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A B S T R A C T   

The global transition to fundamentally decarbonized electricity and transport systems will alter the existing 
resource flows of both fossil fuels and metals; however, such a transition may have unintended consequences. 
Here we show that the decarbonization of both the electricity and transport sectors will curtail fossil fuel pro
duction while paradoxically increasing resource extraction associated with metal production by more than a 
factor of 7 by 2050 relative to 2015 levels. Importantly, approximately 32–40% of this increase in resource 
extraction is expected to occur in countries with weak, poor, and failing resource governance, indicating that the 
impending mining boom may result in severe environmental degradation and unequal economic benefits in local 
communities. A suite of circular economy strategies, including lifetime extension, servitization, and recycling, 
can mitigate such risks, but they may not fully offset the growth in resource extraction. Our findings underscore 
the importance of institutional instruments that enhance the resource governance of entire low-carbon tech
nology supply chains, along with circular economy practices. In the absence of such actions, the decarbonization 
of electricity and transport sectors may pose an ethical conundrum in which global carbon emissions are reduced 
at the expense of an increase in socio-environmental risks at local mining sites.   

1. Introduction 

Avoiding the catastrophic impacts of climate change will require, 
inter alia, the transformation of both the electricity supply and transport 
systems on an unprecedented scale in the coming decades (International 
Energy Agency (IEA), 2017). Such a transition will fundamentally alter 
the existing resource flows of metals and fossil fuels (Watari et al., 
2019), which could in turn induce serious trade-offs, such as land 
degradation (Werner et al., 2020), biodiversity loss (Sonter et al., 2020), 
damage to human health (Banza Lubaba Nkulu et al., 2018), supply 
chain disruption of (de Koning et al., 2018), and the catastrophic 
collapse of tailings dams (Owen et al., 2020). A key challenge in miti
gating these trade-offs is to elucidate the anticipated resource flows in 
the coming decades, and to design policies and strategies to mitigate 
against these issues based on scientific knowledge. 

Reflecting the importance and urgency of this issue is the emergence 
of large-scale studies in this domain. However, based on an extensive 
review of 88 existing studies (Table S1 in the Supplementary Material), 
we identified several limitations that need to be addressed. First, 

although the quantities of resources used directly for low-carbon tech
nologies is increasingly well understood, previous studies have generally 
failed to capture hidden resource extraction, such as waste rock and 
overburden. This deficit in our understanding will likely mask the full 
impact of resource extraction in response to the energy transition (Kosai 
et al, 2020, 2021), which will ultimately lead to insufficient attention 
being paid to potential trade-offs by government, industry, and the 
community. Another limitation of previous studies is that they largely 
lack the geographical resolution to identify which countries will support 
the global energy transition through resource extraction. Without this 
information, it is difficult to discuss areas of concern where policy in
terventions will be most needed (Lèbre et al., 2020). Lastly, the expec
tations of many studies regarding the circular economy strategies 
required for sustainable resource supply are very high (Stahel, 2016); 
however, despite the potential of the circular economy (Reuter et al., 
2019), empirical analyses of its effect is heavily biased toward 
end-of-life (EoL) recycling. Consequently, a full range of other possi
bilities, such as reuse, repair, remanufacturing, and servitization 
(Dominish et al., 2018), are being overlooked. The omission of these 
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other possibilities prevents decision makers from understanding the true 
potential and/or limitations of such strategies. 

This study therefore addresses these knowledge gaps by linking 
global energy scenarios with a resource demand-supply models on a 
county-by-country basis. Our approach captures all used and unused 
resource extraction by using the total material requirement (TMR) in
dicator (Bringezu et al., 2004; Nakajima et al., 2019), which can be used 
to estimate the magnitude of resource extraction impacts in mining 
countries. We also link circular economy strategies (i.e., lifetime 
extension, servitization, and EoL recycling) to the models to obtain a 
quantitative understanding of the potential roles of such strategies in 
sustainable energy transition. Among the various sectors and related 
technologies in the decarbonization process, this study focuses on the 
electricity and automotive technologies, because of their large contri
bution to decarbonization (approximately 60% of the expected CO2 
emissions reduction by 2060 is projected due to these two sectors (IEA, 
2017)) and their high impact on resource extraction (Deetman et al, 
2018, 2021; The World Bank, 2020; 2017). 

2. Methods 

2.1. Model overview 

Our approach for quantifying used and unused resource extraction 
under a global energy transition scenario consists of the following steps: 

1. Estimate technology flows under a well below 2 ◦C scenario. 

2. Transform technology flows into metal and fossil fuel demand. 

3. Convert metal and fossil fuel demand to used and unused resource 
extraction. 

4. Allocate used and unused resource extraction to each mining 
country. 

The details of each step are described in detail below. Graphical 
representation of the calculation steps can be found in Fig. S1 in the 
Supplementary Material. 

2.1.1. Estimating technology flows under a well below 2 ◦C scenario 
The starting points of our analysis are the future electricity genera

tion capacity and car ownership (S) for each year (t) under the Beyond 2 
Degree Scenario proposed by the IEA (IEA, 2017). This scenario assumes 
that the rise in global temperatures will remain below 1.75 ◦C to 2100 
compared to preindustrial levels. We estimated the annual installed 
capacity (I) to 2050 by using a dynamic stock-flow model with a 
stock-driven approach (Pauliuk and Heeren, 2019; Wiedenhofer et al., 
2019): 

I(t) = ∆S(t) +
∑t

t’=0

I(t’)φ(t − t’) (1)  

where φ denotes the lifetime distribution. 
The average lifetime of each technology is determined with reference 

to the literature (Ashby, 2012) (Table S2 in Supplementary Material). 
Lifetime is assumed to follow a normal distribution with a standard 
deviation equivalent to 30% of the mean (Pauliuk et al., 2013). The 
technologies considered in this paper include 15 electricity generation 
technologies (oil, coal, coal with carbon capture and storage (CCS), 
natural gas, natural gas with CCS, nuclear, biomass and waste, biomass 
and waste with CCS, hydro, geothermal, wind onshore, wind offshore, 
solar photovoltaics (solar PV), concentrating solar thermal power, and 
ocean), and five vehicle types (internal combustion engine vehicles 
(ICEV), hybrid electric vehicles (HEV), plug-in hybrid electric vehicles 
(PHEV), electric battery vehicles (BAV), and fuel cell vehicles (FCV)). 

2.1.2. Transforming technology flows into metal and fossil fuel demand 
Metal demand for low-carbon transition can be calculated by 

multiplying the technology flow (GW or cars/year) by the material in
tensity, MI (t/GW or car). Here, we used data from 37 sources (Table S3 
in Supplementary Material) to obtain the material intensity for 20 
technologies. This leads to a total of 36 metals being considered, with 
209 data points (Tables S4 and S5 in Supplementary Material). We 
assumed that the compiled material intensities were constant over time, 
meaning that our analysis provides an upper bound estimate that does 
not consider any potential decrease in material intensity due to de
velopments in engineering and design. The metal demands are obtained 
from both mine production (P) and EoL scrap (E) as shown in equations 
(2) and (3): 

P(t)= I(t)MI(t) − E(t) (2)  

E(t)= γ(t)
∑t

t′ =0

I(t′ )MI(t′ )φ(t − t
′

) (3)  

where γ denotes the EoL recycling rate (scrap collection rate × recycling 
yield). 

Fossil fuel demand for operating electric technologies can be calcu
lated by multiplying the annual electricity consumption (TWh/year) by 
the fossil fuel intensity (MJ/TWh). In this case, the electricity con
sumption data can be obtained directly from the original scenario (IEA, 
2017) and fossil fuel intensity is described in the literature (Nakajima 
et al., 2006). The fossil fuel demand for vehicle operation can be esti
mated by multiplying the vehicle stock (car/year) by the annual mileage 
(km/car-year) and fuel consumption (MJ/km), which can be obtained 
from the literature (IEA, 2018, 2010) (Table S6 in Supplementary Ma
terial). Importantly, there has been no inclusion of feedback loops in the 
modelling of fossil fuel demand. That is, there is no modelling of the 
additional energy demand required to provide the additional required 
metals (mining through to production), nor is there a secondary feed
back mechanism to more closely examine the additional metal re
quirements for providing this additional energy; this is something that 
could be considered in future studies. 

2.1.3. Converting metal and fossil fuel demand to used and unused resource 
extraction 

The concept of TMR captures all of the resource extraction in both 
used and unused extraction (Halada et al., 2001; Nakajima et al., 2019). 
In this case, used extraction refers to materials that are extracted from 
the environment and subsequently used in production processes, 
whereas unused extraction refers to material flows that arise during the 
course of extraction, but that do not directly enter the economic system 
(e.g., waste rock and overburden). The used and unused extraction 
induced by mine production and fuel consumption are calculated by 
multiplying metal and fuel production by the TMR factor (Halada et al., 
2001; Nakajima et al., 2006) (Tables S7 and S8 in the Supplementary 
Material). In this case, the data for copper, nickel, lead, and zinc were 
adjusted to consider the decline in ore grade, as in a previous study 
(Watari et al., 2019). The resource extraction associated with secondary 
metal production from EoL scrap are not considered here as they are 
negligibly small (Wuppertal Institute, 2014) and little is currently 
known about these impacts (Yamasue et al., 2010). 

2.1.4. Allocating used and unused resource extraction to each mining 
country 

Estimates for resource extraction were allocated to each mining 
country by using mine production data on a country-by-country basis. 
Production modelling is performed by the Geologic Resources Supply- 
Demand Model (GeRS-DeMo), which determines when to bring ideal
ized mines online using detailed data on exploitable Ultimate Recover
able Resource. Full details of the model are described by Mohr (2010). 
From multiple references, we obtained data on future production of iron 
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(Mohr et al., 2015), copper (Northey et al., 2014), zinc (Mohr et al., 
2018), lead (Mohr et al., 2018), and lithium (Mohr et al., 2012). The 
other elements for which such data were not available were supple
mented by assuming the 2015 production share to be constant over the 
scenario period (BGS Minerals UK, 2018; U.S. Geological Survey, 2020). 
Obviously, as different countries have mines that differ in quality and 
technological capacity, accurate allocation of used and unused resource 
extraction to each mining country requires more sophisticated data, 
including the operational data for each mine (Mudd, 2010; Northey 
et al., 2013). Thus, the analysis provided here should be regarded as 
illustrative, rather than a realistic forecast. 

We also characterized each mining country by the quality of resource 
governance using the Resource Governance Index (Natural Resource 
Governance Institute, 2017), which quantifies the quality of governance 
of the mining sector in 81 countries (see Table S9 in the Supplementary 
Material). The quality of governance was evaluated as being good, 
satisfactory, weak, poor, or failing, with each category assigned based 
on value realization, revenue management, and enabling environment. 
Insufficient resource governance means that the increase in mining de
mand is associated with a high risk of accelerating environmental 
degradation due to activities such as unclear licensing practices and 
poor management, as well as negative social impacts, such as misap
propriation of funds, corruption, and low economic growth. 

2.2. Sensitivity and uncertainty analysis 

Since the objective of the model is to explore the “future”, some 
inherent uncertainty exists in the parameters considered. Therefore, we 
investigated the impacts of our modelling assumptions by way of a one- 
factor-at-a-time sensitivity analysis. Investigated parameters included 
average lifetime, standard deviation of lifetime distribution, type of 
probability distribution, material intensity, and TMR factor. In addition, 
a Monte Carlo simulation was conducted in which each parameter was 
randomly extracted from a specific probability distribution, and the 
model was run multiple times to derive the uncertainty ranges for the 
results. Hence, the model can be seen as a stochastic system, where each 
parameter is understood to be the mean μ of a normal (Gaussian) dis
tribution with an uncertainty parameter σ. In each model run, input 
parameters are randomly drawn from a distribution X ∼ N (μ, σ2). 
Uncertainty ranges for each parameter were established based on a 
combination of multiple references and information about the reliability 
of the data sources. A detailed description of the methodology can be 
found in the Supplementary Material. 

2.3. Circular economy scenarios 

We examined the role of circular economy strategies related to solar 
PV and EVs (PHEVs and BEVs) and their important role in an energy 
transition. With reference to previous studies (Dominish et al., 2018; 
Geissdoerfer et al., 2017; Ghisellini et al., 2016; Kirchherr et al., 2017), 
we summarized the following main circular economy strategies associ
ated with the two abovementioned technologies (i.e., solar PV and EVs) 
as they relate to reusing, repairing, refurbishing, remanufacturing, 
recycling, durable design, and servitization. These strategies are re
flected in the model parameters of average lifetime, EoL recycling rate, 
and car ownership. 

2.3.1. Lifetime extension (reusing, repairing, refurbishing, remanufacturing, 
and durable design) 

The lifetime of a product can be extended by durable design or 
replacement of defective parts. In the case of PV panels, the average 
lifetime is estimated to be approximately 20 years for economic reasons, 
such as the duration of feed-in tariffs, rather than due to degradation 
(Ashby, 2012). Technically, a PV panel can be reused at a price that is 
approximately 70% of its original value after a quality check and/or 

refurbishment (IRENA and IEA-PVPS, 2016). Therefore, we assume that 
the average lifetime can be doubled linearly to 2050 by implementing 
policies that incentivize progress in the PV panel reuse business. For EVs, 
the International Resource Panel (IRP) indicates that a design that al
lows for easy replacement of parts that wear faster than structural parts 
can increase product lifetime by 20% (IRP, 2020). We therefore assume 
that, as with PV panels, extended use of EVs can be achieved by 2050. 

2.3.2. Servitization (carsharing and ridesharing) 
Focusing on “service provision” rather than “ownership” of products 

can reduce the need for product ownership while meeting human needs. 
Sharing cars or journeys is a typical example, and multiple business 
models have already emerged in this area. In terms of its effects, Martin 
et al. (2010) showed that per-capita car ownership of car-sharing sub
scriber households had decreased by half, based on online surveys in 
North America. Other scientific evidence indicates that ridesharing can 
reduce vehicle occupancy by 25–75% (Yin et al., 2018). We assume that 
car ownership can be reduced by 25% with the penetration of carsharing 
and ridesharing, which accounts for up to approximately 30% of mileage 
demand by 2050 (IRP, 2020). 

2.3.3. End-of-life recycling 
End-of-life recycling has been studied intensively in the scientific 

literature and in policy analyses (Watari et al, 2020, 2021). However, 
little statistical data have been published to date on the current EoL 
recycling rate of solar PV or EVs. Several studies (Dominish et al., 2019; 
Giurco et al., 2019; Ziemann et al., 2018) have shown that approxi
mately 80% of the metals used in solar PV and EVs could potentially be 
recovered. We therefore assume that the current recycling rate is 0% and 
that this can be increased to 80% by 2050. This recycling rate implies a 
high level of efficiency in the entire recycling chain, consisting of col
lecting, dismantling, sorting, and concentrating of PV and EV 
components. 

3. Results 

3.1. Paradoxical relationship between carbon emissions and resource 
extraction 

Future resource extraction patterns driven by the energy transition 
show a paradoxical relationship between carbon emissions and resource 
extraction (Fig. 1). Decarbonizing electricity and transport systems will 
reduce resource extraction caused by fossil fuel production by about 
75% and 35%, respectively, from 2015 to 2050. On the other hand, 
resource extraction associated with metal production will increase 
sharply in both sectors, increasing by more than a factor of 7 by 2050. 
Such a substantial increase is primarily due to the increase in the 
extraction of iron, copper, nickel, silver, tellurium, cobalt, and lithium 
used for the production of solar PV and EVs. Combining fossil fuels and 
metals, we can confirm that the decarbonization of the electricity sector 
will curtail resource extraction by roughly 60% by 2050 relative to 2015 
levels. Conversely, the decarbonization of the transport sector will 
double resource extraction by counteracting the decline in fossil fuel 
production with a surge in metal production. These findings suggest that 
the energy transition may, paradoxically, result in a reduction of carbon 
emissions while increasing substantially resource extraction. 

Such observations are heavily dependent on several important pa
rameters including material intensity, TMR factor, and average lifetime 
of the product (see Fig. S4 in the Supplementary Material). However, the 
Monte Carlo simulations suggest that the upward trend in resource 
extraction associated with metal production through 2050 is relatively 
robust, even after accounting for the uncertainty inherent in the multi
ple parameters (Fig. 2). Obviously, there is still a great deal of uncer
tainty about the actual level of extraction, but our analysis in this 
domain confirms the existence of an inverse relationship between car
bon emissions and resource extraction associated with metal production. 
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Fig. 1. Total material requirements induced by the global energy transition, 2015–2050. The scenario is based on the pathway toward keeping the rise in global 
temperatures well below 2 ◦C by 2100 compared to preindustrial levels (IEA, 2017). The concept of total material requirement captures all of the resource extraction 
in both used and unused extraction. Used extraction refers to materials that are extracted from the environment and subsequently used in production processes, 
whereas unused extraction refers to material flows that arise during the course of extraction, but that do not directly enter the economic system (e.g., waste rock and 
overburden). For a comparison of these values, see Fig. S2 in the Supplementary Material. 

Fig. 2. Uncertainty in the results obtained for total material requirements associated with metal production, 2015–2050. The 95% and 99% confidence intervals are 
derived from Monte Carlo simulations with a sample size of 1000. 
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3.2. Countries with poor resource governance will underpin the energy 
transition 

This paradoxical relationship between carbon emissions and 
resource extraction raises the question of which countries will support 
the energy transition through mining activities. We find that a sub
stantial amount of resource extraction will occur in countries with weak, 
poor, and failing resource governance, and that this extraction will un
derpin the energy transition (Fig. 3). Over the scenario period, around 
32% of resource extraction associated with metal production in the 
electricity sector will take place in countries with weak, poor, and failing 
governance. The situation is worse in the transport sector, where 
extraction in countries with weak, poor, and failing resource governance 
accounts for around 40% of the total. A closer look at the country-level 
breakdown shows that while Chile and Australia, which have good and 
satisfactory resource governance, respectively, are the dominant players 
in resource extraction, countries with weak and poor resource gover
nance are also high on the list (Fig. 4). 

The relative change reflects a more problematic picture (Fig. 5). 
Decarbonization of both the electricity and transport sectors will lead to 
the largest increase in resource extraction in countries with poor 
governance, increasing by factors of 13 and 17, respectively, from 2015 
to 2050. This category includes the DR Congo, a major producer of co
balt and copper; Madagascar and Cuba, which are nickel-rich countries; 
and Guatemala, which is rich in silver. This suggests that, if current 
trends continue, the rapid increase in mining activities that will be 
induced by the energy transition is likely to have negative consequences, 
such as environmental degradation and misappropriation of funds, 
rather than benefiting local communities. 

3.3. Circular economy strategies may not fully offset resource extraction 
growth 

The analysis described above indicates that the energy transition will 
induce a sharp increase in resource extraction in countries with insuf
ficient resource governance. An emerging question is to what extent the 
circular economy strategy can complement the growth of resource 
extraction. We find that a suite of circular economy strategies can reduce 
resource extraction associated with metal production in the electricity 
sector by 23% in 2050, compared to the case where no such strategies 
are implemented (Fig. 6). Specifically, a 13% reduction could come from 
lifetime extension and the other 10% reduction from recycling. Looking 
at the transport sector, a 60% reduction can be achieved by 2050, 
reflecting the more diverse strategies considered. Closer examination of 
the effects of each strategy reveals that lifetime extension, through 
measures such as reuse and repair, could decrease resource extraction by 

8% in 2050. Combining car- and ride-sharing activities could provide an 
additional 27% reduction. Further, the addition of EoL recycling could 
achieve a 25% reduction, resulting in a total reduction of 60%. This 
finding clearly underscores the importance of implementing circular 
economy strategies along with the energy transition. 

However, another key perspective in this domain is that the series of 
the circular economy strategies considered in this paper may not 
completely offset the increase in resource extraction. Namely, at least a 
seven-fold increase in resource extraction is inevitable in countries with 
poor resource governance, even if circular economy strategies are fully 
implemented (Fig. S3 in the Supplementary Material). This simply 
means that the set of circular economy strategies alone may not 
completely eliminate the paradox in which energy transition leads to a 
substantial increase in resource extraction in countries with insufficient 
resource governance. A truly sustainable energy transition will require 
the implementation of complementary measures to enhance resource 
governance. 

4. Discussion 

Our analysis showed that decarbonizing the electricity and road 
transport systems will reduce fossil fuel production while rapidly 
increasing resource extraction associated with metal production. More 
importantly, such an increase in resource extraction could be heavily 
concentrated in countries with weak, poor, and failing resource gover
nance. This means that the impending mining boom driven by the en
ergy transition could result in severe environmental damage and lower 
economic growth rather than benefitting local communities. Such out
comes should be carefully considered by energy policymakers, particu
larly with detailed knowledge of local contexts and using deliberative 
approaches, to navigate potentially deleterious trade-offs in this com
plex area. Accordingly, in the absence of effective mitigation measures, 
the energy transition may present policymakers and shareholders with 
an ethical conundrum in which a reduction in global carbon emissions is 
associated with a variety of socio-environmental risks at the local min
ing site. This can ultimately lead to a worsening of the spatial disparities 
between “resource-consuming” and “resource-producing” countries 
(Prior et al., 2013). 

Our analysis highlights the considerable potential of circular econ
omy strategies regarding such issues. In particular, a set of strategies 
comprising lifetime extension, sharing and recycling of EVs can reduce 
resource extraction by more than half compared to not implementing 
these strategies by 2050. In this context, while previous studies have 
indicated that EoL recycling has the greatest potential for reducing the 
primary demand for metals (Dominish et al., 2019; Watari et al., 2019), 
our analysis adds another perspective that needs to be considered. That 
is, other strategies, including lifetime extension and sharing practices, 
have the same or even greater potential to reduce resource extraction as 
EoL recycling. This clearly emphasizes the importance of exploring a 
cross-cutting strategy that spans the entire life-cycle of low-carbon 
technologies, not just the waste management stage. 

In this regard, another important perspective obtained from our 
analysis is that a suite of circular economy strategies alone will not 
entirely offset the concomitant increase in resource extraction in coun
tries with weak, poor, and failing resource governance. Responsible 
sourcing will be required where supply cannot be met by circular 
resource flows. In this context, initiatives related to responsible sourcing 
or ethical minerals schemes, such as the Responsible Sourcing Initiative, 
the IRMA Standard for Responsible Mining, CERA (certification of raw 
materials), and the Responsible Cobalt Initiative could play a significant 
role (Ali et al., 2017; Brink et al., 2021). For these approaches, inde
pendent third-party auditing augments credibility. Given the charac
teristics of low-carbon technologies that utilize a diversity of metals and 
which have a high reliance on mining countries with weak, poor, and 
failing governance, these initiatives need to be adapted widely and 
immediately to achieve truly sustainable energy transition. Clearly, 

32%

40%

Fig. 3. Share of cumulative total material requirements associated with metal 
production from 2015 to 2050 in regions with different levels of resource 
governance. The quality of resource governance is evaluated as good, satis
factory, weak, poor, or failing, which are determined by value realization, 
revenue management, and enabling environment (Natural Resource Gover
nance Institute, 2017). 
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Good Satisfactory Weak Poor Failing

Fig. 4. Cumulative total material requirements associated with metal production from 2015 to 2050 in different countries. The top 20 countries with the largest 
cumulative extraction volume in each sector have been selected. The color of the circle to the right of the country name reflects the quality of resource governance. 
(For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.) 

Fig. 5. Relative changes in total material requirements associated with metal production in each region with different levels of resource governance, 2015–2050.  

Fig. 6. Effects of circular economy strategies on total material requirements associated with metal production, 2015–2050. The circular economy strategies include 
lifetime extension, servitization (car and ride sharing), and end-of-life recycling. 
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improving resource governance is not a trivial task, and improvements 
will require a variety of approaches, not just certification schemes (Ali 
et al., 2017). Our analysis does not directly identify the best way in 
which resource governance can be improved, but it does identify the 
main areas of concern, including technologies, metals, and countries, 
that require attention. 

Overall, our message is clear. First, a set of circular economy stra
tegies spanning the entire life-cycle of low-carbon technologies, not just 
EoL recycling, needs to be implemented to effectively mitigate the rapid 
increase in resource extraction in countries with weak, poor, and failing 
resource governance. Second, there is a need for widespread adaptation 
of responsible sourcing frameworks, such as verified certification 
schemes, to compensate for supplies that cannot be met by circular 
resource flows. If such instruments can be optimized, then increased 
mining demand could be an important source of economic growth and 
adverse socio-environmental impacts could be avoided (IRP, 2019; 
Sovacool et al., 2020). Furthermore, the UN Environment Assembly 
resolution on mineral resource governance higlights the importance of 
improved resource governance globally (UNEP, 2019). Delivering an 
energy transition with enhanced resource governance therefore presents 
important opportunities, not only for mitigating climate change, but also 
for achieving a broader set of sustainable development goals (United 
Nations, 2015), such as SDGs1 (no poverty) and SDGs8 (decent work and 
economic growth). 

5. Conclusion 

The transition to a 1.5–2 ◦C world will fundamentally change exist
ing the resource flows of both metals and fossil fuels. However, assess
ment of the potential impacts of such an energy system transition for 
mining countries is largely missing from existing studies. This study 
addresses this knowledge gap by linking global energy scenarios with a 
resource demand-supply models on a county-by-country basis. Our 
approach captures all used and unused resource extraction by using the 
total material requirement indicator, as well as the characteristics of 
each country in terms of the quality of their resource governance pol
icies. The main findings of the study were as follows: (1) An inverse 
relationship exists between carbon emissions and resource extraction; 
(2) growth in resource extraction will be concentrated in countries with 
weak, poor, and failing resource governance; and (3) circular economy 
strategies, including lifetime extension, servitization and recycling, can 
moderate resource extraction growth, but mine development is inevi
table. Our findings underscore the importance of institutional in
struments governing the global supply chains of low-carbon 
technologies, such as product based certification and effective labelling 
schemes. If such responses are implemented properly, the energy tran
sition could be a catalyst for achieving broader sets of sustainable 
development goals, not solely for mitigating climate change. 
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