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Summary. We derive precise asymptotic results that are directly usable for confidence inter-
vals and Wald hypothesis tests for likelihood-based generalized linear mixed model analysis.
The essence of our approach is to derive the exact leading term behaviour of the Fisher in-
formation matrix when both the number of groups and number of observations within each
group diverge. This leads to asymptotic normality results with simple studentizable forms.
Similar analyses result in tractable leading term forms for the determination of approximate
locally D-optimal designs.
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tization.

1. Introduction

We derive simple and usable theorems concerning the exact leading term behaviour of
likelihood-based generalized linear mixed model estimators and D-optimality criteria. The
theorems allow for straightforward construction of asymptotically valid confidence inter-
vals, Wald hypothesis tests and locally D-optimal designs. The main theorem concerns
the joint asymptotic normality of all model parameters and elegantly shows faster rates
of convergence of fixed effects that are not accompanied by a random effect compared
with fixed effects that have a partnering random effect. Maximum likelihood estimation
of random effects covariance matrix parameters are also included in our results.

Since the early 1990s generalized linear mixed models have been a mainstay of regression-
type statistical analyses in areas such as longitudinal data analysis, multilevel modelling,
panel data analysis and small area estimation. Overviews of generalized linear mixed
models, and access to their large literature that includes methodology, theoretical results
and software, are provided by books such as Faraway (2016), Jiang (2017), McCulloch
et al. (2008) and Stroup (2013). Both frequentist and Bayesian approaches are common
throughout the generalized linear mixed models literature. In this article we focus on
maximum likelihood estimation and frequentist inference. Our results allow for the quasi-
likelihood extension for which a dispersion parameter is present.

Despite the large volume of research concerning generalized linear mixed models, there
is very little theory concerning the statistical properties of maximum likelihood estimators.
Nie (2007) contains some asymptotic normality results for the setting considered in this
article, but they do not have a ready-to-use form for practical tasks such as obtaining
studentized confidence intervals and optimal design determination. For example, Theorem
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3 of Nie (2007) is such that the asymptotic covariance matrix of the fixed effects involves
limits and expectations over the response distribution. In contrast, our Theorem 1 in
Section 3 is such that the asymptotic covariance matrix is devoid of limits and involves
expectation over the random effects distribution. As we explain in Section 4, studentization
based on Theorem 1 is often quite simple for the construction of confidence intervals
and carrying out Wald hypothesis tests. For the design setting, Theorem 2 in Section
5 facilitates approximate locally D-optimal design determination in a simpler and more
direct manner compared with proposals given in, for example, Waite and Woods (2015)
and Zhang et al. (2017).

Key aspects of our approach to obtaining precise asymptotics for generalized linear
mixed models include: allowing both the number of groups and the within-group sample
sizes to diverge, use of multi-term Laplace’s method expansions for the ratios of sample
size-dependent integrals as given in Tierney et al. (1989) and Miyata (2004), working with
population limits of predictor-dependent sample mean quantities and establishing matrix
norm asymptotic negligibility between matrix square roots of asymptotic inverse Fisher
information matrices and simpler block diagonal forms.

Section 2 lays out the class of generalized linear mixed models treated in our theoretical
analysis. The main result, Theorem 1, concerning usable asymptotic normality of maxi-
mum likelihood estimators, is given in Section 3. In Section 4 we explain how Theorem
1 aids practical and asymptotically valid statistical inference in generalized linear mixed
model analysis and investigate finite sample performance via a simulation study. Sec-
tion 5 is concerned with the design consequences of our theory, and evidence of practical
D-optimal design construction is provided. In Section 6 we briefly discuss ramifications
for the Gaussian variational approximation approach to generalized linear mixed model
analysis in light of our main theorem. Some concluding remarks are given in Section 7.
The proofs are in appendices.

2. Model description and maximum likelihood estimation

Consider the class of one-parameter exponential family of density, or probability mass,
functions with generic form

p(y; η) = exp {yη − b(η) + c(y)}h(y) (1)

where η is the natural parameter. Common examples include the Bernoulli probability
mass function for which b(x) = log(1 + ex), c(x) = 0 and h(x) = I(x ∈ {0, 1}) and the
Poisson probability mass function for which b(x) = ex, c(x) = − log(x!) and h(x) = I(x ∈
{0} ∪ N). Here I(P) = 1 if the condition P is true and I(P) = 0 if P is false. If the
random variable Y has density function (1) then E(Y ) = b′(η) and Var(Y ) = b′′(η). A
common modelling extension, usually to account for overdispersion, is Var(Y ) = φ b′′(η)
where φ > 0 is a dispersion parameter. This involves replacement of log{p(y; η)} by a
quasi-likelihood function

{yη − b(η) + c(y)}/φ + d(y, φ) (2)

where d(y, φ) is a function of y and φ only. Note that φ is fixed at 1 for ordinary Bino-
mial and Poisson response models. For the Gaussian and Gamma response models (2)
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corresponds to log{p(y; η, φ)} for a two-parameter density function p(y; η, φ) and ordinary
likelihood applies. We study generalized linear mixed models of the form, for observations
of the random triples (XAij ,XBij , Yij), 1 ≤ i ≤ m, 1 ≤ j ≤ ni,

Yij |XAij ,XBij ,U i independent having quasi-likelihood function (2) with

natural parameter (β0
A + U i)T XAij + (β0

B)T XBij such that the U i are

independent N(0,Σ0) random vectors.

(3)

The U i are dA×1 unobserved random effects vectors. The XAij are dA×1 random vectors
corresponding to predictors that are partnered by a random effect. The XBij are dB × 1
random vectors are predictors that have a fixed effect only. Let Xij ≡ (XT

Aij ,X
T
Bij)

T

denote the combined predictor vectors. We assume that the Xij and U i, for 1 ≤ i ≤ m
and 1 ≤ j ≤ ni, are totally independent, with the Xij each having the same distribution
as the (dA + dB) × 1 random vector X = (XT

A,XT
B)T and the U i each having the same

distribution as the random vector U .
For any βA (dA×1), βB (dB×1) and Σ (dA×dA) that is symmetric and positive definite

and conditional on the Xij data, the quasi-likelihood is

`(βA,βB,Σ) =
m∑

i=1

ni∑
j=1

[{Yij(βT
AXAij + βT

BXBij) + c(Yij)}/φ + d(Yij , φ)]− m

2
log |2πΣ|

+
m∑

i=1

log
∫

RdA

exp

[
ni∑

j=1

{Yiju
T XAij − b

(
(βA + u)T XAij + βT

BXBij

)
}/φ− 1

2uTΣ−1u

]
du.

The maximum quasi-likelihood estimator of (β0
A, β0

B,Σ0) is

(β̂A, β̂B, Σ̂) = argmax
βA,βB,Σ

`(βA,βB,Σ).

Despite the ubiquity of model (3) and availability of established software such as the func-
tion glmer() in the package lme4 (Bates et al., 2015) within the R computing environment
(R Core Team, 2020), asymptotic normality results that lend themselves to confidence in-
terval construction and Wald hypothesis tests via studentization are not present in the
existing generalized linear mixed model literature. We address this issue in the next sec-
tion.

3. Asymptotic normality theorem

The main theoretical contribution of this article is an asymptotic normality theorem for
the maximum quasi-likelihood estimators. Define

n ≡ 1
m

m∑
i=1

ni = average of the within-group sample sizes,

ΩβB
(U) ≡ E

{
b′′
(
(β0

A + U)T XA + (β0
B)T XB

)[ XAXT
A XAXT

B

XBXT
A XBXT

B

] ∣∣∣∣∣U
}
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and

ΛβB
≡

(
E
[{

lower right dB × dB block of ΩβB
(U)−1

}−1
])−1

.

Let ‖v‖ ≡ (vT v)1/2 denote the Euclidean norm of a column vector v. For a symmetric
matrix M let λmin(M) denote the smallest eigenvalue of M . Also, let Dd denote the
matrix of zeroes and ones such that Ddvech(A) = vec(A) for all d×d symmetric matrices
A. The Moore-Penrose inverse of Dd is D+

d = (DT
d Dd)−1DT

d .
The theorem relies on the following assumptions:

(A1) The number of groups m diverges to ∞.

(A2) The within-group sample sizes ni diverge to ∞ in such a way that ni/n → Ci

for constants 0 < Ci < ∞, 1 ≤ i ≤ m. Also, n/m → 0 as m and n diverge.

(A3) The distribution of X is such that

E

E
[
max

{
1, ‖X‖

}8 max
{
1, b′′

(
(βA + U)T XA + βT

BXB

)}2
∣∣∣U]

min
{
1, λmin

(
E{XAXT

A b′′
(
(βA + U)T XA + βT

BXB

)
|U}

)}2

 < ∞

for all βA ∈ RdA , βB ∈ RdB and Σ a dA × dA symmetric and positive definite
matrix.

Theorem 1. Assume that conditions (A1)–(A3) hold. Then

√
m


β̂A − β0

A

√
n
(
β̂B − β0

B

)
vech(Σ̂−Σ0)

 D−→ N


 0

0

0

 ,

 Σ0 O O

O φΛβB
O

O O 2D+
dA

(Σ0 ⊗Σ0)D+T
dA


 .

Some remarks concerning Theorem 1 are:

1. The asymptotic variances of estimators of fixed effects that are not partnered by
random effects have order (mn)−1, which are superior to the order m−1 asymptotic
variances of estimators of fixed effects that are attached to random effects. The
random effects variance and covariance parameters also have order m−1 asymptotic
variances. For the dA = 1 case, usually corresponding to random intercept models,
results of this type are given in Nie (2007) and, in the Gaussian case, follow from
results such as (3.60) and (3.61) of McCulloch et al. (2008). In the literature to date,
we are not aware of such results at Theorem 1’s multivariate β̂A level of generality.
We are also not aware of other results for generalized linear mixed models that provide
the precise leading term and joint behaviour of all maximum likelihood estimators
under (A1)–(A2) asymptotics.

2. Asymptotic orthogonality between βA, βB and Σ is apparent from Theorem 1.
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3. Results in the existing literature, such as Theorem 3 of Nie (2007) and equation (6) of
Waite and Woods (2015) involve expectations over the response distribution in their
Fisher information approximations. In contrast, the matrix ΛβB

involves expectation
over the simpler random effects distribution. This simplification is due to careful
asymptotic analysis of the response distribution expectations in the derivation of
Theorem 1.

4. Theorem 1 treats the dispersion parameter φ as fixed. For the Gaussian and Gamma
response cases all parameters in (3), including φ, can be estimated using ordinary
maximum likelihood. Exact orthogonality between φ and (βA,βB) and asymptotic
orthogonality between φ and Σ means that the asymptotic covariance matrices of
Theorem 1 still hold for β̂A, β̂B and Σ̂. The extension of Theorem 1 for maximum
likelihood estimation of φ0 involves the addition of

√
mn
(
φ̂ − φ0

) D−→ N
(
0, v(φ0)

)
where v(x) ≡ 2x2 for Gaussian responses and v(x) ≡ x4/{trigamma(1/x) − x} for
Gamma responses; with details given in Bhaskaran (2022). For the quasi-likelihood
extension of the Binomial and Poisson response cases φ cannot be estimated via
maximum quasi-likelihood and, typically, is estimated via a method of moments
approach following the quasi-likelihood estimation phase. The values of the maximum
quasi-likelihood estimates of βA, βB and Σ do not depend on φ. Hence, Theorem 1
is unaffected by estimation of φ for these response cases too.

4. Asymptotically valid inference

The asymptotic normality results for maximum quasi-likelihood estimators given in The-
orem 1 also hold when the quantities appearing in the asymptotic variances are replaced
by consistent estimators. This process is often referred to as studentization. Since, for β̂A

and Σ̂, the asymptotic covariance matrices only involve Σ0, studentization simply involves
its replacement with Σ̂ and we have the asymptotic normality results

√
m Σ̂

−1/2
(
β̂A − β0

A

)
D−→ N(0, I) and

√
m{2D+

dA
(Σ̂⊗ Σ̂)D+T

dA
}−1/2vech(Σ̂−Σ0) D−→ N(0, I).

If σ̂2
k, 1 ≤ k ≤ dA, denotes the kth diagonal entry of Σ̂ then it follows that the intervals

(β̂A)k ± Φ−1
(
1− 1

2 α
)√ σ̂2

k

m
and σ̂2

k ± Φ−1
(
1− 1

2 α
)√2(σ̂2

k)
2

m
, (4)

where Φ is the N(0, 1) cumulative distribution function, are asymptotically valid 100(1−
α)% confidence intervals for the kth entry of β0

A and the (k, k) entry of Σ0, respectively.
Practical asymptotically valid inference for the entries of β0

B is more intricate. Studen-
tization of the Theorem 1 results for β0

B leads to the following 100(1 − α)% confidence
interval for the kth entry of β0

B (1 ≤ k ≤ dB):

(
β̂B

)
k
± Φ−1

(
1− 1

2 α
)√φ

(
Λ̂βB

)
kk

mn
. (5)
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Here
(
Λ̂βB

)
kk

is the (k, k) entry of

Λ̂βB
≡

[
|2πΣ̂|−1/2

∫
RdA

{
lower right dB × dB block of Ω̂βB

(u)−1
}−1

× exp
(
−1

2uT Σ̂
−1

u
)

du

]−1 (6)

where, for each u ∈ RdA ,

Ω̂βB
(u) ≡ 1

mn

m∑
i=1

ni∑
j=1

b′′
(
(β̂A + u)T XAij + β̂

T

BXBij

)[ XAijX
T
Aij XAijX

T
Bij

XBijX
T
Aij XBijX

T
Bij

]
.

In (6) integration is applied element-wise to each entry of the matrix inside the integral.
In some circumstances the integrals in (6) can be evaluated exactly. The most obvious
case is the Gaussian response situation for which b′′(x) = 1, implying that Ω̂βB

(u) is
constant as a function of u. A less obvious one is Poisson random intercept models for
which b′′(x) = ex, XA = 1 and βA set to the scalar fixed effects intercept parameter β0.
In this special case

Λ̂βB
= lower right dB × dB block of 1

mn

m∑
i=1

ni∑
j=1

exp
(
β̂0 + 1

2 σ̂2 + β̂
T

B XBij

) [ 1 XT
Bij

XBij XBijX
T
Bij

]
−1

.

In more general cases numerical integration is required to evaluate the entries of Λ̂βB
.

Investigations for the logistic and Poisson cases have revealed that the integrands are well-
behaved with exponentiated quadratic decaying tails. In the dA = 1 case we found that the
simple strategy of a line search for each integrand’s effective support and then application
of either trapezoidal integration or the R function integrate() provided effective and
stable solutions. This strategy was used in the logistic mixed model simulation study
described in the next paragraph. The study entailed 100,000 numerical integrations of
this type and all of them were achieved in a stable manner. The relevant R functions are
available in the supplementary material.

We ran a simulation study to assess the efficacy of Theorem 1-based confidence intervals
for the dA = dB = 1 logistic mixed model with φ = 1. In this case βA, βB and Σ are
replaced by the scalar parameter symbols β0, βB and σ2. The true parameter vector
(β0

0 , β0
B, (σ2)0) varied over the set

{(0.2,−0.1, 0.25), (−0.3, 1.2, 0.6), (1.6, 0.2, 0.7), (0.15,−0.5, 1), (−1.3, 0.1, 0.8)}

and the distribution of the Xij was taken to be either N(0, 1) or Uniform(−1, 1), the
uniform distribution over the interval (−1, 1). The number of groups m varied over the
set {100, 200, . . . , 1000} and the sample size within each group was n fixed at m/10. For
each of the possible combinations of the true parameter vector, the Xij distribution and
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Fig. 1. Actual coverage percentage of nominally 95% confidence intervals for β0
B in a dA = dB = 1

logistic mixed model. The confidence intervals are obtained using the exact observed Fisher
information computations provided by the function glmer() in the R package lme4 (dashed lines)
and Theorem 1 with studentization according to (5) (solid lines). The nominal percentage is shown
as a thick grey horizontal line. The percentages are based on 1000 replications. The values of m
are 100, 200, . . . , 1000. The value of n is fixed at m/10.

the sample size pair we simulated 1, 000 replications. For each sample, the maximum
likelihood estimates of β0

0 , β0
B and (σ2)0 were obtained using the function glmer() in the

R package lme4 (Bates et al., 2015). Using these estimates, we computed 95% confidence
intervals based on (5) with α = 0.05. For comparison, the 95% confidence interval based
on the exact observed Fisher information, as provided by glmer(), was also computed.

Figure 1 shows the actual coverage percentages for the advertized 95% confidence inter-
vals. It is seen that the two approaches give almost identical coverage percentages for all
one hundred truth, response distribution and sample size combinations. This is suggestive
of (Λ̂βB

)11/(mn) providing a very good approximation to the variance of β̂B that arises
from the exact observed Fisher information, and subsequent investigations show this to
be the case. In this logistic case the numerical integration is simpler for the approach
involving Theorem 1 and studentization. As mentioned above, the Poisson case requires
no numerical integration.

Inspection of Figure 2 reveals that, for inference concerning β0
0 , the very simple con-

fidence interval given by the first expression in (4) performs well when m is above about
500. For lower m the order leading term asymptotics, involving the order m−1 asymptotic
variance, are seen to be rather crude. Of course, the exact observed Fisher information
approach leads to better coverage. However, if m is in the several hundreds or thousands
then the closed form confidence interval arising from Theorem 1 and studentization is an
attractive alternative to the numerical integration-based exact approach. For dA > 1 mul-
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value of m (n is fixed at m/10)

co
ve

ra
ge

 p
er

ce
nt

ag
e

85

90

95

(β0
0, βB

0 , (σ2)0) = (.2,−.1,.25)

Xij ~ N(0, 1)
200 400 600 800 1000

(β0
0, βB

0 , (σ2)0) = (−.3,1.2,.6)

Xij ~ N(0, 1)
(β0

0, βB
0 , (σ2)0) = (1.6,.2,.7)

Xij ~ N(0, 1)
200 400 600 800 1000

(β0
0, βB

0 , (σ2)0) = (.15,−.5,1)

Xij ~ N(0, 1)
(β0

0, βB
0 , (σ2)0) = (−1.3,.1,.8)

Xij ~ N(0, 1)

200 400 600 800 1000

(β0
0, βB

0 , (σ2)0) = (.2,−.1,.25)

Xij ~ Uniform(− 1, 1)
(β0

0, βB
0 , (σ2)0) = (−.3,1.2,.6)

Xij ~ Uniform(− 1, 1)

200 400 600 800 1000

(β0
0, βB

0 , (σ2)0) = (1.6,.2,.7)

Xij ~ Uniform(− 1, 1)
(β0

0, βB
0 , (σ2)0) = (.15,−.5,1)

Xij ~ Uniform(− 1, 1)

200 400 600 800 1000

85

90

95

(β0
0, βB

0 , (σ2)0) = (−1.3,.1,.8)

Xij ~ Uniform(− 1, 1)

exact likelihood Theorem 1

Fig. 2. Actual coverage percentage of nominally 95% confidence intervals for β0
0 in a dA = dB = 1

logistic mixed model. The confidence intervals are obtained using the exact observed Fisher
information computations provided by the function glmer() in the R package lme4 (dashed lines)
and Theorem 1 with studentization according to (5) (solid lines). The nominal percentage is shown
as a thick grey horizontal line. The percentages are based on 1000 replications. The values of m
are 100, 200, . . . , 1000. The value of n is fixed at m/10.

tivariate numerical integration is needed for the exact approach, whereas the studentized
alternative is trivial. Theorem 1 provides the analyst with this quicker and simpler option
for large m.

An interesting problem for future research is the development of second order asymp-
totics for quantification of the variability of β̂B and facilitating more accurate studenti-
zation. For the Gaussian response dA = dB = 1 case, equation (3.60) of McCulloch et al.
(2008) indicates that the asymptotic variance of β̂0 is m−1(Σ0)11 + (mn)−1K{1 + oP (1)}
where K > 0 depends on φ and moments of the predictor distribution. Therefore, assum-
ing that such behaviour also holds for generalized responses, the simple studentization used
in (4) under-approximates the variability of β̂0 and explains the lower empirical coverage
values manifest in Figure 2.

In this section we have focussed on asymptotically valid inference based on confidence
intervals. Similar discussion applies to Wald hypothesis tests concerning the model pa-
rameters.

5. Approximate optimal design

Theorem 1 and its derivation involve large sample expressions for the Fisher information
for the class of generalized linear mixed models defined in Section 2. Here we explain
how the same type of approximation applies to the design setting. The analogous large
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sample approximation of the Fisher information has a tractable form which allows for
approximate locally optimal design determination. We restrict attention to D-optimality,
which corresponds to maximising the determinant of the Fisher information, and to opti-
mal design for random intercept generalized linear mixed models. Also, we only consider
designed experiments for which large sample sizes are feasible. Common practical situa-
tions, such as resource-driven restrictions to incomplete designs, are not covered by our
theory. Throughout this section we follow the nomenclature of Russell (2018)’s Chapter
3 on optimal design theory.

In Sections 2–4 we assumed that the data have been observed according to model
(3). In this section model (3) applies with dA = 1, βA = β0 and Σ = σ2, but the data
are yet to be observed. The unique values of the predictor variables is a finite set of
points in RdB denoted by x1, . . . ,xs and labelled the support points. Let nk denote the
number of observations made at xk and then let δk ≡ nk/(n1 + . . .+nk) be the proportion
of the data placed at support point xk. The δk are known as the design weights. Let
X ⊆ RdB denote the set to which the support points are restricted. For example, if dB = 2
with the first predictor being binary and the second predictor being a proportion then
X = {(x1, x2) : x1 ∈ {0, 1}, 0 ≤ x2 ≤ 1}. In non-Gaussian generalized response regression
models, the Fisher information matrix depends on model parameters and designs that
maximise its determinant for fixed values of the parameters are labelled locally D-optimal
designs.

Define

n ≡ 1
s

s∑
k=1

nk = average of the support point replication sizes within each group.

The theorem involves the following assumption:

(A4) The design sample sizes nk diverge to ∞ in such a way that nk/(sn) → δk for
constants 0 < δk < 1, 1 ≤ k ≤ s.

Theorem 2. Consider the dA = 1 random intercept generalized linear mixed model
with design weights δk and corresponding support points xk ∈ X ⊆ RdB, 1 ≤ k ≤ s.
Assume that condition (A4) holds. Then, based on the exact leading term behaviour of the
determinant of the Fisher information matrix, approximate locally D-optimal designs at
the parameter vector (β0,βB, σ2) are those for which∣∣∣∣∣∣∣∣
∫ ∞

−∞

{
lower right dB × dB block of

(
s∑

k=1

δkb
′′(β0 + βT

Bxk + u)

[
1 xT

k

xk xkx
T
k

])−1 }−1

× exp{−u2/(2σ2)} du

∣∣∣∣∣∣∣∣
(7)

is maximal over

{
δk : δk ≥ 0,

s∑
k=1

δk = 1, 1 ≤ k ≤ s

}
and {xk ∈ X : 1 ≤ k ≤ s}.

We have the following remarks about Theorem 2:
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1. For Poisson mixed models b′′(x) = exp(x) and Theorem 2 simplifies considerably.
The D-optimality criterion reduces to∣∣∣∣∣

s∑
k=1

δk exp(βT
Bxk)

[
1 xT

k

xk xkx
T
k

]∣∣∣∣∣
/

s∑
k=1

δk exp(βT
Bxk).

The numerator of this quantity is the approximate locally D-optimality criterion for
Poisson regression models (e.g. equation (5.4) of Russell (2018)). Moreover, as in the
generalized linear model situation, approximate locally D-optimal designs for Poisson
mixed models only are not impacted by β0 or σ2 and only depend on βB.

2. In the case of logistic mixed models b′′(x) = 1/[2{1 + cosh(x)}] and there is no
further simplification of (7). Hence, approximate locally D-optimal designs depend
on each of β0, βB and σ2. Even though (7) does not admit an explicit form for the
logistic case, each of the entries of the approximate Fisher information matrix can
be computed using univariate numerical integration. An illustration is given later in
this section.

3. Waite and Woods (2015) and Zhang et al. (2017) are examples of recent articles
that consider D-optimality for classes of generalized linear mixed models similar to
those considered here. However, they use approximations to the Fisher information
matrix based on paradigms such as generalized estimating equations and Laplace’s
method. In contrast, (7) is based on the precise leading term behaviour of the Fisher
information matrix.

4. With succinctness in mind, we have restricted our theory and discussion to D-
optimality. Other optimality criteria, such as A-optimality, also benefit from our
precise asymptotics for generalized linear mixed models.

5. Whilst this article is concerned chiefly with situations where the response variables
are non-Gaussian, it should be mentioned briefly that for the Gaussian special case
b′′(x) = 1 and the determinant in Theorem 2 is proportional to∣∣∣∣∣

s∑
k=1

δk

[
1 xT

k

xk xkx
T
k

]∣∣∣∣∣ . (8)

Since it does not depend on any model parameters, designs that (8) maximise are
globally D-optimal.

6. Approximate locally D-optimal designs for the dA > 1 extension is an interesting
challenge that is not met by the theory presented here. A case in point is dA = 2
and dB = 0, so that the only non-intercept predictor has both a fixed effect and
random effect. The leading term of the Fisher information matrix is a function of Σ
only. Therefore second order Fisher information asymptotic behaviour, not covered
by theory given here, is required for approximate locally D-optimal design.

To illustrate use of Theorem 2, consider the case where dB = 2 and both predictors are
binary. In this case, the only possible support points are xk ∈ {(0, 0), (0, 1), (1, 0), (1, 1)}
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Fig. 3. Approximate locally D-optimal designs for logistic mixed models with two binary predictors
when β0 = −0.3, βB = [1.7 2.1]T and the values of σ are a geometric sequence of length six
between σ = 0.6 and σ = 2.

and the number of support points is at most s = 4. Therefore, we only need to maximise
(7) over the design weights. Figure 3 shows the approximate locally D-optimal designs
for the situation where β0 = −0.3, βB = (1.7, 2.1) and the values of σ are a geometric
sequence of length six between σ = 0.6 and σ = 2. To obtain Figure 3 we used code in
the R language (R Core Team, 2020), similar to that provided in Section 4.5 of Russell
(2018), based on the function optim() and Nelder-Mead searches with 100 random initial
values. The results were insensitive to the initial value choices.

We see from Figure 3 that for the two lowest values of σ the optimal designs have
only three support points, with (1, 1) excluded from the design. As σ increases the design
weight for (1, 1) becomes positive and larger and is 0.159 when σ = 2.

6. Ramifications for Gaussian variational approximation

The Gaussian variational approximation approach to fitting and inference for generalized
linear mixed models was proposed and developed by Ormerod and Wand (2012). Exten-
sions to related models have been developed by, for example, Hui et al. (2011) and Jeon
et al. (2017). The gist of the Gaussian variational approach is to replace the log-likelihood
by a Gaussian-type lower bound containing so-called variational parameters. The lower
bound has tractability advantages over the exact log-likelihood and, in some sense, replaces
difficult numerical integration problems by enlarged optimization problems.

Hall et al. (2011) provided a deep theoretical analysis of the statistical properties of
Gaussian variational approximation. Focussing on the dA = dB = 1 Poisson response
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special case of (3), which is devoid of the need for numerical integration, they derived
the precise asymptotic distributional behaviour of the Gaussian variational approxima-
tion estimators of the model parameters, and this is summarized in their Theorem 3.1.
However, comparison of these results with those of Theorem 1 reveals that, at least in the
dA = dB = 1 Poisson case, the asymptotic variances of Gaussian variational approxima-
tion match those of maximum likelihood and the simpler approach is asymptotically fully
efficient. The full efficiency claim was not made in Hall et al. (2011) since the results in
the current article were not known at the time. In light of this article’s Theorem 1, and
Theorem 3.1 of Hall et al. (2011), it is conjectured that Gaussian variational approxima-
tion delivers asymptotic fully efficient inference for a wide range of generalized response
settings. Other variational inference approaches, such as mean field variational Bayes, are
susceptible to under-approximation of the variability of parameter estimates (e.g. Wang
and Titterington (2005)). It appears that Gaussian variational approximation does not
suffer from this drawback for the class of models considered here.

7. Concluding remarks

Since the emergence of generalized linear mixed models about thirty years ago as a major
vehicle for analysis of grouped data with non-Gaussian responses, the asymptotic proper-
ties of maximum likelihood estimators has received relatively little attention. Our main
theorem provides the definitive, interpretable and usable state of affairs concerning the
joint large sample behaviour of the maximum likelihood estimators of all model parame-
ters. The adaptation of our theory to the design context leads to a second theorem that
is demonstrably usable for construction of precise leading term-based approximate locally
D-optimal designs for generalized linear mixed models. Bhaskaran (2022) provides further
details and extensions of the results presented here.

A. Proof of Theorem 1

A.1. Notation and preliminary results
For a generic d × 1 vector v we define v⊗0 ≡ 1, v⊗1 ≡ v and v⊗2 ≡ vvT . We also
let diag(v) denote the d × d diagonal matrix with the entries of v along the diagonal.
For a matrix M let ‖M‖F = {tr(MT M)}1/2 denote the Frobenius norm of M and
‖M‖S = {largest eigenvalue of MT M}1/2 denote the spectral norm of M .

For f a smooth real-valued function of the d-variate argument x ≡ (x1, . . . , xd), let
∇f(x) denote the d× 1 vector with ith entry ∂f(x)/∂xi, ∇2f(x) denote the d× d matrix
with (i, j) entry ∂2f(x)/(∂xi∂xj) and ∇3f(x) denote the d×d×d array with (i, j, k) entry
∂3f(x)/(∂xi∂xj∂xk). Then the multivariate extension of (2.6) of Tierney et al. (1989),
and which follows from results in Appendix A of Miyata (2004), for smooth real-valued
d-variate functions g, c and h, is∫

Rd g(x)c(x) exp{−nh(x)} dx∫
Rd c(x) exp{−nh(x)} dx

= g(x∗) +
∇g(x∗)T {∇2h(x∗)}−1∇c(x∗)

nc(x∗)

+
tr[{∇2h(x∗)}−1∇2g(x∗)]

2n
− ∇g(x∗)T {∇2h(x∗)}−1a(x∗)

2n
+ O(n−2)

(9)
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where x∗ is the argument that minimises h(x) and a(x) is the d × 1 vector having kth
entry equal to tr

[
{∇2h(x)}−1∇3h(x)[k]

]
and ∇3h(x)[k] is the d×d matrix with (i, j) entry

equal to the (i, j, k) entry of ∇3h(x).
Next define,

GAi ≡
ni∑

j=1

{Yij − b′
(
(βA + U i)T XAij + βT

BXBij

)
}XAij ,

and

HAAi ≡
ni∑

j=1

b′′
(
(βA + U i)T XAij + βT

BXBij

)
XAijX

T
Aij .

Define GBi to be the same as GAi but with XAij replaced by XBij . Also, define HABi and
HBBi to be the same as HAAi but with XAijX

T
Aij replaced by, respectively, XAijX

T
Bij and

XBijX
T
Bij . In view of assumption (A3), the orders of magnitude of the these quantities

are
GAi = OP (n1/2)1dA , GBi = OP (n1/2)1dB ,

HAAi = OP (n)1⊗2
dA

, HABi = OP (n)1dA1T
dB

and HBBi = OP (n)1⊗2
dB

.
(10)

Let Xij ≡ (XT
Aij ,X

T
Bij)

T and Xi ≡ (Xi1, . . . ,Xini
). Key results, which can be obtained

using conditional moment calculations, are:

E(G⊗2
Ai |Xi, Ui) = φHAAi, E(GAiGT

Bi|Xi, Ui) = φHABi, E(G⊗2
Bi |Xi, Ui) = φHBBi. (11)

A.2. Score exact expressions
For 1 ≤ i ≤ m, let pY i|Xi

denote the conditional density function, or probability mass
function, of Y i given Xi. Then let

SAi ≡ ∇βA
log pY i|Xi

(Y i|Xi), SBi ≡ ∇βB
log pY i|Xi

(Y i|Xi)

and
SCi ≡ ∇vech(Σ) log pY i|Xi

(Y i|Xi)

denote the ith contribution to the scores with respect to each of βA, βB and vech(Σ).
Then standard algebraic manipulations lead to

SAi =

∫
RdA g

iA
(u)cD(u) exp{−nhi(u)} du∫

RdA cD(u) exp{−nhi(u)} du
, SBi =

∫
RdA g

iB
(u)cD(u) exp{−nhi(u)} du∫

RdA cD(u) exp{−nhi(u)} du
(12)

and

SCi =

∫
RdA g

iC
(u)cD(u) exp{−nhi(u)} du∫

RdA cD(u) exp{−nhi(u)} du
− 1

2DT
dA

vec(Σ−1) (13)

where cD(u) ≡ exp(−1
2uTΣ−1u), g

iA
(u) ≡ Σ−1u, g

iC
(u) ≡ 1

2DT
dA

(Σ−1 ⊗Σ−1)vec(uuT ),

g
iB

(u) ≡ 1
φ

ni∑
j=1

[XBij{Yij − b′
(
(βA + u)T XAij + βT

BXBij

)
}]
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and

hi(u) ≡ − 1
nφ

ni∑
j=1

{
Yiju

T XAij − b
(
(βA + u)T XAij + βT

BXBij

)}
.

Note that an integration by parts step is used to obtain the SAi expression.

A.3. Score asymptotic expansions
To deal with the integral ratios apparent in (12) and (13) we appeal to (9). Approximations
of SAi, SBi and SCi that use this equation depend on the random vector

U∗
i ≡ argmin

u∈RdA

hi(u).

It is easily verified that U∗
i is the unique solution of ∇hi(u) = 0.

A.3.1. Asymptotic expansion of U∗
i

Note that

0 =
ni∑

j=1

{
Yij − b′

(
(βA + U∗

i )
T XAij + βT

BXBij

)}
XAij

=
ni∑

j=1

{
Yij − b′

(
(β0

A + U i)T XAij + (β0
B)T XBij

)}
XAij

−
ni∑

j=1

b′′
(
(βA + U i)T XAij + (βB)T XBij

)
XAijX

T
Aij(U

∗
i −U i) + rit

= GAi −HAAi(U∗
i −U i) + rit

where rit is the Lagrange form of the remainder and is a quadratic form in U∗
i −U i and a

smooth function of U †
it ≡ (1− t)U i + t U∗

i for some t ∈ [0, 1]. Inversion of this asymptotic
series leads to

U∗
i = U i +H−1

AAiGAi + OP (n−1)1dA .

A.3.2. Asymptotic expansion of SAi

If (9) is applied to each entry of the expression for SAi at (12) then the first three terms
on the right-hand side are

Σ−1
(
U i +H−1

AAiGAi

)
+ OP (n−1)1dA , −φΣ−1H−1

AAiΣ
−1U i + OP (n−3/2)1dA and 0dA .

Note that Σ−1U i is OP (1)1dA , Σ−1H−1
AAiGAi is OP (n−1/2)1dA and Σ−1H−1

AAiΣ
−1U i is

OP (n−1)1dA . The contribution from the fourth term of (9) is also OP (n−1)1dA but does
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not have a succinct matrix algebraic representation. Putting these together we can assert
that

SAi = Σ−1
(
U i +H−1

AAiGAi

)
+ OP (n−1)1dA .

A.3.3. Asymptotic expansion of SBi

For each 1 ≤ k ≤ dB, consider application of (9) to the kth entry of SBi. The first term
on the right-hand side of (9) is

the kth entry of
1
φ

ni∑
j=1

XBij

{
Yij − b′

(
(βA + U∗

i )
T XAij + βT

BXBij

)}
. (14)

Next note that

b′
(
(βA + U∗

i )
T XAij + βT

BXBij

)
= b′

(
(βA + U i)T XAij + (βB)T XBij

)
+XT

Aij(U
∗
i −U i)b′′

(
(βA + U i)T XAij + (βB)T XBij

)
+ OP (n−1)1dB .

Plugging this into (14) we obtain the first term of SBi taking the form

1
φ

(
GBi −HT

ABiH−1
AAiGAi

)
+ OP (1)1dA = OP (n1/2)1dA

The contribution to SBi from the second term on the right-hand side of (9) is

HT
ABiH−1

AAiΣ
−1U i + OP (n−1/2)1dB = OP (1)1dB .

which is OP (1)1dB . The contributions to SBi from the third and fourth terms on the
right-hand side of (9) are also OP (1)1dB but do not admit succinct matrix algebraic forms.
Combining all four asymptotic approximations, we are able to declare:

SBi =
1
φ

(
GBi −HT

ABiH−1
AAiGAi

)
+ OP (1)1dB .

A.3.4. Asymptotic expansion of SCi

Application of (9) to the integral ratio component of SCi leads to the first, second and
third terms equalling

1
2DT

dA
vec
(
Σ−1

(
U iU

T
i + 2H−1

AAiGAiU
T
i

)
Σ−1

)
+ OP (n−1)1dA(dA+1)/2,

−φDT
dA

vec
(
Σ−1H−1

AAiΣ
−1U iU

T
i Σ−1

)
+ OP (n−3/2)1dA(dA+1)/2 (15)

and
φ

2
DT

dA
vec(Σ−1H−1

AAiΣ
−1) + OP (n−3/2)1dA(dA+1)/2. (16)

Since HAAi = OP (n)1⊗2
dA

, (15) and (16) are OP (n−1)1dA(dA+1)/2. The fourth term arising
from (9) is also OP (n−1)1dA(dA+1)/2 but does not have a simple matrix algebraic form.
Combining these results we have

SCi = 1
2DT

dA

{
vec
(
Σ−1

(
U iU

T
i + 2H−1

AAiGAiU
T
i

)
Σ−1

)
− vec(Σ−1)

}
+ OP (n−1)1dA(dA+1)/2.
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A.4. Lemma for the population leading term of the main Fisher information block
The population quantity ΛβB

appearing in Theorem 1 corresponds to the convergence in
probability limit of a particular random form involving the Hris. In this section we isolate
the problem of deriving this population leading term in the form of Lemma 1.

Lemma 1. Let X ≡ (XT
A,XT

B)T and Xij ≡ (XT
Aij ,X

T
Bij)

T , 1 ≤ i ≤ m, 1 ≤ j ≤ ni

be independent and identically distributed (dA + dB)× 1 random vectors, with dA ≥ 1 being
the number of entries of XA and the XAijs. Also, let U and U1, . . . ,Um be independent
and identically distributed random vectors, distributed independently of X and the Xijs.
Let f be a Borel measurable, positive real-valued function on RdA+dB and assume that

E

E
[
max

{
1, ‖X‖

}8 max
{
1, f
(
X,U

)}2
∣∣∣U]

min
{
1, λmin

(
E{XAXT

A f
(
X,U

)
|U}

)}2

 < ∞. (17)

If m and the ni satisfy assumptions (A1) and (A2) then

E

 1
mn

m∑
i=1


ni∑

j=1

XBijX
T
Aijf(Xij ,U i)




ni∑
j=1

XAijX
T
Aijf(Xij ,U i)


−1

×


ni∑

j=1

XBijX
T
Aijf(Xij ,U i)


T ∣∣∣∣∣X11, . . . ,Xmnm


P→ E

(
E{XBXT

Af(X,U)|U}
[
E{XAXT

Af(X,U)|U}
]−1

×E{XBXT
Af(X,U)|U}T

)
.

(18)

A.4.1. Proof of Lemma 1

Definitions

Let

N̂i(U) ≡ 1
ni

ni∑
j=1

XBijX
T
Aijf(Xij ,U), D̂i(U) ≡ 1

ni

ni∑
j=1

XAijX
T
Aijf(Xij ,U),

N (U) ≡ E{XBXT
A f(X,U)|U} and D(U) ≡ E{XAXT

A f(X,U)|U}.
Next, for t ∈ [0, 1], let

N †
it(U) ≡ (1− t)N (U) + tN̂i(U) and D†it(U) ≡ (1− t)D(U) + tD̂i(U).

If S is a dB × dA matrix and T is a dA × dA symmetric matrix define

R
([

S
T

])
= vec(ST−1ST )T .
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Throughout this proof we let Xi ≡ {Xi1, . . . ,Xini
}. For each 1 ≤ i ≤ m, define the event

Ai ≡
{
‖N̂i(U i)−N (U i)‖S ≤ 1, λmin

(
D̂i(U i)

)
≥ 1

2λmin

(
D(U i)

)}
.

Family of Intermediate Moment Conditions

The proof involves moment conditions of the form

E

[ {
E
(
‖XA‖p1 ‖XB‖p2f(X,U)|U

)}p3[
min

{
1, λmin

(
E{XAXT

A f(X,U)|U}
)}]2

]
< ∞ (19)

for various values of the triple (p1, p2, p3).

Proof Strategy

The required result follows from

1
mn

m∑
i=1

niE

∥∥∥∥∥E
[{
R

([
N̂i(U i)

D̂i(U i)

])
−R

([
N (U i)

D(U i)

])}
I(Ai)

∣∣∣∣∣Xi

]∥∥∥∥∥
S

→ 0 (20)

and

1
mn

m∑
i=1

niE

∥∥∥∥∥E
[{
R

([
N̂i(U i)

D̂i(U i)

])
−R

([
N (U i)

D(U i)

])}
I(AC

i )

∣∣∣∣∣Xi

]∥∥∥∥∥
S

→ 0. (21)

as m,n →∞. Our strategy involves proving each of (20) and (21) separately.

Proof of (20)

A Taylor series expansion of R with the Lagrange form of the remainder is

R
([

S
T

])
= R

([
S0

T 0

])
+

[
vec(S − S0)

vec(T − T 0)

]T
 [{(T †

t)
−1(S†

t)
T } ⊗ IdB ](Id2

B
+ KdB)

−{(T †
t)
−1(S†

t)
T } ⊗ {(T †

t)
−1(S†

t)
T }


where KdB is the commutation matrix of order dB (Magnus and Neudecker, 1979), S†

t ≡
(1 − t)S0 + tS, T †

t ≡ (1 − t)T 0 + tT , and t ∈ [0, 1]. Using ‖KdB‖S = 1 (Magnus and
Neudecker, 1979) and ‖A⊗B‖S = ‖A‖S ‖B‖S (e.g. Section 12.3.1 of Golub and Van Loan
(2013)) we obtain∥∥∥∥R([ S

T

])
−R

([
S0

T 0

])∥∥∥∥
S

≤ 2‖S†
t‖S ‖(T †

t)
−1‖S‖S − S0‖F +

(
‖S†

t‖S ‖(T †
t)
−1‖S

)2‖T − T 0‖F .

(22)

Suppose that, for 1 ≤ i ≤ m, (U i,Xi) are such that Ai occurs. Then standard
arguments lead to the bounds

‖N †
it(U i)‖S ≤ ‖N (U i)‖S + 1 and ‖D†it(U i)−1‖S ≤

2
λmin

(
D(U i)

) . (23)
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On application of (22) and (23) and routine arguments the left-hand side of (20) is bounded
above by

4
mn

m∑
i=1

ni

[
E
{
W(U i)‖N̂i(U i)−N (U i)‖F

}
+ E

{
W(U i)2‖D̂i(U i)−D(U i)‖F

}]
(24)

where W(U) ≡ {‖N (U)‖S + 1}
/
λmin

(
D(U)

)
. Convergence of (24) to zero under (A1)

and (A2) is readily established under the assumption that

E

{E{‖XA‖p1 ‖XB‖p2 f(X,U)|U}+ 1}
{

E
(
‖XA‖p3 ‖XB‖p4f(X,U)|U

)}1/2

λmin

(
E{XAXT

A f(X,U)|U}
)p5

 (25)

is finite for each of (p1, p2, p3, p4, p5) ∈ {(1, 1, 2, 2, 1), (2, 0, 4, 0, 2)}. Using the inequalities
(x+1)y < 1+x2+y2 for all x, y ∈ R and max(1/x, 1/x2) ≤ 1/{min(1, x)}2 for all x > 0 we
can replace finiteness of (25) by that of (19) for (p1, p2, p3) ∈ {(0, 0, 0), (1, 1, 2), (2, 0, 2)}.
Proof of (21)

First note that the left-hand side of (21) is bounded above by

1
mn

m∑
i=1

ni

(E


∥∥∥∥∥R
([

N̂i(U i)

D̂i(U i)

])∥∥∥∥∥
2

S


1/2

+

E


∥∥∥∥∥R
([

N (U i)

D(U i)

])∥∥∥∥∥
2

S


1/2)

P (AC
i )1/2.

(26)

Making use of the generalized Cauchy-Schwartz inequality on page 1093 of Chipman (1964)
we obtain

E


∥∥∥∥∥R
([

N̂i(U i)

D̂i(U i)

])∥∥∥∥∥
2

S

 ≤ E


∥∥∥∥∥∥ 1
ni

ni∑
j=1

XBijX
T
Bijf(Xij ,U i)

∥∥∥∥∥∥
2

S

 ≤ E{‖XB‖4f(X, U)2}

which is finite if (17) holds. Similar arguments lead to

E


∥∥∥∥∥R
([

N (U i)

D(U i)

])∥∥∥∥∥
2

S

 ≤ E

{
E{‖XA‖4 ‖XB‖4 f(X,U)|U}
λmin

(
E{XAXT

Af(X,U)|U}
)2
}

which is finite if (19) holds for (p1, p2, p3) = (4, 4, 1). Lastly, note that

P (AC
i ) ≤ P

(
‖N̂i(U i)−N (U i)‖S > 1

)
+P
(∣∣λmin

(
D̂i(U i)

)
− λmin

(
D(U i)

)∣∣ > 1
2λmin(D(U i))

)
.

Application of Markov’s inequality and Theorem 8.1.4 (Wielandt-Hoffman) of Golub and
Van Loan (2013) leads to P (AC

i ) ≤ Bn−1
i , for some constant 0 < B < ∞, assuming that
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(19) is true for all (p1, p2, p3) ∈ {(2, 2, 1), (4, 0, 1)}. Substitution of each of these bounds
into (26) leads to (21) holding under sample size assumptions (A1) and (A2).

Condensation of the Moment Assumptions

The full list of moment assumptions involving the form (19) are such that (p1, p2, p3)
takes values over the set {(0, 0, 0), (4, 0, 1), (2, 2, 1), (4, 4, 1), (1, 1, 2), (2, 0, 2)}. Inequalities
such as max{‖XA‖, ‖XB‖} ≤ ‖X‖ lead to each of these moments of the form in (19)
being dominated by the left-hand side of (17). Therefore (17) is sufficient for all moment
assumptions appearing in this proof.

A.5. Fisher information matrix
The asymptotic expansions of SAi, SBi and SCi, as well as results (10) and (11) and
Theorem 4.3(iv) of Magnus and Neudecker (1979), lead to

E(S⊗2
Ai |Xi) = Σ−1 + OP (n−1)1⊗2

dA
,

E(S⊗2
Bi |Xi) = 1

φE
(
HBBi −HT

ABiH
−1
AAiHABi

∣∣∣Xi

)
+ OP (1)1⊗2

dB
,

E(S⊗2
Ci |Xi) = 1

2DT
dA

(Σ−1 ⊗Σ−1)DdA + OP (n−1)1⊗2
dA(dA+1)/2,

E(SAiS
T
Bi|Xi) = OP (1)1dA1T

dB
, E(SAiS

T
Ci|Xi) = OP (n−1)1dA1T

dA(dA+1)/2

and E(SBiS
T
Ci|Xi) = OP (1)1dB1

T
dA(dA+1)/2.

(27)

Under assumptions (A1)–(A3), we have from Lemma 1,

1
mn

m∑
i=1

E
(
HBBi −HT

ABiH−1
AAiHABi

∣∣∣Xi

)
= Λ−1

βB
+ oP (1)1⊗2

dB
.

Therefore, we have following expression for the Fisher information matrix of the parameter
vector

(
βA,βB, vech(Σ)

)
:

I
(
βA,βB, vech(Σ)

)

=



mΣ−1 + OP (mn−1)1⊗2
dA

OP (m)1dA1T
dB

OP (mn−1)1dA1T
d�
A

OP (m)1dB1
T
dA

mnΛ−1
βB

φ
+ oP (mn)1⊗2

dB
OP (m)1dB1

T
d�
A

OP (mn−1)1d�
A
1T

dA
OP (m)1d�

A
1T

dB

mDT
dA

(Σ−1 ⊗Σ−1)DdA

2
+OP (mn−1)1⊗2

d�
A


.

where d�
A ≡ dA(dA + 1)/2. Strictly speaking, the term Fisher information applies to the

φ = 1 ordinary likelihood situation. In this derivation, we use the same term for the φ 6= 1
quasi-likelihood adjustment for responses such as Binomial and Poisson.
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A.6. Inverse Fisher information matrix
For inversion of the Fisher information matrix we work with the ordering (βA, vech(Σ),βB)
rather than (βA,βB, vech(Σ)). A trivial rearrangement of matrix entries leads to

I
(
βA, vech(Σ),βB

)

=



mΣ−1 + OP (mn−1)1⊗2
dA

OP (mn−1)1dA1T
d�
A

OP (m)1dA1T
dB

OP (mn−1)1d�
A
1T

dA

mDT
dA

(Σ−1 ⊗Σ−1)DdA

2
OP (m)1d�

A
1T

dB

+OP (mn−1)1⊗2
d�
A

OP (m)1dB1
T
dA

OP (m)1dB1
T
d�
A

mnΛ−1
βB

φ
+ oP (mn)1⊗2

dB


.

Then partition I
(
βA, vech(Σ),βB

)
and I

(
βA, vech(Σ),βB

)−1 according to

I
(
βA, vech(Σ),βB

)
=

[
A11 A12

AT
12 A22

]
and I

(
βA, vech(Σ),βB

)−1 =

[
A11 A12

(A12)T A22

]
where

A11 ≡


mΣ−1 + OP (mn−1)1⊗2

dA
OP (mn−1)1dA1T

d�
A

OP (mn−1)1d�
A
1T

dA

mDT
dA

(Σ−1 ⊗Σ−1)DdA

2
+ OP (mn−1)1⊗2

d�
A

 ,

A12 ≡ OP (m)
[
1dB1

T
dA

1dB1
T
d�
A

]T
,

(28)
A22 ≡ (mn/φ)Λ−1

βB
+ oP (mn)1⊗2

dB
and A11 has dimension (dA + d�

A )× (dA + d�
A ).

The upper left block of I
(
βA, vech(Σ),βB

)−1 is

A11 = A−1
11 + A−1

11 A12(A22 −AT
12A

−1
11 A12)−1AT

12A
−1
11 (29)

where, using Theorem 13(d) in Chapter 3 of Magnus and Neudecker (1999),

A−1
11 =


Σ
m

+ OP (m−1n−1)1⊗2
dA

OP (m−1n−1)1dA1T
d�
A

OP (m−1n−1)1d�
A
1T

dA

2D+
dA

(Σ⊗Σ)D+T
dA

m
+ OP (m−1n−1)1⊗2

d�
A

 . (30)

It follows that AT
12A

−1
11 A12 = OP (m)1⊗2

dB
and so A22 −AT

12A
−1
11 A12 = OP (mn)1⊗2

dB
which

then leads to (A22 −A12A
−1
11 AT

12)
−1 = OP (m−1n−1)1⊗2

dB
. Consequently,

A−1
11 A12(A22 −AT

12A
−1
11 A12)−1AT

12A
−1
11 = OP (m−1n−1)1⊗2

dB
. (31)
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Results (29), (30) and (31) imply that

A11 =


Σ
m

+ OP (m−1n−1)1⊗2
dA

OP (m−1n−1)1dA1T
d�
A

OP (m−1n−1)1d�
A
1T

dA

2D+
dA

(Σ⊗Σ)D+T
dA

m
+ OP (m−1n−1)1⊗2

d�
A

 .

Next note that

A22 = A−1
22 + A−1

22 AT
12(A11 −A12A

−1
22 AT

12)
−1A12A

−1
22 (32)

and

A−1
22 =

φ

mn
ΛβB

+ oP (m−1n−1)1⊗2
dB

. (33)

Hence A12A
−1
22 AT

12 = OP (mn−1)1⊗2
dA+d�

A
implying that A11 − A12A

−1
22 AT

12 = {OP (m) +

OP (mn−1)}1⊗2
dA+d�

A
and then (A11−A12A

−1
22 AT

12)
−1 = {OP (m−1)+OP (m−1n−1)}1⊗2

dA+d�
A
.

Continuing in this fashion we get

A−1
22 AT

12(A11 −A12A
−1
22 AT

12)
−1A12A

−1
22 = OP (m−1n−2)1⊗2

dB
. (34)

Combining (32), (33) and (34) we then have

A22 =
φ

mn
ΛβB

+ oP (m−1n−1)1⊗2
dB

.

The upper right off-diagonal block of I
(
βA, vech(Σ),βB

)
is

A12 = −(A11 −A12A
−1
22 AT

12)
−1A12A

−1
22 = OP (m−1n−1)1dA+d�

A
1T

dB
.

The resultant expression for the inverse Fisher information matrix of
(
βA, vech(Σ),βB

)
is

I
(
βA, vech(Σ),βB

)−1 = I
(
βA, vech(Σ),βB

)−1

∞

+
1

mn


OP (1)1⊗2

dA
OP (1)1dA1T

d�
A

OP (1)1dA1T
dB

OP (1)1d�
A
1T

dA
OP (1)1⊗2

d�
A

OP (1)1d�
A
1T

dB

OP (1)1dB1
T
dA

OP (1)1dB1
T
d�
A

oP (1)1⊗2
dB

 (35)

where

I
(
βA, vech(Σ),βB

)−1

∞ ≡


Σ
m

O O

O
2D+

dA
(Σ⊗Σ)D+T

dA

m
O

O O
φΛβB

mn

 .
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A.7. Lemma for the asymptotic equivalence of {I(βA, vech(Σ),βB)−1}1/2 and
{I(βA, vech(Σ),βB)−1

∞ }1/2

Theorem 1 involves replacement of the matrix {I(βA, vech(Σ),βB)−1}1/2 by the matrix
{I(βA, vech(Σ),βB)−1

∞ }1/2, due to the remainder terms in (35) having asymptotically neg-
ligible effect on the relevant matrix square roots. Lemma 2 provides a formalisation of
this state of affairs, which is used in the final steps of the derivation in Section A.8.

Lemma 2. Define the sequences of matrices

Mn ≡

[
K + Qn1⊗2

p Rn1p1T
q

Rn1q1T
p

1
nL + Tn1⊗2

q

]
and Mn,∞ ≡

[
K O

O 1
nL

]

where K (p × p) and L (q × q) are symmetric positive definite matrices and Qn, Rn

and Tn are sequences of random variables satisfying Qn = oP (1), Rn = OP (n−1) and
Tn = oP (n−1). Then, as n →∞,

‖M−1/2
n,∞ M1/2

n − I‖F

P→ 0.

A.7.1. Proof of Lemma 2
Our proof uses the integral form of the square root of a matrix which, for a matrix A
having no eigenvalues on R− is given by

A1/2 =
2
π

∫ ∞

0
A(A + t2I)−1 dt (36)

(e.g. Higham (2008)). For all n sufficiently large so that negative eigenvalues are avoided,
application of (36) to each of M−1

n,∞ and Mn leads to

M
−1/2
n,∞ M

1/2
n =

4
π2

∫ ∞

0

∫ ∞

0

 (Ip + t2K)−1K Rn(Ip + t2K)−11p1T
q

Rn{Iq + t2( 1
nL)}−11q1T

p
1
n{Iq + t2( 1

nL)}−1L



×

K + u2Ip + Qn1⊗2
p Rn1p1T

q

Rn1q1T
p

1
nL + u2Iq + Tn1⊗2

q

−1

dt du.

(37)

Note that, as consequences of (36), we have

Ip =
4
π2

∫ ∞

0

∫ ∞

0
(Ip + t2K)−1K (K + u2Ip)−1 dt du

and

Iq =
4
π2

∫ ∞

0

∫ ∞

0
{Iq + t2( 1

nL)}−1( 1
nL){( 1

nL) + u2Iq}−1 dt du.
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Then straightforward, albeit long-winded, matrix algebra leads to

π

2
(
M

−1/2
n,∞ M

1/2
n − Ip+q

)

=


K−1/2

∫ ∞

0
F 11n(u;K,L) du K−1/2

∫ ∞

0
F 12n(u;K,L) du

L−1/2

∫ ∞

0
F 21n(u;K,L) du L−1/2

∫ ∞

0
F 22n(u;K,L) du

 (38)

where, for example,

F 11n(u;K,L)≡K Γ4n(u)Γ2n(u)(K + u2Ip)−1 − Γ2n(u)Γ4n(u),

F 21n(u;K,L)≡ n1/2 Rn u2 Γ1n(u)1q1T
p Γ4n(u),

F 22n(u;K,L)≡ n1/2
[
( 1

nL)Γ5n(u)Γ3n(u){( 1
nL) + u2Iq}−1 + Tn1q1T

q Γ5n(u)

−R2
n1q1T

p Γ4n(u)1p1T
q Γ1n(u)

]

with

Γ1n(u) ≡
{
( 1

nL) + u2Iq + Tn1q1T
q

}−1
, Γ2n(u) ≡ {R2

n1
T
q Γ1n(u)1q −Qn}1p1T

p ,

Γ3n(u) ≡ {R2
n1

T
p (K + u2Ip + Qn1p1T

p )−11p − Tn}1q1T
q ,

Γ4n(u) ≡
{

K + u2Ip − Γ2n(u)
}−1

and Γ5n(u) ≡
{

( 1
nL) + u2Iq − Γ3n(u)

}−1
.

Let λmin(K) and λmax(K) denote, respectively, the smallest and largest eigenvalues of
K and let λmin(L) and λmax(L) be defined similarly for L. Since Qn = oP (1) and Tn =
oP (n−1) for every 0 < ε ≤ 1 we can choose n large enough so that |Qn| < λmin(K)/2 and
|Tn| < λmin(L)/(2n) with probability exceeding 1 − ε. Standard steps then lead to the
following spectral norm bounds for all sufficiently large n:

‖Γ1n(u)‖S <
1

1
2nλmin(L) + u2

, ‖Γ2n(u)‖S < p

{
2qnR2

n

λmin(L)
+ |Qn|

}
,

‖Γ3n(u)‖S <
pqR2

n
1
2λmin(K) + u2

+ q|Tn|, ‖Γ4n(u)‖S <
1

1
2λmin(K) + u2

and ‖Γ5n(u)‖S <
1

1
2nλmin(L) + u2

for all u > 0.



24

Then for all n large enough and u > 0 we have

‖F 11n(u;K,L)‖S ≤‖K‖S‖Γ4n(u)‖S‖Γ2n(u)‖S‖(K + u2Ip)−1‖S

+‖Γ2n(u)‖S‖Γ4n(u)‖S

< p

{
2qnR2

n

λmin(L)
+ |Qn|

}{
λmax(K)

λmin(K) + u2
+ 1
}{

1
1
2λmin(K) + u2

}
.

It follows that, for all sufficiently large n,∥∥∥∥∥
∫ ∞

0
F 11n(u;K,L) du

∥∥∥∥∥
S

≤
∫ ∞

0
‖F 11n(u;K,L)‖S du

< p

{
2qnR2

n

λmin(L)
+ |Qn|

}∫ ∞

0

{
λmax(K)

λmin(K) + u2
+ 1
}{

1
1
2λmin(K) + u2

}
du

with probability exceeding 1 − ε. Since Rn = OP (n−1), Qn = op(1) and ε is arbi-

trary we then have ‖
∫∞
0 F 11n(u;K,L) du‖S

P→ 0 as n → ∞. Similar steps lead to

‖
∫∞
0 F 12n(u;K,L) du‖S

P→ 0, ‖
∫∞
0 F 22n(u;K,L) du‖S

P→ 0 and ‖
∫∞
0 F 21n(u;K,L) du‖S

P→
0 and the lemma is proven.

A.8. Final steps
For likelihood situations, standard results concerning asymptotic normality of maximum
likelihood estimators give{

I
(
β0

A, vech(Σ0), β0
B

)−1}−1/2(θ̂ − θ0) D−→ N(0, I) (39)

where θ̂ = [(β̂A)T vech(Σ̂)T (β̂B)T ]T and θ0 = [(β0
A)T vech(Σ0)T (β0

B)T ]T . The gen-
eral quasi-likelihood situation, requires asymptotic normality theory for M-estimators as
treated in, for example, Section 5.3 of van der Vaart (1998). It follows from (39) that, for
all (dA + d�

A + dB)× 1 vectors a 6= 0, we have

aT {I
(
β0

A, vech(Σ0), β0
B

)−1}−1/2(θ̂ − θ0) D−→ N(0,aT a).

As a consequence

aT {I
(
β0

A, vech(Σ0), β0
B

)−1

∞ }
−1/2(θ̂ − θ0) + rmn(a) D−→ N(0,aT a) (40)

where

rmn(a)≡aT [{I
(
β0

A, vech(Σ0), β0
B

)−1}−1/2 − {I
(
β0

A, vech(Σ0), β0
B

)−1

∞ }
−1/2](θ̂ − θ0)

= aT [I − {I
(
β0

A, vech(Σ0), β0
B

)−1

∞ }
−1/2{I

(
β0

A, vech(Σ0), β0
B

)−1}1/2]

×{I
(
β0

A, vech(Σ0), β0
B

)−1}1/2(θ̂ − θ0)

=
([
{I
(
β0

A, vech(Σ0), β0
B

)−1

∞ }
−1/2{I

(
β0

A, vech(Σ0), β0
B

)−1}1/2 − I
]T

a
)T

Z
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and Z ∼ N(0, IdA+d�
A+dB

). Then note that∥∥∥[{I(β0
A, vech(Σ0), β0

B

)−1

∞ }
−1/2{I

(
β0

A, vech(Σ0), β0
B

)−1}1/2 − I
]T

a
∥∥∥

F

≤
∥∥{I(β0

A, vech(Σ0), β0
B

)−1

∞ }
−1/2{I

(
β0

A, vech(Σ0), β0
B

)−1}1/2 − I
∥∥

F
‖a‖F .

From Lemma 2, as n →∞,∥∥{I(β0
A, vech(Σ0), β0

B

)−1

∞ }
−1/2{I

(
β0

A, vech(Σ0), β0
B

)−1}1/2 − I‖F

P→ 0 (41)

and so [
{I
(
β0

A, vech(Σ0), β0
B

)−1

∞ }
−1/2{I

(
β0

A, vech(Σ0), β0
B

)−1}1/2 − I
]
a

P→ 0.

Application of Slutsky’s Theorem then gives rmn(a) P→ 0. From (40) and another appli-
cation of Slutsky’s Theorem we have

aT {I
(
β0

A, vech(Σ0), β0
B

)−1

∞ }
−1/2(θ̂ − θ0) D−→ N(0,aT a).

Theorem 1 then follows from the Cramér-Wold Device and the Continuous Mapping The-
orem.

B. Proof of Theorem 2

Let xik, 1 ≤ k ≤ s, be the support points for the ith group, 1 ≤ i ≤ m. Symmetry
arguments lead to the restriction xik = xk, 1 ≤ i ≤ m, for optimal designs. For each of
the m groups let

nk ≡ number of xk values in the design, 1 ≤ k ≤ s,

and let Y
[k]
ij be the jth response within the ith group at support point xk. Then

Y
[k]
ij |Ui independent having quasi-likelihood function (2) with natural parameter

β0
0 + (β0

1)
T xk + Ui such that the Ui are independent N(0, (σ2)0).

(42)

for 1 ≤ i ≤ m, 1 ≤ j ≤ nk and 1 ≤ k ≤ s. The log-quasi-likelihood is

`(β0,βB, σ2) =
m∑

i=1

s∑
k=1

nk∑
j=1

{
Y

[k]
ij (β0 + βT

B xk)/φ + d(Y [k]
ij , φ)

}
− m

2
log(2πσ2)

+
m∑

i=1

log
∫ ∞

−∞
exp

 s∑
k=1

nk∑
j=1

1
φ

{
Y

[k]
ij u− b(β0 + βT

B xk + u)
}
− u2

2σ2

 du.

Let

H̃ri ≡
s∑

k=1

nkx
⊗r
k b′′(β0 + βT

B xk + Ui).
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Then arguments analogous to those given in the proof of Theorem 1 lead to the Fisher
information matrix having the following form as m,n →∞:

I(β0,βB, σ2) =



m

σ2
+ O(mn−1) O(m)1T

dB
O(mn−1)

O(m)1dB

m

φ
E

(
H̃21 −

H̃⊗2
11

H̃01

)
+ O(m)1⊗2

dB
O(m)1dB

O(mn−1) O(m)1T
dB

m

2σ4
+ O(mn−1)


.

Next, change the ordering of the parameters from (β0,βB, σ2) to (β0, σ
2,βB) and apply

a standard result concerning the determinant of a 2 × 2 block-partitioned matrix (e.g.
Theorem 13.3.8 of Harville (2008)) to obtain∣∣I(β0,βB, σ2)

∣∣ = ∣∣∣Ã11

∣∣∣∣∣∣Ã22 − Ã
T

12Ã
−1

11 Ã12

∣∣∣
where Ã11 and Ã12 have forms analogous to those of A11 and A12 in (28) and

Ã22 ≡
m

φ
E

(
H̃21 −

H̃⊗2
11

H̃01

)
+ O(m)1⊗2

dB
.

It is easily verified that
∣∣∣Ã11

∣∣∣ = m2/(2σ6) + O(m2n−1) and Ã
T

12Ã
−1

11 Ã12 = O(m)1⊗2
dB

. It
follows that

2φdBσ6{1 + O(n−1)}
mdB+2

∣∣∣I(β0,βB, σ2)
∣∣∣ = ∣∣Ψn + O(1)1⊗2

dB

∣∣ (43)

where Ψn ≡ E
(
H̃21 − H̃⊗2

11 /H̃01

)
. Since H̃01 = OP (n), H̃11 = OP (n)1 and H̃21 =

OP (n)1⊗2
dB

, we have Ψn = O(n)1⊗2
dB

. Let λ1(M), . . . , λdB(M) denote the eigenvalues
of a generic dB × dB matrix M . Then

∣∣Ψn + O(1)1⊗2
dB

∣∣ =
∏dB

j=1 λj

(
Ψn + O(1)1⊗2

dB

)
. As

a consequence of Theorem 8.1.4 (Wielandt-Hoffman) of Golub and Van Loan (2013) ,
λj

(
Ψn + O(1)1⊗2

dB

)
= λj (Ψn) + O(1) for each 1 ≤ j ≤ dB. Hence

∣∣Ψn + O(1)1⊗2
dB

∣∣ = |Ψn|+ O(1)
dB∑
j=1

|Ψn| /λj(Ψn). (44)

To obtain the order of magnitude of the λj(Ψn) we appeal to Theorem 8.1.3 (Gershgorin)
of Golub and Van Loan (2013). Since all entries of Ψn are O(n), the same is true for the
lower and upper limits of each of the Gershgorin discs of Ψn. Since each eigenvalue of Ψn

is inside at least one Gershgorin disc, we have λj(Ψn) = O(n), 1 ≤ j ≤ dB. It follows from
this fact and (44) that

∣∣Ψn + O(1)1⊗2
dB

∣∣ = |Ψn| {1+o(1)}. In view of (43), the determinant
of I(β0,βB, σ2) is proportional to a quantity with leading term |Ψn| as n →∞. Recalling
that nk = nsδk and dividing through by ns we can assert that approximate locally D-
optimal designs, based on the exact leading term behaviour of the determinant of the
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Fisher information matrix, are those which maximise∣∣∣∣∣∣∣∣∣∣∣
E


s∑

k=1

δkx
⊗2
k b′′(β0 + βT

B xk + U)−

{
s∑

k=1

δkxkb
′′(β0 + βT

B xk + U)

}⊗2

s∑
k=1

δkb′′(β0 + βT
B xk + U)



∣∣∣∣∣∣∣∣∣∣∣
, (45)

U ∼ N(0, σ2), over the design weights δk and support points xk, 1 ≤ k ≤ s. Except for
an innocuous normalizing factor, the integral appearing in (7) can be shown to equal the
expectation appearing in (45) and the theorem is proven.

Acknowledgements

We are grateful to Iain Johnstone, Luca Maestrini, Song Mei, Tung Pham, Andy Wood,
an associate editor and two referees for advice related to this research. This research was
partially supported by the U.S. National Science Foundation grants DMS-1510219 and
DMS-1713120 and the Australian Research Council Discovery grants CE140100049 and
DP140100441.

References

Bates, D., Maechler, M., Bolker, B. and Walker, S. (2015). Fitting linear mixed-effects
models using lme4. Journal of Statistical Software, 67(1), 1–48.

Bhaskaran, A. (2022). Likelihood Theory and Methods for Generalized Linear Mixed Mod-
els. Doctor of Philosophy thesis, University of Technology Sydney, Australia.

Chipman, J.S. (1964). On least squares with insufficient observations. Journal of the Amer-
ican Statistical Association, 59, 1078–1111.

Faraway, J.J. (2016). Extending the Linear Model with R. Second Edition. Boca Raton,
Florida: CRC Press.

Golub, G.H. and Van Loan, C.F. (2013). Matrix Computation, Fourth Edition. Baltimore:
The Johns Hopkins University Press.

Hall, P., Pham, T., Wand, M.P. and Wang, S.S.J. (2011). Asymptotic normality and
valid inference for Gaussian variational approximation. The Annals of Statistics, 39,
2502–2532.

Harville, D.A. (2008). Matrix Algebra from a Statistician’s Perspective. New York:
Springer.

Higham, N.J. (2008). Functions of Matrices. Philadelphia: Society for Industrial and Ap-
plied Mathematics.



28

Hui, F.K.C., Warton, D.I., Ormerod, J.T., Haapaniemi, V. and Taskinen, S. (2017). Vari-
ational approximations for generalized linear latent variable models. Journal of Compu-
tational and Graphical Statistics, 26, 35–43.

Jeon, M., Rijmen, F. and Rabe-Hesketh, S. (2017). A variational maximization-
maximization algorithm for generalized linear mixed models with crossed random effects.
Psychometrika, 3, 693–716.

Jiang, J. (2017). Asymptotic Analysis of Mixed Effects Models. Boca Raton, Florida: CRC
Press.

Magnus, J.R. and Neudecker, H. (1979). The commutation matrix: some properties and
applications. The Annals of Statistics, 7, 381–394.

Magnus, J.R. and Neudecker, H. (1999). Matrix Differential Calculus. Revised Edition.
Chichester, U.K.: John Wiley & Sons.

McCulloch, C.E., Searle, S.R. and Neuhaus, J.M. (2008). Generalized, Linear, and Mixed
Models. Second Edition. New York: John Wiley & Sons.

Miyata, Y. (2004). Fully exponential Laplace approximation using asymptotic modes.
Journal of the American Statistical Association, 99, 1037–1049.

Nie, L. (2007). Convergence rate of MLE in generalized linear and nonlinear mixed-effects
models: theory and applications. Journal of Statistical Planning and Inference, 137,
1787–1804.

Ormerod, J.T. and Wand, M.P. (2012). Gaussian variational approximate inference for
generalized linear mixed models. Journal of Computational and Graphical Statistics,
21, 2–17.

R Core Team (2020). R: A language and environment for statistical computing. R Founda-
tion for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/.

Russell, K.G. (2018). Design of Experiments for Generalized Linear Models. Boca Raton,
Florida: CRC Press.

Stroup, W.W. (2013). Generalized Linear Mixed Models. Boca Raton, Florida: CRC Press.

Tierney, L., Kass, R.E. and Kadane, J.B. (1989). Fully exponential Laplace approxima-
tions to expectations and variances of nonpositive functions. Journal of the American
Statistical Association, 84, 710–716.

van der Vaart, A.W. (2013). Asymptotic Statistics. Cambridge, U.K.: Cambridge Univer-
sity Press.

Waite, T.W. and Woods, D.C. (2015). Designs for generalized linear models with random
block effects via information matrix approximations. Biometrika, 102, 677–693.

Wang, B. and Titterington, D.M. (2005). Inadequacy of interval estimates corresponding to
variational Bayesian approximations. In Proceedings of the 10th International Workshop
of Artificial Intelligence and Statistics (eds. R.G. Cowell & Z. Ghahramani), 373–380.



Asymptotics for generalized linear mixed models 29

Zhang, W., Mandal, A. and Stufken, J. (2017). Approximations of the Fisher information
matrix for a panel mixed logit model. Journal of Statistical Theory and Practice, 39,
269–295.


	Wiley Publisher Statement
	document

