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We present a numerical method for modeling noise in stimulated Brillouin scattering (SBS). The model applies
to dynamic cases such as optical pulses and accounts for both thermal noise and phase noise from the input lasers.
Using this model, we compute the statistical properties of the optical and acoustic power in the pulsed spontaneous
and stimulated Brillouin cases, and investigate the effects of gain and pulse width on noise levels. We find that
thermal noise plays an important role in the statistical properties of the fields and that laser phase noise impacts the
SBS interaction when the laser coherence time is close to the time scale of the optical pulses. This algorithm is appli-
cable to arbitrary waveguide geometries and material properties and, thus, presents a versatile way of performing
noise-based SBS numerical simulations, which are important in signal processing, sensing, microwave photonics,
and opto-acoustic memory storage. ©2021Optical Society of America
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1. INTRODUCTION22

Stimulated1 Brillouin scattering (SBS) is an opto-acoustic23
process that results from the interaction between two counter-24
propagating optical fields, the pump and the Stokes, as well as25
an acoustic wave inside a dielectric medium [1–5]. This inter-26
action has been used for applications including narrowband27
radio-frequency (RF) and optical signal filtering [6,7], phase28
conjugation and precision spectroscopy [1], and novel laser29
sources [8,9], and in recent experiments in opto-acoustic mem-30
ory storage [10]. One of the key challenges of simulating the31
SBS interaction is modeling of thermal noise, which is present in32
all real systems and which can significantly affect performance33
[11–13]. Simulating noise in the SBS equations is complicated34
because of the nonlinear coupling between the envelope fields:35
beyond the undepleted pump regime, the noise is multiplicative36
and can only be understood in the context of statistical moments37
using multiple independent realizations [14]. Thermal noise in38
SBS has been simulated numerically in earlier studies [11,12],39
with these investigations concentrating on the noise properties40
of the Stokes signal that arises spontaneously in response to a41
strong, continuous-wave (CW) pump. More recent simulations42
[15] have incorporated both thermal and laser noise in the SBS43
interaction but have focused on single-mode structures such44
as micro-ring resonators in steady-state laser conditions. A45
numerical method for solving the transient SBS equations with46
laser and thermal noise is needed for accurately predicting and47

characterizing the noise in modern integrated SBS waveguide 48
experiments [2,10,16]. 49

In this paper, we present a numerical method by which the 50
transient SBS equations with thermal noise can be solved for 51
pulses of arbitrary shape and size, in arbitrary waveguide geom- 52
etries. The method allows for the inclusion of input laser noise 53
in the form of stochastic boundary conditions. We apply this 54
method to the case of a short chalcogenide waveguide and use 55
the model to compute the statistics of the output envelope fields. 56
We examine the dynamics of the noise when the Stokes arises 57
spontaneously from the thermal field, and for the case when it 58
is seeded with an input pulse at the far end of the waveguide. 59
We demonstrate the transition from the low gain, short pulse 60
case, in which noise is amplified by the pump, to the high gain, 61
long pulse regime in which coherent amplification occurs. 62
In this latter situation, we show that while the output pulses 63
remain smooth, significant fluctuations in the peak powers 64
arising from the thermal field can persist. We also show that, 65
within the framework of this model, phase noise from the pump 66
only has a significant impact on Stokes noise when the laser 67
coherence time matches the time scales of the pulses involved in 68
the interaction. Finally, we investigate the convergence of this 69
numerical method and find that it yields linear convergence in 70
both the average power and variance of the power for three fields 71
in the SBS interaction, which is in agreement with the Euler– 72
Mayurama scheme for solving stochastic ordinary differential 73
equations. 74
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2. METHOD75

A. SBS Equations76

We consider backward SBS interactions in a waveguide of77
finite length L along the z axis, in which a pump pulse with78
angular frequency ω1 is injected into the waveguide at z= 079
and propagates in the positive z direction, while a signal pulse80
is injected at z= L and propagates in the negative z direction,81
as shown in Fig. 1. The spectrum of the signal pulse is centered82
around the Brillouin Stokes frequency ω2 =ω1 −�, which83
is downshifted from the pump by the Brillouin shift �, and its84
spectral extent lies entirely within the Brillouin linewidth1νB .85
When these two pulses interact, energy is transferred from the86
pump to the signal via the acoustic field, resulting in coherent87
amplification of the signal around the Brillouin frequency. At88
the same time, as the pump moves through the waveguide, it89
interacts with the thermal phonon field and generates an inco-90
herent contribution to the Stokes field, which also propagates91
in the negative z direction. This noisy Stokes field combines92
with the coherent signal to form a noisy amplified output field93
centered around the Stokes frequency. The interaction can be94
modeled using three envelope fields for the pump (a1(z, t)),95
Stokes (a2(z, t)), and acoustic field (b(z, t)), according to the96
following equations [14]:97

∂a1

∂z
+

1

v

∂a1

∂t
+

1

2
αa1 = iω1 Q1a2b∗, (1a)

98
∂a2

∂z
−

1

v

∂a2

∂t
−

1

2
αa2 = iω2 Q2a1b, (1b)

Fig. 1. Illustration of the SBS interaction, showing the pump,
Stokes, and acoustic powers on a photonic chip waveguide. In (a),
the pump and Stokes pulses are injected into opposite ends of the
waveguide, and the acoustic field is made up of random thermal fluc-
tuations. In (b), the optical fields have interacted inside the waveguide,
the Stokes depletes the pump to gain some energy, and the rest of the
energy goes to the acoustic field.

99
∂b
∂z
+

1

va

∂b
∂t
+

1

2
αacb = i�Qa a∗1 a2 +

√
σ R(z, t). (1c)

Here α and αac are the optical and acoustic loss coefficients, 100
respectively (in units of m−1), along with optical group velocity 101
v > 0 and acoustic group velocity va > 0. The envelope fields 102
a1,2 and b have units of W1/2. The coefficients Q1,2,a represent 103
the coupling strength of the SBS interaction, which depend on 104
the optical and acoustic modes of the waveguide [17]; from local 105
conservation of energy, we have Q2 = Q∗1 and Qa = Q1 [18]. 106
Here we focus on the single acoustic-mode case, which we can 107
choose by tuning the laser frequencies and relying on the large 108
free spectral range of the acoustic modes. This model can further 109
be extended by including additional acoustic fields with their 110
own opto-acoustic coupling constants and potentially different 111
noise properties [18]. 112

The boundary conditions for the pump and signal fields are 113
applied by specifying the input values a1(0, t) and a2(L, t), 114
respectively. These boundary conditions depend on the laser 115
properties, such as the linewidth, and may contain noise. 116
Thermal noise in the waveguide is introduced through the 117
complex-valued space-time white noise function R(z, t), 118
which has mean 〈R(z, t)〉 = 0 and auto-correlation function 119
〈R(z, t)R∗(z′, t ′)〉 = δ(z− z′)δ(t − t ′). The noise strength 120
is derived by analytically solving Eq. (1c) in the absence of 121
any optical fields [14], and is σ = kB Tαac, where kB is the 122
Boltzmann constant and T is the temperature of the waveguide. 123

We begin with the observation that the propagation distance 124
of the acoustic wave over the time scale of the interaction is very 125
small [11]. We, therefore, apply the limit ∂zb→ 0 in Eq. (1c), 126
which simplifies to 127

1

va

∂b
∂t
+

1

2
αacb = i�Qa a∗1 a2 +

√
σ R(z, t). (2)

This has the formal solution, 128

b(z, t)= iva�Qa

∫ t

−∞

e−
0
2 (t−s )a ∗1(z, s )a2(z, s )ds + D(z, t),

(3)
where 0 = vaαac is decay rate of the acoustic field, namely 0 = 129
1/τa , and is related to the Brillouin linewidth via 0 = 2π1νB . 130
The thermal noise enters through the following function: 131

D(z, t)= va
√
σ

∫ t

−∞

e−
0
2 (t−s )R(z, s )ds . (4)

This function D is a stochastic integral with zero mean 132
〈D(z, t)〉 = 0 since the function R(z, s ) is itself a zero-mean 133
stochastic process. The auto-correlation function of D at two 134
times and two points in space is found by following the deriva- 135
tion in [14], which uses the stochastic Fubini theorem [19] to 136
obtain the following expression: 137

〈
D(z, t)D∗(z′, t ′)

〉
=
vaσ

αac
δ(z− z′) exp

{
−
0

2

∣∣t − t ′
∣∣}. (5)

Upon substitution of Eq. (3) into Eqs. (1a) and (1b), and 138
assuming that the fields a1,2 are everywhere zero for t < 0, we 139
obtain the following pair of equations: 140
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∂a1

∂z
+

1

v

∂a1

∂t
+

1

2
αa1 = iω1 Q1a2(z, t)D∗(z, t)

−
1

4
g 10a2(z, t)

∫ t

0
e−

0
2 (t−s )a1(z, s )a∗2(z, s )ds,

∂a2

∂z
−

1

v

∂a2

∂t
−

1

2
αa2 = iω2 Q2a1(z, t)D(z, t) (6)

141

−
1

4
g 20a1(z, t)

∫ t

0
e−

0
2 (t−s )a∗1(z, s )a2(z, s )ds, (7)

where g 1 = g 0ω1/ω2, g 2 = g 0, and the SBS gain parameter142
g 0 = 4vaω2�|Q2|

2/0 (with units of m−1W−1) [14].143
The approach of the numerical method is to solve Eqs. (6)144

and (7) in a stepwise manner to find the optical fields; the opti-145
cal fields at each time step are then substituted into Eq. (3) to146
obtain the acoustic envelope field, and the process is repeated. At147
each time step the solution requires calculation of the thermal148
noise function D(z, t), which behaves as a random walk in149
time while remaining white in space. The optical equations are150
solved with the input boundary conditions a(0, t)= a p(t)151
and a(L, t)= a s (t); in general, these boundary conditions152
may be stochastic to account for noise in the input lasers. In153
the following, we first describe the approach taken to compute154
the thermal noise function, then discuss the inclusion of noise155
into the boundary conditions, before describing the iterative156
algorithm itself.157

It should be noted that it is also possible to solve158
Eqs. (1a)–(1c) directly without integrating the acoustic enve-159
lope field in time first [as in Eq. (3)], and this procedure would160
yield the same results. However, since the thermal background161
field is assumed to be in an equilibrium state by t = 0, this alter-162
native method would require simulating the acoustic envelope163
field for a very long time t < 0. This is computationally less164
efficient and poses no advantages over the present method.165

B. Computing the Thermal Noise Function166

The function D(z, t) contains all the thermal noise information167
about the system. To model D(z, t) numerically, we note that168
its evolution in time corresponds to an Ornstein–Uhlenbeck169
process [20]. Equation (4) can be written in Itô differential form170
[21] as171

dD(z j , t)=−
1

2
0D(z j , t)dt + va

√
σ R(z j , t)dt, (8)

where the z axis is discretized on the equally spaced grid z j with172
spacing 1z. We know that R(z j , tn)dt = 1

√
1z

dW j (tn), where173

dW j (tn) is the standard complex-valued Wiener increment in174
time, and the scaling factor arises from the Dirac-delta nature175
of the continuous-space auto-correlation function of D(z, t).176
The complex increment dW j (t) is a linear combination of two177
independent real Wiener processes,178

dW j (t)=
1
√

2

[
dW (1)

j (t)+ idW (2)
j (t)

]
, (9)

where 〈dW (p)
j (t)dW (q)

j (t)〉 = δpq dt , where δpq is the179
Kronecker delta. Integrating Eq. (8) from 0 to t yields the180
following analytic solution:181

D(z j , t)= e−
1
20t D0(z j )+ va

√
σ

1z

∫ t

0
e−

0
2 (t−s )dW j (s ),

(10)
where D0(z j ) is the cumulative random walk from t =−∞ up 182
to t = 0. This quantity is calculated using 183

D0(z j )=
1
√

2

[
N (1)

z j

(
0,

vaσ

αac1z

)
+ iN (2)

z j

(
0,

vaσ

αac1z

)]
,

(11)
where N (1,2)

z j
(0, vaσ/αac1z) represents normal random 184

variables with zero mean and variance vaσ/(αac1z), independ- 185
ently sampled at each z j . Numerically, we can compute the 186
integral in Eq. (10) following the procedure in Appendix A. 187
Thus, we simulate Eq. (10) as a random walk using discrete 188
increments1t , 189

D(z j , tn+1)= e−
1
201t D(z j , tn)

+ γ (1t)
[
N (1)

z j ,tn (0, 1)+ iN (2)
z j ,tn (0, 1)

]
, (12)

where 190

γ (1t)= va

√
σ
(
1− e−01t

)
21z0

, (13)

and setting the initial value as D(z j , t0)= D0(z j ). The random 191

numbers N (1,2)
z j ,tn (0, 1) are independently sampled at each point 192

(z j , tn). Figure 2 shows multiple realizations of D(z j , t) at an 193
arbitrary point z j and its ensemble average. 194

C. Noisy Boundary Conditions 195

Input laser noise can be an important feature in SBS experi- 196
ments. In the context of the SBS envelope equations, it enters 197
in the form of random phase fluctuations at the inputs of the 198
waveguide, namely z= 0 for the pump field and z= L for the 199
Stokes field. We simulate this laser phase noise in the input fields 200
by modeling the boundary conditions as 201

Fig. 2. Multiple independent realizations (dashed gray) of the
modulus squared of the thermal function |D(z j , t)|2 at an arbitrary
position z j , the numerical ensemble average over 20 realizations
(red) and the analytic ensemble average (blue). We use a temperature
of T = 300 K, va = 2500 m/s, τa = 5.3 ns, 1z= 0.79 mm, and
1t = 6.43 ps.
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a1(0, tn)= a p(tn)=
√

P in
1 (tn)e

iφ1(tn), (14)

202

a2(L, tn)= a s (tn)=
√

P in
2 (tn)e

iφ2(tn), (15)

where P in
1 (t) and P in

2 (t) are deterministic envelope shape203
functions for the pump and Stokes fields, respectively, repre-204
senting input power from the lasers. The variables φ1(t) and205
φ2(t) are stochastic phase functions modeled as zero-mean206
independent Brownian motions. The variation in the phase207
φ(t) is related to the laser’s intrinsic linewidth 1νL , or con-208
versely the coherence time τcoh = 1/(π1νL), via the expression209
〈[φ(t + τ)− φ(t)]2〉 = 2π1νL |τ |, where τ = t ′ − t for210
the two times t ′ and t [22–24]. Following a similar numerical211
procedure to [25], we computeφ j (t) as212

φ j (t)=
√

2π1νL

∫ t

0
dW j (s ), (16)

where dW(s ) is a real-valued Wiener process increment in time.213
To generate the random walk numerically, we cast this integral as214
an Itô differential equation dφ j (t)=

√
2π1νL dW j (t), which215

is discretized using an Euler–Mayurama [26] scheme as216

φ j (tn+1)= φ j (tn)+
√

2π1νL

√
1t Ntn (0, 1), (17)

where Ntn (0, 1) is a standard normally distributed random217
number sampled at each tn . A simulation of a single realization218
of the noisy boundary conditions is shown in Fig. 3.219

D. Numerical Algorithm220

We now present the main numerical algorithm of this paper.221
The algorithm consists of two consecutive steps: first, we solve222
Eqs. (1a) and (1b) in the absence of optical loss or nonlinear223
interactions. In other words, we solve the following pair of224
advection equations:225

∂a1

∂z
+

1

v

∂a1

∂t
= 0, (18)

226

Fig. 3. Single realization of the noisy boundary conditions. The
plots show (a) pump power, (b) pump phase, (c) Stokes power, and
(d) Stokes phase. Both pulses are Gaussian with FWHM of 2 ns. The
laser linewidth used here is1νL = 100 MHz.

∂a2

∂z
−

1

v

∂a2

∂t
= 0. (19)

With the boundary conditions a1(0, t)= a p(t) and 227
a2(L, t)= a s (t), these have the following elementary solutions: 228

a1(z, t)= a p

(
t −

z
v

)
, (20)

229

a2(z, t)= a s

(
t −

L − z
v

)
. (21)

Setting the numerical grid parameter 1z= v1t further 230
simplifies Eqs. (20) and (21) to 231

a1(z j , tn) ← a1(z j−1, tn−1), (22)

232
a2(z j , tn) ← a2(z j+1, tn−1), (23)

such that the optical fields are shifted in space by exactly1z dur- 233
ing each time iteration. The envelope field b(z, t) is assumed to 234
remain stationary in space during each time step, as is typical in 235
the context of SBS experiments involving pulses [14]. After the 236
fields are shifted across the waveguide, we solve the time evolu- 237
tion equations at each point z j independently, i.e., we solve 238

1

v

∂a1(z j , t)
∂t

=−
1

2
αa1(z j , t)−

1

4
g 10a2(z j , t)I ∗1,2(z j , t)

+ iω1 Q1a2(z j , t)D∗(z j , t),

1

v

∂a2(z j , t)
∂t

=−
1

2
αa2(z j , t)+

1

4
g 20a1(z j , t)I1,2(z j , t)

(24)
239

−iω2 Q2a1(z j , t)D(z j , t), (25)

where the interaction integral I1,2(z j , t) is computed as 240

I1,2(z j , tn)=
1t
2

e−
0
2 n1t[I1,2(z j , tn−1)

+ a∗1(z j , tn−1)a2(z j , tn−1)e
0
2 (n−1)1t

+ a∗1(z j , tn)a2(z j , tn)e
0
2 n1t]. (26)

To integrate the envelope fields a1 and a2 in time, we use 241
an Euler–Mayurama scheme [27], which yields the following 242
finite-difference equations: 243

a1(z j , tn+1)=

[
1−

vα1t
2

]
a1(z j , tn)− v1t

[
g 10 I ∗1,2(z j , tn)

4

−iω1 Q1 D∗(z j , tn)

]
a2(z j , tn),

(27)
244

a2(z j , tn+1)=

[
1−

vα1t
2

]
a2(z j , tn)+ v1t

[
g 20 I1,2(z j , tn)

4

−iω2 Q2 D(z j , tn)

]
a1(z j , tn).

(28)
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Algorithm 1. Numerical algorithm

1: Compute D(z j , tn) for all tn

2: Computeφ1,2(tn) for all tn

3: Set a1,2 = 0 inside z ∈ [0, L]
4: for n = 1 to Nt − 1 do B Nt = size of time grid
5: Insert noisy boundary conditions in a1,2 at tn

6: Shift optical fields a1,2 in space by1z
7: Compute interaction integral I1,2(z j , tn)

8: Compute a1,2(z j , tn+1) from a1,2(z j , tn)

9: Compute b(z j , tn+1)

end for

The acoustic field is computed at each z j and tn+1 after245
computing a1,2, via the equation246

b(z j , tn+1)= iva�Qa I12(z j , tn+1)+
√
1zD(z j , tn+1).

(29)
The
√
1z factor in front of D(z j , tn+1) ensures that the vari-247

ance of b is independent of the numerical grid resolution.248
Once all the fields are computed at tn+1, we repeat the drift249

steps in Eqs. (22) and (23), and the entire process is iterated until250
the optical fields have propagated across the waveguide. The251
steps of this numerical method are given in Algorithm 1.252

E. Statistical Properties of the Fields253

The iterative scheme in Algorithm 1 computes a single reali-254
zation of the SBS interaction given a specific set of input255
parameters. We must repeat this process M times with the256
same input parameters to build an ensemble of M independent257
simulations, from which statistical properties may be calculated.258
For instance, the true average of the power for all three fields259
(P1,2 for the optical fields and Pa for the acoustic field) may be260
calculated as261

〈
P1,2(z j , tn)

〉
=

〈∣∣a1,2(z j , tn)
∣∣2〉≈ 1

M

M∑
m=1

∣∣∣a (m)1,2 (z j , tn)
∣∣∣2,
(30)

262 〈
Pa (z j , tn)

〉
=

〈∣∣b(z j , tn)
∣∣2〉≈ 1

M

M∑
m=1

∣∣b(m)(z j , tn)
∣∣2, (31)

where m refers to a specific realization of each process. Similarly,263
we compute the standard deviation in the power at each point264
(z j , tn) as265

std
[
P1,2(z j , tn)

]
=

√〈[
P1,2(z j , tn)

]2
〉
−
〈
P1,2(z j , tn)

〉2
,

(32)
266

std
[
Pa (z j , tn)

]
=

√〈[
Pa (z j , tn)

]2
〉
−
〈
Pa (z j , tn)

〉2
. (33)

The standard deviation is useful when comparing with exper-267
iments, since it gives a quantitative measure of the size of the268
power fluctuations in the measured optical fields.269

3. RESULTS AND DISCUSSION 270

We demonstrate the numerical method by simulating 271
the SBS interaction of the three fields with both ther- 272
mal noise (T = 300 K, 1νB = 30 MHz) and laser noise 273
(1νL = 100 kHz), using a chalcogenide waveguide of length 274
50 cm, with the properties in Table 1. Although our formalism 275
includes optical loss through the factor α, we have chosen α = 0 276
in the simulations to focus on the effect of net SBS gain and 277
pulse properties on the noise. Here we study the noisy SBS 278
interaction in two different cases—spontaneous scattering and 279
stimulated scattering—and investigate the effects of pump 280
width and SBS gain on the noise properties of the Stokes field. 281

282

A. Spontaneous Brillouin Scattering Case 283

We first consider the situation in which there is no input 284
Stokes field from an external laser source, and the Stokes arises 285
purely from the interaction between the pump and the thermal 286
field—this situation is customarily referred to as spontaneous 287
or spontaneously seeded Brillouin scattering. We specify a 288
Gaussian pump pulse of varying widths and constant peak 289
power, with input phase noise (1νL = 100 kHz). Setting the 290
waveguide temperature at 300 K and the pump FWHM of 2 ns, 291
in Figs. 4(a)–4(c), we see that the thermal acoustic field interacts 292
with the pump to generate an output Stokes signal. At the same 293
time, the Stokes field depletes some of the pump and amplifies 294
the acoustic field, which leads to more Stokes energy being 295
generated. The noisy character of the Stokes field in Fig. 4(b) is 296
due to the incoherent thermal acoustic background, which gen- 297
erates multiple random Stokes frequencies. In this short-pump 298
regime, the SBS amplification is small, and the generated Stokes 299
field remains incoherent. 300

As we increase the width of the pump to 5 ns, the net SBS 301
gain in the waveguide also increases. In this long-pump regime, 302
the (spontaneously generated) Stokes field is amplified coher- 303
ently, as shown in Fig. 5(b). However, it should be noted that, 304

Table 1. Simulation Parameters Using a
Chalcogenide Waveguide of the Type Shown in [33]

Parameter Value

Waveguide length L 50 cm
Waveguide temperature T 300 K
Refractive index n 2.44
Acoustic velocity va 2500 m/s
Brillouin linewidth1νB 30 MHz
Brillouin shift�/2π 7.7 GHz
Brillouin gain parameter g 0 423 m−1W−1

Optical wavelength λ 1550 nm
Laser linewidth1νL 100 kHz
Peak pump power 1 W
Peak Stokes power 0–1 mW
Simulation time t f up to 80 ns
Pump pulse FWHM 0.5–5 ns
Stokes pulse FWHM 1 ns
Grid size (space) Nz 1001
Grid size (time) Nt 2601
Step-size1t 4.07 ps
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Fig. 4. Waterfall plots for a single numerical realization of (a) pump
power, (b) Stokes power, and (c) acoustic power in the spontaneous
scattering case, using a Gaussian pump of FWHM 2 ns and peak power
of 1 W. Plots (d)–(f ) show the standard deviation of the field powers at
each point (z, t), calculated from 100 independent realizations of the
SBS interaction.

although the Stokes output becomes smooth, there is signifi-305
cant variation in the peak Stokes power from one independent306
realization to the next, as illustrated in Figs. 6(a) and 6(b). The307
standard deviation of the Stokes power over multiple independ-308
ent realizations increases with longer pump pulses, as shown in309
Fig. 5(e).310

As the pump becomes very long, we approach the CW311
regime, in which the pump power ramps up quickly at z= 0 and312
is kept at a constant value. If the waveguide is sufficiently long,313
the spontaneously generated Stokes field is amplified coherently314
until pump depletion begins to take effect, initially at z= 0315
and then throughout the length of the waveguide, until both316
Stokes and pump fields relax into the steady-state configura-317
tion in which the pump decreases exponentially, as shown in318
Figs. 7(a) and 7(b). When such a steady state is reached, the319
depletion induced by the spontaneously seeded Stokes may320
inhibit Brillouin scattering from an input Stokes pulse injected321
at z= L .322

Returning to the pulsed case, we investigate the effect of323
increasing the peak pump power, and therefore the overall SBS324
gain, on the amplification of the spontaneous Stokes field.325
Figure 8 shows how the Stokes spectral linewidth increases for326
input pump powers between 0.1 and 2 W for a Gaussian pump327
pulse with fixed FWHM of 5 ns. The increase in linewidth328

Fig. 5. Waterfall plots for a single numerical realization of (a) pump
power, (b) Stokes power, and (c) acoustic power in the spontaneous
scattering case, using a Gaussian pump of FWHM 5 ns and peak power
of 1 W. Plots (d)–(f ) show the standard deviation of the field powers at
each point (z, t), calculated from 100 independent realizations of the
SBS interaction.

Fig. 6. Multiple independent realizations of the spontaneously
generated Stokes power across the waveguide for (a) 2 ns wide pump
and (b) 5 ns wide pump. These snapshots are taken at the time when
the peak of the pump pulse reaches z= 50 cm.

occurs due to the transition from linear to nonlinear SBS ampli- 329
fication: in the linear amplification regime, the spontaneously 330
generated Stokes field retains a constant temporal width while 331
its peak power increases with input pump power. In the nonlin- 332
ear amplification regime, the Stokes field undergoes temporal 333
compression as a result of the central peak of the pulse being 334
amplified faster than the tails. Beyond 2 W of peak pump power, 335
the spectral linewidth of the Stokes field narrows as pump deple- 336
tion becomes significant, because the Stokes field is prevented 337
from uniformly experiencing exponential gain throughout the 338
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Fig. 7. Waterfall plots for a single numerical realization of (a) pump
power and (b) Stokes power in the spontaneous scattering case, using a
CW pump with 1 W peak power.

Fig. 8. Computations of the spontaneously generated Stokes field
at z= 0 over 500 independent realizations, using a 5 ns Gaussian
pump pulse, with varying input peak pump power. Plot (a) shows
the output ensemble averaged Stokes power at z= 0, normalized by
the maximum power at each input pump, and (b) shows the FWHM
of the Stokes in time domain. Plot (c) shows the normalized power
spectral density (PSD) of the Stokes field, and (d) is the FWHM of the
Stokes in frequency domain.

waveguide, an effect which is also observed in the CW pump339
case [12].340

B. Effect of Laser Phase Noise341

Our previous simulations included laser phase noise corre-342
sponding to a laser linewidth of 100 kHz in the pump. This is343

Fig. 9. Waterfall plots for a single numerical realization of (a) pump
power and (b) Stokes power in the spontaneous scattering case, using a
CW pump with 1 W peak power and a laser linewidth of 100 MHz.

equivalent to a coherence time of τcoh = 3.2 µs, which is at least 344
100 times larger than the characteristic time of the SBS inter- 345
action in Figs. 4–7. For this reason it is understandable that no 346
contribution from the laser phase noise to the optical or acoustic 347
fields was observed. The contribution of laser phase noise can, 348
however, be observed if the linewidth of the pump is sufficiently 349
broad. We, therefore, consider the CW pump regime with zero 350
Stokes input power, with a laser linewidth of 100 MHz, which 351
corresponds to a coherence time of 3.2 ns (Fig. 9). We see a 352
significant contribution from the laser phase noise in the form 353
of amplitude fluctuations, which are completely absent in the 354
100 kHz linewidth case (Fig. 7). From this we infer that, when 355
the laser coherence time τcoh is comparable to the pulse widths 356
τp,s, the fluctuations in the phase are fast enough to be trans- 357
ferred to the envelope of the pulse. However, when τcoh� τp,s, 358
the noisy character of the envelope fields will vanish. This has 359
important implications for the case of pulsed SBS: phase noise 360
can only play a significant role in the interaction if τcoh ≤ τp,s. 361
For lasers with a relatively small linewidth, such as in the kHz 362
range, phase noise will only become a significant effect when 363
operating in the long pulse or CW regime. 364

C. Stimulated Brillouin Scattering Case 365

We now examine the case of seeded Brillouin scattering, in which 366
a Stokes signal is injected at z= L . We first consider a 1 mW 367
peak power Stokes pulse of FWHM 1 ns in the same chalco- 368
genide waveguide as before. The pump is a Gaussian pulse of 369
constant peak power of 1 W, with a width of 2 ns. As can be 370
seen in Fig. 10, the Stokes pulse remains smooth throughout 371
the interaction, and although the standard deviation over 100 372
independent realizations is approximately 1.4% of the peak 373
value, there are no visible fluctuations in the power across space 374
or time in Fig. 10(b). A closer look at multiple individual real- 375
izations in Fig. 11(a) reveals that there is a measurable level of 376
variation in the Stokes power, although each individual realiza- 377
tion of the Stokes field is smooth. By increasing the pump width 378
to 5 ns as shown in Fig. 11(b), we also increase the standard 379
deviation in the Stokes; however, each independent realization 380
appears smoother compared to Fig. 11(a). This further demon- 381
strates how, in the longer pump, high SBS gain regime, the 382
amplification of the Stokes is sufficient to cancel random phase 383
differences in the Stokes field, as we observed in the spontaneous 384
scattering case in Fig. 5. 385
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Fig. 10. Waterfall plots for a single numerical realization of
(a) pump power, (b) Stokes power, and (c) acoustic power in the stimu-
lated scattering case, using a Gaussian pump pulse of width 2 ns and
peak power 1 W. The input Stokes pulse has width 1 ns and peak power
1 mW. Plots (d)–(f ) show the standard deviation in the fields at each
point (z, t) for 100 independent realizations of the SBS interaction.

Fig. 11. Multiple independent realizations of the Stokes power
across the waveguide for (a) 2 ns wide pump and (b) 5 ns wide pump.
These snapshots are taken at the time in which the peaks of the pump
and Stokes meet in the middle of the waveguide.

Fig. 12. Convergence plots showing the relative error (a)–(c) in
the ensemble averaged powers and (d)–(f ) in the variance of the pow-
ers, as a function of the step-size 1t used in the numerical grid. The
reference step-size used is 1tmin = 40.7 fs. The calculations are based
on a sample size of 1000 independent simulations of the fields. The
test problem consists of two optical Gaussian pulses for the pump and
Stokes of width 1 ns, with peak powers pump 100 mW (pump) and
10 µW (Stokes). The statistical properties of P1, P2, and Pa are calcu-
lated from P1(L, tmax), P2(0, tmax), and Pa (L/2, tmax) respectively,
where tmax is the time at which the peaks of the optical pulses reach the
opposite ends of the waveguide. The computations include thermal
noise in the waveguide at temperature 300 K, and input laser phase
noise with linewidth 100 kHz. The waveguide properties are given in
Table 1.

D. Convergence of the Method 386

We now study the convergence of the numerical method by 387
looking at the statistical properties of the power in each field 388
at fixed points on (z, t). We use a default minimum step-size 389
in time 1tmin = 40.7 fs against which we compare the results 390
for larger step-sizes 1t . We compute the relative error in the 391
power and variance of the power, taken over 1000 independent 392
realizations. These results correspond to what is known as weak 393
convergence in stochastic differential equations [26], where 394
the mean value of a random quantity, in our case the power, 395
converges at a specific rate with respect to the step-size used. 396

The results for the convergence computations are shown in 397
Fig. 12. As expected from the Euler–Mayurama scheme [26], 398
the convergence rate is at most linear for the mean power of all 399
three fields. A similar rate of convergence is recorded for the 400
variance in each power, showing a one-to-one error reduction 401
with step-size. Although some higher order methods exist that 402
implement higher order Taylor expansions and Runge–Kutta 403
schemes [26,28–30], these methods only work with ordinary 404
stochastic differential equations; numerical methods for partial 405
stochastic differential equations are an active area of research in 406
applied mathematics [31]. 407
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4. CONCLUSION408

We have presented a numerical method by which the fully409
dynamic coupled SBS equations in both CW and pulsed sce-410
narios with thermal and laser noise can be solved. The method411
offers linear convergence in both the average power and variance412
of the power of the optical and acoustic fields, with variances413
that do not depend on step-size. From our simulations, we find414
that the noise properties of the fields rely on the length of the415
optical pulses involved as well as on the net SBS gain in the416
waveguide. For short-pump, low gain regimes, the spontaneous417
Stokes field is incoherently amplified and exhibits large spatial418
and temporal fluctuations, whereas for the long-pump, high419
gain regime, the field is amplified coherently, resulting in a420
smooth field but with large variations in peak power between421
independent realizations. Similar observations are made for the422
stimulated scattering case using a Stokes signal. We also find423
that laser phase noise does not play a significant role in the SBS424
interaction unless the laser coherence time is comparable to the425
characteristic time scales of the SBS interaction.426

APPENDIX A427

The integral term in Eq. (10) can be evaluated using the proper-428
ties of Itô integrals. First, since the integrand is a deterministic429
function of time, and dW j (s ) is a normally distributed stochas-430
tic process, the integral is also a normally distributed stochastic431
process. Second, dW j (s ) is a complex-valued process, so432
the integral can be split into two statistically independent433
real-valued integrals,434 ∫ t

0
e−

0
2 (t−s )dW j (s )=

1
√

2

∫ t

0
e−

0
2 (t−s )dW (1)

j (s )

+ i
1
√

2

∫ t

0
e−

0
2 (t−s )dW (2)

j (s ), (A1)

and each of these real integrals will have the same statistical prop-435
erties, namely436 〈∫ t

0
e−

0
2 (t−s )dW (q)

j (s )
〉
= 0. (A2)

The variance is derived using the Itô isometry property for a437
stochastic process X (t) [32],438 〈(∫ t

0
X (s )dW(s )

)2
〉
=

〈∫ t

0
X 2(s )ds

〉
. (A3)

Using this property, we write439 〈(∫ t

0
e−

0
2 (t−s )dW (q)

j (s )
)2
〉
=

1

0

(
1− e−0t) , (A4)

which leads to the result for the variance,440

Var

[∫ t

0
e−

0
2 (t−s )dW (q)

j (s )
]
=

1

0

(
1− e−0t) . (A5)

This means the integral can be computed as a normal random441
variable as442

∫ t

0
e−

0
2 (t−s )dW j (s )∼

√
1− e−0t

20

[
N (1)

z j ,t(0, 1)+ i N(1)
z j ,t(0, 1)

]
,

(A6)
which leads to Eq. (12). 443
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