
minIL: A Simple and Small Index for String
Similarity Search with Edit Distance
Zhong Yang1, Bolong Zheng1, Xianzhi Wang2, Guohui Li1, Xiaofang Zhou3

1Huazhong University of Science and Technology, Wuhan, China
Email: {zhongyang90, bolongzheng, guohuili}@hust.edu.cn

2University of Technology Sydney, Sydney, Australia
Email: xianzhi.wang@uts.edu.au

3The Hong Kong University of Science and Technology, Hong Kong, China
Email: zxf@cse.ust.hk

Abstract—The string similarity search is core functionality in
a range of applications, including data cleaning, near-duplicate
object detection, and data integration. We study the problem of
threshold similarity search with the edit distance, where given
a set of strings, a threshold k, and a query string q, we aim to
find all strings in the set whose edit distances to q are no larger
than k. Extensive studies have been proposed for the threshold
similarity search problem with the edit distance. However, they
suffer from a huge space consumption issue when achieving only
an acceptable efficiency, especially for long strings. In this paper,
we propose a simple yet small index, called minIL, to eliminate
this issue. First, we adopt a minhash family to capture pivot
characters and to construct sketch representations for strings.
Second, we develop a multi-level inverted index to search sketches
with a low space consumption. Finally, we apply a novel learned
index technique on top of the index that further improves the
query efficiency. Extensive experiments on real-world datasets
offer insight into the performance of our method and show
that it substantially reduces the index size, and is capable of
outperforming the baseline approaches.

Index Terms—threshold string similarity search, edit distance,
invertd index, minhash

I. INTRODUCTION

String similarity search, as one of the essential operating in
data processing, has been concentrated and studied extensively
in recent years [13], [15], [18], [19], [22], [24], [25]. Given
a set of strings S and a query string q, we aim to find all
strings in S that satisfy a query criteria under a similarity
measure. Various string similarity measures are used, such as
the cosine similarity, the jaccard similarity, and the overlap
similarity. Among these similarity measures, the edit distance
has a key advantage that it preserves the character ordering
and captures a best alignment of two strings, which is crucial
for applications, such as spell checking, plagiarism checking,
speech recognition and protein/DNA sequences detection. For
example, in the source tracking of COVID-19, the string
similarity search with the edit distance is applied to find
gene sequences similar to the virus in the genetic database.
In this paper, we focus on the problem of threshold-based
string similarity search under the edit distance that requires the
distances between the results and the query string are within
a given threshold.

Existing studies [12], [13], [15], [19], [24], [28] on
threshold-based similarity search with the edit distance al-
ways suffer from either a low pruning rate issue or a huge
space consumption issue. As is well known, the time cost of
edit distance computation is O(n2) with a string length n.
Therefore, the query efficiency is low when a large number of
candidates need to be verified due to a low pruning rate issue,
and the performance becomes even worse for long strings.
Although approximate approaches [4], [5], [25], [27] guarantee
the query efficiency on long strings, they still have a huge
space consumption.

Given two strings s and q, the edit distance between s
and q is the minimum number of edit operations needed to
transform s to q. After conducting a preliminary experiment
on existing datasets, we observe that the distribution of the
characters to be edited in a string s is close to a uniform
distribution with high probability, especially when the string
is long. For example, the distribution of spell mistakes in an
article, and the distribution of the mutated bases in a gene
sequence. Intuitively, if we assume that the characters to be
edited in strings are uniformly distributed, the probability
that a randomly selected character in a string s needs to be
edited is k

n , where k is the number of characters need to be
edited and n is the string length. Accordingly, the probability
that the characters do not need to be edited is 1 − k

n . The
probability is fairly high when k

n is small, i.e., the edit distance
between string s and q is small. The probabilities remains 
the same when the character is randomly selected from a 
certain interval of strings. Therefore, if we randomly select 
characters from multiple intervals independently to construct 
sketch representations for strings, the sketches of similar 
strings are likely to be similar. In other words, if the candidate 
sketches are similar to the query sketch, the candidate strings 
are similar to the query string with high possibility, and the 
results found with sketch strings have a high accuracy.

Therefore, we propose a novel approximate method that 
enables to find quickly the candidate strings whose characters 
need to be edited are uniformly distributed. The method 
fetches a series of pivot characters to construct a sketch 
representation for each string, and then computes the number 
of different pivots of the sketch representations between the



s=stkilatdwcqkovgradbp q=stkil tdwcqkovgradap

stkilatdw qkovgradbp stkiltdw qkovgradap

(1) s’=cka

(2) s’=caa (2) q’=cta

After processed：

(1) q’=cka

Fig. 1. A Running Example

candidate strings and the query. To construct the sketch
representation, we first apply an independent stochastic hash
function (e.g., minhash [3]) on an interval in the middle of a
string to fetch a pivot. The string is divided into two substrings
by the pivot. Then we recursively process the substrings to
fetch more pivots. Based on the previous assumption, the
probability that a string and the query string produce a same
pivot at each recursion is 1 − k

n , while the probability of
producing a different pivot each time is k

n . Obviously, if two
strings are similar, their sketches are likely to be the same 
or to have only a few different pivots. In contrast, if two 
strings are dissimilar, most of the pivots between the sketch 
representations are different.

Consider an example in Fig. 1. We have two strings q 
and s where |q| = 19 (the red underline in q represents a 
position shift compared with s) and |s| = 20. As the edit 
distance between q and s is 2, the probability of obtaining the 
same pivot at each recursion approximates 0.9. First, we apply 
minhash to fetch a pivot from the middle 6-characters interval 
of s and q. The pivots are the same since s and q have the 
same interval “dwcqko”, and “c” (in red) is captured from 
both s and q. Afterwards, both s and q are divided to two 
substrings. The pivots are recursively fetched from the middle 
of the 6-characters intervals of the substrings. Finally, s and q 
are compacted to much shorter sketch strings s′ and q′, which 
are likely to be identical or differ by only one character. For 
example, (1) s′=q′=“cka”, or (2) s′=“caa”, q′=“cta”.

By combining the sketching method with two concise 
indexes, i.e., a trie-based index and a mutil-level inverted 
index, respectively, we develop two methods minIL+trie and 
minIL that achieve improvements on both space and time costs. 
Benefiting from the sketch representation, the space costs of 
the two proposed indexes are reduced to O(LN), where N 
is the dataset cardinality and L is the sketch length. Since 
the space cost is independent on the string length, the method 
gains better performance on long strings. Table I shows the 
comparison on space costs of existing methods. We can see 
that the space cost of minIL is smaller than existing methods 
(The space cost of Bed-tree is not indicated explicitly in study 
[28], it requires more space than MinSearch [27]). Moreover, 
to further improve the query efficiency, we replace the length 
filter with a learned index technique to quickly locate the 
positions of the candidates in inverted lists. The experiments 
results show that both the space cost and query efficiency of 
the proposed methods outperform the competitors.

TABLE I
SPACE COSTS OF EXISTING STUDIES

Algorithm Space Complexity
minIL O(LN)

minIL+trie O(LN)

MinSearch [27] O(Nnlogn)

Bed-tree [28] NA
HS-tree [24] O(

∑l=lmax

l=lmin

∑n=nmax

n=nmin
l ∗ (|Sl|+ n))

The major contributions are summarized as follows:
• We propose a novel sketching method that implicitly en-

codes alignments between strings and guarantees the sim-
ilarity between sketch representations of similar strings 
with high probability.

• We propose a simple and small index minIL that sub-
stantially reduces the space cost compared with existing 
studies. We innovatively apply the learned index to re-
place the length filter to improve the query efficiency.

• We conduct extensive experiments on real-world datasets 
to offer insight into the performance of minIL that out-
performs the existing methods, and the results show high 
efficiency and low space consumption of the method.

The rest of the paper is organized as follows. In Section
II, we formalize the problem definition. In Section III, we
introduce the sketch representation construction algorithm. We
cover the index structure and the threshold search algorithm
in Section IV. Section V introduces the optimizations for
the extreme string shift problem. Experimental studies are
presented in Section VI. Finally, we review the related work
in Section VII and conclude the paper in Section VIII.

II. PRELIMINARIES

We proceed to formalize the problem definition. Frequently
used notation is summarized in Table II.

Definition 1 (Edit Distance). Given two strings s and q, the
edit distance between s and q, denoted as ED(s, q), is the
minimum number of edit operations, including substitution,
insertion and deletion on a single character, needed to trans-
form s to q.

Definition 2 (Threshold-based Similarity Search with Edit
Distance). Given a set of string S = {s1, s2, ..., sN} and
a query string q, and a threshold k, the threshold-based
similarity search with edit distance reports a set R of all
strings si ∈ S such that ED(si, q) ≤ k.

Example 1. Consider a set of strings in Table III. Assume
a query string q=“above” with length of 5, and k = 1,
the threshold similarity search returns “abode” since the edit
distance between “abode” and the query “above” is 1 ≤ k.

III. STRING SKETCH CONSTRUCTION

We proceed to introduce the sketching method, called min-
hash compacting (MinCompact), that compacts long strings



TABLE II
SUMMARY OF NOTATIONS

Notation Definition
S A set of input strings
N Number of strings in S
Σ Alphabet of dataset
s or y A string in S
q or x Query string
n Length of a string
k Threshold
t Threshold factor t = k/n ∈ [0, 1]

l Recursion times of the MinCompact method
L Length of a sketch string
ε Interval length parameter in MinCompact method
s′ or y′ Sketch of a string in S
q′ or x′ Sketch of the query string
α Number of different characters between x′ and y′

Pα Probability that x′ and y′ have α distinct characters
R The result set

TABLE III
A SET OF STRINGS

ID String Length
s1 abode 5
s2 about 5
s3 abound 6
s4 aboard 6
s5 abstract 8

into short sketch strings by using an independent minhash 
family, which implicitly aligns the strings. MinCompact en-
ables to find approximate matches to the query with a perfect 
accuracy (> 0.99).

A. Minhash Compacting

MinCompact compacts a string with length n to a sketch
string with length 2l−1 after l recursions (l is a small value).
The details of the method are described in Algorithm 1. It
first apples an independent minhash function on the middle
[(1/2 − ε)n : (1/2 + ε)n] characters of an input string y to
find a pivot that has the minimal hash value. The pivot is
then stored in the sketch string y′. The input string is divided
into two substrings by the pivot, then we recursively process
the substrings as input at the next recursion. The process
is repeated by l recursions. MinCompact is to some extent
inspired by the study [5] that is designed for embedding strings
into a Hamming space. Different from [5] that embeds a string
into a long, sparse string, MinCompact compacts a string into
a short sketch string.

Example 2. Consider y = w1w2...w18 in Fig. 2. We set l = 2
and 2εn = 4 (2εn is the length of the interval for fetching
a pivot). At the first recursion, the pivot w9 is fetched from
[w8 : w11], then we push w9 into y′. At the second recursion,
pivots w5 and w13 are obtained from [w3 : w6] and [w13 :

Algorithm 1: MinCompact
Input: A string y = w1w2w3...wn, l, ε
Output: A new string y′

1 Initial y′ of size 2l − 1;
2 Select an independent minhash function h and let i

minimize h(wi) out of the
i ∈ [(1/2− ε)n : (1/2 + ε)n] in y. We call wi the
pivot;

3 Push wi into y′;
4 Recursively process [w1, ..., wi−1] and [wi+1, ..., wn]

until l-th level;
5 Return y′;

w16], respectively. Finally, after pushing the pivots into y′, we
have y′ = w9w5w13.

MinCompact has two advantages. One advantage is that
it implicitly encodes alignments between strings. The string
shifts always exist between similar strings, and a large string
shift may decrease the probability of fetching a same pivot
between similar strings, which leads to correct candidates
missing. Therefore, the alignment between strings during
fetching the pivots is required. MinCompact aligns strings
by taking the pivot as the boundary of input strings at the
next recursion. Once two strings produce a same pivot, the
substrings are aligned from the location of the pivot. Therefore,
the string shift issue at the next recursion is reduced. For
example in Fig. 1, there is a position string shift between
s and q (indicated by the red underline in q). After the first
pivot “c” is fetched, the string shift remains between the first
substrings of s and q, while the second substrings of s and q
have no string shift, since they are aligned by the pivot “c”,
i.e., the string shift in the second substrings is eliminated.
The other advantage is that the method can readily control the
output length. The output length is a constant value L = 2l−1
determined by the parameter l.

B. Analysis

n

We proceed to illustrate the idea of MinCompact. If two 
strings x and y are similar, they are close naturally in length, |x| 
≈ |y| ≤ n, where n is the string length after trans-forming one 
string into the other. For ease of presentation, we first discuss 
edit operations of substitution and insertion. For example in 
Fig. 1, instead of deleting “a” from s, we substitute “b” to “a” 
in s and insert “a” into q to transform two strings into the same. 
If the edit distance between x and y is k (k � n), there are k 
characters need to be edited. Assume that k characters are 
uniformly distributed in strings. Intuitively, the probability that 
a stochastically selected character in the string that requires to 
be edited approximates to k . The probability remains 
unchanged when the character
is selected from an interval of the string. That is to say, if 
we stochastically selected a character as a pivot from each of 
two similar strings, the probability P(differ) that the pivots
are different approximates to k . The probability P(same) that

n



w13w5

w9

w5

l=1

l=2

Output：

w1 w2 w3 w4 w5 w6 w7 w8 w9 w10 w11 w12 w13 w14 w15 w16 w17 w18

w1 w2 w3 w4 w5 w6 w7 w8 w10 w11 w12 w13 w14 w15 w16 w17 w18

w13w5w9

Fig. 2. An Example of MinCompact Procedure

the pivots are identical approximates to 1− kn . For the deletion
operation, the only difference is that n will be slightly smaller, 
which does not affect the conclusion.

Based on the above conclusion, the sketch strings x′and y′
that have L independent pivots are likely to differ only in a 
few pivots. The probability that x′ and y′ have α different 
pivots is:

Pα ≈ CαL(
k

n
)α(1− k

n
)L−α (1)

The probability that x′ and y′ have no more than α different
pivots is:

P(differ ≤ α) ≈
α∑
0

Pi (2)

For instance, if l = 3, |x| = |y| = n, and ED(x, y) ≤ 0.1n, 
in this case, y is a result of the query x with a threshold 
k = 0.1n. According to the above derivation we have the 
probabilities: P0 ≈ 0.478, P1 ≈ 0.372, P2 ≈ 0.124, P3 ≈ 
0.023 and so on. Then probability that x′ and y′ have no more 
than 3 different pivots is P = P0 + P1 + P2 + P3 ≈ 0.997. 
In other words, if x′ and y′ have no more than 3 different 
pivots, the probability that the original strings x and y are 
similar is 0.997. It indicates that the accuracy of the results 
whose sketch string has no more than 3 different pivots to 
x′ is 0.997. Therefore, we enable to find the results whose

∑edit distances with x are no larger than k with an accuracy
α

0 Pi. We can readily achieve a perfect accuracy (> 0.99) by adjusting α.

C. Effectiveness of Parameters

MinCompact considers two parameters l and ε. The param-
eter l dictates the maximum recursion depth and determines
the length of sketch strings. It affects the computation cost
and the probability Pα of candidates being similar with the
query. Obviously, a small l is needed such that the length of
the input string at each recursion is no smaller than the number
of characters to scan. At each recursion, the algorithm scans
2εn characters, and the input length at the i-th recursion is at
least (1/2− ε)i−1n. We need to choose l such that at the l-th
recursion, the input length is no smaller than 2εn. Therefore,
it suffices to set l that satisfies:

l ≤ log1/2−ε 2ε+ 1. (3)

The parameter ε controls the computation cost of MinCom-
pact. When ε decreases, the input length at each recursion
decreases, and the computation cost is reduced. The method

scans 2εn ( 1
2n < ε < 1

2 ) characters at each time, and
2l − 1 times in total. So the time cost is O(βn), where
β = 2(2log1/2−ε 2ε+1 − 1)ε < 1, and iff ε = 1

2n or ε = 1
2 ,

β = 1. The parameter ε also affects the ability of string shift
tolerance. A larger ε implies greater tolerance. Although the
method can tolerate string shift, if ε is too small while the
string shift is large, the characters in middle intervals between
similar strings may be different. Therefore, the probability of
producing the same pivot in the intervals is decreased, which
reduces the algorithm accuracy. So there is a trade-off between
the computation cost and the ability of string shift tolerance
that requires a proper setting of parameter ε.

D. Extreme String Shift Issue

It is worth noting that although a proper ε enables to improve 
the string shift tolerance ability, the method suffers from 
extreme string shift cases, i.e., the shifts are all con-centrated at 
the beginning or at the end of the string. To deal with the 
problem, we propose two optimizations in this paper. The first 
one is to utilize a slightly larger ε at the first recursion in 
MinCompact. As discussed, a large ε can tolerate large string 
shift. If we apply a large ε at the first recursion, a high 
probability of producing a same pivot in the intervals remains. 
If a same pivot is obtained between similar strings at the first 
recursion, the input strings in the next recursion are aligned, 
and so does the input strings in the subsequent recursions. 
Therefore, the string shift is reduced and the ability of string 
shift tolerance is improved. The second optimization developed 
on top of the query algorithm and the index structure is 
described in Sec. V.

E. Other Issues

MinCompact helps to find similar strings and filter dis-
similar ones with high probability. However, two types of
inappropriate candidates may be produced. One type is the
candidates that have a large length difference that exceeds
the threshold with the query. The string length varies greatly,
which can be observed from the dataset statistics in Table
IV. After applying MinCompact, since the sketch strings are
with the same length, the strings with large length differences
may have similar sketch strings. The other type is the candi-
dates that are dissimilar to the query, but contain pivots that
happens to be the same as the query. For instance, the string
segments “acdfge” and “hkljma” from two dissimilar strings
can produce the same pivot “a”. To deal with these issues,
two pruning strategies are introduced along with our index
structure in Sec. IV.

IV. THRESHOLD BASED SIMILARITY SEARCH

After applying MinCompact, each string s is compacted into
a sketch string s′. To answer the threshold based similarity
query, we first find the candidates {si} whose sketch strings
s′i have no more than α different pivots with the sketch
string q′ of the query. Then, we verify whether ED(si, q) of
all candidates si satisfies the criteria. To prune inappropriate
candidates quickly, we propose a trie-based index. To further



r

a b

b c

a b a

a b

b a b

d

a

Record List

0

0 1 2 1 2

1

0 1 1 2 3 1 3

Record List…
…

Record List

d=1

d=2

d=3

…
…

Fig. 3. An Example of Marked Equal-Depth Trie

reduce the space cost, we develop a multi-level inverted index
with a learned index based length filter.

A. Trie-based Index

A straight-forward way to find the candidates is the linear
scan method that compares each s′i with q′ to compute the 
number of different pivots. Although the sketch strings are 
short, it is costly to scan all strings especially when the dataset 
cardinality is large. The trie index is a well-adopted structure 
for strings. Although it cannot be applied directly for searching 
the original long strings under the edit distance, it is suitable for 
searching the short sketch strings. Unlike the traditional trie 
index that stores strings with various lengths and searches for 
strings with common prefixes, we need a structure to save 
strings with equal length and to search strings that have no 
more than α different pivots to the query sketch q′. According 
to the requirements, we design a marked equal-depth trie index 
structure.

Index Structure and Search Algorithm Fig. 3 shows an 
example of the marked equal-depth trie with a depth of 3. 
Each node represents a character with a mark at the top right 
of the node. The mark records the number of different pivots 
up to the node during the search process. Each leaf node links 
a record list of sketch strings whose characters are represented 
by the route from the root to the leaf node. The trie is built 
by inserting all sketch strings into the tree. And the marks 
attached on nodes are 0 initially. Algorithm 2 presents the 
recursive searching procedure on the trie. We start from the 
root node and traverse all the child nodes of the root node. We 
check the mark on the child node whether it is no larger than 
α. If the mark α̂ exceeds α, the successor nodes of the child 
can be pruned (Line 6-7). If the mark is within the limit of α, 
then we check the character represented by the node. If the 
character is equal to the current character of q′, we recursively 
process the child nodes of the node (Line 10), otherwise, we 
recursively process the child nodes with their marks adding 1 
(Line 12). In each iteration, if the input node is a leaf node, 
the linked record list is merged into the results R after length 
filtering and position filtering (L ine 1-3).

Length Filter. As mentioned before, the string length varies 
in a dataset. But after MinCompact, the sketch strings have the 
same length. The candidates may have a large length difference 
that exceeds the threshold with the query. To address the issue, 
we attach the original string length to each record in the record

Algorithm 2: TrieSearch
Input: Query sketch string q′, a node of trie node, α,

mark α̂
Output: String Set R

1 if node is the leafnode then
2 Rn ← node.RecordList after LengthFilter and

PositionFilter;
3 R ← R∪Rn
4 else
5 foreach child ∈ node do
6 if α̂ > α then
7 continues;

8 else
9 if q′[i] == node.character then

10 TrieSearch(q′[i+ 1], child, α, α̂)

11 else
12 TrieSearch(q′[i+ 1], child, α, α̂+ 1)

13 Return R;

lists to do the filtering. When we look up a record, the attached 
length is compared with query length. If the length difference 
is larger than the given threshold, the record can be pruned 
since its original string can not be a result.

Position Filter. Dissimilar strings may produce similar 
sketch strings by coincidence. Pruning these candidates can 
further improve the query efficiency. To alleviate the problem, 
the position of each pivot in the original string is attached 
to each record in the list. Then, if a record contains a same 
pivot with the query, positions of the pivot in their original 
strings are compared. If the position difference is larger than 
the threshold, which is not a feasible alignment, the pivot can 
be considered as different. In this way, we can reduce the 
improper candidates whose sketches happen to be similar to 
the query.

Example 3. Consider the trie of sketch strings in Fig. 3. 
Suppose the query sketch string q′=“aba” and α = 1. We 
traverse all the nodes in the tree from root r to the leaf 
nodes. When we meet the nodes at depth 1, node a equals 
to q′[0]=“a” while node b does not, then the mark of node 
a keeps 0 while the mark of node b adds 1, and the marks 
are passed to their child nodes, respectively. When we meet 
the node a at depth 2, since it does not equal to q′[1]=“b”, 
its mark becomes 2 which is larger than α, then its successor 
nodes can be pruned. Similarly, the successor nodes of d at 
depth 2 can be pruned. Once we meet a leaf node and its mark 
do not exceed α, the records linked to it is merged into the 
results after two filtering.

Cost Analysis. The space cost of the trie-based index 
is smaller than O(LN) since the common prefixes reduces 
a certain amount of storage. On the other hand, the trie-
based index needs to express various relationships between



c1 c2 c3 … cL

a

b

c

…

…

x

y

z

record list

record list

a

b

c

…

…

x

y

z

a

b

c

…

…

x

y

z

… … …

… …
s’：

Dict
Σ

record list

record list

record list

record list

Fig. 4. Multi-level Inverted Index

characters, so its implementation is more complicated, which 
incurs additional space costs. Suppose the average number of 
branches of the nodes is σ (σ ≤ |Σ|, where Σ is the alphabet of 
all strings), the time cost of searching the trie is at least O(σα) 
since we need to traverse all the nodes within depth α before 
any pruning. In the worst case, the time cost is O(σL).

B. Multi-level Inverted Index

Although the trie-based index is smaller compared to the 
existing tree-based indexes [24], [28], its space consumption 
is still non-negligible, especially when the size of dataset is 
large. To further reduce the space consumption and improve 
the search efficiency, we propose a simple and small index 
structure called multi-level inverted index (minIL) along with 
a learned index based length filter.

Index Structure. The multi-level inverted index consists 
of L levels of inverted indexes corresponding to the sketch 
string length L. For each position j of the sketch strings, 
there is one level inverted index. Each level inverted index 
consists of record lists of characters c ∈ Σ. Each record list 
of a character c consists of the sketch strings that contain 
character c at position j. Fig. 4 illustrates the structure of the 
index. And the Index is built as Algorithm 3 shown. We first 
initialize the index with L levels. Secondly, each string si ∈ S 
is transformed into s′i by the MinCompact. Thirdly, for each 
character c at position j in s′i, we add s′i into the record list 
of c in the j-th level of the inverted index, denoted as Ij (c). 
Finally, after all strings are processed, the index is set up.

Searching algorithm. The algorithm for threshold based 
similarity search on the multi-level inverted index is described 
in Algorithm 4. Given a set of strings S, a query string q 
and a similarity threshold k, the algorithm returns all strings 
si ∈ S such that ED(si, q) ≤ k. The search method can be 
used for different thresholds with different accuracy at query 
time. First, we use Algorithm 1 and Algorithm 3 to process 
all input strings and generate the index I. Then we construct 
q′ for q. Afterwards, for each pivot q′[i] at position i, we 
scan the list of Ii(q′[i]). After the length filtering ( Line 5) 
and position filtering ( Line 6 ), f or e ach s i i n t he l ist, i f i t is 
not in the hashmap Map〈si, f〉, which contains records and 
their frequencies, it is inserted into the map, otherwise, its 
frequency plus one (Lines 7-9). After all positions of q′ are

Algorithm 3: Building Index
Input: String Set S,L,Σ
Output: Indxe I

1 Initial I with L levels and each level has Σ record
lists. foreach si ∈ S do

2 s′i ←MinCompact(s);
3 foreach c ∈ s′i do
4 c is at position j of s′i;
5 Ij(c) ∪ s′i;

6 Return I;

Algorithm 4: Threshold Based Similarity Search
Input: A query string q, Index I, threshold k
Output: String Set R

1 Choose α according to the accuracy requirement;
2 q′ ←MinCompact(q);
3 for i ≤ L do
4 foreach s′i ∈ Ii(q′[i]) do
5 LengthF liter(si);
6 PositionF liter(si);
7 if si ∈Map〈si, f〉 then
8 f ← f + 1;

9 Add 〈si, 1〉 into Map;

10 foreach si ∈Map do
11 if L− f ≤ α then
12 if ED(si, q) ≤ k then
13 R ← R∪ si;

14 Return R;

processed, we obtain the map contains strings whose sketch
strings have intersection with q′. We check the strings whose
frequency satisfies L − f ≤ α to determine the candidates.
Finally, we verify the candidates and return the results (Lines
12-14).

|Σ|

Cost Analysis. Different from the existing indexes that store 
various substrings with a large redundancy, the multi-level 
inverted index reserves the sketch strings with only a small 
redundancy, and does not use extra structure compared to the 
trie-based index. Although the space cost is still O(LN), the 
cost in practice is smaller than that of the trie-based index. 
The search algorithm scans L record lists and each record list 
has a length N at average. Therefore, the time cost of the
search method excluding the verification phase is O( LN|Σ| ).

Remark. Our proposed method can achieve the perfect
accuracy (> 0.99) by adjusting α. What’s more, α is data
independent to achieve the perfect accuracy: it depends on the
threshold factor t = k

n and the parameter l. The selection
of α is further illustrated in the experimental study. It is
worth noting that even α is not selected appropriately, a high
accuracy can be achieved by repeating the MinCompact with



A Sorted
RecoredList

Model

key = |𝑞|

[ 𝑞 − 𝑘, 𝑞 + 𝑘]

𝑞 + err

Fig. 5. Searching Strings by A Learned Index

different minhash families. In this way, multiple sketch strings
are produced for each string, which results in larger index size.
It is usually not necessary in practice, as a single MinCompact
is already good enough. Moreover, the multi-level inverted
index can be scanned in parallel without any modification.

C. Improvements with Learned Index Technique

We use a naive way that traverses the record list to do the 
length filtering. I t i s inefficient when the size of  record li st is 
large. Actually, we only need to retrieve the strings whose 
lengths are within the range of [|q| − k, |q| + k] with the 
threshold k. To quickly locate positions of strings within the 
range, many technologies can be applied after sorting strings 
by length. Binary search or B-tree is a common option. A 
recently proposed novel learned index structure which is much 
more efficient t han b inary s earch o r B -tree i s a vailable here. 
Learned indexes [9], [11], such as RMI, use machine learn-
ing techniques to model the cumulative distribution function 
(CDF) of a sorted array. We apply the learned index technique 
to the length filter, called learned length filter, by training a 
model for each record list separately to replace the plain length 
filter when building the index. Then the models are utilized to 
speed up searching the sorted record lists. For example, Fig. 5 
shows the process of searching strings within the length range [|
q| − k, |q| + k] using the learned length filter. We take the 
length |q| as the input key of the learned model, the model 
outputs key location in the sorted record list within O(1) time. 
Although the model of learned index always has a search error 
err, using the length |q| as the key can avoid the error as long as 
the key location falls in the search range, i.e., |q| + err ∈ [|q| − 
k, |q| + k]. With an acceptable accuracy of the model, it 
happens with high probability. Next, we retrieve both sides 
from the location |q| + err to traverse the search range 
sequentially.

Compared with traditional index structures, the learned 
index has significant high efficiency. The performance of 
our search method benefits from utilizing learned index: The 
time cost of searching a single record list is reduced to 
O(2k), thus the time cost of searching the candidates is 
reduced to O(2kL).

V. OPTIMIZATION FOR STRING SHIFT ISSUE

In the analysis of MinCompact in Sec. III, we make an 
optimistic assumption that the characters need to be edited

…

|𝑞|

Coverage
of |𝑞|

𝜌|𝑞|

|𝑞𝑣1|

2𝜌|𝑞|

Coverage 
of |𝑞𝑣1|

…

…

𝑘

Fig. 6. Analysis of Filling A Query String

are uniformly distributed in the string. If the string is long 
and random, the distribution of characters need to be edited 
satisfies the assumption with high probability. However, in 
practise, there exist exceptions to the assumption, i.e., the 
extreme string shift issue that the shifts are all concentrated 
together at the beginning or at the end of the string. The 
extreme string shift issue may be caused by human or system 
errors are uncommon but inevitable. For example, in text 
strings, an article loses a sentence at the beginning, or in 
gene strings, the last segment of a gene sequence is missing. 
Although MinCompact has the ability to tolerate string shift, 
it still suffers from the extreme cases.

When MinCompact has a small parameter ε, the extreme 
string shift cases could be problematic: At the first recursion, 
the characters in fetching intervals between similar strings 
may be totally different, which decreases the probability of 
producing a same pivot. Afterwards, without the same pivot at 
the first recursion, the substrings are not aligned, the characters 
in fetching intervals at the next recursion may also be different. 
This is a chain reaction that eventually leads to dissimilar 
sketch strings. Recall the discussion in Section III, we propose 
to use a slightly larger ε at the first r ecursion t o d eal with 
the issue. However, the optimization cannot completely solve 
the problem. In experiments, we use a synthetic dataset that 
only contains strings that have extreme string shifts to test the 
effectiveness of the optimization in Sect. VI. The optimization 
helps to achieve about 40% accuracy on the extreme data 
which is still not acceptable.

A. Improvements on Query Processing

We propose another optimization to improve the accuracy
on extreme string shift cases. Inspired by [15], we come up
with an idea of making the query string be aligned with shifted
strings by truncating or filling the query string at the beginning
or the end to reduce or even eliminate string shifts. Since
strings have various lengths, we apply different alignment
schemes on the query to cover different string shifts. For
candidate strings that are shorter than the query, we truncate
several characters at the beginning or end of the query. For
candidate strings that are longer than the query, we fill the
query with several place-holders at the beginning or the end.

We obtain multiple variants of the query through the above
operations. The question is: how many characters/placeholders



should be truncated/filled, in another words, how many vari-
ants of the query should be acquired. Suppose the string shift
tolerance size of a query string q using MinCompact is ρ · |q|.
Therefore, the query string can cover shifted strings with
lengths in the range of [|q| − ρ · |q|, |q|+ ρ · |q|]. Similarly, a
variant qvi of the query can cover shifted strings with lengths
in the range of [|qvi| − ρ · |q|, |qvi| + ρ · |q|] (for simplicity,
suppose the string shift tolerance size of qvi is still ρ · |q|).
Thus, each variant qvi can extend the shift coverage of q
by 2ρ · |q| at most. Consider the situation in Fig. 6 that
we need to cover all the shifted strings with lengths in the
range of [|q|, |q| + k], where k is the threshold. Then, we
need at least m variants each of which covers a subrange
[|q| + (2i − 1)ρ · |q|, |q| + (2i + 1)ρ · |q|], (i = 1, 2, ..,m) to
satisfy (2m + 1) · ρ · |q| ≥ k. Accordingly, the total filling
size is 2i · ρ · |q|, (i = 1, 2, ...,m). Since ρ is an uncertain
value, we approximate it with k

(2m+1)|q| . Therefore, the filling
size is 2i·k

2m+1 . The total number of the variants is 4m (truncat-
ing/filling strings at the beginning/end). In practice, m = 1 is
always enough to cover all the string shift possibilities when
k is small. When m = 1, we fill the query string with 2

3k
placeholders for longer strings, and similarly, we truncate 2

3k
characters of the query for shorter strings.

Aligning query string to extreme string shift cases produces
multiple variants that leads to time increase. Even though m =
1 is enough in the most cases, there are four variants that need
to be processed. Fortunately, the search ranges in the record
lists of the variants are half the length of the original query and
the candidates can be readily found using the learned length
filter. For the variants of longer strings, we only retrieve the
strings with a length in the range of (|q|, |q| + k]. While for
the variants of shorter strings, we only retrieve the strings with
a length in the range of [|q| − k, |q|). Take searching strings
within the range of (|q|, |q| + k] as an example. We use a
median 2|q|+k

2 of the search range as the input key of the
learned length filter to avoid the model error. As long as the
location of key falls in the search range, i.e., 2|q|+k

2 + err ∈
(|q|, |q| + k], we can traverse the records within the range
sequentially to find the candidates. Benefiting from the high
performance of learned length filter, although the time cost
increases due to the multiple variants, it is still acceptable.

VI. EXPERIMENTAL STUDY

We report on extensive experiments with real-world datasets
that offer insight into the performance of our proposed al-
gorithms. In particular, we aims to answer the following
questions:

Q1 : How to choose parameters that affect the performance of
minIL?

Q2 : How much does minIL outperform the competitors under
default settings?

Q3 : How much does minIL reduce the space consumption
compared with the competitors?

Q4 : How does the optimizations work under string shift?

TABLE IV
STATISTICS OF DATASETS

Dataset Cardinality avg-len max-len |Σ| q-gram

DBLP 863053 104.8 632 27 1
READS 1500000 136.7 177 5 3
UNIREF 400000 445 35213 27 1

TREC 233435 1217.1 3947 27 1

A. Experiment Setup

All the algorithms are implemented in C++ compiled using
64-bit addressing. All experiments are run on a Window 10
machine with an Intel 3.4Hz CPU and 32GB memory. We
release our source code on Github1.

Datasets. We conduct the experiments on four real-world
datasets:

• DBLP2: A dataset of DBLP publication information
including authors, title and key words of papers.

• READS3: A dataset contains short DNA sequencing
reads, which was used in the edit similarity joins and
search competition.

• UNIREF4: A dataset of protein sequences obtained from
the website of UniProt project.

• TREC5: A dataset of publication information including
the authors, title, and abstract of papers in 270 medical
journals.

The datasets vary in cardinality, average length, maximum
length, and the dictionary size |Σ|. Table IV shows the dataset
statistics. The average length of strings in DBLP and READS
is small, while their cardinalities are large. The average string
length in UNIREF and TREC is much larger, especially the
average string length in TREC, which is over 1000. The max
length of UNIREF is quite large, it reaches 35213.

Algorithms. We compare our proposed method with the
following competing algorithms:

• MinSearch6 [27]. It uses a local hash minima method to
extract common substrings between similar strings and
stores the substrings in a hash table.

• Bed-tree7 [28]. It uses several word ordering strategies
together with the B+-tree structure to perform the search.

• HS-tree8 [24]. It uses a hierarchical segment tree that
recursively stores the substrings of the half of the string
that contained in the parent node.

• minIL+trie. The proposed method using the trie-based
index.

1https://github.com/yangzhong901/minIL
2https://dblp.uni-trier.de/
3https://www2.informatik.hu-berlin.de/∼leser/searchjoincompetition2013/
4http://trec.nist.gov/data/t9 filtering.html
5http://fimi.ua.ac.be/data/
6https://github.com/kedayuge/Search
7https://github.com/ZhangZhenjie/bed-tree
8https://github.com/TsinghuaDatabaseGroup/Similarity-Search-and-Join/

tree/master/hstree



TABLE V
DEFAULT PARAMETER SETTINGS

parameters values
l 2, 3, 4, 5, 6
γ 0.3, 0.4, 0.5, 0.6, 0.7
t 0.03, 0.06, 0.09, 0.12, 0.15

TABLE VI
A BRIEF SELECTION OF α

l = 3 l = 4 l = 5

t α accuracy t α accuracy t α accuracy
0.03 2 0.999 0.03 2 0.990 0.03 4 0.998
0.06 2 0.994 0.06 4 0.998 0.06 5 0.991
0.09 3 0.998 0.09 4 0.992 0.09 7 0.995
... ... ... ... ... ... ... ... ...

• minIL. The proposed method using the multi-level 
in-verted index.

We download the source codes of these algorithms and recom-
pile under our environment settings. For parameter settings
of algorithms, we always choose the recommended parameter
combinations from the papers. MinSearch has one parameter
α using a small value (e.g., α = 3). Bed-tree has several
parameters to choose. HS-tree has no input parameter.

We compare the above algorithms on all datasets. However,
HS-tree is not applicable on UNIREF and TREC, since it
takes too much memory usage that exceeds our computer’s
limit. Therefore, we do not display its results on UNIREF and
TREC. As mentioned in Sec. I, most existing methods suffer
from the massive memory usage and may be inapplicable on
large datasets, where HS-tree is a representative one.

B. Self Evaluation (Q1)

We report the performance of minIL under different param-
eter settings, and explore the effectiveness of the parameters.

Parameters Settings. We now present the parameter set-
tings. Two main parameters l and ε are considered, while
the parameter α is spontaneously determined by the given
threshold k, string length n and the parameter l to achieve a
perfect accuracy. For ease of presentation, we use a threshold
factor t = k

n instead of the threshold k in the experiments

2(2l−1)

to keep α consistent for different query lengths under a same 
accuracy. A small l is required to avoid running out of the 
length of the string in the recursion. A proper selection of ε 
is required to balance between the computation cost and the 
accuracy.

We employ a heuristic method to tune the parameters l and ε. 
The main idea is that we first set a large l according to the 
average length of string (For example, the average string length 
in DBLP is about 100, we set l = 4, and the average string 
length in READS is about 500, we set l = 5) and then vary ε to 
check whether l is feasible. If not, we decrease l and repeat the 
above procedure. In addition, since the equation of computing ε 
is complicated when l is given, we set ε = γ                                        and

TABLE VII
PERFORMANCE OVERVIEW WITH DEFAULT SETTINGS

Dataset Algorithm Memory Query
Usage (GB) Times (s)

DBLP minIL 0.52 0.003
minIL+trie 1.5 0.006
MinSearch 1.7 0.011
Bed-tree 4.8 0.110
HS-tree 7.8 0.007

READS minIL 1.1 0.006
minIL+trie 6.6 0.371
MinSearch 4.3 0.389
Bed-tree 4.8 3.208
HS-tree 4.4 7.007

UNIREF minIL 0.84 0.006
minIL+trie 2.2 0.297
MinSearch 3.6 0.019
Bed-tree 4.8 1.028
HS-tree - -

TREC minIL 1.2 0.016
minIL+trie 1.9 0.339
MinSearch 5.2 1.477
Bed-tree 5.1 39
HS-tree - -

vary the value of γ ∈ (0, 1) to simplify the tuning in practice. 
The reason we set ε in this way is that MinCompact produces 
pivots from 2l −1 different intervals, and the average length of

2l−1
. So ε needs to satisfy that 2εn < ln2 −1

the interval is n , i.e.,
ε < 1

2(2l−1)
. In the experiments, l and γ are always feasible

when we set l ≤ 6 and γ ≤ 0.5. The settings are shown in Table 
V. The default values of l are 4, 4, 5 and 5 on DBLP, READS, 
UNIREF and TREC, respectively. The default value of γ is 0.5 
on all datasets, and the default value of t is 0.15. To achieve a 
perfect accuracy (> 0.99), α is determined by the cumulative 
probability Pα, that is P0 + P1 + ... + Pα > 0.99. Note that α 
is data independent. Table VI shows a brief selection of α with 
different threshold factor t and parameter
l. For example, when l = 3 and t = 0.09, we select α = 3 to 
achieve an accuracy P = 0.998 > 0.99.

Effectiveness of l. We conduct the experiments by varying
l to find the best l for each dataset and to explore the effect
of l on query time. Table VIII shows the query time of minIL
with different l when t = 0.15 over four datasets. Since the
query time of minIL is insensitive to t, we avoid to display
the results of the other values of t. We observe that, as the
average string length of DBLP and READS is small, the value
of l can not be larger than 4 and 5, respectively. On DBLP
dataset, with the increase of l, the running time drops rapidly.
On READS and UNIREF datasets, the results are similar to the
results on DBLP. With the increase of l, the running time first
drops and then keeps stable with a slight increase. On TREC



TABLE VIII
QUERY TIME WITH DIFFERENT l

Dataset l = 2 l = 3 l = 4 l = 5 l = 6

DBLP 28ms 21ms 3ms - -
READS 26ms 23ms 6ms 6ms -
UNIREF 22ms 13ms 6ms 6ms 7ms

TREC 16ms 17ms 17ms 16ms 16ms

dataset, the running time has a different trend, the times almost
remains the same when l changes. The results of running time
on the first three datasets is reasonable. The query time is
mainly determined by the verification phase, where the time
of searching on the index takes a small part. The smaller l
is, the larger the distortion of the compacted string is, which
may result in more candidates to be verified. Meanwhile, the
increase of index size, when l increases, has only a little effect
on the query time. The result of running time on TREC is
different. We infer that the number of candidates changes little
when l changes, so the running time is stable.

Effectiveness of ε and α. We conduct the experiments
by varying ε and α to explore the effects on the number of
candidates. ε is controlled by γ as mentioned in Sec. VI-B,
and we set γ = 0.3, 0.4, 0.5, 0.6 and 0.7, respectively. Fig. 7
illustrates the comparison on the number of candidates when
varying γ and α over UNIREF and TREC datasets. Figs. 7 (a)
and (b) show the distributions of the numbers of candidates
with different α. The y-coordinate represents the numbers of
sketch strings found in the index when α equals to a certain
value. Figs. 7 (c) and (d) show the cumulative numbers of
candidates. The value of the y-coordinate represents the total
numbers of sketch strings found in the index when α is no
larger than a certain value. For example, when α = 6 and
γ = 0.5 in (c), the cumulative number is the summation
of all candidates when γ = 0.5 and α ≤ 6 in (a). We
observe that the distributions of the numbers of candidates
in (a) and (b) approximate a normal distribution. When γ
varies, the position of the peak shifts. The plots in (c) and
(d) are the cumulative distributions of plots in (a) and (b).
The cumulative number is the number of candidates that need
to be verified, so the cumulative number directly impacts
the algorithm efficiency. We observe in (c) and (d), when α
increases, the cumulative number first goes up smoothly, then
it increases rapidly approaching the maximum value, and at
last it reaches the maximum value slowly. In addition, the
smaller γ is, the later the curve goes up rapidly. According to
the above observations, we prefer to choose a small ε and
γ when α is chosen. However, an extremely small ε may
limit the selection of l and exacerbate the string shift issue.
Therefore, there is a trade-off to choose a proper ε.

C. Comparison On Query Time (Q2)

We report on the query performance of minIL+trie and
minIL under the default settings and the comparison of query
time with competing algorithms.

Fig. 8 reports the average query time of the algorithms as
a function of the threshold factor t where t = k

|q| ∈ (0, 1).
It is clear that our minIL performs the best, and Bed-tree 
always performs the worst. Although HS-tree achieves the 
best performance on DBLP when t is small, its average query 
time increases significantly a nd e xceeds t he q uery t ime of 
minIL when t increases, and its performance is even worse 
than Bed-tree on READS when t increases. MinSearch and 
our proposed methods perform better than Bed-tree on all 
datasets and better than HS-tree on READS over an order 
of magnitude, while minIL always performs the best. The 
performance of minIL+trie and MinSearch are similar on 
READS and TREC, and minIL+trie performs better than 
MinSearch on DBLP while the opposite is true on UNIREF.
In addition, minIL is insensitive to the threshold. When t 

increases, the average query time of minIL does not increase 
obviously. Table VII presents the results of query time when 
t = 0.15. It shows that minIL can speed up by at least 
3.6, 36.7, and 2.3 times over the competitors. In summary, 
minIL and MinSearch have the high efficiency a nd stability 
over all datasets, and HS-tree is more applicable on small 
datasets with short strings. Bed-tree has a relatively stable 
performance but a low efficiency.

It is worth noting that although minIL+trie offers no im-
provements compared with minIL on the query time in most 
experimental results, it provides better query performance in 
some cases. Specifically, the time cost of minIL+trie can be 
smaller than that of minIL, i.e., O(σd) < O(LN/|Σ|), espe-
cially when N is large and d is small, where d (α < d < L) is 
the average depth of the searching on the tree. In these cases, 
the trie-based index enables to outperform minIL. For example, 
in Fig. 8 on DBLP when t is small, minIL+trie performs better 
than minIL.

D. Comparison On Memory Usage (Q3)

Table VII shows the comparison of memory usage of 
the algorithms. The memory usage of minIL is related to 
parameters l and ε that are set to the default values. The 
observation is that our minIL is clearly the best on all datasets 
that has the smallest memory usage. The memory usages of the 
other algorithms are 3.2-15 times larger than that of minIL. For 
example on DBLP, the memory usages are 0.52GB, 1.5GB, 
1.7GB, 4.8GB, and 7.8GB for all algorithms, respectively. 
As mentioned before, the memory usages on UNIREF and 
TREC of HS-tree exceed our computer’s limit, which is 
larger than 32GB. In this case, it is over 30 times larger 
than the memory usage of minIL. We can observe that the 
memory usage of minIL+trie is low on most datasets, but it 
is the largest on READS. The reason for the difference is that 
the dictionary size of READS is much larger than the other 
datasets. It is well known that a large dictionary size has a 
significant negative impact of a trie-based index. The results 
also indicate that minIL+trie is more suitable for datasets with 
small dictionary size. But minIL does not have such limitation. 
We can draw the conclusion that minIL is a simple and small 

index method for string similarity search with edit distance.



0 3 6 9 12 15 18 21 24 27 30
alpha

(a)

0

1

2

3

4

5

Nu
m

be
rs

1e2 UNIREF
0.3
0.4
0.5
0.6
0.7

0 3 6 9 12 15 18 21 24 27 30
alpha

(b)

0

1

2

3

4

5

6

7

Nu
m

be
rs

1e3 TREC
0.3
0.4
0.5
0.6
0.7

0 3 6 9 12 15 18 21 24 27 30
alpha

(c)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Cu
m

ul
at

iv
e 

Nu
m

be
rs

1e3 UNIREF
0.3
0.4
0.5
0.6
0.7

0 3 6 9 12 15 18 21 24 27 30
alpha

(d)

0

1

2

3

4

Cu
m

ul
at

iv
e 

Nu
m

be
rs

1e4 TREC
0.3
0.4
0.5
0.6
0.7

Fig. 7. Number of Candidates with Different ε

0.03 0.06 0.09 0.12 0.15
t

10 3

10 2

10 1

Av
er

ag
e 

Ti
m

e 
(s

)

DBLP
Bed-tree
MinSerach
HS-tree
minIL
minIL+trie

0.03 0.06 0.09 0.12 0.15
t

10 3

10 2

10 1

100

101
Av

er
ag

e 
Ti

m
e 

(s
)

READS

Bed-tree
MinSerach
HS-tree
minIL
minIL+trie

0.03 0.06 0.09 0.12 0.15
t

10 2

10 1

100

Av
er

ag
e 

Ti
m

e 
(s

)

UNIREF
Bed-tree
MinSerach
minIL
minIL+trie

0.03 0.06 0.09 0.12 0.15
t

10 2

10 1

100

101

Av
er

ag
e 

Ti
m

e 
(s

)

TREC
Bed-tree
MinSerach
minIL
minIL+trie

Fig. 8. Average Query Time with Different t

It has a significant advantage in handling large datasets with
long strings.

E. Evaluation of the Optimizations for String Shift (Q4)

We use a synthetic dataset to evaluate the effectiveness
of the proposed optimizations for string shift. The synthetic
dataset only contains strings with string shift at the beginning
or at the end of the query string. We generate the data as
follows: 1) First, we randomly generate a query string with
length of 1200, 2) Given a shift length factor η, we fill or
truncate the query string at the beginning or at the end of it
with s̃ characters, where s̃ is a random value in [0, η|q|], 3)
We generate 100K strings according to step 2) for different η,
respectively. We set η = 0.05, 0.1, 0.15, 0.2.

Fig. 9 presents the average accuracy of the algorithms
with different shift lengths. NoOpt is the proposed method
minIL without any optimization. Opt1 is minIL with the
first optimization described in Sec. III, and we use 2ε at
the first recursion. Opt2 is minIL with both two proposed
optimizations (the second optimization is introduced in Sec.
V). We set m = 1 throughout the experiments. The accuracy
is defined as ratio of the number of candidate strings to
the dataset cardinality. From the results, we observe that the
original method has difficulty in dealing with the extreme
string shift, its accuracy is always less than 0.1. But with the
first optimization, the accuracy of the method improves up to
0.7 when shift length is 0.05|q|, and then it decreases quickly
with the increase of the shift length. The second optimization
has a significant effect. It helps the method achieve a perfect
accuracy when shift length is small, and keeps a high accuracy
when shift length increases. When the accuracy of Opt2 falls
to a low level, for example when the shift length is 0.2|q|,
it indicates that the variants of the query of the optimization

0.05*|q| 0.1*|q| 0.15*|q| 0.2*|q|
Shift Length

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

Average Accuracy
NoOpt
Opt1
Opt2

Fig. 9. Average Accuracy with Different Shift Length

cannot cover all string shift possibilities. In this case, we only
needs to increase m to solve the problem.

VII. RELATED WORK

In this section we review the related work on similarity
search and join problem.

Similarity Search. Similarity search with edit distance has
been studied extensively in the literature [7], [12], [13], [15],
[16], [19], [24], [27], [28]. Many of existing studies are de-
vised to address the threshold-based similarity search problem,
while the others aim to support the top-k similarity search.
For threshold-based similarity search, Li et al. [12] improved
the count filter [16] based method and designed several list-
merge algorithms to tackle the problem. Li et al. [13] proposed
variable length grams based method which advisably chooses
high-quality grams of different lengths to address the prob-
lem. Qin et al. [15] proposed asymmetric signature schemes
named QChunk and developed several dynamic programming-



based candidate pruning methods. Wang et al. [19] proposed
an adaptive prefix filtering framework and a cost model to
judiciously select an appropriate prefix for each object to
speed up the performance. Deng et al. [7] proposed a pivotal
prefix filter based method which significantly reduces the
unnecessary signatures. Zhang et al. [27] proposed a local hash
minima method to extract common substrings between similar
strings. For top-k similarity search, Yang et al. [23] utilized
an adaptive q-gram selection and several efficient strategies
to explore the problem. Deng et al. [8] used a trie index to
share common prefixes and proposed a range-based algorithm
by grouping specific entries to avoid duplicated computations.
Wang et al. [21] designed a novel filter-and-refine pipeline
approach that used long but approximate n-gram matches
for candidates pruning. Zhang et al. [28] developed Bed-tree
utilizing B+-tree to index strings and Yu et al. [24] devised
a unified framework using hierarchical segment tree (HS-tree)
to support both threshold and top-k similarity search.

Most existing methods have two limitations. First, many
algorithms using q-gram based signatures have poor pruning
power, since the value q is typically very small to avoid
missing results, and a small q has limited pruning power.
Second, most existing algorithms do not perform well on long
strings compared with short strings. Long strings may cause
massive redundancy indexes that reduce the search efficiency,
and signature-based methods cannot capture long signatures .

Similarity Join. Similarity join, i.e., given two string col-
lection to find all similar string pairs, is a closely related
problem. The problem has been studied extensively as well
[14], [15], [18]–[20], [22], [24]–[26]. Yu et al. [24] provided
a comprehensive survey of similarity join. Wandelt et al. [17]
reported some state-of-the-art methods of string similarity
search and join. Bayardo et al. [2] first proposed the prefix
filter-based method for finding similar pairs of vectors. Xiao et
al. [22] proposed the Ed-join with perspective of investigating
mismatching pairs to improve the prefix filter. Ciaccia et al.
[6] proposed M-tree that organizes and searches large data
sets from a generic metric space. Arasu et al. [1] devised
enumeration-based algorithm to produce exact answers with
precise performance guarantees. Wang et al. [18] utilized the
trie structure to efficiently find the similar string pairs based
on subtrie pruning to support similarity join of short strings.
Li et al. [14] proposed Pass-Join that partitions a string into a
set of segments with efficient substring selection. Adapt [19],
the adaptive prefix filtering framework, and QChunk [15] can
also be applied to similarity join problem. Wang et al. [20]
proposed VChunk extracting non-overlapping substrings from
strings with a class of new chunking schemes. Zhang et al. [25]
proposed EmbedJoin which integrated the CGK-embedding
[4] and LSH techniques [10] to handle the join problem. Zhang
et al. [26] proposed string partition based local hash minima
method to achieve a perfect accuracy of the join results.

VIII. CONCLUSION

In this paper, we study the threshold-based string simi-
larity search problem with the edit distance. We present a

MinCompact algorithm to construct sketch representations
for strings and propose a small and simple index, minIL,
to store and search the sketch strings. Benefiting from the
sketch representations and the learned index technique, minIL
outperforms the existing methods on large datasets with long
strings and substantially reduces the space consumption. We
consider that minIL has an advantage for solving the threshold-
based similarity query with edit distance. It works well on
different datasets and it is applied to each string independently
while implicitly aligning the strings. In addition, although
minIL is an approximate method, it enable to achieve a perfect
accuracy by adjusting parameters.

In the future work, we plan to study how to apply the
technique of minIL for other important and relevant problems,
such as the similarity join and top-k similarity search.

REFERENCES

[1] Arvind Arasu, Venkatesh Ganti, and Raghav Kaushik. Efficient exact
set-similarity joins. In VLDB, pages 918–929. ACM, 2006.

[2] Roberto J. Bayardo, Yiming Ma, and Ramakrishnan Srikant. Scaling up
all pairs similarity search. In WWW, pages 131–140. ACM, 2007.

[3] Andrei Z. Broder, Moses Charikar, Alan M. Frieze, and Michael
Mitzenmacher. Min-wise independent permutations. J. Comput. Syst.
Sci., 60(3):630–659, 2000.

[4] Diptarka Chakraborty, Elazar Goldenberg, and Michal Koucký. Stream-
ing algorithms for embedding and computing edit distance in the low
distance regime. In STOC, pages 712–725. ACM, 2016.

[5] Moses Charikar, Ofir Geri, Michael P. Kim, and William Kuszmaul. On
estimating edit distance: Alignment, dimension reduction, and embed-
dings. In ICALP, volume 107 of LIPIcs, pages 34:1–34:14. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 2018.

[6] Paolo Ciaccia, Marco Patella, and Pavel Zezula. M-tree: An efficient
access method for similarity search in metric spaces. In VLDB, pages
426–435. Morgan Kaufmann, 1997.

[7] Dong Deng, Guoliang Li, and Jianhua Feng. A pivotal prefix based
filtering algorithm for string similarity search. In SIGMOD Conference,
pages 673–684. ACM, 2014.

[8] Dong Deng, Guoliang Li, Jianhua Feng, and Wen-Syan Li. Top-k string
similarity search with edit-distance constraints. In ICDE, pages 925–
936. IEEE Computer Society, 2013.

[9] Paolo Ferragina and Giorgio Vinciguerra. The pgm-index: a fully-
dynamic compressed learned index with provable worst-case bounds.
Proc. VLDB Endow., 13(8):1162–1175, 2020.

[10] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. Similarity search
in high dimensions via hashing. In VLDB, pages 518–529. Morgan
Kaufmann, 1999.

[11] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis Poly-
zotis. The case for learned index structures. In SIGMOD Conference,
pages 489–504. ACM, 2018.

[12] Chen Li, Jiaheng Lu, and Yiming Lu. Efficient merging and filtering
algorithms for approximate string searches. In ICDE, pages 257–266.
IEEE Computer Society, 2008.

[13] Chen Li, Bin Wang, and Xiaochun Yang. VGRAM: improving perfor-
mance of approximate queries on string collections using variable-length
grams. In VLDB, pages 303–314. ACM, 2007.

[14] Guoliang Li, Dong Deng, Jiannan Wang, and Jianhua Feng. PASS-JOIN:
A partition-based method for similarity joins. Proc. VLDB Endow.,
5(3):253–264, 2011.

[15] Jianbin Qin, Wei Wang, Yifei Lu, Chuan Xiao, and Xuemin Lin.
Efficient exact edit similarity query processing with the asymmetric
signature scheme. In SIGMOD Conference, pages 1033–1044. ACM,
2011.

[16] Sunita Sarawagi and Alok Kirpal. Efficient set joins on similarity
predicates. In SIGMOD Conference, pages 743–754. ACM, 2004.

[17] Sebastian Wandelt, Dong Deng, Stefan Gerdjikov, Shashwat Mishra,
Petar Mitankin, Manish Patil, Enrico Siragusa, Alexander Tiskin, Wei
Wang, Jiaying Wang, and Ulf Leser. State-of-the-art in string similarity
search and join. SIGMOD Rec., 43(1):64–76, 2014.



[18] Jiannan Wang, Guoliang Li, and Jianhua Feng. Trie-join: Efficient trie-
based string similarity joins with edit-distance constraints. Proc. VLDB
Endow., 3(1):1219–1230, 2010.

[19] Jiannan Wang, Guoliang Li, and Jianhua Feng. Can we beat the prefix
filtering?: an adaptive framework for similarity join and search. In
SIGMOD Conference, pages 85–96. ACM, 2012.

[20] Wei Wang, Jianbin Qin, Chuan Xiao, Xuemin Lin, and Heng Tao Shen.
Vchunkjoin: An efficient algorithm for edit similarity joins. IEEE Trans.
Knowl. Data Eng., 25(8):1916–1929, 2013.

[21] Xiaoli Wang, Xiaofeng Ding, Anthony K. H. Tung, and Zhenjie Zhang.
Efficient and effective KNN sequence search with approximate n-grams.
Proc. VLDB Endow., 7(1):1–12, 2013.

[22] Chuan Xiao, Wei Wang, and Xuemin Lin. Ed-join: an efficient algorithm
for similarity joins with edit distance constraints. Proc. VLDB Endow.,
1(1):933–944, 2008.

[23] Zhenglu Yang, Jianjun Yu, and Masaru Kitsuregawa. Fast algorithms
for top-k approximate string matching. In AAAI. AAAI Press, 2010.

[24] Minghe Yu, Jin Wang, Guoliang Li, Yong Zhang, Dong Deng, and
Jianhua Feng. A unified framework for string similarity search with
edit-distance constraint. VLDB J., 26(2):249–274, 2017.

[25] Haoyu Zhang and Qin Zhang. Embedjoin: Efficient edit similarity joins
via embeddings. In KDD, pages 585–594. ACM, 2017.

[26] Haoyu Zhang and Qin Zhang. Minjoin: Efficient edit similarity joins
via local hash minima. In KDD, pages 1093–1103. ACM, 2019.

[27] Haoyu Zhang and Qin Zhang. Minsearch: An efficient algorithm for
similarity search under edit distance. In KDD, pages 566–576. ACM,
2020.

[28] Zhenjie Zhang, Marios Hadjieleftheriou, Beng Chin Ooi, and Divesh
Srivastava. Bed-tree: an all-purpose index structure for string similarity
search based on edit distance. In SIGMOD Conference, pages 915–926.
ACM, 2010.




