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Abstract—In this work, a novel and ultra-robust single image
dehazing method called IDRLP is proposed. It is observed that
when an image is divided into n regions, with each region having
a similar scene depth, the brightness of both the hazy image and
its haze-free correspondence are positively related with the scene
depth. Based on this observation, this work determines that the
hazy input and its haze-free correspondence exhibit a quasi-linear
relationship after performing this region segmentation, which is
named as region line prior (RLP). By combining RLP and the
atmospheric scattering model (ASM), a recovery formula (RF)
can be easily obtained with only two unknown parameters, i.e.,
the slope of the linear function and the atmospheric light. A 2-D
joint optimization function considering two constraints is then
designed to seek the solution of RF. Unlike other comparable
works, this "joint optimization" strategy makes efficient use of
the information across the entire image, leading to more accurate
results with ultra-high robustness. Finally, a guided filter is
introduced in RF to eliminate the adverse interference caused
by the region segmentation. The proposed RLP and IDRLP are
evaluated from various perspectives and compared with related
state-of-the-art techniques. Extensive analysis verifies the superi-
ority of IDRLP over state-of-the-art image dehazing techniques
in terms of both the recovery quality and efficiency. A software
release is available at https://sites.google.com/site/renwenqi888/.

Index Terms—Atmospheric scattering model, image dehazing,
region segmentation, 2-D joint optimization.

I. INTRODUCTION

UNDER hazy weather, due to interference from particles
suspended in the atmosphere, images taken by cameras

commonly lose important features, e.g., edge visibility and
color quality. This image degradation not only negatively
impacts the subjective user experience but also impedes the
subsequent processing of such images by intelligent systems
that require high-quality inputs. Thus image dehazing has been
investigated in this paper for the purpose of restoring these
blurred textures and excluding such visual interferences from
hazy images.

This work was supported by National Natural Science Foundation of China
(61902198), Natural Science Foundation of Jiangsu Province (BK20190730),
Research Foundation of Nanjing University of Posts and Telecommunications
(NY219135), and in part by Key Laboratory of Radar Imaging and Microwave
Photonics, Ministry of Education, for Nanjing University of Aeronautics and
Astronautics.

M. Ju is with the School of Internet of Things, Nanjing Uni-
versity of Posts and Telecommunications, Nanjing, 210000, China. e-
mail:(Jumingye@njupt.edu.cn)

C. Ding is with the Global Big Data Technologies Centre (GBDTC),
University of Technology Sydney (UTS), Ultimo, NSW, 2007, Australia. e-
mail:(Can.Ding@uts.edu.au)

C. A. Guo and D. Tao are with the School of Computer Sci-
ence,the University of Sydney, Camperdown, NSW, 2006, Australia. e-
mail:(dacheng.tao@sydney.edu.au)

W. Ren is with the State Key Laboratory of Information Security, Institute
of Information Engineering, Chinese Academy of Sciences, Beijing, 100000,
China. e-mail:(renwenqi@iie.ac.cn)

The current state-of-the-art dehazing algorithms can be
roughly divided into two categories: image-enhancing methods
and atmospheric scattering model (ASM)-based techniques.
The former class of algorithms simply employ traditional
image processing methods [1]–[6] to enhance the contrast
of hazy images. Although local or global contrast can be
improved, the visual quality of recovered results is very limited
because the precise characteristics of image haze theory are not
considered. To achieve a better restoration, Refs. [7]–[11] have
devised some fusion approaches that can preprocess an input
image using two or more traditional methods and then blend
the useful information contained in the preprocessed images.
Although these fusion approaches display improved recovery
quality, their performance is still largely dependent on the
effectiveness of the preprocessing methods. In comparison, the
ASM-based techniques exhibit a more competitive restoration
capability [12]. Mathematically, ASM is expressed as follows:

I(x, y) = A · ρ(x, y) · t(x, y) +A · (1− t(x, y)), (1)

where I is the hazy image, A is the atmospheric light, t is
the medium transmission, and ρ is the scene albedo or haze-
free result. The success of ASM-based dehazing methods lies
in either inferring the latent priors or relying on intensive
data-processing to model the transmission and estimate the
atmospheric light, and then theoretically eliminating the haze
cover in an image via ASM. Depending on the manner of char-
acterising this transmission, ASM-based dehazing methods can
be further divided into pixel-wise, patch-wise, learning-wise,
and non-local-wise strategies.

Pixel-wise strategy: As illustrated in Fig. 1(a), the basic
idea of this strategy is to utilize the minimum color value of
each pixel to construct the transmission estimation formula
[13]–[16]. Its main advantage is its low complexity as well
as its relatively short processing time. However, the minimum
channel contains lots of improper textures [17], [18], which
necessitates the use of an additional control factor and subse-
quent blur operators to remedy this drawback. For example,
by assuming a quadratic relationship between hazy images
and their corresponding haze-free counterparts, Wang et al.
[13] derived a simple formula for estimating transmissions,
and then used Gaussian filter to remove improper details in
the rough transmission. Although pixel-wise-strategy-based
algorithms can produce realistic results for the majority of
test cases, having to manually regulate the control factor limits
their applicability.

Patch-wise strategy: The patch-wise strategy illustrated in
Fig. 1(b) determines the transmission map by extracting local
information from each patch rather than from each pixel. Since
a patch contains richer information than a single pixel, the
patch-wise strategy [19]–[25] features a stronger restoration
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Fig. 1. Working mechanisms of different ASM-based image dehazing strategies. (a): Pixel-wise strategy. (b): Patch-wise strategy. (c): Non-local-wise strategy.
(d): Joint optimization strategy.

ability compared to the pixel-wise strategy. On the other hand,
it is necessary to deploy time-consuming guided tools, e.g.,
soft matting and bilateral filter, to exclude the block artifacts
resulting from this strategy. The most representative patch-
wise-strategy-based technique is the dark channel prior (DCP)
method [19], which can directly detect the haze distribution
from a hazy image and obtain a haze-free output by employing
soft matting to refine the rough transmission. The limitation
of DCP is that this technique may result in over-enhancement
when dealing with the scenes where the brightness of objects is
similar to that of the atmospheric light. To attain more informa-
tion for transmission estimation, another similar strategy was
advocated in [26], [27] in which the central idea is to expand
the transmission estimation range from patch to scene, thus
enabling the restoration performance to be improved to some
extent.

Learning-wise Strategy: Benefiting from the rapid de-
velopment of machine learning, ASM-based haze removal
can also be realized by adopting a learning-wise strategy
[28]–[38]. For example, inspired by multiple conventional
priors, a convolutional neural network (CNN) based network
called DehazeNet was put forward in [28] to estimate the
transmission map using an end-to-end manner. In [29], a
unsupervised training deep neural network was proposed by
Golts et al. This method designed a DCP loss function
to overcome the shortcomings of synthetic data and solely
used real-world images to tune the network’s parameters. To
reduce the accumulation of errors during estimating imaging
parameters, Ref. [33] remodeled transmission and atmospheric
light to be a new variable and then used a light-weight network
to achieve an end-to-end haze removal. The main advantage
of this strategy is that it can blindly and autonomously
merge or train the multiple haze-relevant features to get an
accurate transmission map, but usually a large number of
samples are required for training purpose. Here we remark
that there is another mechanism [39]–[46] for learning-wise-
based image haze removal, which does not rely on ASM
but directly learns the potential transposition between hazy
image and scene albedo. Such mechanism does not need to
estimate transmission and atmospheric light. Typically, Li et
al. [46] developed a perception-inspired image enhancement
system composed of haze removal subnetwork and refinement
subnetwork. However, its reliance on machine learning makes
the dehazing process to function as a black box and thus
less domain knowledge is involved in the learning procedure,

which may result in degradation of the recovery performance.
Non-local-wise Strategy: Unlike the three local strategies

discussed before, the non-local-wise strategy is based on a
key observation that a hazy image usually contains clusters of
similar colors in RGB space [47], [48] as well as recurrence
of small image patches [?], which enables us to calculate the
transmission set of these attributes distributed over the entire
image plane. Taking the color lines method [47] shown in Fig.
1(c) as an example, the prerequisite to using this method is to
recognize the haze-lines in an input image, i.e., the coordinate
set of distinct colors. According to these color lines, the
atmospheric light and transmission map are then estimated by
using a non-local prior. Relying on these estimated parameters,
the haze cover in an image can be finally removed via ASM.
Despite the fact that very reliable results can be obtained for
most situations, this method may fail to handle scenes with
heavy haze since the accuracy of color classification may
decrease as the haze level increases.

In addition to the aforementioned deficiencies, there is a
disadvantage that is common to all of these non-learning-wise
ASM-based dehazing techniques, i.e., ignoring the latent con-
nection between imaging parameters. As evident in Figs. 1(a),
1(b), and 1(c), the pixel-wise, patch-wise, and non-local-wise
strategies all follow the same routine, i.e., Predict atmospheric
light → Estimate transmission map → Scene recovery. Once
one fails to accurately predict the atmospheric light, which
is well within the realm of possibility, the subsequent trans-
mission map estimation is bound to be disturbed. This leads
to a fact that although existing non-learning-wise ASM-based
image dehazing techinqiues all exhibit some advantages, none
of them have been shown to handle all practical situations,
i.e., indicating a relatively low robustness.

In this paper, an extremely robust prior knowledge, i.e.,
region line prior (RLP), is proposed. RLP is based on an image
statistic that the average pixel intensities of different regions
distributed over the hazy image plane has a quasi-linear rela-
tionship with those over the corresponding haze-free image.
Based on RLP and ASM, a fast image dehazing technique
(IDRLP) employing a joint optimization strategy is developed.
The proposed IDRLP converts the highly ill-posed image
dehazing task into a simple 2-D joint optimization function
(2D-JOF), which significantly shrinks the solution space of
haze removal. Moreover, this novel joint optimization strategy
makes use of the information across the entire image rather
than that from a single pixel (pixel-wise strategy), a local patch
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Fig. 2. Two examples to illustrate the observation that a farther region
corresponds to a greater average brightness in haze-free images.

(patch-wise strategy), or non-local objects (non-local wise
strategy) to estimate the imaging parameters, as illustrated in
Fig. 1(d), which leads to more reliable restoration. Without
the need for introducing any extra operations, IDRLP is able
to remove the haze cover from various kinds of challenging
hazy images while avoiding several common drawbacks in the
dehazed results, e.g., over-enhancement, over-saturation, and
mist residue.

II. REGION LINE PRIOR (RLP)

It is commonly known that ASM-based image haze removal
is a highly ill-posed problem due to the absence of information
describing the atmospheric light and the medium transmission,
both of which affect the degree of interference due to haze. In
this section, a novel prior, i.e., RLP, is proposed to expand the
information that can be inferred from a hazy image relating
to its scene albedo. It is based on an observation that farther
scenes usually appear to be brighter than nearer scenes for
both hazy and haze-free images.

Fig. 2 illustrates two examples of haze-free images, i.e., a
field of grass and a city. Three regions with similar texture
but different scene depths are selected and their average value
of pixels are calculated. It is found that the farther regions
with greater scene depth have a higher average value of
pixels. In ideal case, by assuming all scene objects have
Lambertian surfaces, the brightness is actually not related to
scene depth. The derivation of the ideal case can be found in
our supplementary material. However, in reality, Lambertian
surface does not exist. It was demonstrated in [49] that huge
deviations from the Lambert law are ubiquitous. This is mainly
because most surfaces have rough textures in which lights
get diffracted, scattered, and trapped. This light absorption
phenomenon is observed in both micro and macro level and it
will reduce the brightness of objects captured by camera [25],
[50]. In general, the smaller the scene depth, the higher the

intensity of the textures observed from camera, the stronger the
light absorption effect, thus the lower the average brightness.
When taking consideration of the light absorption rate varying
with different scene depth, the conclusion agrees with the
observation. Considering an image that can be divided into
n regions with each region having a similar scene depth, there
exists a relationship between the scene albedo and the scene
depth:

ρ̂m = 1
3·|Ωm|

∑
(x,y)∈Ωm

∑
c∈{R,G,B}

ρc (x, y)

∝ d̂m = 1
|Ωm|

∑
(x,y)∈Ωm

d (x, y) ,
(2)

where m ∈ {0, n− 1}, c ∈ {R,G,B} is the color index, d is
the scene depth, Ωm is the coordinate set of pixels in the mth

region, and |Ωm| represents the number of pixels in Ωm.
It is commonly known that for hazy images, the average

value of pixels in each region also increases with the scene
depth [51] as a result of haze interference, thus we have

Îm =
1

3 · |Ωm|
∑

(x,y)∈Ωm

∑
c∈{R,G,B}

Ic (x, y) ∝ d̂m. (3)

Statistical results of a large number of images confirm
the validity of above conclusions that the average brightness
generally increases with the scene depth for both hazy and
haze-free images. Fig. 3 shows a statistical analysis of eight
examples collected from the SOTS dataset [52], where each
sample is composed of a hazy image and a haze-free ground
truth correspondence. In this experiment, we first manually
located the atmospheric light for the hazy image in each
sample, and then calculated the depth map via ASM using the
recorded atmospheric light and the sample data. Note that the
scattering coefficient here is initialized to be one. Next, the
obtained depth maps were blurred by guided filter [53] and
divided into n (n = 10 in this case) regions with similar depth
by K-means [54]. Subsequently, the values of d̂, ρ̂, and Î for
each region were calculated via Eqs. (2) and (3). According
to Fig. 3, it is clear that both Îm and ρ̂m are positively related
with d̂m and their curves on each sample appear to be very
similar, which raises the question of whether Îm and ρ̂m can
be directly correlated as well.

To determine the answer, we further illustrate the statistical
results of Îm and ρ̂m on twelve sample images in Fig. 4. It
can be concluded from this figure that Î and ρ̂ do exhibit a
quasi-linear relationship for all the given examples. Moreover,
for each image, the ρ̂ value for the region with the minimum
scene depth is always close to 0.1. Based on this observation,
the correlation between ρ̂ and Î is determined to be a linear
function, named as region line prior (RLP):

ρ̂m ∼= k ·
(
Îm − Î0

)
+ 0.1, (4)

where k represents the slope and Î0 is the Î value of the region
with the minimum scene depth. Different from the existing
image priors, RLP is a non-local-wise region-based strategy
relying on the intrinsic relationship between the hazy image
and the scene albedo, which facilitates the subsequent haze
removal process.
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Fig. 3. Statistical results to confirm that the average brightness increases with the scene depth for both hazy and haze-free images.

III. IMAGE DEHAZING BASED ON RLP (IDRLP)
In this section, based on the proposed RLP and ASM, a

simple yet effective image dehazing technique, i.e., IDRLP,
is developed. Three modules are utilized in IDRLP: an a
priori constraint to deduce the recovery formula (RF), a joint
optimization module used to search the optimal slope and the
atmospheric light in the RF, and a scene restoration module.

A. A Priori Constraint

The first step of IDRLP is to divide the hazy image
into n non-overlapping regions with each region having a
similar depth. However, since explicit depth information is
unavailable, it is difficult to carry out region segmentation (RS)
directly on a depth map. Therefore, we employ K-means [54]
here to execute the RS on the blue channel of hazy image Ib

since its distribution is very similar to the scene depth [55]–
[57]. After the RS, each region is assumed to have the same
transmission value. For example, in the mth region where

(x, y) ∈ Ωm, the transmission t(x, y) ≈ t̂m. In this case,
ASM can be applied to any defined region and simplified as

I (x, y) = A · ρ (x, y) · t̂m +A ·
(
1− t̂m

)
, (5)

where (x, y) ∈ Ωm and m ∈ {0, n− 1}. Taking the mean for
the mth region on both sides of Eq. (5) yields

Îm = Ā · ρ̂m · t̂m + Ā ·
(
1− t̂m

)
, (6)

where Ā is the mean of A. Combining Eqs. (4) and (6), the
transmission of the mth region can be obtained as

t̂m =
Îm − Ā

Ā ·
(
k ·
(
Îm − Î0

)
− 0.9

) . (7)

Substituting Eq. (7) into Eq. (5), the recovery formula (RF)
for the mth region used for haze removal can be derived as

ρ (x, y) = 1−
Ā ·
(
k ·
(
Îm − Î0

)
− 0.9

)
Îm − Ā

·A− I (x, y)

A
, (8)
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Fig. 4. Illustration of the quasi-linear relationship between ρ̂ and Î on twelve sample images. (All the images are divided into 10 regions with each region
having similar scene depth).

where (x, y) ∈ Ωm. Since Îm and Î0 are related to I and can
be easily obtained via Eq. (3) once I is given, we can express
RF for the mth region as a function of three parameters and
rewrite Eq. (8) into

ρ (x, y) = Rm(k,A, I), (9)

where Rm(·) is the abbreviation of RF of the mth region, I
is the input image, only the slope k and atmospheric light A
are still undetermined. Once all the regions are recovered, the
entire image is re-sorted. According to Eq. (9), the derived
RF successfully transforms the complex dehazing task into
an estimation problem of two parameters, which significantly
reduces the uncertainty of haze removal. In the next subsec-
tion, we will devise a robust and easy-to-implement method
of acquiring the unknown parameters.

B. Joint Optimization

To determine the optimized values of k and A, a joint
optimization with two constrains is used. The essence of image
dehazing is to exclude the brightness interference caused by

atmospheric light during the imaging procedure. The first
constraint is based on the fact that the average brightness of
a high-quality image tends to have a specific value µ [58].
That is to say, we need to find a combination of k and A to
minimise

F1 (k,A) =

∣∣∣∣∣ 1n ·
n−1∑
m=0

Ψ
[
Rm

(
k,A, I

)]
− µ

∣∣∣∣∣ , (10)

where Ψ (·) is the mean operator. However, only utilizing
this constraint to adjust the brightness is insufficient as it
may cause significant information loss, i.e., some pixels will
become completely black or white. Therefore, the second
constraint is to guarantee a minimal loss of information when
adjusting the brightness. In other words, we have to find the
values of k and A to minimise

F2 (k,A) =
1

n
·
n−1∑
m=0

Φ
[
Rm

(
k,A, I

)]
, (11)

where Φ (·) is the operator to compute the information loss
ratio (ILR). Considering these two constraints, a joint estima-
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tion strategy is designed to seek the optimal combination of
k and A, i.e., kp and Ap. Formally, it can be expressed by

[kp,Ap] = arg min
k,A

{
F1 (k,A) + F2 (k,A)

}
. (12)

Note that there are three components of the atmospheric light,
i.e., A =

[
AR, AG, AB

]
, which substantially increases the

calculation overhead. To lower the complexity, a more concise
form is used to define the atmospheric light:

A = τ · o = τ ·
[
oR, oG, oB] , (13)

where τ is the amplitude of the atmospheric light and its color
direction o =

[
oR, oG, oB

]
can be acquired by the white point

method [59]. Substituting Eq. (13) into Eqs. (9)∼(12), a 2-D
joint optimization function (2D-JOF) in terms of k and τ is
obtained as

[kp, τp] = arg min
k,τ

{
F1 (k, τ)+F2 (k, τ)

}
= arg min

k,τ

{
F (k, τ)

}
,

(14)
where

F1 (k, τ) =

∣∣∣∣∣ 1n ·
n−1∑
m=0

Ψ
[
Rm

(
k, τ · o,

(
I
)↓ω)]− µ∣∣∣∣∣ (15)

and

F2 (k, τ) =
1

n
·
n−1∑
m=0

Φ
[
Rm

(
k, τ · o,

(
I
)↓ω)] . (16)

Note that ↓ω is a down-sampling operator with coefficient
ω, which is introduced to further reduce the computational
complexity. In this work, the value of ω is initialized according
to [55]. It important to note that the down-sampling operation
does not affect the estimation accuracy of the parameters be-
cause a down-sampled image

(
I
)↓ω still maintains its original

nature.
To solve this 2D-JOF, coordinate descent [60], [61] is a

proposed candidate, in which the key idea is to alternatively
minimize k and τ (by fixing the other parameter) until they
converge. Specifically, the solutions of 2D-JOF after the jth

iteration can be computed by

τj = arg min
τ

{
F (kj , τ)

}
, (17)

kj+1 = arg min
k

{
F (k, τj)

}
, (18)

where both Eqs. (17) and (18) are 1-D searchable problems
and can be easily solved via the Fibonacci algorithm (FA). In
this work, we initialize k1 = 0.5 and set the stop criterion
as δ (j) = |τj − τj−1| + |kj − kj−1| ≤ ε = 10−3. When the
iteration is finished, the atmospheric light and the slope can be
obtained as Ap = τj ·

[
oR, oG, oB

]
and kp = kj , respectively.

C. Scene Restoration

Once the slope kp and the atmospheric light Ap are deter-
mined, the haze-free image can be easily restored by traversing
all the regions using RF (Eq. (8)). However, one might observe
some undesirable effects in the recovered results, which is
primarily caused by the fact that the RS is implemented on

(a) (b) (c) (d)

Hazy Images Ground Truth RF (Eq. (8)) RF+GF (Eq. (19))

Fig. 5. Performance comparison of RF without and with GF.

the blue channel rather than using the real scene depth. To
account for this deficiency, a guided filter (GF) [53] with a
blurring ability is introduced, which leads to the final RF:

ρ (x, y) = 1− CR (tr) ·
Ap − I (x, y)

Ap
, (19)

where tr is a rough transmission map obtained by resorting
the transmission obtained by Eq. (7) for all clustered regions,
and CR(·) is the GF operator. Here we remark that one
can also use other blur operators or tools to remove such
interference depending on the main concerns. Fig. 5 illustrates
the performance enhancement after using GF. As shown in the
figure, the dehazed results obtained by Eq. (8) are evidently
different to the ground truth and the color carries an unnatural
appearance. In contrast, when GF is used, the obtained results
look exactly the same as the ground truth.

For clarity, the entire procedure of the proposed IDRLP
is outlined in Algorithm 1. It should be noted that all the
steps are simple operations except for the iteration (steps 4
to 8). Although the iteration is relatively more complicated,
Eqs. (17) and (18) can be accelerated by the down-sampling
operator and are easily solved by the FA. Therefore, a high
efficiency can be guaranteed.

Algorithm 1 Proposed IDRLP
Input: Hazy Image I .
Pre-set parameters:
Average intensity µ = 0.45, Iteration error ε = 10−3;
Initial slope k1 = 0.5.
Begin

1. Region segmentation on blue channel by K-means.
2. Calculate Îm and Î0 via Eq. (3).
3. Estimate color direction o by [59].
4. While j ≤ 2 | δ (j) ≤ ε do
5. Update τj via Eq. (17).
6. Update kj+1 via Eq. (18).
7. j = j + 1.
8. End While
9. Obtain the atmospheric light via Eq. (13).

10. Restore the haze-free result ρ via Eq. (19).
End Begin
Output: Enhanced Result ρ.
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D. The Difference between IDRLP and IDE Proposed in [25]

Here we remark that both the IDRLP in this work and
the method proposed in Ref. [25], i.e., IDE, are inspired by
the phenomenon that farther regions with greater scene depth
have a higher average value of pixels. However, they are
intrinsically different and the two methods target at different
image enhancement tasks. IDE is trying to fix an issue caused
by this phenomenon (the dim effect in the dehazed result),
while IDRLP takes advantage of this phenomenon to build a
relationship between hazy image and its haze-free correspon-
dence. The flowcharts illustrating the working mechanisms
of the IDE and IDRLP are shown in Figs. 6(a) and 6(b),
respectively.

As shown in Fig. 6(a), based on the observation, IDE
introduces a light absorption rate into ASM, leading to an en-
hanced ASM (EASM). Then the key is to derive a transmission
calculation formula (TCF) by imposing the patch-based gray
world assumption (PGWA) and the atmospheric light estimated
by DCP [19] on the EASM. To solve this TCF, a global stretch
strategy is designed by pre-setting an acceptable saturation for
enhanced results, which generates an accurate transmission
map. With this transmission and the estimated atmospheric
light, the haze-free result can be restored from hazy image via
EASM.

According to Fig. 6(b), the first step of IDRLP is to
implement region segmentation (RS) using K-means. Then,
based on the proposed RLP (it utilizes the aforementioned
observation to directly correlates hazy and haze-free images),
the dehazing task can be transformed into a simple recovery
formula (RF) composed of two unknown parameters (slope in
RLP and atmospheric light). By imposing two constraints on
this RF, these parameters can be solved by iteration, thereby
restoring the haze-free result.

IDE aims to achieve dehazing and exposure at the same
time to highlight as many details as possible, while IDRLP
focuses on high-quality dehazing to ensure that the recovery
result is close to the real haze-free scene. As seen in Fig.
6(a), color cast may appear in the result of IDE if DCP [19]
used in it fails to utilize the haze-related feature to accurately
locate atmospheric light. Compared to IDE, IDRLP exhibits a
stronger robustness to deal with such complex hazy images.
This advantage is due to the fact that the correlation between
the parameters in IDRLP are fully utilized in Eqs. (17) and
(18), which significantly increases the estimation accuracy of
the atmospheric light and the slope in RF. In Section IV, we
will further compare IDE in [25] and the proposed IDRLP in
this paper on different kinds of images.

IV. PERFORMANCE EVALUATION

In this section, the performance of the proposed IDRLP is
evaluated from different perspectives. First, a parameter study
was conducted to determine the value of µ, which has a strong
effect on the performance. Then, the atmospheric light estimat-
ed by IDRLP was evaluated and compared to that obtained by
DCP [19], BCCR [22], ARAT [62], and IPR [?] technologies.
Subsequently, we tested the proposed IDRLP on various
challenging hazy images, and quantitatively and qualitatively

EASMASM TCF

PGWA
Light 

Absorption Rate
Global Gtretch 

Strategy

ASM

DCP [19]

RLP

RF
Eq. (8)

Two Constraints

k

RF+GF
Eq. (19)

(a)

(b)

K-means

RS Result

IDE from [25]

IDRLP

Hazy Image

A

Result

Transmission

A

Hazy Image

Result

EASM

Fig. 6. The flowcharts of IDE [25] and the proposed IDRLP.

compared the results with those obtained from the state-
of-art technologies, including DEFADE (TIP2015, Fusion-
based) [9], NLD (TPAMI2020, Non-local-wise) [48], IDE
(TIP2021, Patch-wise) [25], MSCNN (ECCV2016, Learning-
wise) [32], ProxNet (ECCV2018, Learning-wise) [34], EPDN
(CVPR2019, Learning-wise) [40], and MSBDN (CVPR2020,
Learning-wise) [39].

A. Parameter Study

In the proposed IDRLP, as listed in Algorithm 1, there
are three parameters that need to be initialized. They are
the iteration error ε, the initial slope k1, and the pre-set
average intensity µ. Among them, the value of ε determines the
iteration accuracy and setting ε = 10−3 is more than enough.
The value of k1 can be set to any value from interval [0 1]
as its effect on the final results is negligible. It is found that
the value of µ has a substantial effect on the performance.
To investigate the relationship between µ and the restoration
quality, a performance analysis of IDRLP using different
values of µ was performed on three benchmark datasets, i.e.,
SOTS [52], I-HAZE [63], and O-HAZE [64]. Note that all the
three datasets consist of both synthesized hazy images and
their haze-free ground truth. Fig. 7(a) illustrates the results
of four examples. As can be observed, the images are over-
dehazed when µ is too small and the haze cover cannot be
effectively removed when µ is too large.

Moreover, we calculated the peak signal-to-noise ratio (P-
SNR) and structural similarity (SSIM) [65] scores of all the
images in the datasets dehazed by IDRLP with different µ.
Note that PSNR is used to measure the difference between
the restored image and the ground truth, and SSIM has the
ability to investigate the structure preservation capability. In
general, larger PSNR and SSIM scores indicate a better noise
immunity and a stronger structure preservation, respectively.
The average PNSR and SSIM scores of the three datasets are
plotted in Fig. 7(b). As can be seen, both the PNSR and SSIM
scores of all the three datasets have the best results when
µ ≈ 0.45. It should be pointed out that µ = 0.45 may not be
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μ=0.10 μ=0.30 μ=0.45 μ=0.60 μ=0.80 μ=1.00Ground TruthHazy Image

(a)

(b)

Dehazed results using IDRLP with different μ
(PSNR SSIM)

(12.2890 0.5289) (14.4660 0.6311) (15.8622 0.7268) (5.0978 0.2402)

(8.9435 0.3052) (16.3687 0.5719) (20.9777 0.6572) (15.9717 0.6140) (6.3633 0.3750) (6.3461 0.3735)

(7.6793 0.3436) (14.4207 0.5835) (18.9260 0.7021) (16.0698 0.6975) (6.2855 0.5028) (6.2780 0.5027)

(8.7654 0.4793) (14.7402 0.7994) (23.5931 0.9316) (13.2894 0.7619) (5.1948 0.4005) (5.1948 0.4005)

(5.0978 0.2402) (5.0978 0.2402)

Fig. 7. (a): Image dehazing using the proposed IDRLP with different values of µ on four example images. (b): Average PNSR and SSIM scores of all the
images from SOTS, I-HAZE, and O-HAZE datasets dehazed by IDRLP with different µ.

the best value for all input images, while it is indeed a pretty
robust empirical parameter that can be used on all types of
hazy images straightforwardly. Therefore, µ was selected to
be 0.45 in this work.

B. Accuracy of Atmospheric Light

As mentioned in the introduction, most currently available
ASM-based dehazing methods need to estimate the atmospher-
ic light, which is the key step of the dehazing procedure.
Despite the importance of atmospheric light estimation, it has
been a challenge for these existing methods to guarantee a
high degree of accuracy of the estimation across different
types of images. For example, in [19], [22], [23], one needs
to find the sky region and utilize the characteristics of haze
to locate the atmospheric light. However, these methods will
lose utility when the sky is not visible or there is some
interference that influences these characteristics in the hazy
image. In comparison with other works, IDRLP is based on
a joint optimization strategy to search the atmospheric light,

which effectively improves the estimation accuracy by making
use of an entire image instead of an individual pixel.

To demonstrate the superiority of IDRLP over other tech-
niques in locating the atmospheric light, we compared the
predicted atmospheric light using IDRLP with that using DCP
[19], BCCR [22], ARAT [62], and IPR [?] on a diverse set
of 40 images compiled in [?]. Note that the ground truth of
the atmospheric light (GToAL) was remarked for these 40
images to assure reliability. Fig. 8(a) illustrates the comparison
results on three examples. It can be easily seen that for the
given examples, the atmospheric light estimated by IDRLP
exhibits the highest accuracy (the results are very close to the
GToAL). Moreover, we further calculated the mean squared
error (MSE) between the estimated atmospheric results using
different methods and the GToAL of all 40 images from [?].
The results are illustrated in Fig. 8(b). As expected, IDRLP
displays an overwhelming advantage over other techniques as
it achieves the smallest average, median, and variance values
of the calculated MSEs.
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Median 0.00619 0.00434 0.03223 0.00303 0.00263

Variance 0.0242 0.02674 0.03863 0.01511 0.01261

Fig. 8. Evaluating the accuracy of the estimated atmospheric light on natural images. (a): Examples of hazy images, along with their manually extracted
GToAL, and the estimated atmospheric light using DCP, BCCR, ARAL, IPR and IDRLP. (b): Mean squared errors (MSE) between GToAL and atmospheric
light calculated by different methods on 40 hazy images.
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Fig. 9. Performance evaluation of IDRLP on different types of hazy images.

C. Evaluation of IDRLP

Being able to process different types of hazy images is a
prerequisite for an excellent restoration algorithm. Therefore,
we selected several challenging sample images from the real
world to check the robustness of IDRLP. Fig. 9 shows the
selected hazy images together with the dehazed results and
the transmission maps attained by IDRLP. As shown in the
figure, the proposed IDRLP can effectively resolve the real
colors and thoroughly reveal necessary details, while the
calculated transmissions are quite consistent with the human
visual intuition. Most importantly, IDRLP is free from over-
enhancement, over-saturation, and haze residue interferences
that degrade the user experience. As displayed in these given

examples, the bright scenes (e.g., sky regions and the clouds)
in the dehazed images appear natural, and the necessary
features covered by haze are well-enhanced. It is necessary
to point out that the proposed IDRLP is able to produce a
satisfactory haze-free result even when the scene depths in
the image are almost a constant, see the last two examples
in Fig. 9. In such case, although region segmentation (RS)
errors might be introduced during implementing K-means,
two key parameters (slope and atmospheric light) can still
be accurately estimated by Eqs. (17) and (18) as they are
calculated according to information of whole image instead
of that of local patch or region. Besides, the guided filter
employed in Eq. (19) can also suppress the negative visual
effect caused by such RS errors.
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Fig. 10. Qualitative comparison of the state-of-the-art techniques on real world images.

D. Qualitative Comparison

1) Comparison on Real-World Hazy Images: To illustrate
the superiority of the proposed IDRLP, we compared it against
seven state-of-the-art and representative techniques, including
DEFADE [9], NLD [48], IDE [25], MSCNN [32], ProxNet
[34], EPDN [40], and MSBDN [39], on a variety of challeng-
ing real-world images with different haze thicknesses collected
from Ref. [24]. The comparison results are illustrated in Fig.
10.

As seen in Fig. 10(b), DEFADE can identify the haze
distribution and enhance the visibility for the given examples.
However, it fails to deal with the images with heavy haze,
and the recovered results of the misty images tend to be too
dark at the surface (see the highlighted zoom-in patches ZP1
and ZP2). In Fig. 10(c), although NLD is capable of restoring

the scenes and objects obscured by the haze, it suffers from
over-enhancement in the sky region (ZP4) and attains over-
saturated colors for the examples featuring a lot of gray (ZP3).
As shown in Fig. 10(d), IDE is able to remove the haze cover
and expose the potential details for given examples, but color
cast is visible in the rocky region (ZP5). By observing the
results in Figs. 10(e) and 10(f), both MSCNN and ProxNet are
able to uncover the hidden textures and contours for the first
four examples, whereas their performance deteriorates when
the haze thickness becomes heavier (see ZP6 and ZP7). For
EPDN as shown in Fig. 10(g), it has the ability to thoroughly
eliminate the haze cover no matter what the haze thickness of
the given example is. However, the results obtained by EPDN
appear to be darker than they should be, e.g., the bus in ZP8.
In Fig. 10(h), MSBDN can avoid some negative effects such
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Fig. 11. Qualitative comparison between the proposed IDRLP and state-of-the-art techniques on six synthesis images.

as over-enhancement of the sky regions and color distortion of
misty scenes. However, it generally has a poor performance on
images with dense haze (see ZP9). In comparison, the IDRLP
proposed in this work, for which the results are displayed in
Fig. 10(i), achieves outstanding results. It can highlight the
clear edges and restore the real colors. As observed from these
recovered results, the gray-white rocks and the sky regions can
be better reconstructed by IDRLP and the enhanced results
look more natural and realistic than other approaches.

2) Qualitative Comparison on Synthetic Images: As men-
tioned in [28], it is hard to evaluate the restoration performance
among different algorithms without a haze-free reference.
Therefore, we further compared the proposed IDRLP with
comparable state-of-the-art methods on SOTS, O-HAZE, and
I-HAZE datasets that consist of both hazy images and their
ground truth references. Without losing generality, six exam-
ples were chosen to conduct the comparison. The results are
illustrated in Fig. 11.

In general, the comparison results are similar to those for
the real-world images described in the previous subsection.
As shown in Fig. 11(c), DEFADE is capable of highlighting
the edges and contours for all the given examples, but the
restored results appear darker than the ground truth images.
In Fig. 11(d), the results obtained by NLD have rich textures
and clarity. However, color distortion and over-enhancement
are observed in some recovered images. According to Fig.
11(e), the haze cover and the shadow in the images can be
thoroughly removed by IDE, while the color of the enhanced

results of example S5 seems to be too saturated. Figs. 11(f) and
11(i) show that both MSCNN and MSBDN exhibit effective
performances for most examples, but there is still a noticeable
degree of haze evident in the bright areas, e.g., the wall in
example S3 and the ground in example S6. Although high-
quality results can be obtained by ProxNet and EPDN as
shown in Figs. 11(g) and 11(h), their results appear darker
than the corresponding ground truth references, which leads
to visual inconsistency. In contrast, the proposed IDRLP is
able to remove the haze effectively and the restored results are
very close to the ground truth images for all the examples (see
Figs. 11(b) and 11(j)), indicating a high degree of robustness.

E. Quantitative Comparison

To reach a more complete evaluation, the calculated PSNR
and SSIM for the six images shown in Fig. 11 are summarized
in Table I. It is evident from this table that IDRLP has the
best scores of SSIM and PSNR for the last four examples,
which indicates that the outputs of IDRLP are more similar
to the ground truth compared to those of other state-of-the-art
methods. For the first two examples, although IDRLP only has
the second-best PSNR and SSIM values, the actual results of
IDRLP are qualitatively much clearer than those of MSBDN
which achieves the highest scores and even the corresponding
ground truth references.

Moreover, the evaluation was further conducted with a much
larger sample size. Table II lists the average PSNR and SSIM
values of the dehazed results using different methods on all
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TABLE I
CALCULATED PSNR AND SSIM VALUES OF THE DEHAZED RESULTS USING IDRLP AND STATE-OF-THE-ART TECHNIQUES ON THE SIX IMAGES SHOWN

IN FIG. 11. (DATA IN BOLD MEANS THE BEST AND DATA IN RED INDICATES THE SECOND-BEST.)

Metric Image DEFADE [9] NLD [48] IDE [25] MSCNN [32] ProxNet [34] EPDN [40] MSBDN [39] IDRLP
S1 18.0934 15.5077 16.3094 16.8744 20.1954 19.4554 31.1525 23.9166
S2 24.7166 15.4555 15.9776 18.3954 18.1939 18.2712 28.3496 24.6631
S3 18.0567 15.7747 18.2169 18.2825 17.3509 14.9668 16.9563 20.0093
S4 20.0381 15.0614 18.7158 17.3144 15.5291 13.8245 21.4035 21.8769
S5 17.1711 16.8367 14.4937 20.7825 22.2129 17.0468 18.5818 22.7703

PSNR

S6 15.0914 16.1412 17.2408 16.9906 14.3009 16.2403 21.0918 21.4311
S1 0.8561 0.6704 0.7481 0.7192 0.8552 0.8324 0.9485 0.9306
S2 0.8954 0.6374 0.7055 0.8599 0.8654 0.8005 0.9349 0.9246
S3 0.6988 0.7117 0.6864 0.7279 0.7401 0.6628 0.6978 0.7597
S4 0.6711 0.7211 0.6714 0.4239 0.4136 0.6576 0.6776 0.7421
S5 0.6398 0.6379 0.6364 0.7569 0.8189 0.6786 0.7957 0.8606

SSIM

S6 0.5838 0.7072 0.6158 0.6507 0.6001 0.5684 0.6826 0.7563

TABLE II
CALCULATED AVERAGE PSNR AND SSIM VALUES OF THE DEHAZED RESULTS USING IDRLP AND STATE-OF-THE-ART TECHNIQUES ON I-HAZE,

O-HAZE, AND SOTS DATASETS. (DATA IN BOLD MEANS BEST AND DATA IN RED INDICATES THE SECOND-BEST.)

Database Metric DEFADE [9] NLD [48] IDE [25] MSCNN [32] ProxNet [34] EPDN [40] MSBDN [39] IDRLP
PSNR 15.9535 14.5387 15.9172 16.5441 14.2560 15.4013 16.699 17.355I-HAZE SSIM 0.7500 0.7197 0.7204 0.7783 0.7114 0.7192 0.7658 0.7896
PSNR 15.3412 13.3776 14.2990 16.6224 16.1587 16.8574 16.4633 16.9492O-HAZE SSIM 0.6039 0.6094 0.6325 0.6917 0.6582 0.6793 0.6596 0.6990
PSNR 16.9045 18.5907 19.2062 16.9549 20.7005 22.9536 33.666 23.568SOTS SSIM 0.7498 0.8080 0.7985 0.7592 0.8458 0.7785 0.9876 0.9383

TABLE III
CALCULATED PROCESSING TIME (SECONDS) OF DIFFERENT DEHAZING TECHNIQUES ON THE FIRST FOUR EXAMPLES IN FIG. 10 WITH DIFFERENT

RESOLUTIONS. (DATA IN BOLD MEANS THE SHORTEST PROCESSING TIME.)

Image Resolution DEFADE [9] NLD [48] IDE [25] MSCNN [32] ProxNet [34] EPDN [40] MSBDN [39] IDRLP
Matlab (CPU) Matlab (CPU) Matlab (CPU) Matlab (CPU) Matlab (CPU) Pytorch (CPU/GPU) Pytorch (CPU/GPU) Matlab (CPU)

R1

384×256 4.6329 0.3469 0.2688 0.5463 0.9948 1.1713/0.9329 1.2926/0.2448 0.2236
768×512 15.1255 1.1053 0.4263 2.2241 1.9373 1.8007/1.1131 4.7321/0.4448 0.3710

1536×1024 61.6518 4.4785 1.1508 8.2105 6.5916 4.2879/1.7100 18.1626/1.2097 0.8961
2304×1536 163.5108 10.2591 2.3662 17.9908 12.9918 8.7772/3.0749 40.4204/2.6119 1.7923
3072×2048 559.9355 19.0473 3.9435 34.6651 25.5768 17.7368/4.9513 72.2998/— 2.8310
3840×2560 — 33.2637 5.8695 90.6309 39.2949 47.2435/7.0067 112.2309/— 3.9000
4608×3072 — 57.7944 8.4727 206.4190 84.6179 63.8665/12.3614 167.1191/— 5.7305

R2

200×300 2.5092 0.2579 0.2248 0.3243 0.8137 1.1299/0.9638 0.7490/0.2004 0.1451
400×600 8.8374 0.6739 0.3484 1.3773 1.3792 1.4705/1.0228 2.6342/0.3321 0.2140

800×1200 35.2334 2.4448 0.8235 4.7191 3.4135 3.1147/1.5045 9.9256/0.9720 0.5195
1200×1800 90.0360 5.5109 1.5774 10.0857 6.7086 5.7403/2.3402 22.9646/2.0259 0.9633
1600×2400 193.4217 10.3289 2.6529 19.1907 11.9600 9.6121/3.5019 42.1790/3.2931 1.5216
2000×3000 526.5829 16.6927 3.9094 32.8263 18.0075 14.9175/5.0843 65.6165/— 2.2902
2400×3600 — 27.4001 5.3295 81.2978 26.7281 33.8060/6.7136 93.8091/— 3.2611

R3

300×200 2.6510 0.2406 0.2502 0.3322 0.8665 1.1479/0.9308 0.6960/0.1934 0.1504
600×400 8.7630 0.6230 0.3516 1.2124 1.3329 1.5465/1.0750 2.6840/0.3559 0.2206

1200×800 35.7391 2.4185 0.7764 4.3774 3.1446 2.9682/1.4781 10.2122/0.9100 0.5188
1800×1200 90.0897 5.3842 1.5378 9.4960 6.4491 5.6248/2.2185 23.6761/1.7473 0.9069
2400×1600 208.5686 9.9252 2.5362 18.4079 11.3481 9.3365/3.2394 41.9415/2.8769 1.5689
3000×2000 530.3279 16.1275 3.7725 32.3711 17.5248 14.4812/4.5555 65.7886/— 2.3535
3600×2400 — 26.4553 5.1334 82.8085 25.9558 34.0248/6.0548 94.9250/— 3.2204

R4

300×225 2.9130 0.2635 0.2554 0.3433 0.9318 1.1872/0.9390 0.8544/0.2144 0.1625
600×450 10.0109 0.6838 0.3547 1.2981 1.5903 1.5857/1.0641 2.9939/0.3727 0.2584

1200×900 43.1763 2.6631 0.8545 4.7528 4.1895 3.2911/1.5713 11.5650/0.9544 0.5496
1800×1350 119.5967 5.8451 1.6408 10.5000 8.6642 6.4546/2.4704 26.8620/1.9026 0.9969
2400×1800 236.5677 11.6924 2.7070 19.2239 14.8764 10.4873/3.4665 47.7061/3.1996 1.6409
3000×2250 750.8358 18.5929 4.2433 42.4540 23.8864 17.3574/4.9715 75.7184/— 2.5623
3600×2700 — 31.5513 5.7240 132.9783 34.5697 44.6102/6.8000 103.3466/— 3.5414

the images in the SOTS, O-HAZE, and I-HAZE datasets. As
shown in the table, IDRLP achieves the best scores for the O-
HAZE and I-HAZE datasets, and the second-best results for
the SOTS dataset. It’s worth mentioning that MSBDN, which
achieves the best average scores for the SOTS dataset, utilizes
the learning-based strategy. Therefore, it may only work well
on synthesized hazy images and lack the ability to generalize

to the processing of real-world hazy images (see Fig. 10(h)).

F. Processing time

In addition to the recovery quality, computational efficiency
is the other critical performance index for dehazing methods.
As discussed at the end of Section III-C, the main overhead
consumed in Algorithm 1 is the iteration, i.e., steps 4 to 8.
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Fig. 12. Iteration curves of joint optimization module in IDRLP proposed
in this work.

Given an image with resolution of h1 × h2, the theoretical
complexity of IDRLP is only o(h1×h2

w ). It would be more
intuitive to see how many iterations are needed for different
hazy inputs to converge. Therefore, Fig. 12 plots the iteration
curves for the twelve example images shown in Figs. 10 and
11, where the abscissa and ordinate are the iteration number
j and the stop criterion δ, respectively. It is observed that
for all the examples, only 4 iterations are needed to achieve
convergence.

Furthermore, the running time for the proposed IDRLP and
state-of-the-art techniques to process the first four examples in
Fig. 10 with different resolutions are compared in Table III.
Note that all the methods were tested on the same PC [Intel(R)
Core (Tm) i7-9700k CPU@3.60GHz 16G RAM and GeForce
RTX 2060 GPU] for five times without GPU acceleration
and their average time costs are used. The learning-wise
based EPDN and MSBDN were also tested on this PC with
GPU acceleration. As shown in Table III, there is no doubt
that IDRLP exhibits a much faster processing speed than
the other techniques with or without GPU acceleration. In
addition, this advantage becomes more pronounced when the
image resolution is higher, which makes IDRLP an excellent
candidate for real-time systems.

V. CONCLUSION

In this paper, we proposed a novel non-local region-based
image prior (RLP) and used this prior to develop a sin-
gle image dehazing technique, i.e., IDRLP. The proposed
IDRLP translates the intricate image dehazing problem into
a simple 2-D joint optimization function (2D-JOF), thereby
significantly simplifying the dehazing process and reducing the
processing time. Another benefit of using 2D-JOF dehazing is
that it can simultaneously determine the atmospheric light and
the slope used to compute transmission from the whole input
image, which can leverage the correlation between parameters
to improve the estimation accuracy. Experiments on a diverse
set of real-world images and several widely used datasets
illustrate that the proposed IDRLP is superior over state-of-
the-art methods in terms of both the recovery quality and the
efficiency.
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