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Abstract: This research suggests a novel distributed cooperative control methodology for a secondary
controller in islanded microgrids (MGs). The proposed control technique not only brings back
the frequency/voltage to its reference values, but also maintains precise active and reactive power-
sharing among distributed generation (DG) units by means of a sparse communication system. Due to
the dynamic behaviour of distributed secondary control (DSC), stability issues are a great concern for
a networked MG. To address this issue, the stability analysis is undertaken systematically, utilizing
the small-signal state-space linearized model of considering DSC loops and parameters. As the
dynamic behaviour of DSC creates new oscillatory modes, an intelligent fuzzy logic-based parameter-
tuner is proposed for enhancing the system stability. Accurate tuning of the DSC parameters can
develop the functioning of the control system, which increases MG stability to a greater extent.
Moreover, the performance of the offered control method is proved by conducting a widespread
simulation considering several case scenarios in MATLAB/Simscape platform. The proposed control
method addresses the dynamic nature of the MG by supporting the plug-and-play functionality,
and working even in fault conditions. Finally, the convergence and comparison study of the offered
control system is shown.

Keywords: distributed secondary control; consensus control; fuzzy logic; microgrid; stability analysis

1. Introduction

A microgrid (MG) (containing of small-scale developing generators, loads, batteries
and a regulatory element) is defined as a regulated small-scale power network, which can be
functioned in an islanded and/or grid-connected operation mode assisting the requirement
of complementary power and/or preserve a usual service [1]. Like the traditional power
system, MG systems also follow the hierarchical control strategy for standardization
of the MG operation and overall function. Generally, this hierarchical control system
incorporates three levels, namely, primary, secondary and tertiary control layers. The
traditional droop control technique considered as the most commonly used control at the
primary control level because of its decentralized nature, which lessens the communication
requirements [2]. However, the primary droop control shows some other shortcomings,
including its frequency/voltage deviations according to load characteristics, inaccurate
reactive power-sharing, and poor performance with nonlinear loads [3,4]. The secondary
control level is thus introduced as a complement of primary control [2,5]. Limitations
of centralized (single-point of failure) and decentralized (poor dynamic and steady-state
response) control strategies have led to distributed control structures [3,6]. Recently,
multiagent structures or consensus algorithms [7,8] have received increased attention for
their simple control structure utilizing sparse communication systems, improved reliability

Electronics 2021, 10, 399. https://doi.org/10.3390/electronics10040399 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0003-1185-9585
https://orcid.org/0000-0001-8485-2216
https://orcid.org/0000-0002-9763-4047
https://doi.org/10.3390/electronics10040399
https://doi.org/10.3390/electronics10040399
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10040399
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/2079-9292/10/4/399?type=check_update&version=2


Electronics 2021, 10, 399 2 of 25

and acceptable dynamic/steady-state performance [6,8–10]. Nevertheless, the dynamic
response of the MG considering distributed secondary control (DSC) could be unexpected
in regard to the system oscillation, reaction time, stability margins [10] and steady-state
behaviour. Despite several advantages of distributed control, the limitations mentioned
above are taken as key challenges for an islanded MG with DSC. The MG control system
design should address these drawbacks in a proper way to maintain the stability and
resilience of the whole network. In this light, the following issues should be considered in
the design process.

There are many methods, studied for the development of the stability of the primary
control [11–13]. Small-signal stability is now a significant issue in the reliable operation of
an MG due to low-inertia and intermittent renewables [14]. Small-signal modelling is con-
sidered for the stability analysis for MGs with the decentralized droop control techniques at
the primary level in most research works [11]. Authors in [15] succeeded in precise power
sharing considering a consensus-based droop constant controller. Small-signal stability
analysis considering DSC is studied in some recent works [7,8,10,13,16,17]. Additionally,
the impact assessment of DSC parameters based on the dynamic model, the requirement of
fine tuning of DSC parameters for stability enhancement, and the corresponding suitable
solution (i.e., fuzzy-based controller) for that are not considered. Authors in [8] study
the above issue of DSC for stability analysis but the detailed mechanism of choosing
the DSC parameters for stability enhancement is not discussed. A detailed mechanism
study for undesired dynamic behaviour and the probable oscillations introduced by DSC
is reported in [10]. However, the use of an optimal controller for stability enhancement
of the DSC leads to the system being more complex for control system design. Besides,
in the majority of works, the power lines are considered to be purely inductive, which
makes the models and proposed solutions inaccurate and impractical for a networked
MG [18]. References [19–21] assume purely inductive grids used for dynamic studies
of distributed secondary frequency controller (DSFC) [20] and the distributed secondary
voltage controller (DSVC) [19,21]. Virtual impedance is mostly implemented into the droop
control for converting the feeder impedance inductive, which will decouple the active
and reactive power regulation [22–27]. Some researchers have suggested applying the
virtual impedance as a means of employing precise reactive power in MGs [24,27]. Another
approach in [24,28] proposed an adaptive virtual impedance for eliminating the impedance
incompatibility in the feeders. Still the stability study is unresolved, and the DG units are
taken into account by means of equal rating.

Apart from this, the conventional voltage-reactive power droop control results in
inaccuracy in reactive power sharing with small feeder line impedances [18,29]. An im-
proved droop control was suggested in [30], where incorrect reactive power sharing is yet
noticed under clearly non-uniform line impedances. In addition, current secondary con-
trol approaches are categorized as centralized [31], decentralized [32–34] and distributed
control [6,8,9,21,35]. This is somewhat motivated by the cooperative control concept for
multiagent structures [6,8,9,32,33], letting all distributed energy resources (DERs) connect
through their neighbours across local communication systems. Maximum distributed
reactive power control (DRPC) techniques apply the voltage sensitivity analysis-based
scheme [33,36] as per the literature for calculating the exact amount of reactive power,
which each DER requires to add for confirming the system voltage maintained within
allowable boundaries. Nevertheless, the sensitivity technique necessitates linearization of
the power flow equations around the usual operating point, which can cause the wrong
re-estimation of the necessary reactive power specifically for MG networks with low X/R
ratio and high penetration of DERs. Therefore, the overall system losses are increased,
which introduces a probable inconvenience on the primary distribution network including
extreme requirement of reactive power.

However, another work, introduced in [37], applies predefined equal local voltage
regulator functions designed for every DER in the network. This kind of method greatly
suffers from one requirement, which necessitates a thorough procedure for finding optimal
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parameters by tuning and describing these functions. The voltage regulation may be useless
or can affect an excessive quantity of reactive power flow in the scheme without accurate
tuning [36]. To resolve this issue, suitable and efficient tuning is a prerequisite is significant
to accomplish the system stability and have reliable operation against load change and
large disturbance. Computational intelligence algorithms such as fuzzy logic (FL) [4,38,39],
genetic algorithm (GA) [40,41] and particle swarm optimization (PSO) [13,42] have been
commonly used to resolve difficulty of the power system. However, some deficiencies in
GA performance such as the premature convergence have been recorded. On the other
hand, PSO is a population based search technique deriving from models of insect swarm.
In the existing works [43], intelligent techniques such as FL, PSO and GA are used to
obtain optimal controller parameters. Authors proposed in [41] a non-linear and non-
convex optimization problem, which too contains eigenvalues constraints. Thus, PSO is
adopted to solve this problem to obtain the optimal distributed control parameters. When
associated with more stochastic algorithms it has been realized that PSO necessitates less
computational effort. Even though PSO has presented its potential on many aspects for
resolving diverse optimization problems, it still needs significant execution time to get
solutions for large-scale engineering problems [41].

Alternatively, the fuzzy logic controllers (FLCs) algorithms can tune the system con-
straints and outputs based on the information feed automatically to the system, which
enhances the system’s simplicity and flexibility, and FLC can handle problems with im-
precise and incomplete data and FLCs are cheaper to build. To reduce the complexity
and enhance the controller flexibility, this paper proposed the FLC tuner for DSC. The
authors in [44] introduce a DSC framework of islanded MGs. An intelligent FL based
scheme is suggested for proper tuning of the consensus parameters, but only voltage
regulation and reactive power sharing are taken into account [44]. Authors in [45] consid-
ered both voltage and frequency regulation of an islanded MG relied on a FLC structure.
Dynamics of the scheme, i.e., plug-and-play capability, and fault occurrence, are not in-
cluded. Authors in [4] proposed a novel scheme to control the reactive power nominal
value of distributed generation (DG) components consistent with their involvement in
reactive power sharing in islanded MG. According to the recommended method, FL is
implemented to design the X/R ratio of the connecting power lines into the consensus
signals in order for proper participation of DG units for precise active and reactive power
sharing irrespective of the nature of feeder impedance. Although the proposed control
can share the power accurately, the control level was studied for the primary control level
only. In addition, the point of common coupling (PCC) bus voltage, reliant on the DSVC,
essentially is being re-established to confirm nonstop action of sensitive loads. Authors
in [46] offer critical bus voltage reestablishment; though, it does not concurrently preserve
precise reactive power sharing among DG units. The conventional droop control technique
exhibits some other limitations such as steady-state frequency deviation from the rated
value, poor dynamic behaviour and high sensitivity to measurement noises [5,18,29]. Thus,
conventional droop control cannot assure high accuracy of frequency control and power
sharing. As a result, a secondary regulation system has been introduced to guarantee a
steady frequency profile in the MG [5]. In the existing literature for frequency control and
active power sharing, secondary control systems of MGs are generally classified into three
groups: centralized [47], decentralized [32,48,49] and distributed [8,9,21,35,36,50,51]. The
central controller for frequency restoration also faces the possibility of a single point of
failure and could have trustworthiness and scalability concerns [2,8,25,31,49]. Recently,
numerous DSC strategies have been stated in the literature. Most methods are based on
consensus practice [4,8,9,50–53], where the agents achieve consensus by means of exchang-
ing information over a sparse communication system. The control method described in [51]
reports simply frequency restoration through a distributed averaging proportional-integral
controller but requires a centralized communication configuration regardless of its decen-
tralized execution. In [54], a DSFC scheme using linear input and output feedback was
offered. The communication among neighbouring DG units is straightforward but power



Electronics 2021, 10, 399 4 of 25

sharing is less focused. The authors in [21,49,52] proposed a DSC for frequency control
and accurate active power sharing in islanded MGs where the voltage regulation is not
taken into account. The distributed control methodologies referred to in [46,55] deal with
both voltage and frequency restoration, but a comprehensive model of the MG system is a
prerequisite. Authors in [56] addressed the issue of frequency restoration and active power
sharing, but methods of choosing DSC parameters make the system more complex. On the
other hand, DGs line, loads and MG structures are unfamiliar in reality, and the selection
of controller gains are relied on the algebraic connectivity of the communication system.

However, centralized or DSC requires assistance from communication networks.
Communication delay is an unavoidable and intrinsic matter for the period of the signal
transmission procedure. A large communication delay can worsen the system’s dynamic
behaviour, reduces the system stability margin and even causes an unstable structure [57].
Hence, it is essential to analyse the effect of communication delay on system stability,
also examine the relating delay compensation technique to get a stable system [16,35].
Furthermore, inevitable noise disruptions from communication channels and the external
surroundings (i.e., produced by environmental reasons, for example rain, etc.) could disturb
MG’s dynamic behaviour [58]. Thus, to study the DSC problem for AC autonomous MG
considering communication delay, communication link failure and noise is required. This
has not been significantly or accurately reflected in a single control approach in prior
research [8,21,33,35,45]. Extensive time-domain simulations considering different case
studies like communication restriction, fault occurrence and plug-and-play capability
considered at the same time are not taken into account in the previous research works to
verify the robustness of the DSC (see all the references mentioned in this paper).

According to the literature review, it can be realized that DSC is more effective than
the centralized one [3]. Due to the limited research undertaken so far, as mentioned in the
literature review, a proper DSC is still needed that considers all the drawbacks in a single
control strategy. To this end, motivated by the existing limitations, this paper proposes a
new DSC, which has contributions from the following viewpoints:

• A novel DSC is proposed for lossy MGs to restore frequency and voltage simultane-
ously while accurate active and reactive power sharing are preserved.

• Unlike the existing consensus methods, the proposed method utilizes a proportional-
integral (PI) controller at the output voltage of the inverter. Thus, voltage mismatches
are reduced to a great extent.

• The small-signal stability analysis under the proposed DSC for the networked MG
model is carried out in detail. Note that eigenvalue analysis for parallel-connected
DGs in the MG was previously studied in many studies, but very few studies have ad-
dressed the small-signal stability analysis for a networked MG model considering DSC.

• In most of the previous related works, other tuning methods/optimal controllers
are used for finding DSC parameters. Utilizing the intelligent FL parameter-tuner
in accordance with small-signal stability analysis for the networked MG model has
been presented as a new solution. The FLC not only enhances the performance of the
proposed DSC but also reduces the complexity of the DSC design.

The rest of this paper is structured as follows. Section 2 represents the specifics of
the suggested DSC design. Section 3 introduces the small-signal dynamic model of MG.
Section 4 shows the small-signal stability analysis, and Section 5 discusses the time-domain
simulation results. Conclusions along with future works are presented in Section 6.

2. The Proposed Distributed Secondary Controller

An autonomous MG consists of DG units, the power network, and local loads as
depicted in Figure 1. In the test MG model, there are several nodes where some are
associated with DG units and loads, and some are associated with only loads. The grid-
forming voltage source inverters (VSIs) are essential in the islanded operation mode to
form voltage and frequency within the MG. The control system of a droop controlled VSI,
including inner voltage and current loops, is illustrated in Figure 1.
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Figure 1. Simplified block diagram for the distributed generation (DG) unit with primary and
secondary controllers.

2.1. Traditional Droop Controller

The following equations represent the traditional droop controller of the ith DG for
frequency control and voltage control to accomplish active and reactive power sharing,
correspondingly:

fre f i= f n − k f iPi (1){
vdre f i = vn−kviQi − Rviriiodi + ωnLviriioqi

vqre f i = −Rviriioqi −ωnLviriiodi
(2)

where Pi and Qi are the active and reactive powers of the ith DG units respectively, k f i
and kvi are the frequency and voltage droop gains respectively, fn and vn are the nominal
frequency and voltage respectively, vdre f i and vqre f i are the reference values for the direct-
quadratic (d–q) components of voltage magnitude in the synchronous reference frame, ωn
denotes the nominal angular frequency, Rvir and Lvir are embedded to model the virtual
resistance and virtual inductance, respectively, vodi and voqi are the d–q components of the
inverters output voltage and iodi and ioqi are the d–q components of the inverters output
current. Based on Equations (1) and (2), the frequency and voltage excursions would be
established in the autonomous MG due to load variations.

2.2. Consensus-Based Distributed Secondary Control

The basics of the consensus algorithm and graph theory are described in [13] and
thus not included here. In this research, a DSC system was applied locally by selecting
the suitable control inputs gi and hi to adjust the frequency fre f i and voltage magnitude
vre f i so that the frequency and voltage magnitude at MG nodes converge to the reference
values fn and vn, respectively, while active and reactive power sharing are established.
In the proposed DSC, as explained later, gi is related to frequency restoration and active
power-sharing, hi and τi are correlated to voltage restoration and reactive power-sharing
respectively. Therefore, the proposed DSC signals, which give the reference values for the
ith DG (synchronously including all the agents acting as a cluster) can be derived by the
following equations.

Frequency restoration and active power-sharing: DSFC is used to re-establish the
frequency and active power-sharing like this:

fre f i = fn − k f iPi + gi (3)

gi = −D f i

∫  ∑
j∈Ni

aij

(
fre f i − fre f j

)
+ bi

(
fre f i − fn

)− DPi

∫  ∑
j∈Ni

aij

(
k f iPi − k f jPj

) (4)

here D f i and DPi are all positive control gains and bi is the communication link indicator
explained later. Ni represents neighbouring nodes of node i and an adjacency matrix is
defined as AG =

[
aij ≥ 0

]
∈ RN×N where aij = 1 if the ith node is coupled to the jth node

and aij = 0 otherwise [14].
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Voltage restoration and reactive power-sharing: DSVC, which includes both the
voltage controller and reactive power sharing controller, is chosen for the voltage regulation
and reactive power sharing respectively, and can be designated by the following equations:

vre f i = vn − kviQi + ωnLviri + hi + τi (5)

hi = −Dvi

∫ [
∑

j∈Ni

aij

(
vdi f f i − vdi f f j

)
+ bi

(
vdi f f i − vdi f f pcc

)]
(6)

τi = −DQi

∫ [
∑

j∈Ni

aij

(
Qi

Qimax
−

Qj

Qjmax

)]
(7)

where Dvi and DQi are all positive control gains and Qimax is the maximum reactive power
of ith DG unit. vdi f f i and vdi f f pcc are designed through a PI controller such that both can
restore to their reference values (vn), where vdi f f pcc is calculated at the point of common
coupling (PCC). vdi f f i and vdi f f pcc can be expressed by the following equations:

vdi f f i = KP

(
vre f − voi

)
+ KI

∫ (
vre f − voi

)
dt (8)

vdi f f pcc = KP

(
vre f − vpcc

)
+ KI

∫ (
vre f − vpcc

)
dt (9)

here, KP and KI are the proportional and integral control coefficients for the secondary

controller. voi =
√
(vodi)

2 +
(
voqi
)2 is the output voltage of ith inverter as shown in

Figure 1. vpcc =
√(

vpccD
)2

+
(
vpccQ

)2 is the voltage at PCC. The subscripts d and q (D
and Q) indicate the direct and quadrant component in the local (common) reference frame.
In Equations (4) and (6), bi= 1 indicates the direct communication of the ith DG with the
controller at PCC and otherwise bi = 0.

3. Small-Signal Modelling

The small-signal state-space model for networked MG is obtained considering the
small-signal modelling of VSIs, the power network and load dynamics. A systematic
approach to obtaining the state-space equations of the network and loads is presented
and combined with the inverters’ state-space equations. The reference frame of a given
DG unit, preferably the biggest one (which has the smallest droop gain and thus less
frequency variation to follow the slack bus concept in bulk power systems), is taken as a
common reference frame. All other inverters were converted to this common reference
frame utilizing the corresponding transformation, which is described in the following part.
Here, the axis set (D−Q) is the common reference frame rotating at a frequency ωcom,
whereas the axes (d− q)i and (d− q)j are the reference frame of the ith and jth inverters
rotating at ωre f i and ωre f j, respectively. The transformation from the local reference frame
to the common one is given as [

fre f iDQ

]
= [Ti]

[
fre f idq

]
(10)

[Ti] =

[
cos(δi) −sin(δi)
sin(δi) cos(δi)

]
(11)

where δi represents the phase angle difference of the ith inverter reference frame from the
common reference frame. The details of the internal modelling of all these modules can be
retrieved in [14] taking primary control into account. In this paper, the three-phase voltage
and current are vector quantities presented in D−Q frame while the other variables like
frequency and power are scalar quantities.
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3.1. Individual Inverter Modelling

Now, to derive the state-space model, in Equation (8) we had by defining σi =∫ (
vre f − voi

)
dt

.
∆σi= −∆voi (12)

∆voi = ndi∆vodi + nqi∆voqi (13)

where, ndi =
vodi√

(vodi)
2+(voqi)

2 , nqi =
voqi√

(vodi)
2+(voqi)

2 .

Considering virtual impedances, the linearized inverter output voltage equations become{
∆v0di = −kvi∆Qi + ∆hi + ∆τi − Rviri∆i0di + Xviri∆i0qi

∆v0qi = −Rviri∆i0qi − Xviri∆i0di
(14)

In reference to our proposed control strategy, the modelling of an individual inverter
unit after linearization in the common reference frame considering only the primary control
(droop control) can be written as follows:[ .

∆Xinvi

]
= [Ainvi] [∆Xinvi]+[Binvi] [∆i0DQi

]
+ [Cinvi] [∆ωcom] (15)

where ∆Xinvi = [∆δi, ∆Pi, ∆Qi]
T , and ∆i0DQi =

[
∆i0Di, ∆i0Qi

]T represents the deviation of
inverter output current in the DQ frame.

Consequently, the state-space model of an individual DG with DSC is obtained af-
ter linearization (around an operating point) and a combination of Equations (1)–(15)
as follows:

[∆
.

Xinvi] = [A1invi][∆Xinvi] + [A2invi]
[
∆i0DQi

]
+ [A3invi][∆ωcom]+[ ∑

jεNi

A4invij]
[
∆Xinvj

]
+ [A5invi

]
[∆vdi f f pcc][

∆ωre f i
∆v0DQi

]
=

[
Cinvωi
Minvi

]
[∆Xinvi] +

[
0

Ninvi

][
∆i0DQi

] (16)

where ∆Xinvi = [∆δi, ∆Pi, ∆Qi, ∆gi, ∆hi, ∆τi, ∆σi]
T .

In Equation (16), A1invi, A2invi, A3invi, A4invij, A5invi, Cinvωi, Minvi and Ninvi are all the
parameter matrices of the ith DG and given in Appendix A. A4invij represents the correlations
between DGi and the neighbor DGj provided by the DSC. ∆ωre f i and ∆ωcom are the fre-

quency deviations of the individual and common reference frame. ∆v0DQi =
[
∆v0Di, ∆v0Qi

]T
represents the deviations of inverter output voltage in the DQ frame.

3.2. Combined Model of All the Inverters
In this paper, four DGs were considered in the proposed MG model (Figure 2). Thus,

by merging Equation (16) for four inverters, the combined model of all inverters in the
linearized form can be written as:{

[∆
.

Xinv] = [A1inv][∆Xinv] + [A2inv]
[
∆i0DQ

]
+ [A3inv

]
[∆ωcom] + [A5inv]

[
∆Vdi f f pcc

][
∆v0DQ

]
= [Minv][∆Xinv] + [Ninv]

[
∆i0DQ

] (17)
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where

∆Xinv = [∆Xinv1 ∆Xinv2 ∆Xinv3 ∆Xinv4]
T ,

∆i0DQ =
[

∆i0DQ1 ∆i0DQ2 ∆i0DQ3 ∆i0DQ4
]T ,
[
∆ωre f i

]
= [∆ωcom]

∆v0DQ=
[

∆v0DQ1 ∆v0DQ2 ∆v0DQ3 ∆v0DQ4
]T ,

A1inv =


A1inv1 A4inv1 + A3inv2·Cinvω2 0 A4inv2
A4inv3 A4inv2 + A3inv2·Cinvω2 A4inv4 0

0 A4inv5 + A3inv2·Cinvω2 A1inv3 A4inv6
A4inv7 A3inv2·Cinvω2 A4inv8 A1inv4

,

A2inv =diag(A2inv1, A2inv2, A3inv3, A4inv4),
A3inv = [0 0 A3inv2 0], A5inv = [0 0 A5inv2 0],
Cinvω =

[
0 Cinvωi 0 0

]
,

Minv = diag(Minv1, Minv2, Minv3, Minv4),
Ninv = diag(Ninv1, Ninv2, Ninv3, Ninv4)
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In this modelling technique, all the individual DG inverters are modelled separately
and then combined, which will be finally integrated with the network and load models.

3.3. Network and Load Model

The network and load models were obtained by linearizing the node voltage equations
considering Figure 2. There were no incoming currents in the network or load nodes. From
the linearized node voltage equations, we got the following:

Y1∆v0DQ + Y2∆vnetloadDQ = ∆i0DQ

Y3∆v0DQ + Y4∆vnetloadDQ = 0

where ∆i0DQ represents ∆i0DQi of all the DG units, ∆v0DQ represents ∆voDQi of all the
inverters and the voltage deviations of all the network and load nodes are represented by
∆vnetloadDQ. Y1, Y2, Y3 and Y4 are the submatrices of the nodal admittance matrix Y, i.e.,

Y =

[
Y1 Y2
Y3 Y4

]
. By eliminating ∆vnetloadDQ, we had

∆v0DQ =
(

Y1 −Y2Y4
−1Y3

)−1
∆i0DQ (18)
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Substituting Equation (19) into Equation (17), we can write

∆i0DQ =

((
Y1 −Y2Y−1

4 Y3

)−1
− Ninv

)−1
Minv ∆Xinv (19)

∆vdi f f is defined in terms of ∆i0DQ as follows:

∆vdi f f DQ = IMPpcc∆i0DQ (20)

where IMPpcc is the impedance matrix and can be calculated from the nodal admittance
matrix Y of node voltage equations.

3.4. Complete Small-Signal Model

Similarly to define vpcc considering Equation (9) and letting ∈=
∫ (

vre f − vpcc

)
dt,

we had .
∆ ∈ = −∆vpcc (21)

∆vdi f f pcc = −KP∆vpcc + KI∆ ∈ (22)

here, ∆vpcc = mD∆vpccD + mQ∆vpccQ where, mD =
vpccD√

(vpccD)
2
+(vpccQ)

2 , mQ =
vpccQ√

(vpccD)
2
+(vpccQ)

2 .

The complete MG dynamic model in the linearized form can be formulated by com-
bining Equations (17)–(22) as follows.[

∆
.

Xinv
∆

.
∈

]
= Asystem

[
Xinv
∆ ∈

]
(23)

The detailed stability analysis includes the mechanism of the unwanted dynamic
behaviour, along with the oscillations can be accomplished utilizing the eigen-arrangement
of the system’s state matrix, Asystem as given in the next section.

4. Stability Analysis

Single line drawing of the experimental MG model including four inverter-based
DG units, local loads and feeder lines is shown in Figure 2. The MG considered here was
a 311 V and 50 Hz system and was simulated in MATLAB. The MG functioned in the
autonomous mode. Here, every load was considered as a 3-phase series RL load and every
feeder line was a 3-phase series RL branch. Figure 2 also shows the sparse communication
link (blue dashed lines) of the MG system, and its related adjacency matrix was AG = [aij],
where the DG2 outputs were considered as the nominal values and the pinning gain b2 in
Equations (3) and (5) was set as b2 = 1.

4.1. Eigenvalue Analysis

System dynamic behaviour and the outcomes from the stability analysis for the test
MG under the suggested DSC were discussed in this section. In line with the stated
linearized model in the prior section, the subsequent eigenvalues including DSC were
presented in Figure 3 for stable operation. As the eigenvalues of high and intermediate
frequency modes had insignificant influences on system stability [14], this paper mainly
put an emphasis on the analysis of the low-frequency modes. There were nine less damped
modes, among which four were introduced by the proposed DSC, i.e., modes 6–9. It was
assumed that the communications among the DG units are followed by the directed graph
as in Figure 2 (blue dashed line).
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the oscillation caused by mode 6, revealing the direct participation of these states of all 
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Figure 3. Eigenvalues of system matrix with distributed secondary control (DSC) for stable operation.

Participation Factor: The participation factor was employed to find the relationship
between the state variables and the modes and is the multiplication of corresponding
quantity in the right and left eigenvectors of the state matrix [14]. For the primary droop
control, the low-frequency modes are primarily affected by the states of the active power
droop controller (1), i.e., ∆δi and ∆Pi recommended by participation factors in [4]. Figure 4
shows the relation of the participation factors of the system state variables associated with
the modes 6–9 considering the proposed DSC in action. Participation factors related to
modes 1–5 were mainly for the primary droop control, and this was the same as the case
when only primary droop control was functional to the system, which was not the main
concern in this paper. Thus, only the effects of proposed DSC in the modal analysis were
discussed and those of modes 1–5 are not shown. A brief description of the outcomes
(Figure 4) is given as follows.
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Figure 4a indicates that ∆δi, ∆Pi and ∆gi of every DG unit actively participated in the
oscillation caused by mode 6, revealing the direct participation of these states of all the
DG units in the stability. As ∆gi is the state variable for the DSC as in Equation (3) it is
remarkably affected by the secondary controller gains D f i and DPi and thus affects the
stability of the system.
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Figure 4b illustrates that the states ∆Qi, ∆hi and ∆τi of the proposed DSC for voltage
control and reactive power-sharing considerably contributed to creating modes 7 and 8
and were strongly affected by the controller gain DQi. DSC gain Dvi had less of an effect
on stability.

Figure 4c revealed that mode 9 was caused by the states ∆Qi and ∆ ∈. The states
∆ ∈ and ∆Qi were strongly associated with DSC proportional control gain (KP), integral
control gain (KI) and virtual reactance (Xviri), respectively.

The detailed effects of the controller parameters KP, KI , D f i, Dvi, DPi, DQi and
virtual impedance values Zviri on the less damped modes were analysed in detail in the
following section.

4.2. Relationship between System Stability and DSC Parameters

Sensitivity of the system stability to the distributed control parameters was analysed
with the help of stability margin. The traces of low-frequency modes of the system as
functions of KI , KP, D f i, DPi, DQi and Zviri (which includes Rviri and Xviri) were taken into
account to determine the effect on stability. Figure 5 presents the traces of less damped
modes as the function of Xviri, KI , KP, DQi, D f i and DPi. The traces of low-frequency
modes as functions of Rviri were similar to Xviri, and those of KP were similar to KI , which
are not shown here. Note that the variation of Dvi had comparatively less effect on system
stability, and thus it is not shown here. Figure 5a shows the changes in the damping of
mode 9 when KI varied from 5 to 40. These variations mainly affected the least damped
mode 9.
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Figure 5. Traces of dominant modes 6–9. (a) Traces of dominant mode 9 when KP varies from 0.0001
to 0.1 and KI varies from 5 to 40; (b) traces of dominant modes 7 and 8 when Xviri varies from 0.01 to
0.5 Ω and DQi varies from 10 to 40 and (c) traces of dominant mode 6 when D f i varies from 100 to
400 and DPi varies from 100 to 400.
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Figure 5b shows variation in the damping of the modes 7 and 8 when Xviri varied
from 0.01 to 0.1 Ω, and DQi varied from 10 to 40, respectively. From this, it is clear that
increasing the value of Xviri and DQi had the opposite effects on system stability. Figure 5c
shows that D f i and DPi also had reverse effects on the oscillation. Table 1 gives a summary
of the above analysis. On the other hand, finding suitable values for DSC parameters
was difficult by traditional approaches, e.g., trial and error scheme and from the traces of
low-frequency modes for stability improvement. Accordingly, intelligent fuzzy logic was
used for proper tuning of controller parameters for stability improvement in terms of fast
response, appropriate damping and satisfactory stability margin.

Table 1. System dynamics and stability analysis result.

Less Damped Modes Major Participants (States) Major Participants
(Controller Parameters)

Effects on Damping/Stability

Stability Controller Parameters

Modes 1–6 ∆δi, ∆Pi, ∆gi
D f i ↑ D f i ↑
DPi ↓ DPi ↑

Modes 7 and 8 ∆Qi, ∆τi
DQi ↓ DQi ↑
Xviri ↑ Xviri↑

Mode 9 ∆∈ KI ↓ KI ↑
KP ↓ KP ↑

4.3. Tuning the DSC Parameters Based on Fuzzy-Logic

This paper presents a fuzzy logic-based tuner for regulating the DSC parameters and
virtual impedance used in the consensus-based DSC framework. Membership function,
fuzzy logic operators and if-then rules are the usual elements of a fuzzy inference system.
These elements were used to calculate the mapping from the input values to the output
values, and it involved three subprocesses: fuzzification, aggregation and defuzzification.
Here, the Mamdani fuzzy inference scheme was applied. The goal was to determine the
DSC parameters KI , KP, D f i, DPi, DQi and virtual impedance values Rviri and Xviri related
to the fuzzy logic system as in Figure 6. A set of fuzzy rules containing 16 rules was
taken for tuning the controller parameters. The triangular membership function (MF)
was employed for arranging the fuzzy rules, which is the most popular one. The input
rules were collected by using the AND operator. The training arrangement is presented
as follows.
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Fuzzifier: The inputs, outputs and their ranges were identified in this step. The
membership functions for inputs and outputs were organized as: not stable (NOTS), very
low stability (VLS), low stability (LS) and normal stability (NS). Figure 7 displays the MFs
for input and output constraints of every input and output. In this paper, frequency stability
margin and voltage stability margin were considered as inputs, while DSC parameters and
virtual impedance were considered as outputs.
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Aggregation: The knowledge base for the fuzzy logic system is a group of fuzzy
if-then rules as expressed in the following formula, e.g., rule 10 from Table 2 describes
the following:

• R10 : I f fre f is U fre f (LS) and vre f is Uvre f (VLS), then Dpi is UDpi(LS) ,

• Dvi is UDvi(LS), DQi is UDQi(LS), Rviri is URviri(LS), and Xviri is UXvir(LS).

Table 2. Distributed secondary control (DSC) parameters with and without the fuzzy logic controller.

Controller
Parameters

Values Controller
Parameters

Values

Before Tuning After Tuning Before Tuning After Tuning

KP 0.01 0.001 DV 100 100
KI 18 25 DQ 40 26.7
D f 200 333 Rvir 0.08 0.133
DP 400 295 Xvir 0.2 0.329

According to this rule, if the degree of MFs (¥) for frequency stability region is LS
and for voltage stability region is VLS, the outcomes for all outputs are LS. The rules are
summarized in Table A1 (Appendix A).

Defuzzifier: The fuzzy outputs were transformed to non-fuzzy values in this step.
Thus, the centre average defuzzification principle based on triangular was applied to
measure the crisp outputs, i.e., DSC parameters.

Based on the above rules, the estimated values for DSC parameters and virtual
impedance were determined and given in Table 3. In this study, we assumed that the
DSC is activated from the beginning with the droop control (primary control). The im-
portance of parameters Xviri and DQi was designated in accordance with voltage and
reactive power. The value of Xviri was less than 0.22 Ω, which indicates that, for values
bigger than 0.22 Ω, the system might be unstable. Similarly, the suitable values of KI , KP,
D f i, DPi, DQi and Rviri were found to utilize the fuzzy logic tuner. These values were
also verified by the time-domain simulation results. The following sections give detailed
explanations with the simulation results. Figure 8 shows the 3-dimensional representations
of outputs Dfi and Xviri with inputs. The eigenvalue spectrum of dominant modes is
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presented in Figure 9, which confirms the usefulness of the fuzzy logic tuner for system
stability improvement.

Table 3. Convergence time for various communication topologies.

Communication Topology Mesh Ring Line

Convergence Time (s) 0.56 s 0.59 s 0.63 s
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5. Time-Domain Simulation Results

An MG test model as in Figure 2 was considered to validate the effectiveness of
the offered DSC scheme. Matlab/Simscape software was used for simulation of the test
MG model. The MG, load and line parameters used in the simulations are given in
Tables A2–A4 (Appendix A). All the DSC gains were considered to be the same for all
the DGs.

5.1. Case Studies

First, the simulation results could be categorized into the following two groups:

• Group 1: Results with proposed DSC with initial parameters (without tuning).
• Group 2: Results with proposed DSC with the tuned parameters by the fuzzy

logic tuner.
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In group 1, the proposed DSC performs with not-tuned parameter values as shown
in Figure 10. The simulation results of the frequency and voltage restoration are shown
in Figure 10. From the results, it can be seen that the initial DSC parameters produced
transient oscillations, which was also verified by the eigenvalue analysis. For group 1,
convergence time for frequencies were 1.1 s and for voltages were 1.2–1.5 s. As we want to
verify several case studies (case 1–case 7) to show the robustness of our proposed DSC, we
considered the tuned parameters for those case studies due to space limit. However, to get
better performance, the fuzzy-logic tuner was used for tuning the DSC parameters and
virtual impedance values. The simulations from group 2 ere conducted with the following
six case studies.
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Case 1: Voltage and Frequency Restoration

The simulation outcomes of case 1 are given in Figure 11.
When our proposed DSC was employed, the restoration process of both voltage and

frequency to their reference values respectively (vre f = 311 V, fre f = 50 Hz) was very fast
with less oscillation as compared with Figure 10. Thus, the fuzzy tuner could improve
(convergence time improved for frequencies from 1.1 to 0.6 s and for voltages from 1.2–1.5 s
to 0.7–0.8 s) the performance of DSC.

Case 2: Load Changing after Reaching the Steady State

In this case, several scenarios were analysed in the simulations according to the power
flow and loading condition at each DG after reaching the steady-state (Figure 12) as follows.

According to our proposed DSC, power sharing was in proportion to the capacities of
DGs (ratio of capacities is DG1:DG2:DG3:DG4 = 2:2:1:1) as shown in Figure 12. At t = 3 s,
Load #3 was disconnected from DG3, and at t = 5 s, Load #3 was again connected to DG3.
At t = 6 s, Load #2 was increased by including an additional load equivalent to Load #5
and at t = 8 s, the additional load was removed from Load #2.

The simulation results from Figure 12 for load change show that the proposed DSC
could accurately share active and reactive powers according to their capacities under the
load disturbances.
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Case 3: Occurrence of Communication Delay

In this case study, communication delay on the proposed DSC scheme was conducted
with four scenarios, i.e., fixed communication delay of 0.1 s, 0.5 s, 1 s and 2 s in the MG.



Electronics 2021, 10, 399 17 of 25

The proposed DSC was commenced from the beginning. For easiness, simply the voltage
responses for the DG units were given for the four scenarios as shown in Figure 13. It can
be realized from Figure 13a,b that the controller performed properly with small time delays
of 0.1 s and 0.5 s. Figure 13c,d shows that, with the increase of the time delay to 1–2 s, the
voltage was restored with minor deviations, but with increased convergence times. Thus, it
could be concluded that the proposed DSC can still help the system with restoration under
the communication latency.
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Case 4: Loss of the Communication Link

Communication link failure is a common phenomenon in real-world applications. The
MG system still needs to be stable in such conditions. In this case study, the simulation is
done with the following scenarios.

• Stage 1: There is no loss of communication link when t ≤ 2.6 s, and the MG system
rapidly reaches the steady state.

• Stage 2: The MG system experiences a loss of communication link from DG4 to DG1
when t > 2.6 s.
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The simulation results are given in Figure 14, showing that the proposed DSC tech-
nique could deal well with the conditions of communication link failure, though there was
transient oscillation that occurred for the loss of the communication link.
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Case 5: Effects on Different Communication Topologies

The effects of diverse communication topologies (line, ring and mesh) as shown in
Figure 15 on the proposed model were analysed in this case. Convergence time with
different topologies is summarized in Table 3. Table 3 reveals that the system dynamic
behaviour changed with different communication topologies. A low amount of communi-
cation links (line) increased the convergence time, while a high number of communication
links (mesh) raised the complexity of the communication network and also the system
implementation cost.
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Case 6: Plug-and-Play Capability

Once synchronizing and reaching steady-state condition by the DSC, the plug-and-
play capability of the controllers was assessed in this case study by disconnecting DG3
at t = 10 s and connecting it at t = 14 s. The following observations were made from the
simulation results, (i) disconnection of a DG unit indicates the failure of all the communica-
tion links associated with that DG unit, (ii) the lost communication links are retrieved after
reconnecting the DG unit and (iii) a synchronization procedure was required to coordinate
DG3 with the remaining MG before reconnection. Figure 16 shows the performance of
DSC with plug-and-play operation. According to Figure 16, it could be concluded that
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reconnection (at t = 14 s) of DG produced more oscillation than the disconnection/sudden
loss (t = 10 s) of any DG unit.
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Case 7: MG with Fault Conditions

To study the dynamic performance of the MG model with the proposed DSC, perfor-
mances of voltage and frequency and power-sharing are observed under the maximum
fault condition. After reaching the steady-state condition, a three-phase to ground fault
occurred at bus 1 at t = 3 s and the fault was cleared at t = 4 s. Figure 17 shows the controller
performance under that fault condition, and it can be understood that the voltage and
frequency controllers had the ability of preserving the system stability afterwards the fault
clearance. Moreover, accurate power-sharing was achieved within a very short time after
the fault clearance. It can be said that the proposed DSC was robust in maintaining the
system stability under the sudden fault condition.
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5.2. Convergence Time

As stated in the literature review, inadequate studies were stated that consider both
the voltage and frequency restoration problems in a distributed way. In comparison with
the most relevant works, as in [59], Table 3 reveals that the proposed control approach
required less time to drive the frequencies to the steady-state values, which were 0.56 s,
compared to 1.9 s in [59]. Additionally, the proposed control strategy performed well even
though changes occurred in load, communication topology and loss of DG and even in
fault conditions, which means by the proposed DSC the dynamics of the underlying system
could quickly converge to the reference values under different disturbing conditions.

6. Conclusions

A noble cooperative DSC for islanded AC MG has been established taking the lossy-
line network into account, which similarly preserves the precise active and reactive power-
sharing while keeping PCC bus voltage at its reference value at the same time. State-space
modelling and small-signal stability analysis for the networked MG have shown that new
less-damped modes are the consequences of the DSC. Intelligent fuzzy-based parameter-
tuner is applied to improve system stability. One of the main advantages of using a
fuzzy-logic tuner is its low computational complexity in comparison to other existing
methods. Theoretical analysis and time-domain simulation case scenarios of a test MG
system have been explained to show the robust performance of the suggested DSC scheme.
Under the proposed control method, the networked MG model can reach a steady state
after different disturbances (even after fault condition) without significant transients in
the system frequency, voltage and active and reactive power-sharing. The proposed DSC
shows a fast response to achieve consensus and indicates better robust characteristics in
terms of controller establishment, structure design and the variation of loads compared
with most related existing work on DSC, which is also discussed in the simulation section.

However, as communication is the major part of the secondary control level, cyber se-
curity is of primary importance to the assurance safe task of cyber-physical systems, which
has obtained growing attention in the control community. To prevent our presented scheme
in Figure 2 from malicious activities like “Replay Attack” or “False Data Injection” [60,61],
we will consider it as a future work of this paper.
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Appendix A

Table A1. Fuzzy rule set for inputs and outputs.

Rule
Fuzzy Parameters

fref vref Dfi DPi DQi Xviri

1 NOTS NOTS NOTS NOTS NOTS NOTS
2 NOTS VLS NOTS VLS VLS VLS
3 NOTS LS NOTS LS LS LS
4 NOTS NS LS LS LS LS
5 VLS NOTS NOTS VLS VLS VLS
6 VLS VLS NOTS VLS VLS VLS
7 VLS LS LS LS LS LS
8 VLS NS LS LS LS LS
9 LS NOTS NOTS VLS VLS VLS

10 LS VLS LS LS LS LS
11 LS LS LS LS LS LS
12 LS NS LS LS LS LS
13 NS NOTS NOTS VLS VLS VLS
14 NS VLS VLS LS VLS VLS
15 NS LS NS NS LS NS
16 NS NS NS NS NS NS

Table A2. Specifications for test system.

Names of Parameters Symbol Value Unit

Microgrid Test Model Parameters

DC Voltage Value Vdc 700 V

Nominal Voltage vre f 311 V

Nominal Frequency fre f 50 Hz

Filter Inductor Resistance R f 0.1 Ω

Filter Inductor Inductance L f 1.35 mH

Filter Inductor Capacitance C f 50 µF

Coupling Inductor Resistance Rc 0.03 Ω

Coupling Inductor Inductance LC 0.1 mH

Voltage Controller Specifications

Proportional Gain Kpv 0.05 -

Integral Gain Kiv 390 -

Feed Forward Gain F 0.75 -

Current Controller Specifications

Proportional Gain Kpc 10.2 -

Integral Gain Kic 16 × 103 -



Electronics 2021, 10, 399 22 of 25

Table A2. Cont.

Names of Parameters Symbol Value Unit

Power Controller Specifications

Frequency Droop Gain k f i(i = 1, 2) 3.33 × 10−5 -

k f i(i = 3, 4) 6.67 × 10−5 -

Voltage Droop Gain kvi(i = 1, 2) 2.5 × 10−4 -

kvi(i = 3, 4) 5 × 10−4 -

Table A3. Line data used in the test system.

Line Data

No. R (Ω) L (µH) No. R (Ω) L (µH)
Line 1,2 0.23 312 Line 5,6 0.12 312
Line 3,4 0.30 318 Line 7,8 0.21 316

Table A4. Load data used in the test system.

Line Data

No. R (Ω) L (mH) No. R (Ω) L (mH)
Load 1,2 30 50 Load 5,6 20 12
Load 3,4 40 20 Load 7,8 18 50

A1invi =



0 k f i 0 0 0 0 0
−VbDsin(δ0) + VbQcos(δ0) −ωc −ωc Iodkvi 0 ωc Iod ωc Iod 0
−VbDcos(δ0)−VbQsin(δ0) 0 −ωc +−ωc Iodkvi 0 ωc Ioq ωc Ioq 0

0 2k f i
(

D f i − Dpi
)

0 −2D f i 0 0 0
0 0 −2DviKPndikvi 0 2DviKPndi 2DviKPndi −2DviKI
0 0 − 2DQi/Qimax 0 0 0 0
0 0 −ndikvi 0 −ndi −ndi 0


(A1)

A2invi =



0 0
−ωc IodRviri + ωc IodXviri −ωcVod −ωc IodRviri + ωc IodXviri −ωcVod
−ωc IoqRviri −ωc IodXviri + ωcVoq −ωc IodRviri + ωc IodXviri −ωcVod

0 0
−2DviKp

(
ndi Rviri + nqiXviri

)
−2DviKp

(
nqi Rviri − ndiXviri

)
0 0

ndi Rviri + nqiXviri nqi Rviri − ndiXviri


·
[

cos(δ0) − sin(δ0)
sin(δ0) cos(δ0)

]
, A3invi =



1
0
0
0
0
0
0


(A2)

A4invij =



0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0
0 ∑

j∈Ni

k f j
(

DPj − D f j
)

0 ∑
j∈Ni

D f j 0 0 0

0 0 ∑
j∈Ni

DvjKPndjkvj 0 − ∑
j∈Ni

DvjKPndj − ∑
j∈Ni

DvjKPndj ∑
j∈Ni

DvjKI

0 0 ∑
j∈Ni

DQj/Qjmax 0 0 0 0

0 0 0 0 0 0 0


, A5invi =



0
0
0
0

Dvibi
0
0


(A3)

Minvi =

[
0 0 −kvi 0 1 1 0
0 0 0 0 0 0 0

]
, Ninvi =

[
−Rviri Xvir
−Xvir −Rviri

]
, Cinvwi =

[
0 −k f ibi 0 0 0 0 0

]
(A4)

Asys =

[
A1 A2
A3 A4

]
, where A1 = A1inv + A2inv

((
Y1 −Y2Y−1

4 Y3

)−1
− Ninv

)−1
Minv + A3inv Cinvω+

A5inv ApccKPi IMPpcc

((
Y1 −Y2Y−1

4 Y3

)−1
− Ninv

)−1
Minv

(A5)
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A2 = A5invKI , A3 = −Apcc IMPpcc

((
Y1 −Y2Y−1

4 Y3

)−1
− Ninv

)−1
Minv, A4 = 0, where Apcc =

[
0 Mpcc 0 0

]
(A6)
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