CDSS to further exploit this
potential [6-10]. Similarly, parameter derivation algorithms that extract clinically useful low-frequency
parameters from high-frequency input data are also essential for clinical decision making [11-14]. However, the
inherent presence of signal artifacts in physiological data impacts the reliability and accuracy of the analytical
results produced by such algorithms [15]. Moreover, commercial physiologic patient monitors used in clinical
settings are built using relatively simplistic proprietary algorithms for preprocessing artifacts [16-18]. This
results in an unacceptably high rate of false alarms generated by these patient monitors [19]. Such alarms,
termed as nuisance or false alarms, result in increased noise levels, staff disruption, and staff desensitization in
busy critical care environments [20-22]. False alarms need to be typically silenced or overridden by staff, which
leads to alarm fatigue, causing an even bigger hazard of missed alarms and compromising the quality of care at
the patient bedside [21,23,24]. The Emergency Care Research Institute (ECRI), a Pennsylvania-based patient
safety organization, issued an annual report of the top 10 health technology hazards. Leading up to and
including 2019, ECRI has reported medical device alarms to be among the top 10 hazards. The literature has
reported false alarm rates (FAR) greater than 70% [46]. The integrity and quality of data are crucial to the

success of any analytic system. Therefore, it is important to design and implement CDSS for assessing the



quality of data and issue relevant alarms with a high specificity and low FARs. A recent study suggested
behavioral methods to reduce false alarms and alarm fatigue in the neonatal intensive care unit (NICU) [47].
The study was conducted in an NICU in a low-income country (India) [47], whereas our study was conducted in
a high-income country (Canada) where the recommended behavioral changes have already been implemented
[48].

Artifact Detection

Research groups have published several artifact detection (AD) algorithms to assess the quality of physiologic
data and minimize the impact of artifacts before analyzing these data for CED. However, a methodological
literature review by the authors conveys common limitations in the application of a vast majority of AD
algorithms [25]. In this review, we synthesized more than 80 state-of-the-art AD algorithms and discovered the
following six shortcomings: most AD algorithms (1) are designed for one specific type of critical care patient
population, (2) are validated on data harvested from a single monitor model, (3) generate signal quality
indicators (SQIs) that are not yet standardized for useful integration in clinical workflows, (4) operate either in
standalone mode or are tightly coupled with other CDSS applications, (5) are rarely evaluated in the real time,
and (6) are not implemented in clinical practice [25]. A more recent review on the initiatives to manage and
improve alarm systems taken by means of human, organizational, and technical factors for an improved quality
of health care also supports our findings [20]. The review reveals gaps between alarm-related standards and
how those standards are translated into practice, especially in a clinical environment that uses multiple alarming
medical devices from different manufacturers [20]. This suggests standardization across devices from the same
and different manufacturers and the use of machine learning to improve the alarm safety [20].

Artifact Detection Framework

To address the six shortcomings (1)-(6) that are listed above, we designed and developed a novel, multivariate,
component-based, standardized AD framework [26]. For the reader’s convenience, the Methods section
provides the background on framework development, including the design of its components and interfaces by
developing a common reference model (CRM). The objective is to facilitate the integration of AD and CED
algorithms within the CDSS in a standardized manner. To achieve this, we leveraged six framework features f7
fo f6, which are listed in then Methods section. We designed the AD framework as a test bed to formulate and
evaluate multiple combinations of independently developed AD and CED components. Once a combination of
AD and CED is affirmed to satisfy clinical needs through offline testing, then that combination can be evaluated
in a real-time environment using the middleware technology. In this way, the transition to real-time clinical

implementation and validation can be facilitated by using this framework.



For the reader’s convenience, this section summarizes the development of the AD framework, as in a previous
study [26]. This section comprises the development of the components and interfaces that provide the
framework’s end-to-end functionality, a CRM for the standardized communication between components across

their interfaces and the framework’s features.

Components and Interfaces

A framework comprises components that interact with each other and with the system through one or more
interfaces to realize the system goals. An interface is defined as a means of communicating with or accessing a
component [27]. Clearly defined uniform interfaces enable components to make their own functional
requirements explicit as well as to enable specifications of other collaborating components. Interfaces stipulate
prerequisites, provisions, and constraints of component operations. A component can have one or more
interfaces, selectively instantiated at the runtime depending on the component’s role in a particular composition.
As described in a previous study [28], an interface can be categorized as (1) requirement, (2) provision, and (3)
configuration. Each component has its own operational requirements, specified by its requirement interface,
which defines what the system or other components in the system must provide for the component to function
[27]. The provision interface makes explicit what a component can provide either to another component or as a
contribution to the system output. The configuration interface incorporates a user-defined functionality, further
allowing the user to define the runtime parameters for a particular application. A configuration interface can be
part of the user interface designed for a clinician to interact with the system settings.

The AD framework comprises the following components: (1) patient data acquisition (PDA), (2) AD, and (3)
CED. Each component is composed of low-level code and the following three interfaces: (1) requirement, (2)
provision, and (3) configuration. Framework components can interface as either standalone algorithms or in

cascade with the same or different types of components.

Common Reference Model

The standardization of interfaces is key for achieving the system goals. This involves defining unambiguous
formalisms with semantics that are commonly understood by all components within the framework. A novel
CRM was developed to standardize the definitions for these interfaces to facilitate component interoperability
within the AD framework [26]. Multiple medical ontologies are in existence to address the measurement of
medical parameters such as Logical Observation Identifiers Names and Codes (LOINC), which is a database
and universal standard for identifying medical laboratory observations; Systematized Nomenclature of Human

Medicine (SNOMED), which is a multiaxial nomenclature for indexing medical records; and the Fast



Healthcare Interoperability Resources (FHIR) which is an interoperability standard created by the standards
development organization Health Level 7 (HL7) to enable health data, including clinical and administrative
data, to be quickly and efficiently exchanged across medical devices. The CRM interfaces designed as a part of
our framework are easily customizable to match any of these standards. CRM comprises metadata that are
intended to establish a common understanding of the meaning or semantics of the data exchanged between
component interfaces. This allows all framework components to communicate, regardless of their underlying
low-level logic. For example, CRM facilitates interfacing a variety of AD algorithms for different types,
frequencies, and quality of physiologic data that are commonly processed by CDSS. In particular, the
standardization of SQIs is a novel contribution to the development of CRM. The CRM metadata comprise the
following layered schema: PatientData (PatientID, DevicelD, Data (Type, TimeStamp, Value, SQI (SQType and
SQOValue))). PatientData represents the patient data exchanged between the components. Its schema consists of
three properties, as shown in Figure 1 (PatientID, DevicelD, and Data). PatientID identifies the patients with
whom the data are associated. It can be any type of patient identifier, such as the patient’s admission reference
number. DevicelD represents the hospital or OEM identifier for the patient monitor or other devices from which
the data are being acquired. The more complex Data property has the following four attributes: Type,
TimeStamp, Value, and SQI. Type is a string variable from a controlled schema, naming the physiological data
stream. 7imeStamp is the time at which each datum is logged. A component may have specific data exchange
and processing rates, which require data at specific frequencies. Therefore, TimeStamp can be used to (1) derive
the frequency of data, (2) align multiple data streams for fusion, and (3) annotate events in real time. Value
contains the numeric or string value of each datum. An SO/ may also be associated with each datum. This
measure of signal quality is provided by the monitor (via a PDA component) or derived by one or more AD
algorithms. The SQI for each datum is further described by two attributes: SQType and SQValue. SOQType is a
string variable from a controlled schema, for example, “binary,” “rank,” “categorical,” or “null.” New strings
can be introduced in this set in the future. “Null” implies there is no SQI available for that particular data type.
SOValue depends on SQType. For example, if SQType is “binary,” then SQValue belongs to a set of 0 or 1. This
schema is extensible when needed for newer CDSS formulations. Our preliminary research demonstrates the
instantiation of CRM using extensible markup language [29].

At runtime, the PDA component inputs patient data and conforms them to the CRM, which are then consumed
by the AD and CED components that comprise the CDSS. AD and CED algorithms, published in the past or
future, whether standalone or tightly coupled, may be used in CDSS formulations with modifications as needed.

The framework is a unique test bed with features of reusability and scalability. These features allow for the



creation of new AD configurations by mixing and matching independently developed or decoupled AD
components and integrating those components with CED components to serve varying clinical needs. The AD
configuration most suited to a clinical need can then be hard-coded and integrated into the clinical workflow for
real-time implementation. For example, some recently developed AD algorithms leverage sensor fusion for
motion artifact removal while deriving the HR [30-34]. The implementation of these AD and CED algorithms
within the framework simply requires modifying their interfaces to comply with the CRM. This would allow for
these algorithms to be tested, compared, or combined with extant or newer algorithms to advance research in

the field of signal quality and physiologic monitoring.

Framework Features

To address the six shortcomings (1)-(6) identified in state-of-the-art AD algorithms in a previous study [25], we
developed an AD framework with the following six features f7 to f6 The framework design supports: (f7)
flexibility to serve the needs of patient populations from different types of critical care units through
generalization and customizability, (f2) reusability across multiple types of physiological data harvested by
different OEM monitors, (f3) standardized definitions of SQI that promote interoperability and comparison
between independently developed components, (f4) reusability and scalability by mixing and matching several
AD and CED components in various combinations, (f5) customizability to evaluate and compare the
performance of multiple combinations of independently developed components on offline and potentially real-
time patient data when integrated with clinical workflow, and (f6) standardized component interfaces that can
potentially support real-time clinical implementation of AD. This study validates the six framework features f7
to f6.

Research Contribution

The main contribution of this paper is the dynamic evaluation of the AD framework as a test bed, given the
clinical context of false alarm reduction in medical devices. In this study, we first developed a catalog of several
exemplar AD components and a single CED component. The interfaces of all these components comply with
the CRM, such that they can be integrated within the AD framework. Given the motivation for false alarm
reduction, we designed a novel CED component that can generate peripheral oxygen saturation (SpO) alarms.
We then created four unique CDSS configurations by mixing and matching different AD components from the
catalog with the same SpO, alarm generation CED component. The Methods section describes the research
methodology, including the development of the framework component catalog and the four CDSS formulations

used for evaluating the framework and its features. This section demonstrates how the framework leverages



existing AD algorithms by incorporating them with the SpO; alarm—generating CED component. The four
configurations are designed and evaluated based on the results and recommendations in the state-of-the-art
research linked to the reduction of false alarms generated by original equipment manufacturer (OEM) monitors.
Although CRM has been developed after an extensive review of the literature that summarizes the requirements,
provisions, and configurations for many existing AD algorithms, it is expected that the CRM will continue to
evolve because a wide variety of new AD and CED algorithms with differing data needs are implemented as
components within this framework. For example, a new OEM alarm management system, Philips Care Event,
was evaluated along with the optimization of the clinical workflow in the NICU [46]. The OEM system delay
time for saturation-related alarms was increased from 10 to 20 seconds, and the averaging time was decreased
from 10 to 4 seconds without changing the standard alarm settings. This strategy led to a reduction in the
number of Sp0,<80% alarms and an increase in nurses’ response to alarms [46]. This is an exemplar state-of-
the-art CED strategy that can be easily accommodated and evaluated in combination with various AD
techniques using our framework to further reduce false alarms and subsequent alarm fatigue. In this way, the
framework can facilitate the discovery of optimal CDSS formulations through the mixing and matching of new
AD and CED components supported by an evolving CRM.

Methods section describes the framework evaluation methodology comprising the data collection method and
performance evaluation metrics of sensitivity (Sn) and FAR. For framework validation, we used real patient
data collected from 11 neonates during a clinical study at the NICU of the Children’s Hospital of Eastern
Ontario (CHEO), Ottawa, Ontario, Canada. Harvested data streams include heart rate (HR), pulse rate (PR),
SpO2, and their corresponding alarms from physiologic patient monitors. Several conditions, such as
hypothermia (peripheral vasoconstriction), edema (increased thickness and, therefore, diffusion distance for
oxygen), increased skin pigmentation, and shock, are known to decrease the clinical reliability of SpO». None of
the patients in this study had any such condition.

Results section provides the performance evaluation results in terms of Sn and FAR of the SpO, alarms
generated by each of the four CDSS formulations. Once a CDSS formulation is affirmed to satisfy clinical
needs through offline testing by applying this methodology, the optimal combination can be evaluated in a real-
time environment using the middleware technology. This will facilitate the real-time implementation of the
optimal CDSS formulation through hard-coded integration within clinical workflows.

It should be noted that all four CDSS formulations deploy the same CED component for SpO; alarm generation.
Hence, the sensitivity of the CED component to the error profiles and the impact of errors remain controlled or

constant across all experiments. Therefore, the reported Sn and FAR values reflect the performance of the four



different AD configurations, regardless of the performance of the CED component. In other words, the
framework evaluation reported here remains independent of the performance of the CED component. This
validates the use of the framework as a test bed to discover the optimal combination of AD components with a
CED component that is designed for a specific clinical problem. In the future, the framework can be similarly
deployed with another CED component for different clinical problems.

Discussion section discusses the research contributions and provides a detailed discussion on the validation of

the six framework features (f7)-(f6). Section 7 concludes the paper and suggests directions for future work.

Methods

Overview

According to Larsen [27], beyond designing and building a component-based framework, its evaluation requires
static models that illustrate component structures as well as dynamic models that illustrate component
collaboration. This paper first develops a catalog of static PDA, AD, and CED components. Subsequently, four
dynamic compositions of these components were formulated and evaluated using real patient data. Each of the
AD components processes physiological data streams in the form of numeric or string values, and the CED
component generates alarms on the SpO> data stream. The requirements and provision interfaces of all
components comply with the CRM, such that they can be integrated within the AD framework. Each
configuration is integrated with PDA and CED components to formulate a CDSS that generates SpO, alarms at
its output.

The following subsections expand upon this research methodology: Components Catalog develops a catalog of
framework components; CDSS Formulations mixes and matches these components to build and evaluate four
different CDSS formulations; and the Evaluation subsection uses real patient data to evaluate the performance
of each CDSS formulation, thereby validating the use of the framework as a test bed; and determining the
optimal CDSS formulation for SpO; alarm generation. Once a combination is affirmed to satisfy clinical needs
through oftline testing by applying this method, the optimal combination can be evaluated in a real-time
environment using the middleware technology. This will facilitate the real-time implementation of the optimal
CDSS formulation through hard-coded integration within clinical workflows.

Components Catalog

In this subsection, we develop a catalog of framework components comprising an original PDA component,
four AD components, and one novel CED component. The catalog represents a model instantiation of the

framework comprising the original PDA and CED components designed in collaboration with our clinical



partners. The catalog is not meant to represent an exhaustive or particularly novel set of AD components; rather,

it tailors the interfaces of existing AD algorithms to comply with the CRM.

PDA Component

As defined in our earlier research, the PDA component inputs patient data from sources that include, but are not
limited to, OEM patient monitors, clinical data entry, lab results, physician’s order, and patient demographics
from electronic health records [26]. In this research, the PDA inputs the physiological data and alarm streams
from the OEM monitors and translates these data to the schema defined by the CRM. It then feeds these data to
one or more AD components, as shown in the CDSS flowcharts in Figure 2. In these workflows, the hardware
and software requirements are factored in the PDA component. The hardware comprises the Digi International
Edgeport4 (Digi International), which consists of the Eltima Port Monitor Professional Edition Software v4.x
(Eltima Software) for data logging with additional customized software written in JAVA to conform the OEM-
generated data streams to the CRM. Specifically, the Data. Type (SpO2, HR, PR, and alarm status) and
corresponding Data. Values were extracted from each interleaved OEM data packet. Each packet was produced
by the monitor at 0.5 Hz. The low-level code of the PDA component interpolated and synchronized the data
streams at 1 Hz. As the OEM monitors fail to provide an explicit SQI stream for any of the data types, a default
SQI stream with a SQType="binary” and SQValue=1 is generated by the PDA component for each data type
using MATLAB.

AD Components

We surveyed a wide variety of techniques used by AD algorithms to detect, mitigate, and suppress
physiological artifacts that are found in clinical settings [25]. To demonstrate the framework composition, we
developed four AD components exemplifying the following diverse AD functionalities: (1) data and SQI de-
interlacing, (2) SQI fusion, (3) data fusion, and (4) data smoothing. Although each exemplar component differs
in its low-level code, all components conform to the CRM. The low-level code and configuration interfaces for
each functional group of the components are described as follows.

ADpi. Delnterlace Component
Some monitors produce a single output stream, which is, in fact, interlaced with the data and SQI. The ADpm

component is designed to deinterlace (DIL) these two information streams by allowing the user to define a set of
symbols (artSyms) to be associated with the corresponding SQI values. Typically, artSyms is a list of artifact
indicators specified by the manufacturer, which could be either numeric or string values that replace the value

of the datum. For example, for Infinity monitors (Drager Medical Systems), the set of artSyms would include



{NaN,*,5}, where Not-a-number (NaN) is substituted for any missing datum, " is an artifact indicator, and 5
is an alarm state (ie, part of the alarms stream) indicating a lead disconnection. Therefore, a data segment
interlaced with artifacts is logged with the corresponding artSyms value. In a different example, Philips
Intellivue MP70 monitors (Philips) generate a value of “2” in the alarms data stream in case of leads
disconnection. However, with the alarm data stream connected to the input of the ADpir. component, the value
“2” can be identified by the component as an artSyms. In such a way, the component can deinterlace the alarms
stream and generate a corresponding binary SQI stream, where the value “2” would be replaced by a 0. The

low-level code for ADprr is given by equation (1).
if (Data.Value(i) € artSyms); SQL,(1))=SQImucn(Data. Value(i)); end (1)

The configuration interface of the ADpi. component specifies the Data. Type to be examined, artSyms, and the
corresponding set of SQValue (SQImawch). This AD component produces a “rank” SQType, with “binary” being a
special case of “rank,” where SQImatch=0. Multiple instances of this component were cascaded in the AD
framework in this validation study.

ADFuseSQI Fuse SQI Component
The ADrusesor component accepts more than one data stream at its requirements interface, along with the

respective SQI of each stream. This component combines N incoming SQI inputs to generate a single fused SQI
(FuseSQI). The fused SQI value is equal to the operator, that is, the minimum, maximum, or average SQI value
from all the input SQI data at any given instant. This requires all the input SQTypes to be the same. The low-
level code for ADrusesqr is shown in equation (2).

SQIou(i)=operator (SQI1, SQL, ..., SQIx)  (2)
The configuration interface of the ADrusesor component defines N, the required input SQ7ype (same as output),
and the operator (min, max, and avg) to be applied to all input SQI values. In addition, the configuration
interface can specify which data types to forward at the provision interface, as only a subset of the input streams
may be required beyond this component. Equation (2) is a relatively simple depiction of data fusion. Data can
be fused at different levels of abstraction, requiring a more complex combination of operators and weighting
[35].

ADpi Differential Component
The ADpisr component calculates an absolute differential error function between two input data streams, Data;

and Data,. This error value was then compared with a configured threshold. The input “binary” SQI streams are
examined such that if either stream has a poor signal quality, then the output SQValue=0. This component can
be used in the case where two independent measurements of the same physiological parameter are provided;

then, this component will derive an SQI by exploiting data fusion. The configuration interface specifies the



output SQType to be produced; the Data. Type of Data; and Datay; the number of SQI thresholds, nthresh, to be
applied to the difference; the ordered set of thresholds (SQThresh);j=1:n1hresh); and the set of Nruresht1 SQValues
(SQI;) corresponding to each threshold with the additional SQValue for the default case (SQLiefuuiy). The
configuration interface can specify which data types to forward at the provision interface. The low-level code

for this component is illustrated in equation (3), as follows:
SQIout (i):SQqufault;
if (Data1.SQI.SQValue(i)==0) || (Data2.SQLSQValue(i)==0);
return; diff=|Datai.Value(i)—Dataz.Value(i)|;
for j=1: nThresh

{if (diff < SQThresh;){SQLou(i)=SQlj;break;} end  (3)
The ADpirr component can derive a “rank” SQType stream from HR and PR streams by configuring the
component to have output SQType set to “rank”; the Data. Type of Data;j=HR and Data>,=PR; nrnresn=3;
SQThresh={6,12,18}; and SQIL;={3,2,1,0}, where the SQlsci/=0. This configuration of the ADpisr component
was used in the validation study.
For example, consider the work on wearable devices and systems published by He et al [36]. Their study
synchronously collected the data of ballistocardiogram, electrocardiography (ECG), and photoplethysmography.
Their study suggests checking if all three physiological signals measure the same values for HR so that this
information can be used to ensure that the acquired data are not corrupted. However, their study did not
demonstrate whether and how it checks for data quality. Such a system would benefit from using the ADpitr

component.

ADwedrit Median Filter Component
The ADwedriit component implements a median filter (MedFilt). It is used for smoothing a stream of data to

mediate abrupt transient artifacts. The configuration interface defines the size of the sliding window Medww for
use while computing the median value. Its requirement interface inputs a single data type and its corresponding
SQI stream. Each datum in the output data stream was equal to the median of the past Meduw input data
samples. Only a subset of these Medyw may actually be used in computing the median because the ADwedriit
component only includes the data within the sliding window for which the input SQI is acceptable. The SQI
stream passed through this component and remained unchanged. By comparing the filtered and unfiltered data
using an ADpifr component, one can compute an SQI proportional to the degree of smoothing applied to each

point. The ADwmedriit component was used in CDSS formulations in this study.



CED Component

In this subsection, we develop a novel CED component that generates SpO; alarms. By discussing and reaching
consensus with our clinical collaborators at CHEO, we translated clinical rules into low-level logic to create a
CED component with a requirements interface that conforms to the CRM. Alarm generation studies suggest
these two approaches to reduce the FAR: (1) modifying or adjusting the alarm thresholds and (2) introducing
alarm annunciation delays, that is, a delay between when an alarm threshold is crossed and when the alert is
sounded or displayed [37-40,46]. These studies test alarm annunciation delays anywhere from 5 to 120 seconds
for a variety of physiological data types. However, none of these studies quantify the trade-off between Sn and
FAR resulting from their suggested alarm generation algorithms. In our study, the CED component incorporates
both approaches described above to reduce FAR. Its low-level code allows for adjusting the alarm thresholds by
reduction in the lower SpO, alarm threshold and increment in the upper SpO; alarm threshold. During
evaluation, both limits were adjusted by 3%, which corresponds to the manufacturer-specified margin of error
in the accuracy of the pulse oximeter reading. Therefore, the low alarm threshold, Thresh;,, is breached if the
SpO: value is lower than the alarm threshold of the OEM monitor by at least 3%, and the upper alarm threshold
Threshy; is breached if the SpO; value is higher than the alarm threshold of the OEM monitor by at least 3%.
Incorporating the second approach, the low-level code of the CED allows for tuning the alarm annunciation
delays (CEDpr) between 5 and 60 seconds.

Figure 2 shows a flowchart of the low-level source code of the CED component. In this case, the user is an
expert who composes the CDSS in collaboration with the clinician. The user can set tunable parameters at the
configuration interface, including values for Threshi,, Threshui;, DTro, DTui, and Floor. Floor is an absolute
minimum SpO; value determined by clinicians, typically in the range of 50%-75%. We set a Floor value below
because SpO; sensors are unable to calibrate at such low values; hence, the true state of the patient can no
longer be determined, and the CED must alarm to alert the clinician to come and check the patient. The CED
continuously compares the SpO- value with the lower and upper limits, Threshr, and Threshu;, respectively. A
history of threshold breaches gets stored in circular buffers, errorr, and erroryi. These breaches are summed
over a sliding window such that the total error is a function of both the magnitude and duration of the threshold
breaches. The integrated error is continuously compared with the tunable lower and upper decision thresholds,
DTro and DThi. These decision thresholds are set proportional to the CEDpr value, which is set at the
configuration interface of the CED component. Specifically, DTio is set equal to CEDpr, and DT is set to
twice the CEDpr because high SpO, alarms are not clinically deemed to be as dangerous as low SpO» alarms.

Therefore, the CED waits twice as long to generate a high SpO» alarm as compared with a low SpO, alarm. The



decision to generate an alarm is based on three conditions, as shown in Figure 2. The CED generates an alarm if
the incoming SpO- value is less than or equal to the set value of Floor and the incoming SQI is not zero, or if the
integrated errors, namely errori, or errory;, exceed DTro or DTy, respectively. Here, we configured parameters
suitable for the neonatal population. Users may tune the parameters specific to other patient populations.

CDSS Formulations

This section describes the dynamic framework compositions of the four CDSS formulations. MATLAB was
used for the dynamic framework modeling. Table 1 lists the requirements, provisions, and configuration
interfaces for each AD component deployed in the four CDSS formulations.

Table 1. Artifact detection component interfaces used in clinical decision support systems formulations.

AD? Interface
component
Requirements Provisions Configuration
CDSS® #1 and CDSS #2
ADoi [SpO:° Alarms, SQI9] [SpO:Alarms, SQI] | artSyms*{NaN',An 5}
ADpil [SpO, SQI] [SpO2, SQI] artSyms{NaN,"?,5}
ADrusesal [SpO2 Alarms, SQIJ; [SpO2, SQI] | [SpO2, SQI] N=2; operator (min); SQType’="binary”
CDSS #2 (additional component)
ADwedFilt [SpO., SQl] [SpOawmeq, SQI] Medwn'={5,10,20,25,30,35,60}
CDSS #3 and CDSS #4
ADpi [HR', sQI] [HR, SQl] artSyms{NaN,*?,5}
ADvi [PR, sQ] [PR, SQI] artSyms{NaN,,5}
ADbil [SpO2, SQl] [Sp0O2, SQl] artSyms{NaN,*",5}
ADbil [SpO:Alarms, SQl] [SpO2 Alarms, SQI] | artSyms{NaN, 5}
ADrusesal [SpO:Alarms, SQIJ; [Sp02,SQl] [SpO2, SQl] N=2;operator(min); SQType="binary”
ADoift [HR, SQI]; [PR, sQl] [PR, SQl] Datal.Type="HR”; Data2.Type="PR”; SQType="binary”; SQThresh={6,12,18};SQldefauir=0
ADrusesal [SpO2,SQl]; [PR, SQl] [SpO2,SQl]; N=2; operator(min); SQType="binary”
CDSS #4 (additional component)
ADwedritt [SpO2,SQl] [SpOaweq, SQI] Medww={5,10,20,25,30,35,60}

2AD: artifact detection.

*CDSS: clinical decision support systems.

°SpO2: peripheral oxygen saturation.




ISQI: signal quality indicator.

“artSyms: a list of artifact indicators with corresponding values of SQI specified by the manufacturer.
NaN: Not-a-number.

£SQType: a string variable from a controlled schema with corresponding types of SQI.

"Medww: size of the sliding window of the median filter.

'HR: heart rate.

JPR: pulse rate.

CDSS #1

CDSS #1 constitutes the simplest of the four compositions designed for this study. A flowchart for CDSS #1 is
shown in Figure 3.This flowchart has three functional horizontal swim lanes, depicting the PDA, AD, and CED
components of the integrated CDSS. Each data stream is represented by a tuple with both data and SQI
information. The input data stream is sourced only by the SpO> sensor comprising two data types, namely, SpO»
and SpO; alarm status (SpOzA4larm). The low-level logic of the PDA component maps the incoming values to
its respective data type (SpO: or SpO2A4larm) and assigns a default SQValue of 1 to each datum of each
Data.Type because an SQI value is not provided by the OEM monitor in this case.

The AD composition pipeline in CDSS #1 consists of two ADDILs and one ADrusesqr component. The ADpir
component deinterlaces the OEM-generated artifacts, whereas the ADrusesQr component combines the SQI
streams from the two ADpir components. The PDA provides SpO: and its associated SO/ stream to one
instantiation of ADpy. while providing SpO24larm and its SQI stream to the second instantiation of ADpyr. The
low-level code of the ADpi. component deinterlaces the OEM-specified artifact values. Here, the user-set
configuration interface includes artSyms={NaN,",5} and SQImach=0. The “NaN” string implies missing data,
and the “*” symbol represents OEM-specified artifact values in the SpO: stream, whereas “5” is interlaced
within the SpO>A4larm to imply that the SpO> sensor is off. Hence, the use of the two ADpi. components would
provide the original data streams of Data. Type SpO: and SpO2A4larm, along with their respective SQI streams,
with SQValue=0 wherever the Data.Value is equal to any one of the artSyms. These 2 data streams and their
associated SQI streams are then input to the requirements interface of an ADrysesqr component. The low-level
code of the ADrysesQr component fuses two or more incoming SQI inputs to generate a single fused SQI value.
In this formulation, the operator is set to min; hence, it provides an output SQValue that is the minimum of the 2
input SQValue for which SOQType="binary.” As shown in Figure 3, this output SQI stream is associated with the
original SpO; stream that is required by the CED component.



CDSS #2

CDSS #2 extends the CDSS #1 formulation by adding an ADwmedrit component to process the SpO; data stream
through a median filter for reducing transient artifacts. This extension is labeled CDSS #2 in Figure 3. The low-
level code of the ADwmedrii configuration interface comprises a tunable parameter Medww={5,10,20,25,30,35,60},
and the component produces a median filtered SpO:arq data stream and its associated SQI stream, which are

then passed to the requirements interface of the CED component.

CDSS #3

CDSS #3 leverages data fusion to derive an estimate of the signal quality for SpO,. Here, an ADpifr component
computes the difference between the PR and HR. Physiologically, PR and HR are equal, representing the
mechanical and electrical pumping rates of the heart, respectively. Therefore, any difference between PR and
HR serves as a proxy for signal quality measurements. In this study, HR is considered as the gold standard.
Therefore, a large difference between the instantaneous PR and HR values indicates that the PR has deviated
and is not reliable. In this case, a low SQI is assigned to both PR and SpO> because both are sourced from the
same sensor. Figure 4 shows the PDA, AD, and CED components in the flowchart for CDSS #3. The low-level
code of the ADpisr component computes the difference between the instantaneous HR and PR values. By
comparing that difference to a threshold, a “binary” SOQType is generated, which is then passed to the
requirements interface of the CED component. The configuration interface was set with a single threshold to
produce a “binary” SQType. The SQI threshold (SQThresh) is varied in the range {6,12,18} to examine its

effect, and the results are reported separately for each.

CDSS #4

CDSS #4 builds on the composition of CDSS #3, as depicted in Figure 4. Here, an ADwedrix component is
added such that the SpO: data stream can be median filtered to produce SpOamed data and SQI streams, which
are then fed to the requirements interface of the CED component. The tuned values of Medyw include
{5,10,20,25,30,35,60}.

Evaluation

Clinical Data Collection

Data were collected during a clinical study conducted in the CHEO NICU. The study was approved by the
hospital’s Research Ethics Board. In total, 11 neonatal patients with diverse pathologies were enrolled in this

study. The following time-stamped data streams and corresponding alarms were collected simultaneously from



each infant at a frequency of one reading every 2 seconds (0.5 Hz): PR and SpO; from a pulse oximeter
(Masimo SET SmartPod Model # MS16356, Masimo Corp) integrated with an Infinity Delta monitor (Drager
Medical Systems) as well as HR derived from ECG leads attached to a second Infinity Delta monitor. HR and
PR are parameters that estimate the rate at which the heart beats per min (bpm). Although HR and PR are
acquired independent of each other, they essentially represent the exact same functionality of the heart, albeit in
electrical and mechanical contexts, respectively. HR is acquired through ECG leads, which are electrical
sensors, and PR is acquired using optical sensors attached to the pulse oximeter. Moreover, the pulse oximeter
derives SpO- using the same optical sensor data. This implies that the quality of the PR data stream reflects the
quality of the SpO; data stream. Therefore, to evaluate the framework as a CDSS that generates SpO> alarms,
we selected the HR as the gold standard for comparison with the quality of the PR data stream. The reason for
selecting the HR patient data acquired from the Infinity Delta monitor as the gold standard is that these monitors
are used for continuous patient monitoring at the research site (CHEO); therefore, clinicians depend on the vital
sign data displayed by these monitors to routinely assess the patients. Second, we evaluated the SpO, alarm
generation performance of the framework as compared with the Masimo SET SmartPod pulse oximeter. Again,
this pulse oximeter was selected for comparison because it is routinely used for continuous patient monitoring at
the CHEO. RS232 serial ports on both Infinity Delta monitors were connected through Digi International
Edgeport4 (Digi International) hardware to a USB port on a computer. Eltima Port Monitor Professional Edition
Software v4.x (Eltima Software) was installed on the same computer to read and log data transmitted by each
monitor in real time. Thus, a total of 79,200 data points from each physiologic data type were used for analysis.
To synchronize data collected from the 2 OEM monitors, these samples were interpolated to obtain one sample
every second, resulting in 158,400 data points from each data type. Information regarding patient demographics,
inclusion and exclusion criteria, and the detailed methods of data acquisition and data annotation can be found
in the author’s earlier research on this data set [41]. A previous study manually counted and categorized patient
monitoring alarms [41]. Clinicians, including bedside nurses and neonatologists, validated and categorized the
alarms generated by patient monitors. However, manual counting introduces the likelihood of human error. To
minimize this likelihood, the process of counting and categorizing the alarms was automated by running the
data through a computerized script. This resulted in the identification and categorization of 119 alarms
generated by the Masimo pulse oximeter across all 11 patients. These alarms were validated against the
clinicians’ original validation and categorization criteria from [41]. The Sn and FAR of the Masimo pulse

oximeter were found to be 85% and 46%, respectively.



Evaluation Metrics

Data from all 11 patients were used as an input to evaluate each of the four integrated formulations, CDSS #1-4.
Leave-one-out cross-validation was used to compute two performance metrics, Sn and FAR. Data from a set of
10 patients were used to tune the components and from the remaining patients to generate alarms. This was
repeated 11 times, each time changing the patient for whom the data were left out as a test case.

We then compared the alarm generation performance of each CDSS composition with that of the OEM monitor.
Using the OEM monitor’s Sn of 85% and FAR of 46%, we formulated equations (4) and (5) to measure the
difference between the Sn and FAR values of the CDSS formulations and the OEM monitor and report that as a
percent change. Negative values of percentage change indicate reduction, and positive values indicate
increments in Sn and/or FAR. These are reported as (% change in Sn) and (% change in FAR) by equations 4

and 5 respectively.

Inline graphic 1
Inline graphic 2

Results

Overview

This section presents the performance evaluation results for all four formulations CDSS #1-4 in terms of Sn and
FAR, which are averaged across all 11 cross-validation trials. Tables 2 and 3 summarize the pooled results for
achieved Sn values of >75% and >80%, respectively. These Sn thresholds were chosen arbitrarily, and other
threshold values may be chosen depending on the clinical needs. These tables show the best achievable results
expressed as (Sn (% change in Sn), FAR (% change in FAR)) in all four CDSS formulations. The formulations
were tabulated based on the inclusion of the ADwmedriit and ADpisr components. Figure 5 shows the graphical
results from all four CDSS formulations as linear plots of Sn (%) and corresponding FAR (%) achieved by
tuning the parameters Medww, CEDpr, and SQThresh, where applicable to a CDSS. As the configuration
parameters of the AD and CED components are varied (tuned), the total number of alarms that are generated
also varies. By reporting the performance metrics of Sn and FAR in terms of percentages, we can compare the
results across the four CDSS formulations. Here, we compare the best results achieved and tabulated in Tables 2

and 3.



Table 2. The best possible (Sn (% change in Sn), FAR (% change in FAR)) achieved in clinical decision

support systems #1-4, where sensitivity>75%. Tunable parameters are specified for each case.

ADwedrit® ADoit®
Yes No
Yes . CDSS° #4 CDSS #2
L Medww’=10, CEDor®=15, Medww=15, CEDor-12: (75 (—11.7%), 32 (—30.4%))
. SQThresh’=18: (76 (—10.5%), 36 (—21.7%))
No . CDSS #3 CDSS #1
o CEDp1=20, SQThresh’=18: (78 (—8.2%), 47 (21.7%)) CEDpr=15: (76 (—10.5%), 40 (—15%))

*ADweari: AD median filter component.

*ADpi: AD differential filter component.

°CDSS: clinical decision support systems.

Medww. size of the sliding window of the median filter.

*CEDpr: alarm annunciation delay.

'SOThresh: the ordered set of thresholds.

Table 3. The best possible (Sn (% change in Sn), FAR (% change in FAR)) achieved in clinical decision

support systems #1-4, where sensitivity>80%. Tunable parameters are specified for each case.

ADwedritt ADpit
Yes No
Yes . CDSS® #4 . CDSS #2
e Medww"=10, CEDor'=5, SQThresh’=18: (80 (—5.8%), 44 (—4.3%)) e Medww=10, CEDbr=10: (80 (—5.8%), 39 (—15.2%))
No . CDSS #3 . CDSS #1
e CEDu=12, SQThresh=12: (82 (—3.5%), 50 (8.6%)) e CEDor=12: (80 (—5.8%), 41 (—10.8%))

*CDSS: clinical decision support systems.

bMedww. size of the sliding window of the median filter.




‘CEDpr: alarm annunciation delay.

dSOThresh: the ordered set of thresholds.

CDSS #1

The best achievable result for CDSS #1 is (Sn, FAR)=(80, 41) and is obtained when CEDpr=12, where
Sn>80%. If Sn is only required to be >75%, then the best achievable performance becomes (Sn, FAR)=(76, 40)
when CEDpr=15. The FAR (40%) was 15% less than that of the OEM’s FAR (46%). This is achieved at the
cost of decreasing Sn (76%) by 10.5% than the Sn of the OEM (85%).

CDSS #2

Table 2 shows that the best achievable result for CDSS #2 is (Sn, FAR)=(80, 39) when Medww=10 and
CEDpr=10, where Sn>80%. In this formulation, Sn>80% was achievable only when Medww<10. If Sn is
allowed to be >75%, then the best achievable performance becomes (Sn, FAR)=(75, 32) when Medww=15 and
CEDpr=12.

CDSS #3

In CDSS #3, with the ADpitr component configured with SQThresh=6, the best achievable result for (Sn,
FAR)=(86, 52) with CEDpt=5. The CDSS performance was worse for all other CEDpr thresholds at
SOThresh=6. Although this CDSS performs with an improved Sn (86%) as compared with the OEM’s Sn
(85%), the cost is an increase of 13% in the FAR (52%) as compared with the OEM’s FAR (46%).

With the ADpitr component configured with SQThresh=12, the best achievable (Sn, FAR) is (82, 50) when
CEDpr=12 for both values of the required Sn>80% and Sn>75%. The CDSS performance was worse for all
other CEDpr thresholds at SQThresh=12. When the ADnpisr component is configured with SQThresh=18, the
best achievable result for (Sn, FAR)=(80, 50), with CEDp1=12 with a threshold of Sn>80%, and the best
achievable result for (Sn, FAR) is (78, 47), with CEDpr=20 while maintaining Sn>75%. Thus, CDSS #3 was
not able to beat the OEM monitor’s FAR (46%) at any of the parameter settings that were tested.

CDSS #4

When the ADpifr component of CDSS #4 is configured with SQThresh=6 and the sensitivity requirement is
>80%, the best achievable result for (Sn, FAR)=(84, 52) when Medww=5 and CEDpt=5. When Sn>75%, the
best achievable (Sn, FAR)=(75, 40) when Medww=10 and CEDpr=12. Medww>10 resulted in lower (Sn, FAR)
values, where Sn<75. If the ADpisr component is configured with SQThresh=12 and Sn>80%, then the best
achievable result for (Sn, FAR)=(82, 49) with Medww=5 and CEDpt=12. When Sn>75%, the best achievable
(Sn, FAR)=(75, 37) is obtained when Medww=12 and CEDp1=12. Medww>12 resulted in lower (Sn, FAR)



values, where Sn<75. Table 3 shows the results from CDSS #4, where the ADp;fr component is configured with
SOThresh=18 and Sn>80%, and the best achievable result (Sn, FAR)=(80, 44) is obtained when Medww=10 and
CEDpr=5. When Sn>75%, the best achievable result (Sn, FAR)=(76, 36) is obtained when Medww=10 and
CEDpr=15. Medww>12 resulted in lower (Sn, FAR) values, where Sn<75.

Discussion

Principal Findings

The overarching contribution of this study is the illustration of dynamic framework models and their evaluation
using clinical data. In this section, we also discuss how this evaluation leads to the validation of the six
framework features (f7)-(f6).

Framework Evaluation

As described in the Evaluation section, the data set used in this evaluation contained 119 alarms across all 11
patients in this study. This data set represents a unique and valuable resource because it includes the detailed
annotations of artifacts, alarms, clinical events, clinical interventions, and observations. The patients in our
study represented a neonatal population with varying disease severity, weight, and gestational age. Although
such a wide range of patients provides for the development of widely applicable rules, as discussed above,
many decision thresholds are required to be patient centric. For example, one patient was far more ill than the
other 10 patients, with 32% of the associated clinical events. Other limitations of the data set include a possible
ambiguity in categorizing alarms as true versus false, especially in cases where the SpO» reading hovers around
the OEM monitor’s alarm threshold setting. In this study, such indeterminate alarms were categorized as false
alarms. The study sample size was limited because of hospital logistics and resources. In the future, a larger
sample size could facilitate subgroup analyses with division based on clinical characteristics, weight, and
gestational and chronological age of infants.

From the evaluation results presented in Table 2 under the criterion that Sn>75%, we infer that CDSS #2 results
in the best achievable performance of (Sn, FAR)=(75,32) when Medww=15 and CEDpr=12. Although a
considerable reduction in Sn was observed (11.7%), this parameter combination resulted in a significant
reduction in FAR (30.4%). From Table 3, we conclude that CDSS #2 also gives the best possible performance
of Sn=80% and FAR=39%, representing percentage reductions of 5.8% and 15.2% for Sn and FAR,
respectively. Therefore, CDSS #2 is considered the optimal formulation out of all four CDSS because of the
largest reduction in FAR while maintaining Sn>80%. The optimal parameters for this formulation were

Medww=10 and CEDpr=10.



The results of CDSS #1 illustrate the effects of varying the CED decision threshold (CEDpr) on the
performance of CDSS. By adjusting this threshold, the system could be made more conservative or permissive,
leading to an explicit trade-off between Sn and FAR. This CEDpr is patient-centered and may be adjusted
depending on the severity of disease and clinical resources available, for example, the nurse-to-patient ratio may
differ in the NICU versus that in the general ward. A comparison of the results from CDSS #1 and #2 indicates
that the use of ADwmedrii significantly improved both the Sn and FAR of the CDSS. As expected, increasing the
median filter width reduced both Sn and FAR because the median filter smoothed out transient SpO> values.
The range of median filter widths was evaluated in combination with a range of CEDpr values seeking the
combination that provided the greatest decrease in FAR while maintaining a Sn>80% or >75%. Although these
Sn thresholds were somewhat arbitrary, they reflect the need to detect the majority of true clinical events.

CDSS #3 and #4 leveraged data fusion via an ADpjrr component to identify periods of low signal quality.
Clifford et al [42] recommended that an SQI be generated for each datum when a known error rate is available
for calibration. Following this, we hypothesized that by computing the error rate from the combined information
from two different sensor modalities, PR from SpO; and HR from ECG, an SQI signal could be generated and
increased performance would be achievable. The results for three different ADpjsr threshold values failed to
demonstrate an improved performance. In fact, the frequency of all three types of alarms, namely, true, missed,
and false, increased with the use of ADpifr. A close inspection of the generated alarms revealed the
fragmentation of previously contiguous alarms into more alarms of shorter duration. This was due to the
instantaneous masking of individual SpO, values because of transient disparities between HR and PR, which are
not necessarily associated with prolonged periods of low signal quality. We observe that an incremental trend in
SQThresh values, that is, from 6 to 12 to 18, demonstrates a decreasing trend in Sn and FAR percentages in
both CDSS #3 and #4. In future work, the CED algorithm may be modified to process the SQI in a variety of
ways that may lead to improved performance. Suggestions for future exploration include either retaining the
previous alarm state during periods of low signal quality or appraising cumulative SQI values instead of
instantaneous ones.

In summary, dynamic framework modeling showed that the lowest achievable FAR was 39% at a sensitivity of
80%, when compared across all four CDSS formulations.

Framework Features

The four dynamic CDSS formulations serve to validate the 6 framework features (f7)-(f6) as follows:



(f1) Flexible in serving the differing needs of patient populations from different types of critical care
units through generalization and customizability. The CRM includes several fields to generalize and
customize each component, for example, Data. Type and Data.SQType. Although the data in this
validation study were collected at the NICU, the inherent flexibility of the framework can accommodate
various types of data streams acquired from other types of critical care units. Similarly, the component-
based nature of this framework allows for the creation of CED components relevant to different clinical
domains and for their integration with the most appropriate available AD components. As a result, the
components catalog, dynamic framework models, and analyses are not restricted in application to the
NICU. This could be demonstrated using future experiments based on data from other units, whether

gathered specifically for this research or taken from repositories such as Physio Net [43].

(2) Reusable across multiple types of physiological data harvested by different OEM monitors: The

configuration interface of each component permits the setting of OEM-specific and Data.Type-specific values

such that the same component may be applied to various physiological data types arising from different OEM

monitors. For example, the artSyms configuration parameter allows the ADpi. component to identify artifacts

flagged by different OEM monitors. AD components selected from the catalog were used to process different

physiological streams acquired by different OEM monitors in various experiments. For example, the ADpi.

component is used to process the HR from the Drager OEM monitor and SpO; and PR from the Masimo OEM

pulse oximeter. This validates the reusability of the framework and its components across multiple types of

physiological data harvested by different OEM monitors.

(f3) Standardized definitions of SQI that promote interoperability between independently developed
components: The CRM defines standardized types of SQI, such as, “continuous,” “rank,” and “binary.”
These experiments used multiple components to generate the SQI. These components were developed
based on the current algorithms identified in the literature review. For example, the ADpifr component is
derived from the work of Yu et al [44] and applied to the HR and PR streams in experiments 3 and 4,
whereas the CED component leverages the ideas of threshold modification and alarm annunciation
delays that were introduced in previous studies [37-40]. These experiments demonstrate the integration
of components that were developed independently and whose interoperability is facilitated through the
use of standardized SQI, as defined in the framework’s CRM.

(f4) Reusability and scalability by cascading, mixing, and matching several AD and CED components in

various combinations: By requiring all component interfaces to conform to the standardized CRM,



interoperability is promoted, allowing for component reuse and the creation of highly complex pipelines
leveraging simple and well-tested components. Each of the four models represented a different
component composition. The analyses in each composition vary in scale through the reuse and
cascading of components. This mixing and matching are made possible by the adherence of each
component to the CRM. Comparing the flowcharts in Figures 3 and 4, there is an increase in the number
of instantiations of the ADpiL component from 2 to 4 between CDSS #1 and #3. This demonstrates that
the framework supports reusability and scalability by cascading, mixing, and matching several
components.

(f5) Customizability to evaluate and compare the performance of multiple combinations of
independently developed components on oftline and potentially real-time patient data when integrated
with clinical workflows: A literature review reveals that AD algorithms are typically developed and
validated in offline environments [25]. This study illustrates the dynamic framework evaluation using
real patient data offline. This validates the use of the framework as a test bed for multiple combinations
of independently developed components. Once a combination is affirmed to satisfy clinical needs
through offline testing, that combination can then be evaluated in a real-time environment using the
middleware technology. In this way, the transition to real-time clinical implementation and validation is
facilitated. Anumber of studies have suggested the introduction of delays in alarm annunciation to
reduce FARs. This strategy is expected to reduce the FAR. However, there is a lack of quantitative
evaluation in terms of the impact of such a strategy on Sn and FAR. The framework developed here
promotes and enables such a quantitative study design, as demonstrated by the experiments developed
here. In fact, it was found that such strategies failed to suppress false alarms while maintaining a
sufficiently high Sn. This shows that the customizability of the framework allows for performance
evaluation and comparison of multiple combinations of independently developed components on offline
and potentially real-time patient data when integrated with clinical workflows.

(f6) Standardized component interfaces that can potentially support real-time clinical implementation of
AD: If independent research and OEM groups choose to implement their algorithms within the context
of the framework, that is, adhering to the CRM, then it is more likely that these algorithms will reach
clinical implementation because the CRM supports interoperability between all components.
Furthermore, the framework simplifies information technology (IT) requirements for hospitals because it
provides a unified functional environment in which all AD and CED components required by multiple

critical care units can be supported and executed. Finally, the framework facilitates the testing and



validation of new algorithms across different clinical settings, populations, critical care units, and
pathologies. This will make the system more robust and therefore more likely to be adopted [45]. There
is a paucity of CDSS for real-time clinical implementation. One hurdle to their clinical adoption is the
requirement to transform complex algorithms for real-time implementation. By implementing the
required algorithms within the framework, the algorithms will be made suitable for execution in real
time. The four experiments were implicitly designed to run the framework components in a real-time
streaming environment. The composition of the analysis in each experiment was evaluated using a
simulated real-time environment. As a result, with negligible reformulation, the optimal framework
composition resulting from this evaluation can be integrated within clinical workflows. Therefore, we
conclude that the standardized component interface design warranted by the CRM supports real-time
clinical implementation of AD within CDSS.
Conclusions
This research evaluated a novel AD framework that standardizes the interoperability of AD and CED
algorithms for integration within the CDSS. The framework provides a unique test bed with the ability to create
and integrate new AD compositions by mixing and matching independently developed or decoupled AD
components with CED components that are designed to deliver specific clinical outcomes. This study validates
the use of the AD framework in a clinical study using real patient data from the NICU. Several combinations of
AD and CED components were evaluated, thereby illustrating the validity of the six framework features,
namely, f1-f6, including flexibility, reusability, standardization of SQI, scalability, customizability, and support
for real-time implementation.
Future work will include the implementation of a wide range of AD and CED components to further leverage
the interoperability provided by the CRM. Although the CRM has been developed following an extensive
review of the literature that summarizes the requirements, provisions, and configurations for many existing AD
algorithms, it is expected that the CRM will continue to evolve as a wide variety of new AD and CED
algorithms with differing data needs are implemented as components within this framework. Further validation
of the framework can be conducted by independent research groups. The clinical benefits of this research will
be broadly realized through the integration of the framework in real-time CDSS to enhance the quality of data
analytics. In this way, framework implementation within clinical workflows offers the potential to improve the

quality of care for patients and clinicians in critical care.
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AD: artifact detection

CHEO: Children’s Hospital of Eastern Ontario

CDSS: clinical decision support systems

CED: clinical event detection

CRM: common reference model



DIL: designed to deinterlace

ECG: electrocardiography

ECRI: Emergency Care Research Institute
FAR: false alarm rate

HR: heart rate

IT: information technology

NaN: not-a-number

NICU: neonatal intensive care unit
OEM: original equipment manufacturer
PDA: patient data acquisition

PR: pulse rate

SpO.: peripheral oxygen saturation
SQI: signal quality indicator

@re 1. Common reference model (CRM) schema consisting of the patient data metadata used by each
component’s requirement and provision interfaces at input and output. SQ: signal quality; SQI: signal quality

indicator.
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