
“© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for 

all other uses, in any current or future media, including reprinting/republishing this material for  

advertising or promotional purposes, creating new collective works, for resale or redistribution to 

servers or lists, or reuse of any copyrighted component of this work in other works.” 



IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY 1

IDBP: Image Dehazing Using Blended Priors
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Abstract—In this letter, a robust and promising atmospheric
scattering model (ASM)-based image dehazing technique called
IDBP is developed, which overcomes the intrinsic limitation of
available techniques based on single priors. It consists of two
modules, i.e., an atmospheric light estimation (ALE) module and
a multiple prior constraint (MPC) module. The ALE module
is based on a new global brightening strategy of enhancing the
brightness of image with minimum information loss. The MPC
smartly blends the constrains of non-local prior, local prior, and
global prior to shrink the solution space of haze removal, which
avoids the limitation of using any single priors. Unlike previous
works, IDBP does not require any training process, but is based
on multiple priors and minimal information loss principle to
impose the ASM, thereby making it easy to implement and
ensuring its robustness. Numerous experiments reveal that the
proposed IDBP outperforms the state-of-the-art alternates.

Index Terms—Atmospheric Scattering Model, Atmospheric
Light Estimation, Multiple Priors Constrains, Image Dehazing

I. INTRODUCTION

IMAGES taken in hazy weather are usually interfered by
turbid impurities suspended in atmosphere, which leads to

low contrast and dim color. Because of the poor visual quality,
the deteriorated images cannot be used in vision applications
that need high-quality inputs [1]. The degraded images due to
haze need to be dehazed and efficient restoration technologies
are desired.

In early days, haze removal was realized by directly em-
ploying traditional enhancement methods to improve the local
or global contrast of a hazy image. Despite its simplicity, the
recovery quality is limited as the image degradation theory
is not considered. To make up for this deficiency, a fusion
strategy of blending multiple traditional image enhancement
methods [2], [3] was proposed. Compared to preliminary work,
recently published dehazing algorithms have achieved great
success, and they can be roughly grouped into two categories:
prior-based techniques and data-driven techniques.
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Prior-based Techniques: Its core idea is to impose a hand-
craft prior on atmospheric scattering model (ASM) to extract
imaging parameters, and then the haze-free result can be
restored using these parameters. Mathematically, the ASM can
be modeled by

I(x, y) = A · ρ · t(x, y) +A · (1− t(x, y)), (1)

where I is the hazy image, A is the atmospheric light, ρ is
the scene albedo or haze-free image, and t is the transmission
related to scene depth. Depending on the manner of finding
transmission, this type of method can be further divided into
pixel-wise [4], [5], patch-wise [6], [7], non-local-wise [8], and
global-wise [9] strategies. In general, these strategies all have
some advantages for specific examples. However, they are not
able to deal with all practical situations since they are based
on single prior and each prior inevitably has some limitations.

Data-driven Techniques: The data-driven techniques are to
establish dehazing systems by learning or extracting effective
haze-related features from synthetic datasets. These techniques
can be classified into convolutional neural networks (CNN)
wise [10]–[15] and generative adversarial network (GAN)
wise [16]–[18] strategies according to the networks they used.
Despite the fact that these systems are capable of removing
the haze for most cases, they also have some drawbacks,
e.g., unable to deal with dense haze and needs numerous
training samples. Moveover, data-driven makes the dehazing
process like a "black box", thus less domain knowledge can
be involved in the learning procedure to further improve the
performance.

Moreover, for current ASM-based dehazing methods, ei-
ther prior-based or data-driven ones, their atmospheric light
was estimated according to haze-related features or networks
trained by synthetic dataset [19]. However, some special types
of real-world images do not meet the premises to do so and
thus leading to color cast or dim effect in the restored results.

In this letter, a novel ASM-based image dehazing method
named IDBP is developed. The proper fusion of multiple priors
including local, non-local, and global priors rather than only
one prior can effectively avoid the shortness of any single
prior. Moreover, the proposed IDBP utilizes a new method
to calculate the atmospheric light, which is able to maximize
the average brightness while avoiding excessive information
loss. The combination of this new atmospheric light estimation
method and multiple-prior-based strategy makes IDBP an
excellent dehazing method that exhibits higher robustness than
available methods.
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II. PROPOSED METHODOLOGY

This section describes the proposed simple yet effective
dehazing technique, IDBP. It only consists of two modules,
i.e., an atmospheric light estimation (ALE) module and a
multiple prior constraint (MPC) module for scene restoration.

A. Atmospheric Light Estimation (ALE) Module

ALE is one of key steps to achieve high-quality haze
removal. The effectiveness of ALE is closely related with the
quality of restored images. Atmospheric light can be located
from sky or heavy haze regions [6], [20] by using haze-related
features. However, this approach is invalid when such regions
are not visible in the image. Another strategy advocated in [8],
[21] is to utilize haze-line prior or patch-repeatability prior
to calculate atmospheric light. Although this strategy is not
limited by the presence of sky or heavy haze regions, the
estimation errors are unavoidable once the input hazy images
cannot fully meet the premise of the adopted priors.

By moving A to the left side of the equation, Eq. (1) can
be rewritten as

I ′(x, y) =
I(x, y)

A
= ρ · t(x, y) + 1− t(x, y). (2)

In practice, A = [AR, AG, AB ] is introduced to correct the
atmospheric light of the input hazy image to be [1,1,1], aiming
to ensure that the corrected image I ′ has sufficient light to
expose the textures and contours. In addition, it also helps
to avoid color cast in the recovered result, which will be
illustrated later in Section III-B. It can be concluded from
Eq. (2) that a smaller A leads to a brighter I ′, but too small
A would result in pixels overflow, thus information loss (IL).
To find the optimal value of A, a global brightening (GB)
strategy is designed. The key idea is to make the hazy image
as bright as possible while sacrificing minimum IL. Formally,
the ALE based on GB strategy is defined as

Acp = argmin
Ac

{Ψ(max(min(
Ic

Ac
, 1), 0))− τ}, (3)

where Acp is the searched optimal atmospheric light, c ∈
{R,G,B} is the color channel index, τ = 0.015 is the pre-set
IL ratio, and Ψ(·) stands for IL ratio operator, i.e., calculating
the percentage of pixels that are completely black or white.
Note that Eq. (3) is a simple 1-D convex optimization task
and can be easily solved by golden section method. Different
from previous works, the designed ALE is not rely on any prior
knowledge or training process, but is based on the whole image
to calculate the atmospheric light by following the principle of
minimum information loss. The benefit of doing so is that ALE
can have the highest level to expose the textures and contours,
while preventing information loss and underexposure.

B. Multiple Prior Constraint (MPC) Module

As well-known, imposing only one image prior on ASM
to realize haze removal may lead to haze residue, over-
enhancement, and over-saturation phenomenon in recovery
results. This is because single prior inevitably has some
limitations for certain types of hazy images. To remedy the
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Fig. 1. Two examples to illustrate the drawback of haze-line prior. In these
pictures, pixels with same color indicate the haze-line.

limitation of any single prior, a MPC module that merges
the ideas of three priors is proposed. With the proper fusion
procedure, the three priors are jointly imposed on ASM during
dehazing process, thus the solution space of haze removal can
be accurately shrunk, leading to fascinating haze-free results.

1) Describe transmission using non-local prior: Relying
on a key observation that an image usually contains many
similar colors (non-local prior), Berman et. al [8] recognize
each set of distinct colors termed as haze-line via spherical
coordinates and then calculate the transmission by assuming
that the farthest pixel in each haze-line from the atmospheric
light is haze free. This leads to the following equation

t(x, y) =
r(x, y)

ri−max
, (x, y) ∈ Ωi, (4)

where i ∈ [1, 2, ..., n] is the index of haze-line, Ωi is the
coordinate set of the ith haze-line, r = ‖I −Ap‖, and
ri−max = {max(r(x, y)), (x, y) ∈ Ωi}. Note that this as-
sumption is not always reliable to all haze-lines in a given
image. For example, as shown in Fig. 1, the farthest pixels
from the atmospheric light in the highlighted haze-lines are
obviously not haze-free. Therefore, in this work, a coefficient
κi is introduced to Eq. (4) to make a more accurate estimation
of the transmission, which yields

t(x, y) = κi ·
r(x, y)

ri−max
, (x, y) ∈ Ωi. (5)

It should be pointed out that although Eq. (5) exhibits a higher
accuracy and is more robust, the extra parameter κi increases
the complexity of haze removal.

2) Reducing solution set of transmission using local prior:
According to local prior [6], an input image can be divided
into several non-overlapping patches (in this work, the patch
size is selected to be 15×15) and the transmissions in a local
patch can be regarded as a constant. Considering the fact that
an image can be divided into n haze-lines according to non-
local prior or m patches according to the local prior, there
could be an overlap between the ith haze-line and the jth

patch. In this case (when Φj ∩Ωi 6= ∅), according to Eq. (5),
the transmission of the jth patch can be calculated as

t′(j) = κi ·
r(x, y)

ri−max
, (x, y) ∈ Φj ∩ Ωi 6= ∅ (6)

where t′(j) and Φj represent the transmission value and co-
ordinate index of the jth patch. Performing a mean operation
on Eq. (6) within the area of Φj ∩ Ωi leads to

t′(j) = κi ·Mj,i (7)
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Fig. 2. The flow chart of the proposed IDBP.

and
Mj,i =

1

|Φj ∩ Ωi|
·

∑
(x,y)∈Φj∩Ωi

r(x, y)

ri−max
, (8)

where |Φj ∩ Ωi| is the number of non-empty coordinates in
the intersection Φj ∩Ωi. Taking the case that the ith haze-line
and the jth patch are not overlapped also into consideration, a
complete m× n matrix representing the average transmission
of the pixels in the overlapped area Φj ∩ Ωi is obtained as

N(j, i) =

{
t′(j) =κi ·Mj,i, Φj ∩ Ωi 6= ∅

∅, Φj ∩ Ωi = ∅
. (9)

Note that M can be calculated by traversing all patches and all
haze-lines according to Eq. (8). Meanwhile, according to local
prior, the average transmissions of the jth patch should be a
constant, i.e., N(j, 1) = N(j, 2) = N(j, i) = ... = N(j, n)
as long as there is an overlap between the jth patch and the
designated haze-line. These attributes enable us to employ a
greedy approach [22] to seek a suitable ratio of κi and κ1,
where

κi = λi · κ1, i ∈ [1, 2, ..., n]. (10)

Combining Eq. (5) and Eq. (10), the transmission map can be
expressed by

t = κ1 ·GF(T ) = κ1 ·GF

(
λi ·

r(x, y)

ri−max

)
, (x, y) ∈ Ωi,

(11)
where guided filter GF(·) is introduced to blur the excessive
texture [23].

3) Scene recovery using global prior: Substituting the
atmospheric light Ap and Eq. (11) into Eq. (1), dehazing
formula (DF) is obtained as

ρ(x, y) = DF(κi) = 1 +
I(x, y)−Ap

Ap · κ1 ·GF (T )
, (12)

where T , I , and Ap are all known, only κ1 remains unsolved.
To find out the best value for κ1, a maximum information en-
tropy (global prior)-based global optimization function (GOF)
is provided as

κp = argmin
κ1

{−Θ(DF (κ1))}, (13)

where κp is the calculated optimal of κ1 and Θ(·) is an
information entropy operator. Similar to Eq. (3), this GOF
can be solved via golden section method. Once κp is attained,
the haze-free result can be directly generated via Eq. (12).

For clarity, the flow chart of the proposed IDBP is illustrated
in Fig. 2. The first step is to extract the atmospheric light

using the proposed GB-based ALE. Then the input image is
processed by non-local prior to attain a rough transmission,
which is later further constrained by local prior to obtain an
improved transmission map. Finally, combining the transmis-
sion blurred by guided filter and the estimated atmospheric
light, haze-free result can be easily obtained via global prior-
based optimization function.

III. EXPERIMENTS

In this section, the atmospheric light estimated by IDBP was
firstly compared with those obtained by other comparable tech-
niques. Then, qualitative and quantitative comparisons were
conducted between IDBP and other state-of-the-art algorithms,
including DEFADE (TIP 2015) [3], NLD (TPAMI 2020)
[8], GDN (ICCV 2019) [11], MSCNN (ECCV 2016) [10],
MSBDN (CVPR 2020) [24], and EPDN (CVPR 2019) [16].
Note that the codes of these benchmark methods are available
on the authors’ GitHub. All experiments were conducted on
the same PC with Intel(R) Core (Tm) i7-8700 CPU@ 3.20
GHz 16.00 GB RAM to ensure fairness.

A. Accuracy of Atmospheric Light Estimation

Unlike the exiting atmospheric light estimation methods,
IDBP utilizes a global brightening module to calculate the
atmospheric light, leading to a more promising performance.
To illustrate this superiority, the estimation results obtained
from the proposed IDBP and four classic approaches (DCP [6],
NLD [8], ARAL [25], and IPR [21]) were compared on four
challenging images, as shown in Fig. 3. Note that the ground
truth of atmospheric light (GTAT) was manually marked to
ensure accuracy. By comparing the extracted atmospheric light
using different methods with the GTAT, it is observed that
DCP, ARAL, and IPR fail for the first three examples, while
NLD cannot work well on the third one. Moreover, all these
comparable benchmark approaches lose utility when the sky
or heavy haze is not visible (see the last example). On the
contrary, the proposed IDBP avoids these interferences and
attains a reliable atmospheric light for all the given examples.

B. Qualitative Comparison

1) Comparison on challenging real-world images: To il-
lustrate the excellent performance of IDBP, we compared it
against six state-of-the-art algorithms on three challenging
real-world images with different haze levels. The selected hazy
images and the results dehazed by different methods are shown
in Fig. 4.
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Fig. 3. Comparison of the extracted atmospheric light using DCP, NLD,
ARAL, IPR, and IDBP, along with the manually extracted ground truth
atmospheric light (GTAL).
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Fig. 4. Qualitative comparison of the state-of-the-art techniques on real-world
images.
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Fig. 5. Qualitative comparison of the state-of-the-art techniques on synthesis
images.

As exhibited in Fig. 4(b), DEFADE performs well when
dealing with the scenes covered in dense haze, whereas the
results after haze removal appear to be too dark. For NLD
shown in Fig. 4(c), it can restore necessary details and contours
for the given examples, but is not able to handle gray scenes
(see the first example). In Figs. 4(d) to 4(f), GDN, MSCNN,
and MSBDN avoid this drawback and work well for misty
images, but a small amount of haze is still visible in their
dehazed results (see the third and last examples). It can be

observed from Fig. 4(g) that EPDN is capable of thoroughly
removing the haze for all the examples. However, the recov-
ered results look darker than they should be, e.g., the tree in
the last example. In addition, all the benchmark algorithms are
ineffective for color cast images (see the second example). In
contrast, the proposed IDBP circumvents all the limitations
of these compared techniques, and can restore a promising
haze-free result for different types of hazy images.

2) Comparison techniques on synthesized images: In sub-
sequence, three dehazing datasets, i.e., SOTS [26], O-Haze
[27], and I-Haze [28], consisting of both hazy images and their
corresponding ground truth (GT), were tested to facilitate the
comparison between IDBP and the state-of-the-art alternates.
Note that each example the datasets were down-sampled to 1/4
of its original resolution in order to avoid running out of mem-
ory and to accelerate the evaluation. The results processed by
different techniques on three representative images collected
in these datasets are illustrated in Fig. 5.

According to Figs. 5(b) and 5(c), DEFADE and NLD are
able to peel off the haze from hazy inputs, but their restored
color seems to be over-saturated. As shown in Figs. 5(d) to
5(f), GDN, MSCNN, and MSBDN can produce fascinating
results for the given misty images while they can not deal
with the ones with heavy haze. As seen from Fig. 5(g), the
haze cover is removed by EPDN but the results obviously look
darker than the GT images. As a comparison, the proposed
IDBP can well handle different complex situations and better
reveal the potential textures shrouded in haze than other
techniques.

C. Quantitative Comparison

The performance of IDBP is also assessed quantitatively
and compared with other state-of-the-art techniques. Table I
summarizes the scores of fog aware density evaluator (FADE)
[3] and natural image quality evaluator (NIQE) [29] on the
restoration results of the four real-world images shown in Fig.
4. Note that a smaller NIQE and FADE represent that the
restored image is more realistic and has less mist residue,
respectively. It can be concluded from Table I that IDBP
either achieves the best or the second-best NIQE and FADE
scores for all the examples. Furthermore, two commonly used
indicators, i.e., peak signal to noise ratio (PSNR) and structural
similarity (SSIM) [30], were used to quantitatively rank the
recovery performance between IDBP and the six benchmark
approaches on the three aforementioned datasets. In general,
larger PSNR and SSIM stand for a stronger dehazing ability
and a better structure maintenance, respectively. The PSNR
and SSIM scores of different technologies on the three datasets
are listed in Table II. It is clear that IDBP performs the best
on I-Haze and O-Haze datasets and achieves the third-best
score on SOTS. It worth to mention that the released codes of
GDN and MSBDN were pre-trained with some images from
RESIDE dataset (SOTS is a subset of RESIDE). This is why
the performance of GDN and MSBND on SOTS is particularly
high. Nevertheless, the actual haze-free results attained by
IDBP are visually better than those obtained by GDN and
MSBND, especially for the last example in Fig. 4.
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TABLE I
QUANTITATIVE COMPARISON OF DIFFERENT TECHNIQUES ON THE IMAGES

SHOWN IN FIG. 4 USING FADE AND NIQE (BEST: BOLD HIGHLIGHT,
SECOND BEST: RED HIGHLIGHT).

Metric Image DEFADE NLD GDN MSCNN MSBDN EPDN IDBP

FADE

E1 0.1435 0.1556 0.3161 0.1833 0.4599 0.2050 0.1513
E2 0.1939 0.2335 0.2926 0.2834 0.3191 0.3733 0.2259
E3 1.4034 0.4667 0.5115 0.3500 0.8693 0.4054 0.3849
E4 0.7931 0.3071 0.6020 0.4768 1.9304 0.3365 0.2824

NIQE

E1 4.3991 4.4767 4.0784 4.0297 4.0210 4.3058 3.6756
E2 2.9497 2.7281 2.8944 2.8317 2.9033 3.1489 2.5844
E3 4.0343 3.9518 3.4277 3.6347 3.6054 4.0473 3.3229
E4 4.4232 4.5484 4.0359 4.4475 4.1739 3.7394 3.5096

TABLE II
QUANTITATIVE COMPARISON OF DIFFERENT TECHNIQUES ON I-HAZE,
O-HAZE, AND SOTS DATASETS USING PSNR AND SSIM (BEST: BOLD

HIGHLIGHT, SECOND BEST: RED HIGHLIGHT).

Dataset Metric DEFADE NLD GDN MSCNN MSBDN EPDN IDBP

I-HAZE PSNR 15.9535 14.5387 16.0571 16.5441 16.699 15.4013 17.1194
SSIM 0.7500 0.7197 0.6295 0.7783 0.7658 0.7192 0.8053

O-HAZE PSNR 15.3412 13.3776 17.1057 16.6224 16.4633 16.8574 17.4490
SSIM 0.6039 0.6094 0.3770 0.6917 0.6596 0.6793 0.7418

SOTS PSNR 16.9045 18.5907 28.2819 16.9549 33.666 22.9536 23.4423
SSIM 0.7498 0.8080 0.9704 0.7592 0.9876 0.7785 0.8705

IV. CONCLUSION

In this letter, a novel single image haze removal technique
called IDBP is presented. Different from existing related
algorithms, IDBP considers the atmospheric light estimation
(ALE) as an equivalence of maximizing the average bright-
ness of hazy image with sacrificing minimal information
loss, which significantly improves the accuracy. Moreover,
the multiple prior constraint (MPC) module used in IDBP
effectively reduces the solution set of ASM, thereby resulting
in a more promising restoration than the comparable methods.
Both qualitative and quantitative experiments show that the
proposed IDBP has a stronger capability to enhance visual
quality of hazy image, retain richer details, and maintain color
fidelity than state-of-the-art approaches.
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