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Abstract 

Background: Clinical decision support systems (CDSS) have the potential to lower the patient mortality and 

morbidity rates. However, signal artifacts present in physiological data affect the reliability and accuracy of the 

CDSS. Moreover, patient monitors and other medical devices generate false alarms while processing 

physiological data, further leading to alarm fatigue because of increased noise levels, staff disruption, and staff 

desensitization in busy critical care environments. This adversely affects the quality of care at the patient 

bedside. Hence, artifact detection (AD) algorithms play a crucial role in assessing the quality of physiological 

data and mitigating the impact of these artifacts. 

Objective: The objective of this study is to evaluate a novel AD framework for integrating AD algorithms with 

CDSS. We designed the framework with features that support real-time implementation within critical care. In 

this study, we evaluated the framework and its features in a false alarm reduction study. We developed static 

framework component models, followed by dynamic framework compositions to formulate four CDSS. We 

evaluated these formulations using neonatal patient data and validated the six framework features: flexibility, 

reusability, signal quality indicator standardization, scalability, customizability, and real-time implementation 

support. 

Methods: We developed four exemplar static AD components with standardized requirements and provisions 

interfaces that facilitate the interoperability of framework components. These AD components were mixed and 

matched into four different AD compositions to mitigate the artifacts’ effects. We developed a novel static 

clinical event detection component (CED) that is integrated with each AD composition to formulate and 

evaluate a dynamic CDSS for peripheral oxygen saturation (SpO2) alarm generation. This study collected data 

from 11 patients with diverse pathologies in the neonatal intensive care unit. Collected data streams and 

corresponding alarms include pulse rate and SpO2 measured from a pulse oximeter (Masimo SET SmartPod) 

integrated with an Infinity Delta monitor as well as the heart rate derived from electrocardiography leads 

attached to a second Infinity Delta monitor. 

Results: A total of 119 SpO2 alarms were evaluated. The lowest achievable SpO2 false alarm rate was 39%, 

with a sensitivity of 80%. This demonstrates the framework’s utility in identifying the best possible dynamic 



 

composition to serve the clinical need for false SpO2 alarm reduction and subsequent alarm fatigue, given the 

limitations of a small sample size. 

Conclusions: The framework features, including reusability, signal quality indicator standardization, 

scalability, and customizability, allow the evaluation and comparison of novel CDSS formulations. The optimal 

solution for a CDSS can then be hard-coded and integrated within clinical workflows for real-time 

implementation. The flexibility to serve different clinical needs and standardized component interoperability of 

the framework supports the potential for a real-time clinical implementation of AD. 
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Introduction 

Clinical Decision Support Systems 

Clinical decision support systems (CDSS) are computerized health care analytic systems that have the 

functionality to integrate patient data for their analyses and detect clinically significant patient events. CDSS 

has the potential to lower patient mortality and morbidity rates when integrated into critical care workflows [1-

5]. Clinical event detection (CED) algorithms that identify clinically significant events and early onset 

indicators of various pathophysiological diseases may be integrated into the CDSS to further exploit this 

potential [6-10]. Similarly, parameter derivation algorithms that extract clinically useful low-frequency 

parameters from high-frequency input data are also essential for clinical decision making [11-14]. However, the 

inherent presence of signal artifacts in physiological data impacts the reliability and accuracy of the analytical 

results produced by such algorithms [15]. Moreover, commercial physiologic patient monitors used in clinical 

settings are built using relatively simplistic proprietary algorithms for preprocessing artifacts [16-18]. This 

results in an unacceptably high rate of false alarms generated by these patient monitors [19]. Such alarms, 

termed as nuisance or false alarms, result in increased noise levels, staff disruption, and staff desensitization in 

busy critical care environments [20-22]. False alarms need to be typically silenced or overridden by staff, which 

leads to alarm fatigue, causing an even bigger hazard of missed alarms and compromising the quality of care at 

the patient bedside [21,23,24]. The Emergency Care Research Institute (ECRI), a Pennsylvania-based patient 

safety organization, issued an annual report of the top 10 health technology hazards. Leading up to and 

including 2019, ECRI has reported medical device alarms to be among the top 10 hazards. The literature has 

reported false alarm rates (FAR) greater than 70% [46]. The integrity and quality of data are crucial to the 

success of any analytic system. Therefore, it is important to design and implement CDSS for assessing the 



 

quality of data and issue relevant alarms with a high specificity and low FARs. A recent study suggested 

behavioral methods to reduce false alarms and alarm fatigue in the neonatal intensive care unit (NICU) [47]. 

The study was conducted in an NICU in a low-income country (India) [47], whereas our study was conducted in 

a high-income country (Canada) where the recommended behavioral changes have already been implemented 

[48]. 

Artifact Detection 

Research groups have published several artifact detection (AD) algorithms to assess the quality of physiologic 

data and minimize the impact of artifacts before analyzing these data for CED. However, a methodological 

literature review by the authors conveys common limitations in the application of a vast majority of AD 

algorithms [25]. In this review, we synthesized more than 80 state-of-the-art AD algorithms and discovered the 

following six shortcomings: most AD algorithms (1) are designed for one specific type of critical care patient 

population, (2) are validated on data harvested from a single monitor model, (3) generate signal quality 

indicators (SQIs) that are not yet standardized for useful integration in clinical workflows, (4) operate either in 

standalone mode or are tightly coupled with other CDSS applications, (5) are rarely evaluated in the real time, 

and (6) are not implemented in clinical practice [25]. A more recent review on the initiatives to manage and 

improve alarm systems taken by means of human, organizational, and technical factors for an improved quality 

of health care also supports our findings [20]. The review reveals gaps between alarm-related standards and 

how those standards are translated into practice, especially in a clinical environment that uses multiple alarming 

medical devices from different manufacturers [20]. This suggests standardization across devices from the same 

and different manufacturers and the use of machine learning to improve the alarm safety [20]. 

Artifact Detection Framework 

To address the six shortcomings (1)-(6) that are listed above, we designed and developed a novel, multivariate, 

component-based, standardized AD framework [26]. For the reader’s convenience, the Methods section 

provides the background on framework development, including the design of its components and interfaces by 

developing a common reference model (CRM). The objective is to facilitate the integration of AD and CED 

algorithms within the CDSS in a standardized manner. To achieve this, we leveraged six framework features f1 

to f6, which are listed in then Methods section. We designed the AD framework as a test bed to formulate and 

evaluate multiple combinations of independently developed AD and CED components. Once a combination of 

AD and CED is affirmed to satisfy clinical needs through offline testing, then that combination can be evaluated 

in a real-time environment using the middleware technology. In this way, the transition to real-time clinical 

implementation and validation can be facilitated by using this framework. 



 

For the reader’s convenience, this section summarizes the development of the AD framework, as in a previous 

study [26]. This section comprises the development of the components and interfaces that provide the 

framework’s end-to-end functionality, a CRM for the standardized communication between components across 

their interfaces and the framework’s features. 

Components and Interfaces 

A framework comprises components that interact with each other and with the system through one or more 

interfaces to realize the system goals. An interface is defined as a means of communicating with or accessing a 

component [27]. Clearly defined uniform interfaces enable components to make their own functional 

requirements explicit as well as to enable specifications of other collaborating components. Interfaces stipulate 

prerequisites, provisions, and constraints of component operations. A component can have one or more 

interfaces, selectively instantiated at the runtime depending on the component’s role in a particular composition. 

As described in a previous study [28], an interface can be categorized as (1) requirement, (2) provision, and (3) 

configuration. Each component has its own operational requirements, specified by its requirement interface, 

which defines what the system or other components in the system must provide for the component to function 

[27]. The provision interface makes explicit what a component can provide either to another component or as a 

contribution to the system output. The configuration interface incorporates a user-defined functionality, further 

allowing the user to define the runtime parameters for a particular application. A configuration interface can be 

part of the user interface designed for a clinician to interact with the system settings. 

The AD framework comprises the following components: (1) patient data acquisition (PDA), (2) AD, and (3) 

CED. Each component is composed of low-level code and the following three interfaces: (1) requirement, (2) 

provision, and (3) configuration. Framework components can interface as either standalone algorithms or in 

cascade with the same or different types of components. 

Common Reference Model 

The standardization of interfaces is key for achieving the system goals. This involves defining unambiguous 

formalisms with semantics that are commonly understood by all components within the framework. A novel 

CRM was developed to standardize the definitions for these interfaces to facilitate component interoperability 

within the AD framework [26]. Multiple medical ontologies are in existence to address the measurement of 

medical parameters such as Logical Observation Identifiers Names and Codes (LOINC), which is a database 

and universal standard for identifying medical laboratory observations; Systematized Nomenclature of Human 

Medicine (SNOMED), which is a multiaxial nomenclature for indexing medical records; and the Fast 



 

Healthcare Interoperability Resources (FHIR) which is an interoperability standard created by the standards 

development organization Health Level 7 (HL7) to enable health data, including clinical and administrative 

data, to be quickly and efficiently exchanged across medical devices. The CRM interfaces designed as a part of 

our framework are easily customizable to match any of these standards. CRM comprises metadata that are 

intended to establish a common understanding of the meaning or semantics of the data exchanged between 

component interfaces. This allows all framework components to communicate, regardless of their underlying 

low-level logic. For example, CRM facilitates interfacing a variety of AD algorithms for different types, 

frequencies, and quality of physiologic data that are commonly processed by CDSS. In particular, the 

standardization of SQIs is a novel contribution to the development of CRM. The CRM metadata comprise the 

following layered schema: PatientData (PatientID, DeviceID, Data (Type, TimeStamp, Value, SQI (SQType and 

SQValue))). PatientData represents the patient data exchanged between the components. Its schema consists of 

three properties, as shown in Figure 1 (PatientID, DeviceID, and Data). PatientID identifies the patients with 

whom the data are associated. It can be any type of patient identifier, such as the patient’s admission reference 

number. DeviceID represents the hospital or OEM identifier for the patient monitor or other devices from which 

the data are being acquired. The more complex Data property has the following four attributes: Type, 

TimeStamp, Value, and SQI. Type is a string variable from a controlled schema, naming the physiological data 

stream. TimeStamp is the time at which each datum is logged. A component may have specific data exchange 

and processing rates, which require data at specific frequencies. Therefore, TimeStamp can be used to (1) derive 

the frequency of data, (2) align multiple data streams for fusion, and (3) annotate events in real time. Value 

contains the numeric or string value of each datum. An SQI may also be associated with each datum. This 

measure of signal quality is provided by the monitor (via a PDA component) or derived by one or more AD 

algorithms. The SQI for each datum is further described by two attributes: SQType and SQValue. SQType is a 

string variable from a controlled schema, for example, “binary,” “rank,” “categorical,” or “null.” New strings 

can be introduced in this set in the future. “Null” implies there is no SQI available for that particular data type. 

SQValue depends on SQType. For example, if SQType is “binary,” then SQValue belongs to a set of 0 or 1. This 

schema is extensible when needed for newer CDSS formulations. Our preliminary research demonstrates the 

instantiation of CRM using extensible markup language [29]. 

At runtime, the PDA component inputs patient data and conforms them to the CRM, which are then consumed 

by the AD and CED components that comprise the CDSS. AD and CED algorithms, published in the past or 

future, whether standalone or tightly coupled, may be used in CDSS formulations with modifications as needed. 

The framework is a unique test bed with features of reusability and scalability. These features allow for the 



 

creation of new AD configurations by mixing and matching independently developed or decoupled AD 

components and integrating those components with CED components to serve varying clinical needs. The AD 

configuration most suited to a clinical need can then be hard-coded and integrated into the clinical workflow for 

real-time implementation. For example, some recently developed AD algorithms leverage sensor fusion for 

motion artifact removal while deriving the HR [30-34]. The implementation of these AD and CED algorithms 

within the framework simply requires modifying their interfaces to comply with the CRM. This would allow for 

these algorithms to be tested, compared, or combined with extant or newer algorithms to advance research in 

the field of signal quality and physiologic monitoring. 

Framework Features 

To address the six shortcomings (1)-(6) identified in state-of-the-art AD algorithms in a previous study [25], we 

developed an AD framework with the following six features f1 to f6 The framework design supports: (f1) 

flexibility to serve the needs of patient populations from different types of critical care units through 

generalization and customizability, (f2) reusability across multiple types of physiological data harvested by 

different OEM monitors, (f3) standardized definitions of SQI that promote interoperability and comparison 

between independently developed components, (f4) reusability and scalability by mixing and matching several 

AD and CED components in various combinations, (f5) customizability to evaluate and compare the 

performance of multiple combinations of independently developed components on offline and potentially real-

time patient data when integrated with clinical workflow, and (f6) standardized component interfaces that can 

potentially support real-time clinical implementation of AD. This study validates the six framework features f1 

to f6. 

Research Contribution 

The main contribution of this paper is the dynamic evaluation of the AD framework as a test bed, given the 

clinical context of false alarm reduction in medical devices. In this study, we first developed a catalog of several 

exemplar AD components and a single CED component. The interfaces of all these components comply with 

the CRM, such that they can be integrated within the AD framework. Given the motivation for false alarm 

reduction, we designed a novel CED component that can generate peripheral oxygen saturation (SpO2) alarms. 

We then created four unique CDSS configurations by mixing and matching different AD components from the 

catalog with the same SpO2 alarm generation CED component. The Methods section describes the research 

methodology, including the development of the framework component catalog and the four CDSS formulations 

used for evaluating the framework and its features. This section demonstrates how the framework leverages 



 

existing AD algorithms by incorporating them with the SpO2 alarm–generating CED component. The four 

configurations are designed and evaluated based on the results and recommendations in the state-of-the-art 

research linked to the reduction of false alarms generated by original equipment manufacturer (OEM) monitors. 

Although CRM has been developed after an extensive review of the literature that summarizes the requirements, 

provisions, and configurations for many existing AD algorithms, it is expected that the CRM will continue to 

evolve because a wide variety of new AD and CED algorithms with differing data needs are implemented as 

components within this framework. For example, a new OEM alarm management system, Philips Care Event, 

was evaluated along with the optimization of the clinical workflow in the NICU [46]. The OEM system delay 

time for saturation-related alarms was increased from 10 to 20 seconds, and the averaging time was decreased 

from 10 to 4 seconds without changing the standard alarm settings. This strategy led to a reduction in the 

number of SpO2≤80% alarms and an increase in nurses’ response to alarms [46]. This is an exemplar state-of-

the-art CED strategy that can be easily accommodated and evaluated in combination with various AD 

techniques using our framework to further reduce false alarms and subsequent alarm fatigue. In this way, the 

framework can facilitate the discovery of optimal CDSS formulations through the mixing and matching of new 

AD and CED components supported by an evolving CRM. 

Methods section describes the framework evaluation methodology comprising the data collection method and 

performance evaluation metrics of sensitivity (Sn) and FAR. For framework validation, we used real patient 

data collected from 11 neonates during a clinical study at the NICU of the Children’s Hospital of Eastern 

Ontario (CHEO), Ottawa, Ontario, Canada. Harvested data streams include heart rate (HR), pulse rate (PR), 

SpO2, and their corresponding alarms from physiologic patient monitors. Several conditions, such as 

hypothermia (peripheral vasoconstriction), edema (increased thickness and, therefore, diffusion distance for 

oxygen), increased skin pigmentation, and shock, are known to decrease the clinical reliability of SpO2. None of 

the patients in this study had any such condition. 

Results section provides the performance evaluation results in terms of Sn and FAR of the SpO2 alarms 

generated by each of the four CDSS formulations. Once a CDSS formulation is affirmed to satisfy clinical 

needs through offline testing by applying this methodology, the optimal combination can be evaluated in a real-

time environment using the middleware technology. This will facilitate the real-time implementation of the 

optimal CDSS formulation through hard-coded integration within clinical workflows. 

It should be noted that all four CDSS formulations deploy the same CED component for SpO2 alarm generation. 

Hence, the sensitivity of the CED component to the error profiles and the impact of errors remain controlled or 

constant across all experiments. Therefore, the reported Sn and FAR values reflect the performance of the four 



 

different AD configurations, regardless of the performance of the CED component. In other words, the 

framework evaluation reported here remains independent of the performance of the CED component. This 

validates the use of the framework as a test bed to discover the optimal combination of AD components with a 

CED component that is designed for a specific clinical problem. In the future, the framework can be similarly 

deployed with another CED component for different clinical problems. 

Discussion section discusses the research contributions and provides a detailed discussion on the validation of 

the six framework features (f1)-(f6). Section 7 concludes the paper and suggests directions for future work. 

 

Methods 

Overview 

According to Larsen [27], beyond designing and building a component-based framework, its evaluation requires 

static models that illustrate component structures as well as dynamic models that illustrate component 

collaboration. This paper first develops a catalog of static PDA, AD, and CED components. Subsequently, four 

dynamic compositions of these components were formulated and evaluated using real patient data. Each of the 

AD components processes physiological data streams in the form of numeric or string values, and the CED 

component generates alarms on the SpO2 data stream. The requirements and provision interfaces of all 

components comply with the CRM, such that they can be integrated within the AD framework. Each 

configuration is integrated with PDA and CED components to formulate a CDSS that generates SpO2 alarms at 

its output. 

The following subsections expand upon this research methodology: Components Catalog develops a catalog of 

framework components; CDSS Formulations mixes and matches these components to build and evaluate four 

different CDSS formulations; and the Evaluation subsection uses real patient data to evaluate the performance 

of each CDSS formulation, thereby validating the use of the framework as a test bed; and determining the 

optimal CDSS formulation for SpO2 alarm generation. Once a combination is affirmed to satisfy clinical needs 

through offline testing by applying this method, the optimal combination can be evaluated in a real-time 

environment using the middleware technology. This will facilitate the real-time implementation of the optimal 

CDSS formulation through hard-coded integration within clinical workflows. 

Components Catalog 

In this subsection, we develop a catalog of framework components comprising an original PDA component, 

four AD components, and one novel CED component. The catalog represents a model instantiation of the 

framework comprising the original PDA and CED components designed in collaboration with our clinical 



 

partners. The catalog is not meant to represent an exhaustive or particularly novel set of AD components; rather, 

it tailors the interfaces of existing AD algorithms to comply with the CRM. 

PDA Component 

As defined in our earlier research, the PDA component inputs patient data from sources that include, but are not 

limited to, OEM patient monitors, clinical data entry, lab results, physician’s order, and patient demographics 

from electronic health records [26]. In this research, the PDA inputs the physiological data and alarm streams 

from the OEM monitors and translates these data to the schema defined by the CRM. It then feeds these data to 

one or more AD components, as shown in the CDSS flowcharts in Figure 2. In these workflows, the hardware 

and software requirements are factored in the PDA component. The hardware comprises the Digi International 

Edgeport4 (Digi International), which consists of the Eltima Port Monitor Professional Edition Software v4.x 

(Eltima Software) for data logging with additional customized software written in JAVA to conform the OEM-

generated data streams to the CRM. Specifically, the Data.Type (SpO2, HR, PR, and alarm status) and 

corresponding Data.Values were extracted from each interleaved OEM data packet. Each packet was produced 

by the monitor at 0.5 Hz. The low-level code of the PDA component interpolated and synchronized the data 

streams at 1 Hz. As the OEM monitors fail to provide an explicit SQI stream for any of the data types, a default 

SQI stream with a SQType=“binary” and SQValue=1 is generated by the PDA component for each data type 

using MATLAB. 

AD Components 

We surveyed a wide variety of techniques used by AD algorithms to detect, mitigate, and suppress 

physiological artifacts that are found in clinical settings [25]. To demonstrate the framework composition, we 

developed four AD components exemplifying the following diverse AD functionalities: (1) data and SQI de-

interlacing, (2) SQI fusion, (3) data fusion, and (4) data smoothing. Although each exemplar component differs 

in its low-level code, all components conform to the CRM. The low-level code and configuration interfaces for 

each functional group of the components are described as follows. 

ADDIL DeInterlace Component 
Some monitors produce a single output stream, which is, in fact, interlaced with the data and SQI. The ADDIL 

component is designed to deinterlace (DIL) these two information streams by allowing the user to define a set of 

symbols (artSyms) to be associated with the corresponding SQI values. Typically, artSyms is a list of artifact 

indicators specified by the manufacturer, which could be either numeric or string values that replace the value 

of the datum. For example, for Infinity monitors (Dräger Medical Systems), the set of artSyms would include 



 

{NaN,^^,5}, where Not-a-number (NaN) is substituted for any missing datum, ^^ is an artifact indicator, and 5 

is an alarm state (ie, part of the alarms stream) indicating a lead disconnection. Therefore, a data segment 

interlaced with artifacts is logged with the corresponding artSyms value. In a different example, Philips 

Intellivue MP70 monitors (Philips) generate a value of “2” in the alarms data stream in case of leads 

disconnection. However, with the alarm data stream connected to the input of the ADDIL component, the value 

“2” can be identified by the component as an artSyms. In such a way, the component can deinterlace the alarms 

stream and generate a corresponding binary SQI stream, where the value “2” would be replaced by a 0. The 

low-level code for ADDIL is given by equation (1). 
if (Data.Value(i) ∈ artSyms); SQIout(i)=SQIMatch(Data.Value(i)); end  (1) 

The configuration interface of the ADDIL component specifies the Data.Type to be examined, artSyms, and the 

corresponding set of SQValue (SQIMatch). This AD component produces a “rank” SQType, with “binary” being a 

special case of “rank,” where SQIMatch=0. Multiple instances of this component were cascaded in the AD 

framework in this validation study. 

ADFuseSQI Fuse SQI Component 
The ADFuseSQI component accepts more than one data stream at its requirements interface, along with the 

respective SQI of each stream. This component combines N incoming SQI inputs to generate a single fused SQI 

(FuseSQI). The fused SQI value is equal to the operator, that is, the minimum, maximum, or average SQI value 

from all the input SQI data at any given instant. This requires all the input SQTypes to be the same. The low-

level code for ADFuseSQI is shown in equation (2). 

SQIout(i)=operator (SQI1, SQI2,  …, SQIN)  (2) 

The configuration interface of the ADFuseSQI component defines N, the required input SQType (same as output), 

and the operator (min, max, and avg) to be applied to all input SQI values. In addition, the configuration 

interface can specify which data types to forward at the provision interface, as only a subset of the input streams 

may be required beyond this component. Equation (2) is a relatively simple depiction of data fusion. Data can 

be fused at different levels of abstraction, requiring a more complex combination of operators and weighting 

[35]. 

ADDiff Differential Component 
The ADDiff component calculates an absolute differential error function between two input data streams, Data1 

and Data2. This error value was then compared with a configured threshold. The input “binary” SQI streams are 

examined such that if either stream has a poor signal quality, then the output SQValue=0. This component can 

be used in the case where two independent measurements of the same physiological parameter are provided; 

then, this component will derive an SQI by exploiting data fusion. The configuration interface specifies the 



 

output SQType to be produced; the Data.Type of Data1 and Data2; the number of SQI thresholds, nThresh, to be 

applied to the difference; the ordered set of thresholds (SQThreshj;j=1:nThresh); and the set of nThresh+1 SQValues 

(SQIj) corresponding to each threshold with the additional SQValue for the default case (SQIdefault). The 

configuration interface can specify which data types to forward at the provision interface. The low-level code 

for this component is illustrated in equation (3), as follows: 
SQIout (i)=SQIdefault; 

if (Data1.SQI.SQValue(i)==0) || (Data2.SQI.SQValue(i)==0); 

return; diff=|Data1.Value(i)−Data2.Value(i)|; 

for j=1: nThresh 

{if (diff ≤ SQThreshj){SQIout(i)=SQIj;break;}}end  (3) 

The ADDiff component can derive a “rank” SQType stream from HR and PR streams by configuring the 

component to have output SQType set to “rank”; the Data.Type of Data1=HR and Data2=PR; nThresh=3; 

SQThresh={6,12,18}; and SQIj={3,2,1,0}, where the SQIdefault=0. This configuration of the ADDiff component 

was used in the validation study. 

For example, consider the work on wearable devices and systems published by He et al [36]. Their study 

synchronously collected the data of ballistocardiogram, electrocardiography (ECG), and photoplethysmography. 

Their study suggests checking if all three physiological signals measure the same values for HR so that this 

information can be used to ensure that the acquired data are not corrupted. However, their study did not 

demonstrate whether and how it checks for data quality. Such a system would benefit from using the ADDiff 

component. 

ADMedFilt Median Filter Component 
The ADMedFilt component implements a median filter (MedFilt). It is used for smoothing a stream of data to 

mediate abrupt transient artifacts. The configuration interface defines the size of the sliding window MedWW for 

use while computing the median value. Its requirement interface inputs a single data type and its corresponding 

SQI stream. Each datum in the output data stream was equal to the median of the past MedWW input data 

samples. Only a subset of these MedWW may actually be used in computing the median because the ADMedFilt 

component only includes the data within the sliding window for which the input SQI is acceptable. The SQI 

stream passed through this component and remained unchanged. By comparing the filtered and unfiltered data 

using an ADDiff component, one can compute an SQI proportional to the degree of smoothing applied to each 

point. The ADMedFilt component was used in CDSS formulations in this study. 



 

CED Component 

In this subsection, we develop a novel CED component that generates SpO2 alarms. By discussing and reaching 

consensus with our clinical collaborators at CHEO, we translated clinical rules into low-level logic to create a 

CED component with a requirements interface that conforms to the CRM. Alarm generation studies suggest 

these two approaches to reduce the FAR: (1) modifying or adjusting the alarm thresholds and (2) introducing 

alarm annunciation delays, that is, a delay between when an alarm threshold is crossed and when the alert is 

sounded or displayed [37-40,46]. These studies test alarm annunciation delays anywhere from 5 to 120 seconds 

for a variety of physiological data types. However, none of these studies quantify the trade-off between Sn and 

FAR resulting from their suggested alarm generation algorithms. In our study, the CED component incorporates 

both approaches described above to reduce FAR. Its low-level code allows for adjusting the alarm thresholds by 

reduction in the lower SpO2 alarm threshold and increment in the upper SpO2 alarm threshold. During 

evaluation, both limits were adjusted by 3%, which corresponds to the manufacturer-specified margin of error 

in the accuracy of the pulse oximeter reading. Therefore, the low alarm threshold, ThreshLo, is breached if the 

SpO2 value is lower than the alarm threshold of the OEM monitor by at least 3%, and the upper alarm threshold 

ThreshHi is breached if the SpO2 value is higher than the alarm threshold of the OEM monitor by at least 3%. 

Incorporating the second approach, the low-level code of the CED allows for tuning the alarm annunciation 

delays (CEDDT) between 5 and 60 seconds. 

Figure 2 shows a flowchart of the low-level source code of the CED component. In this case, the user is an 

expert who composes the CDSS in collaboration with the clinician. The user can set tunable parameters at the 

configuration interface, including values for ThreshLo, ThreshHi, DTLO, DTHI, and Floor. Floor is an absolute 

minimum SpO2 value determined by clinicians, typically in the range of 50%-75%. We set a Floor value below 

because SpO2 sensors are unable to calibrate at such low values; hence, the true state of the patient can no 

longer be determined, and the CED must alarm to alert the clinician to come and check the patient. The CED 

continuously compares the SpO2 value with the lower and upper limits, ThreshLo and ThreshHi, respectively. A 

history of threshold breaches gets stored in circular buffers, errorLo and errorHi. These breaches are summed 

over a sliding window such that the total error is a function of both the magnitude and duration of the threshold 

breaches. The integrated error is continuously compared with the tunable lower and upper decision thresholds, 

DTLO and DTHI. These decision thresholds are set proportional to the CEDDT value, which is set at the 

configuration interface of the CED component. Specifically, DTLO is set equal to CEDDT, and DTHI is set to 

twice the CEDDT because high SpO2 alarms are not clinically deemed to be as dangerous as low SpO2 alarms. 

Therefore, the CED waits twice as long to generate a high SpO2 alarm as compared with a low SpO2 alarm. The 



 

decision to generate an alarm is based on three conditions, as shown in Figure 2. The CED generates an alarm if 

the incoming SpO2 value is less than or equal to the set value of Floor and the incoming SQI is not zero, or if the 

integrated errors, namely errorLo or errorHi, exceed DTLO or DTHI, respectively. Here, we configured parameters 

suitable for the neonatal population. Users may tune the parameters specific to other patient populations. 

CDSS Formulations 

This section describes the dynamic framework compositions of the four CDSS formulations. MATLAB was 

used for the dynamic framework modeling. Table 1 lists the requirements, provisions, and configuration 

interfaces for each AD component deployed in the four CDSS formulations. 

Table 1. Artifact detection component interfaces used in clinical decision support systems formulations. 
ADa 

component 

Interface 

 Requirements Provisions Configuration 

    

CDSSb #1 and CDSS #2 

ADDil [SpO2
c Alarms, SQId] [SpO2Alarms, SQI] artSymse{NaNf,^^,5} 

ADDil [SpO2, SQI] [SpO2, SQI] artSyms{NaN,^^,5} 

ADFuseSQI  [SpO2 Alarms, SQI]; [SpO2, SQI] [SpO2, SQI] N=2; operator (min); SQTypeg=”binary” 

CDSS #2 (additional component) 

ADMedFilt [SpO2, SQI] [SpO2Med, SQI] MedWW
h={5,10,20,25,30,35,60} 

CDSS #3 and CDSS #4 

ADDil [HRi, SQI] [HR, SQI] artSyms{NaN,^^,5} 

ADDil [PRj, SQI] [PR, SQI] artSyms{NaN,^^,5} 

ADDil [SpO2, SQI] [SpO2, SQI] artSyms{NaN,^^,5} 

ADDil [SpO2Alarms, SQI] [SpO2 Alarms, SQI] artSyms{NaN,^^,5} 

ADFuseSQI [SpO2Alarms, SQI]; [SpO2, SQI] [SpO2, SQI] N=2;operator(min); SQType=”binary” 

ADDiff [HR, SQI]; [PR, SQI] [PR, SQI] Data1.Type=“HR”; Data2.Type=”PR”; SQType=“binary”; SQThresh={6,12,18};SQIdefault=0 

ADFuseSQI [SpO2, SQI]; [PR, SQI] [SpO2, SQI]; N=2; operator(min); SQType=”binary” 

CDSS #4 (additional component) 

ADMedFilt [SpO2, SQI] [SpO2Med, SQI] MedWW={5,10,20,25,30,35,60} 

aAD: artifact detection. 
bCDSS: clinical decision support systems. 
cSpO2: peripheral oxygen saturation. 



 

dSQI: signal quality indicator. 
eartSyms: a list of artifact indicators with corresponding values of SQI specified by the manufacturer. 
fNaN: Not-a-number. 
gSQType: a string variable from a controlled schema with corresponding types of SQI. 
hMedWW: size of the sliding window of the median filter. 
iHR: heart rate. 

jPR: pulse rate. 

 

CDSS #1 

CDSS #1 constitutes the simplest of the four compositions designed for this study. A flowchart for CDSS #1 is 

shown in Figure 3.This flowchart has three functional horizontal swim lanes, depicting the PDA, AD, and CED 

components of the integrated CDSS. Each data stream is represented by a tuple with both data and SQI 

information. The input data stream is sourced only by the SpO2 sensor comprising two data types, namely, SpO2 

and SpO2 alarm status (SpO2Alarm). The low-level logic of the PDA component maps the incoming values to 

its respective data type (SpO2 or SpO2Alarm) and assigns a default SQValue of 1 to each datum of each 

Data.Type because an SQI value is not provided by the OEM monitor in this case. 

The AD composition pipeline in CDSS #1 consists of two ADDILs and one ADFuseSQI component. The ADDIL 

component deinterlaces the OEM-generated artifacts, whereas the ADFuseSQI component combines the SQI 

streams from the two ADDIL components. The PDA provides SpO2 and its associated SQI stream to one 

instantiation of ADDIL while providing SpO2Alarm and its SQI stream to the second instantiation of ADDIL. The 

low-level code of the ADDIL component deinterlaces the OEM-specified artifact values. Here, the user-set 

configuration interface includes artSyms={NaN,^^,5} and SQIMatch=0. The “NaN” string implies missing data, 

and the “^^” symbol represents OEM-specified artifact values in the SpO2 stream, whereas “5” is interlaced 

within the SpO2Alarm to imply that the SpO2 sensor is off. Hence, the use of the two ADDIL components would 

provide the original data streams of Data.Type SpO2 and SpO2Alarm, along with their respective SQI streams, 

with SQValue=0 wherever the Data.Value is equal to any one of the artSyms. These 2 data streams and their 

associated SQI streams are then input to the requirements interface of an ADFuseSQI component. The low-level 

code of the ADFuseSQI component fuses two or more incoming SQI inputs to generate a single fused SQI value. 

In this formulation, the operator is set to min; hence, it provides an output SQValue that is the minimum of the 2 

input SQValue for which SQType=“binary.” As shown in Figure 3, this output SQI stream is associated with the 

original SpO2 stream that is required by the CED component. 



 

CDSS #2 

CDSS #2 extends the CDSS #1 formulation by adding an ADMedFilt component to process the SpO2 data stream 

through a median filter for reducing transient artifacts. This extension is labeled CDSS #2 in Figure 3. The low-

level code of the ADMedFilt configuration interface comprises a tunable parameter MedWW={5,10,20,25,30,35,60}, 

and the component produces a median filtered SpO2Med data stream and its associated SQI stream, which are 

then passed to the requirements interface of the CED component. 

CDSS #3 

CDSS #3 leverages data fusion to derive an estimate of the signal quality for SpO2. Here, an ADDiff component 

computes the difference between the PR and HR. Physiologically, PR and HR are equal, representing the 

mechanical and electrical pumping rates of the heart, respectively. Therefore, any difference between PR and 

HR serves as a proxy for signal quality measurements. In this study, HR is considered as the gold standard. 

Therefore, a large difference between the instantaneous PR and HR values indicates that the PR has deviated 

and is not reliable. In this case, a low SQI is assigned to both PR and SpO2 because both are sourced from the 

same sensor. Figure 4 shows the PDA, AD, and CED components in the flowchart for CDSS #3. The low-level 

code of the ADDiff component computes the difference between the instantaneous HR and PR values. By 

comparing that difference to a threshold, a “binary” SQType is generated, which is then passed to the 

requirements interface of the CED component. The configuration interface was set with a single threshold to 

produce a “binary” SQType. The SQI threshold (SQThresh) is varied in the range {6,12,18} to examine its 

effect, and the results are reported separately for each. 

CDSS #4 

CDSS #4 builds on the composition of CDSS #3, as depicted in Figure 4. Here, an ADMedFilt component is 

added such that the SpO2 data stream can be median filtered to produce SpO2Med data and SQI streams, which 

are then fed to the requirements interface of the CED component. The tuned values of MedWW include 

{5,10,20,25,30,35,60}. 

Evaluation 

Clinical Data Collection 

Data were collected during a clinical study conducted in the CHEO NICU. The study was approved by the 

hospital’s Research Ethics Board. In total, 11 neonatal patients with diverse pathologies were enrolled in this 

study. The following time-stamped data streams and corresponding alarms were collected simultaneously from 



 

each infant at a frequency of one reading every 2 seconds (0.5 Hz): PR and SpO2 from a pulse oximeter 

(Masimo SET SmartPod Model # MS16356, Masimo Corp) integrated with an Infinity Delta monitor (Dräger 

Medical Systems) as well as HR derived from ECG leads attached to a second Infinity Delta monitor. HR and 

PR are parameters that estimate the rate at which the heart beats per min (bpm). Although HR and PR are 

acquired independent of each other, they essentially represent the exact same functionality of the heart, albeit in 

electrical and mechanical contexts, respectively. HR is acquired through ECG leads, which are electrical 

sensors, and PR is acquired using optical sensors attached to the pulse oximeter. Moreover, the pulse oximeter 

derives SpO2 using the same optical sensor data. This implies that the quality of the PR data stream reflects the 

quality of the SpO2 data stream. Therefore, to evaluate the framework as a CDSS that generates SpO2 alarms, 

we selected the HR as the gold standard for comparison with the quality of the PR data stream. The reason for 

selecting the HR patient data acquired from the Infinity Delta monitor as the gold standard is that these monitors 

are used for continuous patient monitoring at the research site (CHEO); therefore, clinicians depend on the vital 

sign data displayed by these monitors to routinely assess the patients. Second, we evaluated the SpO2 alarm 

generation performance of the framework as compared with the Masimo SET SmartPod pulse oximeter. Again, 

this pulse oximeter was selected for comparison because it is routinely used for continuous patient monitoring at 

the CHEO. RS232 serial ports on both Infinity Delta monitors were connected through Digi International 

Edgeport4 (Digi International) hardware to a USB port on a computer. Eltima Port Monitor Professional Edition 

Software v4.x (Eltima Software) was installed on the same computer to read and log data transmitted by each 

monitor in real time. Thus, a total of 79,200 data points from each physiologic data type were used for analysis. 

To synchronize data collected from the 2 OEM monitors, these samples were interpolated to obtain one sample 

every second, resulting in 158,400 data points from each data type. Information regarding patient demographics, 

inclusion and exclusion criteria, and the detailed methods of data acquisition and data annotation can be found 

in the author’s earlier research on this data set [41]. A previous study manually counted and categorized patient 

monitoring alarms [41]. Clinicians, including bedside nurses and neonatologists, validated and categorized the 

alarms generated by patient monitors. However, manual counting introduces the likelihood of human error. To 

minimize this likelihood, the process of counting and categorizing the alarms was automated by running the 

data through a computerized script. This resulted in the identification and categorization of 119 alarms 

generated by the Masimo pulse oximeter across all 11 patients. These alarms were validated against the 

clinicians’ original validation and categorization criteria from [41]. The Sn and FAR of the Masimo pulse 

oximeter were found to be 85% and 46%, respectively. 



 

Evaluation Metrics 

Data from all 11 patients were used as an input to evaluate each of the four integrated formulations, CDSS #1-4. 

Leave-one-out cross-validation was used to compute two performance metrics, Sn and FAR. Data from a set of 

10 patients were used to tune the components and from the remaining patients to generate alarms. This was 

repeated 11 times, each time changing the patient for whom the data were left out as a test case. 

We then compared the alarm generation performance of each CDSS composition with that of the OEM monitor. 

Using the OEM monitor’s Sn of 85% and FAR of 46%, we formulated equations (4) and (5) to measure the 

difference between the Sn and FAR values of the CDSS formulations and the OEM monitor and report that as a 

percent change. Negative values of percentage change indicate reduction, and positive values indicate 

increments in Sn and/or FAR. These are reported as (% change in Sn) and (% change in FAR) by equations 4 

and 5 respectively. 

 

Inline graphic 1 

Inline graphic 2 

 

Results 

Overview 

This section presents the performance evaluation results for all four formulations CDSS #1-4 in terms of Sn and 

FAR, which are averaged across all 11 cross-validation trials. Tables 2 and 3 summarize the pooled results for 

achieved Sn values of >75% and >80%, respectively. These Sn thresholds were chosen arbitrarily, and other 

threshold values may be chosen depending on the clinical needs. These tables show the best achievable results 

expressed as (Sn (% change in Sn), FAR (% change in FAR)) in all four CDSS formulations. The formulations 

were tabulated based on the inclusion of the ADMedFilt and ADDiff components. Figure 5 shows the graphical 

results from all four CDSS formulations as linear plots of Sn (%) and corresponding FAR (%) achieved by 

tuning the parameters MedWW, CEDDT, and SQThresh, where applicable to a CDSS. As the configuration 

parameters of the AD and CED components are varied (tuned), the total number of alarms that are generated 

also varies. By reporting the performance metrics of Sn and FAR in terms of percentages, we can compare the 

results across the four CDSS formulations. Here, we compare the best results achieved and tabulated in Tables 2 

and 3. 



 

Table 2. The best possible (Sn (% change in Sn), FAR (% change in FAR)) achieved in clinical decision 

support systems #1-4, where sensitivity≥75%. Tunable parameters are specified for each case. 
ADMedFilt

a ADDiff
b 

 Yes No 

   

Yes • CDSSc #4 

• MedWW
d=10, CEDDT

e=15, 

• SQThreshf=18: (76 (−10.5%), 36 (−21.7%)) 

• CDSS #2 

• MedWW=15, CEDDT=12: (75 (−11.7%), 32 (−30.4%)) 

No • CDSS #3 

• CEDDT=20, SQThreshf=18: (78 (−8.2%), 47 (21.7%)) 

• CDSS #1 

• CEDDT=15: (76 (−10.5%), 40 (−15%)) 

aADMedFilt: AD median filter component. 
bADDiff: AD differential filter component. 
cCDSS: clinical decision support systems. 
dMedWW: size of the sliding window of the median filter. 
eCEDDT: alarm annunciation delay. 
fSQThresh: the ordered set of thresholds. 

 

Table 3. The best possible (Sn (% change in Sn), FAR (% change in FAR)) achieved in clinical decision 

support systems #1-4, where sensitivity≥80%. Tunable parameters are specified for each case. 
ADMedFilt ADDiff 

 Yes No 

   

Yes • CDSSa #4 

• MedWW
b=10, CEDDT

c=5, SQThreshd=18: (80 (−5.8%), 44 (−4.3%)) 

• CDSS #2 

• MedWW=10, CEDDT=10: (80 (−5.8%), 39 (−15.2%)) 

No • CDSS #3 

• CEDDT=12, SQThresh=12: (82 (−3.5%), 50 (8.6%)) 

• CDSS #1 

• CEDDT=12: (80 (−5.8%), 41 (−10.8%)) 

aCDSS: clinical decision support systems. 
bMedWW: size of the sliding window of the median filter. 



 

cCEDDT: alarm annunciation delay. 
dSQThresh: the ordered set of thresholds. 

 

CDSS #1 

The best achievable result for CDSS #1 is (Sn, FAR)=(80, 41) and is obtained when CEDDT=12, where 

Sn≥80%. If Sn is only required to be ≥75%, then the best achievable performance becomes (Sn, FAR)=(76, 40) 

when CEDDT=15. The FAR (40%) was 15% less than that of the OEM’s FAR (46%). This is achieved at the 

cost of decreasing Sn (76%) by 10.5% than the Sn of the OEM (85%). 

CDSS #2 

Table 2 shows that the best achievable result for CDSS #2 is (Sn, FAR)=(80, 39) when MedWW=10 and 

CEDDT=10, where Sn≥80%. In this formulation, Sn≥80% was achievable only when MedWW≤10. If Sn is 

allowed to be ≥75%, then the best achievable performance becomes (Sn, FAR)=(75, 32) when MedWW=15 and 

CEDDT=12. 

CDSS #3 

In CDSS #3, with the ADDiff component configured with SQThresh=6, the best achievable result for (Sn, 

FAR)=(86, 52) with CEDDT=5. The CDSS performance was worse for all other CEDDT thresholds at 

SQThresh=6. Although this CDSS performs with an improved Sn (86%) as compared with the OEM’s Sn 

(85%), the cost is an increase of 13% in the FAR (52%) as compared with the OEM’s FAR (46%). 

With the ADDiff component configured with SQThresh=12, the best achievable (Sn, FAR) is (82, 50) when 

CEDDT=12 for both values of the required Sn≥80% and Sn≥75%. The CDSS performance was worse for all 

other CEDDT thresholds at SQThresh=12. When the ADDiff component is configured with SQThresh=18, the 

best achievable result for (Sn, FAR)=(80, 50), with CEDDT=12 with a threshold of Sn≥80%, and the best 

achievable result for (Sn, FAR) is (78, 47), with CEDDT=20 while maintaining Sn≥75%. Thus, CDSS #3 was 

not able to beat the OEM monitor’s FAR (46%) at any of the parameter settings that were tested. 

CDSS #4 

When the ADDiff component of CDSS #4 is configured with SQThresh=6 and the sensitivity requirement is 

≥80%, the best achievable result for (Sn, FAR)=(84, 52) when MedWW=5 and CEDDT=5. When Sn≥75%, the 

best achievable (Sn, FAR)=(75, 40) when MedWW=10 and CEDDT=12. MedWW>10 resulted in lower (Sn, FAR) 

values, where Sn<75. If the ADDiff component is configured with SQThresh=12 and Sn≥80%, then the best 

achievable result for (Sn, FAR)=(82, 49) with MedWW=5 and CEDDT=12. When Sn≥75%, the best achievable 

(Sn, FAR)=(75, 37) is obtained when MedWW=12 and CEDDT=12. MedWW>12 resulted in lower (Sn, FAR) 



 

values, where Sn<75. Table 3 shows the results from CDSS #4, where the ADDiff component is configured with 

SQThresh=18 and Sn≥80%, and the best achievable result (Sn, FAR)=(80, 44) is obtained when MedWW=10 and 

CEDDT=5. When Sn≥75%, the best achievable result (Sn, FAR)=(76, 36) is obtained when MedWW=10 and 

CEDDT=15. MedWW>12 resulted in lower (Sn, FAR) values, where Sn<75. 

Discussion 

Principal Findings 

The overarching contribution of this study is the illustration of dynamic framework models and their evaluation 

using clinical data. In this section, we also discuss how this evaluation leads to the validation of the six 

framework features (f1)-(f6). 

Framework Evaluation 

As described in the Evaluation section, the data set used in this evaluation contained 119 alarms across all 11 

patients in this study. This data set represents a unique and valuable resource because it includes the detailed 

annotations of artifacts, alarms, clinical events, clinical interventions, and observations. The patients in our 

study represented a neonatal population with varying disease severity, weight, and gestational age. Although 

such a wide range of patients provides for the development of widely applicable rules, as discussed above, 

many decision thresholds are required to be patient centric. For example, one patient was far more ill than the 

other 10 patients, with 32% of the associated clinical events. Other limitations of the data set include a possible 

ambiguity in categorizing alarms as true versus false, especially in cases where the SpO2 reading hovers around 

the OEM monitor’s alarm threshold setting. In this study, such indeterminate alarms were categorized as false 

alarms. The study sample size was limited because of hospital logistics and resources. In the future, a larger 

sample size could facilitate subgroup analyses with division based on clinical characteristics, weight, and 

gestational and chronological age of infants. 

From the evaluation results presented in Table 2 under the criterion that Sn≥75%, we infer that CDSS #2 results 

in the best achievable performance of (Sn, FAR)=(75,32) when MedWW=15 and CEDDT=12. Although a 

considerable reduction in Sn was observed (11.7%), this parameter combination resulted in a significant 

reduction in FAR (30.4%). From Table 3, we conclude that CDSS #2 also gives the best possible performance 

of Sn=80% and FAR=39%, representing percentage reductions of 5.8% and 15.2% for Sn and FAR, 

respectively. Therefore, CDSS #2 is considered the optimal formulation out of all four CDSS because of the 

largest reduction in FAR while maintaining Sn≥80%. The optimal parameters for this formulation were 

MedWW=10 and CEDDT=10. 



 

The results of CDSS #1 illustrate the effects of varying the CED decision threshold (CEDDT) on the 

performance of CDSS. By adjusting this threshold, the system could be made more conservative or permissive, 

leading to an explicit trade-off between Sn and FAR. This CEDDT is patient-centered and may be adjusted 

depending on the severity of disease and clinical resources available, for example, the nurse-to-patient ratio may 

differ in the NICU versus that in the general ward. A comparison of the results from CDSS #1 and #2 indicates 

that the use of ADMedFilt significantly improved both the Sn and FAR of the CDSS. As expected, increasing the 

median filter width reduced both Sn and FAR because the median filter smoothed out transient SpO2 values. 

The range of median filter widths was evaluated in combination with a range of CEDDT values seeking the 

combination that provided the greatest decrease in FAR while maintaining a Sn≥80% or ≥75%. Although these 

Sn thresholds were somewhat arbitrary, they reflect the need to detect the majority of true clinical events. 

CDSS #3 and #4 leveraged data fusion via an ADDiff component to identify periods of low signal quality. 

Clifford et al [42] recommended that an SQI be generated for each datum when a known error rate is available 

for calibration. Following this, we hypothesized that by computing the error rate from the combined information 

from two different sensor modalities, PR from SpO2 and HR from ECG, an SQI signal could be generated and 

increased performance would be achievable. The results for three different ADDiff threshold values failed to 

demonstrate an improved performance. In fact, the frequency of all three types of alarms, namely, true, missed, 

and false, increased with the use of ADDiff. A close inspection of the generated alarms revealed the 

fragmentation of previously contiguous alarms into more alarms of shorter duration. This was due to the 

instantaneous masking of individual SpO2 values because of transient disparities between HR and PR, which are 

not necessarily associated with prolonged periods of low signal quality. We observe that an incremental trend in 

SQThresh values, that is, from 6 to 12 to 18, demonstrates a decreasing trend in Sn and FAR percentages in 

both CDSS #3 and #4. In future work, the CED algorithm may be modified to process the SQI in a variety of 

ways that may lead to improved performance. Suggestions for future exploration include either retaining the 

previous alarm state during periods of low signal quality or appraising cumulative SQI values instead of 

instantaneous ones. 

In summary, dynamic framework modeling showed that the lowest achievable FAR was 39% at a sensitivity of 

80%, when compared across all four CDSS formulations. 

Framework Features 

The four dynamic CDSS formulations serve to validate the 6 framework features (f1)-(f6) as follows: 

 



 

 (f1) Flexible in serving the differing needs of patient populations from different types of critical care 

units through generalization and customizability. The CRM includes several fields to generalize and 

customize each component, for example, Data.Type and Data.SQType. Although the data in this 

validation study were collected at the NICU, the inherent flexibility of the framework can accommodate 

various types of data streams acquired from other types of critical care units. Similarly, the component-

based nature of this framework allows for the creation of CED components relevant to different clinical 

domains and for their integration with the most appropriate available AD components. As a result, the 

components catalog, dynamic framework models, and analyses are not restricted in application to the 

NICU. This could be demonstrated using future experiments based on data from other units, whether 

gathered specifically for this research or taken from repositories such as Physio Net [43].  

 

 (f2) Reusable across multiple types of physiological data harvested by different OEM monitors: The 

configuration interface of each component permits the setting of OEM-specific and Data.Type-specific values 

such that the same component may be applied to various physiological data types arising from different OEM 

monitors. For example, the artSyms configuration parameter allows the ADDIL component to identify artifacts 

flagged by different OEM monitors. AD components selected from the catalog were used to process different 

physiological streams acquired by different OEM monitors in various experiments. For example, the ADDIL 

component is used to process the HR from the Dräger OEM monitor and SpO2 and PR from the Masimo OEM 

pulse oximeter. This validates the reusability of the framework and its components across multiple types of 

physiological data harvested by different OEM monitors. 

(f3) Standardized definitions of SQI that promote interoperability between independently developed 

components: The CRM defines standardized types of SQI, such as, “continuous,” “rank,” and “binary.” 

These experiments used multiple components to generate the SQI. These components were developed 

based on the current algorithms identified in the literature review. For example, the ADDiff component is 

derived from the work of Yu et al [44] and applied to the HR and PR streams in experiments 3 and 4, 

whereas the CED component leverages the ideas of threshold modification and alarm annunciation 

delays that were introduced in previous studies [37-40]. These experiments demonstrate the integration 

of components that were developed independently and whose interoperability is facilitated through the 

use of standardized SQI, as defined in the framework’s CRM. 

(f4) Reusability and scalability by cascading, mixing, and matching several AD and CED components in 

various combinations: By requiring all component interfaces to conform to the standardized CRM, 



 

interoperability is promoted, allowing for component reuse and the creation of highly complex pipelines 

leveraging simple and well-tested components. Each of the four models represented a different 

component composition. The analyses in each composition vary in scale through the reuse and 

cascading of components. This mixing and matching are made possible by the adherence of each 

component to the CRM. Comparing the flowcharts in Figures 3 and 4, there is an increase in the number 

of instantiations of the ADDIL component from 2 to 4 between CDSS #1 and #3. This demonstrates that 

the framework supports reusability and scalability by cascading, mixing, and matching several 

components. 

(f5) Customizability to evaluate and compare the performance of multiple combinations of 

independently developed components on offline and potentially real-time patient data when integrated 

with clinical workflows: A literature review reveals that AD algorithms are typically developed and 

validated in offline environments [25]. This study illustrates the dynamic framework evaluation using 

real patient data offline. This validates the use of the framework as a test bed for multiple combinations 

of independently developed components. Once a combination is affirmed to satisfy clinical needs 

through offline testing, that combination can then be evaluated in a real-time environment using the 

middleware technology. In this way, the transition to real-time clinical implementation and validation is 

facilitated. Anumber of studies have suggested the introduction of delays in alarm annunciation to 

reduce FARs. This strategy is expected to reduce the FAR. However, there is a lack of quantitative 

evaluation in terms of the impact of such a strategy on Sn and FAR. The framework developed here 

promotes and enables such a quantitative study design, as demonstrated by the experiments developed 

here. In fact, it was found that such strategies failed to suppress false alarms while maintaining a 

sufficiently high Sn. This shows that the customizability of the framework allows for performance 

evaluation and comparison of multiple combinations of independently developed components on offline 

and potentially real-time patient data when integrated with clinical workflows. 

(f6) Standardized component interfaces that can potentially support real-time clinical implementation of 

AD: If independent research and OEM groups choose to implement their algorithms within the context 

of the framework, that is, adhering to the CRM, then it is more likely that these algorithms will reach 

clinical implementation because the CRM supports interoperability between all components. 

Furthermore, the framework simplifies information technology (IT) requirements for hospitals because it 

provides a unified functional environment in which all AD and CED components required by multiple 

critical care units can be supported and executed. Finally, the framework facilitates the testing and 



 

validation of new algorithms across different clinical settings, populations, critical care units, and 

pathologies. This will make the system more robust and therefore more likely to be adopted [45]. There 

is a paucity of CDSS for real-time clinical implementation. One hurdle to their clinical adoption is the 

requirement to transform complex algorithms for real-time implementation. By implementing the 

required algorithms within the framework, the algorithms will be made suitable for execution in real 

time. The four experiments were implicitly designed to run the framework components in a real-time 

streaming environment. The composition of the analysis in each experiment was evaluated using a 

simulated real-time environment. As a result, with negligible reformulation, the optimal framework 

composition resulting from this evaluation can be integrated within clinical workflows. Therefore, we 

conclude that the standardized component interface design warranted by the CRM supports real-time 

clinical implementation of AD within CDSS. 

Conclusions 

This research evaluated a novel AD framework that standardizes the interoperability of AD and CED 

algorithms for integration within the CDSS. The framework provides a unique test bed with the ability to create 

and integrate new AD compositions by mixing and matching independently developed or decoupled AD 

components with CED components that are designed to deliver specific clinical outcomes. This study validates 

the use of the AD framework in a clinical study using real patient data from the NICU. Several combinations of 

AD and CED components were evaluated, thereby illustrating the validity of the six framework features, 

namely, f1-f6, including flexibility, reusability, standardization of SQI, scalability, customizability, and support 

for real-time implementation. 

Future work will include the implementation of a wide range of AD and CED components to further leverage 

the interoperability provided by the CRM. Although the CRM has been developed following an extensive 

review of the literature that summarizes the requirements, provisions, and configurations for many existing AD 

algorithms, it is expected that the CRM will continue to evolve as a wide variety of new AD and CED 

algorithms with differing data needs are implemented as components within this framework. Further validation 

of the framework can be conducted by independent research groups. The clinical benefits of this research will 

be broadly realized through the integration of the framework in real-time CDSS to enhance the quality of data 

analytics. In this way, framework implementation within clinical workflows offers the potential to improve the 

quality of care for patients and clinicians in critical care. 
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Abbreviations 

AD: artifact detection 

CHEO: Children’s Hospital of Eastern Ontario 

CDSS: clinical decision support systems 

CED: clinical event detection 

CRM: common reference model 



 

DIL: designed to deinterlace 

ECG: electrocardiography 

ECRI: Emergency Care Research Institute 

FAR: false alarm rate 

HR: heart rate 

IT: information technology 

NaN: not-a-number 

NICU: neonatal intensive care unit 

OEM: original equipment manufacturer 

PDA: patient data acquisition 

PR: pulse rate 

SpO2: peripheral oxygen saturation 

SQI: signal quality indicator 

 

 

Figure 1. Common reference model (CRM) schema consisting of the patient data metadata used by each 

component’s requirement and provision interfaces at input and output. SQ: signal quality; SQI: signal quality 

indicator. 

 

 

Copyeditor (JMIR)
Please upload the figure again on the website with the following correction:As per journal style, the text within the figure should be in sentence case. So, please change accordingly at all applicable instances (eg, change “PatientData” to “Patient data”).

Shermeen Nizami
“PatientData” is a variable name defined in the text, therefore, it should remain as is. Thank you.
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