
Evolutionary
Computation

Printed Edition of the Special Issue Published in Mathematics

www.mdpi.com/journal/mathematics

Gai-Ge Wang and Amir H. Alavi
Edited by

Evolutionary
Com

putation • Gai-GeW
ang and Am

ir H
. Alavi

Evolutionary Computation

Evolutionary Computation

Special Issue Editors

Gai-Ge Wang

Amir H. Alavi

MDPI • Basel • Beijing •Wuhan • Barcelona • Belgrade

Special Issue Editors

Gai-Ge Wang

Ocean University of China

China

Amir H. Alavi

University of Pittsburgh

USA

Editorial Office

MDPI

St. Alban-Anlage 66

4052 Basel, Switzerland

This is a reprint of articles from the Special Issue published online in the open access journal

Mathematics (ISSN 2227-7390) from 2018 to 2019 (available at: https://www.mdpi.com/journal/

mathematics/special issues/Mathematics Evolutionary Computation).

For citation purposes, cite each article independently as indicated on the article page online and as

indicated below:

LastName, A.A.; LastName, B.B.; LastName, C.C. Article Title. Journal Name Year, Article Number,

Page Range.

ISBN 978-3-03921-928-5 (Pbk)

ISBN 978-3-03921-929-2 (PDF)

c© 2019 by the authors. Articles in this book are Open Access and distributed under the Creative

Commons Attribution (CC BY) license, which allows users to download, copy and build upon

published articles, as long as the author and publisher are properly credited, which ensures maximum

dissemination and a wider impact of our publications.

The book as a whole is distributed by MDPI under the terms and conditions of the Creative Commons

license CC BY-NC-ND.

Contents

About the Special Issue Editors . vii

Preface to ”Evolutionary Computation” . ix

Yanhong Feng, Xu Yu and Gai-Ge Wang

A Novel Monarch Butterfly Optimization with Global Position Updating Operator for
Large-Scale 0-1 Knapsack Problems
Reprinted from: Mathematics 2019, 7, 1056, doi:10.3390/math7111056 1

Xiangjin Ran, Linfu Xue, Yanyan Zhang, Zeyu Liu, Xuejia Sang and Jinxin He

Rock Classification from Field Image Patches Analyzed Using a Deep Convolutional
Neural Network
Reprinted from: Mathematics 2019, 7, 755, doi:10.3390/math7080755 32

Fanrong Kong, Jianhui Jiang and Yan Huang

An Adaptive Multi-Swarm Competition Particle Swarm Optimizer for Large-Scale
Optimization
Reprinted from: Mathematics 2019, 7, 521, doi:10.3390/math7060521 48

Zhiqiang Zhang, Zhongwen Li, Xiaobing Qiao and Weijun Wang

An Efficient Memetic Algorithm for the Minimum Load Coloring Problem
Reprinted from: Mathematics 2019, 7, 475, doi:10.3390/math7050475 61

Weian Guo, Lei Zhu, Lei Wang, Qidi Wu and Fanrong Kong

An Entropy-Assisted Particle Swarm Optimizer for Large-Scale Optimization Problem
Reprinted from: Mathematics 2019, 7, 414, doi:10.3390/math7050414 81

Jiang Li, Lihong Guo, Yan Li and Chang Liu

Enhancing Elephant Herding Optimization with Novel Individual Updating Strategies for
Large-Scale Optimization Problems
Reprinted from: Mathematics 2019, 7, 395, doi:10.3390/math7050395 93

Fei Luan, Zongyan Cai, Shuqiang Wu, Tianhua Jiang, Fukang Li and Jia Yang

Improved Whale Algorithm for Solving the Flexible Job Shop Scheduling Problem
Reprinted from: Mathematics 2019, 7, 384, doi:10.3390/math7050384 128

Kaiguang Wang and Yuelin Gao

Topology Structure Implied in β-Hilbert Space, Heisenberg Uncertainty Quantum
Characteristicsand Numerical Simulation of the DE Algorithm
Reprinted from: Mathematics 2019, 7, 330, doi:10.3390/math7040330 142

Songyi Xiao, Wenjun Wang, Hui Wang, Dekun Tan, Yun Wang, Xiang Yu and Runxiu Wu

An Improved Artificial Bee Colony Algorithm Based on Elite Strategy and Dimension Learning
Reprinted from: Mathematics 2019, 7, 289, doi:10.3390/math7030289 161

Umesh Balande and Deepti Shrimankar

SRIFA: Stochastic Ranking with Improved-Firefly-Algorithm for Constrained Optimization
Engineering Design Problems
Reprinted from: Mathematics 2019, 7, 250, doi:10.3390/math7030250 178

v

Fuyu Yuan, Chenxi Li, Xin Gao, Minghao Yin and Yiyuan Wang

A Novel Hybrid Algorithm for Minimum Total Dominating Set Problem
Reprinted from: Mathematics 2019, 7, 222, doi:10.3390/math7030222 204

Lei Gao, Zhen-yun Jiang, Fan Min

First-Arrival Travel Times Picking through Sliding Windows and Fuzzy C-Means
Reprinted from: Mathematics 2019, 7, 221, doi:10.3390/math7030221 215

Penghong Wang, Fei Xue, Hangjuan Li, Zhihua Cui, Liping Xie and Jinjun Chen

A Multi-Objective DV-Hop Localization Algorithm Based on NSGA-II in Internet of Things
Reprinted from: Mathematics 2019, 7, 184, doi:10.3390/math7020184 228

Minhee Kim and Junjae Chae

Monarch Butterfly Optimization for Facility Layout Design Based on a Single Loop Material
Handling Path
Reprinted from: Mathematics 2019, 7, 154, doi:10.3390/math7020154 248

Yechuang Wang, Penghong Wang, Jiangjiang Zhang, Zhihua Cui, Xingjuan Cai, Wensheng

Zhang and Jinjun Chen

A Novel Bat Algorithm with Multiple Strategies Coupling for Numerical Optimization
Reprinted from: Mathematics 2019, 7, 135, doi:10.3390/math7020135 269

Yan Pei, Jun Yu, and Hideyuki Takagi

Search Acceleration of Evolutionary Multi-Objective Optimization Using an Estimated
Convergence Point
Reprinted from: Mathematics 2019, 7, 129, doi:10.3390/math7020129 286

Yanhong Feng, Haizhong An and Xiangyun Gao

The Importance of Transfer Function in Solving Set-Union Knapsack Problem Based on Discrete
Moth Search Algorithm
Reprinted from: Mathematics 2019, 7, 17, doi:10.3390/math7010017 304

Xin Zhang, Dexuan Zou and Xin Shen

A Novel Simple Particle Swarm Optimization Algorithm for Global Optimization
Reprinted from: Mathematics 2018, 6, 287, doi:10.3390/math6120287 329

Tianhua Jiang, Chao Zhang, Huiqi Zhu, Jiuchun Gu and Guanlong Deng

Energy-Efficient Scheduling for a Job Shop Using an Improved Whale Optimization Algorithm
Reprinted from: Mathematics 2018, 6, 220, doi:10.3390/math6110220 363

Diego Navarro-Mateu, Mohammed Makki and Ana Cocho-Bermejo

Urban-Tissue Optimization through Evolutionary Computation
Reprinted from: Mathematics 2018, 6, 189, doi:10.3390/math6100189 379

Ye Jin, Yuehong Sun, Hongjiao Ma

A Developed Artificial Bee Colony Algorithm Based on Cloud Model
Reprinted from: Mathematics 2018, 6, 61, doi:10.3390/math6040061 395

vi

About the Special Issue Editors

Gai-Ge Wang is an Associate Professor in Ocean University of China, China. His entire array of

publications have been cited over 5000 times (Google Scholar). Twelve and thirty-nine papers are

selected as Highly Cited Paper by Web of Science, and Scopus (till November 2019), respectively.

One paper is selected as “Top Articles from Outstanding S&T Journals of China-F5000 Frontrunner”.

The latest Google h-index and i10-index are 40 and 78, respectively. He is a senior member of SAISE,

SCIEI, a member of IEEE, IEEE CIS, ISMOST. He served as Editors-in-Chief of OAJRC Computer

and Communications, Editorial Advisory Board Member of Communications in Computational

and Applied Mathematics (CCAM), Associate Editor of IJCISIM, an Editorial Board Member of

IEEE Access, Mathematics, IJBIC, Karbala International Journal of Modern Science, and Journal

of Artificial Intelligence and Systems. He served as Guest Editor for many journals including

Mathematics, IJBIC, FGCS, Memetic Computing and Operational Research. His research interests are

swarm intelligence, evolutionary computation, and big data optimization.

Amir H. Alavi is an Assistant Professor in the Department of Civil and Environmental Engineering,

and holds a courtesy appointment in the Department of Bioengineering at the University of

Pittsburgh. Prior to joining Pitt, Dr. Alavi was an Assistant Professor of Civil Engineering at the

University of Missouri. Dr. Alavi’s research interests include structural health monitoring, smart

civil infrastructure systems, deployment of advanced sensors, energy harvesting, and engineering

information systems. At Pitt, his Intelligent Structural Monitoring and Response Testing (iSMaRT)

Laboratory focuses on advancing the knowledge and technology required to create self-sustained

and multifunctional sensing and monitoring systems that are enhanced by engineering system

informatics. His research activities involve implementation of these smart systems in the fields of

civil infrastructure, construction, aerospace, and biomedical engineering. Dr. Alavi has worked

on research projects supported by Federal Highway Administration (FHWA), National Institutes of

Health (NIH), National Science Foundation (NSF), Missouri DOT, and Michigan DOT. Dr. Alavi has

authored five books and over 170 publications in archival journals, book chapters, and conference

proceedings. He has received a number of award certificates for his journal articles. He is among

the Google Scholar 200 Most Cited Authors in Civil Engineering, as well as Web of Science ESI’s

World Top 1% Scientific Minds. He has served as the editor/guest editor of several journals such as

Sensors, Case Studies in Construction Material, Automation in Construction, Geoscience Frontiers,

Smart Cities, ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, and Advances in

Mechanical Engineering.

vii

Preface to ”Evolutionary Computation”

Intelligent optimization is based on the mechanism of computational intelligence, refining the

appropriate feature model, designing an effective optimization algorithm, and then obtaining the

optimal solution or satisfactory solution for complex problems. Intelligent algorithms should try to

ensure global optimization quality, fast optimization efficiency and robust optimization performance.

Many researchers have different discoveries in the study of intelligent optimization algorithms.

Feng et al. presented a novel monarch butterfly optimization with a global position updating

operator (GMBO), which can address 0-1 KP known as an NP-complete problem. Ran et al.

proposed an accurate approach for identifying rock types in the field based on image analysis using

deep convolutional neural networks, which can identify six common rock types with an overall

classification accuracy of 97.96%. Kong et al. presented an adaptive multi-swarm particle swarm

optimizer, which adaptively divides a swarm into several sub-swarms and a competition mechanism

is employed to select exemplars to address large-scale optimization problem. Zhang et al. proposed

a memetic algorithm for MLCP based on an improved K-OPT local search and an evolutionary

operation to improve the best known results of MLCP. Guo et al. proposed a novel PSO that employs

competitive strategy and entropy measurement to manage convergence operator and diversity

maintenance respectively, which was applied to the large-scale optimization benchmark suite on CEC

2013 and the results demonstrate the proposed algorithm is feasible and competitive to address large

scale optimization problems. Li et al. proposed several new updating strategies for EHO, in which

one, two, or three individuals are selected from the previous iterations, and their useful information is

incorporated into the updating process. Accordingly, the final individual at this iteration is generated

according to the elephant generated by the basic EHO, and the selected previous elephants through

a weighted sum. A novel improved whale optimization algorithm (IWOA), based on the integrated

approach, is presented by Luan et al. for solving the flexible job shop scheduling problem (FJSP)

with the objective of minimizing makespan. Xiao et al. proposed an improved ABC variant based on

elite strategy and dimension learning (called ABC-ESDL). The elite strategy selects better solutions

to accelerate the search of ABC. The dimension learning uses the differences between two random

dimensions to generate a large jump. Balande et al. proposed a hybrid algorithm, namely the

Stochastic Ranking with Improved Firefly Algorithm (SRIFA) for solving constrained real-world

engineering optimization problems. Yuan et al. proposed a hybrid evolutionary algorithm,

which combines local search and genetic algorithm to solve minimum total dominating set (MTDS)

problems. Pei et al. proposed a method to accelerate evolutionary multi-objective optimization

(EMO) search using an estimated convergence point. Zhang et al. proposed a novel Simple Particle

Swarm Optimization based on Random weight and Confidence term (SPSORC). The original two

improvements of the algorithm are called Simple Particle Swarm Optimization (SPSO) and Simple

Particle Swarm Optimization with Confidence term (SPSOC), respectively. An energy-efficient job

shop scheduling problem (EJSP) is investigated by Jiang et al. with the objective of minimizing

the sum of the energy consumption cost and the completion-time cost. Jin et al. proposed a

developed ABC algorithm based on a cloud model to enhance accuracy of the basic ABC algorithm

and avoid getting trapped into local optima by introducing a new select mechanism, replacing the

onlooker bees’ search formula and changing the scout bees’ updating formula.Studying advanced

intelligent optimization theory, designing efficient intelligent optimization method and popularizing

effective intelligent optimization application not only has important academic value and discipline

ix

development significance, but also has very important practical significance for improving enterprise

management level, increasing enterprise benefit and promoting enterprise development. Finally, it is

hoped that the publication of this book will help beginners to understand the principles and design

of intelligent algorithms, help basic readers to carry out the application and promotion of intelligent

algorithms, and further promote the development and improvement of intelligent algorithm research,

strengthen the research of computational intelligent algorithms, and promote the intersection and

integration of related disciplines.

Gai-Ge Wang, Amir H. Alavi

Special Issue Editors

x

mathematics

Article

A Novel Monarch Butterfly Optimization with Global
Position Updating Operator for Large-Scale 0-1
Knapsack Problems

Yanhong Feng 1, Xu Yu 2 and Gai-Ge Wang 3,4,5,6,*

1 School of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China; qinfyh@163.com or
qinfyh@hgu.edu.cn

2 School of Information Science and Technology, Qingdao University of Science and Technology,
Qingdao 266061, China; yuxu0532@163.com

3 Department of Computer Science and Technology, Ocean University of China, Qingdao 266100, China
4 Institute of Algorithm and Big Data Analysis, Northeast Normal University, Changchun 130117, China
5 School of Computer Science and Information Technology, Northeast Normal University,

Changchun 130117, China
6 Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education,

Jilin University, Changchun 130012, China
* Correspondence: gaigewang@163.com or gaigewang@gmail.com or wgg@ouc.edu.cn

Received: 18 September 2019; Accepted: 25 October 2019; Published: 4 November 2019

Abstract: As a significant subset of the family of discrete optimization problems, the 0-1 knapsack
problem (0-1 KP) has received considerable attention among the relevant researchers. The monarch
butterfly optimization (MBO) is a recent metaheuristic algorithm inspired by the migration behavior
of monarch butterflies. The original MBO is proposed to solve continuous optimization problems.
This paper presents a novel monarch butterfly optimization with a global position updating operator
(GMBO), which can address 0-1 KP known as an NP-complete problem. The global position updating
operator is incorporated to help all the monarch butterflies rapidly move towards the global best
position. Moreover, a dichotomy encoding scheme is adopted to represent monarch butterflies
for solving 0-1 KP. In addition, a specific two-stage repair operator is used to repair the infeasible
solutions and further optimize the feasible solutions. Finally, Orthogonal Design (OD) is employed in
order to find the most suitable parameters. Two sets of low-dimensional 0-1 KP instances and three
kinds of 15 high-dimensional 0-1 KP instances are used to verify the ability of the proposed GMBO.
An extensive comparative study of GMBO with five classical and two state-of-the-art algorithms is
carried out. The experimental results clearly indicate that GMBO can achieve better solutions on
almost all the 0-1 KP instances and significantly outperforms the rest.

Keywords: monarch butterfly optimization; greedy optimization algorithm; global position updating
operator; 0-1 knapsack problems

1. Introduction

The 0-1 knapsack problem (0-1 KP) is a classical combinatorial optimization task and a challenging
NP-complete problem as well. That is to say, it can be solved by nondeterministic algorithms in
polynomial time. Similar to other NP-complete problems, such as vertex cover (VC), hamiltonian circuit
(HC), and set cover (SC), the 0-1 KP is intractable. In other words, no polynomial-time exact algorithms
have been found for it thus far. This problem was originated from the resource allocation involving
financial constraints and since then, has been extensively studied in an array of scientific fields, such as
combinatorial theory, computational complexity theory, applied mathematics, and computer science [1].
Additionally, it has been found to have many practical applications, such as project selection [2],

Mathematics 2019, 7, 1056; doi:10.3390/math7111056 www.mdpi.com/journal/mathematics1

Mathematics 2019, 7, 1056

investment decision-making [3], and network interdiction problem [4]. Mathematically, we can describe
the 0-1 KP as follows:

Maximize f (x) =
n∑

i=1
pixi

subject to
n∑

i=1
wixi ≤ C,

xi = 0 or 1, i = 1, . . . , n,

(1)

where n is the number of items, pi, and wi denote the profit and weight of item i, respectively. C represents
the total capacity of the knapsack. The 0-1 variable xi indicates whether the item i is put into the
knapsack, i.e., if any item i is selected and belongs to the knapsack, xi = 1, otherwise, xi = 0. The objective
of the 0-1 KP is to maximize the total profits of the items placed in the knapsack, subject to the condition
that the sum of the weights of the corresponding items does not exceed a given capacity C.

Since the 0-1 KP was reported by Dantzig [5] in 1957, a large number of researchers have focused
on addressing it in diverse areas. Some of the main early methods in this field are exact methods, such
as the branch and bound method (B&B) [6] and the dynamic programming (DP) method [7]. It is a
breakthrough to introduce the concept of the core by Martello et al. [8]. In addition, some effective
algorithms have been proposed for 0-1 KP [9], the multidimensional knapsack problem (MKP) [10].
With the rapid development of computational intelligence, some modern metaheuristic algorithms have
been proposed for addressing the 0-1 KP. Some of those related algorithms include genetic algorithm
(GA) [11], differential evolution (DE) [12], shuffled frog-leaping algorithm (SFLA) [13], cuckoo search
(CS) [14,15], artificial bee colony (ABC) [16,17], harmony search (HS) [17–21], and bat algorithm
(BA) [22,23]. Many research methods are applied to the 0-1 KP problem. Zhang et al. converted the 0-1
KP problem into a directed graph by the network converting algorithm [24]. Kong et al. proposed
an ingenious binary operator to solve the 0-1 KP problem by simplified binary harmony search [20].
Zhou et al. presented a complex-valued encoding scheme for the 0-1 KP problem [22].

In recent years, inspired by natural phenomena, a variety of novel meta-heuristic algorithms have
been reported, e.g., bat algorithm (BA) [23], amoeboid organism algorithm [24], animal migration
optimization (AMO) [25], artificial plant optimization algorithm (APOA) [26], biogeography-based
optimization (BBO) [27,28], human learning optimization (HLO) [29], krill herd (KH) [30–32],
monarch butterfly optimization (MBO) [33], elephant herding optimization (EHO) [34], invasive
weed optimization (IWO) algorithm [35], earthworm optimization algorithm (EWA) [36], squirrel
search algorithm (SSA) [37], butterfly optimization algorithm (BOA) [38], salp swarm algorithm
(SSA) [39], whale optimization algorithm (WOA) [40], and others. A review of swarm intelligence
algorithms can be referred to [41].

As a novel biologically inspired computing approach, MBO is inspired by the migration behavior
of the monarch butterflies with the change of the seasons. The related investigations [42,43] have
demonstrated that the advantage of MBO lies in its simplicity, being easy to carry out, and efficiency.
In order to address the 0-1 KP, which falls within the domain of the discrete combinatorial optimization
problems with constraints, this paper presents a specially designed monarch butterfly optimization
with global position updating operator (GMBO). What needs special mention is that GMBO is a
supplement and perfection to previous related work, namely, a binary monarch butterfly optimization
(BMBO) and a novel chaotic MBO with Gaussian mutation (CMBO) [42]. The main difference and
contributions of this paper are as follows, compared with BMBO and CMBO.

Firstly, the original MBO was proposed to address the continuous optimization problems, i.e., it
cannot be directly applied in the discrete space. For this reason, in this paper, a dichotomy encoding
strategy [44] was employed. More specifically, each monarch butterfly individual is represented
as two-tuples consisting of a real-valued vector and a binary vector. Secondly, although BMBO
demonstrated excellent performance in solving 0-1 KP, it did not show a prominent advantage [42].
In other words, some techniques can be combined with BMBO for the purpose of improving its global
optimization ability. Based on this, an efficient global position updating operator [16] was introduced

2

Mathematics 2019, 7, 1056

to enhance the optimization ability and ensure its rapid convergence. Thirdly, a novel two-stage
repair operator [45,46] called the greedy modification operator (GMO), and greedy optimization
operator (GOO), respectively, was adopted. The former repairs the infeasible solutions while the
latter optimizes the feasible solutions during the search process. Fourthly, empirical studies reveal
that evolutionary algorithms have certain dependencies on the selection of parameters. Moreover,
certain coupling between the parameters still exists. However, suitable parameter combination for a
particular problem was not analyzed in BMBO and CMBO. In order to verify the influence degree
of four important parameters on the performance of GMBO, an orthogonal design (OD) [47] was
applied, and then the appropriate parameter settings were examined and recommended. Fifthly,
generally speaking, the approximate solution of an NP-hard problem can be obtained by evolutionary
algorithms. However, the most important thing is to obtain higher quality approximate solutions,
which are closer to the optimal solutions more profitably. In BMBO, the optimal solutions of all the
0-1 KP instances were not provided. It is difficult to judge the quality of an approximate solution
obtained by an evolutionary algorithm. In GMBO, the optimal solutions of 0-1 KP instances are
calculated by a dynamic programming algorithm. Meanwhile, the approximation ratio based on the
best values and the worst values are provided, which clearly reflect the degree of the closeness of the
approximate solutions to the optimal solutions. In addition, the application of statistical methods in
GMBO is one of the differences between GMBO and BMBO, CMBO, including Wilcoxon’s rank-sum
tests [48] with a 5% significance level. Moreover, boxplots can visualize the experimental results from
the statistical perspective.

The rest of the paper is organized as follows. Section 2 presents a snapshot of the original MBO,
while Section 3 introduces the GMBO for large-scale 0-1 KP in detail. Section 4 reports the outcomes of
a series of simulation experiments as well as to compare results. Finally, the paper ends with Section 5
after providing some conclusions, along with some directions for further work.

2. Monarch Butterfly Optimization

Animal migration involves mainly long-distance movement, usually in groups, on a regular
seasonal basis. MBO [33,43] is a population-based intelligent stochastic optimization algorithm that
mimics the seasonal migration behavior of monarch butterflies in nature. It should be noted that the
entire population is divided into two subpopulations, named subpopulation_1 and subpopulation_2,
respectively. Based on this, the optimization process consists of two operators, which operate
on subpopulation_1 and subpopulation_2, respectively. The information is interchanged among the
individuals of subpopulation_1 and subpopulation_2 by applying the migration operator. The butterfly
adjusting operator delivers the information of the best individual to the next generation. Additionally,
Lévy flights [49,50] are introduced into MBO. The main steps of MBO are outlined as follows:

Step 1. Initialize the parameters of MBO. There are five basic parameters to be considered while
addressing various optimization problems, including the number of the population (NP), the
ratio of the number of monarch butterflies in subpopulation_1 (p), migration period (peri), the
monarch butterfly adjusting rate (BAR), the max walk step of the Lévy flights (Smax).

Step 2. Initialize the population with NP randomly generated individuals according to a uniform
distribution in the search space.

Step 3. Sort the individuals according to their fitness in descending order (Here assumptions for the
maximum). The better NP1 (p*NP) individuals constitute subpopulation_1, and NP2 (NP-NP1)
individuals make up subpopulation_2.

Step 4. The position updating of individuals in subpopulation_1 is determined by the migration operator.
The specific procedure is described in Algorithm 1.

Step 5. The moving direction of the individuals in subpopulation_2 depends on the butterfly adjusting
operator. The detailed procedure is shown in Algorithm 2.

Step 6. Recombine two subpopulations into one population

3

Mathematics 2019, 7, 1056

Step 7. If the termination criterion is already satisfied, output the best solution found, otherwise, go to
Step 3.

Algorithm 1. Migration Operator

Begin

for i = 1 to NP1 (for all monarch butterflies in subpopulation_1)
for j = 1 to d (all the elements in ith monarch butterfly)

r = rand * peri, where rand ~ U(0,1)
if r ≤ p then

xi, j = xr1, j, where r1~U[1, 2,. . . , NP1]
else

xi, j = xr2, j, where r2~U[1, 2,. . . , NP2]
end if

end for j
end for i

End.

where dx is calculated by implementing the Lévy flights. It should be noted that the Lévy flights,
which originated from the Lévy distribution, are an impactful random walk model, especially on
undiscovered, higher-dimensional search space. The step size of Lévy flights refers to Equation (2).

StepSize = ceil(exprnd(2 ∗Maxgen)) (2)

where function exprnd(x) returns random numbers of an exponential distribution with mean x and ceil(x)
gets a value to the nearest integer greater than or equal to x. Maxgen is the maximum number of iterations.

The parameter ω is the weighting factor which has inverse proportional relationship to the
current generation.

Algorithm 2. Butterfly Adjusting Operator

Begin

for i = 1 to NP2 (for all monarch butterflies in subpopulation_2)
for j = 1 to d (all the elements in ith monarch butterfly)

if rand ≤ p then where rand ~ U(0,1)
xi, j = xbest, j

else

xi, j = xr3, j where r3 ~ U[1,2,. . . , NP2]
if rand > BAR then

xi, j = xi, j +ω× (dxj − 0.5)
end if

end if

end for j
end for i

End.

3. A Novel Monarch Butterfly Optimization with Global Position Updating Operator for the 0-1 KP

In this section, we give the detailed design procedure of the GMBO for the 0-1 KP. Firstly, a
dichotomy encoding scheme [46] is used to represent each individual. Secondly, a global position
updating operator [16] is embedded in GMBO in order to increase the probability of finding the optimal
solution. Thirdly, the two-stage individual optimization method is employed, which successively
tackles the infeasible solutions and then further improves the existing feasible solutions. Finally, the
basic framework of GMBO for 0-1 KP is formed.

4

Mathematics 2019, 7, 1056

3.1. Dichotomy Encoding Scheme

KP belongs to the category of discrete optimization. The solution space is a collection of discrete
points rather than a contiguous area. For this reason, we should either redefine the evolutionary
operation of MBO or directly apply a continuous algorithm to discrete problems. In this paper, we
prefer the latter for its simplicity of operation, comprehensibility, and generality.

As previously mentioned, each monarch butterfly individual is expressed as a two-tuple <X, Y>.
Here, real number vectors X still constitute the search space as in the original MBO, which can be
regarded as a phenotype similar to the genetic algorithm. Binary vectors, Y, form the solution space,
which can be seen as a genotype common in the evolutionary algorithm. It should be noted that Y

may be a valid solution because 0-1KP is a constraint optimization problem. Here we abbreviate the
monarch butterfly population to MBOP. Then the structure of MBOP is given as follows:

MBOP =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(x1,1, y1,1)(x1,2, y1,2) · · · (x1,d, y1,d)

(x2,1, y2,1)(x2,2, y2,2) · · · (x2,d, y2,d)

· · · · · · · · · · · ·
(xNP,1, yNP,1)(xNP,2, yNP,2) · · · (xNP,d, yNP,d)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(3)

The first step to adopting a dichotomous encoding scheme is to transfer the phenotype to genotype.
Therefore, a surjective function g is used to realize the mapping relationship from each element of X to
the corresponding element of Y.

g(x) =
{

1 i f sig(x) ≥ 0.5
0 else

(4)

where sig(x) = 1/(1+ e−x) is the sigmoid function. The sigmoid function is often used as the threshold
function of neural networks. It was applied to the binary particle swarm optimization (BPSO) [51] to
convert the position of a particle from a real-valued vector to a 0-1 vector. It should be noted that there
are other conversion functions [52] can be used.

Now assume a 0-1 KP problem with 10 items, Figure 1 shows the above process, in which each
xi ∈ [−5.0, 5.0] (1 ≤ i ≤ 10) is randomly chosen based on the uniform distribution.

Figure 1. The example of the dichotomy encoding scheme.

3.2. Global Position Updating Operator

The main feature of particle swarm optimization (PSO) is that the particle always tends to converge
to two extreme positions viz. the best position ever found by itself and the global best position. Inspired
by the behavior of swarm intelligence of PSO, a novel position updating operator was recently proposed
and successfully embedded in HS for solving 0-1 KP [16]. After that, the position updating operator
combines with CS [14] to deal with 0-1 KP.

It is well-known that the evolutionary algorithm can yield strong optimization performance under
the condition of the balance between exploitation and exploration, or attraction and diffusion [53].
The original MBO concentrates much on the exploration ability but weak exploitation capability [33,43].
With the aim of enhancing the exploitation capability of MBO, we introduce a global position updating
operator mentioned above. The procedure is shown in Algorithm 3, where “best” and “worst” represent
the global best individual and the global worst individual, respectively. r4, r5, and rand are uniform
random real numbers in [0, 1]. The pm parameter is mutation probability.

5

Mathematics 2019, 7, 1056

Algorithm 3. Global Position Updating Operator

Begin

for i = 1 to NP (for all monarch butterflies in the whole population)
for j = 1 to d (all the elements in ith monarch butterfly)

stepj =
∣∣∣xbest, j − xworst, j

∣∣∣
if (rand ≥ 0.5) where rand ~ U(0,1)

xj = xbest, j + r4 × stepj where r4 ~ U(0,1)
else

xj = xbest, j − r4 × stepj
end if

if (rand ≤ pm)
xj = Lj + r5 × (Uj − Lj) where r5 ~ U(0,1)

end if

end for j
end for i

End.

3.3. Two-Stage Individual Optimization Method Based on Greedy Strategy

Since KP is a constrained optimization problem, it may lead to the occurrence of infeasible
solutions. There are usually two major methods: Redefining the objective function by penalty function
method (PFM) [54,55] and individual optimization method based on the greedy strategy (IOM) [56,57].
Unfortunately, the former shows poor performance when encountering large-scale KP problems. In
this paper, we adopt IOM to address infeasible solutions.

A simple greedy strategy, namely GS [58], is proposed to choose the item with the greatest density
pi/wi first. Although the feasibility of all individuals can be guaranteed, it is obvious that there are
several imperfections. Firstly, for a feasible individual, there is a possibility that the corresponding
objective function value may turn to be worse by applying GS. Secondly, the lack of further optimization
for all individuals can lead to unsatisfactory solutions.

In order to overcome the shortcomings of GS, the two-stage individual optimization method is
proposed by He et al. [45,46]. A greedy modification operator (GMO) is used to repair the infeasible
individuals in the first stage. It is followed by the application of the greedy optimization operator
(GOO), which further optimizes the feasible individuals. The method proceeds as follows.

Step 1. Quicksort algorithm is used to sort all items in the non-ascending order according to pi/wi, and
the index of items is stored in an array H[1], H[2]. . . , H[n], respectively.

Step 2. For an infeasible individual X = {x1, x2, . . . , xn} ∈ {0, 1}n, GMO is applied.
Step 3. For a feasible individual X = {x1, x2, . . . , xn} ∈ {0, 1}n, GOO is performed.

After the above repair process, it is easy to verify that each optimized individual is feasible.
The significance of GMO and GOO seems particularly prominent while solving high dimensional KP
problems [45,46]. The pseudo-code of GMO and GOO can be shown in Algorithms 4 and 5, respectively.

Algorithm 4. Greedy Modification Operator

Begin

Input: X = {x1, x2, . . . , xn} ∈ {0, 1}n, W = {w1, w2, . . . , wn}, P =
{
p1, p2, . . . , pn

}
, H[1 . . . n], C.

Weight = 0
for i = 1 to n

weight = weight + xH[i] ∗wH[i]
if weight > C

weight = weight− xH[i] ∗wH[i]
xH[i] = 0

end if

end for i
Output: X = {x1, x2, . . . , xn} ∈ {0, 1}n

End.

6

Mathematics 2019, 7, 1056

Algorithm 5. Greedy Optimization Operator

Begin

Input: X = {x1, x2, . . . , xn} ∈ {0, 1}n, W = {w1, w2, . . . , wn}, P =
{
p1, p2, . . . , pn

}
H[1 . . . n], C.

Weight = 0
for i = 1 to n

weight = weight + xi ∗wi
end for i
for i = 1 to n

if xH[i] = 0 and weight + wH[i] ≤ C
xH[i] = 1
weight = weight + wH[i]

end if

end for i
Output: X = {x1, x2, . . . , xn} ∈ {0, 1}n

End.

Algorithm 6. GMBO for 0-1 KP

Begin

Step 1: Sorting. Quicksort is used to sort all items in the non-ascending order by pi/wi, 1 ≤ i ≤ n and the
index of items is stored in array H [1. . . n].

Step 2: Initialization. Set the generation counter g = 1; set migration period peri, the migration ratio p,
butterfly adjusting rate BAR, and the max walk step of Lévy flights Smax; set the maximum
generation MaxGen. Set the generation interval between recombination RG. Generate NP monarch
butterfly individuals randomly {<X1, Y1>, <X2, Y2>, . . . , <XNP, YNP>}. Calculate the fitness of
each individual, f (Yi), 1 ≤ i ≤ NP.

Step 3: While (stopping criterion)

Divide the whole population (NP individuals) into subpopulation_1 (NP1 individuals) and
subpopulation_2 (NP2 individuals) according to their fitness;

Calculate and record the global optimal individual <Xgbest, Ygbest>.

Update subpopulation_1 with migration operator.

Update subpopulation_2 with butterfly adjusting operator.

Update the whole population with Global position updating operator.

Repair the infeasible solutions by performing GMO.

Improve the feasible solutions by performing GOO.

Keep best solutions.

Find the current best solution (Ygbest, f (Ygbest)).

g = g + 1.

if Mod(g, RG) = 0

Reorganize the two subpopulations into one population.

end if

Step 4: end while

Step 5: Output the best results

End.

7

Mathematics 2019, 7, 1056

3.4. The Procedure of GMBO for the 0-1 KP

In this section, the procedure of GMBO for 0-1 KP is described in Algorithm 6, and the flowchart
is illustrated in Figure 2. Apart from the initialization, it is divided into three main processes.

Figure 2. Flowchart of global position updating operator (GMBO) algorithm for 0-1 knapsack
(KP) problem.

(1) In the migration process, the position of each monarch butterfly individual in subpopulation_1
is updated. We can view this process as exploitation by combining the properties of the currently
known individuals in subpopulation_1 or subpopulation_2.

(2) In the butterfly adjusting process, partial genes of the global best individual are passed on to
the next generation. Moreover, Lévy flights come into play owing to longer step length in exploring

8

Mathematics 2019, 7, 1056

the search space. This process can be considered as exploration, which may find new solutions in the
unknown domain of the search space.

(3) In the global position updating process, we can define the distance of the global best individual
and the global worst individual as the adaptive step. Obviously, the two extreme individuals differ
greatly at the early stage of the optimization process. In other words, the adaptive step has a larger
value, and the search scope is broader, which is beneficial to the global search over a wide range.
With the progress of the evolution, the global worst individual tends to be more similar to the global
best individual, and then the difference becomes small at the late stage of the optimization process.
Meanwhile, the adaptive step has a smaller value, and the search area narrows, which is useful for
performing the local search. In addition, the genetic mutation is applied to preserve the population
diversity and avoid premature convergence. It should be noted that, unlike the original MBO, in
GMBO, the two newly-generated subpopulations regroup one population at a certain generation rather
than each generation, which can reduce time consumption.

3.5. The Time Complexity

In this subsection, the time complexity of GMBO is simply estimated (Algorithm 6). It is not
hard to see that the time complexity of GMBO mainly hinges on steps 1–3. In Step 1, Quicksort
algorithm costs time O (n log n). In Step 2, the initialization of NP individuals consumes time O (NP *
n). The calculation of fitness has time O (NP). In Step 3, migration operator costs time O (NP1 * n), and
the butterfly adjusting operator has time O (NP2 * n). Moreover, the global position updating operator
consumes O (NP * n). It is noticed that GMO and GOO cost the same time complexity O (NP * n). Thus,
the time complexity of GMBO would be O (n log n) + O (NP * n) + O (NP) + O (NP1 * n) + O (NP2 * n) +
O (NP * n) + O (NP * n) = O (n2).

4. Simulation Experiments

We chose 3 different sets of 0-1 KP test instances to verify the feasibility and effectiveness of the
proposed GMBO method. The test set 1 and test set 2 were widely used low-dimensional benchmark
instances with dimension = 4 to 24. The test set 3 consisted of 15 high-dimensional 0-1 KP test instances
generated randomly with dimension = 800 to 2000.

4.1. Experimental Data Set

The generation form of test set 3 was firstly given. Since the difficulty of the knapsack problems
was greatly affected by the correlation between the profits and weights [59], 3 typical large scale 0-1
KP instances were randomly generated to demonstrate the performance of the proposed algorithm.
Here function Rand (a, b) returned a random integer uniformly distributed in [a, b]. For each instance,
the maximum capacity of the knapsack equaled 0.75 times of the total weights. The procedure is
as follows:

• Uncorrelated instances:
wj = Rand(10, 100)
pj = Rand(10, 100)

(5)

• Weakly correlated instances:

wj = Rand(10, 100)
pj = Rand(wj − 10, wj + 100)

(6)

• Strongly correlated instances:
wj = Rand(10, 100)

pj = wj + 10
(7)

9

Mathematics 2019, 7, 1056

In this section, 3 groups of large scale 0-1 KP instances with dimensionality varying from 800
to 2000 were considered. These 15 instances included 5 uncorrelated instances, 5 weakly correlated
instances, and 5 strongly correlated instances. The dimension size was 800, 1000, 1200, 1500, and 2000,
respectively. We simply denoted these instances by KP1–KP15.

4.2. Parameter Settings

As mentioned earlier, GMBO included 4 important parameters: p, peri, BAR, and Smax. In order
to examine the effect of the parameters on the performance of GMBO, Orthogonal Design (OD) [47]
was applied with uncorrelated 1000-dimensional 0-1 KP instance. Our experiment contained 4 factors,
4 levels per factor, and 16 combinations of levels. The combinations of different parameter values are
given in Table 1.

For each experiment, the average value of the total profits was obtained with 50 independent
runs. The results are listed in Table 2.

Table 1. Combinations of different parameter values.

Parameters
Factor Level

1 2 3 4

p 1/12 3/12 5/12 10/12
peri 0.8 1 1.2 1.4
BAR 1/12 3/12 5/12 10/12
Smax 0.6 0.8 1 1.2

Table 2. Orthogonal array and the experimental results.

Experiment. Factors
Results

Number p peri BAR Smax

1 1 1 1 1 R1 = 49,542
2 1 2 2 2 R2 = 49,538
3 1 3 3 3 R3 = 49,503
4 1 4 4 4 R4 = 49,528
5 2 1 2 3 R5 = 49,745
6 2 2 1 4 R6 = 49,739
7 2 3 4 1 R7 = 49,763
8 2 4 3 2 R8 = 49,739
9 3 1 3 4 R9 = 49,704
10 3 2 4 3 R10 = 49,728
11 3 3 1 2 R11 = 49,730
12 3 4 2 1 R12 = 49,714
13 4 1 4 2 R13 = 49,310
14 4 2 3 1 R14 = 49,416
15 4 3 2 4 R15 = 49,460
16 4 4 1 3 R16 = 49,506

Using data from Table 2, we can carry out factor analysis, rank the 4 parameters according to the
degree of influence on the performance of GMBO, and deduce the better level of each factor. The factor
analysis results are recorded in Table 3, and the changing trends of all the factor levels are shown in
Figure 3.

As we can see from Table 3 and Figure 3, p is the most important parameter and needs a reasonable
selection for the 0-1 KP problems. A small p signifies more elements from subpopulation_2. Conversely,
more elements were selected from subpopulation_1. For peri, the curve was in a small range in an
upward trend. This implied individual elements from subpopulation_2 had more chance to embody in
the newly generated monarch butterfly. For BAR and Smax, it can be seen from Figure 3 that the effect
on the algorithm was not obvious.

10

Mathematics 2019, 7, 1056

According to the above analysis based on OD, the most suitable parameter combination is p2 = 3/12,
peri4 = 1.4, BAR1 = 1/12, and Smax3 = 1.0, which will be adopted in the following experiments.

Table 3. Factor analysis with the orthogonal design (OD) method.

Levels
Factor Analysis

p peri BAR Smax

1
(R1 + R1 + R1 + R1)/4 (R1 + R5 + R9 + R13)/4 (R1 + R6 + R11 + R16)/4 (R1 + R7 + R12 + R14)/4

49,528 49,575 49,629 49,609

2
(R5 + R6 + R7 + R8)/4 (R2 + R6 + R10 + R14)/4 (R2 + R5 + R12 + R15)/4 (R1 + R1 + R1 + R1)/4

49,746 49,605 49,603 49,579

3
(R9 + R10 + R11 + R12)/4 (R3 + R7 + R11 + R15)/4 (R3 + R8 + R9 + R14)/4 (R3 + R5 + R10 + R16)/4

49,719 49,614 49,590 49,620

4
(R13 + R14 + R15 + R16)/4 (R4 + R8 + R12 + R16)/4 (R4 + R7 + R10 + R13)/4 (R4 + R6 + R9 + R15)/4

49,423 49,622 49,582 49,608
Std 134.06 17.72 17.78 15.13

Rank 1 3 2 4
results p2 peri4 BAR1 Smax3

Figure 3. The changing trends of all the factor levels.

4.3. The Comparisons of the GMBO and the Classical Algorithms

In order to investigate the ability of GMBO to find the optimal solutions and to test the convergence
speed, 5 representative classical optimization algorithms, including the BMBO [42], ABC [60], CS [61],
DE [62] and GA [11], were selected for comparison. GA was an important branch in the field
of computational intelligence that has been intensively studied since it was developed by John
Holland et al. In addition, GA was representative of the population-based algorithm. DE was a
vector-based evolutionary algorithm, and more and more researchers have paid attention to it since it
was first proposed. Since then, it has been applied to solve many optimization problems. CS is one
of the latest swarm intelligence algorithms. The similarity of CS with GMBO lies in the introduction
of Levy flights. ABC is a relatively novel bio-inspired computing method and has the outstanding
advantage of the global and local search in each evolution.

There are several points to explain. Firstly, all 5 comparative methods (not including GA) used
the previously mentioned dichotomy encoding mechanism. Secondly, all 6 comparative methods used
GMO and GOO to carry out the additional repairing and optimization operations. Thirdly, ABC, CS,
DE, GA, MBO, and GMBO were short for 6 methods based on binary, respectively.

The parameters were set as follows. For ABC, the number of food sources is set to 25 and
maximum search times = 100. CS, DE, and GA are set the same parameters as that of [15]. For MBO,
we take the same parameters suggested in Section 4.2. In addition, the 2 subpopulations recombined

11

Mathematics 2019, 7, 1056

every 50 generations. GMBO and MBO have identical parameters except for that mutation probability
pm = 0.25 is included in GMBO.

For the sake of fairness, the population sizes of six methods are set to 50. The maximum run
time is set to 8 s for 800, 1000, and 1200 dimensional instances but 10 s for 1500 and 2000 dimensional
instances. 50 independent runs are performed to achieve the experimental results.

We use C++ as the programming language and run the codes on a PC with Intel (R) Core(TM)
i5-2415M CPU, 2.30GHz, 4GB RAM.

4.3.1. The Experimental Results of GMBO on Solving Two Sets of Low-Dimensional 0-1
Knapsack Problems

In this section, 2 sets of 0-1 KP test instances were considered for testing the efficiency of the
GMBO. The maximum number of iterations was set to 50. As mentioned earlier, 50 independent runs
were made. The first set, which contained 10 low-dimensional 0-1 knapsack problems [19,20], was
adopted with the aim of investigating the basic performance of the GMBO. The standard 10 0-1 KP test
instances were studied by many researchers, and detailed information about these instances can be
taken from the literature [13,19,20]. Their basic parameters are recorded in Table 4. The experimental
results obtained by GMBO are listed in Table 5.

Table 4. The basic information of 10 standard low-dimensional 0-1KP instances.

f Dim Opt.value Opt.solution

f 1 10 295 (0,1,1,1,0,0,0,1,1,1)
f 2 20 1024 (1,1,1,1,1,1,1,1,1,1,1,1,1,0,1,0,1,0,1,1)
f 3 4 35 (1,1,0,1)
f 4 4 23 (0,1,0,1)
f 5 15 481.0694 (0,0,1,0,1,0,1,1,0,1,1,1,0,1,1)
f 6 10 52 (0,0,1,0,1,1,1,1,1,1)
f 7 7 107 (1,0,0,1,0,0,0)
f 8 23 9767 (1,1,1,1,1,1,1,1,0,0,1,0,0,0,0,1,1,0,0,0,0,0,0)
f 9 5 130 (1,1,1,1,0)
f 10 20 1025 (1,1,1,1,1,1,1,1,1,0,1,1,1,1,0,1,0,1,1,1)

Table 5. The experimental results of 10 standard low-dimensional 0-1 KP instances obtained by GMBO.

f SR Time(s) MinIter MaxIter MeanIter Best Worst Mean Std

f 1 100% 0.0032 1 1 1 295 295 295 0
f 2 100% 0.0092 1 52 6.10 1024 1024 1024 0
f 3 100% 0.0003 1 1 1 35 35 35 0
f 4 100% 0.0004 1 1 1 23 23 23 0
f 5 100% 0.0072 1 4 1.30 481.07 481.07 481.07 0
f 6 100% 0.0023 1 1 1 52 52 52 0
f 7 100% 0.0000 1 1 1 107 107 107 0
f 8 100% 0.0024 1 3 1.45 9767 9767 9767 0
f 9 100% 0.0000 1 1 1 130 130 130 0
f 10 100% 0.0000 1 1 1 1025 1025 1025 0

Here, “Dim” is the dimension size of test problems; Opt.value is the optimal value obtained by
DP method [7]; Opt.solution is the optimal solution; “SR” is success rate; “Time” is the average time
to reach the optimal solution among 50 runs; “MinIter”, “MaxIter” and “MeanIter” represents the
minimum iterations, maximum iterations, and the average iterations to reach the optimal solution
among 50 runs, respectively. “Best”, “Worst”, “Mean” and “Std” are the best value, worst value, mean
value, and the standard deviation, respectively.

As can be seen from Table 5, GMBO can achieve the optimal solution for all 10 instances with 100%
success rates. Furthermore, the best value, the worst value, and the mean value are all equal to the

12

Mathematics 2019, 7, 1056

optimal value for every test problem. Obviously, the efficiency of GMBO is very high for the considered
set of instances because GMBO can get the optimal solution in a very short time. The minimum
iterations are only 1, and the mean iterations are less than 6 for all the test problems. In particular,
for f 6, HS [18], HIS [63], and NGHS [19] can only achieve the best value 50 while GMBO can get the
optimal value 52.

The second set, which includes 25 0-1 KP instances, was taken from references [64,65]. For all we
know, the optimal value and the optimal solution of each instance are provided for the first time in this
paper. The primary parameters are recorded in Table 6. The experimental results are summarized in
Table 7. Compared to Table 5 above, three new evaluation criteria, that is “ARB”, “ARW”, and “ARM”,
are used to evaluate the proposed method. “Opt.value” represents the optimal solution value obtained
by the DP method. Here, the following definitions are given:

ARB =
Opt.value

Best
(8)

ARW =
Opt.value

Worst
(9)

ARM =
Opt.value

Mean
(10)

Here, “ARB” represents the approximate ratio [66] of the optimal solution value (Opt.value) to the best
approximate solution value (Best). Similarly, “ARW” and “ARM” are based on the worst approximate
solution value (Worst) and the mean approximate solution value (mean), respectively. ARB, ARW, and
ARM indicate the proximity of Best, Worst, and Mean to the Opt.value, respectively. Plainly, ARB,
ARW, and ARM are real numbers greater than or equal to 1.0.

Table 6. The basic information of 25 low-dimensional 0-1KP instances.

0-1 KP Dim Opt.value Opt.solution

ks_8a 8 3,924,400 1 1 1 0 1 1 0 0
ks_8b 8 3,813,669 1 1 0 0 1 0 0 1
ks_8c 8 3,347,452 1 0 0 1 0 1 0 0
ks_8d 8 4,187,707 0 0 1 0 0 1 1 1
ks_8e 8 4,955,555 0 1 0 1 0 0 1 1

ks_12a
ks_8b 12 5,688,887 1 0 0 0 1 1 0 1 1 0 1 0

ks_12b 12 6,498,597 0 0 0 1 1 0 1 0 1 1 1 0
ks_12c 12 5,170,626 0 1 1 0 1 0 0 1 1 0 1 1
ks_12d 12 6,992,404 1 1 0 0 0 1 1 1 0 1 0 0
ks_12e 12 5,337,472 0 1 0 0 0 0 0 0 1 1 0 1
ks_16a 16 7,850,983 0 1 0 0 1 1 0 1 1 0 1 0 0 1 1 0
ks_16b 16 9,352,998 1 0 0 0 0 0 1 0 0 1 1 1 1 1 1 0
ks_16c 16 9,151,147 1 1 0 1 0 0 0 1 1 1 0 1 0 0 1 0
ks_16d 16 9,348,889 1 0 1 1 1 1 1 0 0 1 0 0 0 1 0 0
ks_16e 16 7,769,117 0 0 1 1 0 0 1 1 1 0 1 1 1 0 1 0
ks_20a 20 10,727,049 0 0 1 0 0 1 1 1 0 1 1 1 0 0 0 1 1 1 0 1
ks_20b 20 9,818,261 1 0 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 0 0 1
ks_20c 20 10,714,023 1 1 1 1 1 1 0 0 0 1 1 0 0 1 0 0 0 1 0 1
ks_20d 20 8,929,156 0 0 0 0 0 0 0 1 1 1 1 0 1 1 0 1 1 1 0 0
Ks_20e 20 9,357,969 0 0 1 0 1 0 0 0 0 0 1 0 0 1 0 1 1 1 0 1
ks_24a 24 13,549,094 1 1 0 1 1 1 0 0 0 1 1 0 1 0 0 1 0 0 0 0 0 1 1 1
ks_24b 24 12,233,713 1 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 1 1
ks_24c 24 12,448,780 1 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 0 1 0
ks_24d 24 11,815,315 1 0 1 0 1 1 0 0 0 0 1 0 1 1 1 1 0 0 1 1 0 1 1 0
ks_24e 24 13,940,099 0 0 1 0 1 1 0 0 0 1 1 0 1 1 1 1 1 0 1 1 0 0 1 0

13

Mathematics 2019, 7, 1056

From Table 7, it was clear that GMBO could obtain the optimal solution value for all the 25
instances. Among them, GMBO could find the optimal solution values of 13 instances with 100%
SR, and the success rate of nine instances was more than 80%. In addition, the standard deviation of
13 instances was 0. In particular, ARB can reflect well the proximity between the best approximate
solution value and the optimal solution value. ARW and ARM were similar to this. For the three
new evaluation criteria, it can be seen that the values were equal to 1.0 or very close to 1.0 for all the
25 instances.

Thus, the conclusion is that GMBO had superior performance in solving low-dimensional 0-1
KP instances.

Table 7. The experimental results of 25 low-dimensional 0-1 KP instances obtained by GMBO.

0-1 KP SR Best Worst Mean Std ARB ARW ARM

ks_8a 100% 925,369 925,369 925,369 0 1.0000 1.0000 1.0000
ks_8b 100% 3,813,669 3,813,669 3,813,669 0 1.0000 1.0000 1.0000
ks_8c 100% 3,837,398 3,837,398 3,837,398 0 1.0000 1.0000 1.0000
ks_8d 100% 4,187,707 4,187,707 4,187,707 0 1.0000 1.0000 1.0000
ks_8e 100% 4,955,555 4,955,555 4,955,555 0 1.0000 1.0000 1.0000

ks_12a 88% 5,688,887 5,681,360 5,688,046 2283.52 1.0000 1.0013 1.0001
ks_12b 86% 6,498,597 6,473,019 6,495,016 8875.23 1.0000 1.0040 1.0006
ks_12c 100% 5,170,626 5,170,626 5,170,626 0 1.0000 1.0000 1.0000
ks_12d 100% 6,992,404 6,992,404 6,992,404 0 1.0000 1.0000 1.0000
ks_12e 88% 5,337,472 5,289,570 5,331,724 15,566.30 1.0000 1.0091 1.0011
ks_16a 100% 7,850,983 7,850,983 7,850,983 0 1.0000 1.0000 1.0000
ks_16b 100% 9,352,998 9,352,998 9,352,998 0 1.0000 1.0000 1.0000
ks_16c 100% 9,151,147 9,151,147 9,151,147 0 1.0000 1.0000 1.0000
ks_16d 56% 9,348,889 9,300,041 9,342,056 10,405.28 1.0000 1.0053 1.0007
ks_16e 82% 7,769,117 7,750,491 7,765,991 6713.97 1.0000 1.0024 1.0004
ks_20a 100% 10,727,049 10,727,049 10,727,049 0 1.0000 1.0000 1.0000
ks_20b 98% 9,818,261 9,797,399 9,817,844 2920.68 1.0000 1.0021 1.0000
ks_20c 96% 10,714,023 10,700,635 10,713,487 2623.50 1.0000 1.0013 1.0000
ks_20d 100% 8,929,156 8,929,156 8,929,156 0 1.0000 1.0000 1.0000
Ks_20e 48% 9,357,969 9,357,192 9,357,565 388.18 1.0000 1.0001 1.0000
ks_24a 80% 13,549,094 13,504,878 13,543,476 11,554.74 1.0000 1.0033 1.0004
ks_24b 100% 12,233,713 12,233,713 12,233,713 0 1.0000 1.0000 1.0000
ks_24c 96% 12,448,780 12,445,379 12,448,644 666.45 1.0000 1.0003 1.0000
ks_24d 72% 11,815,315 11,810,051 11,813,841 2363.53 1.0000 1.0004 1.0001
ks_24e 98% 13,940,099 13,929,872 13,939,894 1431.78 1.0000 1.0007 1.0000

4.3.2. Comparisons of Three Kinds of Large-Scale 0-1 KP Instances

In this section, in order to make a comprehensive investigation on the optimization ability of
the proposed GMBO, test set 3, which included 5 uncorrelated, 5 weakly correlated, and 5 strongly
correlated large-scale 0-1 KP instances, were considered. The experimental results are listed in
Tables 8–10 below. The best results on all the statistical criteria of each 0-1 KP instances, i.e., the best
values, the mean values, the worst values, the standard deviation, and the approximation ratio, appear
in bold. As noted earlier, Opt and Time represent the optimal value and time spending taken by the
DP method, respectively.

The performance comparisons of the six methods on the five large-scale uncorrelated 0-1 KP
instances are listed in Table 8. It can be seen that GMBO outperformed the other five algorithms on the
six and five evaluation criteria for KP1 and KP4, respectively. In addition, GMBO obtained the best
values concerning the best and the mean value for KP3 and was superior to the other five algorithms
in the worst value for KP2. Unfortunately, GMBO failed to come up with superior performance while
encountering 2000-dimensional 0-1 KP instances (KP5). MBO beat the competitors on KP5. Moreover,
an apparent phenomenon can be observed, which points out that ABC has better stability. The best
value of KP2 was achieved by CS. Obviously, DE and GA showed the worst performance for KP1–KP5.

14

Mathematics 2019, 7, 1056

Meanwhile, the approximation ratio of the best value of GMBO for KP1 equaled approximately 1.0.
Additionally, there was little difference between the worst approximation ratio of the best value (1.0242)
of GMBO and the best approximation ratio of the best value (1.0237) of MBO for KP5.

Table 8. Performance comparison on large-scale five uncorrelated 0-1KP instances.

KP1 KP2 KP3 KP4 KP5

DP Opt 40,686 50,592 61,846 77,033 102,316

Time(s) 0.952 1.235 1.914 2.521 2.705

ABC

Best 39816 49,374 60,222 74,959 99,353
ARB 1.0219 1.0247 1.0270 1.0277 1.0298

Worst 39,542 49,105 59,867 74,571 99,822
ARW 1.0289 1.0303 1.0331 1.0330 1.0250
Mean 39,639 49,256 60,059 74,742 99,035

Std 55.5 58.56 82.28 90.07 130.80

CS

Best 40,445 50,104 60,490 75,828 99,248
ARB 1.0060 1.0097 1.0224 1.0159 1.0309

Worst 39,411 49,056 59,764 74,472 98,706
ARW 1.0324 1.0313 1.0348 1.0344 1.0366
Mean 39,602 49,211 59,938 74,666 98,926

Std 218.11 205.08 120.76 245.28 124.58

DE

Best 39,486 49,303 59,921 74,671 98,943
ARB 1.0304 1.0261 1.0321 1.0316 1.0341

Worst 39,154 48,696 59,435 74,077 98,330
ARW 1.0391 1.0389 1.0406 1.0399 1.0405
Mean 39,323 48,945 59,645 74,319 98,645

Std 80.60 111.08 114.17 113.92 154.40

GA

Best 39,190 48,955 59,578 74,372 98,828
ARB 1.0382 1.0334 1.0381 1.0358 1.0353

Worst 38,274 47,809 58,106 72,477 96,830
ARW 1.0630 1.0582 1.0644 1.0629 1.0567
Mean 38,838 48,384 58,996 73,584 97,765

Std 196.70 256.69 362.53 414.02 480.15

MBO

Best 40,276 50,023 61,090 75,405 99,946

ARB 1.0102 1.0114 1.0124 1.0216 1.0237

Worst 39,839 49,411 60,401 74,815 99,017

ARW 1.0213 1.0239 1.0239 1.0296 1.0333

Mean 40,036 49,743 60,732 75,072 99,512

Std 100.34 133.40 163.76 149.57 187.15

GMBO

Best 40,684 49,992 61,764 76,929 99,898
ARB 1.0000 1.0120 1.0013 1.0014 1.0242

Worst 40,527 49,524 60,225 75,410 98,848
ARW 1.0039 1.0216 1.0269 1.0215 1.0351
Mean 40,641 49,732 61,430 76,691 99,424

Std 40.09 116.12 379.76 267.90 200.38

Table 9 records the comparison of the performances of six methods on five large-scale weakly
correlated 0-1 KP instances. The experimental results in Table 9 differ from that in Table 8. It is
clear that GMBO had a striking advantage in almost all the six statistical standards for KP6–KP9.
For KP10, similarly to KP5, GMBO was still not able to win out over MBO. It is worth mentioning
that the approximation ratio of the best value of GMBO for KP6–KP7, and KP9 equaled 1.0. Moreover,
the standard deviation value of KP6–KP7 and KP9 obtained by GMBO was much smaller than the
corresponding value of the other five algorithms.

15

Mathematics 2019, 7, 1056

Table 9. Performance comparison of large-scale five weakly correlated 0-1KP instances.

KP6 KP7 KP8 KP9 KP10

DP Opt 35069 43,786 53,553 65,710 118,200

Time(s) 1.188 1.174 1.413 2.717 2.504

ABC

Best 34706 43,321 52,061 64,864 115,305
ARB 1.0105 1.0107 1.0287 1.0130 1.0251

Worst 34,650 43,243 51,711 64,752 114,586
ARW 1.0121 1.0126 1.0356 1.0148 1.0315
Mean 34,675 43,275 51,876 64,806 114,922

Std 16.00 18.74 79.72 25.45 123.59

CS

Best 34,975 43,708 52,848 65,549 116,597

ARB 1.0027 1.0018 1.0133 1.0025 1.0137

Worst 34,621 43,215 51,617 64,749 114,560
ARW 1.0129 1.0132 1.0375 1.0148 1.0318
Mean 34,676 43,326 51,838 64,932 114,879

Std 65.25 143.50 260.46 245.06 428.93

DE

Best 34,629 43,251 51,900 64,770 114,929
ARB 1.0127 1.0124 1.0318 1.0145 1.0285

Worst 34,549 43,140 51,289 64,620 114,199
ARW 1.0151 1.0150 1.0441 1.0169 1.0350
Mean 34,588 43,187 51,547 64,692 114,462

Std 20.93 23.94 123.67 35.66 160.77

GA

Best 34,585 43,172 51,460 64,769 114,539
ARB 1.0140 1.0142 1.0407 1.0145 1.0320

Worst 34,361 42,901 50,112 64,315 112,681
ARW 1.0206 1.0206 1.0687 1.0217 1.0490
Mean 34,476 43,049 50,945 64,535 113,674

Std 60.91 74.36 281.41 85.75 405.23

MBO

Best 34,850 43,487 52,720 65,144 116,466
ARB 1.0063 1.0069 1.0158 1.0087 1.0149

Worst 34,724 43,349 52,185 64,941 115,273

ARW 1.0099 1.0101 1.0262 1.0118 1.0254

Mean 34,795 43,425 52,449 65,041 115,998

Std 31.41 31.78 111.26 48.66 248.70

GMBO

Best 35,069 43,786 53,426 65,708 116,496
ARB 1.0000 1.0000 1.0024 1.0000 1.0146

Worst 35,052 43,781 52,376 65,625 114,761
ARW 1.0005 1.0001 1.0225 1.0013 1.0300
Mean 35,064 43,784 53,167 65,666 115,718

Std 4.04 1.57 300.90 18.48 492.92

A comparative study of the six methods on five large-scale strongly correlated 0-1 KP instances
are recorded in Table 10. Obviously, GMBO outperforms the other five methods for KP11–KP14 on five
statistical standards except for Std. ABC obtains the best Std values for KP11–KP15. To KP15, GMBO
can get better values on the worst. CS, DE, and GA fail to show outstanding performance for this case.
Under these circumstances, the approximation ratio of the worst value of GMBO for KP11–KP15 was
less than 1.0019.

16

Mathematics 2019, 7, 1056

Table 10. Performance comparison of large-scale five strongly correlated 0-1KP instances.

KP11 KP12 KP13 KP14 KP15

DP Opt 40,167 49,443 60,640 74,932 99,683

Time(s) 0.793 1.123 1.200 1.971 2.232

ABC

Best 40,127 49,390 60,567 74,822 99,523
ARB 1.0010 1.0011 1.0012 1.0015 1.0016

Worst 40,107 49,363 60,540 74,792 99,490
ARW 1.0015 1.0016 1.0017 1.0019 1.0019
Mean 40,116 49,376 60,554 74,805 99,506

Std 4.52 5.61 5.54 6.85 7.29

CS

Best 40,127 49,393 60,559 74,837 99,517
ARB 1.0010 1.0010 1.0013 1.0013 1.0017

Worst 40,096 49,353 60,533 74,779 99,473
ARW 1.0018 1.0018 1.0018 1.0020 1.0021
Mean 40,108 49,364 60,543 74,794 99,489

Std 6.59 6.80 5.39 9.19 8.19

DE

Best 40,137 49,363 60,545 74,778 99,501
ARB 1.0007 1.0016 1.0016 1.0021 1.0018

Worst 40,087 49,323 60,498 74737 99,436
ARW 1.0020 1.0024 1.0023 1.0026 1.0025
Mean 40,119 49,340 60,518 74,759 99,459

Std 10.19 8.31 10.16 10.23 14.03

GA

Best 40,069 49,333 60,520 74,766 99,461
ARB 1.0024 1.0022 1.0020 1.0022 1.0022

Worst 39,930 49,231 60,391 74,606 99,305
ARW 1.0059 1.0043 1.0041 1.0044 1.0038
Mean 40,023 49,287 60,451 74,689 99,382

Std 31.12 29.76 29.87 37.20 38.42

MBO

Best 40,137 49,393 60,580 74,849 99,573

ARB 1.0007 1.0010 1.0010 1.0011 1.0011

Worst 40,102 49,363 60,539 74,778 99,496
ARW 1.0016 1.0016 1.0017 1.0021 1.0019
Mean 40,119 49,379 60,562 74,822 99,536

Std 7.18 9.94 10.77 14.70 15.63

GMBO

Best 40,167 49,442 60,630 74,852 99,553
ARB 1.0000 1.0000 1.0002 1.0011 1.0013

Worst 40,147 49,371 60,540 74,792 99,503

ARW 1.0005 1.0015 1.0017 1.0019 1.0018

Mean 40,162 49,425 60,604 74,825 99,534
Std 5.11 11.58 20.88 12.00 14.14

For a clearer and more intuitive measure of the similar level of the theoretical optimal value and
the actual value obtained by each algorithm, the values of ARB on three types of 0-1 KP instances are
illustrated in Figures 4–6. From Figure 4, the ARB of GMBO for KP1, KP3, and KP4 were extremely
close to or equal to 1. GMBO had the smallest ARB for KP1, KP3–KP5, except for KP2, for which CS
obtained the smallest ARB. Similar to Figure 4, from Figure 5, GMBO still had the smallest ARB values,
which are 1.0 (KP6, KP7, and KP9) or less than 1.015 (KP8, KP10). In terms of the strongly correlated
0-1 KP instances, GMBO consistently outperformed the other five methods (see Figure 6), in which
GMBO had the smallest ARB values except for KP15. Particularly, the ARB of GMBO was even less
than 1.0015 for KP15.

17

Mathematics 2019, 7, 1056

Figure 4. Comparison of ARB for KP1-KP5.

Figure 5. Comparison of ARB for KP6-KP10.

Figure 6. Comparison of ARB for KP11-KP15.

Overall, Tables 8–10 and Figures 4–6 indicate that GMBO was superior to the other five methods
when addressing large-scale 0-1 KP problems. In addition, if we look at the worst values achieved by
GMBO and the best values obtained by other methods, we can observe that for the majority instances,
the former were even far better than the latter.

With regard to the best values, GMBO can gain better values than the others for almost all
the instances except KP2, KP5, KP10, and KP15, in which CS and MBO twice achieved the best
values, respectively. More specifically, compared to the suboptimal values researched by others, the

18

Mathematics 2019, 7, 1056

improvements in KP1–KP15 brought by GMBO were 0.59%, −0.22%, 1.10%, 1.45%, −0.05%, 0.27%,
0.18%, 1.09%, 0.24%, −0.09%, 0.07%, 0.10%, 0.00%, and −0.02%, respectively.

With regard to the mean values, they were very similar to the best values. The improvements
in KP1–KP15 were 1.51%, −0.02%, 1.15%, 2.16%, −0.09%, 0.77%, 0.83%, 1.37%, 0.96%, −0.24%, 0.11%,
0.09%, 0.07%, 0.00% and 0.00%, respectively.

With regard to the worst values, GMBO can still reach better values for almost all the 15 instances
except KP3, KP5, and KP10 in which MBO was a little better than GMBO. The improvements in
KP1–KP15 were 1.73%, 0.23%, −0.29%, 0.80%, −0.17%, 0.94%, 1.00%, 0.37%, 1.05%, −0.44%, 0.10%,
0.02%, 0.00%, 0.00%, and 0.01%, respectively.

In order to test the differences between the proposed GMBO and the other five methods, Wilcoxon’s
rank-sum tests with the 5% significance level were used. Table 11 records the results of rank-sum tests
for KP1–KP15. In Table 11, “1” indicates that GMBO outperforms other methods at 95% confidence.
Conversely, “−1”. Particularly, “0” represents that the two compared methods possess similar
performance. The last three rows summarized the times that GMBO performed better than, similar to,
and worse than the corresponding algorithm among 50 runs.

Table 11. Rank sum tests for GMBO with the other five methods on KP1–KP15.

GMBO ABC CS DE GA MBO

KP1 1 1 1 1 1
KP2 1 1 1 1 0
KP3 1 1 1 1 1
KP4 1 1 1 1 1
KP5 1 1 1 1 −1
KP6 1 1 1 1 1
KP7 1 1 1 1 1
KP8 1 1 1 1 1
KP9 1 1 1 1 1
KP10 1 1 1 1 −1
KP11 1 1 1 1 −1
KP12 1 1 1 1 1
KP13 1 1 1 1 1
KP14 1 1 1 1 0
KP15 1 1 1 1 0

1 15 15 15 15 9
0 0 0 0 0 3
−1 0 0 0 0 3

From Table 11, GMBO outperformed ABC, CS, DE, and GA on 15 0-1 KP instances. Compared
with MBO, GMBO performed better than, similar to, or worse than MBO on 9, 3, 3 0-1KP instances,
respectively. Therefore, one conclusion is easy to draw that GMBO was superior to or at least
comparable to the other five methods. This conclusion is consistent with the foregoing analysis.

Tables 12–14 illustrate the ranks of six methods for 15 large-scale 0-1 KP instances on the best
values, the mean values, and the worst values, respectively. These clearly show the performance of
GMBO in comparison with the other five algorithms.

According to Table 12, obviously, the proposed GMBO exhibited superior performance compared
with all the other five methods. In addition, CS and MBO can be regarded as the second-best methods,
having identical performance. GA consistently showed the worst performance. Overall, the average
rank in descending order according to the best values were: GMBO (1.33), MBO (2.33), CS (2.53), ABC
(3.80), DE (4.80), and GA (6).

19

Mathematics 2019, 7, 1056

Table 12. Rankings of six algorithms based on the best values.

ABC CS DE GA MBO GMBO

KP1 4 2 5 6 3 1
KP2 4 1 5 6 2 3
KP3 4 3 5 6 2 1
KP4 4 2 5 6 3 1
KP5 3 4 5 6 1 2
KP6 4 2 5 6 3 1
KP7 4 2 5 6 3 1
KP8 4 2 5 6 3 1
KP9 4 2 5 6 3 1
KP10 4 1 5 6 3 2
KP11 4 4 2 6 2 1
KP12 4 2 5 6 2 1
KP13 3 4 5 6 2 1
KP14 4 3 5 6 2 1
KP15 3 4 5 6 1 2
Mean rank 3.80 2.53 4.80 6 2.33 1.33

Table 13. Rankings of six algorithms based on the mean values.

ABC CS DE GA MBO GMBO

KP1 3 4 5 6 2 1
KP2 3 4 5 6 1 2
KP3 3 4 5 6 2 1
KP4 3 4 5 6 2 1
KP5 3 4 5 6 1 2
KP6 4 3 5 6 2 1
KP7 4 3 5 6 2 1
KP8 3 4 5 6 2 1
KP9 4 3 5 6 2 1
KP10 3 4 5 6 1 2
KP11 4 5 3 6 2 1
KP12 3 4 5 6 2 1
KP13 3 4 5 6 2 1
KP14 3 4 5 6 2 1
KP15 3 4 5 6 1 2
Mean rank 3.27 3.87 4.87 6 1.73 1.27

Table 14. Rankings of six algorithms based on the worst values.

ABC CS DE GA MBO GMBO

KP1 3 4 5 6 2 1
KP2 3 4 5 6 2 1
KP3 3 4 5 6 1 2
KP4 3 4 5 6 2 1
KP5 3 4 5 6 1 2
KP6 3 4 5 6 2 1
KP7 3 4 5 6 2 1
KP8 3 4 5 6 2 1
KP9 3 4 5 6 2 1
KP10 3 4 5 6 1 2
KP11 2 4 5 6 3 1
KP12 2 4 5 6 2 1
KP13 1 4 5 6 3 1
KP14 1 3 5 6 4 1
KP15 3 4 5 6 2 1
Mean rank 2.60 3.93 5 6 2.07 1.20

20

Mathematics 2019, 7, 1056

From Table 13, we can see that the average rank of GMBO still occupied the first. MBO consistently
outperformed the other four methods. Note that the rank value of ABC was identical to that of CS. The
detailed rank was as follows: GMBO (1.27), MBO (1.73), ABC (3.27), CS (3.87), DE (4.87), and GA (6).

Table 14 shows the statistical results of the six methods based on the worst values. The ranking
order of the six methods was GMBO (1.20), MBO (2.07), ABC (2.60), CS (3.93), DE (5), and GA (6),
which was identical with that in Table 12.

Then, a comparison of the six highest dimensional 0-1 KP instances, i.e., KP4, KP5, KP9, KP10,
KP14, and KP15, is illustrated in Figures 7–12, which was based on the best profits achieved by 50 runs.

Figure 7. Comparison of the best values on KP4 in 50 runs.

Figure 8. Comparison of the best values on KP5 in 50 runs.

Figure 9. Comparison of the best values on KP9 in 50 runs.

21

Mathematics 2019, 7, 1056

Figure 10. Comparison of the best values on KP10 in 50 runs.

Figure 11. Comparison of the best values on KP14 in 50 runs.

Figure 12. Comparison of the best values on KP15 in 50 runs.

Figures 7, 9 and 11 illustrate the best values achieved by the six methods on 1500-dimensional
uncorrelated, weakly correlated, and strongly correlated 0-1 KP instances in 50 runs, respectively. From
Figure 7, it can be easily seen that the best values obtained by GMBO far exceed that of the other five
methods. Meanwhile, the two best values of CS outstripped the two worst values of GMBO. By looking
at Figure 9, we can conclude that GMBO greatly outperformed the other five methods. The distribution
of best values of GMBO in 50 times was close to a horizontal line, which pointed towards the excellent
stability of GMBO in this case. With regard to numerical stability, CS had the worst performance. From
Figure 11, the curve of GMBO still overtopped that of ABC, CS, DE, and GA, as illustrated in Figures 7
and 9. This advantage, however, was not obvious when compared with MBO.

Figures 8, 10 and 12 show the best values obtained by six methods on 2000-dimensional
uncorrelated, weakly correlated, and strongly correlated 0-1 KP instances in 50 runs, respectively.
As the dimension becomes large, space is expanded dramatically to 22000, which represents a challenge

22

Mathematics 2019, 7, 1056

for any method. It can be said with certainty that almost all the values of GMBO are bigger than that of
the other five methods except MBO. Similar to Figure 11, the curves of MBO partially overlaps that of
GMBO in Figure 12, which may be interpreted as the ability of GMBO towards competing with MBO.

For the purpose of visualizing the experimental results from the statistical perspective, the
corresponding boxplots of six higher dimensional KP4–KP5, KP9–KP10, and KP14-15 are shown in
Figures 13–18. On the whole, the boxplot for GMBO has greater value and less height than those of
the other five methods, which indicates the stronger optimization ability and stability of GMBO even
encountering high-dimensional instances.

Figure 13. Boxplot of the best values on KP4 in 50 runs.

Figure 14. Boxplot of the best values on KP5 in 50 runs.

Figure 15. Boxplot of the best values on KP9 in 50 runs.

23

Mathematics 2019, 7, 1056

Figure 16. Boxplot of the best values on KP10 in 50 runs.

Figure 17. Boxplot of the best values on KP14 in 50 runs.

Figure 18. Boxplot of the best values on KP15 in 50 runs.

In order to examine the convergence rate of GMBO, the evolutionary process and convergent
trajectories of six methods are illustrated in Figures 19–24. It should be noted that six high dimensional
instances, viz., KP4, KP5, KP9, KP10, KP14, and KP15, were chosen. In addition, Figures 19–24 show
the average best values with 50 runs, and not one independent experimental result.

From Figure 19, the curves of GMBO and MBO were almost coincident before 6 s, but afterward,
GMBO converged rapidly to a better value as compared to the others. From Figure 20, it is indeed
interesting to note that MBO has a weak advantage in the average values as compared to GMBO.
From Figure 21, MBO and GMBO have identical initial function values, and the average values obtained
by MBO were better than that of GMBO before 3 s. However, similar to the trend in Figure 19, 3 s later,

24

Mathematics 2019, 7, 1056

GMBO quickly converged to a higher value. As depicted in Figure 22, unexpectedly, when addressing
the 2000-dimensional weakly correlated 0-1 KP instances, GMBO was inferior to MBO. Figures 23
and 24 illustrate the evolutionary process of strongly correlated 0-1 KP instances. By observation of
2 convergence graphs, we can conclude that GMBO and MBO have similar performance. Throughout
Figures 19–24, GMBO has a stronger optimization ability and faster convergence speed to reach
optimum solutions than the other five methods.

Figure 19. The convergence graph of six methods on KP4 in 10 s.

Figure 20. The convergence graph of six methods on KP5 in 10 s.

Figure 21. The convergence graph of six methods on KP9 in 10 s.

25

Mathematics 2019, 7, 1056

Figure 22. The convergence graph of six methods on KP10 in 10 s.

Figure 23. The convergence graph of six methods on KP14 in 10 s.

Figure 24. The convergence graph of six methods on KP15 in 10 s.

4.4. The Comparisons of the GMBO and the Latest Algorithms

To evaluate the performance of the proposed GMBO, the two latest algorithms, namely, moth
search (MS) [67] and moth-flame optimization (MFO) [68], were especially selected to compare with
GMBO. The following factors were mainly considered. (1) The literature on the application of MS and
MFO to solve 0-1 KP problem was not found. (2) The GMBO, MS, and MFO were novel nature-inspired
swarm intelligence algorithms, which simulated the migration behavior of the monarch butterfly, the
Lévy flight mode, or the navigation method of moths.

For MS, the max step Smax = 1.0, acceleration factor ϕ = 0.618, and the index β = 1.5. For MFO,
the maximum number of flames N = 30. In order to make a fair comparison, all experiments were
conducted in the same experimental environment as described above. The detailed experimental
results of GMBO and the other two algorithms on the three kinds of large-scale 0-1 KP instances were

26

Mathematics 2019, 7, 1056

presented in Table 15. The best, mean, and standard deviation values in bold indicate superiority.
The dominant times of the three algorithms in the three statistical values are given in the last line of
Table 15. As the results presented in Table 15, the number of times the GMBO algorithm had priority in
the best, the mean, and the standard deviation values were 8, 10, 5, respectively. The simulation results
indicated that GMBO generally provided very excellent performance in most instances compared with
MFO and MS. The two metrics, namely mean and standard deviation, demonstrated again that GMBO
was more stable. The comprehensive performance of MFO was superior to that of MS.

Table 15. Performance comparison of three algorithms on large-scale 0-1 KP instances.

No.
MBO MFO MS

Best Mean Std Best Mean Std Best Mean Std

KP1 40,684 40,641 40.09 40,538 39,976 309.00 40,242 40,101 56.37
KP2 49,992 49,732 116.12 50590 50200 384.72 50,056 49,790 79.57

KP3 61764 61430 379.76 61,836 61,238 608.78 61,059 60,721 101.80

KP4 76,929 76,691 267.90 77,007 76,353 656.36 75,716 75,505 95.94

KP5 99,898 99,424 200.38 102,276 101,475 781.66 100,348 100,036 120.08

KP6 35,069 35,064 4.04 35,069 34,952 116.84 34,850 34,799 20.64
KP7 43,786 43,784 1.57 43,784 43,630 132.21 43,474 43,424 20.34
KP8 53,426 53,167 300.90 53,552 53,048 556.60 52,637 52,489 73.73

KP9 65,708 65,666 18.48 65,692 65,421 253.29 65,093 65,025 27.59
KP10 116,496 115,718 492.92 118,183 117,381 838.07 116,283 115,937 117.92

KP11 40,167 40,162 5.11 40,157 40,142 15.48 40,137 40,127 5.58
KP12 49,442 49,425 11.58 49,433 49,411 15.64 49,403 49,390 7.10

KP13 60,630 60,604 20.88 60,581 60,557 68.28 60,581 60,571 9.24

KP14 74,852 74,852 12.00 74,910 74,874 32.49 74,852 74,833 7.71

KP15 99,553 99,534 14.14 99,643 99,602 37.10 99,572 99,546 9.28

Total 8 10 5 8 5 0 0 0 10

To summarize, by analyzing Tables 4–15 and Figures 4–24, it can be inferred that GMBO had
better optimization capability, numerical stability, and higher convergence speed. In other words, it
can be claimed that GMBO is an excellent MBO variant, which is capable of addressing large-scale
0-1 KP instances.

5. Conclusions

In order to tackle high-dimensional 0-1 KP problems more efficiently and effectively, as well
as to overcome the shortcomings of the original MBO simultaneously, a novel monarch butterfly
optimization with the global position updating operator (GMBO) has been proposed in this manuscript.
Firstly, a simple and effective dichotomy encoding scheme, without changing the evolutionary formula,
is used. Moreover, an ingenious global position updating operator is introduced with the intention of
enhancing the optimization capacity and convergence speed. The inspiration behind the new operator
lies in creating a balance between intensification and diversification, a very important feature in the
field of metaheuristics. Furthermore, a two-stage individual optimization method based on the greedy
strategy is employed, which besides guaranteeing the feasibility of the solutions, is able to improve
the quality further. In addition, the Orthogonal Design (OD) was applied to find suitable parameters.
Finally, GMBO was verified and compared with ABC, CS, DE, GA, and MBO on large-scale 0-1 KP
instances. The experimental results demonstrate that GMBO outperforms the other five algorithms on
solution precision, convergence speed, and numerical stability.

The introduction of a global position operator coupled with an efficient two-stage repairing
operator is instrumental towards the superior performance of GMBO. However, there is room
for further enhancing the performance of GMBO. Firstly, the hybridization of the two methods
complementing each other is becoming more and more popular, such as the hybridization of HS with
CS [69]. Combining MBO with other methods could indeed be very promising and hence worth

27

Mathematics 2019, 7, 1056

experimentation. Secondly, in the present work, three groups of high-dimensional 0-1 KP instances
were selected. In the future, a multidimensional knapsack problem, quadratic knapsack problem,
knapsack sharing problem, and randomized time-varying knapsack problem can be considered to
investigate the performance of MBO. Thirdly, some typical combinatorial optimization problems, such
as job scheduling problems [70–72], feature selection [73–75], and classification [76], deserve serious
investigation and discussion. For these challenging engineering problems, the key issue is how to
encode and process constraints. The application of MBO for these problems is another interesting
research area. Finally, perturb [77], ensemble [78], learning mechanisms [79,80], or information
feedback mechanisms [81] can be effectively combined with MBO to improve performance.

Author Contributions: Investigation, Y.F. and X.Y.; Methodology, Y.F.; Resources, X.Y.; Supervision, G.-G.W.;
Validation, G.-G.W.; Visualization, G.-G.W.; Writing—original draft, Y.F. and X.Y.; Writing—review & editing,
G.-G.W.

Funding: This research was funded by National Natural Science Foundation of China, grant number
61503165, 61806069.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Martello, S.; Toth, P. Knapsack Problems: Algorithms and Computer Implementations; John Wiley & Sons, Inc.:
Hoboken, NJ, USA, 1990.

2. Mavrotas, G.; Diakoulaki, D.; Kourentzis, A. Selection among ranked projects under segmentation, policy
and logical constraints. Eur. J. Oper. Res. 2008, 187, 177–192. [CrossRef]

3. Peeta, S.; Salman, F.S.; Gunnec, D.; Viswanath, K. Pre-disaster investment decisions for strengthening a
highway network. Comput. Oper. Res. 2010, 37, 1708–1719. [CrossRef]

4. Yates, J.; Lakshmanan, K. A constrained binary knapsack approximation for shortest path network interdiction.
Comput. Ind. Eng. 2011, 61, 981–992. [CrossRef]

5. Dantzig, G.B. Discrete-variable extremum problems. Oper. Res. 1957, 5, 266–288. [CrossRef]
6. Shih, W. A branch and bound method for the multi-constraint zero-one knapsack problem. J. Oper. Res. Soc.

1979, 30, 369–378. [CrossRef]
7. Toth, P. Dynamic programing algorithms for the zero-one knapsack problem. Computing 1980, 25, 29–45.

[CrossRef]
8. Martello, S.; Toth, P. A new algorithm for the 0-1 knapsack problem. Manag. Sci. 1988, 34, 633–644. [CrossRef]
9. Pisinger, D. An expanding-core algorithm for the exact 0–1 knapsack problem. Eur. J. Oper. Res. 1995, 87,

175–187. [CrossRef]
10. Puchinger, J.; Raidl, G.R.; Pferschy, U. The Core Concept for the Multidimensional Knapsack Problem.

In Proceedings of the European Conference on Evolutionary Computation in Combinatorial Optimization,
Budapest, Hungary, 10–12 April 2006; Gottlieb, J., Raidl, G.R., Eds.; Springer: Berlin, Germany, 2006;
pp. 195–208.

11. Thiel, J.; Voss, S. Some experiences on solving multi constraint zero-one knapsack problems with genetic
algorithms. Inf. Syst. Oper. Res. 1994, 32, 226–242.

12. Chen, P.; Li, J.; Liu, Z.M. Solving 0-1 knapsack problems by a discrete binary version of differential evolution.
In Proceedings of the Second International Symposium on Intelligent Information Technology Application,
Shanghai, China, 21–22 December 2008; Volume 2, pp. 513–516.

13. Bhattacharjee, K.K.; Sarmah, S.P. Shuffled frog leaping algorithm and its application to 0/1 knapsack problem.
Appl. Soft Comput. 2014, 19, 252–263. [CrossRef]

14. Feng, Y.H.; Jia, K.; He, Y.C. An improved hybrid encoding cuckoo search algorithm for 0-1 knapsack problems.
Comput. Intell. Neurosci. 2014, 2014, 1. [CrossRef]

15. Feng, Y.H.; Wang, G.G.; Feng, Q.J.; Zhao, X.J. An effective hybrid cuckoo search algorithm with improved
shuffled frog leaping algorithm for 0-1 knapsack problems. Comput. Intell. Neurosci. 2014, 2014, 36.
[CrossRef]

16. Kashan, M.H.; Nahavandi, N.; Kashan, A.H. DisABC: A new artificial bee colony algorithm for binary
optimization. Appl. Soft Comput. 2012, 12, 342–352. [CrossRef]

28

Mathematics 2019, 7, 1056

17. Xue, Y.; Jiang, J.; Zhao, B.; Ma, T. A self-adaptive artificial bee colony algorithm based on global best for
global optimization. Soft Comput. 2018, 22, 2935–2952. [CrossRef]

18. Zong, W.G.; Kim, J.H.; Loganathan, G.V. A New Heuristic Optimization Algorithm: Harmony Search.
Simulation 2001, 76, 60–68. [CrossRef]

19. Zou, D.; Gao, L.; Li, S.; Wu, J. Solving 0-1 knapsack problem by a novel global harmony search algorithm.
Appl. Soft Comput. 2011, 11, 1556–1564. [CrossRef]

20. Kong, X.; Gao, L.; Ouyang, H.; Li, S. A simplified binary harmony search algorithm for large scale 0-1
knapsack problems. Expert Syst. Appl. 2015, 42, 5337–5355. [CrossRef]

21. Rezoug, A.; Boughaci, D. A self-adaptive harmony search combined with a stochastic local search for the 0-1
multidimensional knapsack problem. Int. J. Biol. Inspir. Comput. 2016, 8, 234–239. [CrossRef]

22. Zhou, Y.; Li, L.; Ma, M. A complex-valued encoding bat algorithm for solving 0-1 knapsack problem.
Neural Process. Lett. 2016, 44, 407–430. [CrossRef]

23. Cai, X.; Gao, X.-Z.; Xue, Y. Improved bat algorithm with optimal forage strategy and random disturbance
strategy. Int. J. Biol. Inspir. Comput. 2016, 8, 205–214. [CrossRef]

24. Zhang, X.; Huang, S.; Hu, Y.; Zhang, Y.; Mahadevan, S.; Deng, Y. Solving 0-1 knapsack problems based on
amoeboid organism algorithm. Appl. Math. Comput. 2013, 219, 9959–9970. [CrossRef]

25. Li, X.; Zhang, J.; Yin, M. Animal migration optimization: An optimization algorithm inspired by animal
migration behavior. Neural Comput. Appl. 2014, 24, 1867–1877. [CrossRef]

26. Cui, Z.; Fan, S.; Zeng, J.; Shi, Z. Artificial plant optimization algorithm with three-period photosynthesis.
Int. J. Biol. Inspir. Comput. 2013, 5, 133–139. [CrossRef]

27. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
28. Li, X.; Wang, J.; Zhou, J.; Yin, M. A perturb biogeography based optimization with mutation for global

numerical optimization. Appl. Math. Comput. 2011, 218, 598–609. [CrossRef]
29. Wang, L.; Yang, R.; Ni, H.; Ye, W.; Fei, M.; Pardalos, P.M. A human learning optimization algorithm and its

application to multi-dimensional knapsack problems. Appl. Soft Comput. 2015, 34, 736–743. [CrossRef]
30. Wang, G.-G.; Guo, L.H.; Wang, H.Q.; Duan, H.; Liu, L.; Li, J. Incorporating mutation scheme into krill herd

algorithm for global numerical optimization. Neural Comput. Appl. 2014, 24, 853–871. [CrossRef]
31. Wang, G.-G.; Gandomi, A.H.; Yang, X.-S.; Alavi, H.A. A new hybrid method based on krill herd and cuckoo

search for global optimization tasks. Int. J. Biol. Inspir. Comput. 2016, 8, 286–299. [CrossRef]
32. Wang, G.-G.; Gandomi, A.H.; Alavi, H.A. Stud krill herd algorithm. Neurocomputing 2014, 128, 363–370.

[CrossRef]
33. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2015. [CrossRef]
34. Wang, G.-G.; Deb, S.; Gao, X.-Z.; Coelho, L.D.S. A new metaheuristic optimization algorithm motivated by

elephant herding behavior. Int. J. Biol. Inspir. Comput. 2016, 8, 394–409. [CrossRef]
35. Sang, H.-Y.; Duan, Y.P.; Li, J.-Q. An effective invasive weed optimization algorithm for scheduling

semiconductor final testing problem. Swarm Evol. Comput. 2018, 38, 42–53. [CrossRef]
36. Wang, G.-G.; Deb, S.; Coelho, L.D.S. Earthworm optimisation algorithm: A bio-inspired metaheuristic

algorithm for global optimisation problems. Int. J. Biol. Inspir. Comput. 2018, 12, 1–22. [CrossRef]
37. Jain, M.; Singh, V.; Rani, A. A novel nature-inspired algorithm for optimization: Squirrel search algorithm.

Swarm Evol. Comput. 2019, 44, 148–175. [CrossRef]
38. Singh, B.; Anand, P. A novel adaptive butterfly optimization algorithm. Int. J. Comput. Mater. Sci. Eng. 2018,

7, 69–72. [CrossRef]
39. Sayed, G.I.; Khoriba, G.; Haggag, M.H. A novel chaotic salp swarm algorithm for global optimization and

feature selection. Appl. Intell. 2018, 48, 3462–3481. [CrossRef]
40. Simhadri, K.S.; Mohanty, B. Performance analysis of dual-mode PI controller using quasi-oppositional whale

optimization algorithm for load frequency control. Int. Trans. Electr. Energy Syst. 2019. [CrossRef]
41. Brezočnik, L.; Fister, I.; Podgorelec, V. Swarm intelligence algorithms for feature selection: A review. Appl. Sci.

2018, 8, 1521. [CrossRef]
42. Feng, Y.H.; Wang, G.-G.; Deb, S.; Lu, M.; Zhao, X.-J. Solving 0-1 knapsack problem by a novel binary monarch

butterfly optimization. Neural Comput. Appl. 2015. [CrossRef]
43. Wang, G.-G.; Zhao, X.C.; Deb, S. A Novel Monarch Butterfly Optimization with Greedy Strategy and

Self-adaptive Crossover Operator. In Proceedings of the 2nd International Conference on Soft Computing &
Machine Intelligence (ISCMI 2015), Hong Kong, China, 23–24 November 2015.

29

Mathematics 2019, 7, 1056

44. He, Y.C.; Wang, X.Z.; Kou, Y.Z. A binary differential evolution algorithm with hybrid encoding. J. Comput.
Res. Dev. 2007, 44, 1476–1484. [CrossRef]

45. He, Y.C.; Song, J.M.; Zhang, J.M.; Gou, H.Y. Research on genetic algorithms for solving static and dynamic
knapsack problems. Appl. Res. Comput. 2015, 32, 1011–1015.

46. He, Y.C.; Zhang, X.L.; Li, W.B.; Li, X.; Wu, W.L.; Gao, S.G. Algorithms for randomized time-varying knapsack
problems. J. Comb. Optim. 2016, 31, 95–117. [CrossRef]

47. Fang, K.-T.; Wang, Y. Number-Theoretic Methods in Statistics; Chapman & Hall: New York, NY, USA, 1994.
48. Wilcoxon, F.; Katti, S.K.; Wilcox, R.A. Critical values and probability levels for the Wilcoxon rank sum test

and the Wilcoxon signed rank test. Sel. Tables Math. Stat. 1970, 1, 171–259.
49. Gutowski, M. Lévy flights as an underlying mechanism for global optimization algorithms. arXiv 2001,

arXiv:math-ph/0106003.
50. Pavlyukevich, I. Levy flights, non-local search and simulated annealing. Mathematics 2007, 226, 1830–1844.

[CrossRef]
51. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the

1997 Conference on Systems, Man, and Cybernetics, Orlando, FL, USA, 12–15 October 1997; pp. 4104–4108.
52. Zhu, H.; He, Y.; Wang, X.; Tsang, E.C. Discrete differential evolutions for the discounted {0-1} knapsack

problem. Int. J. Biol. Inspir. Comput. 2017, 10, 219–238. [CrossRef]
53. Yang, X.S.; Deb, S.; Hanne, T.; He, X. Attraction and Diffusion in Nature-Inspired Optimization Algorithms.

Neural Comput. Appl. 2019, 31, 1987–1994. [CrossRef]
54. Joines, J.A.; Houck, C.R. On the use of non-stationary penalty functions to solve nonlinear constrained

optimization problems with GA’s. Evolutionary Computation. In Proceedings of the First IEEE Conference
on Evolutionary Computation, Orlando, FL, USA, 27–29 June 1994; pp. 579–584.

55. Olsen, A.L. Penalty functions and the knapsack problem. Evolutionary Computation. In Proceedings of the
First IEEE Conference on Evolutionary Computation, Orlando, FL, USA, 27–29 June 1994; pp. 554–558.

56. Goldberg, D.E. Genetic Algorithms in Search, Optimization, and Machine Learning; Addison-Wesley: Boston,
MA, USA, 1989.

57. Simon, D. Evolutionary Optimization Algorithms; Wiley: New York, NY, USA, 2013.
58. Du, D.Z.; Ko, K.I.; Hu, X. Design and Analysis of Approximation Algorithms; Springer Science & Business Media:

Berlin, Germany, 2011.
59. Pisinger, D. Where are the hard knapsack problems. Comput. Oper. Res. 2005, 32, 2271–2284. [CrossRef]
60. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial

bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]
61. Yang, X.S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the World Congress on Nature and

Biologically Inspired Computing (NaBIC 2009), Coimbatore, India, 9–11 December 2009; pp. 210–214.
62. Storn, R.; Price, K. Differential evolution–A simple and efficient heuristic for global optimization over

continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]
63. Mahdavi, M.; Fesanghary, M.; Damangir, E. An improved harmony search algorithm for solving optimization

problems. Appl. Math. Comput. 2007, 188, 1567–1579. [CrossRef]
64. Bansal, J.C.; Deep, K. A Modified Binary Particle Swarm Optimization for Knapsack Problems. Appl. Math.

Comput. 2012, 218, 11042–11061. [CrossRef]
65. Lee, C.Y.; Lee, Z.J.; Su, S.F. A New Approach for Solving 0/1 Knapsack Problem. In Proceedings of the IEEE

International Conference on Systems, Man and Cybernetics, Montreal, QC, Canada, 7–10 October 2007;
pp. 3138–3143.

66. Cormen, T.H. Introduction to Algorithms; MIT Press: Cambridge, MA, USA, 2009.
67. Wang, G.-G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems.

Memet. Comput. 2018, 10, 151–164. [CrossRef]
68. Mehne, S.H.H.; Mirjalili, S. Moth-Flame Optimization Algorithm: Theory, Literature Review, and Application

in Optimal Nonlinear. In Nature Inspired Optimizers: Theories, Literature Reviews and Applications; Mirjalili, S.,
Jin, S.D., Lewis, A., Eds.; Spring: Berlin, Germany, 2020; Volume 811, p. 143.

69. Gandomi, A.H.; Zhao, X.J.; Chu, H.C.E. Hybridizing harmony search algorithm with cuckoo search for
global numerical optimization. Soft Comput. 2016, 20, 273–285.

70. Li, J.-Q.; Pan, Q.-K.; Liang, Y.-C. An effective hybrid tabu search algorithm for multi-objective flexible
job-shop scheduling problems. Comput. Ind. Eng. 2010, 59, 647–662. [CrossRef]

30

Mathematics 2019, 7, 1056

71. Han, Y.-Y.; Gong, D.; Sun, X. A discrete artificial bee colony algorithm incorporating differential evolution for
the flow-shop scheduling problem with blocking. Eng. Optim. 2014, 47, 927–946. [CrossRef]

72. Li, J.-Q.; Pan, Q.-K.; Tasgetiren, M.F. A discrete artificial bee colony algorithm for the multi-objective flexible
job-shop scheduling problem with maintenance activities. Appl. Math. Model. 2014, 38, 1111–1132. [CrossRef]

73. Zhang, W.-Q.; Zhang, Y.; Peng, C. Brain storm optimization for feature selection using new individual
clustering and updating mechanism. Appl. Intell. 2019. [CrossRef]

74. Zhang, Y.; Li, H.-G.; Wang, Q.; Peng, C. A filter-based bare-bone particle swarm optimization algorithm for
unsupervised feature selection. Appl. Intell. 2019, 49, 2889–2898. [CrossRef]

75. Zhang, Y.; Wang, Q.; Gong, D.-W.; Song, X.-F. Nonnegative laplacian embedding guided subspace learning
for unsupervised feature selection. Pattern Recognit. 2019, 93, 337–352. [CrossRef]

76. Zhang, Y.; Gong, D.W.; Cheng, J. Multi-objective particle swarm optimization approach for cost-based feature
selection in classification. IEEE ACM Trans. Comput. Biol. Bioinform. 2017, 14, 64–75. [CrossRef]

77. Zhao, X. A perturbed particle swarm algorithm for numerical optimization. Appl. Soft Comput. 2010, 10,
119–124.

78. Wu, G.; Shen, X.; Li, H.; Chen, H.; Lin, A.; Suganthan, P.N. Ensemble of differential evolution variants. Inf. Sci.
2018, 423, 172–186. [CrossRef]

79. Wang, G.G.; Deb, S.; Gandomi, A.H.; Alavi, A.H. Opposition-based krill herd algorithm with Cauchy
mutation and position clamping. Neurocomputing 2016, 177, 147–157. [CrossRef]

80. Zhang, Y.; Gong, D.-W.; Gao, X.-Z.; Tian, T.; Sun, X.-Y. Binary differential evolution with self-learning for
multi-objective feature selection. Inf. Sci. 2020, 507, 67–85. [CrossRef]

81. Wang, G.-G.; Tan, Y. Improving metaheuristic algorithms with information feedback models.
IEEE Trans. Cybern. 2019, 49, 542–555. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

31

mathematics

Article

Rock Classification from Field Image Patches
Analyzed Using a Deep Convolutional
Neural Network

Xiangjin Ran 1,2, Linfu Xue 1,*, Yanyan Zhang 3, Zeyu Liu 1, Xuejia Sang 4 and Jinxin He 1

1 College of Earth Science, Jilin University, Changchun 130061, China
2 College of Applied Technology, Jilin University, Changchun 130012, China
3 Jilin Business and Technology College, Changchun 130012, China
4 School of Environment Science and Spatial Informatics (CESI), China University of Mining and Technology,

Xuzhou 221008, China
* Correspondence: xuelf@jlu.edu.cn; Tel.: +86-135-008-053-87

Received: 3 July 2019; Accepted: 13 August 2019; Published: 18 August 2019

Abstract: The automatic identification of rock type in the field would aid geological surveying,
education, and automatic mapping. Deep learning is receiving significant research attention for pattern
recognition and machine learning. Its application here has effectively identified rock types from images
captured in the field. This paper proposes an accurate approach for identifying rock types in the field
based on image analysis using deep convolutional neural networks. The proposed approach can
identify six common rock types with an overall classification accuracy of 97.96%, thus outperforming
other established deep-learning models and a linear model. The results show that the proposed
approach based on deep learning represents an improvement in intelligent rock-type identification
and solves several difficulties facing the automated identification of rock types in the field.

Keywords: deep learning; convolutional neural network; rock types; automatic identification

1. Introduction

Rocks are a fundamental component of Earth. They contain the raw materials for virtually all
modern construction and manufacturing and are thus indispensable to almost all the endeavors of an
advanced society. In addition to the direct use of rocks, mining, drilling, and excavating provide the
material sources for metals, plastics, and fuels. Natural rock types have a variety of origins and uses.
The three major groups of rocks (igneous, sedimentary, and metamorphic) are further divided into
sub-types according to various characteristics. Rock type identification is a basic part of geological
surveying and research, and mineral resources exploration. It is an important technical skill that must
be mastered by students of geoscience.

Rocks can be identified in a variety of ways, such as visually (by the naked eye or with a magnifying
glass), under a microscope, or by chemical analysis. Working conditions in the field generally limit
identification to visual methods, including using a magnifying glass for fine-grained rocks. Visual
inspection assesses properties such as color, composition, grain size, and structure. The attributes
of rocks reflect their mineral and chemical composition, formation environment, and genesis. The
color of rock reflects its chemical composition. For example, dark rocks usually contain dark mafic
minerals (e.g., pyroxene and hornblende) and are commonly basic, whereas lighter rocks tend to
contain felsic minerals (e.g., quartz and feldspar) and are acidic. The sizes of detrital grains provide
further information and can help to distinguish between conglomerate, sandstone, and limestone, for
example. The textural features of the rock assist in identifying its structure [1] and thus aid classification.
The colors, grain sizes, and textural properties of rocks vary markedly between different rock types,

Mathematics 2019, 7, 755; doi:10.3390/math7080755 www.mdpi.com/journal/mathematics32

Mathematics 2019, 7, 755

allowing a basis for distinguishing them [2]. However, the accurate identification of rock type remains
challenging because of the diversity of rock types and the heterogeneity of their properties [3] as well
as further limitations imposed by the experience and skill of geologists [4]. The identification of rock
type by the naked eye is effectively an image recognition task based on knowledge of rock classification.
The rapid development of image acquisition and computer image pattern recognition technology has
thus allowed the development of automatic systems to identify rocks from images taken in the field.
These systems will greatly assist geologists by improving identification accuracy and efficiency and
will also help student and newly qualified geologists practice rock-type identification. Identification
systems can be incorporated into automatic remote sensing and geological mapping systems carried
by unmanned aerial vehicles (UAVs).

The availability of digital cameras, hand-held devices and the development of computerized image
analysis provide technical support for various applications [5], so, they allow several characteristics
of rocks to be collected and assessed digitally. Photographs can clearly show the characteristics of
color, grain size, and texture of rocks (Figure 1). Although images of rocks do not show homogeneous
shapes, textures [1,6], or colors, computer image analysis can be used to classify some types of rock
images. Partio et al. [7] used gray-level co-occurrence matrices for texture retrieval from rock images.
Lepistö et al. [6] classified rock images based on textural and spectral features.

Advances in satellite and remote sensing technology have encouraged the development of
multi-spectral remote sensing technology to classify ground objects of different types [8,9], including
rock. However, it is expensive to obtain ultra-high-resolution rock images in the field with the
use of remote sensing technology. Therefore, the high cost of data acquisition using hyperspectral
technology carried by aircraft and satellites often prevents its use in teaching and the automation of
rock type identification.

Figure 1. Digital image obtained in the field, allowing the rock type to be identified as mylonite by the
naked eye. Partition (A) shows the smaller changes in grain size of mylonite; partition (B) shows larger
tensile deformation of quartz particles; partition (C) shows larger grains than partition A and B.

Machine learning algorithms applied to digital image analysis have been used to improve
the accuracy and speed of rock identification, and researchers have studied automated rock-type

33

Mathematics 2019, 7, 755

classification based on traditional machine learning algorithms. Lepistö et al. [1] used image analysis
to investigated bedrock properties, and Chatterjee [2] tested a genetic algorithm on photographs of
samples from a limestone mine to establish a visual rock classification model based on imaging and the
Support Vector Machine (SVM) algorithm. Patel and Chatterjee [4] used a probabilistic neural network
to classify lithotypes based on image features extracted from the images of limestone. Perez et al. [10]
photographed rocks on a conveyor belt and then extracted features of the images to classify their types
using the SVM algorithm.

The quality of a digital image used in rock-type identification significantly affects the accuracy
of the assessment [2,4]. Traditional machine learning approaches can be effective in analyzing rock
lithology, but they are easily disturbed by the selection of artificial features [11]. Moreover, the
requirements for image quality and illumination are strict, thus limiting the choice of equipment
used and requiring a certain level of expertise on the part of the geologist. In the field, the complex
characteristics of weathered rocks and the variable conditions of light and weather, amongst others,
can compromise the quality of the obtained images, thus complicating the extraction of rock features
from digital images. Therefore, existing available methods are difficult to apply to the automated
identification of rock types in the field.

In recent years, deep learning, also known as deep neural networks, has received attention in various
research fields [12]. Many methods for deep learning have been proposed [13]. Deep convolutional
neural networks (CNNs) are able to automatically learn the features required for image classification
from training-image data, thus improving classification accuracy and efficiency without relying on
artificial feature selection. Very recent studies have proposed deep learning algorithms to achieve
significant empirical improvements in areas such as image classification [14], object detection [15],
human behavior recognition [16,17], speech recognition [18,19], traffic signal recognition [20,21], clinical
diagnosis [22,23], and plant disease identification [11,24]. The successes of applying CNNs to image
recognition have led geologists to investigate their use in identifying rock types [8,9,25], and deep
learning has been used in several studies to identify the rock types from images. Zhang et al. [26]
used transfer learning to identify granite, phyllite, and breccia based on the GoogLeNet Inception v3
deep CNNs model, achieving an overall accuracy of 85%. Cheng et al. [27] proposed a deep learning
model based on CNNs to identify three types of sandstone in image slices with an accuracy of 98.5%.
These studies show that CNNs have obtained good results when applied to geological surveying and
rock-type recognition. Deep CNNs can identify rock types from images without requiring the manual
selection of image features. However, deep CNNs have not yet been applied in the field, and the
accuracy of the above results was not sufficient for the identification of rocks.

This paper proposes a new method for automatically classifying field rock images based on deep
CNNs. A total of 2290 field rock photographs were first cropped to form a database of 24,315 image
patches. The sample patches were then utilized to train and test CNNs, with 14,589 samples being
used as the training dataset, 4863 samples being used as the validation dataset and the remaining 4863
samples being used as the testing dataset. The results show that the proposed model achieves higher
accuracy than other models. The main contributions of this paper are as follows: (1) the very high
resolution of the digital rock images allows them to include interference elements such as grass, soil,
and water, which do not aid rock type’s identification. This paper proposes a method of training-image
generation that can decrease computation and prevent overfitting of the CNNs-based model during
training. The method slices the original rock image into patches, selects patches typical of rock images
to form a dataset, and removes the interference elements that are irrelevant to rock classification.
(2) Rock Types deep CNNs (RTCNNs) model is employed to classify field rock types. Compared with
the established SVM, AlexNet, VGGNet-16, and GoogLeNet Inception v3 models, the RTCNNs model
has a simpler structure and higher accuracy for identifying rock types in the field. Based on various
factors, such as model type, sample size, and model level, a series of comparisons verified the high
performance of the RTCNNs model, demonstrating its reliability and yielding an overall identification
accuracy of 97.96%.

34

Mathematics 2019, 7, 755

The remainder of this paper is organized as follows. Section 2 presents details of the modification
and customization of the RTCNNs for the automated identification of field rock types. Section 3
describes the techniques of classifying the field rock types (including acquiring images of rock outcrops
and generating patched samples) and the software and hardware configurations of the method,
followed by a presentation of the results. Section 4 analyzes the factors that affect the identification
accuracy, such as the type of model, sample size, and model level, and presents the results. Section 5
provides the conclusions of the study.

2. Architecture of the Rock Types Deep Convolutional Neural Networks Model

Developments in deep learning technology have allowed continuous improvements to be made
in the accuracy of CNNs models. Such advances have been gained by models becoming ever deeper,
which has meant that such models demand increased computing resources and time. This paper
proposes a RTCNNs model for identifying rock types in the field. The computing time of the RTCNNs
model is much less than that of a model 10 or more layers. The hardware requirements are quite modest,
with computations being carried out with commonly used device CPUs and Graphics Processing Units
(GPUs). The RTCNNs model includes six layers (Figure 2).

Figure 2. The Rock Types deep CNNs (RTCNNs) model for classifying rock type in the field.

Before feeding the sample images into the model, Random_Clip and Random_Flip operations
are applied to the input samples. Each part of the image retains different feature of the target object.
Random clipping can reserve the different features of the image. For example, partition A of the image
shown in Figure 1 records smaller changes in grain size of mylonite, in which quartz particles do not
undergo obvious deformation, while partition B records larger tensile deformation of quartz particles,
and the quartz grains in the partition C are generally larger. In addition, in the proposed model, each
layers of training have fixed size parameters, such as the input size of convolution layer1 is 96 × 96
× 3, while the output size of feature is 96 × 96 × 64 (Figure 2). The input images are cropped into
sub-images with given size, while the given size is less. In the proposed model, the cropped size is 96
× 96 × 3, while the input size is 128 × 128 × 3. Through the random clipping operation of fixed size
and different positions, different partitions of the same image are fed into the model during different
training epochs. The flipping function can flip the image horizontally randomly. Both clipping and
flipping operations are realized through the corresponding functions of TensorFlow deep learning
framework [28]. The sample images fed into the model are therefore different in each epoch, which
expands the training dataset, improving the accuracy of the model and avoiding overfitting.

Before performing patch-based sampling, the various features of the rock are spread all over
the entire original field-captured image. The experiments described in Section 4 show that a smaller
convolution kernel can filter the rock features better than the bigger kernel of other models. As a
consequence, the first convolutional layer is designed to be 64 kernels of size 5 × 5 × 3, followed by a
max-pooling layer (Section 2.2), which can shrink the output feature map by 50%. A Rectified Linear
Unit (ReLU, Section 2.3) activation function is then utilized to activate the output neuron. The second

35

Mathematics 2019, 7, 755

convolutional layer has 64 kernels of size 5 × 5 × 64 connected to the outputs of the ReLU function,
and it is similarly followed by a max-pooling layer. Below this layer, two fully connected layers are
designed to predict six classes of field rock, and the final layer consists of a six-way Softmax layer.
Detailed parameters of the model, as obtained by experimental optimization, are listed in Table 1.

Table 1. Parameters and output shapes of the RTCNNs model.

Layer Name Function Weight Filter Sizes/Kernels Padding Stride Output Tensor

Input / / / / 128 × 128 × 3
Cropped image random_crop / / / 96 × 96 × 3

Conv1 conv2d 5 × 5 × 3/64 SAME 1 96 × 96 × 64
Pool1 max_pool 3 × 3 SAME 2 48 × 48 × 64
Conv2 conv2d 5 × 5 × 64/64 SAME 1 48 × 48 × 64
Pool2 max_pool 3 × 3 SAME 2 24 × 24 × 64

Output softmax / / / 6 × 1

2.1. Convolution Layer

A convolution layer extracts the features of the input images by convolution and outputs the
feature maps (Figure 3). It is composed of a series of fixed size filters, known as convolution kernels,
which are used to perform convolution operations on image data to produce the feature maps [29].
Generally, the output feature map can be realized by Equation (1):

hk
ij =

∑
i∈Mj

(
(
wk × x

)
i j
+ bk) (1)

where k represents the kth layer, h represents the value of the feature, (i, j) are coordinates of pixels, wk

represents the convolution kernel of the current layer, and bk is the bias. The parameters of CNNs, such
as the bias (bk) and convolution kernel (wk), are usually trained without supervision [11]. Experiments
optimized the convolution kernel size by comparing sizes of 3 × 3, 5 × 5, and 7 × 7; the 5 × 5 size
achieves the best classification accuracy. The number of convolution kernels also affects the accuracy
rate, so 32, 64, 128, and 256 convolution kernels were experimentally tested here. The highest accuracy
is obtained using 64 kernels. Based on these experiments, the RTCNNs model adopts a 5 × 5 size and
64 kernels to output feature maps.

Figure 3. Learned rock features after convolution by the RTCNNs model. (a) Input patched field rock
sample images. (b) Outputted feature maps partly after the first convolution of the input image, from
the upper left corner in (a).

36

Mathematics 2019, 7, 755

Figure 3 shows the feature maps outputted from the convolution of the patched field images.
Figure 3a depicts the patch images from field photographs inputted to the proposed model during
training, and Figure 3b shows the edge features of the sample patches learned by the model after the
first layer convolution. The Figure indicates that the RTCNNs model can automatically extract the
basic features of the images for learning.

2.2. Max-Pooling Layer

The pooling layer performs nonlinear down-sampling and reduces the size of the feature map,
also accelerating convergence and improving computing performance [12]. The RTCNNs model uses
max-pooling rather than mean-pooling because the former can obtain more textural features than
can the latter [30]. The max-pooling operation maximizes the feature area of a specified size and is
formulated by

hj = max
i∈Rj
αi (2)

where Rj is the pooling region j in feature map α, i is the index of each element within the region, and
h is the pooled feature map.

2.3. ReLU Activation Function

The ReLU activation function nonlinearly maps the characteristic graph of the convolution layer
output to activate neurons while avoiding overfitting and improving learning ability. This function
was originally introduced in the AlexNet model [14]. The RTCNNs model uses the ReLU activation
function (Equation (3)) for the output feature maps of every convolutional layer:

f (x) = max(0, x) (3)

2.4. Fully Connected Layers

Each node of the fully connected layers is connected to all the nodes of the upper layer. The fully
connected layers are used to synthesize the features extracted from the image and to transform the
two-dimensional feature map into a one-dimensional feature vector [12]. The fully connected layers
map the distributed feature representation to the sample label space. The fully connected operation is
formulated by Equation (4):

ai =
m∗n∗d−1∑

j = 0

wij ∗ xi + bi (4)

where i is the index of the output of the fully connected layer; m, n, and d are the width, height, and
depth of the feature map outputted from the last layer, respectively; w represents the shared weights;
and b is the bias.

Finally, the Softmax layer generates a probability distribution over the six classes using the output
from the second fully connected layer as its input. The highest value of the output vector of the Softmax
is considered the correct index type for the rock images.

3. Rock-Type Classification Method for Field Images of Rocks

The main steps for classifying field samples are acquiring images, collecting typical rock-type
images, establishing databases of rock-type images, setting up deep learning neural networks, and
identifying rock types (Figure 4).

37

Mathematics 2019, 7, 755

Figure 4. Whole flow chart for the automated identification of field rock types. (a) Cameras: Canon
EOS 5D Mark III (above) and a Phantum 4 Pro DJi UAV with FC300C camera (below). (b) Rock images
obtained from outcrops. (c) Cutting images (512 × 512 pixels) of marked features from the originals.
(d) Rock-type identification training using CNNs. (e) Application of the trained model to related
geological fields.

3.1. Acquisition of Original Field Rock Images

The Xingcheng Practical Teaching Base of Jilin University in Xingcheng (southwest Liaoning
Province in NE China) was the field site for the collection of rock images. The site is situated in
Liaodong Bay and borders the Bohai Sea. There are various types of rock with good outcrops in this
area, mainly granite, tuff and other magmatic rocks, limestone, conglomerate, sandstone, and shale
and other sedimentary rocks as well as some mylonite. This diverse geological environment enables
the collected images to be used to test the reliability and consistency of the classification method.

The development of UAVs has led to their use in geological research [31–33], as they allow image
acquisition to take place in inaccessible areas. As part of this study’s objective of obtaining as many
photographs of surface rocks as possible, a UAV carrying a camera captured images of many of the
better outcrops of rocks on cliffs and in other unapproachable areas. Two cameras were used: a
Canon EOS 5D Mark III (EF 24–70 mm F2.8L II USM) was used to take photographs (5760 × 3840
pixels) of outcrops that field geologists could access, and a Phantum 4 Pro DJi UAV with FC300C
camera (FOV 84◦8.8 mm/24 mm f/2.8–f/11 with autofocus) captured images (4000 × 3000 pixels) of
inaccessible outcrops.

Figure 5 shows typical images of the six rock types. There are clear differences in grain size
distribution, structure, and color between the rocks, allowing them to be distinguished. However,
weathering and other factors in the field can significantly affect the color of sedimentary rocks, for
example, which increases the complexity of rock-type identification in the field.

The photographic image capture used different subject distances and focal lengths for different
rock types to best capture their particular features. For example, for conglomerates with large grains,
the subject distance was 2.0 m, and the focal length was short (e.g., 20 mm), so that the structural
characteristics of these rocks could be recorded. For sandstones with smaller grains, the subject distance
was 0.8 m with a longer focal length (e.g., 50 mm), allowing the grains to be detectable.

38

Mathematics 2019, 7, 755

(a) (b) (c)

(d) (e) (f)

Figure 5. The six types of rock in the field: (a) mylonite, (b) granite, (c) conglomerate, (d) sandstone,
(e) shale, and (f) limestone.

A total of 2290 images with typical rock characteristics of six rock types were obtained: 95 of
mylonite, 625 of granite, 530 of conglomerate, 355 of sandstone, 210 of shale, and 475 of limestone.
These six rock types include four sedimentary rocks (conglomerate, sandstone, shale, and limestone),
one metamorphic rock (mylonite), and one igneous rock (granite). After every three samples, one
sample was selected as the validation date, and then another sample as selected as the testing data,
so 60% of the images of each rock type were selected for the training dataset, 20% for the validation
dataset, and leaving 20% for the testing dataset (Table 2).

Table 2. Numbers of original field rock images.

Type Training Dataset Validation Dataset Number of Testing Data

Mylonite 57 19 19
Granite 375 125 125

Conglomerate 318 106 106
Sandstone 213 71 71

Shale 126 42 42
Limestone 285 95 95

Total 1374 458 458

3.2. Preprocessing Field Rock Image Data

In the field, a variety of features may obscure rocks or otherwise detract from the quality of rock
images obtained. Grass, water, and soil commonly appear in the collected images (e.g., area A in
Figure 6). These features hinder recognition accuracy and consume computing resources. In addition,
any image of a three-dimensional rock outcrop will contain some areas that are out of focus and which
cannot therefore be seen clearly or properly analyzed (e.g., area B in Figure 6). Furthermore, if the
captured image is directly used for training, then the image size of 5760 × 3840 pixels consumes large
amounts of computing resources. Therefore, before training the model, it is necessary to crop the
original image into sample patches without the interfering elements, thus reducing the total size of
imagery used in the analysis.

The color, mineral composition, and structure of a rock are the basic features for identifying its
type. These features have to be identifiable in the cropped images. The original images (of either 5760
× 3840 pixels or 4000 × 3000 pixels) are first labeled according to the clarity of the rock and are then
cropped into a variable number of sample patches of 512 × 512 pixels (e.g., boxes 1–7 in Figure 6), before
being compressed to 128 × 128 pixels. Labeling is performed manually and is based on the open-source

39

Mathematics 2019, 7, 755

software “LabelImg” [34], a graphical image annotation tool. Cropping is achieved automatically by a
python script based on the QT library. The steps used for processing are as follows:

(1) Open the original field rock image;
(2) Label the areas in the image with typical rock features (Figure 6);
(3) Save the current annotation, after the labeling operation; and
(4) Read all annotated locations and crop the annotated image locations to the specified pixel size for

the sample patches.

After the above-mentioned steps, the sample patch images were separated into a training dataset
containing 14,589 samples (60% of the total), a validation dataset of 4863 images (20% of the total) and
a testing dataset of 4863 images (20% of the total). Table 3 gives the specific distribution of training,
validation and testing images across rock types. Using sample patches retains the best representation
of rock features and benefits the training of the RTCNNs model.

Figure 6. The extraction of typical rock samples from high-resolution images. Two or more image
samples (512 × 512 pixels) are cropped from an original field rock image of 5760 × 3840 pixels. Area A
is identified as vegetation cover, and area B is out of focus. Boxes 1–7 are manually labeled as sample
patch images.

Table 3. Datasets for image classification of field rocks.

Type Training Data Validation Data Testing Data

Mylonite 1584 528 528
Granite 3753 1251 1251

Conglomerate 3372 1124 1124
Sandstone 2958 986 986

Shale 1686 562 562
Limestone 1236 412 412

Total 14589 4863 4863

40

Mathematics 2019, 7, 755

3.3. Training the Model

3.3.1. Software and Hardware Configurations

As the RTCNNs model has fewer layers than VGGNet-16 and other models, the computations
were carried out on laptops. Table 4 gives the detailed hardware and software specifications. The
RTCNNs model was realized under the TensorFlow deep learning framework [28].

Table 4. Software and hardware configurations.

Configuration Item Value

Type and specification Dell Inspiron 15-7567-R4645B
CPU Intel Core i5-7300HQ 2.5 GHz

Graphics Processor Unit NVIDIA GeForce GTX 1050Ti with 4GB RAM
Memory 8 GB

Hard Disk 1 TB
Solid State Disk 120 GB

Operating System Windows 10 Home Edition
Python 3.5.2

Tensorflow-gpu 1.2.1

3.3.2. Experimental Results

Training employs random initial weights. After each batch of training is complete, the learning rate
changes and the weights are constantly adjusted to find the optimal value, which decreases the loss value
of training. After each epoch, the trained parameters are saved in files and used to evaluate the validation
dataset and obtain the identification accuracy of each epoch. After 200 epochs, the training loss gradually
converged to the minimum. The trained parameters trained after 200 epochs are used to evaluate the
testing dataset and obtain the identification accuracy. 10 identical experiments are established totally
Figure 7 shows the average loss and accuracy curves for the training and validation datasets from the
model using sample patch images of 128 × 128 pixels in the same 10 experiments. The curves show that
the model has good convergence after 50 training epochs, with the loss value being below 1.0, and the
training accuracy being 95.7%, validation accuracy achieved 95.4%. The highest accuracy of training and
validation achieved was 98.6% and 98.2% at 197th epoch. After 200 training epochs, the final training and
validation accuracy of the model reached 98.5% and 98.0% respectively. The saved parameters at 197th
epoch with the highest validation accuracy was used to test the testing dataset, and the confusion matrix
was gained (Table 5). Finally, the testing accuracy achieved was 97.96%.

(a) (b)

Figure 7. Average loss (a) and accuracy curves (b) for the training and validation dataset using samples
of 128 × 128 pixels in 10 experiments.

41

Mathematics 2019, 7, 755

The confusion matrix in Table 5 shows that the RTCNNs model can effectively classify mylonite,
but is less effective in classifying sandstone and limestone, which yielded error rates of 4.06% and
3.4%, respectively.

Table 5. Confusion matrix of the RTCNNs model based on the testing dataset.

Actual

Predicted
Mylonite Granite Conglomerate Sandstone Shale Limestone Error Rate

mylonite 528 0 0 0 0 0 0.00%
granite 0 1221 6 18 4 2 2.40%

conglomerate 0 0 1114 2 2 6 0.89%
sandstone 5 16 2 946 2 15 4.06%

shale 0 0 2 3 557 0 0.89%
limestone 2 0 4 8 0 398 3.4%

The sample images in Figure 8 show sandstone (a and b) and limestone (c and d) incorrectly
classified as granite, limestone, conglomerate, and sandstone, respectively. These samples have similar
characteristics to the predicted rock types and are thus misclassified. For example, the grain size,
texture, and shape of minerals in the sandstone in (a) are similar to those of minerals in granite.

(a) granite (b)limestone

(c) conglomerate (d) sandstone

Figure 8. Samples that were incorrectly classified: (a,b) sandstone classified as granite and limestone,
respectively; (c,d) limestone classified as conglomerate and sandstone, respectively.

4. Discussion

The identification of rock type from field images is affected by many factors. The choice of model,
the size of training images, and the training parameters used will all influence training accuracy. This
section reports and discusses various comparative tests and related results.

4.1. Influence of Model Choice on Recognition Accuracy

To test the effectiveness of classification, the RTCNNs model’s performance was compared with
three other learning models (SVM, AlexNet, GoogLeNet Inception v3, and VGGNet-16) using the same
training and testing datasets. All models were trained in 200 epochs using the batch size parameters
listed in Table 6. The linear SVM classifier was applied to the datasets to test the performance using
the super parameters listed in Table 6. Three other existing models, AlexNet, GoogLeNet Inception v3,
and VGGNet-16, were also run using transfer learning, with initial learning rates of 0.01, 0.01, and
0.001, respectively (Table 6). During transfer learning, all the convolution and pooling layers of each
model are frozen, and the trainings are conducted only for the fully-connected layers. For AlexNet

42

Mathematics 2019, 7, 755

model, the final FC6, FC7, and FC8 layers are trained. While training the GoogLeNet Inception V3
model, the final FC layer is trained. For VGGNet-16 model, the final FC7 and FC8 layers are trained.

The experimental results show that the RTCNNs model proposed in the present study achieved
the highest overall accuracy (97.96%) on the testing dataset. Given that the same training and testing
images were used for each model, we ascribe this high accuracy mainly to the proposed CNNs model.
The next best performing model was GoogLeNet Inception v3, which obtained an overall accuracy of
97.1% with transfer learning. Although the overall testing accuracy of RTCNNs model is only 0.86%
higher than that of GoogLeNet Inception V3 model, it leads to 42 more images identified by RTCNNs
model than by GoogLeNet Inception V3 model. When identifying larger dataset, the advantage of
RTCNNs model will be more obvious. Meanwhile, the results show that the CNNs model outperforms
the linear SVM model in terms of classifying rocks from field images.

In addition, the RTCNNs model has fewer layers than the other models, meaning it is less
computationally expensive and can be easily trained on common hardware (see Section 3.3.1). It also
requires less time for training than the other deep learning models (Table 6).

Table 6. Recognition performance and related parameters.

Method Accuracy (%) Batch Size Initial Learning Rate Computing Time

SVM 85.5 200 0.001 3:32:20
AlexNet 92.78 128 0.01 4:49:28

GoogLeNet Inception v3 97.1 100 0.01 7:12:53
VGGNet-16 94.2 100 0.001 5:18:42

Our present study 97.96 16 0.03 4:41:47

4.2. The Effect of Sample Patch Images’ Size on Rock-Type Identification

The sample patch images preserve those rock features (e.g., structure, mineral composition, and
texture) that are most important to its identification. To test the influence of the size of sample patch
images on the accuracy of rock identification, we compressed the sample patches from 512 × 512 pixels
to 32 × 32, 64 × 64, 128 × 128, and 256 × 256 pixels and compared the results under otherwise identical
conditions. The results show that using a training dataset with patches of 128 × 128 pixels achieved
the best performance (Figure 9).

(a) (b)

Figure 9. (a) Validation loss and (b) validation accuracy curves for four sample patch image sizes.

4.3. The Effect of Model Depth on Identification Accuracy

Many previous studies have established that increasing the depth of a model improves its
recognition accuracy. Two modifications to the proposed model with different depths are shown

43

Mathematics 2019, 7, 755

in Figure 10; Figure 11 plots the performance accuracy of the two modified models and of the
original model.

Figure 10. Schematics of two modifications to the proposed model by introducing additional layers.
Test A uses one additional convolution layer and one additional pooling layer. Test B has two additional
layers of each type.

Figure 11. Validation accuracy curves for three models with different depths. The two models Test A
and Test B are described in Figure 10 and its caption.

The results of the comparison show that increasing the depth of the model (model Test A and Test
B) does not improve the accuracy of recognition/identification in the present case; in fact, increasing
the depth reduces such identification (Figure 11). We infer that the feature extraction operation of the
proposed CNNs for rock image recognition does not require additional levels, with the convolution
operation at a deeper level serving only to lose features and cause classification errors.

44

Mathematics 2019, 7, 755

5. Conclusions

The continuing development of CNNs has made them suitable for application in many fields.
A deep CNNs model with optimized parameters is proposed here for the accurate identification
of rock types from images taken in the field. Novelly, we sliced and patched the original obtained
photographic images to increase their suitability for training the model. The sliced samples clearly
retain the relevant features of the rock and augment the training dataset. Finally, the proposed deep
CNNs model was trained and tested using 24,315 sample rock image patches and achieved an overall
accuracy of 97.96%. This accuracy level is higher than those of established models (SVM, AlexNet,
VGNet-16, and GoogLeNet Inception v3), thereby signifying that the model represents an advance in
the automated identification of rock types in the field. The identification of rock type using a deep
CNN is quick and easily applied in the field, making this approach useful for geological surveying and
for students of geoscience. Meanwhile, the method of identifying rock types proposed in the paper can
be applied to the identification of other textures after retraining the corresponding parameters, such as
rock thin section images, sporopollen fossil images and so on.

Although CNNs have helped to identify and classify rock types in the field, some challenges
remain. First, the recognition accuracy still needs to be improved. The accuracy of 97.96% achieved
using the proposed model meant that 99 images were misidentified in the testing dataset. The model
attained relatively low identification accuracy for sandstone and limestone, which is attributed to the
small grain size and similar colors of these rocks (Table 5; Figure 8). Furthermore, only a narrow range of
sample types (six rock types overall) was considered in this study. The three main rock groups (igneous,
sedimentary, and metamorphic) can be divided into hundreds of types (and subtypes) according
to mineral composition. Therefore, our future work will combine the deep learning model with a
knowledge library, containing more rock knowledge and relationships among different rock types, to
classify more rock types and improve both the accuracy and the range of rock-type identification in the
field. In addition, each field photograph often contains more than one rock type, but the proposed
model can classify each image into only one category, stressing the importance of the quality of the
original image capture.

Our future work will aim to apply the trained model to field geological surveying using UAVs,
which are becoming increasingly important in geological data acquisition and analysis. The geological
interpretation of these high-resolution UAV images is currently performed mainly using manual
methods, and the workload is enormous. Therefore, the automated identification of rock types will
greatly increase the efficiency of large-scale geological mapping in areas with good outcrops. In such
areas (e.g., western China), UAVs can collect many high-resolution outcrop images, which could be
analyzed using the proposed method to assist in both mapping and geological interpretation while
improving efficiency and reducing costs. In order to improve the efficiency of labeling, the feature
extraction algorithm [35] will be studied to automatically extract the advantageous factors in the image.
We also plan to apply other deep learning models, such as the state-of-art Mask RCNN [36], to identify
many types of rock in the same image. In addition, we will study various mature optimization
algorithms [37–39] to improve computing efficiency. These efforts should greatly improve large-scale
geological mapping and contribute to the automation of mapping.

Author Contributions: Conceptualization, X.R. and L.X.; Data curation, Z.L.; Formal analysis, X.R.; Funding
acquisition, L.X.; Investigation, X.R.; Methodology, X.R. and L.X.; Project administration, L.X.; Resources, Z.L. and
X.S.; Software, X.R. and Y.Z.; Supervision, L.X.; Validation, Y.Z. and J.H.; Visualization, X.R.; Writing—Original
draft, X.R.; Writing—Review & Editing, L.X.

Funding: This research was funded by the China Geological Survey, grant number 1212011220247, and Department
of Science and Technology of Jilin Province, grant number 20170201001SF, and the Education Department of Jilin
Province, grant number JJKH20180161KJ and JJKH20180518KJ.

Acknowledgments: The authors are grateful for anonymous reviewers’ hard work and comments that allowed us
to improve the quality of this paper. The authors would like to thank Gaige Wang for discussions and suggestions.
The authors wish to acknowledge the Xingcheng Practical Teaching Base of Jilin University for providing the data
for this project.

45

Mathematics 2019, 7, 755

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Lepistö, L.; Kunttu, I.; Visa, A. Rock image classification using color features in Gabor space. J. Electron.
Imaging 2005, 14, 040503. [CrossRef]

2. Chatterjee, S. Vision-based rock-type classification of limestone using multi-class support vector machine.
Appl. Intell. 2013, 39, 14–27. [CrossRef]

3. Lepistö, L.; Kunttu, I.; Autio, J.; Visa, A. Rock image retrieval and classification based on granularity.
In Proceedings of the 5th International Workshop on Image Analysis for Multimedia Interactive Services,
Lisboa, Portugal, 21–23 April 2004.

4. Patel, A.K.; Chatterjee, S. Computer vision-based limestone rock-type classification using probabilistic neural
network. Geosci. Front. 2016, 7, 53–60. [CrossRef]

5. Ke, L.; Gong, D.; Meng, F.; Chen, H.; Wang, G.G. Gesture segmentation based on a two-phase estimation of
distribution algorithm. Inf. Sci. 2017, 394, 88–105.

6. Lepistö, L.; Kunttu, I.; Autio, J.; Visa, A. Rock image classification using non-homogenous textures and
spectral imaging. In Proceedings of the 11th International Conference in Central Europe on Computer
Graphics, Visualization and Computer Vision 2003 (WSCG 2003), Plzen-Bory, Czech Republic, 3–7 February
2003; pp. 82–86.

7. Partio, M.; Cramariuc, B.; Gabbouj, M.; Visa, A. Rock texture retrieval using gray level co-occurrence
matrix. In Proceedings of the 5th Nordic Signal Processing Symposium (NORSIG-2002), Trondheim, Norway,
4–10 October 2002; pp. 4–7.

8. Sharma, A.; Liu, X.; Yang, X.; Shi, D. A patch-based convolutional neural network for remote sensing image
classification. Neural Netw. 2017, 95, 19–28. [CrossRef]

9. Nogueira, K.; Penatti, O.A.B.; dos Santos, J.A. Towards better exploiting convolutional neural networks for
remote sensing scene classification. Pattern Recognit. 2017, 61, 539–556. [CrossRef]

10. Perez, C.A.; Saravia, J.A.; Navarro, C.F.; Schulz, D.A.; Aravena, C.M.; Galdames, F.J. Rock lithological
classification using multi-scale Gabor features from sub-images, and voting with rock contour information.
Int. J. Miner. Process. 2015, 144, 56–64. [CrossRef]

11. Liu, B.; Zhang, Y.; He, D.; Li, Y. Identification of Apple Leaf Diseases Based on Deep Convolutional Neural
Networks. Symmetry 2017, 10, 11. [CrossRef]

12. Guo, Y.; Liu, Y.; Oerlemans, A.; Lao, S.; Wu, S.; Lew, M.S. Deep learning for visual understanding: A review.
Neurocomputing 2016, 187, 27–48. [CrossRef]

13. Lecun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436. [CrossRef]
14. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. ImageNet classification with deep convolutional neural networks.

Commun. ACM 2012, 60, 2012. [CrossRef]
15. Yang, C.; Li, W.; Lin, Z. Vehicle Object Detection in Remote Sensing Imagery Based on Multi-Perspective

Convolutional Neural Network. Int. J. Geo-Inf. 2018, 7, 249. [CrossRef]
16. Han, S.; Ren, F.; Wu, C.; Chen, Y.; Du, Q.; Ye, X. Using the TensorFlow Deep Neural Network to Classify

Mainland China Visitor Behaviours in Hong Kong from Check-in Data. Int. J. Geo-Inf. 2018, 7, 158. [CrossRef]
17. Sargano, A.; Angelov, P.; Habib, Z. A Comprehensive Review on Handcrafted and Learning-Based Action

Representation Approaches for Human Activity Recognition. Appl. Sci. 2017, 7, 110. [CrossRef]
18. Sainath, T.N.; Kingsbury, B.; Saon, G.; Soltau, H.; Mohamed, A.R.; Dahl, G.; Ramabhadran, B. Deep

Convolutional Neural Networks for large-scale speech tasks. Neural Netw. Off. J. Int. Neural Netw. Soc. 2015,
64, 39. [CrossRef] [PubMed]

19. Noda, K.; Yamaguchi, Y.; Nakadai, K.; Okuno, H.G.; Ogata, T. Audio-visual speech recognition using deep
learning. Appl. Intell. 2015, 42, 722–737. [CrossRef]

20. Lv, Y.; Duan, Y.; Kang, W.; Li, Z.; Wang, F.Y. Traffic Flow Prediction with Big Data: A Deep Learning Approach.
IEEE Trans. Intell. Transp. Syst. 2015, 16, 865–873. [CrossRef]

21. Sermanet, P.; Lecun, Y. Traffic sign recognition with multi-scale Convolutional Networks. Int. Jt. Conf. Neural
Netw. 2011, 7, 2809–2813.

22. Zhang, Y.C.; Kagen, A.C. Machine Learning Interface for Medical Image Analysis. J. Digit. Imaging 2017, 30,
615–621. [CrossRef]

46

Mathematics 2019, 7, 755

23. Alipanahi, B.; Delong, A.; Weirauch, M.T.; Frey, B.J. Predicting the sequence specificities of DNA- and
RNA-binding proteins by deep learning. Nat. Biotechnol. 2015, 33, 831–838. [CrossRef]

24. Lu, Y.; Yi, S.; Zeng, N.; Liu, Y.; Zhang, Y. Identification of rice diseases using deep convolutional neural
networks. Neurocomputing 2017, 267, 378–384. [CrossRef]

25. Perol, T.; Gharbi, M.; Denolle, M. Convolutional Neural Network for Earthquake Detection and Location.
Sci. Adv. 2017, 4, 1700578. [CrossRef]

26. Zhang, Y.; Li, M.; Han, S. Automatic identification and classification in lithology based on deep learning in
rock images. Acta Petrol. Sin. 2018, 34, 333–342.

27. Cheng, G.; Guo, W.; Fan, P. Study on Rock Image Classification Based on Convolution Neural Network.
J. Xi’an Shiyou Univ. (Nat. Sci.) 2017, 4, 116–122. [CrossRef]

28. Inc, G. TensorFlow. Available online: https://www.tensorflow.org/ (accessed on 5 August 2018).
29. Ferreira, A.; Giraldi, G. Convolutional Neural Network approaches to granite tiles classification. Expert Syst.

Appl. 2017, 84, 1–11. [CrossRef]
30. Boureau, Y.L.; Ponce, J.; Lecun, Y. A Theoretical Analysis of Feature Pooling in Visual Recognition. In

Proceedings of the International Conference on Machine Learning, Haifa, Israel, 21–24 June 2010; pp. 111–118.
31. Blistan, P.; Kovanič, L’.; Zelizňaková, V.; Palková, J. Using UAV photogrammetry to document rock outcrops.

Acta Montan. Slovaca 2016, 21, 154–161.
32. Vasuki, Y.; Holden, E.J.; Kovesi, P.; Micklethwaite, S. Semi-automatic mapping of geological Structures using

UAV-based photogrammetric data: An image analysis approach. Comput. Geosci. 2014, 69, 22–32. [CrossRef]
33. Zheng, C.G.; Yuan, D.X.; Yang, Q.Y.; Zhang, X.C.; Li, S.C. UAVRS Technique Applied to Emergency Response

Management of Geological Hazard at Mountainous Area. Appl. Mech. Mater. 2013, 239, 516–520. [CrossRef]
34. Tzutalin LabelImg. Git code (2015). Available online: https://github.com/tzutalin/labelImg (accessed on 5

August 2018).
35. Zhang, Y.; Song, X.F.; Gong, D.W. A Return-Cost-based Binary Firefly Algorithm for Feature Selection. Inf. Sci.

2017, 418, 567–574. [CrossRef]
36. He, K.; Gkioxari, G.; Dollar, P.; Girshick, R. Mask R-CNN. In Proceedings of the IEEE International Conference

on Computer Vision, Venice, Italy, 22–29 October 2017; p. 1.
37. Rizk-Allah, R.M.; El-Sehiemy, R.A.; Wang, G.G. A novel parallel hurricane optimization algorithm for secure

emission/economic load dispatch solution. Appl. Soft Comput. 2018, 63, 206–222. [CrossRef]
38. Zhang, Y.; Gong, D.W.; Cheng, J. Multi-Objective Particle Swarm Optimization Approach for Cost-Based

Feature Selection in Classification. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 14, 64–75. [CrossRef]
39. Wang, G.G.; Gandomi, A.H.; Alavi, A.H. An effective krill herd algorithm with migration operator in

biogeography-based optimization. Appl. Math. Model. 2014, 38, 2454–2462. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

47

mathematics

Article

An Adaptive Multi-Swarm Competition Particle
Swarm Optimizer for Large-Scale Optimization

Fanrong Kong 1,2,3, Jianhui Jiang 1,∗ and Yan Huang 2,3

1 School of Software Engineering, Tongji University, Shanghai 201804, China; kfr@ssc.stn.sh.cn
2 Shanghai Development Center of Computer Software Technology, Shanghai 201112, China;

huangy@ssc.stn.sh.cn
3 Shanghai Industrial Technology Institute, Shanghai 201206, China
* Correspondence: jhjiang@tongji.edu.cn

Received: 25 March 2019; Accepted: 4 June 2019; Published: 6 June 2019

Abstract: As a powerful tool in optimization, particle swarm optimizers have been widely applied to
many different optimization areas and drawn much attention. However, for large-scale optimization
problems, the algorithms exhibit poor ability to pursue satisfactory results due to the lack of ability
in diversity maintenance. In this paper, an adaptive multi-swarm particle swarm optimizer is
proposed, which adaptively divides a swarm into several sub-swarms and a competition mechanism
is employed to select exemplars. In this way, on the one hand, the diversity of exemplars increases,
which helps the swarm preserve the exploitation ability. On the other hand, the number of sub-swarms
adaptively changes from a large value to a small value, which helps the algorithm make a suitable
balance between exploitation and exploration. By employing several peer algorithms, we conducted
comparisons to validate the proposed algorithm on a large-scale optimization benchmark suite of
CEC 2013. The experiments results demonstrate the proposed algorithm is effective and competitive
to address large-scale optimization problems.

Keywords: particle swarm optimization; large-scale optimization; adaptive multi-swarm; diversity
maintenance

1. Introduction

Particle swarm optimization (PSO), as an active tool in dealing with optimization problems, have
been widely applied to various kinds of optimization problems [1,2], such as industry, transportation,
economics and so forth. Especially, in current years, with the rising development of the industrial
network, many optimization problems with complex properties of nonlinearity, multi-modularity,
large-scale and so on are proposed. To well address these problems, PSO exhibits powerful abilities
to meet the requirement of practical demands and thus gains much attention in deep research and
further applications [3,4]. However, according to the current research, there exists a notorious problem
in PSO: the algorithm lacks the ability in diversity maintenance and therefore the solutions trend
to local optima, especially for complex optimization problems. In the algorithm design, a large
weight on diversity maintenance will break down the convergence process, while a small weight
on diversity maintenance will cause a poor ability to get rid of local optima. Therefore, as a crucial
aspect in the design of PSO, population diversity maintenance has been a hot issue and drawn much
attention globally.

To improve PSO’s ability in population diversity maintenance, many works are conducted,
which can be generally categorized into the following aspects: (1) mutation strategy [5–8];
(2) distance-based indicator [9–11]; (3) adaptive control strategy [12–14]; (4) multi-swarm strategy [15–21];
and (5) hybridization technology [22–24]. However, in the five categories, there exists many parameters
and laws in the design of PSO. Improper parameters or laws will negatively affect an algorithm’s

Mathematics 2019, 7, 521; doi:10.3390/math7060521 www.mdpi.com/journal/mathematics48

Mathematics 2019, 7, 521

performance. To provide an easy tool for readers in the design of PSO, Spolaor [25] and Nobile [26]
proposed reboot strategies based PSO and fuzzy self-tuning PSO, respectively, to provide a simple
way to tube PSO parameters. However, for large-scale optimization, it is also a challenge for PSO
implementation. To address this issue, in this paper, we propose a novel algorithm named adaptive
multi-swarm competition PSO (AMCPSO), which randomly divides the whole swarm into several
sub-swarms. In each sub-swarm, a competitive mechanism is adopted to select a winner particle who
attracts the poor particles in the same sub-swarm. The number of winners, namely exemplars, is equal
to the number of sub-swarms. In multi-swarm strategy, each exemplar is selected from each sub-swarm.
In this way, the diversity of exemplars increases, which is helpful for algorithms to eliminate the effects
of local optima.

The contributions of this paper are listed as follows. First, in this proposed algorithm,
the exemplars are all selected from the current swarm, rather than personal historical best positions.
In this way, no historical information is needed in the design of the algorithm. Second, we
consider different optimization stages and propose a law to adaptively adjust the size of sub-swarms.
For an optimization process, in the beginning, exploration ability is crucial for algorithms to explore
searching space. To enhance algorithm’s ability in exploration, we set a large number of sub-swarms,
which means a large number of exemplars will be obtained. On the other hand, in the late stage,
algorithms should pay more attention to exploitation for enhancing the accuracy of optimization
results. Hence, a small number of exemplars is preferred. Third, to increase the ability of diversity
maintenance, we do not employ the global best solution, but the mean value of each sub-swarm,
which is inspired by Arabas and Biedrzycki [27]. According to Arabas and Biedrzycki [27], the quality
of mean value has a higher probability to be better than that of a global best solution. In addition,
because the mean value is calculated by the whole swarm, it has a high probability to be updated,
unlike the global best solution, which is consistent for several generations.

The rest of this paper is organized as follows. Section 2 introduces related work on diversity
maintenance for PSO and some comments and discussions on the works are presented. In Section 3,
we design an adaptive multi-swarm competition PSO. The algorithm structure and pseudo-codes are
presented in the section. We employed several state-of-the-art algorithms to compare the proposed
algorithm on large-scale optimization problems and analyzed the performance, which is presented in
Section 4. Finally, we end this paper with conclusions and present our future work in Section 5.

2. Related Work

In standard PSO, each particle has two attributes: velocity and position. The update mechanism
for the two attributes is given in Equation (1).

vi(t + 1) = ωvi(t) + r1 ∗ c1(pbesti − pi(t)) + r2 ∗ c2(gbest− pi(t)) (1)

pi(t + 1) = pi(t) + vi(t) (2)

where vi and pi are the velocity and position of ith particle, t is the index of generation, pbesti is the
best position that particle i found thus far, and gbest is the global best position. r1 and r2 ∈ [0, 1]D are
two random values and c1 and c2 are the acceleration coefficients. On the right side of the velocity
update equation, there are three components. The first one is called inertia term, which retains the
particle’s own property, e.g. its current velocity. The weight of the property is controlled by ω named
inertia weight. The second component and the third component are called cognitive component and
social component, respectively. The two components guide the ith particle to move towards better
positions. Since gbest guides the whole swarm, if it is in local optimal position, the standard PSO has
a poor ability to get rid of it. Moreover, the algorithm gets premature convergence.

To improve PSO’s ability in diversity maintenance, many works are conducted. As mentioned in
Section 1, there are generally five ways. The first is about the mutation operator. In most canonical
swarm intelligence, there is no mutation operator. To pursue a better performance, several kinds

49

Mathematics 2019, 7, 521

of mutation, such as Gaussian mutation, wavelet mutation, etc., are implemented to SI [6,7] so
that the population diversity can be regained to some extent. In [5], Sun et al. defined a lower
distance-based limit. Once the diversity is below the limit, a mutation happens on the current global
best individual. Wang proposed a Gauss mutation PSO in [8] to help the algorithm retain population
diversity. Nevertheless, mutation rate and mutation degree are difficult to predefine. A small mutation
rate/degree plays a weak role to increase population diversity, while a large rate/degree is harmful to
the algorithm’s convergence, as mentioned in [28].

The second way is based on the distance-based indicator. The diversity maintenance is considered
as a compensation term. During the optimization process, the distances among particles are
continuously monitored. By predefining a limit, if the diversity situation is worse than the threshold,
some strategies are activated to increase the distance. In [9], the authors used criticality to depict the
diversity status of a swarm. During the optimization process, if the criticality value is larger than
a predefined threshold, a relocating strategy is activated to disperse the particles. In this way, particles
will not be too close. Inspired from the electrostatics, Blackwell and Bentley endowed particles with
a new attribute, called charging status [10]. For two charged particles, an electrostatic reaction is
launched to modulate their velocities. The same authors presented a similar idea in a follow up
work [11]. The big challenge in this kind of method is the difficulty to predefine a suitable threshold as
for the requirement of diversity is different for different problems or different optimization phases.

The third method to increase swarm diversity is based on an adaptive way. According to the
authors of [12,13], the parameters in the velocity and position update mechanism play different roles
during the whole optimization process. At the beginning phase, exploration helps the swarm explore
the searching space, while exploitation occupies a priority position in the later phase of an optimization
process. According to the update mechanism in standard PSO, the values of ω, c1 and c2 are influential
to the weights of exploitation and exploration. Hence, time-varying weights are employed in [12,13].
In [12], the value of ω decreases from 0.9 to 0.4, which changes the focus from exploration to
exploitation. In [13,14], some mathematical functions are empirically established to dynamically
and adaptively adjust parameters during the optimization process. However, the performances of
these proposed algorithms are very sensitive to the adaptive rules which depend much on authors’
experiences. Therefore, it is not easy to apply these methods in real applications.

Hybridization is also an effective way to help integrate the advantages of different meta-heuristics.
To improve PSO’s ability in diversity maintenance, some works are conducted to prevent particles from
searching discovered areas, which is similar to the idea of tabu searching. The prevention methods
including deflecting, stretching, repulsion and so forth [22]. A cooperative strategy is employed to
improve PSO in [23]. In the proposed algorithm, the essence of the algorithm divides the problem
into several subproblems. By solving the sub-problems, final solutions can be integrated by the
sub-solutions. Similar ideas are also investigated in [24].

As a feasible and effective way, the multi-swarm strategy is well applied to PSO. Generally,
there are two kinds of design in multi-swarm strategy. The first one is the niching strategy. By defining
a niche radius, the particles in one niche are considered as similar individuals and only the particles
in the different niche will be selected for information recombination [16]. In the standard niching
strategy, the algorithm’s performance is sensitive to the niche radius [17]. To overcome this problem,
Li proposed a parameter-free method in [15]. The author constructed a localized ring topology instead
of the niche radius. In addition, in [21], the authors proposed a multi-swarm particle swarm optimizer
for large-scale optimization problems. However, the size of each sub-swarm is fixed, which means that
the strategy does not consider the swarm size to dynamically manage exploitation and exploration.
The second method is to assign different tasks to different sub-swarms. In [18], the authors proposed
to regulate population diversity according to predefined value named decreasing rate of the number
of sub-swarms. In [20], the authors defined a frequency to switch exploitation and exploration for
different sub-swarms. In this way, the algorithm can give considerations to convergence speed and
diversity maintenance. In [19], the authors divided the swarm into pairs. By comparing the fitness

50

Mathematics 2019, 7, 521

in pairs, the loser will learn from the winner, which increases the diversity of exemplars. However,
the learning efficiency decreases since the learn may happen between two good particles or two
bad particles.

However, in the above methods, there is still no research focusing on large-scale optimization
problems. To address large-scale optimization problems, there are generally two ways, which are
cooperation co-evolution and balancing of exploration and exploitation. For the first kind of methods,
a cooperative co-evolution (CC) framework is proposed, which divides a whole dimension into several
segments. For the segments, conventional evolutionary algorithms are employed to address them to
access sub-solutions. By integrating the sub-solutions, the final solution will be obtained. The framework
now has been well applied to various kinds of evolutionary algorithms. Cooperative coevolution
differential evolution (DECC), proposed by Omidvar et al., is a series of DE algorithm for large-scale
optimization problems. DECC-DG2 first groups the variables considering the interrelationship between
them and then optimizes the sub-components using DECC [29]. CBCC3 was proposed by Omidvar for
large-scale optimization based on Contribution-Based Cooperative Co-evolution (CBCC). It includes
an exploration phase that is controlled by a random method and an exploitation phase controlled by
a contribution information based mechanism where the contribution information of a given component
is computed based on the last non-zero difference in the objective value of two consecutive iterations [30].
In [31], the authors applied the CC-framework to PSO and obtained satisfactory performance. However,
the CC framework will cost huge computational resources in the sub-space division. In the second way
to address large-scale optimization problems, researchers propose novel operators of exploitation and
exploration. In addition, the balance between the two abilities is also crucial to the final performance.
Cheng and Jin proposed SL-PSO (social learning PSO) i [32]. In the algorithm, the authors proposed
novel ideas in dealing with the selection of poor particles. However, the algorithm’s performance is
sensitive to parameter setting.

To summarize, in the current research, the algorithms either lack parameter tuning during the
optimization process or aggravate a huge burden to computational resources. To address the problems,
in Section 3, we propose an adaptive multi-swarm competition PSO.

3. Adaptive Multi-Swarm Competition PSO

As mentioned in Section 1, the global best position always attracts all particles until it is updated.
When the global best position gets trapped into local optima, it is very difficult for the whole swarm
to get rid of it. Hence, the optimization progress stagnates or a premature convergence occurs.
To overcome this problem, in this paper, we employ an adaptive multi-swarm strategy and propose
a novel swarm optimization algorithm termed adaptive multi-swarm competition PSO (AMCPSO).
From the beginning to the end of the optimization process, we uniformly and randomly divide the
whole swarm into several sub-swarms. In each sub-swarm, the particles compare with each other.
The losers will learn from the winner in the same sub-swarm, while the winners do nothing in the
generation. The number of the winners is equal to the number of sub-swarms and the number is
adaptive to the optimization process. At the beginning stages, a large number of sub-swarms will help
algorithm increase the diversity of exemplars and explore the searching space. With the optimization
process, the number of sub-swarms decreases in the algorithm’s exploitation. On the one hand, for each
generation, there are several exemplars, i.e., winners, for losers’ updating. Even some exemplars
are in local optimal positions, they will not affect the whole swarm. On the other hand, since we
divide the swarm randomly, both winners and losers may be different, which means the exemplars
are not consistent for many generations. In this way, the ability of diversity maintenance for the
whole swarm is improved. Compared with the standard PSO, we abandon the historical information,
e.g., the personal historical best position, etc., which is easier for users in implementations. Inspired
by Arabas and Biedrzycki [27], the quality of mean value has a higher probability to be better than that
of a global best solution. Therefore, we employ the mean position of the whole swarm to attract all
particles. On the one hand, the global information can be achieved in particles update. On the other

51

Mathematics 2019, 7, 521

hand, the mean position generally changes for every generation, which has a large probability to avoid
local optima. For the proposed algorithm, the velocity and position update mechanisms are given
in Equation (3).

vl_i(t + 1) = ωvl_i(t) + r1 ∗ c1(pw(t)− pl_i(t)) + r2 ∗ c2(pmean − pl_i(t)) (3)

pl_i(t + 1) = pl_i(t) + vl_i(t) (4)

where t records the index of generation, i is the index of losers in each sub-swarm, and v and p are
velocity and position, respectively, for each particle. The subscript l means the loser particles, while the
subscript w means the winner particle in the same sub-swarm. pmean is employed as global information
to depict the mean position of the whole swarm. ω, called the inertia coefficient, is used to control
the weight of particle’s own velocity property. c1 and c2 are cognitive coefficient and social coefficient,
respectively. r1 and r2 ∈ [0, 1] are parameters to control the weights of the cognitive component and
social component, respectively. In the proposed algorithm, a number of sub-swarms is involved, which
also defines the number of exemplars in advance. To help algorithm change the focus from exploration
to exploitation, in this paper, we employ an adaptive strategy for the division strategy, which means
that the number of sub-swarms are not consistent, but a varying number from a large number of
sub-swarms to a small number. The number of the sub-swarms is set according to experimental
experience and presented as follows.

m = round
(

gsini − 0.9gsini ∗
(

1− exp
(
− FEs

Max_Gen ∗ Dr

)))
; (5)

where round(Ω) is the symbol to round a real value Ω, gsini is the initial number of sub-swarms,
Max_Gen is maximum generation limit, and Dr is used to control the decreasing rate. A small value
of Dr causes a sharp decreasing for the number of sub-swarms, while a large value of Dr provides
a gentle slope for number decreasing. In Equation (5), the population size of each sub-swarm increases
from 5‰ to 5%. For Equation (5), it provides an adaptive way to set the number of sub-swarms, namely
m. Meanwhile, the number of exemplars is also adaptive. Considering that, for some generations,
the whole population size cannot exact divide m, we randomly select particles with size of the residual
and do nothing for them in the generation, which means at most 5% particles are not involved in
the update. However, in the algorithm’s implementation, we use maximum fitness evaluations as
termination condition to guarantee adequate runs for the algorithm. The pseudo-codes of AMCPSO
are given in Algorithm 1.

Algorithm 1: Pseudo-codes of adaptive multi-swarm particle swarm optimization.
Input: Number of particles ps, parameters omega, c1, c2, Maximum number of fitness

evaluations Max_FEs
Output: The current global best particle

1 Randomly generate a swarm P and evaluate their fitness f .;
2 Loop: Calculate the mean position according to the whole swarm’s positions;
3 Calculate m (the size of each sub-swarm) by Equation (5);
4 Randomly select ps−mod(ps, m) particles for update;
5 In each sub-swarm, compare the particles according to their fitness, and select the local best

particle by Equation (3);
6 Up date FEs;
7 If FEs ≥ Max_FEs, output the current global best particle; Otherwise, goto Loop;

For the proposed algorithm, the analysis on the time complexity is presented as follows. According
to Algorithm 1, the time complexity for the sub-swarm division is O(m), while the calculation of
the mean value in each sub-swarm is also O(m). Since the two operations do not aggravate the

52

Mathematics 2019, 7, 521

burden of computational cost, the main computational cost in the proposed algorithm is the update of
each particle, which is O(mn). It is an inevitable cost in most swarm-based evolutionary optimizers.
Therefore, the whole time cost of the proposed algorithm is O(mn), where m is the swarm size and n is
the search dimensionality.

4. Experiments and Discussions

Experimental Settings

As explained above, large-scale optimization problems demand an algorithm much ability in
balancing of diversity maintenance and convergence. To validate the performance of the proposed
algorithm, we employed a benchmark suite in CEC 2013 on large-scale optimization problems [33].
In the performance comparisons, four popular algorithms were adopted: CBCC3 [30], DECC-dg [24],
DECC-dg2 [29] and SL-PSO [34]. The four algorithms are proposed to address large-scale optimization
problems in the corresponding papers. DECC-dg and DECC-dg2 are two improved DECC algorithms
with differential evolution strategy [24,29]. SL-PSO was proposed by Cheng [34] to address large-scale
optimization problems and achieve competitive performance. For the comparison, we ran each
algorithm 25 times to pursue an average performance. The termination condition for each run was set
by the maximum number of fitness evaluations (FEs) predefined as 3× 106. The parameters of the
peer algorithms were set as the same as in their reported paper. For the proposed algorithm AMCPSO,
we set the parameter as follows. For the gsini, we set the value as 20, which means the number of
sub-swarms increases from 2 to 20. c1 and c2 were set as 1 and 0.001. The performances of the five
algorithms are presented in Table 1.

Table 1. The experimental results of 1000-dimensional IEEE CEC’ 2013 benchmark functions with
fitness evaluations of 3× 106.

Function Quality SLPSO CBCC-3 DECC-dg DECC2 AMCPSO

F1

Mean 3.70 × 10−14 8.65 × 105 2.79 × 106 8.65 × 105 4.55 × 10−2

Std 1.44 × 10−15 2.27 × 104 6.70 × 105 2.27 × 104 4.92 × 10−3

F2

Mean 6.70 × 103 1.41 × 104 1.41 × 104 1.41 × 104 2.51 × 103

Std 4.98 × 101 3.02 × 102 3.03 × 102 3.02 × 102 2.61 × 102

F3

Mean 2.16 × 101 2.06 × 101 2.07 × 101 2.06 × 101 2.15 × 101

Std 1.14 × 10−3 1.69 × 10−3 2.19 × 10−3 1.69 × 10−3 2.16 × 10−3

F4

Mean 1.20 × 1010 3.39 × 107 6.72 × 1010 2.51 × 108 1.12 × 1010

Std 5.54 × 108 3.48 × 106 5.76 × 109 1.89 × 107 1.49 × 109

F5

Mean 7.58 × 105 2.14 × 106 3.13 × 106 2.74 × 106 4.54 × 105

Std 2.14 × 104 8.31 × 104 1.23 × 105 5.66 × 104 3.14 × 104

F6

Mean 1.06 × 106 1.05 × 106 1.06 × 106 1.06 × 106 1.06 × 106

Std 1.64 × 102 6.61 × 102 3.70 × 102 4.50 × 102 2.19 × 102

F7

Mean 1.73 × 107 2.95 × 107 3.45 × 108 8.93 × 107 4.40 × 106

Std 1.49 × 106 5.44 × 106 7.60 × 107 7.16 × 106 6.71 × 105

F8

Mean 2.89 × 1014 6.74 × 1010 1.73 × 1015 1.01 × 1014 9.76 × 1013

Std 1.75 × 1013 2.08 × 109 2.78 × 1014 1.31 × 1013 1.69 × 1013

F9

Mean 4.44 × 107 1.70 × 108 2.79 × 108 3.08 × 108 2.63 × 107

Std 1.47 × 106 6.20 × 106 1.32 × 107 1.39 × 107 2.58 × 106

F10

Mean 9.43 × 107 9.28 × 107 9.43 × 107 9.44 × 107 9.11 × 107

Std 3.99 × 104 1.40 × 105 6.45 × 104 5.82 × 104 6.41 × 104

F11

Mean 9.98 × 109 7.70 × 108 1.26 × 1011 9.93 × 109 4.08 × 108

Std 1.82 × 109 6.80 × 107 2.44 × 1010 3.26 × 108 2.83 × 107

F12

Mean 1.13 × 103 5.81 × 107 5.89 × 107 5.81 × 107 1.60 × 103

Std 2.12 × 101 1.53 × 107 2.75 × 106 1.53 × 106 1.72 × 102

F13

Mean 2.05 × 109 6.03 × 108 1.06 × 1010 6.03 × 108 3.88 × 108

Std 2.13 × 108 2.69 × 107 7.94 × 108 2.69 × 107 4.21 × 107

F14

Mean 1.60 × 1010 1.11 × 109 3.69 × 1010 1.11 × 109 9.36 × 108

Std 1.62 × 109 2.10 × 108 6.58 × 109 2.10 × 108 8.14 × 107

F15

Mean 6.68 × 107 7.11 × 106 6.32 × 106 7.11 × 106 6.27 × 107

Std 1.01 × 106 2.70 × 105 2.69 × 105 2.70 × 105 7.04 × 106

53

Mathematics 2019, 7, 521

In Table 1, “Mean” is the mean performance of 25 runs for each algorithm, while “Std” is the
standard deviation of the algorithms’ performance. The best performance of “Mean” for each algorithm
is marked by bold font. For the 15 benchmark functions, AMCPSO won eight times. For the five
other benchmark functions, AMCPSO also had very competitive performance. Therefore, according
to the comparison results, the proposed algorithm AMCPSO exhibits powerful ability in addressing
large-scale optimization problems, which also demonstrates that the proposed strategy is feasible
and effective to help PSO enhance the ability in balancing diversity maintenance and convergence.
The convergence figures are presented in Figure 1.

(a) F1 (b) F2

(c) F3 (d) F4

(e) F5 (f) F6

Figure 1. Cont.

54

Mathematics 2019, 7, 521

(g) F7 (h) F8

(i) F9 (j) F10

(k) F11 (l) F12

Figure 1. Cont.

55

Mathematics 2019, 7, 521

(m) F13 (n) F14

(o) F15

Figure 1. Convergence profiles of different algorithms obtained on the CEC’2013 test suite with
1000 dimensions.

According to the figures, for many benchmark functions, the final optimization performances of
AMCPSO was better than the performances of the other algorithms, which demonstrates the proposed
algorithm is competitive to address large-scale optimization problems. For some benchmarks, such as
F1, F12, and F15, even though AMCPSO was not the best, its performance kept getting better with
the increase of FES, as shown in Figure 1a,m,p, which demonstrates the algorithm has a competitive
performance in optimization.

As shown in Equation (3), c1 and c2 are employed to balance the abilities of exploration and
exploitation. In this study, we fixed the value of c1 as 1 and conducted experiments on tuning the
value of c2 to investigate the sensitivity. For the value of c2, we tested 0.001, 0.002, 0.005, 0.008 and 0.01,
respectively, and present the results in Table 2. In the table, for the first line, the value of c2 decreased
from 0.01 to 0.001. For other parameter settings, we still employed the same values as in Table 1.
According to the results, there were not significant differences in the algorithm’s performance, which
demonstrates that the value of c2 is not too sensitive to the algorithm’s performance.

56

Mathematics 2019, 7, 521

Table 2. The sensitivity of c2 to AMCPSO’s performance.

Function Quality 0.01 0.008 0.005 0.002 0.001

F1 Mean 5.39 × 10−2 4.83 × 10−2 3.90 × 10−2 3.31 × 10−2 4.55 × 10−2

Std 6.55 × 10−3 3.35 × 10−3 4.49 × 10−3 3.13 × 10−3 6.78 × 10−3

F2 Mean 1.74 × 103 1.51 × 103 2.18 × 103 2.10 × 103 2.51 × 103

Std 5.67 × 102 7.43 × 102 3.92 × 102 6.51 × 102 4.37 × 102

F3 Mean 2.14 × 101 2.15 × 101 2.15 × 101 2.15 × 101 2.15 × 101

Std 1.57 × 10−3 4.31 × 10−3 3.92 × 10−3 6.71 × 10−3 3.92 × 10−3

F4 Mean 1.41 × 1010 1.30 × 1010 1.41 × 1010 1.63 × 1010 1.12 × 1010

Std 6.05 × 109 3.18 × 109 2.77 × 109 4.17 × 109 4.37 × 109

F5 Mean 4.61 × 105 4.62 × 105 4.53 × 105 4.44 × 105 4.54 × 105

Std 2.94 × 104 4.83 × 104 3.17 × 104 2.05 × 104 6.78 × 104

F6 Mean 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106

Std 4.38 × 102 3.81 × 102 2.55 × 102 1.38 × 102 5.97 × 102

F7 Mean 4.98 × 106 3.26 × 106 4.45 × 106 5.46 × 106 4.40 × 106

Std 6.79 × 105 4.45 × 105 4.63 × 105 5.47 × 105 6.18 × 105

F8 Mean 1.31 × 1014 1.47 × 1014 2.01 × 1014 1.39 × 1014 9.76 × 1013

Std 2.76 × 1013 4.97 × 1013 5.51 × 1013 1.62 × 1013 1.17 × 1013

F9 Mean 3.71 × 107 3.68 × 107 3.61 × 107 4.21 × 107 2.63 × 107

Std 3.24 × 106 2.14 × 106 1.31 × 106 6.97 × 106 5.41 × 106

F10 Mean 9.22 × 107 9.23 × 107 9.17 × 107 9.14 × 107 9.11 × 107

Std 8.18 × 104 6.59 × 104 4.37 × 104 2.37 × 104 5.22 × 104

F11 Mean 4.41 × 108 4.33 × 108 2.08 × 109 7.66 × 108 4.08 × 108

Std 5.24 × 107 5.91 × 107 4.39 × 107 2.28 × 107 2.11 × 107

F12 Mean 1.56 × 103 2.07 × 103 1.67 × 103 1.81 × 103 1.60 × 103

Std 2.27 × 102 4.51 × 102 3.41 × 102 3.97 × 102 5.22 × 102

F13 Mean 4.85 × 108 5.27 × 108 3.49 × 108 4.98 × 108 3.88 × 108

Std 3.17 × 107 2.25 × 107 2.94 × 107 8.57 × 107 5.19 × 107

F14 Mean 7.76 × 108 1.43 × 109 2.25 × 109 7.21 × 108 9.36 × 108

Std 2.58 × 107 6.97 × 107 4.55 × 107 3.93 × 107 2.88 × 107

F15 Mean 5.19 × 107 5.98 × 107 6.16 × 107 6.05 × 107 6.27 × 107

Std 2.81 × 106 3.08 × 106 7.01 × 106 4.78 × 106 8.53 × 106

5. Conclusions and Future Work

In this paper, to enhance PSO’s ability in dealing with large-scale optimization problems,
we propose a novel PSO named adaptive multi-swarm competition PSO (AMCPSO), which adaptively
divides a swarm into several sub-swarms. In each sub-swarm, a local winner is selected, while the
local losers will learn from the local winner. In this way, for the whole swarm, not only one position
is selected to attract all others and therefore the diversity of exemplars increases. On the other hand,
with the process of optimization, the number of sub-swarms decreases, which helps the algorithm
adaptively change the swarm’s focus from exploration to exploitation. At the beginning of optimization
process, many sub-swarms are adopted, which makes the algorithm focus on exploration, while the
number of sub-swarms decreases with the optimization process to help the algorithm enhance the
ability in exploitation. By employing benchmark functions in CEC 2013, the performance of the
proposed algorithm AMCPSO was validated and the comparison results demonstrate AMCPSO has
a competitive ability in dealing with large-scale optimization problems.

In our future work, on the one hand, the proposed algorithm’s structure will be investigated on
several different kinds of algorithms [26,35–37] to improve their performances in addressing large-scale
optimization problems. On the other hand, we will apply the proposed algorithm to real applications,

57

Mathematics 2019, 7, 521

such as optimization problems in an industrial network, traffic network, location problems and so
forth [38,39].

Author Contributions: Conceptualization, F.K.; methodology, F.K.; software, F.K.; validation, F.K.; formal
analysis, F.K.; investigation, F.K.; resources, J.J.; data curation, Y.H.; writing—original draft preparation, F.K.;
writing—review and editing, F.K.; visualization, F.K.; supervision, F.K.; project administration, F.K.; funding
acquisition, F.K. and J.J.

Funding: This work was funded by National Key Research and Development Program of China (2018YFB1702300),
the National Natural Science Foundation of China under Grant Nos. 61432017 and 61772199.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International
Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence,
Anchorage, AK, USA, 4–9 May 1998; pp. 69–73.

2. Shi, Y.; Eberhart, R. Fuzzy adaptive particle swarm optimization. In Proceedings of the 2001 Congress on
Evolutionary Computation, Seoul, Korea, 27–30 May 2001; Volume 1, pp. 101–106.

3. Cao, B.; Zhao, J.; Lv, Z.; Liu, X.; Kang, X.; Yang, S. Deployment optimization for 3D industrial wireless sensor
networks based on particle swarm optimizers with distributed parallelism. J. Netw. Comput. Appl. 2018, 103,
225–238. [CrossRef]

4. Wang, L.; Ye, W.; Wang, H.; Fu, X.; Fei, M.; Menhas, M.I. Optimal Node Placement of Industrial Wireless
Sensor Networks Based on Adaptive Mutation Probability Binary Particle Swarm Optimization Algorithm.
Comput. Sci. Inf. Syst. 2012, 9, 1553–1576. [CrossRef]

5. Sun, J.; Xu, W.; Fang, W. A diversity guided quantum behaved particle swarm optimization algorithm.
In Simulated Evolution and Learning; Wang, T.D., Li, X., Chen, S.H., Wang, X., Abbass, H., Iba, H., Chen, G.,
Yao, X., Eds.; Volume 4247 of Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany,
2006; pp. 497–504.

6. Higashi, N.; Iba, H. Particle swarm optimization with Gaussian mutation. In Proceedings of the 2003 IEEE
Swarm Intelligence Symposium, SIS ’03, Indianapolis, IN, USA, 26 April 2003; pp. 72–79.

7. Ling, S.H.; Iu, H.H.C.; Chan, K.Y.; Lam, H.K.; Yeung, B.C.W.; Leung, F.H. Hybrid Particle Swarm
Optimization with Wavelet Mutation and Its Industrial Applications. IEEE Trans. Syst. Man Cybern.
Part B (Cybern.) 2008, 38, 743–763. [CrossRef] [PubMed]

8. Wang, H.; Sun, H.; Li, C.; Rahnamayan, S.; Pan, J.S. Diversity enhanced particle swarm optimization with
neighborhood search. Inf. Sci. 2013, 223, 119–135. [CrossRef]

9. Lovbjerg, M.; Krink, T. Extending particle swarm optimisers with self-organized criticality. In Proceedings
of the 2002 Congress on Evolutionary Computation, CEC ’02, Honolulu, HI, USA, 12–17 May 2002; Volume 2,
pp. 1588–1593.

10. Blackwell, T.M.; Bentley, P.J. Dynamic Search With Charged Swarms. In Proceedings of the Genetic and
Evolutionary Computation Conference, New York, NY, USA, 9–13 July 2002; pp. 19–26.

11. Blackwell, T. Particle swarms and population diversity. Soft Comput. 2005, 9, 793–802. [CrossRef]
12. Zhan, Z.H.; Zhang, J.; Li, Y.; Chung, H.S.H. Adaptive Particle Swarm Optimization. IEEE Trans. Syst. Man

Cybern. Part B Cybern. 2009, 39, 1362–1381. [CrossRef] [PubMed]
13. Hu, M.; Wu, T.; Weir, J.D. An Adaptive Particle Swarm Optimization With Multiple Adaptive Methods.

IEEE Trans. Evol. Comput. 2013, 17, 705–720. [CrossRef]
14. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for

global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [CrossRef]
15. Li, X. Niching Without Niching Parameters: Particle Swarm Optimization Using a Ring Topology. IEEE Trans.

Evol. Comput. 2010, 14, 150–169. [CrossRef]
16. Cioppa, A.D.; Stefano, C.D.; Marcelli, A. Where Are the Niches? Dynamic Fitness Sharing. IEEE Trans.

Evol. Comput. 2007, 11, 453–465. [CrossRef]

58

Mathematics 2019, 7, 521

17. Bird, S.; Li, X. Adaptively Choosing Niching Parameters in a PSO. In Proceedings of the Annual Conference
on Genetic and Evolutionary Computation, Seattle, WA, USA, 8–12 July 2006; pp. 3–10.

18. Li, C.; Yang, S.; Yang, M. An Adaptive Multi-Swarm Optimizer for Dynamic Optimization Problems.
Evol. Comput. 2014, 22, 559–594. [CrossRef]

19. Cheng, R.; Jin, Y. A Competitive Swarm Optimizer for Large Scale Optimization. IEEE Trans. Cybern.
2015, 45, 191–204. [CrossRef] [PubMed]

20. Siarry, P.; Pétrowski, A.; Bessaou, M. A multipopulation genetic algorithm aimed at multimodal optimization.
Adv. Eng. Softw. 2002, 33, 207–213. [CrossRef]

21. Zhao, S.; Liang, J.; Suganthan, P.; Tasgetiren, M. Dynamic multi-swarm particle swarm optimizer with
local search for Large Scale Global Optimization. In Proceedings of the IEEE Congress on Evolutionary
Computation, CEC 2008 (IEEE World Congress on Computational Intelligence), Hong Kong, China,
1–6 June 2008; pp. 3845–3852.

22. Parsopoulos, K.; Vrahatis, M. On the computation of all global minimizers through particle swarm
optimization. IEEE Trans. Evol. Comput. 2004, 8, 211–224. [CrossRef]

23. van den Bergh, F.; Engelbrecht, A. A cooperative approach to particle swarm optimization. IEEE Trans.
Evol. Comput. 2004, 8, 225–239. [CrossRef]

24. Omidvar, M.N.; Li, X.; Mei, Y.; Yao, X. Cooperative Co-Evolution With Differential Grouping for Large Scale
Optimization. IEEE Trans. Evol. Comput. 2014, 18, 378–393. [CrossRef]

25. Spolaor, S.; Tangherloni, A.; Rundo, L.; Nobile, M.S.; Cazzaniga, P. Reboot strategies in particle swarm
optimization and their impact on parameter estimation of biochemical systems. In Proceedings of the 2017
IEEE Conference on Computational Intelligence in Bioinformatics and Computational Biology (CIBCB),
Manchester, UK, 23–25 August 2017; pp. 1–8.

26. Nobile, M.S.; Cazzaniga, P.; Besozzi, D.; Colombo, R.; Mauri, G.; Pasi, G. Fuzzy Self-Tuning PSO:
A settings-free algorithm for global optimization. Swarm Evol. Comput. 2018, 39, 70–85. [CrossRef]

27. Arabas, J.; Biedrzycki, R. Improving Evolutionary Algorithms in a Continuous Domain by Monitoring the
Population Midpoint. IEEE Trans. Evol. Comput. 2017, 21, 807–812. [CrossRef]

28. Jin, Y.; Branke, J. Evolutionary Optimization in Uncertain Environments—A Survey. IEEE Trans. Evol. Comput.
2005, 9, 303–317. [CrossRef]

29. Omidvar, M.N.; Yang, M.; Mei, Y.; Li, X.; Yao, X. DG2: A Faster and More Accurate Differential Grouping for
Large-Scale Black-Box Optimization. IEEE Trans. Evol. Comput. 2017, 21, 929–942. [CrossRef]

30. Omidvar, M.N.; Kazimipour, B.; Li, X.; Yao, X. CBCC3—A Contribution-Based Cooperative Co-evolutionary
Algorithm with Improved Exploration/Exploitation Balance. In Proceedings of the IEEE Congress on
Evolutionary Computation (CEC) Held as part of IEEE World Congress on Computational Intelligence
(IEEE WCCI), Vancouver, BC, Canada, 24–29 July 2016; pp. 3541–3548.

31. Li, X.; Yao, X. Cooperatively Coevolving Particle Swarms for Large Scale Optimization. IEEE Trans.
Evol. Comput. 2012, 16, 210–224.

32. Cheng, J.; Zhang, G.; Neri, F. Enhancing distributed differential evolution with multicultural migration for
global numerical optimization. Inf. Sci. 2013, 247, 72–93. [CrossRef]

33. Li, X.; Tang, K.; Omidvar, M.N.; Yang, Z.; Qin, K. Benchmark Functions for the CEC’2013 Special Session and
Competition on Large-Scale Global Optimization; Technical Report; School of Computer Science and Information
Technology, RMIT University: Melbourne, Australia, 2013.

34. Cheng, R.; Jin, Y. A social learning particle swarm optimization algorithm for scalable optimization. Inf. Sci.
2015, 291, 43–60. [CrossRef]

35. Wang, Y.; Wang, P.; Zhang, J.; Cui, Z.; Cai, X.; Zhang, W.; Chen, J. A Novel Bat Algorithm with Multiple
Strategies Coupling for Numerical Optimization. Mathematics 2019, 7, 135. [CrossRef]

36. Cui, Z.; Zhang, J.; Wang, Y.; Cao, Y.; Cai, X.; Zhang, W.; Chen, J. A pigeon-inspired optimization algorithm
for many-objective optimization problems. Sci. China Inf. Sci. 2019, 62, 070212. [CrossRef]

37. Cai, X.; Gao, X.Z.; Xue, Y. Improved bat algorithm with optimal forage strategy and random disturbance
strategy. Int. J. Bio-Inpired Comput. 2016, 8, 205–214. [CrossRef]

59

Mathematics 2019, 7, 521

38. Cui, Z.; Du, L.; Wang, P.; Cai, X.; Zhang, W. Malicious code detection based on CNNs and multi-objective
algorithm. J. Parallel Distrib. Comput. 2019, 129, 50–58. [CrossRef]

39. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.; Chen, J. Detection of Malicious Code Variants Based on Deep
Learning. IEEE Trans. Ind. Inform. 2018, 14, 3187–3196. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

60

mathematics

Article

An Efficient Memetic Algorithm for the Minimum
Load Coloring Problem

Zhiqiang Zhang 1,2,*, Zhongwen Li 1,2,*, Xiaobing Qiao 3 and Weijun Wang 2

1 Key Laboratory of Pattern Recognition and Intelligent Information Processing, Institutions of Higher
Education of Sichuan Province, Chengdu University, Chengdu 610106, China

2 School of Information Science and Engineering, Chengdu University, Chengdu 610106, China;
wangweijun@cdu.edu.cn

3 College of Teachers, Chengdu University, Chengdu 610106, China; qiaoxiaobing@cdu.edu.cn
* Correspondence: zqzhang@cdu.edu.cn (Z.Z.); lizw@cdu.edu.cn (Z.L.)

Received: 29 March 2019; Accepted: 21 May 2019; Published: 25 May 2019

Abstract: Given a graph G with n vertices and l edges, the load distribution of a coloring q: V→ {red,
blue} is defined as dq = (rq, bq), in which rq is the number of edges with at least one end-vertex colored
red and bq is the number of edges with at least one end-vertex colored blue. The minimum load
coloring problem (MLCP) is to find a coloring q such that the maximum load, lq = 1/l ×max{rq, bq},
is minimized. This problem has been proved to be NP-complete. This paper proposes a memetic
algorithm for MLCP based on an improved K-OPT local search and an evolutionary operation.
Furthermore, a data splitting operation is executed to expand the data amount of global search, and a
disturbance operation is employed to improve the search ability of the algorithm. Experiments are
carried out on the benchmark DIMACS to compare the searching results from memetic algorithm and
the proposed algorithms. The experimental results show that a greater number of best results for the
graphs can be found by the memetic algorithm, which can improve the best known results of MLCP.

Keywords: minimum load coloring; memetic algorithm; evolutionary; local search

1. Introduction

The minimum load coloring problem (MLCP) of the graph, discussed in this paper, was introduced
by Nitin Ahuja et al. [1]. This problem is described as follows: a graph G = (V, E) is given, in which V is
a set of n vertices, and E is a set of l edges. The load of a k-coloring ϕ: V→ {1, 2, 3, . . . ,k} is defined as

1/l× max
i∈{1,2,3...,k}

|{e ∈ E|ϕ−1(i) ∩ e � ∅}|,

the maximum fraction of edges with at least one end-point in color i, where the maximum is taken
over all i ∈ {1,2,3, . . . ,k}. The aim of the minimum load coloring problem is to minimize the load over
all k-colorings.

This paper is dedicated to the NP-complete minimum load coloring problem [1]. We focus on
coloring the vertices with the colors of red and blue. A graph G = (V, E) is given, in which V is a set of
n vertices, and E is a set of l edges. The load distribution of a coloring q: V→ {red, blue} is defined as
dq = (rq, bq), in which rq is the number of edges with at least one end-vertex colored red, and bq is the
number of edges with at least one end-vertex colored blue. The objective of MLCP is to find a coloring
q such that the maximum load, lq = 1/l ×max{rq, bq}, is minimized. MLCP can be applied to solve the
wavelength division multiplexing (WDM) problem of network communication, and build the WDM
network and complex power network [1–3].

This paper proposes an effective memetic algorithm for the minimum load coloring problem,
which relies on four key components. Firstly, an improved K-OPT local search procedure, combining a

Mathematics 2019, 7, 475; doi:10.3390/math7050475 www.mdpi.com/journal/mathematics61

Mathematics 2019, 7, 475

tabu search strategy and a vertices addition strategy, is especially designed for MLCP to explore the
search space and escape from the local optima. Secondly, a data splitting operation is used to expand
the amount of data in the search space, which enables the memetic algorithm to explore in a larger
search space. Thirdly, to find better global results, through randomly changing the current search
patterns a disturbance operation is employed to improve the probability of escaping from the local
optima. Finally, a population evolution mechanism is devised to determine how the better solution is
inserted into the population.

We evaluate the performance of memetic algorithm on 59 well-known graphs from benchmark
DIMACS coloring competitions. The computational results show that the search ability of memetic
algorithm is better than those of simulated annealing algorithm, greedy algorithm, artificial bee colony
algorithm [4] and variable neighborhood search algorithm [5]. In particular, it improves the best known
results of 16 graphs in known literature algorithms.

The paper is organized as follows. Section 2 describes the related work of heuristic algorithms.
Section 3 describes the general framework and the components of memetic algorithm, including the
population initialization, the data splitting operation, the improved K-OPT local search procedure of
individuals, the evolutionary operation and the disturbance operation. Section 4 describes the design
process of simulated annealing algorithm. Section 5 describes the design process of greedy algorithm.
Section 6 describes the experimental results. Section 7 describes the conclusion of the paper.

2. Related Work

In [6,7], the parameterized and approximation algorithms are proposed to solve the load coloring
problem, and theoretically prove their capability in finding the best solution. On the other hand,
considering the theoretical intractability of MLCP, several heuristic algorithms are proposed to find the
best solutions. Heuristic algorithms use rules based on previous experience to solve a combinatorial
optimization problem at the cost of acceptable time and space, and, at the same time, comparatively
better results can be obtained. The heuristic algorithms used here include an artificial bee colony
algorithm [4], a tabu search algorithm [5] and a variable neighborhood search algorithm [5] to
solve MLCP.

Furthermore, to find the best solutions of the other combinatorial optimization problems, several
heuristic algorithms are employed, such as a variable neighborhood search algorithm [8,9], a tabu
search algorithm [10–13], a simulated annealing algorithm [14–17], and a greedy algorithm [18].

Local search algorithm, as an important heuristic algorithm, has been improved and evolved
into many updated forms, such as a variable depth search algorithm [19], a reactive local search
algorithm [20], an iterated local search algorithm [21], and a phased local search algorithm [22].

Memetic algorithm [23,24] is an optimization algorithm which combines population-based global
search and individual-based local heuristic search, whose application is found in solving combinatorial
optimization problems. Memetic algorithm is also proposed to solve the minimum sum coloring
problem of graphs [24].

3. A Memetic Algorithm for MLCP

In this paper, we propose an efficient memetic algorithm to solve MLCP of graphs. In our
algorithm, there are several important design parts.

(1) Construct the population for the global search.
(2) Search heuristically the individuals to find better solutions.
(3) Evolve the population to find better solutions.

Memetic algorithm is summarized in Memetic_D_O_MLCP (Algorithm 1). After population
initialization, the algorithm randomly generates a population X consisting of p individuals (Algorithm 1,
Line 2, Section 3.2). Then, the memetic algorithm repeats a series of generations (limited to a stop
condition) to explore the search space defined by the set of all proper 2-colorings (Section 3.1). For each

62

Mathematics 2019, 7, 475

generation, by data splitting operation, the population X is expanded to population Z with twice as
much as the data amount (Algorithm 1, Line 5, Section 3.3). An improved K- OPT local search is
carried out for each individual Zj (0 ≤ j < |Z|) of the population Z to find the best solution of MLCP
(Algorithm 1, Line 8, Section 3.4). If the improved solution has a better value, it is then used to update
the best solution found so far (Algorithm 1, Lines 9-10). Finally, an evolutionary operation is conducted
in population Z to get a replaced one instead of population X (Algorithm 1, Line 14, Section 3.5).
To further improve the search ability of the algorithm and find better solutions, we add a disturbance
operation into the memetic algorithm (Algorithm 1, Line 15, Section 3.6).

Algorithm 1 Memetic_D_O_MLCP (G, m, p, b, k, X, Z).

Require:
G: G = (V, E), |V| = n, |E| = l
m: initial number of red vertices in graph G
p: number of individuals in the population
b, k: control parameters of disturbance operation
X: set that stores the population
Z: set that stores the extended population of X, |Z| = 2 × |X|
Output: s1, the best solution found by the algorithm
f (s1), the value of the objective function
begin
1 d1← 0, d2← 0; /* control variables of disturbance operation, Section 3.6 */
2 Init_population(X, m, p); /* generates population X consisting of p individuals, Section 3.2 */
3 Wbest ← 0;
4 repeat
5 Z← Data_spliting(X); /* population X is extended to population Z with twice as much the data amount,
Section 3.3 */
6 j← 0;
7 while j < 2×p do
8 W← New_K-OPT_MLCP (G, Zj, T, L);

/* a heuristic search is carried out for individual Zj, (T is tabu table and L is tabu tenure value,
Section 3.4) */
9 if f (W) >Wbest then
10 Wbest ← f (W), s1 ←W;
11 end if
12 j← j + 1;
13 end while
14 X← Evolution_population (Z, X); /* Section 3.5 */
15 (s1, Wbest, d1, d2)←Disturbance_operation(X, b, k, d1, d2, Wbest); /* Section 3.6 */
16 until stop condition is met;
17 return s1, Wbest;
end

3.1. Search Space and Objective Function

In [1], the following description is considered to be MLCP’s equivalent problem. A graph G = (V,
E) is given, in which V is a set of n vertices, and E is a set of l edges. (Vred, Vblue) is a two-color load
coloring bipartition scheme of V, in which Vred is the set of vertices which are red, and Vblue is the set of
vertices which are blue, here V = Vred∪Vblue. The aim is to find the maximum value of min{|Er(Vred)|,
|Er(Vblue)|} from all bipartition schemes of (Vred, Vblue) such that lq can minimize. The maximum value
is the minimum two-color load problem solution of graph G. Here, Er(Vred) is the set of edges with
both end-points in Vred, and Er(Vblue) is the set of edges with both end-points in Vblue.

63

Mathematics 2019, 7, 475

The algorithm conducts a searching within the bipartition scheme (Vred, Vblue), here |Vred|⊂V,
Vblue = V\Vred, when |Er(Vred)| ≈ |Er(Vblue)|, (Vred, Vblue) is the solution of the MLCP found by the
algorithm. The search space S of the algorithm is defined as follows:

S =
{
(Vred, Vblue)

∣∣∣Vred ⊂ V, Vblue = V\Vred
∣∣∣}. (1)

The objective function is as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f ((Vred, Vblue)) = min

{∣∣∣Er(Vred)
∣∣∣, ∣∣∣Er(Vblue)

∣∣∣}
Er(Vred) =

{
(v, w)

∣∣∣∀(v, w) ∈ E, v ∈ Vred, w ∈ Vred
}

Er(Vblue) =
{
(v, w)

∣∣∣∀(v, w) ∈ E, v ∈ Vblue, w ∈ Vblue
} . (2)

We define the best solution of the MLCP as follows:

fb((Vred, Vblue)) = max
1≤ j≤t
{ f ((Vred, Vblue) j)}. (3)

Here, t is the number of all solutions that can be found by the algorithm in graph G, and (Vred,
Vblue)j is the jth solution of the MLCP found by the algorithm.

Suppose a graph G = (V, E) is given in Figure 1. Let |V| = 6, |E| = 8, and then the best solution for
MLCP of graph G is shown in Figure 2, and its best value is 2.

Figure 1. An instance of undirected graph G.

Figure 2. A best solution for MLCP of graph G.

3.2. Initial Population

The algorithm randomly generates population X consisting of p individuals. For the given graph
G = (V, E), in which V is a set containing n vertices, and E is a set containing l edges, m vertices are
chosen at random from V to construct set Vred (m is the initial number of the red vertices); and the
remaining vertices are used to construct set Vblue, that is, |Vred| = m, Vblue = V\Vred. Sets Vred and Vblue
are seen as a bipartition scheme (Vred, Vblue), which is also treated as an individual in population X.
In this way, p individuals are generated at random initially, and population X is thus constructed,
|X| = p.

64

Mathematics 2019, 7, 475

3.3. Data Splitting Operation

To avoid the defect of the local optima, we expand the data amount of population X, hence
we get an expanded scope of data search. We use two data splitting strategies to split a bipartition
scheme into two. Thus, by using the first data splitting strategy each individual Xi (0 ≤ i < p) in
population X generates an individual Z2×i, and by using the second data splitting strategy each
individual Xi (0 ≤ i < p) generates an individual Z2×i+1. By doing this, p individuals in population X
are divided into 2 × p individuals, and the enlarged population Z is constructed (|X| = p, |Z| = 2 × p).
Figure 3 shows the population expansion, where the red arrow indicates the effects of the first data
splitting strategy and the blue arrow the effects of the second data splitting strategy.

Figure 3. Expanding population X to population Z.

The first data splitting strategy of bipartition scheme (Vred, Vblue) is an important part of memetic
algorithm, which consists of five steps.

First step: Degree set Degreered of all vertices in sub-graph G1(Vred) is calculated.
Second step: Find the minimum degree vertex, v, from Degreered. If there is more than one vertex

with the same minimum degree, randomly select a vertex among them.
Third step: Degree set Degreeblue of all vertices in sub-graph G2(Vblue) is calculated.
Fourth step: Find the minimum degree vertex, w, from Degreeblue. If there is more than one vertex

with the same minimum degree, randomly select a vertex among them.
Fifth step: A new bipartition scheme (V′red, V′blue) is generated by exchanging the vertices v and

w in sets Vred and Vblue.
Suppose the number of red vertices is 4 in the given graph G = (V, E), V ={v0,v1, . . . ,v9}.

We obtain a bipartition scheme (Vred, Vblue), as shown in Figure 4a, in which set Vred ={v0,v3,v8,v9},
Vblue ={v1,v2,v4,v5,v6,v7}, where the degree of vertex v9 in set Vred is the smallest, and that of vertex
v4 in set Vblue is the smallest. After exchanging the two vertices, a new bipartition scheme (V′red,
V′blue) is generated. The new bipartition scheme (V′red, V′blue) after splitting is: V′red ={v0,v3,v4,v8},
V′blue ={v1,v2,v5,v6,v7,v9}, as shown in Figure 4b.

Figure 4. Bipartition scheme splitting: (a) bipartition scheme before the splitting; and (b) bipartition
scheme after the splitting.

The second data splitting strategy is described as follows: for a given bipartition scheme (Vred,
Vblue), in which |Vred| = m, Vblue = V\Vred, randomly a vertex v in set Vred is chosen, and a vertex w in
set Vblue is randomly chosen. Then, vertices v and w in set Vred and set Vblue are exchanged to generate
a new bipartition scheme (V”red, V”blue).

65

Mathematics 2019, 7, 475

3.4. Search for the Individuals

Memetic algorithm needs to carry out a heuristic search for each individual in the population by
an effective and improved K-OPT local search algorithm designed.

We first obtain an individual Zj which is a (Vred, Vblue)j, ((Vred)j⊂V, (Vblue)j =V\(Vred)j, 0 ≤ j<|Z|).
The local search algorithm is implemented to add as many selected vertices, acquired through our
vertex adding strategy, as possible in set (Vblue)j to set (Vred)j, until the stop condition set by the
algorithm is met. Thus, a new bipartition scheme (Vred, Vblue)’j is constructed. Generally speaking, in
(Vred, Vblue)’j, |Er((V′red)j)|is approximately equal to |Er((V′blue)j)|. Then, the objective function value f
((Vred, Vblue)’j) is calculated using Equation (2). If f ((Vred, Vblue)’j) > f (s1), the memetic algorithm accepts
the constructed bipartition as the new best solution. The improved K-OPT local search algorithm is
implemented by the New_K-OPT_MLCP (Algorithm 2).

Our vertex adding strategy is described as follows:
We first need to define the following three vectors as the foundation on which the vertex adding

strategy is constructed.

• CCred: The current set of red vertices in graph G.
• PAVred: The vertex set of possible additions, i.e., each vertex is connected to at least one vertex

of CCred.
PAVred =

{
v
∣∣∣v ∈ Vblue,∃w ∈ CCred, (v, w) ∈ E, Vblue = V\CCred

}
. (4)

• GPAVred: The degree set of vertices vi∈PAVred in sub-graph G′(PAVred), where PAVred ⊆ Vblue.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
GPAVred[i] = degreeG′(PAVred)

(vi) =
∣∣∣{a∣∣∣∀a ∈ PAVred, (vi, a) ∈ E

}|
vi ∈ PAVred
0 ≤ i ≤|PAVred|−1

. (5)

To avoid the local optima defect, the vertex adding strategy is employed in two phases: vertex
addition phase (Algorithm 2, Lines 8–12) and vertex deletion phase (Algorithm 2, Lines 14–18).

In the vertex addition phase of CCred, we obtain PAVred from the current CCred, then select a vertex
w from PAVred and move it from Vblue to CCred, and finally update PAVred. The vertex addition phase is
repeatedly executed until PAVred = ∅ or |Er(CCred)| > |Er(Vblue)|.

In the vertex deletion phase of CCred, we select a vertex u from CCred, then delete the vertex u from
CCred, and add it to Vblue. Go back to the vertex addition phase again to continue the execution until
the set ending conditions are met.

The approach to select vertex w is first to obtain a GPAVred in sub-graph G’(PAVred), then to
calculate the vertex selection probability value ρ(wi) of each vertex wi (0 ≤ i < |PAVred|) in PAVred, and
finally to select vertex wi to maximize ρ(wi). If there are more than one vertex with the maximum value
of ρ(wi), randomly select one.

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

maxd = max
wi∈PAVred,0≤i<|PAVred |

(degreeG′(PAVred)
(wi))

ρ(wi) =
maxd+1−GPAVred[i]

maxd+1
wi ∈ PAVred
0 ≤ i <|PAVred|

. (6)

A vertex w is selected according to the following criterion:

f1(w) = max
0≤i<|PAVred |

(ρ(wi)). (7)

We found that the larger the probability value ρ(wi) of vertex wi is, the smaller the degree value of
vertex wi becomes.

66

Mathematics 2019, 7, 475

The approach of vertex u selection is as follows: we assume that (CCred, Vblue)(j) is the bipartition
scheme with no possible additions. We successively take the value of i from the range of 0 – (|CCred|

− 1), and then in turn execute CCred
(j)\{ui} as follows: delete vertex ui from CCred

(j) successively to
generate new bipartition schemes (CC′red, V′blue)i, i.e., (CC′red)i ←CCred

(j)\{ui}, (V′blue)i ←Vblue
(j)∪{ui},

ui∈CCred, 0 ≤ i <|CCred|, and finally obtain Ed((CC′red, V′blue)i).

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ed((CC′red, V′blue)i) =

∣∣∣∣{(x, y)
∣∣∣∀(x, y) ∈ E, x ∈ (CC′red)i, y ∈ (V′blue)i

}
|

(V′blue)i = V\(CC′red)i

0 ≤ i <
∣∣∣CCred

(j)
∣∣∣

. (8)

The maximum value maxdd is found from all the values of Ed, and the vertex selection probability
value ρ2(ui) of vertex ui can be calculated:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

maxdd = max
0≤i<|CCred

(j) |
(Ed((CC′red, V′blue)i))

ρ2(ui) =
maxdd+1−Ed((CC′red,V′blue)i

)

maxdd+1
ui ∈ CCred

(j)

0 ≤ i <
∣∣∣CCred

(j)
∣∣∣

(9)

A vertex u is selected according to the following criterion:

f2(u) = max
ui∈CCred

(j) ,0≤i<|CCred
(j) |
(ρ2(ui)). (10)

We found that the larger the probability value ρ2(ui) of vertex ui is, the smaller the corresponding
Ed ((CC′red, V′blue)i) becomes. If there are more than one vertices with the maximum value of ρ2(ui),
randomly select one.

At each generation, the variable gA stores the value of vertices number successfully added to the
CCred for now, and the variable gmaxA stores the value of vertices number successfully added to the
CCred during the previous generations. If gA > gmaxA, the incumbent CCred has more red vertices than
the previous ones found by the local search algorithm. Then, gmaxA is updated with the value of gA
and the incumbent CCred is stored to the set Abest (Algorithm 2, Line 12). In the vertex addition phase,
the value of gA + 1 replaces that of gA (gA← gA + 1) after a vertex is added. In the vertex deletion
phase, the value of gA − 1 replaces that of gA (gA← gA − 1) after a vertex is deleted.

At the completion of the inner loop statements, when gmaxA > 0, CCred, which has the greatest
number of vertices, is stored in set Abest, then the incumbent CCred is updated with Abest. When
gmaxA = 0, CCred, which has the greatest number of vertices, is stored in set Aprev; if the execution
of the inner loop does not find any new set CCred that has more vertices, Aprev is adopted as CCred
generated by the previous execution of the inner loop and will replace the incumbent CCred (Algorithm 2,
Lines 22–28).

The algorithm’s search efficiency may be reduced because of the roundabout searching
characteristics. To solve this problem, a restricting tabu table is added to the local search algorithm.

The tabu table can be presented by two-dimensional array or one-dimensional array. We adopt
the one-dimensional array T, set the tabu tenure value as L, and store the iteration numbers of running
the local search algorithm into the tabu table. When the algorithm runs reach iteration value c, and if
(c − T[w]) < L or if (c −T[u]) < L, it means vertex w or u has been processed and the vertex should be
re-selected. Otherwise, the current value c is stored in the tabu table, i.e.,T[w]← c or T[u]← c.

67

Mathematics 2019, 7, 475

Algorithm 2 New_K-OPT_MLCP (G, Zj, T, L).

Require:
Zj: the jth individual (Vred, Vblue)j, (Vred)j⊂V, (Vblue)j = V\(Vred)j
T: tabu table
L: tabu tenure value
Output: s2, the solution found by local search algorithm
begin
1 (CCred, Vblue)← (Vred, Vblue)j;
2 according to CCred and Vblue, PAVred and GPAVred are obtained;
3 repeat
4 Aprev← CCred, DA← Aprev, PL←{v0, v1, vn-1}, gA← 0, gmaxA← 0, c← 0;
5 repeat
6 c← c + 1;
7 if |PAVred∩PL| > 0 and |Er(CCred)| < |Er(Vblue)| then
8 select vertex w according to f 1(w), if there are multiple vertices, select a vertex w randomly;
9 if c − T[w] < L then select a non-tabu vertex w according to f 1(w);
10 T[w]← c;
11 CCred ← CCred∪{w}, Vblue ←Vblue\{w}, gA← gA + 1, PL← PL\{w};
12 if gA > gmaxA then gmaxA← gA, Abest← CCred;
13 else
14 select vertex u according to f 2(u), if there are multiple vertices, select a vertex u randomly;
15 if c − T[u] < L then select a non-tabu vertex u according to f 2(u);
16 T[u]← c;
17 CCred ← CCred\{u}, Vblue ← Vblue∪{u}, gA← gA−1, PL← PL\{u};
18 if u∈Aprev then DA← DA\{u};
19 end if
20 based on CCred and Vblue, PAVred and GPAVred are updated;
21 until |DA| = 0 or the cut-off time condition for CPU running is met;
22 if gmaxA > 0 then
23 CCred ← Abest;
24 Vblue ← V\CCred;
25 else
26 CCred ← Aprev;
27 Vblue ← V\CCred;
28 end if
29 until gmaxA ≤ 0 or the cut-off time condition for CPU running is met;
30 (Vred, Vblue)j ← (CCred, Vblue);
31 s2 ← (Vred, Vblue)j;
32 return s2;
end

3.5. Evolutionary Operation of Population

An evolutionary operation in the population X is needed to quickly find the best solution of
MLCP. We sort the individuals Zj (0 ≤ j < 2×p) in population Z in ascending order according to the
calculated value of objective function f * in Equation (11). Then, we replace the individuals X0 –Xp−1 of
population X with the individuals Z0 –Zp−1 to complete the evolutionary operation.

f∗((Vred, Vblue) j) = |{(a, b)|∀(a, b) ∈ E, a ∈ (Vred) j, b ∈ (Vblue) j}|, 0 ≤ j < 2× p. (11)

Evolution operation of the population is represented by Evolution_population (Algorithm 3).

68

Mathematics 2019, 7, 475

Algorithm 3 Evolution_population (Z, X).

Require:
Z: population, |Z| =2 × p
Output: population X
begin
1 j← 0;
2 while j < 2 × p do
3 R[j]← f* ((Vred, Vblue)j);
4 j← j + 1;
5 end while
6 Individuals Z0 –Z2×p −1 of population Z are sorted in ascending order according to the value of set R;
7 (X0–Xp −1)←(Z0–Zp −1);
8 return X;
end

3.6. Disturbance Operation

To further improve the search ability of the algorithm and find better values, we add a disturbance
operation into the memetic algorithm. This disturbance operation is executed k times.

Algorithm 4 Disturbance_operation(X, b, k, d1, d2, Wbest).

Require:
X: set that stores the population
b, k: control parameters of disturbance operation
d1, d2: control variables of disturbance operation
Wbest: variable that stores the value of the objective function f (st), in which st is the current best solution of
MLCP
Output: s1, a better solution found by the local search algorithm

f (s1), the value of the objective function
d1, d2, values of the control variables

begin
1 d1← d1 + 1;
2 if d1 = b then
3 d2← d2 + 1;
4 if d2 ≤ k then
5 if d2 = 1 then
6 randomly choose Xj from X and start disturbance to generate a new X′j;
7 W← New_K-OPT_MLCP (G, X′j, T, L);
8 if f (W) >Wbest then s1 ←W, Wbest ← f (W);
9 t← X′j ;
10 else
11 start disturbance t to generate a new t′ ;
12 W← New_K-OPT_MLCP (G, t′, T, L);
13 if f (W) >Wbest then s1 ←W, Wbest ← f (W);
14 t← t′;
15 end if
16 d1← d1 − 1
17 else
18 d1← 0, d2← 0;
19 end if
20 end if
21 return s1, Wbest, d1, d2;
end

69

Mathematics 2019, 7, 475

When the number of iterations is b, disturbance operation begins and randomly selects an
individual (Vred, Vblue)j (0 ≤ j < |X|) from population X, and chooses at random a vertex from set Vred
and a vertex from set Vblue, then the two vertices are exchanged to generate a new (Vred, Vblue)’. Then,
employ the New_K-OPT_MLCP algorithm to search in (Vred, Vblue)’; if a better solution of MLCP is
found, the memetic algorithm will accept it.

The disturbance operation is represented by Disturbance_operation (Algorithm 4).
In Memetic_D_O_MLCP algorithm, setting the value of b and k will determine the disturbance

operation’s starting condition and the number of times of its execution. In Disturbance_operation
algorithm, Lines 1, 3, 16, and 18 store the modified values of variables d1 and d2, which are the threshold
values needed to start off a new disturbance operation.

4. Simulated Annealing Algorithm

Simulated annealing algorithm, a classical heuristic algorithm to solve combinatorial optimization
problems, starts off from a higher initial temperature. With the decreasing of temperature parameters,
the algorithm can randomly find the global best solution of problems instead of the local optima by
combining the perturbations triggered by the probabilities.

For a given graph G, simulated annealing algorithm finds a coloring bipartition scheme (Vred,
Vblue) of V which maximizes min{|Er(Vred)|, |Er(Vblue)|}. With parameters T0 (initial temperature value),
α (cooling coefficient) and Tend (the end temperature value), first, the algorithm divides the vertex
set V into two sets, i.e., Vred and Vblue (Vred = ∅, Vblue = V) and the initial value of the best solution
of MLCP Cbest is set to 0. Next, a vertex is randomly selected in Vblue and moved from Vblue to Vred;
here, |Vred| = 1, Vblue = V\Vred. Then, the algorithm repeats a series of generations to explore the search
space defined by the set of all 2-colorings. At each generation, a vertex is randomly selected in Vblue
and moved from Vblue to Vred. The additions will take place in the following three forms:

When 2 > |Vred| and 2 ≤ |Vblue|, a vertex is randomly selected in Vblue and moved from Vblue to Vred
to generate a new coloring bipartition scheme (V′red, V′blue) and the new status is accepted.

When 2 > |Vblue| and 2 ≤ |Vred|, a vertex is randomly selected in Vred and moved from Vred to Vblue
to generate a new coloring bipartition scheme (V′red, V′blue) and accepted as the new status.

When 2 ≤ |Vred| and 2 ≤ |Vblue|, a vertex is randomly selected from Vred and one randomly from
Vblue, then the two vertices are exchanged to generate a new coloring bipartition scheme (V′red, V′blue),
only when R1((V′red, V′blue)) ≥ R1((Vred, Vblue)), the scheme is accepted as a new status. Otherwise,
the probability will decide whether to accept it as a new status or not.

Once the new status is accepted, if Cbest < R1 ((V′red, V′blue)), then the bipartition scheme (V′red,
V′blue) is accepted as the best solution of MLCP.

At the end of each generation, the temperature T cools down until T ≤Tend according to T = T × α,
where α∈(0,1). The algorithm runs iteratively as per the above steps until the stop condition is met.

The best solution found by the algorithm is Rb((Vred, Vblue)), i.e.,

⎧⎪⎪⎨⎪⎪⎩
R1((Vred, Vblue) j) = min{|Er((Vred) j)|, |Er((Vblue) j)|}
Rb((Vred, Vblue)) = max

0≤ j<t
{R1((Vred, Vblue) j)} . (12)

Here, t is the number of all solutions that can be found by the simulated annealing algorithm in
graph G, and (Vred, Vblue)j is the jth solution of MLCP.

The simulated annealing algorithm is represented by SA (Algorithm 5).

70

Mathematics 2019, 7, 475

Algorithm 5 SA(G, Vred, Vblue, T0, α, Tend).

Require: G: G = (V, E), |V| = n, |E| = l
Vred: a set of red vertices in graph G
Vblue: a set of blue vertices in graph G
T0: initial temperature value
α: cooling coefficient
Tend: end temperature value
Output: s3, the best solution found by SA algorithm
R1(s3), value of the objective function
begin
1 Cbest ← 0;
2 repeat
3 T← T0;
4 initialize Vred and Vblue, randomly select a vertex in Vblue and moved from Vblue to Vred;
5 while T > Tend do
6 if 2 > |Vred| and 2 ≤ |Vblue| then
7 a vertex is randomly selected in Vblue and moved from Vblue to Vred to generate a new bipartition scheme
(V′red, V′blue);
8 (Vred, Vblue)← (V′red, V′blue);
9 if Cbest < R1((V′red, V′blue)) then Cbest ←R1((V′red, V′blue)), s3 ← (V′red, V′blue);
10 else if 2 > |Vblue| and 2 ≤ |Vred| then
11 a vertex is randomly selected in Vred and moved from Vred to Vblue to generate a new bipartition scheme
(V′red, V′blue);
12 (Vred, Vblue)← (V′red, V′blue);
13 if Cbest < R1 ((V′red, V′blue)) then Cbest ← R1 ((V′red, V′blue)), s3 ← (V′red, V′blue);
14 else if 2 ≤ |Vred| and 2 ≤ |Vblue| then
15 according to (Vred, Vblue), a vertex is randomly selected from Vred and a vertex randomly selected from
Vblue;
16 the two vertices are exchanged to generate a new bipartition scheme (V′red, V′blue);
17 if R1 ((Vred, Vblue)) ≤ R1((V′red, V′blue)) then
18 (Vred, Vblue)← (V′red, V′blue);
19 if Cbest < R1((V′red, V′blue)) then Cbest ← R1((V′red, V′blue)), s3 ← (V′red, V′blue);

20 else if random number in (0, 1) < e
R1((V

′
red ,V

′
blue))−R1((Vred ,Vblue))

T then
21 (Vred, Vblue)← (V′red, V′ blue);
22 end if
23 end if
24 T← T × α;
25 end while
26 until stop condition is met;
27 return s3, Cbest; /*Cbest is the value of the objective function R1(s3) */
end

5. Greedy Algorithm

Greedy algorithm aims at making the optimal choice at each stage with the hope of finding a
global best solution. For a given graph G, greedy algorithm finds a coloring bipartition scheme (Vred,
Vblue) of V which maximizes min{|Er(Vred)|, |Er(Vblue)|}.

When a graph G = (V, E) is given, the algorithm divides vertex set V into two sets, i.e., Vred and
Vblue (Vred = ∅, Vblue = V), and the initial value of the best solution of MLCP Cbest is set to 0. Next,
a vertex is randomly selected in Vblue and moved from Vblue to Vred, here |Vred | = 1, Vblue = V\Vred.
Then, the algorithm repeats a series of generations to explore the search space defined by the set of
all 2-colorings. At each generation, based on sub-graph G′(Vblue), choose a vertex w of the minimum
degree (w∈Vblue); if there are more than one vertex with the same minimum degree, randomly select a

71

Mathematics 2019, 7, 475

vertex among them. Then, add the vertex from Vblue to Vred, that is: Vred← Vred∪{w}, Vblue← Vblue\{w},
thus a new bipartition scheme (V′red, V′blue) is generated, and, when R2((V′red,V′blue)) > Cbest, the
scheme is accepted as the best solution. The generation will be repeated until |Er(Vred)| > |Er(Vblue)|.

The algorithm runs iteratively as per the above steps until the stop condition is met.
The best solution found by the algorithm is Rg((Vred,Vblue)), i.e.,

⎧⎪⎪⎨⎪⎪⎩
R2((Vred, Vblue) j) = min{|Er((Vred) j)|, |Er((Vblue) j)|}
Rg((Vred, Vblue)) = max

0≤ j<t
{R2((Vred, Vblue) j)} . (13)

Here, t is the number of all solutions that can be found by the greedy algorithm in graph G, and
(Vred, Vblue)j is the jth solution of MLCP.

The greedy algorithm is represented by Greedy (Algorithm 6).

Algorithm 6 Greedy (G, Vred, Vblue).

Require: G: G = (V, E), |V| = n, |E| = l
Vred: a set of red vertices in graph G
Vblue: a set of blue vertices in graph G
Output: s4, the best solution found by greedy algorithm
R2(s4), value of the objective function
begin
1 Cbest ←0;
2 repeat
3 Vred ←Ø, Vblue ← V;
4 randomly select a vertex in Vblue and moved from Vblue to Vred;
5 repeat
6 (V’red, V’blue)← (Vred, Vblue);
7 if R2((V’red, V’blue)) > Cbest then s4 ← (V’red, V’blue), Cbest ← R2 ((V’red, V’blue));
8 select a vertex w with the minimum degree from sub-graph G′(Vblue), if there are multiple vertices, select
a vertex w randomly;
9 Vred ← Vred ∪ {w}, Vblue ← Vblue\{w};
10 until |Er(Vred)| > |Er(Vblue)|;
11 until stop condition is met;
12 return s4, Cbest; /* Cbest is the value of the objective function R2 (s4) */
end

6. Experimental Results

All algorithms were programmed in C++, and run on a PC with Intel Pentium(R) G630 processor
2.70 GHz and 4 GB memory under Windows 7 (64 bits), and the test graphs adopted were the
benchmark DIMACS proposed in [5]. We compared the search results by using memetic algorithm,
simulated annealing algorithm, and greedy algorithm. Then, the results of memetic algorithm were
compared with those obtained from using artificial bee colony algorithm [4], tabu search algorithm [5]
and variable neighborhood search algorithm [5].

The first group of experiments was performed to adjust the key parameters and analyze
their influence on Memetic_D_O_MLCP. As is known to all, the most important parameters in
Memetic_D_O_MLCP implementations are the values of p and L, which determine the number of the
individuals of the population and the tabu tenure value during the search process. To find the most
suitable values of p and L for Memetic_D_O_MLCP approach to MLCP, we performed experiments
with different values of p and L. Memetic_D_O_MLCP was run 10 times for each benchmark instance,
and each test lasted 30 min.

The results of experiments are summarized in Table 1, organized as follows: in the first column,
Inst the benchmark instance name is given, containing the vertices set V; and, in the second column,

72

Mathematics 2019, 7, 475

m is the initial number of red vertices in the benchmark graph. For each p∈{4, 12, 20} and L∈{10, 60, 90},
column Best contains the best values of MLCP solution found by the algorithm, while column Avg
represents the average values of MLCP solution found by the algorithm. For each instance, the best
values of Best and Avg are shown in italics. The analysis of the obtained results shows that values of p
and L influence the solution quality. For example, the number of best values of Best is 5 for combination
p = 12 and L = 90; Best 3 for p = 4, L = 90 and p = 20, L = 60; Best 2 for p = 4 and L = 10, p = 4 and
L = 60, p = 12 and L = 60; Best 1 for p = 20 and L = 90; Best 0 for p = 12 and L = 10, p = 20 and L = 10.
Meanwhile, the number of best values of Avg is 2 for combinations p = 12 and L = 90, p = 4 and L = 90;
Avg 1 for p = 4 and L = 10, p = 4 and L = 60, p = 12 and L = 60, p = 20 and L = 10, p = 20 and L = 60,
p = 20 and L = 90.

In Table 1, one observes that, for combination p = 12 and L = 90, the number of instances
where the Memetic_D_O_MLCP achieved the best value for Best and Avg is 5 and 2, respectively.
For all other combinations, these numbers are the biggest. Therefore, we used the combination in all
other experiments.

The second groups of tests compared the search results of Memetic_D_O_MLCP, SA algorithm and
Greedy algorithm, each having been run 20 times for each benchmark instance with the cut-off time of
30 min. In simulated annealing algorithm, the initial temperature T0 is set at 1000, the cooling coefficient
α at 0.9999 and the end temperature Tend at 0.0001. The results of experiments are summarized in Table 2,
organized as follows: in the second column, |V| is the number of vertices; and, in the third column, |E| is
the number of edges. For each instance the best values of Best are shown in italics. Among 59 instances,
the search results of Memetic_D_O_MLCP, SA algorithm and Greedy algorithm were the same in
the instances myciel3.col, myciel4.col, queen5_5.col and queen6_6.col. Memetic_D_O_MLCP and Greedy
algorithm could find equivalent best value of four instances (i.e., queen7_7.col, queen8_8.col, queen8_12.col,
and queen9_9.col). In the remaining 51 instances, Memetic_D_O_MLCP could find the best results of
38 instances (accounting for 75%), and Greedy algorithm could find the best results of 13 instances
(accounting for 25%). The experiments showed that Memetic_D_O_MLCP could find more instances
of best values.

The third group of tests aimed at comparing the search results after each algorithm was run on
four benchmark instances, namely myciel6.col, homer.col, mulsol.i.5.col and inithx.i.1.col, for the first one
100 s. The results that algorithms found were collected at an interval of 10 s. The running time was
regarded as the X coordinate on the axis and the value of MLCP solution as the Y coordinate.

Figure 5 illustrates that Memetic_D_O_MLCP can find the best result at each time node.

73

Mathematics 2019, 7, 475

T
a

b
le

1
.

Ex
pe

ri
m

en
ts

w
it

h
pa

ra
m

et
er

s
p

an
d

L.

In
st

m

p
=

4
p
=

1
2

p
=

2
0

L
=

1
0

L
=

6
0

L
=

9
0

L
=

1
0

L
=

6
0

L
=

9
0

L
=

1
0

L
=

6
0

L
=

9
0

B
es

t
A

vg
B

es
t

A
vg

B
es

t
A

vg
B

es
t

A
vg

B
es

t
A

vg
B

es
t

A
vg

B
es

t
A

vg
B

es
t

A
vg

B
es

t
A

vg

fp
so

l2
.i.

1.
co

l
|V
|/5

30
35

28
44

30
33

28
57

35
82

29
28

30
15

28
40

30
02

28
45

30
29

28
37

30
71

29
29

29
42

27
27

29
98

28
43

fp
so

l2
.i.

2.
co

l
|V
|/5

21
20

19
65

23
75

19
53

21
83

18
60

22
72

19
72

21
76

19
44

24
50

19
69

23
24

20
16

21
69

19
32

23
10

20
38

fp
so

l2
.i.

3.
co

l
|V
|/5

21
41

19
30

23
31

19
31

22
66

20
48

23
33

19
60

23
30

19
30

21
15

19
00

19
81

18
17

23
97

19
86

22
81

19
51

D
SJ

C
12

5.
1.

co
l

|V
|/5

25
5

25
2

25
4

25
2

25
4

25
1

25
4

25
2

25
5

25
2

25
5

25
2

25
4

25
2

25
5

25
3

25
4

25
2

D
SJ

C
12

5.
5.

co
l

|V
|/5

10
81

10
72

10
82

10
67

10
88

10
78

10
84

10
76

10
87

10
80

10
89

10
80

10
84

10
78

10
87

10
72

10
84

10
74

qu
ee

n1
5_

15
.c

ol
|V
|/5

17
16

16
99

17
21

16
78

17
21

16
94

16
93

16
50

17
05

16
92

17
16

16
81

16
59

16
32

17
04

16
38

16
74

16
41

qu
ee

n1
6_

16
.c

ol
|V
|/5

20
90

20
50

20
87

20
49

20
87

20
55

20
40

19
76

20
62

19
94

20
98

20
26

20
36

19
90

20
32

19
95

20
40

19
96

m
ul

so
l.i

.4
.c

ol
|V
|/5

17
04

16
94

17
04

16
98

17
04

16
94

17
01

16
95

17
04

16
96

17
04

16
98

17
00

16
97

17
04

16
97

17
04

16
94

74

Mathematics 2019, 7, 475

Table 2. Test results of the Memetic_D_O_MLCP, SA, and Greedy on benchmark instances.

Inst |V | |E|
Memetic_D_O_MLCP SA Greedy

m Best Avg Best Avg Best Avg

anna.col 138 986 |V|/5 200 198 160 154 131 131
david.col 87 812 |V|/5 158 157 133 130 140 140

DSJC125.1.col 125 736 |V|/5 255 252 222 217 240 238
DSJC125.5.col 125 3891 |V|/5 1091 1083 1025 1021 1075 1067
DSJC125.9.col 125 6961 |V|/5 1798 1789 1761 1756 1776 1772
fpsol2.i.1.col 496 11654 |V|/5 3091 2896 3016 2982 2510 2502
fpsol2.i.2.col 451 8691 |V|/5 2290 2046 2267 2242 1707 1703
fpsol2.i.3.col 425 8688 |V|/5 2387 1996 2291 2247 1664 1664
games120.col 120 1276 |V|/5 288 281 215 209 284 284

homer.col 561 3258 10 662 655 450 441 492 489
huck.col 74 602 |V|/5 130 129 111 109 113 113

inithx.i.1.col 864 18707 10 6644 6153 4861 4773 6167 6050
inithx.i.2.col 645 13979 10 5622 5104 3641 3597 3571 3481
inithx.i.3.col 621 13969 10 5589 4756 3643 3593 3131 3111

jean.col 80 508 |V|/5 111 110 98 95 106 106
latin_square_10.col 900 307350 10 85161 85072 77006 75770 85185 85185

le450_5a.col 450 5714 10 1824 1801 1516 1495 1834 1827
le450_5b.col 450 5734 10 1820 1801 1512 1498 1843 1831
le450_5c.col 450 9803 10 2985 2951 2541 2530 3014 2995
le450_5d.col 450 9757 10 2943 2913 2542 2519 2972 2958
le450_15b.col 450 8169 10 2395 2355 2138 2120 2409 2398
le450_15c.col 450 16680 10 4530 4476 4294 4267 4560 4539
le450_15d.col 450 16750 10 4586 4542 4320 4289 4626 4609
le450_25a.col 450 8260 10 2467 2434 2183 2148 2466 2454
le450_25b.col 450 8263 10 2664 2606 2172 2149 2682 2658
le450_25c.col 450 17343 10 4711 4652 4457 4438 4728 4714
le450_25d.col 450 17425 10 4872 4807 4470 4449 4883 4875
miles250.col 128 774 |V|/5 185 184 145 137 183 183
miles500.col 128 2340 |V|/5 522 522 393 381 518 518
miles750.col 128 4226 |V|/5 870 870 673 638 849 849
miles1000.col 128 6432 |V|/5 1183 1180 954 921 1156 1156
miles1500.col 128 10396 |V|/5 1645 1616 1461 1421 1485 1484
mulsol.i.1.col 197 3925 |V|/5 1697 1690 1193 1152 1624 1624
mulsol.i.2.col 188 3885 |V|/5 1685 1682 1153 1117 1202 1189
mulsol.i.3.col 184 3916 |V|/5 1695 1692 1174 1131 1211 1174
mulsol.i.4.col 185 2946 |V|/5 1704 1701 1172 1134 1218 1195
mulsol.i.5.col 186 3973 |V|/5 1714 1713 1189 1144 1216 1210
myciel3.col 11 20 |V|/5 5 5 5 5 5 5
myciel4.col 23 71 |V|/5 21 21 21 21 21 21
myciel6.col 95 755 |V|/5 233 231 215 212 194 193
myciel7.col 191 2360 |V|/5 723 717 643 634 574 574

queen5_5.col 25 320 |V|/5 46 46 46 46 46 46
queen6_6.col 36 580 |V|/5 91 91 91 88 91 91
queen7_7.col 49 952 |V|/5 148 147 145 141 148 148
queen8_8.col 64 1456 |V|/5 236 232 219 214 236 228
queen8_12.col 96 2736 |V|/5 458 453 400 391 458 458
queen9_9.col 81 2112 |V|/5 340 336 308 304 340 334

queen10_10.col 100 2940 |V|/5 485 479 419 415 468 466
queen11_11.col 121 3960 |V|/5 644 643 563 556 633 633
queen12_12.col 144 5192 |V|/5 866 853 725 717 833 833
queen13_13.col 169 6656 |V|/5 1097 1093 918 909 1067 1067
queen14_14.col 196 8372 |V|/5 1407 1385 1148 1131 1346 1345
queen15_15.col 225 10360 |V|/5 1721 1706 1402 1376 1676 1675
queen16_16.col 256 12640 |V|/5 2107 2075 1668 1652 2051 2048

school1.col 385 19095 10 6633 6553 4951 4886 6644 6644
school1_nsh.col 352 14612 10 5545 5450 3838 3780 5548 5548

zeroin.i.1.col 211 4100 10 1210 1198 1113 1095 924 923
zeroin.i.2.col 211 3541 10 1135 1126 975 959 803 800
zeroin.i.3.col 206 3540 10 1134 1126 981 964 800 799

75

Mathematics 2019, 7, 475

(a) myciel6.col (b) homer.col

(c) mulsol.i.5.col (d) inithx.i.1.col

Figure 5. Running curves of the Memetic_D_O_MLCP, SA and Greedy on benchmark instances.

The fourth group of tests compared the time each algorithm took to find the best results, each
being run 20 times for 32 instances with the cut-off time of 30 min.

The results are summarized in Table 3. Compared with SA algorithm and Greedy algorithm,
it took less time for Memetic_D_O_MLCP to find the best results for the 11 instances (shown in
italics). Accounting for 34% in the total, these 11 instances were: fpsol2.i.2.col, huck.col, mulsol.i.3.col,
mulsol.i.4.col, mulsol.i.5.col, myciel6.col, queen10_10.col, queen11_11.col, queen15_15.col, inithx.i.3.col, and
zeroin.i.2.col. For six instances, namely david.col, DSJC125.9.col, games120.col, miles250.col, miles750.col,
and jean.col, which accounted for 19% in the total, the time spent by Memetic_D_O_MLCP and Greedy
algorithm showed little difference. Additionally, the former found better results than the latter. For the
remaining 15 instances, although the time taken by Memetic_D_O_MLCP was longer than that by
Greedy algorithm, as it consumed more time for executing the operations of data splitting, searching,
evolution and disturbance, the results found by the former were better than those by the latter. Of all
32 instances, comparing with Memetic_D_O_MLCP, SA algorithm spent more time to find the best
results; besides, the Best SA algorithm results were inferior.

The comparison between Memetic_D_O_MLCP and artificial bee colony (ABC) algorithm [4] is
summarized in Table 4. For each instance, the best values of Best are shown in italics. Of all 21 instances
proposed in [4], except that the search results of instances myciel3.col and myciel4.col were equivalent to
that of artificial bee colony algorithm, Memetic_D_O_MLCP found better results (accounting for 90%)
and improved the best-known result of instance myciel5.col.

76

Mathematics 2019, 7, 475

Table 3. Running time of the Memetic_D_O_MLCP, SA and Greedy on benchmark instances.

Inst
Memetic_D_O_MLCP SA Greedy

m Best Avg Time(min) Best Avg Time(min) Best Avg Time(min)

anna.col |V|/5 200 199 5.30 159 150 17.29 131 131 0.09
david.col |V|/5 158 157 0.47 140 130 21.97 140 140 0.02

DSJC125.1.col |V|/5 254 252 27.92 220 214 29.76 239 237 19.24
DSJC125.5.col |V|/5 1086 1078 22.82 1026 1012 28.20 1075 1067 14.07
DSJC125.9.col |V|/5 1797 1785 18.86 1757 1752 14.04 1782 1773 17.81
fpsol2.i.1.col |V|/5 3073 2871 23.52 2984 2966 13.42 2510 2504 4.78
fpsol2.i.2.col |V|/5 2274 1882 17.20 2250 2226 25.58 1707 1706 22.30
games120.col |V|/5 288 280 1.05 216 205 29.74 284 284 0.05

huck.col |V|/5 130 129 0.03 113 109 6.86 113 113 0.09
miles250.col |V|/5 185 184 5.92 140 134 29.67 183 183 4.05
miles500.col |V|/5 522 522 1.11 389 375 25.71 518 518 < 0.01
miles750.col |V|/5 870 870 1.72 644 618 17.17 849 849 0.07
miles1000.col |V|/5 1186 1178 18.53 938 892 24.83 1156 1156 0.22
miles1500.col |V|/5 1619 1613 27.56 1453 1411 15.90 1485 1485 2.36
mulsol.i.1.col |V|/5 1695 1689 20.94 1164 1089 28.06 1624 1624 0.29
mulsol.i.2.col |V|/5 1685 1680 26.63 1157 1065 22.97 1202 1188 8.10
mulsol.i.3.col |V|/5 1693 1687 22.76 1147 1112 23.56 1209 1183 25.14
mulsol.i.4.col |V|/5 1704 1694 25.22 1139 1091 29.25 1218 1186 28.08
mulsol.i.5.col |V|/5 1714 1705 23.77 1165 1093 20.23 1214 1207 28.68

jean.col |V|/5 111 110 0.13 97 93 18.93 106 106 0.02
myciel6.col |V|/5 232 231 20.01 213 211 19.19 194 192 26.07
myciel7.col |V|/5 719 710 18.73 631 624 27.23 574 574 3.68

queen10_10.col |V|/5 485 478 1.42 418 410 10.08 468 466 21.61
queen11_11.col |V|/5 644 643 2.56 554 539 21.94 640 633 12.95
queen12_12.col |V|/5 866 853 5.32 721 703 22.64 833 833 0.07
queen13_13.col |V|/5 1097 1093 25.21 907 884 21.66 1067 1067 2.98
queen15_15.col |V|/5 1697 1675 21.65 1377 1357 29.27 1676 1675 26.07

inithx.i.1.col 10 6622 5982 23.36 4774 4696 11.55 6169 6044 1.45
inithx.i.3.col 10 5362 4123 22.89 3616 3569 9.58 3151 3117 22.93
zeroin.i.1.col 10 1207 1189 12.76 1111 1083 19.77 924 923 5.78
zeroin.i.2.col 10 1131 1124 18.46 967 939 21.43 802 799 26.64
zeroin.i.3.col 10 1131 1125 28.96 959 937 28.32 800 798 10.53

Table 4. Comparison results on Memetic_D_O_MLCP and ABC.

Inst
Memetic_D_O_MLCP ABC

m Best Best

DSJC125.1.col |V|/5 255 209
DSJC125.5.col |V|/5 1091 1005
DSJC125.9.col |V|/5 1798 1746
fpsol2.i.1.col |V|/5 3091 2956
fpsol2.i.2.col |V|/5 2290 2231
fpsol2.i.3.col |V|/5 2387 2207
inithx.i.1.col 10 6644 1295
inithx.i.2.col 10 5622 3574
inithx.i.3.col 10 5589 3548
myciel3.col |V|/5 5 5
myciel4.col |V|/5 21 21
myciel5.col |V|/5 73 68
myciel6.col |V|/5 233 207
myciel7.col |V|/5 723 621
le450_5a.col 10 1824 1475
le450_5b.col 10 1820 1490
le450_5c.col 10 2985 2505
le450_5d.col 10 2943 2493
le450_15b.col 10 2395 2110
le450_15c.col 10 4530 4217
le450_15d.col 10 4586 4227

Furthermore, we compared the search results from Memetic_D_O_MLCP, tabu search (Tabu)
algorithm [5] and variable neighborhood search (VNS) algorithm [5]; the results are shown in Table 5

77

Mathematics 2019, 7, 475

(the algorithms in the literature were run 20 times, each lasting 30 min for each benchmark instance).
Memetic_D_O_MLCP could find the best results of 26 instances (shown in italics), in which the
best results of 11 instances equaled those found by Tabu algorithm. Hence, Memetic_D_O_MLCP
could improve the best-known results of the remaining 15 instances. Besides, of the 53 instances in
Table 5, the best results of 22 instances found by Memetic_D_O_MLCP were better than those by Tabu
algorithm, and the best results of 42 instances found by Memetic_D_O_MLCP were better than that of
VNS algorithm.

Table 5. Comparison results on Memetic_D_O_MLCP, Tabu and VNS.

Inst
Memetic_D_O_MLCP Tabu VNS

m Best Avg Best Avg Best Avg

anna.col |V|/5 200 198 195 182 218 189
david.col |V|/5 158 157 153 142 164 152

DSJC125.1.col |V|/5 255 252 248 238 227 215
DSJC125.5.col |V|/5 1091 1083 1078 1073 1047 1033
DSJC125.9.col |V|/5 1798 1789 1794 1787 1793 1785
games120.col |V|/5 288 281 282 269 192 181

homer.col 10 662 655 651 625 603 541
huck.col |V|/5 130 129 130 126 123 110

inithx.i.1.col 10 6644 6153 7412 6272 6215 5838
inithx.i.2.col 10 5622 5104 5956 5831 4771 4478
inithx.i.3.col 10 5589 4756 5943 5818 4804 4464

jean.col |V|/5 111 110 110 104 110 95
latin_square_10.col 10 85161 85072 76925 76925 77031 76956

le450_5a.col 10 1824 1801 1977 1923 1545 1520
le450_5b.col 10 1820 1801 1969 1923 1550 1522
le450_5c.col 10 2985 2951 3154 3124 2578 2553
le450_5d.col 10 2943 2913 3140 3108 2583 2546
le450_15b.col 10 2395 2355 2795 2719 2338 2268
le450_25b.col 10 2664 2606 2903 2863 2382 2337
le450_25d.col 10 4872 4807 5420 5376 4844 4747
miles250.col |V|/5 185 184 183 172 134 126
miles500.col |V|/5 522 522 502 483 402 367
miles750.col |V|/5 870 870 836 833 708 648
miles1000.col |V|/5 1183 1180 1114 1108 1035 963
miles1500.col |V|/5 1645 1616 1517 1513 1565 1490
mulsol.i.1.col |V|/5 1697 1690 1649 1649 1313 1240
mulsol.i.2.col |V|/5 1685 1682 1685 1668 1319 1211
mulsol.i.3.col |V|/5 1695 1692 1695 1669 1260 1217
mulsol.i.4.col |V|/5 1704 1701 1704 1693 1276 1214
mulsol.i.5.col |V|/5 1714 1713 1697 1686 1296 1233
myciel3.col |V|/5 5 5 5 5 7 7
myciel4.col |V|/5 21 21 21 20 25 24
myciel6.col |V|/5 233 231 231 223 247 237
myciel7.col |V|/5 723 717 714 701 737 711

queen5_5.col |V|/5 46 46 46 45 50 48
queen6_6.col |V|/5 91 91 91 90 86 82
queen7_7.col |V|/5 148 147 148 145 142 136
queen8_8.col |V|/5 236 232 236 233 208 201
queen8_12.col |V|/5 458 453 458 457 380 369
queen9_9.col |V|/5 340 336 336 332 306 293

queen10_10.col |V|/5 485 479 485 483 403 394
queen11_11.col |V|/5 644 643 650 637 546 536
queen12_12.col |V|/5 866 853 866 858 703 689
queen13_13.col |V|/5 1097 1093 1106 1066 910 887
queen14_14.col |V|/5 1407 1385 1407 1403 1127 1101
queen15_15.col |V|/5 1721 1707 1722 1703 1388 1366
queen16_16.col |V|/5 2107 2075 2136 2125 1682 1650

school1.col 10 6633 6553 6975 6752 5628 5398
school1_nsh.col 10 5545 5450 5721 5622 4169 4066

zeroin.i.1.col 10 1210 1198 1185 1166 1454 1358
zeroin.i.2.col 10 1135 1126 1105 1079 1294 1201
zeroin.i.3.col 10 1134 1126 1107 1082 1221 1158

7. Conclusions

In this paper, we propose a memetic algorithm (Memetic_D_O_MLCP) to deal with the minimum
load coloring problem. The algorithm employs an improved K-OPT local search procedure with a

78

Mathematics 2019, 7, 475

combination of data splitting operation, disturbance operation and a population evolutionary operation
to assure the quality of the search results and intensify the searching ability.

We assessed the performance of our algorithm on 59 well-known graphs from the benchmark
DIMACS competitions. The algorithm could find the best results of 46 graphs. Compared with
simulated annealing algorithm and greedy algorithm, which cover the best results for the tested
instances, our algorithm was more competent.

In addition, we investigated the artificial bee colony algorithm, variable neighborhood search
algorithm and tabu search algorithm proposed in the literature. We carried out comparative experiments
between our algorithm and artificial bee colony algorithm using 21 benchmark graphs, and the
experiments showed that the algorithm’s best results of 19 benchmark graphs were better than those
of artificial bee colony algorithm, and the best-known result of one benchmark graph was improved
by our algorithm. More experiments were conducted to compare our algorithm with tabu search
algorithm and variable neighborhood search algorithm, and proved that the best-known results of 15
benchmark graphs were improved by our algorithm.

Finally, we showed that the proposed Memetic_D_O_MLCP approach significantly improved the
classical heuristic search approach for the minimum load coloring problem.

Author Contributions: Writing and methodology, Z.Z.; Software, Z.Z.; Review and editing, Z.L.; Validation, X.Q.;
and Supervision, W.W.

Funding: This research was supported by the Scientific Research Fund of Key Laboratory of Pattern Recognition
and Intelligent Information Processing of Chengdu University (No. MSSB-2018-08), Chengdu Science and
Technology Program (No. 2018-YF05-00731-SN), Sichuan Science and Technology Program (No. 2018GZ0247),
and the Application Fundamental Foundation of Sichuan Provincial Science and Technology Department (No.
2018JY0320).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Ahuja, N.; Baltz, A.; Doerr, B.; Přívětivý, A.; Srivastav, A. On the minimum load coloring problem. J. Discret.
Algorithms 2007, 5, 533–545. [CrossRef]

2. Baldine, I.; Rouskas, G.N. Reconfiguration and dynamic load balancing in broadcast WDM Networks.
Photonic Netw. Commun. J. 1999, 1, 49–64. [CrossRef]

3. Rouskas, G.N.; Thaker, D. Multi-destination communication in broadcast WDM networks: A Survey.
Opt. Netw. 2002, 3, 34–44.

4. Fei, T.; Bo, W.; Jin, W.; Liu, D. Artificial Bee Colony Algorithm for the Minimum Load Coloring Problem.
J. Comput. Theor. Nanosci. 2013, 10, 1968–1971. [CrossRef]

5. Ye, A.; Zhang, Z.; Zhou, X.; Miao, F. Tabu Assisted Local Search for the Minimum Load Coloring Problem.
J. Comput. Theor. Nanosci. 2014, 11, 2476–2480. [CrossRef]

6. Gutin, G.; Jones, M. Parameterized algorithms for load coloring problem. Inf. Process. Lett. 2014, 114, 446–449.
[CrossRef]

7. Barbero, F.; Gutin, G.; Jones, M.; Sheng, B. Parameterized and Approximation Algorithms for the Load
Coloring Problem. Algorithmica 2017, 79, 211–229. [CrossRef]

8. Hansen, P.; Mladenović, N.; Urošević, D. Variable neighborhood search for the maximum clique. Discret.
Appl. Math. 2004, 145, 117–125. [CrossRef]

9. Dražić, Z.; Čangalović, M.; Kovačević-Vujčić, V. A metaheuristic approach to the dominating tree problem.
Optim. Lett. 2017, 11, 1155–1167. [CrossRef]

10. Fadlaoui, K.; Galinier, P. A tabu search algorithm for the covering design problem. J. Heuristics 2011, 17,
659–674. [CrossRef]

11. Li, X.; Yue, C.; Aneja, Y.P.; Chen, S.; Cui, Y. An Iterated Tabu Search Metaheuristic for the Regenerator
Location Problem. Appl. Soft Comput. 2018, 70, 182–194. [CrossRef]

12. Ho, S.C. An iterated tabu search heuristic for the Single Source Capacitated Facility Location Problem.
Appl. Soft Comput. 2015, 27, 169–178. [CrossRef]

79

Mathematics 2019, 7, 475

13. Palubeckis, G.; Ostreika, A.; Rubliauskas, D. Maximally diverse grouping: An iterated tabu search approach.
J. Oper. Res. Soc. 2015, 66, 579–592. [CrossRef]

14. Tang, Z.; Feng, Q.; Zhong, P. Nonuniform Neighborhood Sampling based Simulated Annealing for the
Directed Feedback Vertex Set Problem. IEEE Access 2017, 5, 12353–12363. [CrossRef]

15. Palubeckis, G. A variable neighborhood search and simulated annealing hybrid for the profile minimization
problem. Comput. Oper. Res. 2017, 87, 83–97. [CrossRef]

16. Zhao, D.; Shu, Z. A Simulated Annealing Algorithm with Effective Local Search for Solving the Sum Coloring
Problem. J. Comput. Theor. Nanosci. 2016, 13, 945–949. [CrossRef]

17. Li, X.; Li, S.-J.; Li, H. Simulated annealing with large-neighborhood search for two-echelon location routing
problem. Chin. J. Eng. 2017, 39, 953–961.

18. Parekh, A.K. Analysis of a greedy heuristic for finding small dominating sets in graphs. Inf. Process. Lett.
1991, 39, 237–240. [CrossRef]

19. Katayama, K.; Hamamoto, A.; Narihisa, H. An effective local search for the maximum clique problem.
Inf. Process. Lett. 2005, 95, 503–511. [CrossRef]

20. Battiti, R.; Protasi, M. Reactive local search for maximum clique. Algorithmica 2001, 29, 610–637. [CrossRef]
21. Xu, J.; Wu, C.C.; Yin, Y.; Lin, W.C. An iterated local search for the multi-objective permutation flowshop

scheduling problem with sequence-dependent setup times. Appl. Soft Comput. 2017, 52, 39–47. [CrossRef]
22. Pullan, W. Phased local search for the maximum clique problem. J. Comb. Optim. 2006, 12, 303–323.

[CrossRef]
23. Moscato, P.; Cotta, C. A gentle introduction to memetic algorithms. In Handbook of Metaheuristics;

International series in operations research and management science; Kluwer Academic Publishers: Dordrecht,
The Netherlands, 2003; Volume 57, pp. 105–144, Chapter 5.

24. Jin, Y.; Hao, J.K.; Hamiez, J.P. A memetic algorithm for the Minimum Sum Coloring Problem. Comput. Oper.
Res. 2014, 43, 318–327. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

80

mathematics

Article

An Entropy-Assisted Particle Swarm Optimizer for
Large-Scale Optimization Problem

Weian Guo 1,2,*, Lei Zhu 3,*, Lei Wang 4, Qidi Wu 4 and Fanrong Kong 5

1 Key Laboratory of Intelligent Computing & Signal Processing (Ministry of Education), Anhui University,
Hefei 230039, China

2 Sino-German College of Applied Sciences, Tongji University, Shanghai 201804, China
3 Key Lab of Information Network Security Ministry of Public Security, Shanghai 201112, China
4 School of Electronics and Information Engineering, Tongji University, Shanghai 201804, China;

wanglei@tongji.edu.cn (L.W.); wuqidi@tongji.edu.cn (Q.W.)
5 School of Software Engineering, Tongji University, Shanghai 201804, China; ahshicr@163.com
* Correspondence: guoweian@163.com (W.G.); zhulei_shanghai@163.com or zhulei@stars.org.cn (L.Z.)

Received: 7 April 2019; Accepted: 5 May 2019; Published: 9 May 2019

Abstract: Diversity maintenance is crucial for particle swarm optimizer’s (PSO) performance.
However, the update mechanism for particles in the conventional PSO is poor in the performance
of diversity maintenance, which usually results in a premature convergence or a stagnation of
exploration in the searching space. To help particle swarm optimization enhance the ability in
diversity maintenance, many works have proposed to adjust the distances among particles. However,
such operators will result in a situation where the diversity maintenance and fitness evaluation are
conducted in the same distance-based space. Therefore, it also brings a new challenge in trade-off
between convergence speed and diversity preserving. In this paper, a novel PSO is proposed
that employs competitive strategy and entropy measurement to manage convergence operator
and diversity maintenance respectively. The proposed algorithm was applied to the large-scale
optimization benchmark suite on CEC 2013 and the results demonstrate the proposed algorithm is
feasible and competitive to address large scale optimization problems.

Keywords: diversity maintenance; particle swarm optimizer; entropy; large scale optimization

1. Introduction

Swarm intelligence plays a very active role in optimization areas. As a powerful tool in swarm
optimizers, particles swarm optimizer (PSO) has been widely and successfully applied to many
different areas, including electronics [1], communication technique [2], energy forecasting [3], job-shop
scheduling [4], economic dispatch problems [5], and many others [6]. In the design PSO, each particle
has two properties that are velocity and position, respectively. For each generation in the algorithm,
particles’ properties update according to the mechanisms presented in Equations (1) and (2).

Vi(t + 1) = ωVi(t) + c1R1(Pi,pbest(t)− Pi(t))

+ c2R2(Pgbest(t)− Pi(t)) (1)

Pi(t + 1) = Pi(t) + Vi(t + 1) (2)

where Vi(t) and Pi(t) are used to represent the velocity and position of the ith particle in the tth
generation. ω ∈ [0, 1] is an inertia weight and c1, c2 ∈ [0, 1] are acceleration coefficients. R1, R2 ∈ [0, 1]n

are two random vectors, where n is the dimension of the problem. Pi,pbest(t) is the best position where
the ith particle ever arrived, while Pgbest is the current global best position found by the whole swarm
so far.

Mathematics 2019, 7, 414; doi:10.3390/math7050414 www.mdpi.com/journal/mathematics81

Mathematics 2019, 7, 414

According to the update mechanism of PSO, the current global best particle Pgbest attracts the
whole swarm. However, if Pgbest is a local optimal position, it is very difficult for the whole swarm to
get rid of it. Therefore, for PSO, it is a notorious problem that the algorithm lacks competitive ability in
diversity maintenance, which usually causes a premature convergence or a stagnation in convergence.
To overcome this issue, many works are proposed in current decades, which are presented in Section 2
in detail. However, since diversity maintenance and fitness evaluation are conducted in the same
distance-based space, it is difficult to distinguish the role of an operator in exploration and exploitation,
respectively. It is also a big challenge to explicitly balance the two abilities. Hence, in current research,
the proposed methods usually encounter problems, such as structure design, parameter tuning and so
on. To overcome the problem, in this paper, on one the hand, we propose a novel method to maintain
swarm diversity by an entropy measurement, while, on the other hand, a competitive strategy is
employed for swarm convergence. Since entropy is a frequency measurement, while competitive
strategy is based on the Euclidean space, the proposed method eliminates the coupling in traditional
way to balance exploration and exploitation.

The rest of this paper is organized as follows. In Section 2, the related work to enhance PSO’s
ability in diversity maintenance is introduced. In Section 3, we propose a novel algorithm named
entropy-assisted PSO, which considers convergence and diversity maintenance simultaneously and
independently. The experiments on the proposed algorithm are presented in Section 4. We also select
several peer algorithms in the comparisons to validate the optimization ability. The conclusions and
future works are proposed in Section 5.

2. Related Work

Considering that the standard PSO has the weakness in diversity maintenance, many researchers
focused on this topic to improve PSO. By mimicking genetic algorithms, mutation operators are adopted
in PSO’s design. In [7–9], the authors applied different kinds of mutation operators including Gaussian
mutation operator, wavelet mutation operator and so forth to swarm optimizers. In this way, the
elements in a particle will be changed according to probabilities and therefore the particle’s position
changes. However, the change will causes a break down of the convergence process, which is harmful
to algorithm’s performance. To address the issue, some researchers predefined a threshold to activate
mutation operator, which means that mutation operator does not always work, but only happens when
the swarm diversity worsens. In [10], a distance-based limit is predefined to activate mutation operator
so that the method preserves swarm diversity. A similar idea is adopted in [9], where a Gauss mutation
operator is employed. However, as mentioned in [11], for the design of mutation operator, it is difficult to
well preset a suitable mutation rate. A large value of mutation rate will result in a loss for the swarm in
convergence, while a small value of mutation rate is helpless to preserve swarm diversity.

Besides mutation operator, several other strategies will be activated when the swarm diversity is
worse than a predefined limit. Since many distance-indicators, such variance of particles’ positions,
are employed to evaluate swarm diversity, a natural idea is to increase the distances among particles.
In [12], the authors defined a criticality to evaluate the current state of swarm diversity is suitable or not.
A crowded swarm has a high value of criticality, while a sparse swarm’s criticality is small. A relocating
strategy will be activated to disperse the swarm if the criticality is larger than a preset limit. Inspired
from the electrostatics, in [13,14], the authors endowed particles with a new property named charging
status. For any two charged particles, an electrostatic reaction is launched to regulate their velocities
and therefore the charged particles will not be too close. Nevertheless, in the threshold-based design,
it is a big challenge to preset the suitable threshold for different optimization problems. In addition,
even in one optimization process, the weights of exploitation and exploration are different, it is very
difficult to suitably regulate the threshold.

To avoid presetting a threshold, many researchers proposed adaptive way to maintain swarm
diversity. The focus is on the parameters setting in PSO’s update mechanism. For PSO, there are three
components involved in velocity update. The first is inertia component which plays the role to retain

82

Mathematics 2019, 7, 414

each particle’s own property [15,16]. As shown in Equation (1), the value of ω is used to control the
weight of this component. A large value of ω helps swarm explore the searching space, while a small
value of ω assists a swarm on the exploitation. To help a swarm shift the role from exploration to
exploitation, an adaptive strategy is proposed in [15]; by the authors’ experience, the value of omega
decreasing from 0.9 to 0.4 is helpful for a swarm to properly explore and exploit the searching space.
For the cognitive component and social component, which are the second term and third term in
Equation (1), they focused more on exploration and exploitation, respectively. To provide an adaptive
way to tune their weights, Hu et al constructed several mathematical functions empirically [16,17],
which can dynamically regulate the weights of the two components. Besides parameter setting,
researchers also provided novel structures for swarm searching. A common way is multi-swarm
strategy, which means a whole swarm is divided into several sub-swarms. Each sub-swarm has
different roles. On the one hand, to increase the diversity of exemplars, niching strategies are proposed.
The particles in the same niche are considered as similar ones, and no information sharing occurs
between similar particles. In this way, the searching efficiency is improved. However, the strategy
provides a sensitive parameter, e.g. niching radius, in algorithm design. To address this problem, Li
used a localized ring topology to propose a parameter-free niching strategy, which improves algorithm
design [18]. On the other hand, in multi-swarm strategy, sub-swarms have different tasks. In [19], the
authors defined a frequency to switch exploitation and exploration for different sub-swarms, which
assists the whole swarm converge and maintain diversity in different optimization phases.

However, in the current research, the diversity measurement and management are conducted
in distance-based space, where fitness evaluations are also done. In this way, both particles’ quality
evaluation and diversity assessment have a heavy coupling. It is very hard to tell the focus on
exploitation and exploration of a learning operator. Hence, the algorithms’ performances are very
sensitive to the design of algorithm’s structure and the parameters tuning, which brings a big
challenge for users’ implementation. To address the issues, in this paper, the contributions are listed
as follows. First, we propose a novel way to measure population diversity by entropy, which is from
the view of frequency. Second, based on the maximum entropy principle, we propose a novel idea
in diversity management. In this way, the exploitation and exploration are conducted independently
and simultaneously, which eliminates the coupling the convergence and diversity maintenance and
provides a flexible algorithm’s structure for users in real implementations.

3. Algorithm

Iin traditional PSO, both diversity maintenance operator and fitness evaluation operator are
conducted in distance-based measurement space. This will result in a heavy coupling in particles’
update for exploitation and exploration, which brings a big challenge in balance the weights of the two
abilities. To overcome this problem, in this paper, we propose a novel idea to improve PSO which is
termed entropy-assisted particle swarm optimization (EAPSO). In the proposed algorithm, we consider
both diversity maintenance and fitness evaluation independently and simultaneously. Diversity
maintenance and fitness evaluation are conducted by frequency-based space and distance-based space,
respectively. To reduce the computation load in large scale optimization problem, in this paper, we only
consider the phonotypic diversity, which is depicted by fitness domain, rather than genetic diversity.
In each generation, the fitness domain is divided into several segments. We account the number of
particles in each segment, as shown in Figure 1.

Figure 1. The illustration for the entropy diversity measurement.

83

Mathematics 2019, 7, 414

The maximum fitness and minimal fitness are set as the fitness landscape boundaries. For the
landscape, it is uniformly divided into several segments. For each segment, we account for the number
of particles, namely number of fitness values. For the entropy calculation, we use the following
formulas, which are inspired by Shannon entropy.

H = −
m

∑
i

pi log pi (3)

where H is used to depict the entropy of a swarm and pi is the probability that fitness values are
located in the ith segment, which can be obtained by Equation (4).

pi =
numi

m
(4)

where m is the swarm size, and numi is the number of fitness values that appear in the ith segment.
Inspired by the maximum entropy principle, the value of H is maximized if and only if pi = pj, where
i, j ∈ [1, n]. Hence, to gain a large value of entropy, the fitness values are supposed to be distributed
uniformly in all segments. To pursue this goal, we define a novel measurement to select global best
particle, which considers fitness and entropy simultaneously. All particles are evaluated by Equation (5).

Qi = α f itnessrank + βentropyrank (5)

where f itnessrank is the fitness value rank of a particle, while entropyrank is the entropy value of a
particle. α and β are employed to manage the weights of the two ranks. However, in real applications,
the tuning on two parameters will increase the difficulty. Considering that the two parameters are
used to adjust the weights of exploration and exploitation respectively, in real applications, we fix
the value of one of them, while tuning the other one. In this paper, we set the weight of β as 1, and
therefore, by regulating the value of α, the weights of exploration and exploitation can be adjusted.
To calculate the value of f itnessrank, all particles are ranked according to their fitness values. For a
particle’s entropyrank, it is defined as the segment rank where the particle is. A segment has a top rank
if there is few particles in the segment, while a segment ranks behind if there are crowded particles in
the segment. According to Equation (5), a small value of Qi means a good performance of particle i.

In the proposed algorithm, we propose a novel learning mechanism as shown in Equation (6). We
randomly and uniformly divide a swarm into several groups. Namely, the numbers of particles in each
group are equal. The particle with high quality of Q in a group is considered as an exemplar, which
means that the exemplars are selected according to both fitness evaluation and entropy selection. In
this paper, we abandon the historical information, but only use the information of the current swarm,
which reduces the spacing complexity of the algorithm. The update mechanism of the proposed
algorithm is given in Equation (6).

Vi(t + 1) = ωVi(t)

+ r1 ∗ c1 ∗ (Plw(t)− Pll(t))

+ r2 ∗ c2 ∗ (Pg − Pll(t)) (6)

Pll(t + 1) = Pll(t) + Vi(t + 1) (7)

where Vi is the velocity of the ith particle, ω is the inertia parameter, Plw is the position of the local
winner in a group, Plw is the position of local loser in the same group, Pg is the current best position
found, c1 and c2 are the cognitive coefficient and social coefficient respectively, r1 and r2 are random
values that belong to [0, 1], and t is used to present the index of generation. On the one hand, the
fitness is evaluated according to the objective function. On the other hand, the divergence situation
of a particle is evaluated by the entropy measurement. By assigning weights to the divergence and

84

Mathematics 2019, 7, 414

convergence, the update mechanism involves both exploration and exploitation. The pseudo-codes of
the proposed algorithms are given in Algorithm 1.

Algorithm 1: Pseudo-codes of entropy-assisted PSO.
Input: Swarm size n, Group size g, Number of segments m, Weight value α

Output: The current global best particle
1 Loop 1: Evaluate the fitness for all particles, and for the ith particle, its fitness is fi;
2 Set the maximum value and minimal value of fitness as fmax and fmin respectively;
3 Divide the interval [fmin, fmax] into m segments;
4 Calculate the number of fitness values in each segment, for the ith segment, the number of

fitness values is recorded as numi;
5 Sort the number of fitness values, and record the fitness rank f ri for each particle;
6 Sort the segments according to the number of fitness values, and record the segment rank sri

for each particle;
7 Evaluate each particle’ quality Q by Equation (5);
8 Divide the swarm into g groups, and compare the particles by their performances Q;
9 Select the global best particle according to Q;

10 Update particles according to Equation (6);
11 If the termination condition is satisfied, output the current global best particle; Otherwise, goto

Loop 1;

In the proposed algorithm, for each particle, it has two exemplars, which are local best exemplar and
global best particle respectively. The ability to maintain diversity is improved from two aspects. First,
in the evaluation of particles, we consider both fitness and diversity by objective function and entropy
respectively. Second, we divide a swarm into several sub-swarms, the number of local best exemplars
are equal to the number of sub-swarms. In this way, even some exemplars are located in local optimal
positions, and they will not affect the whole swarm so that the diversity of exemplars is maintained.
Finally, in this paper, the value of α in Equation (5) provides an explicit way to manage the weights of
exploration ability and exploitation ability and therefore eliminate the coupling of the two abilities.

4. Experiments and Discussions

We applied the proposed algorithm to large scale optimization problems (LSOPs). In general,
LSOPs have hundreds or thousands of variables. For meta-heuristic algorithms, they usually suffer
from “the curse of dimensionality”, which means the performance deteriorates dramatically as the
problem dimension increases [20]. Due to a large number of variables, the searching space is complex,
which brings challenges for meta-heuristic algorithms. First, the searching space is huge and wide,
which demands of a high searching efficiency [21,22]. Second, the large scale causes capacious attraction
domains of local optimum and exacerbates the difficulty for algorithms to get rid of local optimal
positions [23]. Hence, in the optimization process, both convergence ability and diversity maintenance
of a swarm are crucial to algorithm’s performance. We employed LSOPs in CEC 2013 as benchmark
suits to test the proposed algorithm. The details of the benchmarks are listed in [24]. In comparisons,
several peer algorithms, including DECC-dg (Cooperative Co-Evolution with Differential Grouping),
MMOCC(Multimodal optimization enhanced cooperative coevolutio), SLPSO (Social Learning Particle
Swarm Optimization), and CSO (Competitive Swarm Optimizer), were selected. DECC-dg is an
improved version of DECC, which is reported in [25]. CSO was proposed by Cheng and Jin, which
exhibits a powerful ability in dealing with the large scale optimization problems of IEEE CEC 2008 [21].
SLPSO was proposed by the same authors in [22], where a social learning concept is employed. For
MMOCC, which is currently proposed by Peng etc, which adopts the idea of CC framework and the
techniques of multi-modular optimization [26].

85

Mathematics 2019, 7, 414

For each algorithm, we present a mean performance of 25 independent runs. The termination
condition was limited by the maximum number of Fitness Evaluations (FEs), i.e., 3× 106, as recommended
in [24]. For EA-PSO, the population size was 1200. The reasons to employ a large size of population
are presented as follows: First, a large size of population enhances the parallel computation ability for
the algorithm. Second, the grouping strategy will be more efficient when a large size of population is
employed. If the population size is too small, the size of groups will also be small and therefore the
learning efficiency in each group decreases. Third, in EA-PSO, the diversity management is conducted by
entropy control, which is a frequency based approach. As mentioned in [27], a large population size is
recommended when using FBMs. Fourth, a large population size is helpful to avoid empty segments.
Although a large size of population was employed, we used the number of fitness evaluations (FEs)
to limit the computational resources in comparisons to guarantee a fair comparison. The number of
intervals (m) was 30. The group size and α were set as 20 and 0.1, respectively. The experimental results
are presented in Table 1. The best results of mean performance for each benchmark function are marked
by bold font. To provide a statistical analysis, the p values were obtained by Wilcoxon signed ranks test.
According to the statistical analysis, most of the p values were smaller than 0.05, which demonstrates
the differences were effective. However, for benchmark F6, the comparisons “EA-PSO vs. CSO” and
“EA-PSO vs. DECC-DG”, the p values were larger than 0.05, which means that there was no significant
differences between the algorithms’ performance for the benchmark. The same was found for “EA-PSO
vs. MMO-CC” on benchmark F8, “EA-PSO vs. SLPSO” on benchmark F12.

According to Table 1, EA-PSO outperformed the other algorithms for 10 benchmark functions.
For F2, F4, F12, and F13, EA-PSO took the second or third ranking in the comparisons. The comparison
results demonstrate that the proposed algorithm is very competitive to address large scale optimization
problems. We present the convergence profiles of different algorithms in Figure 2.

Table 1. The experimental results of 1000-dimensional IEEE CEC’ 2013 benchmark functions with
fitness evaluations of 3 × 106. The best performance is marked by bold font in each line.

Function Quality CSO SLPSO DECC-DG MMO-CC EA-PSO

F1

mean 3.68 × 10−17 3.70 × 10−14 2.79 × 106 4.82 × 10−20 3.53 × 10−16

std 3.70 × 10−19 1.44 × 10−15 6.70 × 105 1.30 × 10−21 1.14 × 104

p-value 1.22 × 10−18 2.31 × 10−18 3.40 × 10−4 9.76 × 10−21 -

F2

mean 7.08 × 102 6.70 × 103 1.41 × 104 1.51 × 103 1.45 × 103

std 7.04 × 100 4.98 × 101 3.03 × 102 8.43 × 100 4.21 × 101

p-value 1.57 × 10−5 9.70 × 10−27 9.57 × 10−27 4.85 × 10−24 -

F3

mean 2.16 × 101 2.16 × 101 2.07 × 101 2.06 × 101 2.15 × 101

std 1.39 × 10−3 1.14 × 10−3 2.19 × 10−3 2.36 × 10−3 2.26 × 10−3

p-value 1.41 × 10−5 2.01 × 10−2 1.44 × 10−36 1.53 × 10−36 -

F4

mean 1.14 × 1010 1.20 × 1010 6.72 × 1010 5.15 × 1011 4.36 × 109

std 2.66 × 108 5.54 × 108 5.76 × 109 9.71 × 1010 7.72 × 108

p-value 7.92 × 10−12 4.94 × 10−12 6.55 × 10−11 2.57 × 10−11 -

F5

mean 7.44 × 105 7.58 × 105 3.13 × 106 2.42 × 106 6.68 × 105

std 2.49 × 104 2.14 × 104 1.23 × 105 1.14 × 105 3.57 × 105

p-value 7.57E-09 7.43E-09 3.92 × 10−15 5.48 × 10−15 -

F6

mean 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106 1.05 × 106

std 1.90 × 102 1.64 × 102 3.70 × 102 6.41 × 102 4.91 × 102

p-value 1.71 × 10−1 7.06 × 10−3 3.18 × 10−1 2.70 × 10−3 -

F7

mean 8.19 × 106 1.73 × 107 3.45 × 108 1.28 × 1010 1.43 × 106

std 4.85 × 105 1.49 × 106 7.60 × 107 1.07 × 109 4.87 × 106

p-value 7.06 × 10−14 3.18 × 10−11 2.76 × 10−4 4.61 × 10−12 -

F8

mean 3.14 × 1014 2.89 × 1014 1.73 × 1015 1.54 × 1014 1.47 × 1014

std 1.09 × 1013 1.75 × 1013 2.78 × 1014 4.45 × 1013 6.17 × 1012

p-value 9.71 × 10−15 8.23 × 10−11 3.17 × 10−6 9.50 × 10−1 -

F9

mean 4.42 × 107 4.44 × 107 2.79 × 108 1.76 × 108 5.05 × 107

std 1.59 × 106 1.47 × 106 1.32 × 107 7.03 × 106 1.17 × 107

p-value 4.38 × 10−6 3.81 × 10−6 7.65 × 10−12 1.86 × 10−12 -

F10

mean 9.40 × 107 9.43 × 107 9.43 × 107 9.38 × 107 9.35 × 107

std 4.28 × 104 3.99 × 104 6.45 × 104 1.02 × 105 7.92 × 104

p-value 4.89 × 10−1 3.81 × 10−4 7.65 × 10−3 1.86 × 10−5 -

86

Mathematics 2019, 7, 414

Table 1. Cont.

Function Quality CSO SLPSO DECC-DG MMO-CC EA-PSO

F11

mean 3.56 × 108 9.98 × 109 1.26 × 1011 5.66 × 1012 5.00 × 108

std 1.47 × 107 1.82 × 109 2.44 × 1010 1.09 × 1012 1.92 × 107

p-value 6.46 × 10−15 7.09 × 10−5 7.54 × 10−5 2.05 × 10−5 -

F12

mean 1.39 × 103 1.13 × 103 5.89 × 107 1.14 × 1011 1.40 × 103

std 2.19 × 101 2.12 × 101 2.75 × 106 6.32 × 1010 2.23 × 101

p-value 2.76 × 10−10 6.79 × 10−1 6.55 × 10−17 1.62 × 10−3 -

F13

mean 1.75 × 109 2.05 × 109 1.06 × 1010 1.32 × 1012 1.66 × 109

std 6.47 × 107 2.13 × 108 7.94 × 108 2.88 × 1011 5.54 × 107

p-value 1.19 × 10−11 4.98 × 10−9 5.97 × 10−12 5.85 × 10−15 -

F14

mean 6.95 × 109 1.60 × 1010 3.69 × 1010 4.12 × 1011 1.40 × 108

std 9.22 × 108 1.62 × 109 6.58 × 109 1.21 × 1011 2.79 × 107

p-value 7.51 × 10−7 2.55 × 10−10 5.05 × 10−5 6.99 × 10−5 -

F15

mean 1.65 × 107 6.68 × 107 6.32 × 106 4.05 × 108 7.69 × 106

std 2.21 × 105 1.01 × 106 2.69 × 105 1.91 × 107 3.39 × 105

p-value 8.91 × 10−23 5.47 × 10−25 1.49 × 10−25 2.57 × 10−4 -

(a) F1 (b) F2 (c) F3

(d) F4 (e) F5 (f) F6

(g) F7 (h) F8 (i) F9

Figure 2. Cont.

87

Mathematics 2019, 7, 414

(j) F10 (k) F11 (l) F12

(m) F13 (n) F14 (o) F15

Figure 2. Convergence profiles of different algorithms obtained on the CEC’2013 test suite with
1000 dimensions.

In this study, the value of α was used to balance the abilities of exploration and exploitation.
Hence, we investigated the influence of α to algorithm’s performance. In this test, we set α as 0.2, 0.3
and 0.4. For other parameters, we used the same setting as in Table 1. For each value of α, we ran
the algorithm 25 times and present the mean optimization results in Table 2. According to the results,
there was no significant difference in the order of magnitude. On the other hand, for the four values,
α = 0.1 and α = 0.2, both won six times, which demonstrates that a small value of α would help
the algorithm achieve a more competitive optimization performance. The convergence profiles for
algorithm’s performances with different values of α are presented in Figure 3.

Table 2. The different values of α to EA-PSO’s performances on IEEE CEC 2013 large scale optimization
problems with 1000 dimensions (fitness evaluations = 3 × 106).

Function α = 0.1 α = 0.2 α = 0.3 α = 0.4

F1 3.53 × 10−16 2.97 × 10−16 5.07 × 10−16 9.43 × 10−16

F2 1.45 × 103 1.45 × 103 1.58 × 103 1.45 × 103

F3 2.15 × 101 2.15 × 101 2.15 × 101 2.15 × 101

F4 4.36 × 109 6.37 × 109 6.97 × 109 9.02 × 109

F5 6.68 × 105 5.48 × 105 8.72 × 105 6.87 × 105

F6 1.06 × 106 1.06 × 106 1.06 × 106 1.06 × 106

F7 1.43 × 106 2.02 × 106 2.51 × 107 9.86 × 106

F8 1.47 × 1014 3.11 × 1013 1.29 × 1014 8.66 × 1013

F9 5.05 × 107 4.59 × 107 5.79 × 107 7.02 × 107

F10 9.35 × 107 9.40 × 107 9.41 × 107 9.42 × 107

F11 5.00 × 108 4.98 × 108 3.74 × 108 4.23 × 108

F12 1.40 × 103 1.30 × 103 1.33 × 103 1.51 × 103

F13 1.66 × 109 7.38 × 108 1.61 × 109 5.86 × 108

F14 1.40 × 108 1.44 × 108 4.21 × 108 4.87 × 108

F15 7.69 × 106 7.42 × 106 8.04 × 106 7.65 × 106

88

Mathematics 2019, 7, 414

(a) F1 (b) F2 (c) F3

(d) F4 (e) F5 (f) F6

(g) F7 (h) F8 (i) F9

(j) F10 (k) F11 (l) F12

Figure 3. Cont.

89

Mathematics 2019, 7, 414

(m) F13 (n) F14 (o) F15

Figure 3. Convergence profiles of different algorithms obtained on the CEC’2013 test suite with
1000 dimensions.

5. Conclusions

In this paper, a novel particle swarm optimizer named entropy-assisted PSO is proposed.
All particles are evaluated by fitness and diversity simultaneously and the historical information of the
particles are no longer needed in particle update. The optimization experiments were conducted on
the benchmarks suite of CEC 2013 with the topic of large scale optimization problems. The comparison
results demonstrate the proposed structure helped enhance the ability of PSO in addressing large
scale optimization and the proposed algorithm EA-PSO achieved competitive performance in the
comparisons. Moreover, since the exploration and exploitation are conducted independently and
simultaneously in the proposed structure, the proposed algorithm’s structure is flexible to many
different kinds of optimization problems.

In the future, the mathematical mechanism of the proposed algorithm will be further investigated
and discussed. Considering that, for many other kinds of optimization problems, such as multi-modular
optimization problems, dynamic optimization problems, and multi-objective optimization, the population
divergence is also crucial to algorithms’ performances, we will apply the entropy idea to such problems
and investigate the roles in divergence maintenance.

Author Contributions: Conceptualization, W.G., L.W. and Q.W.; Methodology, W.G.; Software, W.G. and L.Z.;
Validation, W.G. and L.Z.; Formal analysis, W.G. and L.W.; Investigation, W.G. and F.K.; Resources, W.G. and L.Z.;
Data curation, W.G.; Writing original draft preparation, W.G. and F.K.; Writing review and editing, W.G., L.W. and
Q.W.; Visualization, W.G. and L.Z.; Supervision, L.W. and Q.W.; Project administration, L.W. and Q.W.; Funding
acquisition, W.G. and L.Z.

Funding: This work was sponsored by the National Natural Science Foundation of China under Grant Nos.
71771176 and 61503287, and supported by Key Lab of Information Network Security, Ministry of Public Security
and Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Shi, H.; Wen, H.; Hu, Y.; Jiang, L. Reactive Power Minimization in Bidirectional DC-DC Converters Using
a Unified-Phasor-Based Particle Swarm Optimization. IEEE Trans. Power Electron. 2018, 33, 10990–11006.
[CrossRef]

2. Bera, R.; Mandal, D.; Kar, R.; Ghoshal, S.P. Non-uniform single-ring antenna array design using wavelet
mutation based novel particle swarm optimization technique. Comput. Electr. Eng. 2017, 61, 151–172.
[CrossRef]

3. Osorio, G.J.; Matias, J.C.O.; Catalao, J.P.S. Short-term wind power forecasting using adaptive neuro-fuzzy
inference system combined with evolutionary particle swarm optimization, wavelet transform and mutual
information. Renew. Energy 2015, 75, 301–307. [CrossRef]

90

Mathematics 2019, 7, 414

4. Nouiri, M.; Bekrar, A.; Jemai, A.; Niar, S.; Ammari, A.C. An effective and distributed particle swarm
optimization algorithm for flexible job-shop scheduling problem. J. Intell. Manuf. 2018, 29, 603–615.
[CrossRef]

5. Aliyari, H.; Effatnejad, R.; Izadi, M.; Hosseinian, S.H. Economic Dispatch with Particle Swarm Optimization
for Large Scale System with Non-smooth Cost Functions Combine with Genetic Algorithm. J. Appl. Sci. Eng.
2017, 20, 141–148. [CrossRef]

6. Bonyadi, M.R.; Michalewicz, Z. Particle swarm optimization for single objective continuous space problems:
A review. Evol. Comput. 2017, 25, 1–54. [CrossRef]

7. Higashi, N.; Iba, H. Particle swarm optimization with gaussian mutation. In Proceedings of the 2003 IEEE
Swarm Intelligence Symposium, Indianapolis, IN, USA, 26 April 2003; pp. 72–79.

8. Ling, S.H.; Iu, H.H.C.; Chan, K.Y.; Lam, H.K.; Yeung, B.C.W.; Leung, F.H. Hybrid particle swarm optimization
with wavelet mutation and its industrial applications. IEEE Trans. Syst. Man Cybern. Part B Cybern. 2008, 38,
743–763. [CrossRef]

9. Wang, H.; Sun, H.; Li, C.; Rahnamayan, S.; Pan, J.-S. Diversity enhanced particle swarm optimization with
neighborhood search. Inf. Sci. 2013, 223, 119–135. [CrossRef]

10. Sun, J.; Xu, W.; Fang, W. A diversity guided quantum behaved particle swarm optimization algorithm.
In Simulated Evolution and Learning; Wang, T.D., Li, X., Chen, S.H., Wang, X., Abbass, H., Iba, H., Chen, G.,
Yao, X., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 4247,
pp. 497–504.

11. Jin, Y.; Branke, J. Evolutionary optimization in uncertain environments—A survey. IEEE Trans. Evol. Comput.
2005, 9, 303–317. [CrossRef]

12. Lovbjerg, M.; Krink, T. Extending particle swarm optimisers with self-organized criticality. In Proceedings
of the 2002 Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; Volume 2,
pp. 1588–1593.

13. Blackwell, T.M.; Bentley, P.J. Dynamic search with charged swarms. In Proceedings of the Genetic and
Evolutionary Computation Conference, New York, NY, USA, 9–13 July 2002; pp. 19–26.

14. Blackwell, T. Particle swarms and population diversity. Soft Comput. 2005, 9, 793–802. [CrossRef]
15. Zhan, Z.; Zhang, J.; Li, Y.; Chung, H.S. Adaptive particle swarm optimization. IEEE Trans. Syst. Man Cybern.

Part B Cybern. 2009, 39, 1362–1381. [CrossRef] [PubMed]
16. Hu, M.; Wu, T.; Weir, J.D. An adaptive particle swarm optimization with multiple adaptive methods.

IEEE Trans. Evol. Comput. 2013, 17, 705–720. [CrossRef]
17. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Baskar, S. Comprehensive learning particle swarm optimizer for

global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [CrossRef]
18. Li, X. Niching without niching parameters: Particle swarm optimization using a ring topology. IEEE Trans.

Evol. Comput. 2010, 14, 150–169. [CrossRef]
19. Siarry, P.; Pétrowski, A.; Bessaou, M. A multipopulation genetic algorithm aimed at multimodal optimization.

Adv. Eng. Softw. 2002, 33, 207–213. [CrossRef]
20. Yang, Z.; Tanga, K.; Yao, X. Large scale evolutionary optimization using cooperative coevolution. Inf. Sci.

2008, 178, 2985–2999. [CrossRef]
21. Cheng, R.; Jin, Y. A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 2015, 45,

191–204. [CrossRef]
22. Cheng, R.; Jin, Y. A social learning particle swarm optimization algorithm for scalable optimization. Inf. Sci.

2015, 291, 43–60. [CrossRef]
23. Yang, Q.; Chen, W.-N.; Deng, J.D.; Li, Y.; Gu, T.; Zhang, J. A Level-Based Learning Swarm Optimizer for

Large-Scale Optimization. IEEE Trans. Evol. Comput. 2018, 22, 578–594. [CrossRef]
24. Li, X.; Tang, K.; Omidvar, M.N.; Yang, Z.; Qin, K. Benchmark Functions for the CEC 2013 Special Session And

Competition on Large-Scale Global Optimization; Tech. Rep.; School of Computer Science and Information
Technology, RMIT University: Melbourne, Australia, 2013.

25. Omidvar, M.N.; Li, X.; Mei, Y.; Yao, X. Cooperative Co-Evolution with Differential Grouping for Large Scale
Optimization. IEEE Trans. Evol. Comput. 2014, 18, 378–393. [CrossRef]

91

Mathematics 2019, 7, 414

26. Peng, X.; Jin, Y.; Wang, H. Multimodal optimization enhanced cooperative coevolution for large-scale
optimization. IEEE Trans. Cybern. 2018, [CrossRef]

27. Corriveau, G.; Guilbault, R.; Tahan, A.; Sabourin, R. Review and Study of Genotypic Diversity Measures for
Real-Coded Representations. IEEE Trans. Evol. Comput. 2012, 16, 695–710. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

92

mathematics

Article

Enhancing Elephant Herding Optimization with
Novel Individual Updating Strategies for Large-Scale
Optimization Problems

Jiang Li, Lihong Guo *, Yan Li and Chang Liu

Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033,
China; cclijiang@163.com (J.L.); ly2455@sina.com (Y.L.); lc1120112964@163.com (C.L.)
* Correspondence: guolh@ciomp.ac.cn

Received: 16 February 2019; Accepted: 27 April 2019; Published: 30 April 2019

Abstract: Inspired by the behavior of elephants in nature, elephant herd optimization (EHO) was
proposed recently for global optimization. Like most other metaheuristic algorithms, EHO does not
use the previous individuals in the later updating process. If the useful information in the previous
individuals were fully exploited and used in the later optimization process, the quality of solutions
may be improved significantly. In this paper, we propose several new updating strategies for EHO,
in which one, two, or three individuals are selected from the previous iterations, and their useful
information is incorporated into the updating process. Accordingly, the final individual at this iteration
is generated according to the elephant generated by the basic EHO, and the selected previous elephants
through a weighted sum. The weights are determined by a random number and the fitness of the
elephant individuals at the previous iteration. We incorporated each of the six individual updating
strategies individually into the basic EHO, creating six improved variants of EHO. We benchmarked
these proposed methods using sixteen test functions. Our experimental results demonstrated that the
proposed improved methods significantly outperformed the basic EHO.

Keywords: elephant herding optimization; EHO; swarm intelligence; individual updating strategy;
large-scale; benchmark

1. Introduction

Inspired by nature, a large variety of metaheuristic algorithms [1] have been proposed that provide
optimal or near-optimal solutions to various complex large-scale problems that are difficult to solve
using traditional techniques. Some of the many successful metaheuristic approaches include particle
swarm optimization (PSO) [2,3], cooperative coevolution [4–6], seagull optimization algorithm [7],
GRASP [8], clustering algorithm [9], and differential evolution (DE) [10,11], among others.

In 2015, Wang et al. [12,13] proposed a new metaheuristic algorithm called elephant herd
optimization (EHO), for finding the optimal or near-optimal function values. Although EHO exhibits
a good performance on benchmark evaluations [12,13], like most other metaheuristic methods, it does
not utilize the best information from the previous elephant individuals to guide current and future
searches. This gap will be addressed, because previous individuals can provide a variety of useful
information. If such information could be fully exploited and applied in the later updating process,
the performance of EHO may be improved significantly, without adding unnecessary operations and
fitness evaluations.

In the research presented in this paper, we extended and improved the performance of the
original EHO (which we call “the basic EHO”) by fully investigating the information in the previous
elephant individuals. Then, we designed six updating strategies to update the individuals. For each
of the six individual updating strategies, first, we selected a certain number of elephants from the

Mathematics 2019, 7, 395; doi:10.3390/math7050395 www.mdpi.com/journal/mathematics93

Mathematics 2019, 7, 395

previous iterations. This selection could be made in either a fixed or random way, with one, two,
or three individuals selected from previous iterations. Next, we used the information from these
selected previous individual elephants to update the individuals. In this way, the information from the
previous individuals could be reused fully. The final elephant individual at this iteration was generated
according to the elephant individual generated by the basic EHO at the current iteration, along with
the selected previous elephants using a weighted sum. While there are many ways to determine the
weights, in our current work, they were determined by random numbers. Last, by combining the six
individual updating strategies with EHO, we developed the improved variants of EHO. To verify our
work, we benchmarked these variants using sixteen cases involving large-scale complex functions.
Our experimental results showed that the proposed variants of EHO significantly outperformed the
originally described EHO.

The organization of the remainder of this paper is as follows. Section 2 reviews the main steps of
the basic EHO. In Section 3, we describe the proposed method for incorporating useful information
from previous elephants into the EHO. Section 4 provides details of our various experiments on sixteen
large-scale functions. Lastly, Section 5 offers our conclusion and suggestions for future work.

2. Related Work

As EHO [12,13] is a newly-proposed swarm intelligence-based algorithm, in this section, some
of the most representative work regarding swarm intelligence, including EHO, are summarized
and reviewed.

Meena et al. [14] proposed an improved EHO algorithm, which is used to solve the multi-objective
distributed energy resources (DER) accommodation problem of distribution systems by combining
a technique for order of preference by similarity to ideal solution (TOPSIS). The proposed technique is
productively implemented on three small- to large-scale benchmark test distribution systems of 33-bus,
118-bus, and 880-bus.

When the spectral resolution of the satellite imagery is increased, the higher within-class variability
reduces the statistical separability between the LU/LC classes in spectral space and tends to continue
diminishing the classification accuracy of the traditional classifiers. These are mostly per pixel and
parametric in nature. Jayanth et al. [15] used EHO to solve the problems. The experimental results
revealed that EHO shows an improvement of 10.7% on Arsikere Taluk and 6.63% on the NITK campus
over the support vector machine.

Rashwan et al. [16] carried out a series of experiments on a standard test bench, as well as engineering
problems and real-world problems, in order to understand the impact of the control parameters. On top
of that, the main aim of this paper is to propose different approaches to enhance the performance of EHO.
Case studies ranging from the recent test bench problems of Congress on Evolutionary Computation
(CEC) 2016, to the popular engineering problems of the gear train, welded beam, three-bar truss design
problem, continuous stirred tank reactor, and fed-batch fermentor, are used to validate and test the
performances of the proposed EHOs against existing techniques.

Correia et al. [17] firstly used a metaheuristic algorithm, namely EHO, to address the energy-based
source localization problem in wireless sensor networks. Through extensive simulations, the key
parameters of the EHO algorithm are optimized, such that they match the energy decay model between
two sensor nodes. The simulation results show that the new approach significantly outperforms
the existing solutions in noisy environments, encouraging further improvement and testing of
metaheuristic methods.

Jafari et al. [18] proposed a new hybrid algorithm that was based on EHO and cultural algorithm
(CA), known as the elephant herding optimization cultural (EHOC) algorithm. In this process, the belief
space defined by the cultural algorithm was used to improve the standard EHO. In EHOC, based on
the belief space, the separating operator is defined, which can create new local optimums in the
search space, so as to improve the algorithm search ability and to create an algorithm with an optimal
exploration–exploitation balance. The CA, EHO, and EHOC algorithms are applied to eight mathematical

94

Mathematics 2019, 7, 395

optimization problems and four truss weight minimization problems, and to assess the performance of
the proposed algorithm, the results are compared. The results clearly indicate that EHOC can accelerate
the convergence rate effectively and can develop better solutions compared with CA and EHO.

Hassanien et al. [19] combined support vector regression (SVR) with EHO in order to predict the
values of the three emotional scales as continuous variables. Multiple experiments are applied to evaluate
the prediction performance. EHO was applied in two stages of the optimization. Firstly, to fine-tune
the regression parameters of the SVR. Secondly, to select the most relevant features extracted from
all 40 EEG channels, and to eliminate the ineffective and redundant features. To verify the proposed
approach, the results proved EHO-SVR’s ability to gain a relatively enhanced performance, measured by
a regression accuracy of 98.64%.

Besides EHO, many other swarm intelligence-based algorithms have been proposed, and some of
the most representative ones are summarized and reviewed as follows.

Monarch butterfly optimization (MBO) [20] is proposed for global optimization problems, inspired
by the migration behavior of monarch butterflies. Yi et al. [21] proposed a novel quantum inspired MBO
methodology, called QMBO, by incorporating quantum computation into MBO, which is further used
to solve uninhabited combat air vehicles (UCAV) path planning navigation problem [22,23]. In addition,
Feng et al. proposed various variants of MBO algorithms to solve the knapsack problem [24–28].
In addition, Wang et al. also improved on the performance of the MBO algorithm from various
aspects [29–32]; a variant of the MBO method in combination with two optimization strategies, namely
GCMBO, was also put forward.

Inspired by the phototaxis and Lévy flights of the moths, Wang developed a new kind of
metaheuristic algorithm, called the moth search (MS) algorithm [33]. Feng et al. [34] divided twelve
transfer functions into three families, and combined them with MS, and then twelve discrete versions
of MS algorithms are proposed for solving the set-union knapsack problem (SUKP). Based on the
improvement of the moth search algorithm (MSA) using differential evolution (DE), Elaziz et al. [35]
proposed a new method for the cloud task scheduling problem. In addition, Feng and Wang [36]
verified the influence of the Lévy flights operator and fly straightly operator in MS. Nine types of new
mutation operators based on the global harmony search have been specially devised to replace the
Lévy flights operator.

Inspired by the herding behavior of krill, Gandomi and Alavi proposed a krill herd (KH) [37].
After that, Wang et al. improved the KH algorithms through different optimization strategies [38–46].
More literature regarding the KH algorithm can be found in the literature [47].

The artificial bee colony (ABC) algorithm [48] is a swarm-based meta-heuristic algorithm that
was introduced by Karaboga in 2005 for optimizing numerical problems. Wang and Yi [49] presented
a robust optimization algorithm, namely KHABC, based on hybridization of KH and ABC methods
and the information exchange concept. In addition, Liu et al. [50] presented an ABC algorithm based
on the dynamic penalty function and Lévy flight (DPLABC) for constrained optimization problems.

Also, many other researchers have proposed other state-of-the-art metaheuristic algorithms,
such as particle swarm optimization (PSO) [51–56], cuckoo search (CS) [57–61], probability-based
incremental learning (PBIL) [62], differential evolution (DE) [63–66], evolutionary strategy (ES) [67,68],
monarch butterfly optimization (MBO) [20], firefly algorithm (FA) [69–72], earthworm optimization
algorithm (EWA) [73], genetic algorithms (GAs) [74–76], ant colony optimization (ACO) [77–79], krill
herd (KH) [37,80,81], invasive weed optimization [82–84], stud GA (SGA) [85], biogeography-based
optimization (BBO) [86,87], harmony search (HS) [88–90], and bat algorithm (BA) [91,92], among others

Besides benchmark evaluations [93,94], these proposed state-of-the-art metaheuristic algorithms
are also used to solve various practical engineering problems, like test-sheet composition [95],
scheduling [96,97], clustering [98–100], cyber-physical social systems [101], economic load dispatch [102,103],
fault diagnosis [104], flowshop [105], big data optimization [106,107], gesture segmentation [108], target
recognition [109,110], prediction of pupylation sites [111], system identification [112], shape design [113],
multi-objective optimization [114], and many-objective optimization [115–117].

95

Mathematics 2019, 7, 395

3. Elephant Herd Optimization

The basic EHO can be described using the following simplified rules [12]:

(1) Elephants belonging to different clans live together led by a matriarch. Each clan has a fixed
number of elephants. For the purposes of modelling, we assume that each clan consists of
an equal, unchanging number of elephants.

(2) The positions of the elephants in a clan are updated based on their relationship to the matriarch.
EHO models this behavior through an updating operator.

(3) Mature male elephants leave their family groups to live alone. We assume that during each
generation, a fixed number of male elephants leave their clans. Accordingly, EHO models the
updating process using a separating operator.

(4) Generally, the matriarch in each clan is the eldest female elephant. For the purposes of modelling
and solving the optimization problems, the matriarch is considered the fittest elephant individual
in the clan.

As this paper is focused on improving the EHO updating process, in the following subsection,
we provide further details of the EHO updating operator as it was originally presented. For details
regarding the EHO separating operator, see the literature [12].

3.1. Clan Updating Operator

The following updating strategy of the basic EHO was described by the authors of [12], as follows.
Assume that an elephant clan is denoted as ci. The next position of any elephant, j, in the clan is
updated using (1), as follows:

xnew,ci, j = xci, j + α×
(
xbest,ci − xci, j

)
× r, (1)

where xnew,ci,j is the updated position, and xci,j is the prior position of elephant j in clan ci. xbest,ci
denotes the matriarch of clan ci; she is the fittest elephant individual in the clan. The scale factor
α ∈ [0, 1] determines the influence of the matriarch of ci on xci,j. r ∈ [0, 1], which is a type of stochastic
distribution, can provide a significant improvement for the diversity of the population in the later
search phase. For the present work, a uniform distribution was used.

It should be noted that xci,j = xbest,ci,, which means that the matriarch (fittest elephant) in the
clan cannot be updated by (1). To avoid this situation, we can update the fittest elephant using the
following equation:

xnew,ci, j = β× xcenter,ci, (2)

where the influence of xcenter,ci on xnew,ci, is regulated by β ∈ [0, 1].
In Equation (2), the information from all of the individuals in clan ci is used to create the new

individual xnew,ci,j. The centre of clan ci, xcenter,ci, can be calculated for the d-th dimension through D
calculations, where D is the total dimension, as follows:

xcenter,ci,d =
1

nci
×

nci∑
j=1

xci, j,d (3)

Here, 1 ≤ d ≤ D represents the d-th dimension, nci is the number of individuals in ci, and xci,j,d is the
d-th dimension of the individual xci,j.

Algorithm 1 provides the pseudocode for the updating operator.

96

Mathematics 2019, 7, 395

Algorithm 1: Clan updating operator [12]

Begin

for ci = 1 to nClan (for all clans in elephant population) do

for j = 1 to nci (for all elephant individuals in clan ci) do

Update xci,j and generate xnew,ci,j according to (1).

if xci,j = xbest,ci then

Update xci,j and generate xnew,ci,j according to (2).
end if

end for j
end for ci

End.

3.2. Separating Operator

In groups of elephants, male elephants leave their family group and live alone upon reaching
puberty. This process of separation can be modeled into a separating operator when solving optimization
problems. In order to further improve the search ability of the EHO method, let us assume that the
individual elephants with the worst fitness will implement the separating operator for each generation,
as shown in (4).

xworst,ci = xmin + (xmax − xmin + 1) × rand (4)

where xmax and xmin are the upper and lower bound, respectively, of the position of the individual
elephant. xworst,ci is the worst individual elephant in clan ci. rand ∈ [0, 1] is a kind of stochastic
distribution, and the uniform distribution in the range [0, 1] is used in our current work.

Accordingly, the separating operator can be formed, as shown in Algorithm 2.

Algorithm 2: Separating operator

Begin

for ci =1 to nClan (all of the clans in the elephant population) do

Replace the worst elephant individual in clan ci using (4).
end for ci

End.

3.3. Schematic Presentation of the Basic EHO Algorithm

For EHO, like the other metaheuristic algorithms, a kind of elitism strategy is used with the aim
of protecting the best elephant individuals from being ruined by the clan updating and separating
operators. In the beginning, the best elephant individuals are saved, and the worst ones are replaced
by the saved best elephant individuals at the end of the search process. This elitism ensures that the
later elephant population is not always worse than the former one. The schematic description can be
summarized as shown in Algorithm 3.

As described before, the basic EHO algorithm does not take the best available information in the
previous group of individual elephants to guide the current and later searches. This may lead to a slow
convergence during the solution of certain complex, large-scale optimization problems. In our current
work, some of the information used for the previous individual elephants was reused, with the aim of
improving the search ability of the basic EHO algorithm.

97

Mathematics 2019, 7, 395

Algorithm 3: Elephant Herd Optimization (EHO) [12]

Begin

Step 1: Initialization.

Set the generation counter t = 1.

Initialize the population P of NP elephant individuals randomly, with uniform distribution in the
search space.
Set the number of the kept elephants nKEL, the maximum generation MaxGen, the scale factor α and β,
the number of clan nClan, and the number of elephants for the ci-th clan nci.

Step 2: Fitness evaluation.

Evaluate each elephant individual according to its position.
Step 3: While t <MaxGen do the following:

Sort all of the elephant individuals according to their fitness.
Save the nKEL elephant individuals.
Implement the clan updating operator as shown in Algorithm 1.
Implement the separating operator as shown in Algorithm 2.
Evaluate the population according to the newly updated positions.
Replace the worst elephant individuals with the nKEL saved ones.
Update the generation counter, t = t + 1.

Step 4: End while

Step 5: Output the best solution.

End.

4. Improving EHO with Individual Updating Strategies

In this research, we propose six new versions of EHO based on individual updating strategies.
In theory, k (k ≥ 1) previous elephant individuals can be selected, but as more individuals (k ≥ 4) are
chosen, the calculations of the weights become more complex. Therefore, for this paper, we investigate
k ∈ {1, 2, 3}.

Suppose that xt
i is the ith individual at iteration t, and xi and f t

i are its position and fitness values,
respectively. Here, t is the current iteration, 1 ≤ i ≤ NP is an integer number, and NP is the population
size. yt+1

i is the individual generated by the basic EHO, and f t+1
i is its fitness. The framework of our

proposed method is given through the individuals at the (t − 2)th, (t − 1)th, tth, and (t + 1)th iterations.

4.1. Case of k = 1

The simplest case is when k = 1. The ith individual xt+1
i can be generated as follows:

xt+1
i = θyt+1

i +ωxt
j, (5)

where xt
j is the position for individual j (j ∈ {1, 2, · · · , NP}) at iteration t, and f t

j is its fitness. θ and ω
are weighting factors satisfying θ + ω = 1. They can be given as follows:

θ = r, ω = 1− r (6)

Here, r is a random number that is drawn from the uniform distribution in [0, 1]. The individual j can
be determined in the following ways:

(1) j = i;

(2) j = r1, where r1 is an integer between 1 and NP that is selected randomly.

The individual generated by the second method has more population diversity than the individual
generated the first way. We refer to these updating strategies as R1 and RR1, respectively. Their
incorporation into the basic EHO results in EHOR1 and EHORR1, respectively.

98

Mathematics 2019, 7, 395

4.2. Case of k = 2

Two individuals at two previous iterations are collected and used to generate elephant i. For this
case, the ith individual xt+1

i can be generated as follows:

xt+1
i = θyt+1

i +ω1xt
j1
+ω2xt−1

j2
, (7)

where xt
j1

and xt−1
j2

are the positions for individuals j1 and j2 (j1, j2 ∈ {1, 2, · · · , NP}) at iterations t

and t − 1, and f t
j1

and f t−1
j2

are their fitness values, respectively. θ, ω1, and ω2 are weighting factors
satisfying θ + ω1 + ω2 = 1. They can be calculated as follows:

θ = r,

ω1 = (1− r) × f t−1
j2

f t−1
j2

+ f t
j1

,

ω2 = (1− r) × f t
j1

f t−1
j2

+ f t
j1

.

(8)

Here, r is a random number that is drawn from the uniform distribution in [0, 1]. Individuals j1 and
j2 in (8) can be determined in several different ways, but in this paper, we focus on the following
two approaches:

(1) j1 = j2 = i;
(2) j1 = r1, and j2 = r2, where r1 and r2 are integers between 1 and NP selected randomly.

As in the previous case, the individuals generated by the second method have more population
diversity than the individuals generated the first way. We refer to these updating strategies as R2 and
RR2, respectively. Their incorporation into EHO yields EHOR2 and EHORR2, respectively.

4.3. Case of k = 3

Three individuals at three previous iterations are collected and used to generate individual i.
For this case, the ith individual xt+1

i can be generated as follows:

xt+1
i = θyt+1

i +ω1xt
j1
+ω2xt−1

j2
+ω3xt−2

j3
, (9)

where xt
j1

, xt−1
j2

and xt−2
j3

are the positions of individuals j1, j2, and j3 (j1, j2, j3 ∈ {1, 2, · · · , NP}) at

iterations t, t − 1, and t − 2, and f t
j1

, f t−1
j2

, and f t−2
j3

are their fitness values, respectively. Their weighting
factors are θ, ω1, ω2, and ω3 with θ + ω1 + ω2 + ω3 = 1. The calculation can be given as follows:

θ = r,

ω1 = 1
2 × (1− r) × f t−1

j2
+ f t−2

j3
f t
j1
+ f t−1

j2
+ f t−2

j3

,

ω2 = 1
2 × (1− r) × f t

j1
+ f t−2

j3
f t
j1
+ f t−1

j2
+ f t−2

j3

,

ω3 = 1
2 × (1− r) × f t

j1
+ f t−1

j2
f t
j1
+ f t−1

j2
+ f t−2

j3

.

(10)

Although j1∼j3 can be determined in several ways, in this work, we adopt the following
two methods:

(1) j1 = j2 = j3 = i;
(2) j1 = r1, j2 = r2, and j3 = r3, where r1∼r3 are integer numbers between 1 and NP selected at random.

99

Mathematics 2019, 7, 395

As in the previous two cases, the individuals generated using the second method have more
population diversity. We refer to these updating strategies as R3 and RR3, respectively. Their
incorporation into EHO leads to EHOR3 and EHORR3, respectively.

5. Simulation Results

As discussed in Section 4, in the experimental part of our work, the six individual updating
strategies (R1, RR1, R2, RR2, R3, and RR3) were incorporated separately into the basic EHO. Accordingly,
we proposed six improved versions of EHO, namely: EHOR1, EHORR1, EHOR2, EHORR2, EHOR3,
and EHORR3. For the sake of clarity, the basic EHO can also be identified as EHOR0, and we can call
the updating strategies R0, R1, RR1, R2, RR2, R3, and RR3 for short. To provide a full assessment
of the performance of each of the proposed individual updating strategies, we compared the six
improved EHOs with each other and with the basic EHO. Through this comparison, we could look at
the performance of the six updating strategies in order to determine whether these strategies were able
to improve the performance of the EHO.

The six variants of the EHO were investigated fully from various respects through a series of
experiments, using sixteen large-scale benchmarks with dimensions D = 50, 100, 200, 500, and 1000.
These complicated large-scale benchmarks can be found in Table 1. More information about all the
benchmarks can be found in the literature [86,118,119].

Table 1. Sixteen benchmark functions.

No. Name No. Name

F01 Ackley F09 Rastrigin
F02 Alpine F10 Schwefel 2.26
F03 Brown F11 Schwefel 1.2
F04 Holzman 2 function F12 Schwefel 2.22
F05 Levy F13 Schwefel 2.21
F06 Penalty #1 F14 Sphere
F07 Powell F15 Sum function
F08 Quartic with noise F16 Zakharov

As all metaheuristic algorithms are based on a certain distribution, different runs will generate
different results. With the aim of getting the most representative statistical results, we performed 30
independent runs under the same conditions, as shown in the literature [120].

For all of the methods studied in this paper, their parameters were set as follows: the scale factor
α = 0.5, β = 0.1, the number of the kept elephants nKEL = 2, and the number of clans nClan = 5. In the
simplest form, all of the clans have an equal number of elephants. In our current work, all of the clans
have the same number of elephants (i.e., nci = 20). Except for the number of elephants in each clan,
the other parameters are the same as in the basic EHO, which can be found in the literature [12,13].
The best function values found by a certain intelligent algorithm are shown in bold font.

5.1. Unconstrained Optimization

5.1.1. D = 50

In this section of our work, seven kinds of EHOs (the basic EHO plus the six proposed improved
variants) were evaluated using the 16 benchmarks mentioned previously, with dimension D = 50.
The obtained mean function values and standard values from thirty runs are recorded in Tables 2 and 3.

From Table 2, we can see that in terms of the mean function values, R2 performed the best,
at a level far better than the other methods. As for the other methods, R1 and RR1 provided a similar
performance to each other, and they could find the smallest fitness values successfully on only one of
the complex functions used for benchmarking. From Table 3, obviously, R2 performed in the most
stable way, while for the other algorithms, EHO has a significant advantage over the other algorithms.

100

Mathematics 2019, 7, 395

Table 2. Mean function values obtained by elephant herd optimization (EHO) and six improved
methods with D = 50.

EHO R1 RR1 R2 RR2 R3 RR3

F01 2.57 × 10−4 7.11 × 10−4 0.05 8.38 × 10−5 1.57 1.53 × 10−4 0.01
F02 1.04 × 10−4 2.69 × 10−4 0.01 2.74 × 10−5 0.23 5.13 × 10−5 2.38 × 10−3

F03 4.41 × 10−7 9.16 × 10−6 3.37 × 10−3 6.14 × 10−9 0.76 4.32 × 10−8 8.25 × 10−5

F04 1.50 × 10−15 4.97 × 10−11 3.58 × 10−6 2.27 × 10−16 0.03 3.38 × 10−16 1.82 × 10−9

F05 4.49 4.25 3.95 4.43 4.89 4.44 4.50
F06 1.22 1.06 1.62 1.72 2.01 1.76 1.79
F07 5.13 × 10−7 2.55 × 10−6 0.02 3.50 × 10−8 2.25 1.51 × 10−7 4.85 × 10−4

F08 2.57 × 10−16 1.24 × 10−15 7.23 × 10−9 2.21 × 10−16 1.72 × 10−5 2.21 × 10−16 4.03 × 10−13

F09 2.59 × 10−6 6.86 × 10−5 0.03 9.83 × 10−8 9.28 5.06 × 10−7 3.92 × 10−3

F10 1.65 × 104 1.64 × 104 1.63 × 104 1.65 × 104 1.61 × 104 1.64 × 104 1.64 × 104

F11 1.44 × 10−5 4.47 × 10−4 0.36 1.02 × 10−6 49.04 3.52 × 10−6 2.18
F12 1.07 × 10−3 3.81 × 10−3 0.14 2.96 × 10−4 2.37 5.31 × 10−4 0.02
F13 6.69 × 10−4 1.34 × 10−3 0.07 1.52 × 10−4 1.21 3.05 × 10−4 0.01
F14 1.27 × 10−8 1.63 × 10−7 3.85 × 10−4 7.00 × 10−10 0.04 2.50 × 10−9 3.02 × 10−6

F15 6.70 × 10−7 1.40 × 10−5 7.03 × 10−3 4.76 × 10−8 3.61 1.77 × 10−7 9.87 × 10−4

F16 1.28 × 10−3 0.30 512.90 3.00 × 10−5 3.87 × 107 1.71 × 10−4 0.56
TOTAL 0 1 1 14 0 0 0

Table 3. Standard values obtained by EHO and six improved methods with D = 50.

EHO R1 RR1 R2 RR2 R3 RR3

F01 2.39 × 10−5 9.89 × 10−4 0.06 3.60 × 10−5 0.22 4.89 × 10−5 0.01
F02 1.37 × 10−5 3.32 × 10−4 0.01 1.14 × 10−5 0.04 1.38 × 10−5 2.17 × 10−3

F03 1.55 × 10−8 3.34 × 10−5 6.16 × 10−3 3.72 × 10−9 0.07 3.52 × 10−8 7.80 × 10−5

F04 4.50 × 10−16 2.49 × 10−10 1.08 × 10−5 6.72 × 10−18 0.01 2.92 × 10−16 5.64 × 10−9

F05 0.16 0.26 0.52 0.30 0.20 0.30 0.33
F06 0.23 0.18 0.41 0.28 0.32 0.25 0.27
F07 1.40 × 10−7 5.25 × 10−6 0.04 2.71 × 10−8 0.76 7.78 × 10−8 1.58 × 10−3

F08 6.86 × 10−18 3.99 × 10−15 1.96 × 10−8 1.68 × 10−20 6.10 × 10−6 1.26 × 10−19 1.17 × 10−12

F09 4.61 × 10−7 1.75 × 10−4 0.09 6.36 × 10−8 1.60 3.11 × 10−7 0.02
F10 444.40 591.40 502.50 506.70 486.40 454.70 349.00

F11 3.73 × 10−6 1.98 × 10−3 0.71 8.92 × 10−7 29.12 2.30 × 10−6 9.49
F12 1.03 × 10−4 5.54 × 10−3 0.15 1.03 × 10−4 0.28 1.21 × 10−4 0.01
F13 9.58 × 10−5 1.97 × 10−3 0.07 5.39 × 10−5 0.15 6.84 × 10−5 6.05 × 10−3

F14 2.07 × 10−9 5.02 × 10−7 1.09 × 10−3 6.10 × 10−10 0.01 2.04 × 10−9 3.90 × 10−6

F15 1.00 × 10−7 4.76 × 10−5 0.02 3.41 × 10−8 0.73 8.84 × 10−8 3.40 × 10−3

F16 8.21 × 10−4 1.43 1.23 × 103 2.06 × 10−5 1.92 × 107 1.21 × 10−4 0.44
TOTAL 3 1 0 11 0 0 1

5.1.2. D = 100

As above, the same seven kinds of EHOs were evaluated using the sixteen benchmarks mentioned
previously, with dimension D = 100. The obtained mean function values and standard values from 30
runs are recorded in Tables 4 and 5.

Regarding the mean function values, Table 4 shows that R2 performed much better than the
other algorithms, providing the smallest function values on 13 out of 16 functions. As for the other
algorithms, R0, R1, and RR1 gave a similar performance to each other, performing the best only on one
function each (F10, F06, and F05, respectively). From Table 5, obviously, R2 performed in the most
stable way, while for the other algorithms, EHO has significant advantage over other algorithms.

101

Mathematics 2019, 7, 395

Table 4. Mean function values obtained by EHO and six improved methods with D = 100.

EHO R1 RR1 R2 RR2 R3 RR3

F01 3.22 × 10−4 6.27 × 10−4 0.12 6.92 × 10−5 1.70 1.78 × 10−4 0.01
F02 2.55 × 10−4 6.86 × 10−4 0.04 6.28 × 10−5 0.48 1.08 × 10−4 4.78 × 10−3

F03 9.83 × 10−7 2.65 × 10−5 1.27 × 10−3 1.55 × 10−8 1.50 9.96 × 10−8 2.01 × 10−4

F04 1.18 × 10−14 1.85 × 10−9 7.43 × 10−6 2.55 × 10−16 0.13 7.25 × 10−16 1.04 × 10−9

F05 9.19 9.01 8.41 9.22 9.51 9.07 9.26
F06 3.11 2.91 3.89 3.74 4.30 3.80 3.80
F07 2.56 × 10−6 4.65 × 10−5 0.02 7.34 × 10−8 5.33 3.31 × 10−7 3.35 × 10−3

F08 4.18 × 10−16 1.13 × 10−13 1.38 × 10−7 2.21 × 10−16 8.16 × 10−5 2.24 × 10−16 3.03 × 10−12

F09 8.20 × 10−6 4.58 × 10−5 0.08 2.47 × 10−7 19.19 1.05 × 10−6 1.30 × 10−3

F10 3.58 × 104 3.56 × 104 3.50 × 104 3.55 × 104 3.59 × 104 3.56 × 104 3.68 × 104

F11 6.15 × 10−5 4.45 × 10−3 3.54 5.51 × 10−6 200.20 1.74 × 10−5 0.07
F12 2.53 × 10−3 5.37 × 10−3 0.26 5.94 × 10−4 5.27 1.04 × 10−3 0.05
F13 8.12 × 10−4 1.50 × 10−3 0.06 1.72 × 10−4 1.46 3.52 × 10−4 0.02
F14 3.99 × 10−8 1.09 × 10−6 5.59 × 10−4 1.23 × 10−9 0.09 4.99 × 10−9 8.68 × 10−6

F15 4.45 × 10−6 5.90 × 10−4 0.11 2.52 × 10−7 15.00 8.77 × 10−7 1.83 × 10−3

F16 0.04 2.20 7.85 × 105 7.09 × 10−4 1.58 × 1010 3.31 × 10−3 987.40
TOTAL 1 1 1 13 0 0 0

Table 5. Standard values obtained by EHO and six improved methods with D = 100.

EHO R1 RR1 R2 RR2 R3 RR3

F01 1.85 × 10−5 8.00 × 10−4 0.38 2.47 × 10−5 0.12 4.83 × 10−5 0.01
F02 1.24 × 10−5 1.10 × 10−3 0.08 2.65 × 10−5 0.08 3.99 × 10−5 3.78 × 10−3

F03 2.22 × 10−8 9.04 × 10−5 1.77 × 10−3 8.47 × 10−9 0.21 4.81 × 10−8 1.77 × 10−4

F04 2.03 × 10−15 1.02 × 10−8 2.98 × 10−5 3.90 × 10−17 0.05 6.76 × 10−16 4.03 × 10−9

F05 0.11 0.29 0.76 0.25 0.10 0.31 0.25
F06 0.31 0.33 0.38 0.29 0.41 0.25 0.29
F07 3.85 × 10−7 1.44 × 10−4 0.04 6.16 × 10−8 0.95 1.70 × 10−7 0.01
F08 2.21 × 10−17 5.63 × 10−13 4.37 × 10−7 4.23 × 10−20 3.09 × 10−5 3.81 × 10−19 9.87 × 10−12

F09 8.05 × 10−7 1.53 × 10−4 0.18 1.46 × 10−7 3.21 6.43 × 10−7 5.79 × 10−4

F10 733.60 769.20 834.60 606.00 547.10 725.00 621.20
F11 1.18 × 10−5 0.01 13.78 4.34 × 10−6 114.20 9.54 × 10−6 0.25
F12 1.23 × 10−4 0.01 0.32 2.23 × 10−4 0.50 2.95 × 10−4 0.03
F13 6.13 × 10−5 3.10 × 10−3 0.08 4.52 × 10−5 0.17 1.02 × 10−4 0.01
F14 3.74 × 10−9 3.58 × 10−6 1.84 × 10−3 8.08 × 10−10 0.01 2.98 × 10−9 8.97 × 10−6

F15 5.46 × 10−7 2.88 × 10−3 0.23 2.59 × 10−7 2.76 6.25 × 10−7 4.04 × 10−3

F16 3.18 × 10−3 8.63 3.03 × 106 4.19 × 10−4 3.52 × 109 1.74 × 10−3 4.76 × 103

TOTAL 3 0 0 10 2 1 0

5.1.3. D = 200

Next, the seven types of EHOs were evaluated using the 16 benchmarks mentioned previously,
with dimension D = 200. The obtained mean function values and standrd values from 30 runs are
recorded in Tables 6 and 7.

From Table 6, we can see that in terms of the mean function values, R2 performed much better
than the other algorithms, providing the smallest function values on 13 out of 16 of the benchmark
functions. As for the other methods, R1 ranked second, having performed the best on two of the
benchmark functions. RR1 ranked third, giving the best result on one of the functions. From Table 7,
obviously, R2 performed in the most stable way, while for the other algorithms, EHO has a significant
advantage over the other algorithms.

102

Mathematics 2019, 7, 395

Table 6. Mean function values obtained by EHO and six improved methods with D = 200.

EHO R1 RR1 R2 RR2 R3 RR3

F01 3.68 × 10−4 8.01 × 10−4 0.03 8.94 × 10−5 1.71 1.78 × 10−4 9.60 × 10−3

F02 5.65 × 10−4 7.10 × 10−4 0.06 1.08 × 10−4 1.06 2.19 × 10−4 0.01
F03 2.17 × 10−6 2.23 × 10−5 8.24 × 10−3 2.72 × 10−8 3.12 1.83 × 10−7 7.55 × 10−4

F04 7.43 × 10−14 1.46 × 10−9 1.82 × 10−5 3.25 × 10−16 0.56 3.46 × 10−15 2.37 × 10−8

F05 18.45 18.39 17.57 18.53 18.70 18.50 18.50
F06 6.90 6.89 8.03 7.60 8.67 7.72 7.82
F07 7.24 × 10−6 2.87 × 10−5 0.04 1.76 × 10−7 11.34 6.97 × 10−7 2.21 × 10−3

F08 1.20 × 10−15 2.20 × 10−12 1.05 × 10−8 2.22 × 10−16 3.94 × 10−4 2.21 × 10−16 8.55 × 10−11

F09 2.16 × 10−5 1.46 × 10−4 0.14 6.14 × 10−7 40.87 2.38 × 10−6 0.01
F10 7.58 × 104 7.43 × 104 7.59 × 104 7.58 × 104 7.50 × 104 7.58 × 104 7.58 × 104

F11 2.41 × 10−4 2.46 × 10−3 7.16 2.72 × 10−5 699.60 7.04 × 10−5 0.14
F12 5.71 × 10−3 0.02 0.37 1.29 × 10−3 11.26 2.41 × 10−3 0.12
F13 9.65 × 10−4 2.89 × 10−3 0.06 1.93 × 10−4 1.57 3.64 × 10−4 0.02
F14 1.08 × 10−7 1.82 × 10−6 6.24 × 10−4 2.74 × 10−9 0.19 1.24 × 10−8 1.46 × 10−5

F15 2.25 × 10−5 1.90 × 10−4 0.96 1.02 × 10−6 63.15 4.19 × 10−6 0.01
F16 1.52 1.53 × 103 4.00 × 108 0.01 5.17 × 1012 0.08 4.61 × 105

TOTAL 0 2 1 13 0 0 0

Table 7. Standard values obtained by EHO and six improved methods with D = 200.

EHO R1 RR1 R2 RR2 R3 RR3

F01 1.10 × 10−5 1.35 × 10−3 0.04 4.38 × 10−5 0.13 5.87 × 10−5 4.78 × 10−3

F02 2.70 × 10−5 8.25 × 10−4 0.10 3.76 × 10−5 0.12 4.61 × 10−5 0.01
F03 3.50 × 10−8 7.44 × 10−5 0.02 1.65 × 10−8 0.27 1.10 × 10−7 1.55 × 10−3

F04 1.35 × 10−14 5.94 × 10−9 4.19 × 10−5 1.21 × 10−16 0.14 9.76 × 10−15 1.22 × 10−7

F05 0.12 0.16 0.76 0.17 0.05 0.18 0.18
F06 0.34 0.40 0.28 0.30 0.58 0.22 0.29
F07 6.49 × 10−7 6.58 × 10−5 0.04 1.11 × 10−7 2.00 4.21 × 10−7 5.56 × 10−3

F08 7.08 × 10−17 1.13 × 10−11 1.80 × 10−8 1.61 × 10−19 1.28 × 10−4 1.05 × 10−18 4.33 × 10−10

F09 1.44 × 10−6 3.78 × 10−4 0.23 5.66 × 10−7 3.79 1.43 × 10−6 0.05
F10 897.80 853.40 971.60 1.12 × 103 833.10 1.02 × 103 907.60
F11 4.63 × 10−5 5.96 × 10−3 14.39 2.64 × 10−5 353.00 5.11 × 10−5 0.27
F12 2.72 × 10−4 0.03 0.36 4.03 × 10−4 1.09 8.39 × 10−4 0.13
F13 7.38 × 10−5 4.15 × 10−3 0.08 7.99 × 10−5 0.16 9.51 × 10−5 0.01
F14 7.41 × 10−9 7.42 × 10−6 1.10 × 10−3 1.96 × 10−9 0.02 1.03 × 10−8 1.03 × 10−5

F15 1.88 × 10−6 3.50 × 10−4 2.13 8.43 × 10−7 9.40 2.12 × 10−6 0.04
F16 0.14 4.85 × 103 1.74 × 109 8.45 × 10−3 7.73 × 1011 0.04 2.00 × 106

TOTAL 4 0 0 9 2 1 0

5.1.4. D = 500

The seven kinds of EHOs also were evaluated using the same 16 benchmarks mentioned previously,
with dimension D = 500. The obtained mean function values and standard values from 30 runs are
recorded in Tables 8 and 9.

In terms of the mean function values, Table 8 shows that R2 performed much better than the
other methods, providing the smallest function values on 13 out of 16 functions. In comparison, R0,
RR1, and RR3 gave similar performances to each other, performing the best on only one function each.
From Table 9, obviously, R2 performed in the most stable way, while for the other algorithms, EHO has
a significant advantage over the other algorithms.

103

Mathematics 2019, 7, 395

Table 8. Mean function values obtained by EHO and six improved methods with D = 500.

EHO R1 RR1 R2 RR2 R3 RR3

F01 3.92 × 10−4 7.03 × 10−4 0.03 8.75 × 10−5 1.76 1.72 × 10−4 8.52 × 10−3

F02 1.53 × 10−3 3.40 × 10−3 0.11 2.99 × 10−4 2.58 5.47 × 10−4 0.02
F03 5.60 × 10−6 8.70 × 10−5 0.04 5.67 × 10−8 7.91 4.15 × 10−7 2.14 × 10−3

F04 6.51 × 10−13 4.40 × 10−9 7.69 × 10−3 1.48 × 10−15 3.94 1.45 × 10−14 7.70 × 10−8

F05 45.80 45.90 45.44 45.92 45.99 45.91 45.93
F06 18.55 19.23 19.93 19.44 21.13 19.43 19.62
F07 2.35 × 10−5 6.78 × 10−5 0.24 4.42 × 10−7 27.03 1.59 × 10−6 8.63 × 10−3

F08 8.52 × 10−15 3.89 × 10−13 1.60 × 10−7 2.23 × 10−16 2.42 × 10−3 2.39 × 10−16 1.51 × 10−10

F09 6.13 × 10−5 2.15 × 10−3 0.87 1.31 × 10−6 107.70 6.53 × 10−6 0.02
F10 1.96 × 105 1.97 × 105 1.97 × 105 1.99 × 105 1.99 × 105 1.92 × 105 1.95 × 105

F11 1.61 × 10−3 0.17 10.43 1.40 × 10−4 5.30 × 103 4.16 × 10−4 0.71
F12 0.02 0.03 1.30 3.15 × 10−3 30.31 6.04 × 10−3 0.57
F13 1.07 × 10−3 3.01 × 10−3 0.06 2.07 × 10−4 1.72 4.22 × 10−4 0.02
F14 3.12 × 10−7 4.56 × 10−6 5.26 × 10−3 6.15 × 10−9 0.48 2.74 × 10−8 6.08 × 10−5

F15 1.71 × 10−4 7.41 × 10−4 1.85 7.59 × 10−6 427.30 2.17 × 10−5 0.07
F16 1.60 × 103 3.60 × 107 1.33 × 1012 1.20 8.83 × 1015 16.25 2.37 × 109

TOTAL 1 0 1 13 0 0 1

Table 9. Standard function values obtained by EHO and six improved methods with D = 500.

EHO R1 RR1 R2 RR2 R3 RR3

F01 7.22 × 10−6 8.01 × 10−4 0.02 2.66 × 10−5 0.08 4.32 × 10−5 4.04 × 10−3

F02 4.67 × 10−5 4.09 × 10−3 0.11 1.19 × 10−4 0.20 1.49 × 10−4 0.01
F03 5.65 × 10−8 2.10 × 10−4 0.13 2.62 × 10−8 0.51 2.91 × 10−7 5.94 × 10−3

F04 6.17 × 10−14 1.83 × 10−8 0.04 3.12 × 10−15 0.98 2.53 × 10−14 2.84 × 10−7

F05 0.09 0.02 0.75 0.03 0.05 0.04 0.02

F06 0.31 0.32 0.18 0.21 0.85 0.15 0.25
F07 1.05 × 10−6 1.35 × 10−4 0.78 3.05 × 10−7 3.86 9.25 × 10−7 0.02
F08 3.61 × 10−16 1.72 × 10−12 4.03 × 10−7 2.01 × 10−18 5.40 × 10−4 1.31 × 10−17 6.30 × 10−10

F09 2.15 × 10−6 0.01 1.71 9.91 × 10−7 12.30 4.69 × 10−6 0.04
F10 1.54 × 103 1.43 × 103 1.30 × 103 1.28 × 103 1.38 × 103 1.45 × 103 1.65 × 103

F11 3.44 × 10−4 0.70 12.21 9.50 × 10−5 2.00 × 103 2.38 × 10−4 1.51
F12 3.52 × 10−4 0.04 1.93 1.23 × 10−3 2.11 2.09 × 10−3 1.24
F13 5.90 × 10−5 4.79 × 10−3 0.06 6.75 × 10−5 0.12 1.69 × 10−4 0.01
F14 1.75 × 10−8 1.60 × 10−5 0.02 3.39 × 10−9 0.05 1.32 × 10−8 1.16 × 10−4

F15 8.50 × 10−6 1.04 × 10−3 3.96 6.20 × 10−6 50.28 1.15 × 10−5 0.19
F16 113.00 1.90 × 108 4.50 × 1012 2.37 1.61 × 1015 17.62 1.27 × 1010

TOTAL 4 0 0 9 0 1 2

5.1.5. D = 1000

Finally, the same seven types of EHOs were evaluated using the 16 benchmarks mentioned
previously, with dimension D = 1000. The obtained mean function values and standard values from 30
runs are recorded in Tables 10 and 11.

In terms of the mean function values, Table 10 shows that R2 had the absolute advantage over
the other metaheuristic algorithms, succeeding in finding function values on 12 out of 16 functions.
Among the other metaheuristic algorithms, R0 ranked second, having performed the best on three of
the benchmark functions. In addition, RR1 was successful in finding the best function value. From
Table 11, obviously, R2 performed in the most stable way, while for the other algorithms, EHO has
a significant advantage over the other algorithms.

104

Mathematics 2019, 7, 395

Table 10. Mean function values obtained by EHO and six improved methods with D = 1000.

EHO R1 RR1 R2 RR2 R3 RR3

F01 4.04 × 10−4 1.29 × 10−3 0.03 8.66 × 10−5 1.79 1.90 × 10−4 0.01
F02 3.14 × 10−3 5.68 × 10−3 0.20 6.20 × 10−4 5.45 1.29 × 10−3 0.04
F03 1.11 × 10−5 5.10 × 10−5 0.07 1.41 × 10−7 16.18 8.78 × 10−7 1.97 × 10−3

F04 3.05 × 10−12 1.17 × 10−9 7.48 × 10−4 4.48 × 10−15 16.77 3.01 × 10−14 4.97 × 10−7

F05 91.29 91.36 91.19 91.36 91.53 91.36 91.38
F06 38.23 38.90 39.79 39.11 42.71 39.08 39.26
F07 5.15 × 10−5 1.20 × 10−3 0.39 1.01 × 10−6 55.16 3.93 × 10−6 0.01
F08 3.73 × 10−14 1.00 × 10−11 3.77 × 10−6 2.28 × 10−16 0.01 2.73 × 10−16 1.66 × 10−8

F09 1.33 × 10−4 1.91 × 10−4 0.91 3.21 × 10−6 221.00 1.00 × 10−5 0.05
F10 3.94 × 105 3.94 × 105 4.01 × 105 4.00 × 105 3.98 × 105 3.97 × 105 3.98 × 105

F11 5.88 × 10−3 0.39 1.18 × 103 4.79 × 10−4 2.06 × 104 1.45 × 10−3 7.41
F12 0.03 0.09 1.94 66.74 72.28 54.85 56.84
F13 1.16 × 10−3 1.77 × 10−3 0.12 2.40 × 10−4 1.87 4.74 × 10−4 0.02
F14 6.68 × 10−7 4.59 × 10−6 0.03 1.79 × 10−8 1.00 5.22 × 10−8 1.46 × 10−4

F15 7.43 × 10−4 0.02 14.34 2.45 × 10−5 1.73 × 103 9.52 × 10−5 0.57
F16 4.71 × 105 8.97 × 108 1.28 × 1014 77.47 2.51 × 1018 3.89 × 103 4.76 × 1012

TOTAL 3 0 1 12 0 0 0

Table 11. Standard function values obtained by EHO and six improved methods with D = 1000.

EHO R1 RR1 R2 RR2 R3 RR3

F01 8.50 × 10−6 2.69 × 10−3 0.04 2.81 × 10−5 0.07 6.05 × 10−5 0.01
F02 6.45 × 10−5 6.76 × 10−3 0.24 3.09 × 10−4 0.39 4.28 × 10−4 0.03
F03 7.82 × 10−8 1.24 × 10−4 0.21 1.02 × 10−7 1.70 4.10 × 10−7 2.21 × 10−3

F04 2.22 × 10−13 3.61 × 10−9 1.86 × 10−3 8.75 × 10−15 2.65 3.01 × 10−14 1.80 × 10−6

F05 0.06 0.02 0.49 0.01 0.06 0.01 0.01
F06 0.22 0.39 0.15 0.22 1.08 0.18 0.22
F07 1.06 × 10−6 4.96 × 10−3 0.58 6.86 × 10−7 5.68 1.98 × 10−6 0.01
F08 9.68 × 10−16 2.77 × 10−11 1.55 × 10−5 3.36 × 10−18 2.65 × 10−3 6.47 × 10−17 9.11 × 10−8

F09 4.43 × 10−6 3.58 × 10−4 1.64 2.11 × 10−6 20.66 7.28 × 10−6 0.09
F10 2.19 × 103 2.04 × 103 2.11 × 103 1.98 × 103 1.60 × 103 1.93 × 103 2.75 × 103

F11 9.97 × 10−4 1.46 4.01 × 103 4.03 × 10−4 9.58 × 103 8.04 × 10−4 24.87
F12 5.39 × 10−4 0.15 1.76 4.90 1.61 2.31 1.48
F13 6.61 × 10−5 2.68 × 10−3 0.15 9.41 × 10−5 0.15 1.45 × 10−4 0.01
F14 2.21 × 10−8 1.05 × 10−5 0.10 1.05 × 10−8 0.08 2.83 × 10−8 2.89 × 10−4

F15 2.62 × 10−5 0.04 52.24 2.14 × 10−5 213.10 4.96 × 10−5 1.43
F16 2.34 × 104 3.39 × 109 4.12 × 1014 93.37 4.52 × 1017 3.42 × 103 2.67 × 1013

TOTAL 5 0 1 8 1 1 0

5.1.6. Summary of Function Values Obtained by Seven Variants of EHOs

In Section 4.1, the mean function values obtained from 30 runs were collected and analyzed.
In addition, the best, mean, worst, and standard (STD) function values obtained from 30 implementations
were summarized and are recorded, as shown in Table 12.

From Table 12, we can see that, in general, R2 performed far better than the six other algorithms.
R1 and R0 were second and third in performance, respectively, among all of the seven tested methods.
Except for R0, R1, and R2, the other metaheuristic algorithms provided similar performances, which
were highly inferior to R0, R1, and R2. Looking carefully at Table 12 for the best function values,
R1 provided the best performance among the seven metaheuristic algorithms, which was far better
than R2. This indicates that finding a means to improve the best performance of R2 further is
a challenging question in EHO studies.

105

Mathematics 2019, 7, 395

Table 12. Optimization results values obtained by EHO and six improved methods for 16 benchmark
functions. STD—standard.

D EHO R1 RR1 R2 RR2 R3 RR3

50

BEST 0 13 2 1 0 0 0
MEAN 0 1 1 14 0 0 0
WORST 0 2 0 13 0 0 1

STD 3 1 0 11 0 0 1
TOTAL 3 17 3 39 0 0 2

100

BEST 0 13 1 2 0 0 0
MEAN 1 1 1 13 0 0 0
WORST 1 2 0 13 0 0 0

STD 3 0 0 10 2 1 0
TOTAL 5 16 2 38 2 1 0

200

BEST 1 10 1 3 0 1 0
MEAN 0 2 1 13 0 0 0
WORST 1 2 0 13 0 0 0

STD 4 0 0 9 2 1 0
TOTAL 6 14 2 38 2 2 0

500

BEST 1 11 1 2 0 0 1
MEAN 1 0 1 13 0 0 1
WORST 2 0 0 14 0 0 0

STD 4 0 0 9 0 1 2
TOTAL 8 11 2 38 0 1 4

1000

BEST 0 11 1 3 0 0 1
MEAN 3 0 1 12 0 0 0
WORST 3 1 0 12 0 0 0

STD 5 0 1 8 1 1 0
TOTAL 11 12 3 35 1 1 1

To provide a clear demonstration of the effectiveness of the different individual updating strategies,
in this part of our work, we selected five functions randomly from the 16 large-scale complex functions,
and their convergence histories with dimension D = 50, 100, 200, 500, and 1000. From Figures 1–5,
we can see that of the seven metaheuristic algorithms, R2 succeeded in finding the best function values
at the end of the search in each of these five large-scale complicated functions. This trend coincided
with our previous analysis.

106

Mathematics 2019, 7, 395

Figure 1. Cont.

107

Mathematics 2019, 7, 395

Figure 1. Cont.

108

Mathematics 2019, 7, 395

Figure 1. Optimization process of seven algorithms on five functions with D = 50. EHO—elephant
herd optimization.

Figure 2. Cont.

109

Mathematics 2019, 7, 395

Figure 2. Cont.

110

Mathematics 2019, 7, 395

Figure 2. Optimization process of seven algorithms on five functions with D = 100.

111

Mathematics 2019, 7, 395

Figure 3. Cont.

112

Mathematics 2019, 7, 395

Figure 3. Cont.

113

Mathematics 2019, 7, 395

Figure 3. Optimization process of seven algorithms on five functions with D = 200.

Figure 4. Cont.

114

Mathematics 2019, 7, 395

Figure 4. Cont.

115

Mathematics 2019, 7, 395

Figure 4. Optimization process of seven algorithms on five functions with D = 500.

116

Mathematics 2019, 7, 395

Figure 5. Cont.

117

Mathematics 2019, 7, 395

Figure 5. Cont.

118

Mathematics 2019, 7, 395

Figure 5. Optimization process of seven algorithms on five functions with D = 1000.

5.2. Constrained Optimization

Besides the standard benchmark evaluation, in this section, fourteen constrained optimization
problems originated from CEC 2017 [121] are selected in order to further verify the performance of six
improved versions of EHO, namely: EHOR1, EHORR1, EHOR2, EHORR2, EHOR3, and EHORR3.
The six variants of the EHO were investigated fully through a series of experiments, using fourteen
large-scale constrained benchmarks with dimensions D = 50, and 100. These complicated large-scale
benchmarks can be found in Table 13. More information about all of the benchmarks can be found
in [86,118,119]. As before, we performed 30 independent runs under the same conditions as shown in
the literature [120]. For all of the parameters, they are the same as before.

Table 13. Details of 14 Congress on Evolutionary Computation (CEC) 2017 constrained functions. D
is the number of decision variables, I is the number of inequality constraints, and E is the number of
equality constraints.

No. Problem Search Range
Type of

Objective
Number of Constraints

E I

F01 C05 [−10, 10]D Non-Separable 0
2

Non-Separable,
Rotated

F02 C06 [−20, 20]D Separable 6 0
Separable

F03 C07 [−50, 50]D Separable 2
Separable 0

F04 C08 [−100, 100]D Separable 2
Non-Separable 0

F05 C09 [−10, 10]D Separable 2
Non-Separable 0

F06 C10 [−100, 100]D Separable 2
Non-Separable 0

F07 C12 [−100, 100]D Separable 0 2
Separable

F08 C13 [−100, 100]D Non-Separable 0 3
Separable

119

Mathematics 2019, 7, 395

Table 13. Cont.

No. Problem Search Range
Type of

Objective
Number of Constraints

E I

F09 C15 [−100, 100]D Separable 1 1

F10 C16 [−100, 100]D Separable 1
Non-Separable

1
Separable

F11 C17 [−100, 100]D Non-Separable 1
Non-Separable

1
Separable

F12 C18 [−100, 100]D Separable 1 2
Non-Separable

F13 C25 [−100, 100]D Rotated 1
Rotated

1
Rotated

F14 C26 [−100, 100]D Rotated 1
Rotated

1
Rotated

5.2.1. D = 50

In this section of our work, seven kinds of EHOs were evaluated using the 14 constrained
benchmarks mentioned previously, with dimension D = 50. The obtained mean function values and
standard values from thirty runs are recorded in Tables 14 and 15.

Table 14. Mean function values obtained by EHO and six improved methods on fourteen CEC 2017
constrained optimization functions with D = 50.

EHO R1 RR1 R2 RR2 R3 RR3

F01 8.50 × 10−6 2.69 × 10−3 0.04 2.81 × 10−5 0.07 6.05 × 10−5 0.01
F02 6.45 × 10−5 6.76 × 10−3 0.24 3.09 × 10−4 0.39 4.28 × 10−4 0.03
F03 7.82 × 10−8 1.24 × 10−4 0.21 1.02 × 10−7 1.70 4.10 × 10−7 2.21 × 10−3

F04 2.22 × 10−13 3.61 × 10−9 1.86 × 10−3 8.75 × 10−15 2.65 3.01 × 10−14 1.80 × 10−6

F05 0.06 0.02 0.49 0.01 0.06 0.01 0.01
F06 0.22 0.39 0.15 0.22 1.08 0.18 0.22
F07 1.06 × 10−6 4.96 × 10−3 0.58 6.86 × 10−7 5.68 1.98 × 10−6 0.01
F08 9.68 × 10−16 2.77 × 10−11 1.55 × 10−5 3.36 × 10−18 2.65 × 10−3 6.47 × 10−17 9.11 × 10−8

F09 4.43 × 10−6 3.58 × 10−4 1.64 2.11 × 10−6 20.66 7.28 × 10−6 0.09
F10 2.19 × 103 2.04 × 103 2.11 × 103 1.98 × 103 1.60 × 103 1.93 × 103 2.75 × 103

F11 9.97 × 10−4 1.46 4.01 × 103 4.03 × 10−4 9.58 × 103 8.04 × 10−4 24.87
F12 5.39 × 10−4 0.15 1.76 4.90 1.61 2.31 1.48
F13 6.61 × 10−5 2.68 × 10−3 0.15 9.41 × 10−5 0.15 1.45 × 10−4 0.01
F14 2.21 × 10−8 1.05 × 10−5 0.10 1.05 × 10−8 0.08 2.83 × 10−8 2.89 × 10−4

TOTAL 1 2 9 2 0 0 0

Table 15. Standard values obtained by EHO and six improved methods on fourteen CEC 2017
constrained optimization functions with D = 50.

EHO R1 RR1 R2 RR2 R3 RR3

F01 4.06 × 104 3.58 × 104 4.08 × 104 5.75 × 104 6.26 × 104 5.65 × 104 4.16 × 104

F02 127.50 123.10 100.70 86.83 102.00 122.10 59.11

F03 65.68 46.15 48.94 50.84 38.43 42.04 51.71
F04 0.37 0.61 0.72 0.72 0.34 0.70 0.76
F05 0.36 0.35 0.31 0.37 0.27 0.29 0.22

F06 2.75 2.56 1.91 2.73 2.66 2.15 1.19

F07 1.73 × 103 1.42 × 103 1.44 × 103 1.79 × 103 1.67 × 103 1.61 × 103 1.37 × 103

F08 2.51 × 108 2.07 × 108 2.54 × 108 2.49 × 108 3.87 × 108 2.38 × 108 2.63 × 108

F09 1.39 1.77 1.44 2.32 2.31 2.01 1.44
F10 41.32 40.76 33.77 39.29 41.69 36.24 34.50
F11 0.45 0.37 0.49 0.36 0.52 0.43 0.37
F12 1.81 × 103 1.48 × 103 1.65 × 103 1.84 × 103 1.85 × 103 1.75 × 103 1.63 × 103

F13 80.20 67.86 75.43 75.82 72.32 69.12 61.46

F14 1.39 1.54 2.28 1.66 2.11 1.88 1.76
TOTAL 2 3 1 1 2 0 5

120

Mathematics 2019, 7, 395

From Table 14, we can see that in terms of the mean function values, RR1 performed the best,
at a level far better than the other methods. As for the other methods, R1 and R2 provided a similar
performance to each other, and they could find the smallest fitness values successfully on two constrained
functions. From Table 15, it can be observed that RR3 performed in the most stable way, while for the
other algorithms, they have a similar stable performance.

5.2.2. D = 100

As above, the same seven kinds of EHOs were evaluated using the fourteen constrained
benchmarks mentioned previously, with dimension D = 100. The obtained mean function values and
standard values from 30 runs are recorded in Tables 16 and 17.

Table 16. Mean function values obtained by EHO and six improved methods on fourteen CEC 2017
constrained optimization functions with D = 100.

EHO R1 RR1 R2 RR2 R3 RR3

F01 1.09 × 106 9.71 × 105 9.48 × 105 9.49 × 105 1.13 × 106 9.71 × 105 1.01 × 106

F02 3.88 × 103 3.76 × 103 3.80 × 103 3.77 × 103 4.00 × 103 3.77 × 103 3.88 × 103

F03 9.35 × 103 9.35 × 103 9.35 × 103 9.35 × 103 9.34 × 103 9.35 × 103 9.37 × 103

F04 1.01 × 103 1.01 × 103 1.01 × 103 1.01 × 103 1.01 × 103 1.01 × 103 1.01 × 103

F05 9.39 9.37 9.37 9.36 9.76 9.35 9.43
F06 1.04 × 103 1.04 × 103 1.04 × 103 1.04 × 103 1.05 × 103 1.04 × 103 1.04 × 103

F07 6.99 × 104 6.79 × 104 6.58 × 104 6.50 × 104 7.20 × 104 6.68 × 104 6.96 × 104

F08 8.77 × 109 8.02 × 109 7.80 × 109 8.19 × 109 8.95 × 109 8.14 × 109 8.62 × 109

F09 47.52 47.20 47.73 47.98 49.02 47.56 46.86

F10 2.18 × 103 2.16 × 103 2.13 × 103 2.14 × 103 2.22 × 103 2.17 × 103 2.16 × 103

F11 17.99 17.63 17.18 17.22 18.60 17.51 17.96
F12 6.82 × 104 6.60 × 104 6.50 × 104 6.52 × 104 7.01 × 104 6.63 × 104 6.87 × 104

F13 3.60 × 103 3.55 × 103 3.58 × 103 3.57 × 103 3.78 × 103 3.59 × 103 3.66 × 103

F14 55.89 55.19 53.99 53.88 60.16 54.61 56.37
TOTAL 1 2 4 4 1 1 1

Table 17. Standard values obtained by EHO and six improved methods on fourteen CEC 2017
constrained optimization functions with D = 100.

EHO R1 RR1 R2 RR2 R3 RR3

F01 7.04 × 104 6.49 × 104 7.85 × 104 8.34 × 104 9.27 × 104 6.51 × 104 7.03 × 104

F02 122.00 125.20 106.10 111.90 137.30 113.80 102.50

F03 73.82 74.87 72.61 66.75 96.82 80.98 65.38

F04 0.25 0.23 0.39 0.25 0.31 0.24 0.36
F05 0.14 0.14 0.14 0.19 0.13 0.14 0.09

F06 1.20 1.23 1.39 1.46 1.73 1.22 1.27
F07 2.93 × 103 2.42 × 103 3.14 × 103 3.02 × 103 3.25 × 103 2.73 × 103 2.52 × 103

F08 5.94 × 108 6.11 × 108 7.07 × 108 7.24 × 108 1.01 × 109 6.43 × 108 5.77 × 108

F09 0.77 0.64 1.25 0.93 0.57 0.95 1.06
F10 52.32 60.00 53.11 63.71 52.42 56.61 51.64

F11 0.67 0.72 0.73 0.72 0.84 0.57 0.59
F12 2.35 × 103 2.77 × 103 3.13 × 103 2.71 × 103 3.00 × 103 3.00 × 103 2.34 × 103

F13 80.54 77.54 125.50 116.70 119.80 108.50 72.75

F14 3.02 2.93 3.44 3.27 3.05 3.38 2.56

TOTAL 1 3 0 0 1 1 8

Regarding the mean function values, Table 16 shows that RR1 and R2 have the same performance,
which performed much better than the other algorithms, providing the smallest function values on 4
out of 14 functions. As for the other algorithms, R1 ranks R2, EHO, RR2, R3, and RR3 gave a similar
performance to each other, performing the best only on one function each. From Table 17, it can be

121

Mathematics 2019, 7, 395

observed that RR3 performed in the most stable way, while for the other algorithms, R1 has a significant
advantage over the other algorithms.

6. Conclusions

In optimization research, few metaheuristic algorithms reuse previous information to guide
the later updating process. In our proposed improvement for basic elephant herd optimization,
the previous information in the population is extracted to guide the later search process. We select one,
two, or three elephant individuals from the previous iterations in either a fixed or random manner.
Using the information from the selected previous elephant individuals, we offer six individual updating
strategies (R1, RR1, R2, RR2, R3, and RR3) that are then incorporated into the basic EHO in order to
generate six variants of EHO. The final EHO individual at this iteration is generated according to
the individual generated by the basic EHO at the current iteration, along with the selected previous
individuals using a weighted sum. The weights are determined by a random number and the fitness
of the elephant individuals at the previous iteration.

We tested our six proposed algorithms against 16 large-scale test cases. Among the six individual
updating strategies, R2 performed much better than the others on most benchmarks. The experimental
results demonstrated that the proposed EHO variations significantly outperformed the basic EHO.

In future research, we will propose more individual updating strategies to further improve the
performance of EHO. In addition, the proposed individual updating strategies will be incorporated
into other metaheuristic algorithms. We believe they will generate promising results on large-scale test
functions and practical engineering cases.

Author Contributions: Methodology, J.L. and Y.L.; software, L.G. and Y.L.; validation, Y.L. and C.L.; formal
analysis, J.L., Y.L., and C.L.; supervision, L.G.

Acknowledgments: This work was supported by the Overall Design and Application Framework Technology of
Photoelectric System (no. 315090501) and the Early Warning and Laser Jamming System for Low and Slow Targets
(no. 20170203015GX).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Wang, G.-G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans.
Cybern. 2019, 49, 542–555. [CrossRef] [PubMed]

2. Saleh, H.; Nashaat, H.; Saber, W.; Harb, H.M. IPSO task scheduling algorithm for large scale data in cloud
computing environment. IEEE Access 2019, 7, 5412–5420. [CrossRef]

3. Zhang, Y.F.; Chiang, H.D. A novel consensus-based particle swarm optimization-assisted trust-tech
methodology for large-scale global optimization. IEEE Trans. Cybern. 2017, 47, 2717–2729. [PubMed]

4. Kazimipour, B.; Omidvar, M.N.; Qin, A.K.; Li, X.; Yao, X. Bandit-based cooperative coevolution for tackling
contribution imbalance in large-scale optimization problems. Appl. Soft Compt. 2019, 76, 265–281. [CrossRef]

5. Jia, Y.-H.; Zhou, Y.-R.; Lin, Y.; Yu, W.-J.; Gao, Y.; Lu, L. A Distributed Cooperative Co-evolutionary CMA
Evolution Strategy for Global Optimization of Large-Scale Overlapping Problems. IEEE Access 2019, 7,
19821–19834. [CrossRef]

6. De Falco, I.; Della Cioppa, A.; Trunfio, G.A. Investigating surrogate-assisted cooperative coevolution for
large-Scale global optimization. Inf. Sci. 2019, 482, 1–26. [CrossRef]

7. Dhiman, G.; Kumar, V. Seagull optimization algorithm: Theory and its applications for large-scale industrial
engineering problems. Knowl.-Based Syst. 2019, 165, 169–196. [CrossRef]

8. Cravo, G.L.; Amaral, A.R.S. A GRASP algorithm for solving large-scale single row facility layout problems.
Comput. Oper. Res. 2019, 106, 49–61. [CrossRef]

9. Zhao, X.; Liang, J.; Dang, C. A stratified sampling based clustering algorithm for large-scale data. Knowl.-Based
Syst. 2019, 163, 416–428. [CrossRef]

10. Yildiz, Y.E.; Topal, A.O. Large Scale Continuous Global Optimization based on micro Differential Evolution
with Local Directional Search. Inf. Sci. 2019, 477, 533–544. [CrossRef]

122

Mathematics 2019, 7, 395

11. Ge, Y.F.; Yu, W.J.; Lin, Y.; Gong, Y.J.; Zhan, Z.H.; Chen, W.N.; Zhang, J. Distributed differential evolution
based on adaptive mergence and split for large-scale optimization. IEEE Trans. Cybern. 2017. [CrossRef]

12. Wang, G.-G.; Deb, S.; Coelho, L.d.S. Elephant herding optimization. In Proceedings of the 2015 3rd
International Symposium on Computational and Business Intelligence (ISCBI 2015), Bali, Indonesia, 7–9
December 2015; pp. 1–5.

13. Wang, G.-G.; Deb, S.; Gao, X.-Z.; Coelho, L.d.S. A new metaheuristic optimization algorithm motivated by
elephant herding behavior. Int. J. Bio-Inspired Comput. 2016, 8, 394–409. [CrossRef]

14. Meena, N.K.; Parashar, S.; Swarnkar, A.; Gupta, N.; Niazi, K.R. Improved elephant herding optimization for
multiobjective DER accommodation in distribution systems. IEEE Trans. Ind. Inform. 2018, 14, 1029–1039.
[CrossRef]

15. Jayanth, J.; Shalini, V.S.; Ashok Kumar, T.; Koliwad, S. Land-Use/Land-Cover Classification Using Elephant
Herding Algorithm. J. Indian Soc. Remote Sens. 2019. [CrossRef]

16. Rashwan, Y.I.; Elhosseini, M.A.; El Sehiemy, R.A.; Gao, X.Z. On the performance improvement of elephant
herding optimization algorithm. Knowl.-Based Syst. 2019. [CrossRef]

17. Correia, S.D.; Beko, M.; da Silva Cruz, L.A.; Tomic, S. Elephant Herding Optimization for Energy-Based
Localization. Sensors 2018, 18, 2849.

18. Jafari, M.; Salajegheh, E.; Salajegheh, J. An efficient hybrid of elephant herding optimization and cultural
algorithm for optimal design of trusses. Eng. Comput.-Ger. 2018. [CrossRef]

19. Hassanien, A.E.; Kilany, M.; Houssein, E.H.; AlQaheri, H. Intelligent human emotion recognition based on
elephant herding optimization tuned support vector regression. Biomed. Signal Process. Control 2018, 45,
182–191. [CrossRef]

20. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2015. [CrossRef]
21. Yi, J.-H.; Lu, M.; Zhao, X.-J. Quantum inspired monarch butterfly optimization for UCAV path planning

navigation problem. Int. J. Bio-Inspired Comput. 2017. Available online: http://www.inderscience.com/info/
ingeneral/forthcoming.php?jcode=ijbic (accessed on 30 March 2019).

22. Wang, G.-G.; Chu, H.E.; Mirjalili, S. Three-dimensional path planning for UCAV using an improved bat
algorithm. Aerosp. Sci. Technol. 2016, 49, 231–238. [CrossRef]

23. Wang, G.; Guo, L.; Duan, H.; Liu, L.; Wang, H.; Shao, M. Path planning for uninhabited combat aerial vehicle
using hybrid meta-heuristic DE/BBO algorithm. Adv. Sci. Eng. Med. 2012, 4, 550–564. [CrossRef]

24. Feng, Y.; Wang, G.-G.; Deb, S.; Lu, M.; Zhao, X. Solving 0-1 knapsack problem by a novel binary monarch
butterfly optimization. Neural Comput. Appl. 2017, 28, 1619–1634. [CrossRef]

25. Feng, Y.; Yang, J.; Wu, C.; Lu, M.; Zhao, X.-J. Solving 0-1 knapsack problems by chaotic monarch butterfly
optimization algorithm. Memetic Comput. 2018, 10, 135–150. [CrossRef]

26. Feng, Y.; Wang, G.-G.; Li, W.; Li, N. Multi-strategy monarch butterfly optimization algorithm for discounted
{0-1} knapsack problem. Neural Comput. Appl. 2018, 30, 3019–3036. [CrossRef]

27. Feng, Y.; Yang, J.; He, Y.; Wang, G.-G. Monarch butterfly optimization algorithm with differential evolution
for the discounted {0-1} knapsack problem. Acta Electron. Sin. 2018, 46, 1343–1350.

28. Feng, Y.; Wang, G.-G.; Dong, J.; Wang, L. Opposition-based learning monarch butterfly optimization with
Gaussian perturbation for large-scale 0-1 knapsack problem. Comput. Electr. Eng. 2018, 67, 454–468.
[CrossRef]

29. Wang, G.-G.; Zhao, X.; Deb, S. A novel monarch butterfly optimization with greedy strategy and self-adaptive
crossover operator. In Proceedings of the 2015 2nd International Conference on Soft Computing & Machine
Intelligence (ISCMI 2015), Hong Kong, 23–24 November 2015; pp. 45–50.

30. Wang, G.-G.; Deb, S.; Zhao, X.; Cui, Z. A new monarch butterfly optimization with an improved crossover
operator. Oper. Res. Int. J. 2018, 18, 731–755. [CrossRef]

31. Wang, G.-G.; Hao, G.-S.; Cheng, S.; Qin, Q. A discrete monarch butterfly optimization for Chinese TSP
problem. In Proceedings of the Advances in Swarm Intelligence: 7th International Conference, ICSI 2016,
Part I, Bali, Indonesia, 25–30 June 2016; Tan, Y., Shi, Y., Niu, B., Eds.; Springer International Publishing: Cham,
Switzerland, 2016; Volume 9712, pp. 165–173.

32. Wang, G.-G.; Hao, G.-S.; Cheng, S.; Cui, Z. An improved monarch butterfly optimization with equal partition
and F/T mutation. In Proceedings of the Eight International Conference on Swarm Intelligence (ICSI 2017),
Fukuoka, Japan, 27 July–1 August 2017; pp. 106–115.

123

Mathematics 2019, 7, 395

33. Wang, G.-G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems.
Memetic Comput. 2018, 10, 151–164. [CrossRef]

34. Feng, Y.; An, H.; Gao, X. The importance of transfer function in solving set-union knapsack problem based
on discrete moth search algorithm. Mathematics 2019, 7, 17. [CrossRef]

35. Elaziz, M.A.; Xiong, S.; Jayasena, K.P.N.; Li, L. Task scheduling in cloud computing based on hybrid moth
search algorithm and differential evolution. Knowl.-Based Syst. 2019. [CrossRef]

36. Feng, Y.; Wang, G.-G. Binary moth search algorithm for discounted {0-1} knapsack problem. IEEE Access
2018, 6, 10708–10719. [CrossRef]

37. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci.
Numer. Simulat. 2012, 17, 4831–4845. [CrossRef]

38. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Hao, G.-S. Hybrid krill herd algorithm with differential evolution
for global numerical optimization. Neural Comput. Appl. 2014, 25, 297–308. [CrossRef]

39. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H. Stud krill herd algorithm. Neurocomputing 2014, 128, 363–370.
[CrossRef]

40. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H. An effective krill herd algorithm with migration operator in
biogeography-based optimization. Appl. Math. Model. 2014, 38, 2454–2462. [CrossRef]

41. Guo, L.; Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Duan, H. A new improved krill herd algorithm for global
numerical optimization. Neurocomputing 2014, 138, 392–402. [CrossRef]

42. Wang, G.-G.; Deb, S.; Gandomi, A.H.; Alavi, A.H. Opposition-based krill herd algorithm with Cauchy
mutation and position clamping. Neurocomputing 2016, 177, 147–157. [CrossRef]

43. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Deb, S. A hybrid method based on krill herd and quantum-behaved
particle swarm optimization. Neural Comput. Appl. 2016, 27, 989–1006. [CrossRef]

44. Wang, G.-G.; Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. A new hybrid method based on krill herd and cuckoo
search for global optimization tasks. Int. J. Bio-Inspired Comput. 2016, 8, 286–299. [CrossRef]

45. Abdel-Basset, M.; Wang, G.-G.; Sangaiah, A.K.; Rushdy, E. Krill herd algorithm based on cuckoo search for
solving engineering optimization problems. Multimed. Tools Appl. 2017. [CrossRef]

46. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Deb, S. A multi-stage krill herd algorithm for global numerical
optimization. Int. J. Artif. Intell. Tools 2016, 25, 1550030. [CrossRef]

47. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H.; Gong, D. A comprehensive review of krill herd algorithm: Variants,
hybrids and applications. Artif. Intell. Rev. 2019, 51, 119–148. [CrossRef]

48. Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial
bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [CrossRef]

49. Wang, H.; Yi, J.-H. An improved optimization method based on krill herd and artificial bee colony with
information exchange. Memetic Comput. 2018, 10, 177–198. [CrossRef]

50. Liu, F.; Sun, Y.; Wang, G.-G.; Wu, T. An artificial bee colony algorithm based on dynamic penalty and chaos
search for constrained optimization problems. Arab. J. Sci. Eng. 2018, 43, 7189–7208. [CrossRef]

51. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, Australia, 27 November–1 December 1995; pp. 1942–1948.

52. Helwig, S.; Branke, J.; Mostaghim, S. Experimental analysis of bound handling techniques in particle swarm
optimization. IEEE Trans. Evol. Comput. 2012, 17, 259–271. [CrossRef]

53. Li, J.; Zhang, J.; Jiang, C.; Zhou, M. Composite particle swarm optimizer with historical memory for function
optimization. IEEE Trans. Cybern. 2015, 45, 2350–2363. [CrossRef]

54. Gong, M.; Cai, Q.; Chen, X.; Ma, L. Complex network clustering by multiobjective discrete particle swarm
optimization based on decomposition. IEEE Trans. Evol. Comput. 2014, 18, 82–97. [CrossRef]

55. Yuan, Y.; Ji, B.; Yuan, X.; Huang, Y. Lockage scheduling of Three Gorges-Gezhouba dams by hybrid of
chaotic particle swarm optimization and heuristic-adjusted strategies. Appl. Math. Comput. 2015, 270, 74–89.
[CrossRef]

56. Zhang, Y.; Gong, D.W.; Cheng, J. Multi-objective particle swarm optimization approach for cost-based feature
selection in classification. IEEE/ACM Trans. Comput. Biol. Bioinform. 2017, 14, 64–75. [CrossRef]

57. Yang, X.-S.; Deb, S. Cuckoo search via Lévy flights. In Proceedings of the World Congress on Nature &
Biologically Inspired Computing (NaBIC 2009), Coimbatore, India, 9–11 December 2009; pp. 210–214.

58. Wang, G.-G.; Gandomi, A.H.; Zhao, X.; Chu, H.E. Hybridizing harmony search algorithm with cuckoo search
for global numerical optimization. Soft Comput. 2016, 20, 273–285. [CrossRef]

124

Mathematics 2019, 7, 395

59. Wang, G.-G.; Deb, S.; Gandomi, A.H.; Zhang, Z.; Alavi, A.H. Chaotic cuckoo search. Soft Comput. 2016, 20,
3349–3362. [CrossRef]

60. Cui, Z.; Sun, B.; Wang, G.-G.; Xue, Y.; Chen, J. A novel oriented cuckoo search algorithm to improve DV-Hop
performance for cyber-physical systems. J. Parallel Distrib. Comput. 2017, 103, 42–52. [CrossRef]

61. Li, J.; Li, Y.-X.; Tian, S.-S.; Zou, J. Dynamic cuckoo search algorithm based on Taguchi opposition-based
search. Int. J. Bio-Inspired Comput. 2019, 13, 59–69. [CrossRef]

62. Baluja, S. Population-Based Incremental Learning: A Method for Integrating Genetic Search Based Function
Optimization and Competitive Learning; CMU-CS-94-163; Carnegie Mellon University: Pittsburgh, PA, USA,
1994.

63. Storn, R.; Price, K. Differential evolution-a simple and efficient heuristic for global optimization over
continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

64. Das, S.; Suganthan, P.N. Differential evolution: A survey of the state-of-the-art. IEEE Trans. Evol. Comput.
2011, 15, 4–31. [CrossRef]

65. Li, Y.-L.; Zhan, Z.-H.; Gong, Y.-J.; Chen, W.-N.; Zhang, J.; Li, Y. Differential evolution with an evolution path:
A deep evolutionary algorithm. IEEE Trans. Cybern. 2015, 45, 1798–1810. [CrossRef] [PubMed]

66. Teoh, B.E.; Ponnambalam, S.G.; Kanagaraj, G. Differential evolution algorithm with local search for capacitated
vehicle routing problem. Int. J. Bio-Inspired Comput. 2015, 7, 321–342. [CrossRef]

67. Beyer, H.; Schwefel, H. Natural Computing; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2002.
68. Reddy, S.S.; Panigrahi, B.; Debchoudhury, S.; Kundu, R.; Mukherjee, R. Short-term hydro-thermal scheduling

using CMA-ES with directed target to best perturbation scheme. Int. J. Bio-Inspired Comput. 2015, 7, 195–208.
[CrossRef]

69. Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Mixed variable structural optimization using firefly algorithm.
Comput. Struct. 2011, 89, 2325–2336. [CrossRef]

70. Yang, X.S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput.
2010, 2, 78–84. [CrossRef]

71. Wang, G.-G.; Guo, L.; Duan, H.; Wang, H. A new improved firefly algorithm for global numerical optimization.
J. Comput. Theor. Nanosci. 2014, 11, 477–485. [CrossRef]

72. Zhang, Y.; Song, X.-F.; Gong, D.-W. A return-cost-based binary firefly algorithm for feature selection. Inf. Sci.
2017, 418–419, 561–574. [CrossRef]

73. Wang, G.-G.; Deb, S.; Coelho, L.d.S. Earthworm optimization algorithm: A bio-inspired metaheuristic
algorithm for global optimization problems. Int. J. Bio-Inspired Comput. 2018, 12, 1–23. [CrossRef]

74. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley: New York,
NY, USA, 1998.

75. Sun, X.; Gong, D.; Jin, Y.; Chen, S. A new surrogate-assisted interactive genetic algorithm with weighted
semisupervised learning. IEEE Trans. Cybern. 2013, 43, 685–698. [PubMed]

76. Garg, H. A hybrid PSO-GA algorithm for constrained optimization problems. Appl. Math. Comput. 2016,
274, 292–305. [CrossRef]

77. Dorigo, M.; Stutzle, T. Ant Colony Optimization; MIT Press: Cambridge, MA, USA, 2004.
78. Ciornei, I.; Kyriakides, E. Hybrid ant colony-genetic algorithm (GAAPI) for global continuous optimization.

IEEE Trans. Syst. Man Cybern. Part B Cybern. 2012, 42, 234–245. [CrossRef] [PubMed]
79. Sun, X.; Zhang, Y.; Ren, X.; Chen, K. Optimization deployment of wireless sensor networks based on

culture-ant colony algorithm. Appl. Math. Comput. 2015, 250, 58–70. [CrossRef]
80. Wang, G.-G.; Guo, L.; Gandomi, A.H.; Hao, G.-S.; Wang, H. Chaotic Krill Herd algorithm. Inf. Sci. 2014, 274,

17–34. [CrossRef]
81. Li, J.; Tang, Y.; Hua, C.; Guan, X. An improved krill herd algorithm: Krill herd with linear decreasing step.

Appl. Math. Comput. 2014, 234, 356–367. [CrossRef]
82. Mehrabian, A.R.; Lucas, C. A novel numerical optimization algorithm inspired from weed colonization. Ecol.

Inform. 2006, 1, 355–366. [CrossRef]
83. Sang, H.-Y.; Duan, P.-Y.; Li, J.-Q. An effective invasive weed optimization algorithm for scheduling

semiconductor final testing problem. Swarm Evol. Comput. 2018, 38, 42–53. [CrossRef]
84. Sang, H.-Y.; Pan, Q.-K.; Duan, P.-Y.; Li, J.-Q. An effective discrete invasive weed optimization algorithm for

lot-streaming flowshop scheduling problems. J. Intell. Manuf. 2015, 29, 1337–1349. [CrossRef]

125

Mathematics 2019, 7, 395

85. Khatib, W.; Fleming, P. The stud GA: A mini revolution? In Proceedings of the 5th International Conference
on Parallel Problem Solving from Nature, New York, NY, USA, 27–30 September 1998; pp. 683–691.

86. Simon, D. Biogeography-based optimization. IEEE Trans. Evol. Comput. 2008, 12, 702–713. [CrossRef]
87. Simon, D.; Ergezer, M.; Du, D.; Rarick, R. Markov models for biogeography-based optimization. IEEE Trans.

Syst. Man Cybern. Part B Cybern. 2011, 41, 299–306. [CrossRef]
88. Geem, Z.W.; Kim, J.H.; Loganathan, G.V. A new heuristic optimization algorithm: Harmony search. Simulation

2001, 76, 60–68. [CrossRef]
89. Bilbao, M.N.; Ser, J.D.; Salcedo-Sanz, S.; Casanova-Mateo, C. On the application of multi-objective harmony

search heuristics to the predictive deployment of firefighting aircrafts: A realistic case study. Int. J. Bio-Inspired
Comput. 2015, 7, 270–284. [CrossRef]

90. Amaya, I.; Correa, R. Finding resonant frequencies of microwave cavities through a modified harmony
search algorithm. Int. J. Bio-Inspired Comput. 2015, 7, 285–295. [CrossRef]

91. Yang, X.S.; Gandomi, A.H. Bat algorithm: A novel approach for global engineering optimization. Eng. Comput.
2012, 29, 464–483. [CrossRef]

92. Xue, F.; Cai, Y.; Cao, Y.; Cui, Z.; Li, F. Optimal parameter settings for bat algorithm. Int. J. Bio-Inspired Comput.
2015, 7, 125–128. [CrossRef]

93. Wu, G.; Shen, X.; Li, H.; Chen, H.; Lin, A.; Suganthan, P.N. Ensemble of differential evolution variants. Inf. Sci.
2018, 423, 172–186. [CrossRef]

94. Wang, G.-G.; Lu, M.; Zhao, X.-J. An improved bat algorithm with variable neighborhood search for global
optimization. In Proceedings of the 2016 IEEE Congress on Evolutionary Computation (IEEE CEC 2016),
Vancouver, BC, Canada, 25–29 July 2016; pp. 1773–1778.

95. Duan, H.; Zhao, W.; Wang, G.; Feng, X. Test-sheet composition using analytic hierarchy process and hybrid
metaheuristic algorithm TS/BBO. Math. Probl. Eng. 2012, 2012, 712752. [CrossRef]

96. Pan, Q.-K.; Gao, L.; Wang, L.; Liang, J.; Li, X.-Y. Effective heuristics and metaheuristics to minimize total
flowtime for the distributed permutation flowshop problem. Expert Syst. Appl. 2019. [CrossRef]

97. Peng, K.; Pan, Q.-K.; Gao, L.; Li, X.; Das, S.; Zhang, B. A multi-start variable neighbourhood descent algorithm
for hybrid flowshop rescheduling. Swarm Evol. Comput. 2019, 45, 92–112. [CrossRef]

98. Zhang, Y.; Gong, D.; Hu, Y.; Zhang, W. Feature selection algorithm based on bare bones particle swarm
optimization. Neurocomputing 2015, 148, 150–157. [CrossRef]

99. Zhang, Y.; Gong, D.-W.; Sun, J.-Y.; Qu, B.-Y. A decomposition-based archiving approach for multi-objective
evolutionary optimization. Inf. Sci. 2018, 430–431, 397–413. [CrossRef]

100. Logesh, R.; Subramaniyaswamy, V.; Vijayakumar, V.; Gao, X.-Z.; Wang, G.-G. Hybrid bio-inspired user
clustering for the generation of diversified recommendations. Neural Comput. Appl. 2019. [CrossRef]

101. Wang, G.-G.; Cai, X.; Cui, Z.; Min, G.; Chen, J. High performance computing for cyber physical social systems by
using evolutionary multi-objective optimization algorithm. IEEE Trans. Emerg. Top. Comput. 2017. [CrossRef]

102. Zou, D.; Li, S.; Wang, G.-G.; Li, Z.; Ouyang, H. An improved differential evolution algorithm for the economic
load dispatch problems with or without valve-point effects. Appl. Energ. 2016, 181, 375–390. [CrossRef]

103. Rizk-Allah, R.M.; El-Sehiemy, R.A.; Wang, G.-G. A novel parallel hurricane optimization algorithm for secure
emission/economic load dispatch solution. Appl. Soft Compt. 2018, 63, 206–222. [CrossRef]

104. Yi, J.-H.; Wang, J.; Wang, G.-G. Improved probabilistic neural networks with self-adaptive strategies for
transformer fault diagnosis problem. Adv. Mech. Eng. 2016, 8, 1687814015624832. [CrossRef]

105. Sang, H.-Y.; Pan, Q.-K.; Li, J.-Q.; Wang, P.; Han, Y.-Y.; Gao, K.-Z.; Duan, P. Effective invasive weed optimization
algorithms for distributed assembly permutation flowshop problem with total flowtime criterion. Swarm
Evol. Comput. 2019, 44, 64–73. [CrossRef]

106. Yi, J.-H.; Xing, L.-N.; Wang, G.-G.; Dong, J.; Vasilakos, A.V.; Alavi, A.H.; Wang, L. Behavior of crossover
operators in NSGA-III for large-scale optimization problems. Inf. Sci. 2018. [CrossRef]

107. Yi, J.-H.; Deb, S.; Dong, J.; Alavi, A.H.; Wang, G.-G. An improved NSGA-III Algorithm with adaptive
mutation operator for big data optimization problems. Future Gener. Comput. Syst. 2018, 88, 571–585.
[CrossRef]

108. Liu, K.; Gong, D.; Meng, F.; Chen, H.; Wang, G.-G. Gesture segmentation based on a two-phase estimation of
distribution algorithm. Inf. Sci. 2017, 394–395, 88–105. [CrossRef]

109. Wang, G.-G.; Guo, L.; Duan, H.; Liu, L.; Wang, H. The model and algorithm for the target threat assessment
based on Elman_AdaBoost strong predictor. Acta Electron. Sin. 2012, 40, 901–906.

126

Mathematics 2019, 7, 395

110. Wang, G.; Guo, L.; Duan, H. Wavelet neural network using multiple wavelet functions in target threat
assessment. Sci. World J. 2013, 2013, 632437. [CrossRef] [PubMed]

111. Nan, X.; Bao, L.; Zhao, X.; Zhao, X.; Sangaiah, A.K.; Wang, G.-G.; Ma, Z. EPuL: An enhanced positive-unlabeled
learning algorithm for the prediction of pupylation sites. Molecules 2017, 22, 1463. [CrossRef] [PubMed]

112. Zou, D.-X.; Deb, S.; Wang, G.-G. Solving IIR system identification by a variant of particle swarm optimization.
Neural Comput. Appl. 2018, 30, 685–698. [CrossRef]

113. Rizk-Allah, R.M.; El-Sehiemy, R.A.; Deb, S.; Wang, G.-G. A novel fruit fly framework for multi-objective
shape design of tubular linear synchronous motor. J. Supercomput. 2017, 73, 1235–1256. [CrossRef]

114. Sun, J.; Gong, D.; Li, J.; Wang, G.-G.; Zeng, X.-J. Interval multi-objective optimization with memetic algorithms.
IEEE Trans. Cybern. 2019. [CrossRef] [PubMed]

115. Liu, Y.; Gong, D.; Sun, X.; Zhang, Y. Many-objective evolutionary optimization based on reference points.
Appl. Soft Compt. 2017, 50, 344–355. [CrossRef]

116. Gong, D.; Liu, Y.; Yen, G.G. A Meta-Objective Approach for Many-Objective Evolutionary Optimization.
Evol. Comput. 2018. [CrossRef]

117. Gong, D.; Sun, J.; Miao, Z. A set-based genetic algorithm for interval many-objective optimization problems.
IEEE Trans. Evol. Comput. 2018, 22, 47–60. [CrossRef]

118. Yao, X.; Liu, Y.; Lin, G. Evolutionary programming made faster. IEEE Trans. Evol. Comput. 1999, 3, 82–102.
119. Yang, X.-S.; Cui, Z.; Xiao, R.; Gandomi, A.H.; Karamanoglu, M. Swarm Intelligence and Bio-Inspired Computation;

Elsevier: Waltham, MA, USA, 2013.
120. Wang, G.; Guo, L.; Wang, H.; Duan, H.; Liu, L.; Li, J. Incorporating mutation scheme into krill herd algorithm

for global numerical optimization. Neural Comput. Appl. 2014, 24, 853–871. [CrossRef]
121. Wu, G.; Mallipeddi, R.; Suganthan, P.N. Problem Definitions and Evaluation Criteria for the CEC 2017 Competition

on Constrained Real-Parameter Optimization; National University of Defense Technology: Changsha, China;
Kyungpook National University: Daegu, Korea; Nanyang Technological University: Singapore, 2017.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

127

mathematics

Article

Improved Whale Algorithm for Solving the Flexible
Job Shop Scheduling Problem

Fei Luan 1,2,*, Zongyan Cai 1, Shuqiang Wu 1, Tianhua Jiang 3, Fukang Li 1 and Jia Yang 1

1 School of Construction Machinery, Chang’an University, Xi’an 710064, China; czyan@chd.edu.cn (Z.C.);
wushuqiangjob@163.com (S.W.); fukangli198@163.com (F.L.); yangjialearning@163.com (J.Y.)

2 College of Mechanical and Electrical Engineering, Shaanxi University of Science & Technology,
Xi’an 710021, China

3 School of Transportation, Ludong University, Yantai 264025, China; jth1127@163.com
* Correspondence: luanfei@sust.edu.cn

Received: 6 March 2019; Accepted: 24 April 2019; Published: 28 April 2019

Abstract: In this paper, a novel improved whale optimization algorithm (IWOA), based on the
integrated approach, is presented for solving the flexible job shop scheduling problem (FJSP) with the
objective of minimizing makespan. First of all, to make the whale optimization algorithm (WOA)
adaptive to the FJSP, the conversion method between the whale individual position vector and
the scheduling solution is firstly proposed. Secondly, a resultful initialization scheme with certain
quality is obtained using chaotic reverse learning (CRL) strategies. Thirdly, a nonlinear convergence
factor (NFC) and an adaptive weight (AW) are introduced to balance the abilities of exploitation
and exploration of the algorithm. Furthermore, a variable neighborhood search (VNS) operation is
performed on the current optimal individual to enhance the accuracy and effectiveness of the local
exploration. Experimental results on various benchmark instances show that the proposed IWOA
can obtain competitive results compared to the existing algorithms in a short time.

Keywords: whale optimization algorithm; flexible job shop scheduling problem; nonlinear
convergence factor; adaptive weight; variable neighborhood search

1. Introduction

In recent years, scheduling played a crucial role in almost all manufacturing systems, as global
competition became more and more intense. The classical job shop scheduling problem (JSP) is
one of the most important scheduling forms existing in real manufacturing. It became a hotspot in
the academic circle and received a large amount of attention in the research literature with its wide
applicability and inherent complexity [1–3]. In JSP, a group of jobs need to be processed on a set of
machines, where each job consists of a set of operations with a fixed order. The processing of each
operation of the jobs must be performed on a given machine. Each machine is continuously available
at time zero and can process only one operation at a time without interruption. The decision concerns
how to sequence the operations of all the jobs on the machines, so that a given performance indicator
can be optimized. Makespan is the time in which all the jobs need to be completed and is a typical
performance indicator for the JSP.

The flexible job shop scheduling problem (FJSP) is an extension of the classical JSP, where each
operation can be processed by any machine in a given set rather than one specified machine. The FJSP
is closer to a real manufacturing environment compared with classical JSP. According to its practical
applicability, the FJSP became very crucial in both academic and application fields. However, it is more
difficult than classical JSP because it contains an additional decision problem, assigning operations to
the appropriate machine. Therefore, the FJSP is a problem of challenging complexity and was proven
to be non-deterministic polynomial-time (NP)-hard [4].

Mathematics 2019, 7, 384; doi:10.3390/math7050384 www.mdpi.com/journal/mathematics128

Mathematics 2019, 7, 384

In the initial study, Brucker and Schlie firstly proposed a polynomial algorithm for solving the
FJSP with two jobs [5]. During the past two decades, the FJSP attracted the interest of many researchers.
There were many approximation algorithms, mainly metaheuristics, presented for solving the FJSP.
Dauzere-Peres and Paulli [6] proposed a tabu search (TS) algorithm which was based on a new
neighborhood structure for the FJSP. Mastrolilli and Gambardella [7] designed two neighborhood
functions and presented an improved TS algorithm based on the original one which was proposed in
literature [6]. Mati et al. [8] proposed a genetic algorithm for solving the FJSP with blocking constraints.
Regarding the FJSP, Mousakhani. [9] developed a mixed-integer linear programming model (MILP)
and designed an iterated local search algorithm to minimize total tardiness. Yuan et al. [10] designed a
novel hybrid harmony search (HHS) algorithm based on the integrated approach for solving the FJSP
with the objective to minimize makespan. Tao and Hua [11] presented an improved bacterial foraging
algorithm (BFOA) based on cloud computing to solve the multi-objective flexible job shop scheduling
problem (MOFJSP). Gong et al. [12] proposed a double flexible job shop scheduling problem (DFJSP)
with flexible machines and workers, and then a new hybrid genetic algorithm (NHGA) was designed to
solve the proposed DFJSP. Wang et al. [13] presented a two-stage energy-saving optimization algorithm
for the FJSP. In their methods, the problem was divided into two subproblems: the machine assignment
problem and the operation sequencing problem. An improved genetic algorithm was designed to solve
the machine assignment problem and a genetic particle swarm hybrid algorithm was developed for
the operation sequencing problem. An improved particle swarm optimization (PSO) was developed
by Marzouki et al. [14]. Yuan and Xu [15] designed memetic algorithms (MAs) for solving the MOFJSP
with three objectives, makespan, total workload, and critical workload. Gao et al. [16] proposed a
discrete harmony search (DHS) to solve the MOFJSP with two objectives of makespan, the mean
of earliness and tardiness. Piroozfard et al. [17] devised a novel multi-objective genetic algorithm
(MOGA) for solving the problem with two conflicting objectives, total carbon footprint and total late
work. Jiang et al. [18] pronounced a gray wolf optimization algorithm with a double-searching mode
(DMGWO) to solve the energy-efficient job shop scheduling problem (EJSP). Singh and Mahapatra [19]
proposed an improved particle swarm optimization (PSO) for the FJSP, in which quantum behavior
and a logistic map were introduced. Wu and Sun. [20] presented a green scheduling algorithm for
solving the energy-saving flexible job shop scheduling problem (EFJSP).

According to their potential advantages, many metaheuristic algorithms were proposed and
improved to solve various problems [21–24]. The whale optimization algorithm (WOA) is a new
metaheuristic algorithm which imitates the hunting behavior of humpback whales in nature [25].
Because of its characteristics (simple principle, fewer parameter settings, and strong optimization
performance), WOA was applied to deal with various optimization problems in different fields,
i.e., neural networks [26], feature selection [27], image segmentation [28], photovoltaic cells [29],
the energy-efficient job shop scheduling problem [30], and the permutation flow shop scheduling
problem [31]. This motivates us to present an improved whale optimization algorithm (IWOA) that can
minimize the makespan of the FJSP. In our proposed IWOA, in order to make the whale optimization
algorithm (WOA) adaptive to the FJSP, the conversion between the whale individual position vector
and the scheduling solution is implemented by utilizing the converting method proposed in the
literature [10]. Then, a resultful initialization scheme with certain quality is obtained by combining
chaotic opposition-based learning strategies. To converge quickly, a nonlinear convergence factor
and an adaptive weight are introduced to balance the abilities of exploitation and exploration of the
algorithm. Furthermore, a variable neighborhood search operation is performed on the current optimal
individual to enhance the accuracy and effectiveness of the local exploration. Experimental results on
various benchmark instances show that the proposed IWOA can obtain competitive results compared
to the existing algorithms in short time.

The rest of this paper is organized as follows: Section 2 introduces the definition of the problem.
Section 3 illustrates the original whale optimization algorithm. In Section 4, the proposed IWOA is

129

Mathematics 2019, 7, 384

described in detail. Section 5 shows the empirical results of IWOA. Conclusions and suggestions for
future works are provided in Section 6.

2. Problem Description

The FJSP is defined in this section. There are a set of n jobs J = {J1, J2, . . . , Jn} and a set of q
machines M =

{
M1, M2, . . . , Mq

}
, where ni is the number of operations of job Ji, m is the total number

of all operations, and Oij represents the jth operation of job Ji. Each operation Oij can be processed
on one machine among a set of alternative machines of the jth operation of job Ji. The FJSP can be
decomposed into two subproblems: the routing subproblem of assigning each operation to a machine
among alternative machines Mij, which is a subset of M, and the scheduling subproblem of sequencing
the assigned operations on all alternative machines to attain a feasible schedule for optimizing a certain
objective function.

The FJSP can be classified into total FJSP (TFJSP) and partial FJSP (PFJSP). For the TFJSP, each
operation can be processed on all machines of M. For the PFJSP, each operation can only be processed
on partial machine of M.

Moreover, the following assumptions are put forward in our study: all jobs are processable at
time 0; all machines available at time 0; each machine can process at most one operation at a time; each
operation must be completed once it starts; the transfer time between operations and the set-up time of
machines are negligible.

In this study, the makespan was selected as the objective to be minimized. The mathematical
model can be described as follows:

minCmax = min(max(Ci)), (1)

ST.Sijh −Ci(j−1)k ≥ 0, Yijh = Yi(j−1)k = 1, (2)

Cijk − Sijk = Lijk, Yijk = 1, (3)

Cegk −Cijk ≥ Legk, Rijegk = 1, Yijk = Yegk = 1, (4)

m∑
k=1

Yijk = 1, i = 1, 2, . . . n; j = 1, 2, . . . ni, (5)

Yijk ∈ {0, 1}, i = 1, 2, . . . n; j = 1, 2, . . . ni; k = 1, 2, . . . q, (6)

Rijegk ∈ {0, 1}, i, e = 1, 2, . . . n; j = 1, 2, . . . ni; g = 1, 2, . . . ne; k = 1, 2, . . . q, (7)

1 ≤ i, e ≤ n, 1 ≤ j, g ≤ m, 1 ≤ k, h ≤ q, Sijk, Cijk ≥ 0, (8)

where Cmax is the maximal completion time of jobs, Ci is the continuous variable for the completion
time of job Ji, Lijk denotes the processing time of operation Oij on machine Mk, Mk denotes the kth
machine of M, Cijk is the continuous variable for the completion time of operation Oij processing on
machine Mk, Sijk is the continuous variable for the start time of operation Oij processing on machine
Mk, and Yijk is a 0–1 variable; if operation Oij is processed on machine Mk, Yijk = 1; otherwise, Yijk = 0.
Rijegk is a 0–1 variable; if operation Oij is processed on machine Mk prior to operation Oeg as they both
can be processed on it, Rijegk = 1; otherwise, Rijegk = 0.

Equation (1) indicates the optimizing objective. Equation (2) ensures the operation precedence
constraint. Equation (3) states that each operation must be completed once it starts. Equation (4)
ensures that each machine can processes only one operation at each time. Equation (5) ensures the
operation can be processed only once. Equations (6) and (7) show the relevant 0–1 variables. Equation
(8) denotes the non-negative feature of relevant variables.

130

Mathematics 2019, 7, 384

3. Whale Optimization Algorithm

The whale optimization algorithm (WOA) is a new intelligent optimization algorithm that mimics
the foraging behavior of humpback whales. After discovering the prey, the humpback whales swim in a
spiral way toward the prey to surround it, at the same time emitting a bubble net for foraging. There are
three kinds of predation methods, namely “encircling prey”, “bubble-net attacking”, and “search for
prey”; among them, “bubble-net attacking” includes two kinds of approaches, namely “shrinking
encircling mechanism” and “spiral updating position”. Thus, the humpback whale’s foraging method
can be described mathematically as shown below.

3.1. Encircling Prey

Since the position of the prey (best position) is unknown in the search space, the WOA assumes
that the current optimal individual is the target prey or is the closest individual to the target prey. After
the optimal individual is discovered, other individuals will update their positions toward the optimal
individual, and this behavior can be represented as follows

→
X(t + 1) =

→
X
∗
(t) −→A·→D, (9)

→
D = |→C·→X

∗
(t) −→X(t)|, (10)

→
A = 2

→
a ·→r −→a , (11)

→
C = 2

→
r , (12)

where t defines the current iteration,
→
A and

→
C denote coefficient vectors,

→
D represents the distance

between the current optimal individual
→
X
∗
(t) and the current individual

→
X(t) at t iteration,

→
X
∗
(t)

represents the position vector of the optimal individual attained so far,
→
X(t) defines the position

vector of an individual whale, || represents the absolute value, and · means an element-by-element
multiplication. Furthermore,

→
r indicates a random vector in [0,1], and a is an element that linearly

decreases from 2 to 0 according to Equation (13) over the course of an iteration, where tmax defines the
maximum of the iteration.

a = 2− 2t
tmax

. (13)

The position of an individual whale can be updated according to the position of the current
optimal individual. Different places around the current optimal individual can be obtained with

regard to the current position by adjusting the values of
→
A and

→
C. It is possible to reach any position

within a feasible solution domain by defining the random vector r. Therefore, Equation (9) allows
any individual whale to update its position in the neighborhood of the current optimal solution and
simulates encircling the prey.

3.2. Bubble-Net Attacking

In the exploitation phase, the humpback whales swim around the prey in a shrinking circle
and along a spiral path simultaneously. To model these two mechanisms, it is assumed that
there is a probability of 50% to choose between them to update the position of whales during
the optimization process.

3.2.1. Shrinking Encircling Mechanism

This behavior is obtained by decreasing the fluctuation range of A in Equation (9). According to
Equation (11), the fluctuation range of A can be decreased by a. Specifically, A is a random value in the
interval [−a, a]. Setting random values for A in [−1,1], the new position of an individual whale can be

131

Mathematics 2019, 7, 384

defined anywhere in between the original position of the individual and the position of the current
optimal individual.

3.2.2. Spiral Updating Position

To model this mechanism, the distance between the whale and the prey (current optimal individual
position) is firstly calculated, and then a spiral path is achieved between the position of whale and the
prey to simulate the helix-shaped movement of the humpback whales, which can be defined as follows:

→
X(t + 1) =

→
D
′
·ebl· cos(2πl) +

→
X
∗
(t), (14)

→
D
′
= |→X

∗
(t) −→X(t)|, (15)

where
→
D
′

is the absolute value for the distance between the current optimal individual
→
X
∗
(t) and the

current individual whale
→
X(t) at t iteration, b is a constant and denotes the shape of the logarithmic

spiral, l is a random number in [−1, 1], and · is an element-by-element multiplication.
Thus, the mathematical model of the bubble-net attacking behavior of humpback whales can be

defined by Equation (16), where p is a random number inside [0, 1].

→
X(t + 1) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
→
X
∗
(t) −→A·→D p < 0.5

→
D
′
·ebl· cos(2πl) +

→
X
∗
(t) p ≥ 0.5

. (16)

3.3. Search for Prey

In contrast to the exploitation phase, the humpback whales also search for prey randomly; the
mechanism is implemented by the variation of the vector A. When |A| < 1, the exploitation is achieved
by updating the positions toward the current optimal individual; when |A| ≥ 1, the exploration is
adopted by updating the positions toward a randomly chosen individual to search for the global
optimum, which can be denoted as follows:

→
X(t + 1) =

→
Xrand(t) −

→
A·→D, (17)

→
D =

∣∣∣∣∣
→
C·→Xrand(t) −

→
X(t)
∣∣∣∣∣, (18)

where
→
Xrand(t) is the individual position vector randomly selected from the current population.

4. The Proposed IWOA

4.1. Scheduling Solution Denotation

As mentioned above, the FJSP contains two subproblems, i.e., machine assignment and operation
sequence. For this feature, a two-segment string with the size of 2mn is used to represent the scheduling
solution. The first segment aims to choose an appropriate machine for each operation, and the second
segment represents the processing sequence of operations on each machine. Taking a 3 × 3 (three jobs,
three machines) FJSP as an example, each job has two operations. The scheduling solution is shown
in Figure 1. For the first segment, the element j means the operation chooses the jth machine in the
alternative machine set, where all elements are stored in a fixed order. For the second segment, each
element represents the job code, where the elements with the same value i mean different operations of
the same job i, and Oik presents the kth operation of the job i.

132

Mathematics 2019, 7, 384

2 3 2 1 2 2 3 1 1 3 2

O OOO O O OO OO O O

Operation sequenceMachine assignment

1

Figure 1. Scheduling solution denotation.

4.2. Individual Position Vector

In our proposed IWOA, the individual position is still denoted as a multi-dimensional
real vector, which also consists of two segments string with the size of mn, i.e.,
X =

{
x(1), x(2), . . . x(mn), x(mn + 1), . . . x(2mn)

}
, where x(j) ∈ [xmin(j), xmax(j)], j = 1, 2, . . . 2mn.

The first segment X1 =
{
x(1), x(2), . . . x(mn)

}
denotes the information of machine assignment, and

the second segment X2 =
{
x(mn + 1), x(mn + 2), . . . x(2mn)

}
presents the information of operation

sequencing. For the above 3 × 2 FJSP, the individual position vector can be represented by Figure 2,
where element values are listed in the given order. In addition, the intervals [xmin(j), xmax(j)] are all
set as [−δ, δ], where δ presents the number of the jobs.

1.2 -1.7 1.9 2.3 -1.2 2.2 0.2 -1.5 -1.0 1.3 2.0

O OOO O O OO OO O O

Operation sequenceMachine assignment

2.7

Figure 2. Individual position vector.

4.3. Conversion Mechanism

Since the original WOA was proposed to tackle continuous problems, but the FJSP belongs to
a discrete combinatorial problem, some measures should be implemented to construct the mapping
relationship between the individual position vector and the discrete scheduling solution. In a previous
study, Yuan et al. [10] proposed a method to implement the conversion between the continuous
individual position vector and the discrete scheduling solution for the FJSP. Therefore, the conversion
method in the literature [10] will be used in this study.

4.3.1. Conversion from Scheduling Solution to Individual Position Vector

For the machine assignment segment, the conversion process can be represented by Equation
(19). Here, x(i) denotes the ith element of the individual position vector, s(i) presents the number of
alternative machine set for the operation corresponding to the ith element, and n(i) means the serial
number of the chosen machine in its alternative machine set; if s(i) = 1, then x(i) can be achieved by
choosing a random value in the interval [−δ, δ].

x(i) =
[
2δ/(s(i) − 1)

]
(n(i) − 1) − δ, s(i) � 1 . (19)

For the operation sequence segment, firstly, it is needed to randomly generate mn real numbers in
the range [−δ, δ] corresponding to the scheduling solution. According to the ranked-order-value (ROV)
rule, a unique ROV value is assigned to each random number in an increasing order, so that each ROV
value can correspond to an operation. Secondly, the ROV value is rearranged according to the coding
order of the operations, and the random number corresponding to the rearranged ROV value is the
value of the element of the individual position vector. The conversion process is shown in Figure 3.

133

Mathematics 2019, 7, 384

Figure 3. The conversion process from operation sequence to individual position vector.

4.3.2. Conversion from Individual Position Vector to Scheduling Solution

For the machine assignment segment, according to the reverse derivation of Equation (19), the
conversion can be achieved, which can be denoted by Equation (20).

n(i) = round
[
(x(i) + δ)(s(i) − 1)

2δ
+ 1
]

(20)

For the operation sequence segment, the ROV value is firstly increasingly assigned to each element
of the individual position vector, and then used as the Fixed ID. Therefore, a new operation sequence
can be obtained by corresponding the ROV value to the operations, which is shown in Figure 4.

Figure 4. The conversion from individual position vector to operation sequence.

4.4. Population Initialization

For a swarm intelligence optimization algorithm, the quality of the initial population is very
crucial for the computational performance. In light of the characteristic of the FJSP, the population
initialization process can be implemented in two phases. In the machine assignment phase, the
better initial assignment schemes can be generated by utilizing a chaotic reverse learning method.
In the operation sequence phase, some operation sequences are randomly generated. Combining
each operation sequence with one of the initial assignment schemes, some scheduling solutions are
generated and fitness function values of each scheduling solution are calculated. Then, the initial
population can be achieved by choosing the scheduling solution with the best fitness value each time.

4.5. Nonlinear Convergence Factor

Like other swarm intelligence optimization algorithms, the coordination between the abilities of
exploitation and exploration is important for the performance of the algorithm. In the original WOA,
the abilities of exploitation and exploration mainly depend on the convergence factor a. The larger
the value of a is, the stronger the ability of exploitation is, and then the WOA can exploit the optimal
solution in a large space. The smaller the value of a is, the stronger the ability of exploration is,

134

Mathematics 2019, 7, 384

and then it can merely explore the optimal solution in a small space. Therefore, for improving the
efficiency of exploitation, the value of a can be set to be larger in the early stage of iterations, which is
beneficial to exploit the optimal solution in a larger space, and then it can be set to be smaller in the
later stage of iterations, which is beneficial to concretely explore the better solution around the current
optimal one. However, the value of a linearly decreases over the course of iterations by Equation (13),
which cannot improve the efficiency of the nonlinear search of the algorithm. Therefore, a nonlinear
improvement of a is adopted by Equation (21), where tmax and t denote the maximum iteration and
current iteration, respectively.

a =
(
2− 2t

tmax

)(
1− t3

t3
max

)
(21)

4.6. Adaptive Weight

The improvement of a can improve the optimization ability of the algorithm to some extent, but
it cannot achieve the purpose of effectively balancing the abilities of exploitation and exploration.
Therefore, the adaptive weight and the nonlinear convergence factor a are cooperated to coordinate
the abilities of exploitation and exploration of the algorithm. The adaptive weight proposed in the
literature [32] is used to improve the optimization performance of the algorithm, with the formula
shown by Equation (22), where tmax and t denote the maximum iteration and current iteration,
respectively. The improved iterative formulas in the WOA can be defined by Equations (23) and (24).

ω = sin(
π·t

2·tmax
+ π) + 1. (22)

→
X(t + 1) = ω·→X

∗
(t) −→A·→D. (23)

→
X(t + 1) =

→
D
′
·ebl· cos(2πl) +ω

→
X
∗
(t). (24)

4.7. Variable Neighborhood Search

In the local exploration phase, the whale individuals update their positions toward the current
optimal individual X∗ using Equation (16). Therefore, X∗ determines the accuracy and effectiveness
of the local exploration to some extent. Taking this into account, the variable neighborhood search
strategy is used for improving the quality of the current optimal scheduling solution W∗, and then the
quality of the current optimal individual X∗ can be ameliorated as well. At the same time, an “iterative
counter” is set for W∗ and assigned 0 at the initial moment. If W∗ does not change at each iteration,
the “iterative counter” increases by 1; otherwise, it remains the same. When the “iterative counter” is
equal to stability threshold Ts (15 in this paper), as the individuals reach the steady state, the variable
neighborhood search strategy is performed on W∗, allowing it to escape from the local optimum. For
implementing the strategy, three neighborhood structures were designed as outlined below.

For the neighborhood structure N1, two random positions are chosen with different jobs in the
second segment of the scheduling solution, exchanging the order of jobs from the second random
position to the first random position.

For the neighborhood structure N2, two random positions are chosen with different jobs in the
second segment of the scheduling solution, inserting the job of the first random position in the position
behind the second random position.

For the neighborhood structure N3, a random position is chosen in the first segment of the
scheduling solution, where the number of alternative machines is more than one, and then the current
machine is replaced by another one of the alternative machines in the position.

The new scheduling solution is evaluated after each variable neighborhood search operation.
If the new scheduling solution is better than the original one, then the new scheduling solution is set as

135

Mathematics 2019, 7, 384

the original one. The procedure of the variable neighborhood search operation can is illustrated in
Algorithm 1.

Algorithm 1. The procedure of VNS.

Step 1: Set the current optimal scheduling solution W∗ as the initial solution W, where λ = 1, q = 1, qmax = 3,
and ηmax represents the maximum iteration, at the initial moment.

Step 2: If q = 1, set N1(W) as W′; if q = 2, set N2(W) as W′; if q = 3, set N3(W) as W′; W′ represents the new
scheduling solution, and Ni(W) represents employing the ith neighborhood structure operation on W, where I
= 1, 2, or 3.

Step 3: Set W′ as W, and then the local optimal scheduling solution W′′ can be obtained by executing the local
search operation.

Step 4: If W′′ is better than W, then set W′′ as W, and set q = 1; otherwise, set q + 1 as q.

Step 5: If q > qmax, then set η+ 1 as η, and go to step 6; otherwise, go to step 3.

Step 6: If η > ηmax, go to step 7; otherwise, go to step 2.

Step 7: End.

In this study, the threshold acceptance method is used for the local search operation, which is
shown as Algorithm 2.

Algorithm 2. The procedure of the local search in VNS.

Step 1: Get the initial solution W′, and set δ > 0, γ = 1, ρ = 1, and maximum iteration γmax.

Step 2: If ρ = 1, set N1(W′) ∪N3(W′) as W′′ ; if ρ = 0, set N2(W′) ∪N3(W′) as W′′ .

Step 3: If Fmax(W′′) − Fmax(W′) ≤ δ, then set W′′ as W′; otherwise, set
∣∣∣ρ− 1

∣∣∣ as ρ.

Step 4: Set γ+ 1 as γ, if γ > γmax, then set W′′ as W′, go to step 5; otherwise, go to step 2.

Step 5: End.

4.8. The Procedure of the Proposed IWOA

The detailed steps of the proposed IWOA can be described as Algorithm 3.

Algorithm 3. The procedure of IWOA.

Step 1: Set parameters and generate the initial population by utilizing the chaotic reverse learning strategy and
search method.

Step 2 Calculate the fitness value of each scheduling solution in the population, and then find and retain the
optimal scheduling solution W∗.

Step 3: Judge whether the termination conditions can be met. If not met, perform steps 4–7; otherwise, perform
step 8.

Step 4: Judge whether the value of the “iterative counter” is equal to 15. If met, go to step 5; otherwise, go to
step 6.

Step 5: Employ the variable neighborhood search operation on W∗, and update W∗.

Step 6: Execute the conversion from scheduling solution to individual position vector, and retain the optimal
individual position vector X∗ corresponding to W∗

Step 7: Update each individual position vector using Equations (17), (23) and (24), and execute the conversion
from individual position vector to scheduling solution; set t = t + 1, and then go to step 2.

Step 8: The algorithm ends and outputs the optimal scheduling solution W∗.

136

Mathematics 2019, 7, 384

5. Experimental Results

5.1. Experimental Settings

To evaluate the performance of the proposed IWOA for solving the FJSP, the algorithm was coded
in MATLAB 2016a and run on a computer configured with an Intel Core i5-8250 central processing unit
(CPU) with 1.80 GHz frequency, 8 GB random-access memory (RAM), and a Windows 10 Operating
System. Fifteen famous benchmarks that included a set of 10 instances taken from Brandimarte
(BRdata) [33] and five instances taken from Kacem et al (KAdata) [34] were chosen to test the proposed
algorithm. These benchmark instances were used by many researchers to estimate their approaches.
For each benchmark instance, experimental simulations were run 20 times using different algorithms.
After several preliminary experiments, the parameters of the proposed IWOA were set as follows: a
population size of 100, maximum iterations of 1000, spiral constant b of one, and ηmax and γmax both
set to 10.

5.2. Effectiveness of the Improvement Strategies

In this paper, three strategies were employed to enhance the performance of the IWOA, i.e., CRL,
NFC and AW, and VNS. In this subsection, the effectiveness of the three strategies is firstly evaluated.
In Table 1, the first and second columns present the name and size of the problems, and computational
data are listed in the following columns. “WOA” defines the original whale optimization algorithm.
“IWOA-1” is the algorithm where the nonlinear convergence factor and adaptive weight are both
applied to the WOA. “IWOA-2” is the whale optimization algorithm with the variable neighborhood
search strategy introduced. “IWOA” is the presented algorithm in this study. In addition, “Best”
represents the best result in the 20 runs. “Avg” means the average results value of the twenty runs.
“Time” is the mean computational time (in seconds) in the 20 runs. “LB” denotes the optimal value
of makespan found so far. Boldface denotes the best mean result in the 20 runs. To enhance the
comparison, the same parameters were set for the compared algorithms; for instance, population size
was 100 and maximum iterations were 1000.

From the experimental result in Table 1, the following conclusions can be obtained: (1) in
comparisons of the “Best” value, the IWOA algorithm was better than the other three algorithms,
which obtained seven optimal values, outperforming IWOA-1 in 12 out of 15 instances, IWOA-2 in
nine out of 15 instances, and WOA in 13 out of 15 instances; (2) in comparisons of the “Time” value,
WOA spent a shorter time than the other three algorithms. Compared with IWOA-1, the increase in
computation time was mainly the result of the addition of the variable neighborhood search operation
in WOA, which led to increased time complexity of the algorithm; (3) in comparisons of the “Avg”
value, the IWOA algorithm obtained all optimal values, outperforming WOA and IWOA-1 in 15 out of
15 instances, and outperforming IWOA-2 in 13 out of 15 instances.

5.3. Effectiveness of the Proposed IWOA

To demonstrate the effectiveness of the proposed IWOA, the second experiment was executed
on KAdata. In Table 2, the proposed algorithm is compared with the knowledge-based ant colony
optimization (KBACO) [35], hybrid tabu search algorithm (TSPCB) [36], and the hybrid gray wolf
optimization algorithm (HGWO) [37]. The first column presents the name of the problems. “Best”
represents the best makespan. “Avg” means the average makespan. “Time” is the mean computational
time of the instance. “LB” denotes the optimal value of makespan found so far. “Avg-T“ is the mean
computational time executed on KAdata. As can be seen, the proposed IWOA obtained three optimal
values in solving KAdata, compared with five for ACO, five for HTS, and four for HGWO. However,
the average computational time for the IWOA was very low, at only 4 s (on a Lenovo Thinkpad E480
with CPU i5-8250 @1.80GHz and 8 GB RAM) compared to 4978.8 s (in Matlab on a Dell Precision 650
workstation with a Pentium IV 2.4 GHz CPU and 1 GB RAM) for KBACO, 214.8 s (in C++ on a Pentium
IV 1.6 GHz CPU and 512 MB RAM) for TSPCB, and 19 s (in Fortran on a Pentium CPU G2030@ 3.0

137

Mathematics 2019, 7, 384

GHz and 2 GB) for HGWO. Because the computers applied for running the programs was different,
the comparison among the running times of different algorithms was difficult. However, even if there
exists some differences in the speed between the processors involved, IWOA was obviously faster than
the other three algorithms.

Another experiment was implemented on BRdata. Table 3 compares our proposed IWOA with
the following six algorithms: KBACO [35], TSPCB [36], HGWO [37], artificial immune algorithm
(AIA) [38], particle swarm optimization combined with tabu search (PSO+TS) [39], and tabu search
metaheuristic with a new neighborhood structure called “golf neighborhood” (TS3) [40]. The first
column stands for the name of the problems, and the second column represents the optimal value
found so far. “Best” represents the best makespan. “Mean” represents the average result of “RPD” in
the 20 runs. Boldface denotes the best result of “RPD” in the 20 runs. “RPD” represents the relative
percentage deviation to “LB” and is calculated as follows:

RPD =
Best− LB

LB
× 100. (25)

As can be seen from Table 3, the following conclusions can be easily obtained: (1) in comparisons
of the “Best” value, the proposed IWOA showed competitive performance on BRdata, obtaining four
optimal values, outperforming KBACO in seven out of 10 instances, TS3 and PSO+TS in nine out of 10
instances, and HGWO in eight out of 10 instances, while it was equal to both AIA and TSPCB in six out
of 10 instances; (2) in comparisons of the “RPD” value, the proposed IWOA obtained five optimal
values, outperforming KBACO in seven out of 10 instances, both TS3 and PSO+TS in nine out of 10
instances, and HGWO in eight out of 10 instances, while it was inferior to both AIA and TSPCB in
three out of 10 instances; (3) in comparisons of the “Mean” value, the value for the proposed IWOA
was very low at only 4.91, outperforming the 5.65 for KBACO, 10.12 for HGWO, 23.89 for PSO+TS, and
13.34 for TS3, while it was inferior to the 2.78 for TSPCB and 2.22 for AIA. However, by comparison,
the IWOA obtained the best values in an acceptable time.

Table 1. Effectiveness analysis of improvement strategy. See Section 5.2 for column descriptions.
WOA—whale optimization algorithm.

Instance
WOA WOA-1 WOA-2 IWOA

n ×m LB Best Avg Time Best Avg Time Best Avg Time Best Avg Time

Kacem01 4 × 5 11 11 11.7 0.2 11 11.3 0.2 11 11 1.8 11 11 1.8
Kacem02 8 × 8 14 22 26.3 0.4 16 17.4 0.4 14 15.4 2.9 14 14.8 2.9
Kacem03 10 × 7 11 17 19.5 0.5 14 16.1 0.6 13 14.1 3.1 13 13.6 3.3
Kacem04 10 × 10 7 13 15.8 0.9 7 7.5 1.0 7 7 3.8 7 7 4.1
Kacem05 15 × 10 11 24 28.7 1.4 19 21.5 1.6 14 14.5 7.6 14 14.2 7.9

MK01 10 × 6 39 40 42.3 1.4 40 41.9 1.4 40 40.5 7.4 40 40.2 8.2
MK02 10 × 6 26 34 36.6 1.2 34 35.2 1.2 26 29.7 7.9 26 28.1 8.8
MK03 15 × 8 204 235 2523 3.3 218 234.6 3.6 204 211.6 26.4 204 210.6 31.3
MK04 15 × 8 60 73 77.6 2.1 67 71.3 2.5 65 66.1 13.8 60 62.3 15.7
MK05 15 × 4 172 175 181.4 2.0 175 183.1 2.7 175 178.3 16.1 175 177.1 21.2
MK06 10 × 15 58 93 98.6 1.3 97 105.2 1.5 65 71.5 22.5 63 64.2 30.5
MK07 20 × 5 139 152 163.5 1.6 155 158.6 1.6 148 151.2 19.5 144 147.5 24.7
MK08 20 × 10 523 523 535.1 5.6 523 528.1 5.8 523 525.2 62.5 523 523 89.2
MK09 20 × 10 307 363 384.0 5.9 371 387.2 6.2 312 318.9 81.4 307 315.2 121.4
MK10 20 × 15 198 245 265.2 6.0 231 241.3 6.9 216 235.3 76.5 212 216.6 96.7

138

Mathematics 2019, 7, 384

Table 2. Comparison between the proposed improved WOA (IWOA) and existing algorithms on the
KAdata. See Section 5.3 for column descriptions.

Instance LB
KBACO TSPCB HGWO IWOA

Best Avg Time Best Avg Time Best Avg Time Best Avg Time

Kacem01 11 11 11 900 11 11 2.5 11 11 5.6 11 11 1.8
Kacem02 14 14 14.3 3882 14 14.2 234 14 14.3 14.8 14 14.8 2.9
Kacem03 11 11 11 3966 11 11 260.5 11 11.6 16.3 13 13.6 3.3
Kacem04 7 7 7.4 6642 7 7 86 7 7.5 17.5 7 7 4.1
Kacem05 11 11 11.3 9504 11 11.7 491 13 14.1 40.7 14 14.2 7.9
Avg-T - - - 4978.8 - - 214.8 - - 19.0 - - 4.0

Table 3. Comparison between different algorithms on the BRdata.

Instancee LB
KBACO TSPCB HGWO AIA PSO+TS TS3 IWOA

Best RPD Best RPD Best RPD Best RPD Best RPD Best RPD Best RPD

MK01 39 39 0 40 2.6 40 2.6 40 2.6 40 2.6 41 5.1 40 2.6
MK02 26 29 11.5 26 0 29 11.5 26 0 32 23.1 30 15.4 26 0
MK03 204 204 0 204 0 204 0 204 0 207 1.5 204 0 204 0
MK04 60 65 8.3 62 3.3 65 8.3 60 0 67 11.7 65 8.3 60 0
MK05 172 173 0.6 172 0 175 1.7 173 0.6 188 9.3 174 1.2 175 1.7
MK06 58 67 15.5 65 12.1 79 36.2 63 8.6 85 45.7 71 22.4 63 8.6
MK07 139 144 3.6 140 0.7 149 7.2 140 0.7 154 10.8 148 6.5 144 3.6
MK08 523 523 0 523 0 523 0 523 0 523 0 551 6.1 523 0
MK09 307 311 1.3 310 1.0 325 5.9 312 1.6 437 42.3 410 33.6 339 10.4
MK10 198 229 15.7 214 8.1 253 27.8 214 8.1 380 91.9 267 34.8 242 22.2
Mean - - 5.65 - 2.78 - 10.12 - 2.22 - 23.89 - 13.34 - 4.91

6. Conclusions

In this paper, a novel improved whale optimization algorithm (IWOA), based on the integrated
approach, was presented for solving the flexible job shop scheduling problem (FJSP) with the objective
of minimizing makespan. The conversion method between the whale individual position vector and
the scheduling solution was firstly proposed. After that, three improvement strategies were employed
in the algorithm, namely chaotic reverse learning (CRL), the nonlinear convergence factor (NFC)
and adaptive weight (AW), and the variable neighborhood search (VNS). The CRL was employed to
ensure the quality of the initial solutions. The NFC and AW were introduced to balance the abilities of
exploitation and exploration. The VNS was adopted to enhance the accuracy and effectiveness of the
local exploration.

Extensive experiments based on 15 benchmark instances were executed. The effectiveness of
improvement strategies was firstly certified by a number of experiments. Then, the proposed IWOA
was compared with six recently published algorithms. According to the comparison results, the
proposed IWOA can obtain better results in an acceptable time.

In the future, we will concentrate on a more complex FJSP, such as the energy-efficient flexible job
shop scheduling problem, the multi-objective flexible job shop scheduling problem, or the dynamic
flexible job shop scheduling problem. Meanwhile, other effective improvement strategies in WOA will
be studied to further improve the capacity of the algorithm for this FJSP.

Author Contributions: Conceptualization, methodology and writing—original manuscript, F.L. (Fei Luan);
project management, supervision and writing—review, Z.C. and T.J.; experiments and result analysis, S.W. and
F.L. (Fukang Li); investigation, formal analysis and editing, J.Y.

Funding: This work was supported by the National Natural Science Foundation of China under Grant 11072192,
the Project of Shaanxi Province Soft Science Research Program under Grant 2018KRM090, the Project of Xi’an
Science and Technology Innovation Guidance Program under Grant 201805023YD1CG7(1), and the Shandong
Provincial Natural Science Foundation of China under Grant ZR2016GP02.

Conflicts of Interest: The authors declare no conflicts of interest.

139

Mathematics 2019, 7, 384

References

1. Nowicki, E.; Smutnicki, C. A fast taboo search algorithm for the job shop problem. Manag. Sci. 1996, 42,
797–813. [CrossRef]

2. Gonc, J.F.; Magalhaes Mendes, J.J.; Resende, M.G.C. A hybrid genetic algorithm for the job shop scheduling
problem. Eur. J. Oper. Res. 2005, 167, 77–95.

3. Lochtefeld, D.F.; Ciarallo, F.W. Helper-objective optimization strategies for the Job-Shop Scheduling Problem.
Appl. Soft Comput. 2011, 11, 4161–4174. [CrossRef]

4. Garey, M.R.; Johnson, D.S.; Sethi, R. The complexity of flow shop and job shop scheduling. Math. Oper. Res.
1976, 1, 117–129. [CrossRef]

5. Brucker, P.; Schlie, R. Job-shop scheduling with multi-purpose machines. Computing 1990, 45, 369–375.
[CrossRef]

6. Dauzere-Peres, S.; Paulli, J. An integrated approach for modeling and solving the general multi-processor
job-shop scheduling problem using tabu search. Ann. Oper. Res. 1997, 70, 281–306. [CrossRef]

7. Mastrolilli, M.; Gambardella, L.M. Effective neighborhood functions for the flexible job shop problem. J. Sched.
2000, 3, 3–20. [CrossRef]

8. Mati, Y.; Lahlou, C.; Dauzere-Peres, S. Modelling and solving a practical flexible job shop scheduling problem
with blocking constraints. Int. J. Prod. Res. 2011, 49, 2169–2182. [CrossRef]

9. Mousakhani, M. Sequence-dependent setup time flexible job shop scheduling problem to minimise total
tardiness. Int. J. Prod. 2013, 51, 3476–3487. [CrossRef]

10. Yuan, Y.; Xu, H.; Yang, J. A hybrid harmony search algorithm for the flexible job shop scheduling problem.
Appl. Soft Comput. 2013, 13, 3259–3272. [CrossRef]

11. Tao, N.; Hua, J. A cloud based improved method for multi-objective flexible job shop scheduling problem.
J. Intell. Fuzzy Syst. 2018, 35, 823–829.

12. Gong, G.L.; Deng, Q.W.; Gong, X.R. A new double flexible job shop scheduling problem integrating processing
time, green production, and human factor indicators. J. Clean. Prod. 2018, 174, 560–576. [CrossRef]

13. Wang, H.; Jiang, Z.G.; Wang, Y. A two-stage optimization method for energy-saving flexible job shop
scheduling based on energy dynamic characterization. J. Clean. Prod. 2018, 188, 575–588. [CrossRef]

14. Marzouki, B.; Driss, O.B.; Ghédira, K. Multi Agent model based on Chemical Reaction Optimization with
Greedy algorithm for Flexible Job shop Scheduling Problem. Procedia Comput. Sci. 2017, 112, 81–90.
[CrossRef]

15. Yuan, Y.; Xu, H. Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Trans. Autom.
Sci. Eng. 2015, 12, 336–353. [CrossRef]

16. Gao, K.Z.; Suganthan, P.N.; Pan, Q.K.; Chua, T.J.; Cai, T.X.; Chong, C.S. Discrete Harmony Search Algorithm
for Flexible Job Shop Scheduling Problem with Multiple Objectives. J. Intell. Manuf. 2016, 27, 363–374.
[CrossRef]

17. Piroozfard, H.; Wong, K.Y.; Wong, W.P. Minimizing total carbon footprint and total late work criterion in
flexible job shop scheduling by using an improved multi-objective genetic algorithm. Resour. Conserv. Recycl.
2018, 128, 267–283. [CrossRef]

18. Jiang, T.H.; Zhang, C.; Zhu, H.Q.; Deng, G.L. Energy-Efficient scheduling for a job shop using grey wolf
optimization algorithm with double-searching mode. Math. Probl. Eng. 2018, 2018, 1–12. [CrossRef]

19. Singh, M.R.; Mahapatra, S. A quantum behaved particle swarm optimization for flexible job shop scheduling.
Comput. Ind. Eng. 2016, 93, 36–44. [CrossRef]

20. Wu, X.L.; Sun, Y.J. A green scheduling algorithm for flexible job shop with energy-saving measures.
J. Clean. Prod. 2018, 172, 3249–3264. [CrossRef]

21. Jiang, T.; Zhang, C. Application of grey wolf optimization for solving combinatorial problems: job shop and
flexible job shop scheduling cases. IEEE Access 2018, 6, 26231–26240. [CrossRef]

22. Jiang, T.H.; Deng, G.L. Optimizing the low-carbon flexible job shop scheduling problem considering energy
consumption. IEEE. Access 2018, 6, 46346–46355. [CrossRef]

23. Jiang, T.H.; Zhang, C.; Sun, Q. Green job shop scheduling problem with discrete whale optimization algorithm.
IEEE Access 2019, 7, 43153–43166. [CrossRef]

24. Li, X.Y.; Gao, L. An effective hybrid genetic algorithm and tabu search for flexible job shop scheduling
problem. Int. J. Prod. Econ. 2016, 174, 93–110. [CrossRef]

140

Mathematics 2019, 7, 384

25. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Soft. 2016, 95, 51–67. [CrossRef]
26. Aljarah, I.; Faris, H.; Mirjalili, S. Optimizing connection weights in neural networks using the whale

optimization algorithm. Soft. Comput. 2018, 22, 1–15. [CrossRef]
27. Mafarja, M.M.; Mirjalili, S. Hybrid whale optimization algorithm with simulated annealing for feature

selection. Neurocomputing 2017, 260, 302–312. [CrossRef]
28. Aziz, M.A.E.; Ewees, A.A.; Hassanien, A.E. Whale optimization algorithm and moth-flame optimization for

multilevel thresholding image segmentation. Expert Syst. Appl. 2017, 83, 242–256. [CrossRef]
29. Oliva, D.; Aziz, M.A.E.; Hassanien, A.E. Parameter estimation of photovoltaic cells using an improved

chaotic whale optimization algorithm. Appl. Energy 2017, 200, 141–154. [CrossRef]
30. Jiang, T.H.; Zhang, C.; Zhu, H.Q.; Zhu, H.Q.; Gu, J.C.; Deng, G.L. Energy-efficient scheduling for a job shop

using an improved whale optimization algorithm. Mathematics 2018, 6, 220. [CrossRef]
31. Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S.; Gunasekaran, M. A hybrid whale optimization

algorithm based on local search strategy for the permutation flow shop scheduling problem. Future Gener.
Comput. Syst. 2018, 85, 129–145. [CrossRef]

32. Guo, Z.Z.; Wang, P.; Ma, Y.F.; Wang, Q.; Gong, C.Q. Whale optimization algorithm based on adaptive weights
and cauchy variation. Micro Comput. 2017, 34, 20–22. (In Chinese)

33. Brandimarte, P. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. 1993, 41, 157–183.
[CrossRef]

34. Kacem, I.; Hammadi, S.; Borne, P. Correction to “Approach by localization and multiobjective evolutionary
optimization for flexible job-shop scheduling problems”. IEEE Trans. Syst. Man Cybern. Part C 2002, 32, 172.
[CrossRef]

35. Xing, L.N.; Chen, Y.W.; Wang, P.; Zhao, Q.S.; Xiong, J. A knowledge-based ant colony optimiztion for flexible
job shop scheduling problems. Appl. Soft Comput. 2010, 10, 888–896. [CrossRef]

36. Li, J.Q.; Pan, Q.K.; Suganthan, P.N.; Chua, T.J. A hybrid tabu search algorithm with an efficient neighborhood
structure for the flexible job shop scheduling problem. Int. J. Adv. Manuf. Technol. 2011, 52, 683–697.
[CrossRef]

37. Jiang, T.H. A hybrid grey wolf optimization algorithm for solving flexible job shop scheduling problem.
Control Decis. 2018, 33, 503–508. (In Chinese)

38. Bagheri, A.; Zandieh, M.; Mahdavi, I.; Yazdani, M. An artificial immune algorithm for the flexible job-shop
scheduling problem. Future Gener. Comput. Syst. 2010, 26, 533–541. [CrossRef]

39. Henchiri, A.; Ennigrou, M. Particle Swarm Optimization Combined with Tabu Search in a Multi-Agent Model. for
Flexible Job Shop Problem; Springer Nature: Basingstoke, UK, 2013; Volume 7929, pp. 385–394.

40. Bozejko, W.; Uchronski, M.; Wodecki, M. The New Golf Neighborhood for the Flexible Job Shop Problem; ICCS,
Elsevier Series; Elsevier: Amsterdam, The Netherlands, 2010; pp. 289–296.

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

141

mathematics

Article

Topology Structure Implied in β-Hilbert Space,
Heisenberg Uncertainty Quantum Characteristics
and Numerical Simulation of the DE Algorithm

Kaiguang Wang 1,2,† and Yuelin Gao 2,*,†

1 School of Mathematics and Information Science, North Minzu University, Yinchuan 750021, China;
wkg13759842420@foxmail.com

2 Ningxia Province Key Laboratory of Intelligent Information and Data Processing, Yinchuan 750021, China
* Correspondence: gaoyuelin@263.net; Tel.: +86-183-2997-0138 or +86-139-9510-0900
† These authors contributed equally to this work.

Received: 9 March 2019; Accepted: 1 April 2019; Published: 4 April 2019

Abstract: The differential evolutionary (DE) algorithm is a global optimization algorithm. To explore
the convergence implied in the Hilbert space with the parameter β of the DE algorithm and the
quantum properties of the optimal point in the space, we establish a control convergent iterative
form of a higher-order differential equation under the conditions of P−ε and analyze the control
convergent properties of its iterative sequence; analyze the three topological structures implied in
Hilbert space of the single-point topological structure, branch topological structure, and discrete
topological structure; and establish and analyze the association between the Heisenberg uncertainty
quantum characteristics depending on quantum physics and its topological structure implied in the
β-Hilbert space of the DE algorithm as follows: The speed resolution Δ2

v of the iterative sequence
convergent speed and the position resolution Δxε

β
of the global optimal point with the swinging range

are a pair of conjugate variables of the quantum states in β-Hilbert space about eigenvalues λi ∈ R,
corresponding to the uncertainty characteristics on quantum states, and they cannot simultaneously
achieve bidirectional efficiency between convergent speed and the best point precision with any
procedural improvements. Where λi ∈ R is a constant in the β-Hilbert space. Finally, the conclusion
is verified by the quantum numerical simulation of high-dimensional data. We get the following
important quantitative conclusions by numerical simulation: except for several dead points and
invalid points, under the condition of spatial dimension, the number of the population, mutated
operator, crossover operator, and selected operator are generally decreasing or increasing with a
variance deviation rate +0.50 and the error of less than ±0.5; correspondingly, speed changing rate
of the individual iterative points and position changing rate of global optimal point β exhibit a
inverse correlation in β-Hilbert space in the statistical perspectives, which illustrates the association
between the Heisenberg uncertainty quantum characteristics and its topological structure implied in
the β-Hilbert space of the DE algorithm.

Keywords: DE algorithm; β-Hilbert space; topology structure; quantum uncertainty property;
numerical simulation

MSC: 81S10; 65L07; 46B28; 90C59; 54A05

1. Introduction

The differential evolutionary (DE) algorithm [1–3] is a global optimization algorithm with iterative
search used to generate mutative individuals by differential operation, proposed by Storn and Price in
1995 to solve Chebyshev inequalities, which adopts floating-point vector coding to search in continuous

Mathematics 2019, 7, 330; doi:10.3390/math7040330 www.mdpi.com/journal/mathematics142

Mathematics 2019, 7, 330

space [4–6], is simple to operate and easy to achieve and offers better convergence, stronger robustness
and other global optimization advantages [7–11]. In general, the minimization optimization problem
of the DE algorithm is expressed as follows:

min f (Xt
i + P−ε), Xt

i = {xt
ij|i = 1, 2, · · · , NP; j = 1, 2, · · · , D} (1)

s.t. aij ≤ xt
ij ≤ bij, i = 1, 2, · · · , NP; j = 1, 2, · · · , D (2)

where the dimension (D) is the dimension of the decisional variable, number of population (NP) is the
population size, f (Xi + pε) is the fitness function, and P−ε is the individual perturbation variable with
the relative error ε in the population, which is generally an infinitesimal and indicates the adjustable
range of the optimal value when affected by some conditions. Conveniently, we assume that the
perturbation variable P−ε of all individuals is the same when the external environment features
perturbation. A larger perturbation variable P−ε indicates that the DE algorithm has a higher discrete
degree for population individuals when generally approaching the optimal value.

A smaller perturbation variable P−ε indicates that the individual is less discrete when generally
approaching the optimal value. Here, we assume that the infinitesimal has a fixed value, Xi(i =

1, 2, · · · , NP), is a D-dimensional vector, xij(i = 1, 2, · · · , NP; j = 1, 2, · · · , D) is the jth components of
the ith individual, and aij, bij are the upper bound and the lower bounds of the optimization range,
respectively.

We are interested in the convergence of the DE algorithm in the optimization process and
the spatial topological structure of the population in a closed ecological population [12,13], that is,
the association between the population iterative sequence and population spatial topological structure.
In this paper, the population is a closed ecological population, which generates an association of
one-to-one correspondence between it and the population; thus, the population can be analyzed by
the equivalent to the mathematical closed set. The assumptions are valid in theory. For the study of
the dynamics of the DE algorithm, previous work [4] has analyzed the dynamics and behavior of the
algorithm and provides a new direction for the dynamics of the algorithm. Numerical simulation
of the route optimization and convergent problem of the DE algorithm has been performed [5],
including studies of the convergence based on dynamics studies. Other researchers [6] have drawn
comparisons regarding the convergence of various algorithm benchmark problems, and we can look at
the corresponding relationship between convergence and the parameters. A parametric scheme for the
algorithm dynamics research is provided for the DE algorithm to search and optimize the properties
in the β-Hilbert space, and the study of the dynamic conditions of the DE algorithm is also performed.

In general, the spatial topology of a closed population is often associated with a composite
operator topology on a defined function space [12,13]. One earlier study result is the isolated point
theorem of the composite operator on H2 given by Berkson [14], and MacCluer [15] and Shapiro J
H [16] promote this conclusion. For the bounded analytic function space H∞ on a unit circle or unit ball,
previous work [16–18] studied the topology structure of C(H∞) and proved that the isolated composite
operator of the operator topology on H∞ is also isolated under the condition of essential norm topology.
We now address the spatial topology implied in the limit point β of the convergent iterative sequence
concerning the DE algorithm in the composite complete Hilbert space. Furthermore, the quantum
characteristics of the Heisenberg uncertainty principle implied in Hilbert space or Fock [14,19–27] of the
DE algorithm are one of the central issues studied in this paper. First, we solve the following problems:

1. The continuity of the closed population in the condition of P−ε and the control convergent
properties of its iterative sequence;

2. The topological structure implied in the Hilbert space of the DE algorithm;
3. The Heisenberg uncertainty quantum characteristics implied in the β-Hilbert space of the

DE algorithm;
4. High-dimensional numerical simulation of the quantum characteristics of the DE algorithm to

determine the association between this algorithm and its topological structure.

143

Mathematics 2019, 7, 330

2. Preparatory Knowledge

2.1. Basic Steps of the DE Algorithm

The basic operating principle of the DE algorithm is described as follows [1,4,7].

2.1.1. Initial Population

Let the population of the DE algorithm be X(t); then, the population individuals can be
expressed as

Xt
i = (xt

i1, xt
i2, · · · , xt

iD), i = 1, 2, · · · , NP (3)

where t is the evolutionary generation and NP is the population size.
Initial population: Determine the dimension D of the optimization problem. The maximum

evolutionary generation is T, and the population size is NP. Let the initial value of the optimal
vector be

X0
i = (x0

i1, x0
i2, · · · , x0

iD) (4)

x0
ij = aij + rand(0, 1) · (bij − aij), i = 1, 2, · · · , NP; j = 1, 2, · · · , D (5)

where, the range of individual variables is aij, bijLeqR, because of the randomness of iterative
individuals in optimization process and real number coding for individuals.

2.1.2. Mutation Operation

The individual mutated component of the DE algorithm is the differential vector of the parental
individuals, and the number of differential mutated individuals per time is derived from the
two individual components (xt

i1
, xt

i2
) in the tth generation parental population individuals, where

i1, i2 ∈ NP. Then, the differential vector is defined as Di1,2 = (xt
i1
− xt

i2
). For any vector individual Xt

i ,
the mutation operation is defined as

Vt+1
i = Xt

i3 + F · (Xt
i1 − Xt

i2) (6)

where NP ≥ 4 is the population size, F is the contraction factor, and i1, i2, i3 ∈ {1, 2, · · · , NP} and
i1, i2, i3 are mutually different so that we can obtain a mutated individual by differential operation by
randomly selecting non-zero different vectors in the population, and the mutated individuals realize
the possibility of adjusting the diversity of the population.

2.1.3. Crossover Operation

First, the test individual Ut+1
i is generated by crossing the target vector individual Xt

i and
the mutated individual Vt+1

i in the population. To maintain population diversity, we can conduct
crossover and selection operations for the mutated individual Vt+1

i and the target vector individual Xt
i

by introducing the crossover probability CR and the random function rand(0, 1) to ensure that at least
one of the test individuals Ut+1

i is contributed by the mutated individuals Vt+1
i . For other loci points,

we can determine the contribution of certain sites of the test individual Ut+1
i that are determined by the

mutation vector individuals Vt+1
i and target vector individual components (xt

i) that are determined
by the crossover probability. The experimental equation of the crossover operation is as follows:

(ut+1
ij) =

⎧⎪⎨⎪⎩
(vt+1

ij), i f randj[0, 1] ≤ CR or j = jrand,
(xt

ij), otherwise.
i = 1, 2, · · · , NP; j = 1, 2, · · · , D

(7)

144

Mathematics 2019, 7, 330

where randj[0, 1], CR ∈ (0, 1) is the crossover probability above the formula (7). The larger the value
of CR is, the greater the probability of generating new vector individuals by locating the crossover
operation of different loci points for vector individuals in the population. When CR = 0, Ut+1

i = Xt
i ,

it indicates that no crossover occurred, which is beneficial to maintain the diversity of the population
and the ability of global searching. When CR = 1, Ut+1

i = Vt+1
i , it indicates that crossover operations

must occur at certain loci points, which helps maintain global searching and speed up convergence.
CR = 1 or 1 represent the two extreme cases of crossover operation. j = jrand is a randomly selected
loci point used to ensure that the test individuals Ut

i obtain at least one genetic locus of occurring
mutation from the mutated individuals Vt

i and to ensure that the mutated individuals Vt+1
i , the target

vector individuals Xt
i , and the test individuals Ut+1

i are different from each other, which indicates that
this operation is an effective action in populations.

2.1.4. Selection Operation

The selection operation of the DE algorithm is a selected mechanism based on the greedy
algorithm that the test individual Ut+1

i is generated by the mutation and selection operations, and the
target vector individual Xt

i conducts competition and selection. If the fitness value of Ut+1
i is better

than the fitness value of Xt
i , then Ut+1

i is inherited to the next generation as the best individual in
the first iteration; otherwise, Xt

i remains in the next generation. The selection effect of the selection
operator in the population is described by the following equation:

Xt+1
i =

{
Ut+1

i , i f f (Ut+1
i) ≤ f (Xt

i)

Xt
i , otherwise

, i = 1, 2, · · · , NP (8)

2.1.5. Compact Operator and Fock Space

Let H and L be the separable Hilbert space and B(H, L) be the whole bounded linear operators
from H to L; if the mapping T(S) of the unit ball S of X in T satisfies relative compactness in Y,
then ∀T ∈ B(X, Y) is compact. In addition, the essential norm ‖T‖e of operator T ∈ B(X, Y) is the
operator norm distance of all compact operators from T to B(H, L). We also have ‖T‖e ≤ T and

‖T‖e = sup
fε

n∈U
(lim sup

k→∞
‖T f n

ε ‖l) (9)

where U is all unit element sequences f n
ε that are weakly convergent to 0.

Define the Gaussian measure dG on Cn as d(G) = 1
πn e−|z|2 dV(z), z ∈ Cn where dV is the spatial

measure on Cn; then, Fock space F2 = F2(Cn) is the Hilbert space L2(G) ∩ H(Cn). Its inner product
and norm are designated 〈 f , g〉 = ∫

Cn f (z)g(z)dG(z) and ‖ f ‖2 =
∫
Cn | f (z)|2dG(z), respectively, where

f , g ∈ F2.

3. Continuity Structure of Closed Populations and Convergence of Iterative Sequences under Pε

For any population existing in real space, the population individuals show discrete characteristics
from the biological viewpoint but show continuous characteristics from a physical viewpoint in space.
For the DE algorithm, the adaptive optimal individual in any population must be the limit value of
the iterative sequence formed by all individuals in the population. Thus, an existing population
perturbation P−ε is theoretically reasonable, which is described in the form of limitation as the
following equation:

min f (Xt
i + P−ε), Xt

i = {xt
ij|i = 1, 2, · · · , NP; j = 1, 2, · · · , D} (10)

s.t. aij ≤ xt
ij ≤ bij, i = 1, 2, · · · , NP; j = 1, 2, · · · , D (11)

145

Mathematics 2019, 7, 330

This formulation is equivalent to

lim
t→+∞

f ((Xt
i)ε) = lim

t→+∞
fε(Xt

i) = fε(Xi) ∈ (f (Xi)− δε, f (Xi) + δε) (12)

s.t. aij ≤ xt
ij ≤ bij, i = 1, 2, · · · , NP; j = 1, 2, · · · , D (13)

where f (Xi) is the optimal value of the DE algorithm as t → +∞ because the stability of the optimal
value in space, fε(Xi), must be between (fε(Xi)− δε, fε(Xi) + δε), where δε is the maximum range
of the optimal value as being up and down. In the same population, there is only one optimal
value, which inherits all the adaptive characteristics of population individuals in the space, and the
fitness function fε(Xt

i) corresponding to those individuals measures its adaptability in the population.
We say that the former is an eigenvalue and that the latter is an eigenfunction. Then, we establish
the continuity characteristic relationship and the uniform convergence of the iterative form of the
population eigenvalue and eigenfunction.

3.1. Continuity Structure of the Closed Population Feature Quantity in Perturbation Pε

Definition 1. Assume that a population of size NP is the continuous real value of the complete real space R+,
the population eigenvalue is λk = Xi, the population eigenfunction is f ((Xt

i)ε), and |ε| < 1
r , r ∈ R+, which is

a convergent form that can converge in the perturbation variable Pε with iteration numbers increasing. If

lim
t→+∞

f ((Xt
i)ε) = lim

t→+∞
fε(Xt

i) = fε(Xi) ∈ (f (Xi)− δε, f (Xi) + δε) (14)

s.t. aij ≤ xt
ij ≤ bij, i = 1, 2, · · · , NP; j = 1, 2, · · · , D (15)

then we find that f ((Xt
i)ε) is continuous at the eigenvalue λk = Xi.

Property 1. If f ((Xt
i)ε) is continuous at the eigenvalue λk = Xi, then fε(Xi) ∈ (f (Xi)− δε, f (Xi) + δε),

that is, f ((Xt
i)ε) is locally bounded.

3.2. Uniform Convergence of the Differential Equation in Perturbation Pε

In general, population individuals show discrete characteristics in space and continuous
characteristics in time concerning the optimal process. Under the condition of the perturbation variable
P−ε, the convergent limit value is a bounded range, which is not a definite real value. To ensure that
individuals can converge to a precise real value in the late iteration, the convergence of the differential
equation must be uniformly converged under the condition of being the perturbation variable P−ε for
all population individuals. First, we construct a continuous iterative form of error variable ε under the
condition of perturbation Pε:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ε f (n+1)′′
ε p1(x) f (n+1)′

ε − qε(x, f (n)ε) = 0
(0 < x < 1, qε(x, fε) = p2(x) fε)

f (n+1)
ε (0) = A, f (n+1)

ε (1 + ε) = B, (A, B ∈ R+, n = 1, 2, · · ·)
f (0)ε ∈ V = {v ∈ C2[0, 1]/v(0) = A, v(1 + ε) = B}

(16)

Second, we construct an approximate format (17) of Il′ InAM [28] of the perturbation error
variable ε: ⎧⎪⎪⎨⎪⎪⎩

r f (n+1)l
ε + a(x) f (n+1)l

ε = qε(n+1)(x, f (n)ε)

f (n+1)l
ε1 = A, f

′′
ε(n+1)l = B

r = a(x)h
2 cth a(x)h

2ε

(17)

where a(x) is a real-valued function.

146

Mathematics 2019, 7, 330

Lemma 1. [29]. For differential equations, we have the following:{
ε f
′′
ε + α(x, fε, ε) f

′
ε − β(x, fε, ε) = γ(x, fε, ε)

fε(a) = A(ε), fε(b) = B(ε), (a < x < b, a, b ∈ R+)
(18)

Let fε(x) be its solution; then, the following conditions are satisfied:
(i) α(x, fε, ε) is only a symbolic expression;
(ii) If |α(x, fε| + β(x, fε ≥ a ≥ 0, then ‖ fε‖∞ ≤ max(|A(ε)| + |B(ε)|) + 1

a [(b − a) × (b − a +

1)]‖γ(x, fε, ε)‖∞.

Lemma 2. [28]. Assume that there exists a constant C > 0 that satisfies ‖a(x)‖∞ ≤ C, ‖qε(n+1)(x, f (n)ε)‖∞ ≤
C, max{|A|, |B|} ≤ C; then, there exists a constant M > 0 related to only C that satisfies ‖ f (n)ε − f (n)hε ‖∞ ≤
Mh, where h is the divided grid spacing, f (n)ε is the solution of (16), and f (n)lε is the solution of (17).

Theorem 1. (Theorem of Uniform Convergence). For (16), if the Lipschitz condition and Lemmas 1 and
2 are satisfied, then

‖ f (n+1)l
ε − fε‖∞ ≤ ρn+1‖ f (0)lε − fε‖∞ +

M
1− ρ

l (19)

‖ f (n+1)l
ε − fε‖∞ ≤ 1

1− ρ
‖ f (n)lε − f (n+1)l

ε ‖∞ +
M

1− ρ
l (20)

where ρ = 3L
a < 1,L is the Lipschitz constant.

Proof. Let f̄ (n+1)
ε be an iterative solution obtained by formulating f (n)lε as in (16). From Lemmas 1

and 2, we obtain

‖ f (n+1)l
ε − fε‖∞ ≤ ‖ f (n+1)l

ε − f̄ (n+1)
ε ‖∞ + ‖ f̄ (n+1)

ε − fε‖∞

≤ Ml + ρ‖ f (n)lε − fε‖ε

≤ ∑n
k=0 Mlρk + ρn+1‖ f (0)ε − fε‖∞

≤ Ml
1−ρ + ρn+1‖ f (0)ε − fε‖∞

(21)

and

lim
ρ→0

Ml
1− ρ

+ ρn+1‖ f (0)ε − fε‖∞ = Ml (22)

‖ f (n+1)l
ε − fε‖∞ ≤ Ml (23)

Thus, (19) is true. In addition,

‖ f (n)lε − fε‖∞ ≤ ‖ f (n)lε − f (n+1)l
ε ‖∞ + ‖ f (n+1)l

ε − fε‖∞

≤ ‖ f (n)lε − f (n+1)l
ε ‖∞ + Ml + ρ‖ f (n)lε − fε‖∞

(24)

In addition to the above,

lim
ρ→0

1
1− ρ

‖ f (n)lε − f (n+1)l
ε ‖∞ +

M
1− ρ

l = Ml (25)

‖ f (n)lε − fε‖∞ ≤ Ml (26)

147

Mathematics 2019, 7, 330

4. Topological Structure Implied in Hilbert Space of the DE Algorithm

4.1. Single-Point Topological Structure of Closed Populations in Hilbert Space

In the former part, we establish the nonlinear differential equation and its continuous iterative
format according to the evolution process of the population, and we analyze the uniform convergence
of the solution that illustrates the dynamical principle of population optimization in some way. In a
closed ecological population of NP, which is necessarily bounded, we should further verify a situation
logically if there exists an optimal solution under the condition of the perturbation variable P−ε after
the population individuals are infinitely iterating. This is the single-point theorem that we introduce
below. Since the closed population is a complete closed set under topological mapping, to analyze the
topological properties conveniently, we introduce the inner product in the closed population so that
the closed population is a Hilbert space. First, we introduce several lemmas.

Lemma 3. [30]. The bounded set is a column compact set, and the arbitrary bounded closed set is a self-column
compact set in Rn.

Lemma 4. [30]. The arbitrary subset is a column compact set, and the arbitrary closed subspace is a self-column
compact set in the column compact space.

Lemma 5. [30]. The column compact space must be a complete space.

Lemma 6. (Brower Fixed-Point Theorem) [31]. Let B be a closed unit ball, T : B → B be a continuous
mapping, and T(C) be column compact. Then, T must exist at a fixed point x ∈ B.

Theorem 2. (Single-Point Theorem). Let C be the closed population in R; the mapping T : C → C is
continuous. Then, there exists a single point in the closed population on C by the mapping T.

Proof. To prove the theorem, we prove only that T(C) is column-compact, as described in
Lemma 6.

Step 1 Because T : C → C is continuous and C is a compact set, we infer that T is uniformly
continuous, that is, ∀ε > 0, ∃δ > 0; then, ‖Tx− Tx

′ ‖ < ε, ∀x, x
′ ∈ C, ‖x− x

′ ‖ < δ. If not, the above
indicates that ∃ε0 > 0, ∀n ∈ N, ∃xn, x

′
n ∈ C so that ‖xn − x

′
n‖ < 1

n , but ‖Txn − Tx
′
n‖ ≥ ε0. Because of

C being a compact set, there exists a subsequence nk so that xnk → x0 ∈ C. Since ‖xnk − x
′
nk
‖ < 1

nk
→ 0,

then xn′k
→ x0 ∈ C. Since T is continuous, Txnk → Tx0, Tx

′
nk
→ Tx0, (k → ∞), which implies that

‖Txnk − Tx
′
nk
‖ → 0, (k → ∞), which contradicts ‖Txn − Tx

′
n‖ ≥ ε0.

Step 2 To prove that T(C) is column-compact, we prove only that there is a limited ε net on
T(C) ∀ε > 0. First, from the step 1 proof, we have ∀ε > 0, ∃δ > 0 so that ‖Tx − Tx

′ ‖ < ε, ∀x, x
′ ∈

C, ‖x− x
′ ‖ < δ. Second, due to C being a compact set, there is a limited ε net: x1, · · · , xn for δ > 0.

Third, we show that {Tx1, · · · , Txn} is the limited ε net on T(C). Actually, ∀y ∈ TC, ∃x ∈ C so that
y = TC. Let ‖xi − x‖ ≤ δ(1 ≤ i ≤ n) to obtain ‖Txi − Tx‖ < ε. In other words, the closed population
has a single point on C by mapping T.

It is known that the complete space implied in the closed population includes only one single
point that is considered the closed population optimal characteristic value according to the single-point
theorem; then, the convergent iterative sequence generated by the algorithm itself can converge to a
single point in the closed population. The theorem illustrates the inevitability of an existing optimal
characteristic value in the complete closed population theoretically.

4.2. Branch Topological Structure of Closed Populations in Hilbert Space

There has been no definite research field focused on the route optimization branch theory of the
closed population up until now. The single-point theorem indicates that there may be countless pieces

148

Mathematics 2019, 7, 330

of optimization routes, and it is not known how to associate the optimization routes with each other.
However, it is certain that the different optimization routes are branched in Hilbert space implied
in the closed population to generate the branch topology structure in Hilbert space, so that we can
obtain the geometric structure of the closed population. First, we provide a fundamental theorem of
Fock space F2

m [31,32] derived from Hilbert space; then, we can obtain the branch topological structure
theorem of the Hilbert space implied in the closed population.

Theorem 3. Let ϕ : C → C be an analytic mapping; for an arbitrary non-negative integer m, there exists
the following:

(a) Cϕ is a bounded operator on F2
m if and only if ϕ(z) = Az + B. Here, A ∈ Mn, ‖A‖ ≤ 1, B ∈ Cn,

and when ζ ∈ Cn and |Aζ| = |ζ|, Aζ · B̄ = 0.
(b) Cϕ is a compact operator on F2

m if and only if ϕ(z) = Az + B. Here, A ∈Mn, ‖A‖ < 1, B ∈ Cn.

We assume that for each positive integer k, we have Mk as the k× k complex matrix of the whole,
which is equivalent to A ∈Mk by a linear transformation A : Ck → Ck.

Lemma 7. [31,32]. Assume that ϕ(z) = Az + B and ψ(z) = A1z + B1 cause the composite operators Cϕ and
Cψ to be bounded on F2

m if there exists ζ ∈ Cn that satisfies |Aζ| = |ζ|, but |Aζ| �= |A1ζ|. Then, there exists a
positive constant Ce ∈ R that satisfies ‖Cϕ − Cψ‖ ≥ Ce.

Lemma 8. [31,32]. Assume that A ∈ Mn, B ∈ Cn causes CAz+B to be bounded; then, CAz and CAz+B exist
in the same path-connected branch of Ce(F2

m).

Theorem 4. (Theorem of a Branch Topological Structure). Let C be the closed population in R;
the mapping T : C → C is continuous, and ϕ(z) = Az + B and ψ(z) = A1z + B1 cause the composite
operators Cϕ and Cψ to be bounded on F2

m. Then, the necessary and sufficient condition of Cϕ and Cψ belonging to
the same path-connected branch in Hilbert space is that for all ζ ∈ Cn satisfied by |Aζ| = |ζ| or |Aζ| �= |A1ζ|,
there generally exists |Aζ| = |A1ζ|.

Proof. If we have Cϕ and Cψ in the same path-connected branch of Ce(F2
m), then there exists a limited

quantity of composite operators Cϕi
k+1
i=1 that satisfy Cϕk+1 = Cϕ, Cϕ1 = Cψ, and ‖Cϕ − Cψ‖e <

Ce
2 , Ce ∈

R, ∀i = 1, 2, · · · , k. Let ϕi(z) = Aiz + Bi, i = 1, 2, · · · , k + 1, Ak+1 = A, Bk+1 = A; then, for all
ζ ∈ Cn satisfied by |Aζ| = |ζ| and |Aζ| �= |A1ζ|, there generally exists |Ai+1ζ| = |Aiζ|. Thus,
the necessary of the theorem is satisfied. Otherwise, we need only consider the case of ‖A‖ = ‖A1‖ = 1.
For all ζ ∈ Cn satisfied by |Aζ| = |ζ| and |Aζ| �= |A1ζ|, let there generally exist |Aζ| = |A1ζ|.
According to Lemma 8, we can prove the conclusion as follows: if the norm ‖D‖ < 1, 1 ≤ k ≤ n− 1

of the matrix D ∈ Mn−k and P =

(
EK O
O O

)
, P1 =

(
EK O
O D

)
, then CPz and CP1z exist in

the same path-connected branch of Ce(F2
m). From singular value decomposition (SVD) of matrix

D, we need to prove only that CQz and CQ1z exist in the same path-connected branch of Ce(F2
m),

where Q =

(
EK O
O O

)
, Q1 =

(
EK O
O Λ

)
, where Λ is a diagonal matrix and the ith diagonal

element is the ith singular value σk+i, 0 ≤ σk+i < 1, 1 ≤ i ≤ n − k of D. For z ∈ Cn where z =

(z
′
k, z

′
n−k), z

′
k = (z1, · · · , z1), z

′
n−k = (zk+1, · · · , zn). Let ϕt(z) = tQ1z + (1− t)Qz, y ∈ [0, 1]; then,

ϕt(z) = (z
′
k, tΛz

′
n−k). To prove that the route t �→ Cϕt is continuous under the essential norm,

note that (Cϕt − Cϕs) fε(z) = fε(z
′
k, tΛz

′
n−k) − fε(z

′
k, sΛz

′
n−k) = Σl al(t�l� − s�l�)σ

lk+1
k+1 · · · σln

n zl1
1 · · · zln

n ,

where fε(z) = Σl alz
l1
1 · · · zln

n , �l� = kk+1 + · · ·+ ln, then |t�l� − s�l�| ≤ �l�|t− s|, ∀t, s ∈ [0, 1]. Because of
∀a ∈ [0, 1), the function xax is bounded in (0, ∞). Thus, there exists a positive constant M that satisfies
�l�σlk+1

k+1 · · · σln
n ≤ lk+1σ

lk+1
k+1 + · · · + lnσln

n ≤ M. Consequently, ‖(Cϕt − Cϕs) fε‖2
m ≤, M2|t − s|2‖ fε‖2

m.
Combined with (9), we obtain ‖Cϕt − Cϕs‖e ≤ M|t− s|, and the theorem is proven.

149

Mathematics 2019, 7, 330

4.3. Discrete Topological Structure of Closed Populations in Hilbert Space

Theorem 5. Cϕ is discrete in Hilbert space implied in Ce(F2
m) if and only if ϕ(z) = Uz, ϕ(z) = Uz, where U

is the U-matrix.

Proof. The adequacy of this theorem is obtained from Theorem 4; therefore, we prove only the
necessity component of the theorem. If A ∈ Mn is a non-U-matrix and ‖A‖ ≤ 1, from Lemma 8,
we obtain that ∃B ∈ Cn ⇒ CAz+B is bounded in F2

m. Actually, we can consider the case of ‖A‖ = 1.
Let the singular value decomposition (SVD) of A be UΛV; then, Λ is a non-U-matrix. Furthermore,
∃B′ = 0 ∈ Cn ⇒ CΛz+B′ is bounded in F2

m. Thus, Cϕ is discrete in the Hilbert space as implied in
Ce(F2

m).

Theorem 6. (Theorem of Discrete Topological Structure). Let C be the closed population in R,
the mapping fε : C → C be continuous, and β be a single point as described in Theorem 2, which is the
optimal feature value of the convergent iterative sequence on the closed population C. Then, the single point
must be a discrete point. Now, we can transform the original closed population C into a Hilbert space with the
discrete parameter β by topological mapping; specifically, it is the β-Hilbert space.

5. Quantum Characteristics of the Heisenberg Uncertainty Principle in β-Hilbert Space

The Heisenberg uncertainty principle is a fundamental principle of quantum mechanics that
fundamentally illustrates that the position and momentum of a particle cannot be measured
simultaneously in a quantum system; its basic form is ΔxΔp ≥ h

2 , where h is the reduced Planck
constant. When the DE algorithm pushes a closed population individual optimal process in
β-Hilbert space, it measures the population individual in β-Hilbert space by the mutation, crossover,
and selection of basic operational operators, which can screen the optimal characteristic value x∗.
If we regard the entire β-Hilbert space as a complete space with the best signal source β, where each
individual exhibits the characteristics of a better signal, then the signal source screened by the DE
algorithm is the best of all of better signals, that is, it is the best signal source. Then, the quantity of
information carried by each individual is related to the frequency of the best source and the information
quantities of the best source retained by individuals that are convergent in probability F in the optimal
time. With the optimization time gradually lengthening, the quantity of high-quality information
carried by each individual in the convergent iterative sequence is continuously accumulated and
gradually approaches that of the best signal source. There are two situations. One is that when
slower the convergent speed of the iterative convergent sequence is slower, the speed of the
high-quality information quantities carried by individuals accelerates is also slower, but the positional
accuracy ε between the best source and population individuals is generally shrinking. Another
situation is that when the convergent speed of the iterative convergent sequence is faster, and the
high-quality information quantities carried by individuals in the population is reduced due to the
spatial probability distributing unevenly, such that the positional accuracy ε between the best source
and population individuals generally increases. Now, we provide a concrete representation of the
quantum characteristics of the Heisenberg uncertainty principle of the DE algorithm in β-Hilbert space.

Definition 2. [33]. For a 2n × 2n matrix in symplectic groups, Q =

(
A B
C D

)
, the linear canonical

transformation of f (q′) ∈ L2(Rn) is defined as f̂ (q) = [C(M) f](q) =
∫
Rn C(M)(q, q′) f (q′)dq′,

where C(M)(q, q′) = e(−
inπ

4)

(
√

2π)n
√

det(B)
· ei(q�DB−1q

2 −q�(B�)−1q′+ q′�B−1 Aq′
2). Its inverse transform is f (q′) =

[C(M−1) f̂](q′) =
∫
Rn C(M−1)

∗(Q, Q′) f̂ (q)dq.

150

Mathematics 2019, 7, 330

Definition 3. (One-Dimensional Uncertainty Principle) [34]. If f is a continuous function in Hilbert
space, then its speed resolution Δ2

v and position resolution Δ2
x in Hilbert space are defined as

Δ2
v =

∫
Rn
(v− v0)

2| f (v)|2dv, Δ2
x =

∫
Rn
(x− x0)

2| f̂ (x)|2dx

where v0 =
∫
Rn

v| f (v)|2dv, x0 =
∫
Rn

x| f̂ (x)|2dx; then, the Heisenberg uncertainty principle of the

one-dimensional β-Hilbert space is Δ2
v · Δ2

x ≥ b2

4 .

Definition 4. Let fε be a continuous-differential function defined in β-Hilbert space; then, its speed resolution
Δ2

v and position resolution Δ2
xε

β
space are defined as

Δ2
v =

∫
Rn
(v− v0)

�(v− v0)| fε(v)|2dv, Δ2
xε

β
=

∫
Rn
(x− x0)

�| f̂ε(x)|2dx (27)

where v� = (v1, v2, · · · , vn)�, v�0 = (
∫
Rn

v1| f (v)|2dv, · · · ,
∫
Rn

vn| f (v)|2dv)�,
x� = (x1, x2, · · · , xn)�, x�0 = (

∫
Rn

x1| f (x)|2dx, · · · ,
∫
Rn

xn| f (x)|2dx)�.

Theorem 7. Let fε be a continuous-differential function defined in β-Hilbert space and fε(v1, · · · , vn) ∈
L2(Rn), M ∈ Sp(2n,R). When det(B) �= 0, then we have the following equation:

Δ2
v · Δ2

xε
β

=

∫
Rn (v−v0)

�(v−v0)| fε(v)|2dv∫
Rn | fε(v)|2dv ·

∫
Rn (x−x0)

�| f̂ε(x)|2dx∫
Rn | f̂ε(x)|2dx

≥ (
√

λ1
2 + · · ·+

√
λn
2)

(28)

where v�0 = (
∫
Rn

v1| f (v)|2dv, · · · ,
∫
Rn

vn| f (v)|2dv)�, x�0 = (
∫
Rn

x1| f (x)|2dx, · · · ,
∫
Rn

xn| f (x)|2dx)�,
and λi is an eigenvalue of B�B.

Proof. Under the conditions of det(B) �= 0, assume that v0 = 0, x0 = 0. Then, we can obtain by using
a linear canonical transform [35] that

Δ2
xε

β
=

∫
Rn

x�x| f̂ε(u)|2dx

=
∫
Rn

x�x| ∫
Rn

fε(u) e−
inπ

4

(
√

2π)n
√

det(B)
e−ix�(B�)−1u+i u�B−1 Au

2 du|2dx
(29)

Let t = B−1x; then, we can obtain from an integral transform that

Δ2
xε

β
=

∫
Rn

t�B�Bt 1
(2π)n |

∫
Rn

fε(u)e−it�u+i u�B−1 Au
2 du|2dt (30)

Now, we set ˜fε(u) = fε(u)ei u�B−1 Au
2 ; then, there exists

Δ2
xε

β
=

∫
Rn

t�B�Bt 1
(2π)n |

∫
Rn

˜fε(u)e−it�udu|2dt (31)

and
Δ2

v =
∫
Rn

u�u| fε(u)|2du =
∫
Rn

u�u ˜fε(u)|2du (32)

Because det(B) �= 0 and because B�B is a symmetric positive definite matrix, using matrix
spectral decomposition, we find that the existing orthogonal matrix P satisfies

B�B = P�ΛP (33)

151

Mathematics 2019, 7, 330

where Λ is a diagonal matrix and where elements distributed on the diagonal are the eigenvalues of
B�B; then, there exists

Δ2
xε

β
=

∫
Rn

t�P�ΛPt 1
(2π)n |

∫
Rn

˜fε(u)e−it�udu|2dt (34)

Let ω = Pt, conduct an integral transformation for (34), and let u = P�y; then, there exists

Δ2
xε

β
=

∫
Rn

ω�Λω 1
(2π)n |

∫
Rn

˜fε(u)e−iω�Pudu|2dt

=
∫
Rn

ω�Λω 1
(2π)n |

∫
Rn

˜fε(P�y)e−iω�ydy|2dt
(35)

and
Δ2

v =
∫
Rn

u�u| ˜fε(u)|2du =
∫
Rn

y�y| ˜fε(P�y)|2dy (36)

Let ˜fε(P�y) = h(y); then, there exists

Δ2
xε

β
=

∫
Rn

ω�Λω 1
(2π)n |

∫
Rn

h(y)e−iω�ydy|2dt, Δ2
v =

∫
Rn

y�y|h(y)|2dy (37)

Furthermore, there exists

Δ2
v · Δ2

xε
β

=
∫
Rn

y�y|h(y)|2dy · ∫
Rn

ω�Λω 1
(2π)n |

∫
Rn

h(y)e−iω�ydy|2dt

=
∫
Rn
(y2

1 + · · ·+ y2
n)|h(y)|2dy

× ∫
Rn
(λ1ω2

1 + · · ·+ λnω2
n)

1
(2π)n |

∫
Rn

h(y)e−iω�ydy|2|dω

=
∫
Rn
(y2

1 + · · ·+ y2
n)|h(y)|2dy× ∫

Rn
(λ1|ω1∫

Rn
h(y)e2πiω�ydy|2 + · · ·+ λn|ωn

∫
Rn

h(y)e2πiω�ydy|2)dω

(38)

where λi is the ith eigenvalue of B�B. Let hi = ∂h(y)
∂yi

; then, from the Fourier transformation
property [35], there exists

Δ2
v · Δ2

xε
β

=
∫
Rn
(y2

1 + · · ·+ y2
n)|h(y)|2dy

× ∫
Rn
(λ1|

∫
Rn

h1(y)e2πiω�ydy|2 + · · ·+ λn|
∫
Rn

hn(y)e2πiω�ydy|2)dω
(39)

From the Cauchy inequality, we know that

Δ2
v · Δ2

xε
β

≥ ((
∫
Rn

y2
1|h(y)|2dy · ∫

Rn
λ1|

∫
Rn

h1(y)e2πiω�ydy|2dy)
1
2

+ · · ·+ (
∫
Rn

y2
n|h(y)|2dy · ∫

Rn
λ1|

∫
Rn

hn(y)e2πiω�ydy|2dy)
1
2)2

(40)

Then, using the Cauchy inequality of integral form, we know that

Δ2
v · Δ2

xε
β

≥ (
∫
Rn
(|y1h(y)

√
λ1h∗1(y)|+ · · ·+ |ynh(y)

√
λnh∗n(y)|)dy)2

= (
√

λ1
∫
Rn
(|y1h(y)h∗1(y)|dy + · · ·+√λn

∫
Rn
|ynh(y)h∗n(y)|dy)2

(41)

From the one-dimensional uncertainty principle, we obtain∫
Rn
|y1h(y)

√
λ1h∗1(y)|dy ≥ 1

2 (42)

To summarize, we obtain

Δ2
v · Δ2

xε
β
≥ (

√
λ1
2 + · · ·+

√
λn
2)2 (43)

152

Mathematics 2019, 7, 330

6. Numerical Simulation

The above theorem fundamentally illustrates the geometric association between the convergent
speed of the iterative sequence concerning the DE algorithm and the global optimal point precision.
Specifically, Δv and Δxε

β
are a pair of conjugate variables with quantum states, where the convergent

speed of the iterative sequence caused by any improvement of the algorithm and the numerical
accuracy of the global optimal point cannot be satisfied simultaneously. The above is a notably
important conclusion for the DE algorithm. We use the SFEM (segmentation finite element
method) to conduct a simple segmentation operation for β-Hilbert space and form a Riemannian
manifold (Regarding Riemannian manifolds [36,37] in the β-Hilbert space, here, we mainly apply
the space cluster caused by the wide-area property of Riemannian manifolds in Hilbert space. Then,
we can improve the efficiency of algorithm optimization due to using the space cluster. In addition,
because the Riemannian manifolds are more beneficial to the spatial segmentation operation by
preventing the generation of singular points in space so that some points are omitted in the optimal
process, we also consider the space quantum properties of Riemannian manifolds in the β-Hilbert
space. Applying the Riemannian manifolds is a purely scientific method of mathematical physics
in Hilbert space and is not intended to involve theoretical analysis of Riemannian manifolds) in the
β-Hilbert region. The three topological structures implied in the β-Hilbert space of the DE algorithm
are conducted by the operation of high-dimensional numerical simulation of quantum states to obtain
the data of Tables 1–5 (In the Tables 1–5, ∗ · · · ∗ is the strength of the variable; a larger number
implies a greater strength of the variable. Speed resolution is labeled as SR, position resolution as
PR, relevancy of the finite unit element [38,39] as finite relevancy (FR), space dimension as (Dim),
number population as (NP), mutational operation as (F), crossed operation as (CR), and elected
operation as (X). The single-point topological structure, branch topological structure and discrete
topological structure are labeled as (SPTS), (BTS), and (DTS), respectively), (variance deviation rate
(VDR) = (sample variance (SV)-population variance (PV))/PV; relevancy coefficient of the finite unit
element as FR’ = SR’s VDR + PR’s VDR. If FR′ ∈ (0, 1), then FR is true value 1; If FR′ = 0, then FR
is partial truth value 1−−; If FR′ = 1, then FR is absolute truth value 1 ++; EB is the error bounds
about iterative points in population), such that one can determine the association between quantum
characteristics of the Heisenberg uncertainty principle implied in β-Hilbert space of the DE algorithm
and its topological structure.

Table 1. Quantum simulation of high-dimensional data tables describing the three topological
structures of the DE algorithm implied in β-Hilbert space about Dim.

(Dim)
(SPTS) (BTS) (DTS)

SR(%) PR(%) FR SR(%) PR(%) FR SR(%) PR(%) FR

102 9.500 0.400 1 6.660 0.558 1 8.214 0.325 1
103 9.230 0.422 1 7.242 0.500 1 8.225 0.214 1
104 8.471 0.500 1 8.011 0.500 1 9.535 0.110 1
105 7.620 0.558 1 9.763 0.500 1 9.774 0.012 1
106 6.101 0.660 1 9.763 0.500 1 9.896 0.011 1
107 5.310 0.793 1 9.880 0.500 1 9.977 0.010 1

SV 2.89009 0.02248 / 2.05701 0.00056 / 0.68463 0.01727 /
PV 2.40841 0.01874 / 1.71418 0.00047 / 0.57052 0.01439 /
DVR +0.20 +0.32 1 +0.34 +0.19 1 +0.11 +0.16 1
EB ±0.5 ±0.5 / ±0.5 ±0.5 / ±0.5 ±0.5 /

153

Mathematics 2019, 7, 330

Table 2. Quantum simulation of high-dimensional data tables describing the three topological
structures of the DE algorithm implied in β-Hilbert space about NP.

(NP)
(SPTS) (BTS) (DTS)

SR(%) PR(%) FR SR(%) PR(%) FR SR(%) PR(%) FR

10× 10 8.687 0.793 1 5.243 0.021 1 8.688 0.029 1
10× 20 8.756 0.660 1 7.242 0.021 1 8.744 0.025 1
10× 30 8.863 0.558 1 9.011 0.020 1 8.880 0.013 1
10× 40 8.880 0.500 1 9.763 0.015 1 8.863 0.009 1
10× 50 9.000 0.500 1 9.841 0.010 1 9.010 0.005 1
10× 60 9.010 0.500 1 9.865 0.010 1 9.101 0.004 1

SV 0.18447 0.01426 / 3.54164 0.00003 / 0.02428 0.00011 /
PV 0.15373 0.01188 / 2.95137 0.00002 / 0.02023 0.00009 /
DVR +0.20 +0.20 1 +0.19 +0.50 1 +0.20 +0.22 1
EB ±0.5 ±0.5 / ±0.5 ±0.5 / ±0.5 ±0.5 /

Table 3. Quantum simulation of high-dimensional data tables describing the three topological
structures of the DE algorithm implied in β-Hilbert space about F.

(F)
(SPTS) (BTS) (DTS)

SR(%) PR(%) FR SR(%) PR(%) FR SR(%) PR(%) FR

0.2 6.786 0.660± 0.0001 1 2.652 2.558 1 11.749 0.005 1
0.3 6.020 0.877± 0.0001 1 2.641 2.560 1 11.744 0.009 1
0.4 6.020 0.966± 0.0001 1 2.633 2.559 1 11.126 0.010 1
0.5 5.852 1.101± 0.0001 1 2.620 2.660 1 9.535 0.010 1
0.6 5.633 1.210± 0.0001 1 2.619 2.676 1 9.535 0.015 1
0.7 5.330 1.220± 0.0001 1 2.618 2.881 1 9.535 0.055 1

SV 0.24052 0.04688 / 0.0002 0.0158 / 0.02428 0.00035 /
PV 0.20043 0.03907 / 0.00016 0.01316 / 0.02023 0.00029 /
DVR +0.20 +0.19 1 +0.25 +0.20 1 +0.20 +0.20 1
EB ±0.5 ±0.5 / ±0.5 ±0.5 / ±0.5 ±0.5 /

Table 4. Quantum simulation of high-dimensional data tables describing the three topological
structures of the DE algorithm implied in β-Hilbert space about CR.

(CR)
(SPTS) (BTS) (DTS)

SR(%) PR(%) FR SR(%) PR(%) FR SR(%) PR(%) FR

0 ∗ 0.430 0.991 1 ++ 7.002 0.990 1 ++ / 0.000 1−−
0 ∗∗ 0.520 0.853 1 ++ 7.242 0.960 1 ++ / 0.000 1−−
0 ∗∗∗ 0.522 0.793 1 ++ 7.620 0.960 1 ++ / 0.000 1−−
SV 0.00276 0.01031 / 0.09707 0.0003 / / 0 /
PV 0.00184 0.00687 / 0.06471 0.0002 / / 0 /
DVR +0.50 +0.50 1 ++ +0.50 +0.50 1 ++ / 0 1−−
EB ±0.5 ±0.5 / ±0.5 ±0.5 / / ±0.5 /

1 ∗ 1.233 0.099 1 9.855 0.010± 0.0001 1 11.144 0.397 1
1 ∗∗ 1.122 0.124 1 9.676 0.500± 0.0001 1 11.126 0.542 1
1 ∗∗∗ 1.010 0.500 1 9.110 0.500± 0.0001 1 10.250 0.633 1

SV 0.01243 0.05047 / 0.15124 0.08003 / 0.26116 0.01417 /
PV 0.00829 0.03364 / 0.10082 0.05336 / 0.1741 0.00944 /
DVR +0.49 +0.49 1 +0.50 +0.03 1 +0.50 +0.20 1
EB ±0.5 ±0.5 / ±0.5 ±0.5 / ±0.5 ±0.5 /

154

Mathematics 2019, 7, 330

Table 5. Quantum simulation of high-dimensional data tables describing the three topological
structures of the DE algorithm implied in β-Hilbert space about X.

(X)
(SPTS) (BTS) (DTS)

SR(%) PR(%) FR SR(%) PR(%) FR SR(%) PR(%) FR

0 ∗ 0.523 0.796 1 ++ 7.002 0.081 1 ++ / 0.000 1−−
0 ∗∗ 0.550 0.788 1 ++ 7.242 0.055 1 ++ / 0.000 1−−
0 ∗∗∗ 0.599 0.721 1 ++ 7.620 0.001 1 ++ / 0.000 1−−
SV 0.00035 0.0017 / 0.09707 0.00167 / / 0 /
PV 0.00023 0.00113 / 0.06471 0.00111 / / 0 /
VDR +0.52 +0.50 1 ++ +0.50 +0.50 1 ++ / 0 1−−
EB ±0.5 ±0.5 / ±0.5 ±0.5 / / ±0.5 /

1 ∗ 0.997 0.499 1 9.855 0.723 1 ++ 11.144 0.551 1 ++
1 ∗∗ 0.947 0.500 1 9.676 0.956 1 ++ 11.126 0.640 1 ++
1 ∗∗∗ 0.930 0.110 1 9.110 0.990 1 ++ 10.250 0.688 1 ++

SV 0.00121 0.05057 / 0.15124 0.02112 / 0.26116 0.00483 /
PV 0.00081 0.03371 / 0.10082 0.01408 / 0.1741 0.00322 /
VDR +0.49 +0.50 1 +0.50 +0.50 1 ++ +0.50 +0.50 1 ++
EB ±0.5 ±0.5 / ±0.5 ±0.5 / ±0.5 ±0.5 /

Because of the uncertainty of random algorithm, except for several dead points and invalid points,
we conduct a quantitative analysis of Tables 1–5 to ensure the regularity of data analysis.

For Dim, we set the dimensions to increase with common ratio of 10. Firstly, we analyze the
relationship between SR and PR about the SPTS: when the dimension increases, the SR decreases
gradually with a variance deviation rate +0.20, then the SR of iterative individuals decreases gradually;
and the PR increases gradually with a variance deviation rate +0.32, then the PR of iterative individual
increases gradually. The above case shows that FR is true value 1, then SR and PR are completely
inverse correlation.

Then, we analyze the relationship between SR and PR about the BTS: when the dimension
increases, the SR increases gradually with a variance deviation rate +0.34, then the SR of iterative
individuals increases gradually; and the PR decreases gradually with a variance deviation rate +0.19,
then the PR of iterative individuals decreases gradually. The above case shows that FR is true value 1,
then SR and PR are completely inverse correlation.

Finally, we analyze the relationship between SR and PR about the DTS: when the dimension
increases, the SR increases gradually with a variance deviation rate +0.11, then the SR of iterative
individuals increases gradually; and the PR decreases gradually with a variance deviation rate +0.16,
then the PR of iterative individuals decreases gradually. The above case shows that FR is true value 1,
then SR and PR are completely inverse correlation.

Similarly, we quantitatively analyze the NP. We set the NP to increase with tolerance of 100.
Firstly, we analyze the relationship between SR and PR about the SPTS: when the NP increases, the SR
increases gradually with a variance deviation rate +0.20, then the SR of iterative individuals increases
gradually; and the PR decreases gradually with a variance deviation rate +0.20, then the PR of iterative
individuals decreases gradually. The above case shows that FR is true value 1, then SR and PR are
completely inverse correlation.

Then, we analyze the relationship between SR and PR about the BTS: when the NP increases,
the SR increases gradually with a variance deviation rate +0.19, then the SR of iterative individuals
increases gradually; and the PR decreases gradually with a variance deviation rate +0.50, then the PR
of iterative individuals decreases gradually. The above case shows that FR is true value 1, then SR and
PR are completely inverse correlation.

Finally, we analyze the relationship between SR and PR about the DTS: when the NP increases,
the SR increases gradually with a variance deviation rate +0.20, then the SR of iterative individuals
increases gradually; and the PR decreases gradually with a variance deviation rate +0.22, then the PR

155

Mathematics 2019, 7, 330

of iterative individuals decreases gradually. The above case shows that FR is true value 1, then SR and
PR are completely inverse correlation.

Similarly, we quantitatively analyze the F. We set the F to increase with tolerance of 0.1. Firstly,
we analyze the relationship between SR and PR about the SPTS: when the F increases, the SR decreases
gradually with a variance deviation rate +0.20, then the SR of iterative individuals decreases gradually;
and the PR increases gradually with a variance deviation rate +0.19, then the PR of iterative individual
increases gradually. The above case shows that FR is true value 1, then SR and PR are completely
inverse correlation.

Then, we analyze the relationship between SR and PR about the BTS: when the F increases, the SR
decreases gradually with a variance deviation rate +0.25, then the SR of iterative individuals decreases
gradually; and the PR increases gradually with a variance deviation rate +0.20, then the PR of iterative
individual increases gradually. The above case shows that FR is true value 1, then SR and PR are
completely inverse correlation.

Finally, we analyze the relationship between SR and PR about the DTS: when the F increases,
the SR decreases gradually with a variance deviation rate +0.20, then the SR of iterative individuals
decreases gradually; and the PR increases gradually with a variance deviation rate +0.20, then the PR
of iterative individual increases gradually. The above case shows that FR is true value 1, then SR and
PR are completely inverse correlation.

Similarly, we quantitatively analyze the CR. We divide the CR into two cases that the one is
absolute crossover and the other is non-crossover, which are represented by ’1’ and ’0’ respectively.
Firstly, we analyze the relationship between SR and PR about the SPTS: under the condition of the
latter,when the intensity of CR increases gradually, the SR increases gradually with a variance deviation
rate +0.50, then the SR of iterative individuals increases gradually; and the PR decreases gradually with
a variance deviation rate +0.50, then the PR of iterative individuals decreases gradually. The above
case shows that FR is absolute true value 1 ++, then SR and PR are absolutely and completely inverse
correlation. Under the condition of the former, when the intensity of CR increases gradually, the SR
decreases gradually with a variance deviation rate +0.49, then the SR of iterative individuals decreases
gradually; and the PR increases gradually with a variance deviation rate +0.49, then the PR of iterative
individual increases gradually. The above case shows that FR is true value 1, then SR and PR are
completely inverse correlation.

Then, we analyze the relationship between SR and PR about the BTS: under the condition of the
latter,when the intensity of CR increases gradually, the SR increases gradually with a variance deviation
rate +0.50, then the SR of iterative individuals increases gradually; and the PR decreases gradually with
a variance deviation rate +0.50, then the PR of iterative individuals decreases gradually. The above
case shows that FR is absolute true value 1 ++, then SR and PR are absolutely and completely inverse
correlation. Under the condition of the former, when the intensity of CR increases gradually, the SR
decreases gradually with a variance deviation rate +0.50, then the SR of iterative individuals decreases
gradually; and the PR increases gradually with a variance deviation rate +0.03, then the PR of iterative
individual increases gradually. The above case shows that FR is true value 1, then SR and PR are
completely inverse correlation.

Finally, we analyze the relationship between SR and PR about the DTS: under the condition of the
latter, when the intensity of CR increases gradually, the variance deviation rate of SR does not exist,
and the variance deviation rate of PR is 0, which shows that there are been no change in the individual
diversity of the original population, and SR and PR are no change. The above case shows that FR is
partial truth value 1−−, then SR and PR are relatively inverse correlation. Under the condition of
the former, when the intensity of CR increases gradually, the SR decreases gradually with a variance
deviation rate +0.50, then the SR of iterative individuals decreases gradually; and the PR increases
gradually with a variance deviation rate +0.20, then the PR of iterative individual increases gradually.
The above case shows that FR is true value 1, then SR and PR are completely inverse correlation.

156

Mathematics 2019, 7, 330

Similarly, we quantitatively analyze the X. We divide the CR into two cases that the one is
absolute choice and the other is non-choice, which are represented by ’1’ and ’0’ respectively. Firstly,
we analyze the relationship between SR and PR about the SPTS: under the condition of the latter,
when the intensity of X increases gradually, the SR increases gradually with a variance deviation rate
+0.52, then the SR of iterative individuals increases gradually; and the PR decreases gradually with a
variance deviation rate +0.50, then the PR of iterative individuals decreases gradually. The above case
shows that FR is absolute true value 1 ++ , then SR and PR are absolutely and completely inverse
correlation. Under the condition of the former, when the intensity of X increases gradually, the SR
decreases gradually with a variance deviation rate +0.49, then the SR of iterative individuals decreases
gradually; and the PR increases gradually with a variance deviation rate +0.50, then the PR of iterative
individual increases gradually. The above case shows that FR is true value 1, then SR and PR are
completely inverse correlation.

Then, we analyze the relationship between SR and PR about the BTS: under the condition of the
latter, when the intensity of X increases gradually, the SR increases gradually with a variance deviation
rate +0.50, then the SR of iterative individuals increases gradually; and the PR decreases gradually with
a variance deviation rate +0.50, then the PR of iterative individuals decreases gradually. The above
case shows that FR is absolute true value 1 ++, then SR and PR are absolutely and completely inverse
correlation. Under the condition of the former, when the intensity of X increases gradually, the SR
decreases gradually with a variance deviation rate +0.50, then the SR of iterative individuals decreases
gradually; and the PR increases gradually with a variance deviation rate +0.50, then the PR of iterative
individual increases gradually. The above case shows that FR is absolute true value 1 ++, then SR
and PR are absolutely and completely inverse correlation.

Finally, we analyze the relationship between SR and PR about the DTS: under the condition
of the latter, when the intensity of X increases gradually, the variance deviation rate of SR does not
exist, and the variance deviation rate of PR is 0, which shows that there are been no change in the
individual diversity of the original population, and SR and PR are no change. The above case shows
that FR is partial truth value 1− −, then SR and PR are relatively inverse correlation. Under the
condition of the former, when the intensity of X increases gradually, the SR decreases gradually with
a variance deviation rate +0.50, then the SR of iterative individuals decreases gradually; and the PR
increases gradually with a variance deviation rate +0.50, then the PR of iterative individual increases
gradually. The above case shows that FR is absolute true value 1 ++, then SR and PR are absolutely
and completely inverse correlation.

We conduct a qualitative analysis of Tables 1–5 as well. Except for several dead points and invalid
points, under the condition of spatial dimension, the number of the population, mutated operator,
crossover operator, and selected operator are generally decreasing or increasing; correspondingly,
the speed changing rate of individual iterative points and the position changing rate of global optimal
point β exhibit a inverse correlation in β-Hilbert space, which illustrates the association between the
Heisenberg uncertainty quantum characteristics and its topological structure implied in the β-Hilbert
space of the DE algorithm. Specifically, the association of the convergent iterative sequence and the
global optimal point precision is a pair of conjugate variables on the quantum states in β-Hilbert
space with the uncertainty characteristics on quantum states. It is fundamentally explained that any
improvement in the algorithm cannot pursue the bidirectional efficiency between the convergent speed
and the optimal point precision.

7. Conclusions

This paper mainly discusses the continuity structure of closed populations and the control
convergent properties of the iterative sequences of the DE algorithm under the condition of
P−ε, establishes and analyzes the single-point topological structure, branch topological structure,
and discrete topological structure implied in β-Hilbert space of the DE algorithm, verifies the
association between the Heisenberg uncertainty quantum characteristics and its topological structure

157

Mathematics 2019, 7, 330

implied in the β-Hilbert space of the DE algorithm, and obtains the specific directions of the
quantum uncertainty characters of the DE algorithm in β-Hilbert space by quantum simulation
of high-dimensional data. The findings are that the speed resolution Δ2

v of the iterative sequence
convergent speed and the position resolution Δxε

β
of the global optimal point with the swinging range

are a pair of conjugate variables of the quantum states in β-Hilbert space, corresponding to uncertainty
characteristics of quantum states; they cannot simultaneously achieve bidirectional efficiency between
the convergent speed and the best point precision with any procedural improvements. Because they
are geometric features of Riemannian manifolds in the view of operator optimization in Hilbert space
theoretically, however, which is only a theoretical guess, the quantum characters of the pair of conjugate
variables in the Riemannian space require further exploration.

We all know that the most important theoretical research of meta-heuristic algorithm is how to
balance the convergence speed and accuracy of the iterative points better to ensure that the iterative
process is more efficient, when the iterative points approaches the global optimal point. We get the
quantum uncertainty properties of the DEalgorithm in the beta-Hilbertspace by theoretical analysis.
In the future, we will discuss the quantum estimation form and its asymptotic estimation form between
convergent speed and convergent accuracy of iterative points by numerical simulation, which will lay a
solid mathematical foundation for the convergent mechanism of meta-heuristic algorithm. Our second
work in the future is to study the computational structure and physical structure of differential
evolution algorithm, including computational complexity, spatial complexity, time tensor expansion,
convergent analysis, quantum transformation state structure, Heisenberg uncertainty quantum state,
dynamic torque analysis and so on, which will become the physical basis of the convergent theory of
meta-heuristic algorithm.

Author Contributions: The first author has solved the following problems: 1. The continuity of the closed
population in the condition of P−ε and the control convergent properties of its iterative sequence; 2. The topological
structure implied in the Hilbert space of the DE algorithm; 3. The Heisenberg uncertainty quantum characteristics
implied in the β-Hilbert space of the DE algorithm; And the same time,the first author implements numerical
simulation of quantum inequalities for differential evolutionary algorithm. The correspondent Author reviewed
the logical structure and data specification of the paper, and gave academic guidance to the first and second parts.

Funding: This work was supported by the Major Scientific Research Projects of North Minzu University
(No: MSRPNMU2019003), the National Natural Science Foundation of China under Grant (No: 61561001),
First-Class Disciplines Foundation of Ningxia (Grant No. NXYLXK2017B09) and Postgraduate Innovation Project
of North Minzu University (No: YCX1932).

Acknowledgments: Acknowledgment for the financial support of the National Natural Science Foundation
Project, the University-level Project of Northern University for Nationalities and the District-level Project of
Ningxia. And the reviewers and instructors for the paper.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Storn, R.; Price, K. Differential Evolution—A Simple and Effcient Heuristic for global Optimization over
Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

2. Price, K.; Price, K. Differential Evolution—A Simple and Effcient Heuristic for Global Optimization over Continuous
Spaces; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1997.

3. Reddy, S.S.; Bijwe, P.R. Differential evolution-based efficient multi-objective optimal power flow. Neural
Comput. Appl. 2017, 1–14. [CrossRef]

4. Liu, J.; Lampinen, J. A Fuzzy Adaptive Differential Evolution Algorithm. Soft Comput. 2005, 9, 448–462.
[CrossRef]

5. Reddy, S.S.; Bijwe, P.R.; Abhyanka, A.R. Faster evolutionary algorithm based optimal power flow using
incremental variables. Int. J. Electr. Power Energy Syst. 2014, 54, 198–210. [CrossRef]

6. Reddy, S.S. Optimal power flow using hybrid differential evolution and harmony search algorithm. Int. J.
Mach. Learn. Cybern. 2018, 1–15. [CrossRef]

7. Reddy, S.S.; Abhyankar, A.R.; Bijwe, P.R. Reactive power price clearing using multi-objective optimization.
Energy 2011, 36, 3579–3589. [CrossRef]

158

Mathematics 2019, 7, 330

8. Ilonen, J.; Kamarainen, J.K.; Lampinen, J. Differential Evolution Training Algorithm for Feed-Forward Neural
Networks. Neural Process. Lett. 2003, 17, 93–105. [CrossRef]

9. Storn, R. System design by constraint adaptation and differential evolution. IEEE Trans. Evol. Comput. 1999,
3, 22–34. [CrossRef]

10. Reddy, S.S.; Panigrahi, B.K. Optimal power flow using clustered adaptive teaching learning-based
optimisation. Int. J. Bio-Inspir. Comput. 2017, 9, 226. [CrossRef]

11. Yang, M.; Li, C.; Cai, Z.; Guan, J. Differential Evolution With Auto-Enhanced Population Diversity. IEEE Trans.
Cybern. 2017, 45, 302–315. [CrossRef]

12. Eschenauer, H.A.; Olhoff, N. Topology optimization of continuum structures: A review. Appl. Mech. Rev.
2001, 54, 1453–1457. [CrossRef]

13. Albert, R.; Barabasi, A.L. Topology of evolving networks: Local events and universality. Phys. Rev. Lett. 2000,
85, 5234. [CrossRef] [PubMed]

14. Berkson, E. Composition operators isolated in the uniform operator topology. Proc. Am. Math. Soc. 1981, 81,
230–232. [CrossRef]

15. Maccluer, B.D. Components in the space of composition operators. Integr. Equ. Oper. Theory 1989, 12, 725–738.
[CrossRef]

16. Shapiro, J.H.; Sundberg, C. Isolation amongst the composition operators. Pac. J. Math. 1990, 145, 179–185.
[CrossRef]

17. Maccler, B.; Ohno, S.; Zhao, R. Topological structure of the space of composition operators on Hilbert.
Integr. Equ. Oper. Theory 2001, 40, 481–494. [CrossRef]

18. Hosokawa, T.; Izuchi, K.; zheng, D. Isolated points and essential components of composition operators on
Hilbert. Integr. Equ. Oper. Theory 2001, 130, 1765–1773.

19. Zhu, K. Uncertainty principles for the Fock space. Sci. China-Math. 2015, 45, 1847–1854.
20. Accardi, L.; Marek, B. Interacting Fock Spaces and Gaussianization of Probability Measures. Infin. Dimens.

Anal. Quantum Probab. Relat. Top. 2014, 1, 9800036. [CrossRef]
21. Cho, H.R.; Zhu, K. Fock-Sobolev spaces and their Carleson measures. J. Funct. Anal. 2012, 263, 2483–2506.

[CrossRef]
22. Popescu, G. Multi-analytic operators on Fock spaces. Math. Ann. 1995, 303, 31–46. [CrossRef]
23. Wang, X.; Cao, G.; Zhu, K. Boundedness and compactness of operators on the Fock space. Integr. Equ.

Oper. Theory 2013, 77, 355–370. [CrossRef]
24. Gooch, J.W. Heisenberg Uncertainty Principle; Springer: New York, NY, USA, 2011.
25. Folland, G.B.; Sitaram, A. The uncertainty principle: A mathematical survey. J. Fourier Anal. Appl. 1997, 3,

207–238. [CrossRef]
26. Faris, W.G. Inequalities and uncertainty principles. J. Math. Phys. 1978, 19, 461–466. [CrossRef]
27. Donoho, D.L.; Stark, P.B. Uncertainty principles and signal recovery. Siam J. Appl. Math. 1989, 49, 906–931.

[CrossRef]
28. Il’In, A.M. Differencing scheme for a differential equation with a small parameter affecting the highest

derivative. Math. Notes Acad. Sci. Ussr 1969, 6, 596–602. [CrossRef]
29. Dorr, F.W.; Parter, S.V.; Shampine, L.F. Applications of the Maximum Principle to Singular Perturbation

Problems. Siam Rev. 1973, 15, 43–88. [CrossRef]
30. Conway, J.B. A course in functional analysis. Math. Gazette 1990, 75, 698–698.
31. Dai, J. Topological Components of the Space of Composition Operators on Fock Spaces. Complex Anal.

Oper. Theory 2015, 9, 201–212. [CrossRef]
32. Hong, R.C.; Choe, B.R.; Koo, H. Linear Combinations of Composition Operators on the Fock-Sobolev Spaces.

Potential Anal. 2014, 41, 1223–1246.
33. Moshinsky, M.; Quesne, C. Linear Canonical Transformations and Their Unitary Representations. J. Math.

Phys. 1971, 12, 1772–1780. [CrossRef]
34. Zhao, J.; Tao, R.; Wang, Y. On signal moments and uncertainty relations associated with linear canonical

transform. Signal Process. 2010, 90, 2686–2689. [CrossRef]
35. Cattermole, K.W. The Fourier Transform and Its Applications; Osborne McGraw-Hill: London, UK, 2000.
36. Simons, J. Minimal Varieties in Riemannian Manifolds. Ann. Math. 1968, 88, 62–105. [CrossRef]
37. Cheng, S.Y.; Yau, S.T. Differential equations on riemannian manifolds and their geometric applications.

Commun. Pure Appl. Math. 2010, 28, 333–354. [CrossRef]

159

Mathematics 2019, 7, 330

38. Jin, J. The Finite Element Method in Electromagnetics. J. Jpn. Soc. Appl. Electromagn. 2002, 1, 39–40.
39. Satorra, A.; Bentler, P.M. A scaled difference chi-square test statistic for moment structure analysis.

Psychometrika 2001, 66, 507–514. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

160

mathematics

Article

An Improved Artificial Bee Colony Algorithm Based
on Elite Strategy and Dimension Learning

Songyi Xiao 1,2, Wenjun Wang 3, Hui Wang 1,2,*, Dekun Tan 1,2, Yun Wang 1,2, Xiang Yu 1,2

and Runxiu Wu 1,2

1 School of Information Engineering, Nanchang Institute of Technology, Nanchang 330099, China;
speaknow@126.com (S.X.); dktan@nit.edu.cn (D.T.); wangyun@nit.edu.cn (Y.W.); xyuac@ust.hk (X.Y.);
wurunxiu@tom.com (R.W.)

2 Jiangxi Province Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing,
Nanchang Institute of Technology, Nanchang 330099, China

3 School of Business Administration, Nanchang Institute of Technology, Nanchang 330099, China;
wangwenjun881@126.com

* Correspondence: huiwang@whu.edu.cn; Tel.: +86-0791-82086956

Received: 19 February 2019; Accepted: 13 March 2019; Published: 21 March 2019

Abstract: Artificial bee colony is a powerful optimization method, which has strong search abilities
to solve many optimization problems. However, some studies proved that ABC has poor exploitation
abilities in complex optimization problems. To overcome this issue, an improved ABC variant based
on elite strategy and dimension learning (called ABC-ESDL) is proposed in this paper. The elite
strategy selects better solutions to accelerate the search of ABC. The dimension learning uses the
differences between two random dimensions to generate a large jump. In the experiments, a classical
benchmark set and the 2013 IEEE Congress on Evolutionary (CEC 2013) benchmark set are tested.
Computational results show the proposed ABC-ESDL achieves more accurate solutions than ABC
and five other improved ABC variants.

Keywords: Artificial bee colony; swarm intelligence; elite strategy; dimension learning; global optimization

1. Introduction

In many real-world applications various optimization problems exist, which aim to select optimal
parameters (variables) to maximize (minimize) performance indicators. In general, a minimization
optimization problem can be defined by:

min f (X), (1)

where X is the vector of the decision variables.
To effectively solve optimization problems, intelligent optimization methods have been presented.

Some representative algorithms are particle swarm optimization [1–5], artificial bee colony (ABC) [6,7],
differential evolution [8,9], firefly algorithm [10–13], earthworm optimization algorithm [14], cuckoo
search [15,16], moth search [17], pigeon inspired optimization [18], bat algorithm [19–23], krill herd
algorithm [24–27], and social network optimization [28]. Among these algorithms, ABC has few control
parameters and strong exploration abilities [29,30].

ABC simulates the foraging behaviors of bees in nature [6]. The processes of bees finding food
sources are analogous to the processes of searching candidate solutions for a given problem. Although
ABC is effective in many problems, it suffers from poor exploitation and slow convergence rates [31,32].
The possible reasons can be summarized in two ways: (1) offspring are in the neighborhood of
their corresponding parent solutions and they are near to each other, and (2) offspring and their
corresponding parent solutions are similar because of one-dimension perturbation.

Mathematics 2019, 7, 289; doi:10.3390/math7030289 www.mdpi.com/journal/mathematics161

Mathematics 2019, 7, 289

In this work, a new ABC variant based on elite strategy and dimension learning (ESDL), called
ABC-ESDL, is presented to enhance the performance of ABC. For the elite strategy, better solutions
are chosen to guide the search. Moreover, the differences between different dimensions are used to
generate candidate solutions with large dissimilarities. In the experiments, a classical benchmark set
(with dimensions 30 and 100) and the 2013 IEEE Congress on Evolutionary (CEC 2013) benchmark set
are tested. Results of ABC-ESDL are compared with ABC and five other modified ABCs.

The remainder of this work is organized as follows. In Section 2, the concept and definitions
of ABC are introduced. Some recent work on ABC is given in Section 3. The proposed ABC-ESDL
is described in Section 4. Test problems, results, and discussions are presented in Section 5. Finally,
this work is summarized in Section 6.

2. Artificial Bee Colony

Like other bio-inspired algorithms, ABC is also a population-based stochastic method. Bees in
the population try to find new food sources (candidate solutions). According to the species of bees,
ABC consists of three types of bees: employed bees, onlooker bees, and scouts. The employed
bees search the neighborhood of solutions in the current population, and they share their search
experiences with the onlooker bees. Then, the onlooker bees choose better solutions and re-search
their neighborhoods to find new candidate solutions. When solutions cannot be improved during the
search, the scouts randomly initialize them [33].

Let Xi = (xi1, xi2, . . . , xiD) be the i-th solution in the population at the t-th iteration. An employed
bee randomly selects a different solution Xk from the current population and chooses a random
dimension index j. Then, a new solution Vi is obtained by [33]:

vij = xij + φij(xij − xkj), (2)

where i = 1, 2, . . . , N, and ϕij is randomly chosen from [−1.0, 1.0]. As seen, the new solution Vi is
similar to its parent solution Xi, and their differences are only on the j-th dimension. If Vi is better than
Xi, Xi is updated by Vi. This means that bees find better solutions during the current search. However,
this search process is slow, because the similarities between Xi and Vi are very large.

When employed bees complete the search around the neighborhood for solutions, all solutions
will be updated by comparing each pair of {Xi, Vi}. Then, the selection probability pi for each Xi is
defined as follows [33]:

pi =
f iti

∑N
j=1 f itj

, (3)

where fiti is the fitness value of Xi and fiti is calculated by:

f iti =

{
1/(1 + fi), if fi ≥ 0

1 + abs(fi), otherwise
, (4)

where fi is the function value of Xi. It is obvious that a better solution will have a larger selection
probability. So, the onlooker bees focus on searching the neighborhoods for better solutions. This may
accelerate the convergence.

For a specific solution X, if employed bees and onlooker bees cannot find any new solutions in its
neighborhood to replace it, the solutions maybe trapped into local minima. Then, a scout re-initializes
it as follows [33]:

xj = Lj + randj
(
Uj − Lj

)
, (5)

where j = 1, 2, . . . , D, [Lj, Uj] is the search range of the j-th dimension, and randj is randomly chosen
from [0, 1.0] for the j-th dimension.

162

Mathematics 2019, 7, 289

3. Related Work

Since the introduction of ABC, many different ABC variants and applications have been proposed.
Some recent work on ABC is presented as follows.

Zhu and Kwong [31] modified the search model by introducing the global best solution (Gbest).
Experiments confirmed that the modifications could improve the search efficiency. Karaboga and
Gorkemli [34] presented a quick ABC (qABC) by employing a new solution search equation for the
onlooker bees. Moreover, the neighborhood of Gbest was used to help the search. Gao and Liu [35]
used the mutation operator in differential evolution (DE) to modify the solution search equation of
ABC. Wang et al. [32] integrated multiple solution search strategies into ABC. It was expected that the
multi-strategy mechanism could balance exploration and exploitation abilities. Cui et al. [36] proposed
a new ABC with depth-first search framework and elite-guided search equation (DFSABC-elite),
which assigned more computational resources to the better solutions. In addition, elite solutions were
incorporated to modify the solution search equation. Li et al. [37] embedded a crossover operator
into ABC to obtain a good performance. Yao et al. [38] used a multi-population technique in ABC.
The entire population consisted of three subgroups, and each one used different evolutionary operators
to play different roles in the search. Kumar and Mishra [39] introduced covariance matrices into ABC.
Experiments on comparing continuous optimiser (COCO) benchmarks showed the approach was
robust and effective. Yang et al. [40] designed an adaptive encoding learning based on covariance
matrix learning. Furthermore, the selection was also adaptive according to the successful rate of
candidate solutions. Chen et al. [41] firstly employed multiple different solution search models in ABC.
Then, an adaptive method was designed to determine the chosen rate of each model.

In [42], a binary ABC was used to solve the spanning tree construction problem. Compared to
the traditional Kruskal algorithm, the binary ABC could find sub-optimal spanning trees. In [43],
a hybrid ABC was employed to tackle the effects of over-fitting in high dimensional datasets. In [44],
chaos and quantum theory were used to improve the performance of ABC. Dokeroglu et al. [45] used
a parallel ABC variant to optimize the quadratic assignment problem. Kishor et al. [46] presented a
multi-objective ABC based on non-dominated sorting. A new method was used for employed bees to
achieve convergence and diversity. The onlooker bees use similar operations with the standard ABC.
Research on wireless sensor networks (WSNs) has attracted much attention [47–49]. Hashim et al. [50]
proposed a new energy efficient optimal deployment strategy based on ABC in WSNs, in which ABC
was used to optimize the network parameters.

4. Proposed Approach

In this section, a new ABC variant based on elite strategy and dimension learning
(ABC-ESDL) is proposed. The proposed strategies and algorithm framework are described in the
following subsections.

4.1. Elite Strategy

Many scholars have noticed that the original ABC was not good at exploitation during the search.
To tackle this issue, several elite strategies were proposed. It is expected that elite solutions could help
the search and save computational resources.

Zhu and Kwong used Gbest to modify the solution search model as below [31]:

vij = xij + φij(xij − xkj) + ϕij(Gbestj − xij), (6)

where ϕij and ϕij are two random values between −1.0 and 1.0.
Motivated by the mutation strategy of DE, new search equations were designed as follows [32,35]:

vij = Gbestj + φij(xrj − xkj), (7)

163

Mathematics 2019, 7, 289

vij = Gbestj + φij(Gbestj − xkj), (8)

where Xr and Xk are two different solutions.
In our previous work [51], an external archive was constructed to store Gbests during the iterations.

Then, these Gbests are used to guide the search:

vij = Ãj + φij(xrj − xkj), (9)

where Ã is randomly chosen from the external archive.
Similar to [51], Cui et al. [36] designed an elite set E, which stores the best ρ*N solutions in the

current population, where ρ ∈ (0,1). Based on the elite set, two modified search equations are defined
as below:

vij = Elj + φij(Elj − xkj), (10)

vij =
1
2
(Elj + Gbestj) + φij(Gbestj − xkj), (11)

where El is randomly chosen from the set E.
Inspired by the above work, a new search model for the employed bees is designed:

vij =
1
2
(Elj + Gbestj) + φij(xij − Elj) + ϕij(xij − Gbestj), (12)

where El is randomly chosen from the elite set E, ϕij is a random value between −0.5 and 0.5, and ϕij is
a random value between 0 and 1.0.

As mentioned before, the onlooker bees re-search the neighborhoods of good solutions to find
potentially better solutions. Therefore, further searching by the onlooker bees can be regarded as the
exploitation phase. How to improve the effectiveness of the onlooker bees is important to the quality
of exploitation. Thus, a different method is designed for the onlooker bees:

vij =
1
2
(Emj + Gbestj) + φij(xij − Elj) + ϕij(xij − Gbestj), (13)

where m = 1, 2, ..., M; M is the elite set size; and El is randomly chosen from the set E. If a solution Xi
is selected based on the probability pi, an onlooker bee generates M candidate solutions according
to Equation (13). Each candidate solution is compared with Xi, and the better one is used as the
new Xi. The size of the elite set should be small, because a large M will result in high computational
time complexity.

To maintain the size of the elite set E, a simple replacement method is used. Initially, the best
M solutions in the population are selected into E. During the search, if the offspring Vi is better than
the worst solution Ew in the elite set E, we replace Ew with Vi. Then, the size of E will be M in the
whole search.

4.2. Dimensional Learning

In ABC, a random dimension j is selected for conducting the solution search equation. Under this
dimension, if their component values are similar, the difference (xij − xkj) will be very small. This means
that the step size (xij − xkj) cannot help Xi jump to a far position. If the solution is trapped into local
minima, it hardly escapes from the minima. In [52], a concept of dimension learning was proposed.
The difference (xij − xkh) between two different dimensions is used as the step size, where j and h are
two randomly selected dimension indices and j �= h. In general, the difference between two different
dimensions is large. A large step size may help trapped solutions jump to better positions.

Based on the above analysis, dimension learning is embedded into Equations (12) and (13). Then,
the new search models are rewritten as below:

164

Mathematics 2019, 7, 289

vij =
1
2
(Elh + Gbestj) + φij(xih − Elj) + ϕij(xih − Gbestj), (14)

vij =
1
2
(Emj + Gbesth) + φij(xij − Elh) + ϕij(xij − Gbesth), (15)

where h is a random dimension and j �= h.

4.3. Framework of Artificial Bee Colony-Elite Strategy and Dimension Learning

Our approach, ABC-ESDL, consists of four main operations: an elite set updating, an employed
bee phase, an onlooker bee phase, and a scout bee phase. The first operation exists in the employed
and onlooker bee phases. So, we only present the latter three operations.

In the employed bee phase, for each Xi, a new candidate solution Vi is created by Equation (12).
The better one between Vi and Xi is chosen as Xi. If Vi is better than Ew in the elite set E, Ew is replaced
by Vi. The procedure of the employed bee phase is presented in Algorithm 1, where FEs is the number
of function evaluations.

Algorithm 1: Framework of the Employed bee phase

Begin
for i = 1 to N do

Generate Vi by Equation (14);
Compute f (Vi) and FEs = FEs + 1;
if f(Vi) < f(Xi) then

Update Xi by Vi, and set triali= 0;
Update Ew, if possible;

else

triali = triali + 1;
end if

end for

End

The onlooker bee phase is described in Algorithm 2, where rand(0,1) is a random value in the
range [0, 1]. Compared to the employed bees, a different search model is employed for the onlooker
bees. In Algorithm 1, an elite solution El is chosen from E randomly, and it is used for generating a
new Vi. In Algorithm 2, all elite solutions in E are used to generate M new solutions Vi because there
are M elite solutions. All M new solutions are compared with the original Xi, and the best one is used
as the new Xi.

Algorithm 2: Framework of the Onlooker bee phase

Begin
Calculate the probability pi by Equation (3);
I = 1, t = 1;
while t ≤ N do

if rand(0,1) < pithen

for h = 1 to M do

Generate Vi by Equation (15);
Compute f (Vi) and FEs = FEs + 1;
if f(Vi) < f(Xi) then

165

Mathematics 2019, 7, 289

Update Xi by Vi, and set triali = 0;
Update Ew, if possible;

else

triali = triali + 1;
end if

end for

t++;
end if

i = (I + 1)%N + 1;
end while

End

When triali is set to 0, it means that the solution Xi has been improved. If the value of triali exceeds
a predefined value limit, it means that the solution Xi may fall into local minima. Thus, the current Xi
should be reinitialized. The main steps of the scout bee phase are given in Algorithm 3.

Algorithm 3: Framework of the Scout bee phase

Begin
if triali ≥ limit then

Initialize Xi by Equation (5);
Compute f (Xi) and FEs = FEs + 1;

end if

Update the global best solution;
End

The framework of our approach, ABC-ESDL, is presented in Algorithm 4, where N represents the
population size, M is the elite set size, and MaxFEs is the maximum value of FEs. To clearly illustrate
the proposed ABC-ESDL, Figure 1 gives its flowchart.

Algorithm 4: Framework of ABC-ESDL

Begin

Initialize N solution in the population;
Initialize the elite set E;
Set triali = 0, I = 1,2, ..., N;
while FEs≤MaxFEs do

Execute Algorithm 1;
Execute Algorithm 2;
Execute Algorithm 3;
Update the global best solution;

end while

End

166

Mathematics 2019, 7, 289

Figure 1. The flowchart of the proposed artificial bee colony-elite strategy and dimension learning
(ABC-ESDL) algorithm.

5. Experimental Study

5.1. Test Problems

To verify the performance of ABC-ESDL, 12 benchmark functions with dimensions 30 and
100 were utilized in the following experiments. These functions were employed to test the
optimization [53–58]. Table 1 presents the descriptions of the benchmark set where D is the dimension
size, and the global optimum is listed in the last column.

Table 1. Benchmark problems.

Name Function Global Optimum

Sphere f1(X) = ∑D
i=1 x2

i 0

Schwefel 2.22 f2(X) = ∑D
i=1|xi|+ ∏D

i=1|xi| 0

Schwefel 1.2 f3(X) = ∑D
i=1 (∑

i
j=1 xj)

2 0

Schwefel 2.21 f4(X) = max{|xi|, 1 <= i <= D} 0

Rosenbrock f5(X) = ∑D
i=1 [100(xi+1 − x2

i)
2
+ (1− x2

i)
2
] 0

Step f6(X) = ∑D
i=1�xi + 0.5� 0

Quartic f7(X) = ∑D
i=1 i · x4

i + rand[0, 1) 0

Schwefel 2.26 f8(X) = ∑D
i=1−xi sin(

√|xi|) −418.98*D

Rastrigin f9(X) = ∑D
i=1 [x

2
i − 10 cos 2πxi + 10] 0

Ackley f10(X) = −20 exp(−0.2
√

1
D ∑D

i=1 x2
i)− exp(1

D ∑D
i=1 cos(2πxi))

+20 + e
0

Griewank f11(X) = 1
4000 ∑D

i=1 (xi)
2 −∏D

i=1 cos(xi√
i
) + 1 0

Penalized

f12(X) = π
D

{
∑D

i=1 (yi − 1)2[1 + sin(πyi + 1)] + (yD − 1)2) + (10 sin2(πy1))
}

+∑D
i=1 u(xi, 10, 100, 4),
yi = 1 + xi+1

4

u(xi, a, k, m) =

⎧⎨⎩
u(xi, a, k, m), xi > a

0,−a < xi < a
k(−xi − a)m, xi < −a

0

167

Mathematics 2019, 7, 289

5.2. Parameter Settings

In the experiments, ABC-ESDL was tested on the benchmark set with D = 30 and 100, respectively.
Results of ABC-ESDL were compared with several other ABCs. The involved ABCs are listed as
follows:

• ABC;
• Gbest guided ABC (GABC) [31];
• Improved ABC (IABC) [51];
• Modified ABC (MABC) [35];
• ABC with variable search strategy (ABCVSS) [59];
• ABC with depth-first search framework and elite-guided search equation (DFSABC-elite) [36];
• Our approach, ABC-ESDL.

To attain a fair comparison, the same parameter settings were used. For both D = 30 and 100, N
and limit were equal to 100. For D = 30, MaxFEs was set to 1.5× 105. For D = 100, MaxFEs was set to
5.0× 105. The constant value C = 1.5 was used in GABC [31]. In MABC, the parameter p = 0.7 was
used [35]. The archive size m was set to 5 in IABC [51]. The number of solution search equations used
in ABCVSS was 5 [59]. In DFSABC-elite, p and r were set to 0.1 and 10, respectively [36]. In ABC-ESDL,
the size (M) of the elite set was set to 5. All algorithms ran 100 times for each problem. The computing
platform was with CPU Intel (R) Core (TM) i5-5200U 2.2 GHz, RAM 4 GB, and Microsoft Visual
Studio 2010.

5.3. Comparison between ABC-ESDL and Other ABC Variants

Table 2 shows the results of ABC-ESDL and six other ABCs for D = 30, where “Mean” indicates the
mean function value and “Std Dev” represents the standard deviation. The term “w/t/l” represents a
summary for the comparison between ABC-ESDL and the six competitors. The symbol w represents
that ABC-ESDL outperformed the compared algorithms on w functions. The symbol l means that
ABC-ESDL was worse than its competitor on l functions. For the symbol t, ABC-ESDL and its compared
algorithm obtained the same result on t functions. As shown, ABC-ESDL was better than ABC on
all functions except for f 6. For this problem, all ABCs converged to the global minima. Compared to
GABC, our approach ABC-ESDL performed better on nine functions. Both of them attained similar
results on three functions. For ABC-ESDL, IABC, and ABCVSS, the same performances were achieved
on four functions. ABC-ESDL found more accurate solutions than IABC and ABCVSS for the rest of the
eight functions. DFSABC-elite outperformed ABC-ESDL on only one function, f 4, while ABC-ESDL
was better than DFSABC-elite on seven functions.

Table 3 lists the results of ABC-ESDL and six other ABCs for D = 100. From the results, ABC-ESDL
surpassed ABC on all problems. ABC-ESDL, ABC, and IABC retained the same results on f 6 and
f 8. ABC-ESDL obtained better solutions for the rest of the ten functions. Compared to MABC and
ABCVSS, ABC-ESDL was better on seven functions. Three algorithms had the same performance on
five functions. DFSABC-elite outperformed ABC-ESDL on two functions, but ABC-ESDL was better
than DFSABC-elite on five functions. Both of them obtained similar performances on five functions.

168

Mathematics 2019, 7, 289

T
a

b
le

2
.

R
es

ul
ts

of
A

BC
-E

SD
L

an
d

si
x

ot
he

r
A

BC
al

go
ri

th
m

s
fo

r
D

=
30

.

F
u

n
ct

io
n

s
A

B
C

G
A

B
C

IA
B

C
M

A
B

C
A

B
C

V
S

S
D

F
S

A
B

C
-E

li
te

A
B

C
-E

S
D

L

M
e

a
n

S
td

D
e

v
M

e
a

n
S

td
D

e
v

M
e

a
n

S
td

D
e

v
M

e
a

n
S

td
D

e
v

M
e

a
n

S
td

D
e

v
M

e
a

n
S

td
D

e
v

M
e

a
n

S
td

D
e

v

f 1
1.

14
×

10
−1

5
3.

58
×

10
−1

6
4.

52
×

10
−1

6
2.

79
×

10
−1

6
1.

67
×

10
−3

5
6.

29
×

10
−3

6
9.

63
×

10
−4

2
6.

67
×

10
−4

1
1.

10
×

10
−3

6
3.

92
×

10
−3

6
4.

72
×

10
−7

5
3.

17
×

10
−7

4
2

.3
0
×

1
0
−

8
2

1
.1

3
×

1
0

−
8
0

f 2
1.

49
×

10
−1

0
2.

34
×

10
−1

0
1.

43
×

10
−1

5
3.

56
×

10
−1

5
3.

09
×

10
−1

9
3.

84
×

10
−1

9
1.

5
×

10
−2

1
6.

64
×

10
−2

2
8.

39
×

10
−2

0
1.

6
×

10
−1

9
6.

01
×

10
−3

8
2.

25
×

10
−3

8
3

.1
3
×

1
0
−

4
1

6
.8

1
×

1
0

−
4
0

f 3
1.

05
×

10
4

3.
37
×

10
3

4.
26
×

10
3

2.
17
×

10
3

5.
54
×

10
3

2.
71
×

10
3

1.
48
×

10
4

1.
44
×

10
4

9.
92
×

10
3

9.
36
×

10
3

4.
90
×

10
3

9.
80
×

10
3

3
.6

1
×

1
0

3
1

.2
8
×

1
0

3

f 4
4.

07
×

10
1

1.
72
×

10
1

1.
16
×

10
1

6.
32
×

10
0

1.
06
×

10
1

4.
26
×

10
0

5.
54
×

10
−1

4.
50
×

10
−1

4.
36
×

10
−1

3.
72
×

10
−1

2
.6

0
×

1
0
−

2
2

.9
9
×

1
0
−

2
2.

11
×

10
−1

7.
20
×

10
−1

f 5
1.

28
×

10
0

1.
05
×

10
0

2.
30
×

10
−1

3.
72
×

10
−1

2.
36
×

10
−1

3.
94
×

10
−1

1.
10
×

10
0

3.
45
×

10
0

1.
20
×

10
0

1.
03
×

10
1

1.
58
×

10
1

1.
00
×

10
2

1
.1

6
×

1
0
−

3
2

.0
8
×

1
0
−

2

f 6
0

0
0

0
0

0
0

0
0

0
0

0
0

0

f 7
1.

54
×

10
−1

2.
93
×

10
−1

5.
63
×

10
−2

3.
66
×

10
−2

4.
23
×

10
−2

3.
02
×

10
−2

2.
77
×

10
−2

6.
36
×

10
−3

3.
25
×

10
−2

4.
72
×

10
−2

1.
64
×

10
−2

2
.4

2
×

1
0
−

2
1

.4
6
×

1
0
−

2
2.

64
×

10
−2

f 8
−1

2,
49

0.
5

5.
87
×

10
+1

−
1

2
,5

6
9

.5
3.

25
×

10
−1

0
−

1
2

,5
6

9
.5

1.
31
×

10
−1

0
−

1
2

,5
6

9
.5

1
.9

7
×

1
0
−

1
3

−
1

2
,5

6
9

.5
1.

94
×

10
−1

1
−

1
2

,5
6

9
.5

1.
97
×

10
−1

1
−

1
2

,5
6

9
.5

4.
65
×

10
−1

1

f 9
7.

11
×

10
−1

5
2.

28
×

10
−1

5
0

0
0

0
0

0
0

0
0

0
0

0

f 1
0

1.
60
×

10
−9

4.
32
×

10
−9

3.
97
×

10
−1

4
2.

83
×

10
−1

4
3.

61
×

10
−1

4
1.

76
×

10
−1

4
7.

07
×

10
−1

4
2.

36
×

10
−1

4
3.

02
×

10
−1

4
2.

04
×

10
−1

4
2.

87
×

10
−1

4
1

.4
6
×

1
0
−

1
4

2
.8

2
×

1
0
−

1
4

2.
00
×

10
−1

4

f 1
1

1.
04
×

10
−1

3
3.

56
×

10
−1

3
1.

12
×

10
−1

6
2.

53
×

10
−1

6
0

0
0

0
1.

85
×

10
−1

7
3.

87
×

10
−1

6
2.

05
×

10
−1

1
6.

04
×

10
−1

0
0

0

f 1
2

5.
46
×

10
−1

6
3.

46
×

10
−1

6
4.

03
×

10
−1

6
2.

39
×

10
−1

6
3.

02
×

10
−1

7
0

1
.5

7
×

1
0
−

3
2

4.
50
×

10
−4

7
1

.5
7
×

1
0
−

3
2

4.
50
×

10
−4

7
1

.5
7
×

1
0
−

3
2

4.
50
×

10
−4

7
1

.5
7
×

1
0
−

3
2

5.
81
×

10
−4

7

w
/t

/l
11

/1
/0

9/
3/

0
8/

4/
0

7/
5/

0
8/

4/
0

7/
4/

1
-

*
Th

e
be

st
re

su
lt

fo
r

ea
ch

fu
nc

ti
on

is
sh

ow
n

in
bo

ld
fa

ce
.

T
a

b
le

3
.

R
es

ul
ts

of
A

BC
-E

SD
L

an
d

si
x

ot
he

r
A

BC
al

go
ri

th
m

s
fo

r
D

=
10

0.

F
u

n
ct

io
n

s
A

B
C

G
A

B
C

IA
B

C
M

A
B

C
A

B
C

V
S

S
D

F
S

A
B

C
-E

li
te

A
B

C
-E

S
D

L

M
e

a
n

S
td

D
e

v
M

e
a

n
S

td
D

e
v

M
e

a
n

S
td

D
e

v
M

e
a

n
S

td
D

e
v

M
e

a
n

S
td

D
e

v
M

e
a

n
S

td
D

e
v

M
e

a
n

S
td

D
e

v

f 1
7.

42
×

10
−1

5
5.

89
×

10
−1

5
3.

37
×

10
−1

5
7.

52
×

10
−1

6
3.

23
×

10
−3

3
1.

45
×

10
−3

4
7.

98
×

10
−3

8
2.

17
×

10
−3

7
6.

18
×

10
−3

5
1.

84
×

10
−3

4
1.

04
×

10
−7

3
1.

09
×

10
−7

2
6

.8
2
×

1
0
−

8
5

3
.0

6
×

1
0
−

8
3

f 2
1.

09
×

10
−9

4.
56
×

10
−9

6.
54
×

10
−1

5
2.

86
×

10
−1

5
4.

82
×

10
−1

8
3.

53
×

10
−1

8
2.

68
×

10
−2

0
3.

49
×

10
−2

0
1.

18
×

10
−1

8
1.

47
×

10
−1

8
2.

80
×

10
−3

7
5.

35
×

10
−3

7
1

.0
2
×

1
0
−

5
2

1
.7

6
×

1
0
−

5
1

f 3
1.

13
×

10
5

2.
62
×

10
4

9.
28
×

10
4

2.
71
×

10
4

9.
76
×

10
4

2.
81
×

10
4

1.
58
×

10
5

9.
39
×

10
4

1.
10
×

10
5

5
.1

2
×

1
0

4
6

.4
2
×

1
0

4
5.

17
×

10
4

7.
82
×

10
4

8.
55
×

10
4

f 4
8.

91
×

10
1

4.
37
×

10
1

8.
37
×

10
1

3.
68
×

10
1

8.
29
×

10
1

1.
28
×

10
1

3.
88
×

10
1

3.
70
×

10
0

3.
82
×

10
0

1.
09
×

10
0

7
.3

2
×

1
0
−

1
1

.0
1
×

1
0

0
2.

66
×

10
1

1.
32
×

10
1

f 5
3.

46
×

10
0

4.
29
×

10
0

2.
08
×

10
1

3.
46
×

10
0

2.
97
×

10
0

2.
72
×

10
0

2.
31
×

10
0

2.
62
×

10
0

1.
29
×

10
1

1.
23
×

10
2

2.
07
×

10
1

8.
46
×

10
1

1
.9

2
×

1
0
−

3
3

.2
2
×

1
0
−

2

f 6
1.

58
×

10
0

1.
68
×

10
0

0
0

0
0

0
0

0
0

0
0

0
0

f 7
1.

96
×

10
0

2.
57
×

10
0

9.
70
×

10
−1

7.
32
×

10
−1

7.
45
×

10
−1

2.
27
×

10
−1

1.
75
×

10
−1

1.
67
×

10
−2

1.
44
×

10
−1

1.
72
×

10
−1

1.
44
×

10
−1

8
.1

6
×

1
0
−

2
8

.3
4
×

1
0
−

2
9.

15
×

10
−2

f 8
−4

0,
94

7.
5

7.
34
×

10
2

−
4

1
,8

9
8

.3
5.

68
×

10
−1

0
−

4
1

,8
9

8
.3

3.
21
×

10
−1

0
−

4
1

,8
9

8
.3

2.
91
×

10
−1

2
−

4
1

,8
9

8
.3

1.
60
×

10
−1

0
−

4
1

,8
9

8
.3

7
.0

2
×

1
0
−

1
1

−
4

1
8

9
8

.3
1.

63
×

10
−1

0

f 9
1.

83
×

10
−1

1
2.

27
×

10
−1

1
1.

95
×

10
−1

4
3.

53
×

10
−1

4
1.

42
×

10
−1

4
2.

63
×

10
−1

4
0

0
0

0
0

0
0

0

f 1
0

3.
54
×

10
−9

7.
28
×

10
−1

0
1.

78
×

10
−1

3
5.

39
×

10
−1

3
1.

50
×

10
−1

3
4.

87
×

10
−1

3
3.

58
×

10
−1

1
2.

91
×

10
−1

2
1.

32
×

10
−1

3
3.

64
×

10
−1

4
1

.2
5
×

1
0
−

1
3

5
.3

6
×

1
0
−

1
4

1
.2

5
×

1
0
−

1
3

5.
61
×

10
−1

4

f 1
1

1.
12
×

10
−1

4
9.

52
×

10
−1

5
1.

44
×

10
−1

5
3.

42
×

10
−1

5
7.

78
×

10
−1

6
5.

24
×

10
−1

6
0

0
0

0
1.

81
×

10
−1

6
3.

42
×

10
−1

5
0

0

f 1
2

4.
96
×

10
−1

5
3.

29
×

10
−1

5
2.

99
×

10
−1

5
4.

37
×

10
−1

5
9.

05
×

10
−1

8
0

4
.7

1
×

1
0
−

3
3

0
4

.7
1
×

1
0
−

3
3

0
4

.7
1
×

1
0
−

3
3

0
4

.7
1
×

1
0
−

3
3

0

w
/t

/l
12

/0
/0

10
/2

/0
10

/2
/0

7/
5/

0
7/

5/
0

5/
5/

2
-

*
Th

e
be

st
re

su
lt

fo
r

ea
ch

fu
nc

ti
on

is
sh

ow
n

in
bo

ld
fa

ce
.

169

Mathematics 2019, 7, 289

Figure 2 presents the convergence processes of ABC-ESDL, DFSABC-elite, MABC, and ABC on
selected problems with D = 30. As seen, ABC-ESDL was faster than DFSABC-elite, MABC, and ABC.
For f 1, f 2, f 10, and f 12, DFSABC-elite converged faster than MABC and ABC. For f 5, DFSABC-elite was
the slowest algorithm. ABC was faster than DFSABC-elite on f 7. For f10, ABC-ESDL was slower than
DFSABC-elite at the beginning search stage, and it was faster at the last search stage.

(a) f1 (b) f2

(c) f5 (d) f7

(e) f10 (f) f12

Figure 2. The convergence curves of ABC-ESDL, DFSABC-elite, MABC, and ABC on selected functions.
(a) Sphere; (b) Schwefel 2.22; (c) Rosenbrock; (d) Quartic; (e) Ackley; and (f) Penalized.

By the suggestions of [53,56], a nonparametric statistical test was used to compare the overall
performances of seven ABCs. In the following, the mean rank of each algorithm on the whole
benchmark set was calculated by the Friedman test. Table 4 gives the mean rank values of seven ABCs
for D = 30 and 100. The smallest rank value meant that the corresponding algorithm obtained the
best performance. For D = 30 and 100, ABC-ESDL achieved the best performances, and DFSABC-elite
was in second place. For D = 30, both MABC and ABCVSS had the same rank. When the dimension
increased to 100, ABCVSS obtained a better rank than MABC.

170

Mathematics 2019, 7, 289

Table 4. Mean ranks achieved by the Friedman test for D = 30 and 100.

Algorithms
Mean Rank

D = 30 D = 100

ABC 6.50 6.67
GABC 4.58 5.33
IABC 4.08 4.42

MABC 3.79 3.58
ABCVSS 3.79 3.29

DFSABC-elite 3.29 2.67
ABC-ESDL 1.96 2.04

* The best rank for each dimension is shown in boldface.

5.4. Effects of Different Strategies

There are two modifications in ABC-ESDL: elite strategy (ES) and dimension learning (DL).
To investigate the effects of different strategies (ES and DL), we tested different combinations between
ABC, ES, and DL on the benchmark set. The involved combinations are listed as below:

• ABC without ES or DL;
• ABC-ES: ABC with elite strategy;
• ABC-DL: ABC with dimension learning;
• ABC-ESDL: ABC with elite strategy and dimension learning.

For the above four ABC algorithms, the parameter settings were kept the same as in Section 5.3.
The parameters MaxFEs, N, limit, and M were set to 5000*D, 100, 100, and 5, respectively. All algorithms
ran 100 times for each problem for D = 30 and 100.

Table 5 presents the comparison of ABC-ESDL, ABC-ES, ABC-DL, and ABC for D = 30. The best
result for each function is shown in boldface. From the results, all four algorithms obtained the same
results on f 6. ABC was worse than ABC-ES on eight problems, but ABC-ES obtained worse results on
three problems. ABC-DL outperformed ABC on ten problems, while ABC-DL was worse than ABC
on only one problem. ABC-ESDL outperformed ABC-DL and ABC on 11 problems. Compared to
ABC-ES, ABC-ESDL was better on ten problems, and both of them had the same performances on the
rest of the two problems.

Table 5. Comparison of ABC with different strategies (D = 30).

Problems
ABC ABC-ES ABC-DL ABC-ESDL

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

f 1 1.14 × 10−15 3.58 × 10−16 1.37 × 10−33 2.51 × 10−34 4.67 × 10−17 4.78 × 10−17 2.30 × 10−82 1.13 × 10−80

f 2 1.49 × 10−10 2.34 × 10−10 2.82 × 10−21 3.23 × 10−21 1.02 × 10−10 3.46 × 10−11 3.13 × 10−41 6.81 × 10−40

f 3 1.05 × 104 3.37 × 103 6.71 × 103 2.94 × 103 7.62 × 103 3.27 × 103 3.61 × 103 1.28 × 103

f 4 4.07 × 101 1.72 × 101 2.21 × 100 2.06 × 100 3.82 × 101 1.24 × 101 2.11 × 10−1 7.20 × 10−1

f 5 1.28 × 100 1.05 × 100 3.88 × 101 1.65 × 101 9.63 × 10−2 1.09 × 10−2 1.16 × 10−3 2.08 × 10−2

f 6 0 0 0 0 0 0 0 0

f 7 1.54 × 10−1 2.93 × 10−1 9.40 × 10−2 1.77 × 10 −2 2.82 × 10−1 2.51 × 10−2 1.46 × 10−2 2.64 × 10−2

f 8 −12,490.5 5.87 × 10+1 −12557.8 1.62 × 101 −12,533.1 1.93 × 102 −12,569.5 4.65 × 10−11

f 9 7.11 × 10−15 2.28 × 10−15 7.94 × 10−14 2.58 × 10−15 2.43 × 10−15 0 0 0

f 10 1.60 × 10−9 4.32 × 10−9 3.49 × 10−14 1.87 × 10−14 6.45 × 10−10 1.99 × 10−14 2.82 × 10−14 2.00 × 10−14

f 11 1.04 × 10−13 3.56 × 10−13 7.55 × 10−3 6.38 × 10−3 2.49 × 10−15 1.52 × 10−15 0 0

f 12 5.46 × 10−16 3.46 × 10−16 1.57 × 10−32 0 1.56 × 10−19 0 1.57 × 10−32 5.81 × 10−47

w/t/l 11/1/0 10/2/0 11/1/0 -

* The best result for each function is shown in boldface.

Table 6 gives the results of ABC-ESDL, ABC-ES, ABC-DL, and ABC for D = 100. The best result
for each function is shown in boldface. Similar to D = 30, we can get the same conclusion. ABC-ESDL
performed better than ABC, ABC-ES, and ABC-DL. ABC-ES was better than ABC-DL on most test
problems, and both of them outperformed the original ABC.

171

Mathematics 2019, 7, 289

Table 6. Comparison of ABC with different strategies (D = 100).

Problems
ABC ABC-ES ABC-DL ABC-ESDL

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

f 1 7.42 × 10−15 5.89 × 10−15 1.53 × 10−27 2.87 × 10−26 3.96 × 10−15 1.91 × 10−14 6.82 × 10−85 3.06 × 10−83

f 2 1.09 × 10−9 4.56 × 10−9 1.11 × 10−16 1.18 × 10−15 9.41 × 10−10 1.86 × 10−9 1.02 × 10−52 1.76 × 10−51

f 3 1.13 × 105 2.62 × 104 9.39 × 104 2.63 × 104 1.08 × 105 3.91 × 104 7.82 × 104 8.55 × 104

f 4 8.91 × 101 4.37 × 101 3.44 × 101 3.44 × 101 8.73 × 101 7.92 × 100 2.66 × 101 1.32 × 101

f 5 3.46 × 100 4.29 × 100 1.19 × 102 1.19 × 102 2.21 × 10−1 1.83 × 100 1.92 × 10−3 3.22 × 10−2

f 6 1.58 × 100 1.68 × 100 0 0 3.13 × 100 6.59 × 100 0 0

f 7 1.96 × 100 2.57 × 100 1.87 × 10−1 1.35 × 10−1 1.43 × 100 1.04 × 100 8.34 × 10−2 9.15 × 10−2

f 8 −40,947.5 7.34 × 102 −41,762.1 5.95 × 102 −41,240.7 8.02 × 102 −41,898.3 1.63 × 10−10

f 9 1.83 × 10−11 2.27 × 10−11 1.29 × 10−9 3.78 × 10−8 2.07 × 10−6 5.32 × 10−5 0 0

f 10 3.54 × 10−9 7.28 × 10−10 1.57 × 10−13 4.35 × 10−14 2.17 × 10−9 5.06 × 10−9 1.25 × 10−13 5.61 × 10−14

f 11 1.12 × 10−14 9.52 × 10−15 9.13 × 10−4 1.49 × 10−2 1.89 × 10−15 7.52 × 10−15 0 0

f 12 4.96 × 10−15 3.29 × 10−15 4.29 × 10−28 8.78 × 10−27 3.21 × 10−18 2.19 × 10−17 4.71 × 10−33 7.50 × 10−48

w/t/l 12/0/0 11/1/0 12/0/0 -

* The best result for each function is shown in boldface.

For the above analysis, ABC with a single strategy (ES or DL) achieved better results than
the original ABC. By introducing ES and DL into ABC, the performance of ABC-ESDL was further
enhanced, and it outperformed ABC and ABC with a single strategy. This demonstrated that both ES
and DL were helpful in strengthening the performance of ABC.

5.5. Results of the CEC 2013 Benchmark Set

In Section 5.3, ABC-ESDL was tested on several classical benchmark functions. To verify the
performance of ABC-ESDL on difficult functions, the 2013 IEEE Congress on Evolutionary (CEC 2013)
benchmark set was utilized in this section [60].

In the experiments, ABC-ESDL was compared with ABC, GABC, MABC, ABCVSS,
and DFSABC-elite on the CEC benchmark set with D = 30. By the suggestions of [60], MaxFEs
was set to 10,000*D. For other parameters, the same settings were used as described in Section 5.3.
For each test function, each algorithm was run 51 times. Throughout the experiments, the mean
function error value (f (X) − f (X*)) was reported, where X was the best solution found by the algorithm
in a run, and X* was the global optimum of the test function [60].

Table 7 presents the computational results of ABC-ESDL, DFSABC-elite, ABCVSS, MABC, GABC,
and ABC on the 2013 IEEE Congress on Evolutionary (CEC 2013) benchmark set, where “Mean”
indicates the mean function error values and “Std Dev” represents the standard deviation. The best
result for each function is shown in boldface. From the results, ABC-ESDL outperformed ABC and
GABC on 25 functions, but it was worse on the rest of the three functions. Compared to MABC,
ABC-ESDL achieved better results on 20 functions, but MABC was better than ABC-ESDL on the rest
of the eight functions. ABC-ESDL performed better than ABCVSS and DFSABC-elite on 21 and 22
functions, respectively. From the above analysis, even for difficult functions, ABC-ESDL still obtained
better performances than the compared algorithms.

172

Mathematics 2019, 7, 289

T
a

b
le

7
.

R
es

ul
ts

on
th

e
C

EC
20

13
be

nc
hm

ar
k

se
t.

P
ro

b
le

m
s

A
B

C
G

A
B

C
M

A
B

C
A

B
C

V
S

S
D

F
S

A
B

C
-e

li
te

A
B

C
-E

S
D

L

M
e
a
n

S
td

D
e
v

M
e
a
n

S
td

D
e
v

M
e
a
n

S
td

D
e
v

M
e
a
n

S
td

D
e
v

M
e
a
n

S
td

D
e
v

M
e
a
n

S
td

D
e
v

f 1
6.

82
×

10
−1

4
2.

18
×

10
−1

3
5.

71
×

10
−1

3
9.

44
×

10
−1

4
4
.5

5
×

1
0
−

1
4

1.
33
×

10
−1

2
6.

82
×

10
−1

4
1.

88
×

10
−1

2
4
.5

5
×

1
0
−

1
4

1.
19
×

10
−1

2
7.

29
×

10
−5

1.
66
×

10
−3

f 2
1.

05
×

10
5

5.
86
×

10
6

3.
43
×

10
7

5.
63
×

10
6

1.
88
×

10
7

4.
34
×

10
7

2
.5

4
×

1
0

5
7
.2

4
×

1
0

5
1.

98
×

10
7

4.
55
×

10
7

2.
55
×

10
6

1.
16
×

10
6

f 3
2.

49
×

10
9

6.
24
×

10
9

1.
05
×

10
10

1.
19
×

10
9

5.
58
×

10
7

2.
94
×

10
7

1.
89
×

10
8

5.
60
×

10
8

7.
83
×

10
7

2.
26
×

10
7

1
.9

5
×

1
0

6
3
.0

8
×

1
0

6

f 4
6.

81
×

10
3

2.
09
×

10
3

3.
51
×

10
5

1.
48
×

10
4

9.
83
×

10
3

2.
56
×

10
3

8.
18
×

10
3

2.
05
×

10
3

6.
58
×

10
3

1
.7

9
×

1
0

3
5
.9

4
×

1
0

3
1.

81
×

10
5

f 5
4.

97
×

10
−1

0
8.

53
×

10
−9

4.
70
×

10
−1

3
5
.6

5
×

1
0
−

1
4

5
.6

8
×

1
0
−

1
4

1.
52
×

10
−1

2
1.

71
×

10
−1

3
6.

98
×

10
−1

2
1.

02
×

10
−1

3
2.

50
×

10
−1

2
1.

07
×

10
−3

3.
00
×

10
−3

f 6
1.

73
×

10
0

5.
07
×

10
0

1.
77
×

10
2

1.
82
×

10
0

1.
76
×

10
0

6.
81
×

10
0

2.
25
×

10
0

7.
12
×

10
0

1.
67
×

10
0

1.
14
×

10
0

8
.5

8
×

1
0
−

1
3
.5

7
×

1
0
−

1

f 7
1.

29
×

10
2

3.
58
×

10
1

4.
09
×

10
2

1.
29
×

10
1

1.
06
×

10
1

3.
52
×

10
1

1.
26
×

10
1

3.
96
×

10
1

9.
27
×

10
0

2.
53
×

10
0

7
.1

6
×

1
0

0
2
.1

5
×

1
0

0

f 8
2.

10
×

10
0

5.
96
×

10
0

2.
13
×

10
1

3.
51
×

10
−2

2.
09
×

10
0

5.
97
×

10
0

2.
11
×

10
0

5.
97
×

10
0

2.
10
×

10
0

5.
96
×

10
0

2
.0

8
×

1
0

0
5
.9

5
×

1
0

0

f 9
3.

02
×

10
1

8.
69
×

10
0

1.
40
×

10
2

2.
43
×

10
1

2
.7

9
×

1
0

1
8.

69
×

10
0

3.
05
×

10
1

8.
81
×

10
0

3.
04
×

10
1

8.
47
×

10
0

2.
97
×

10
1

8
.0

8
×

1
0

0

f 1
0

3.
40
×

10
−1

8.
22
×

10
−1

1.
43
×

10
0

8.
48
×

10
−1

1.
62
×

10
−1

4.
60
×

10
−1

3.
05
×

10
−1

1.
32
×

10
−1

2.
46
×

10
−1

5.
59
×

10
−1

2
.5

1
×

1
0
−

2
6
.9

1
×

1
0
−

2

f 1
1

3.
30
×

10
−1

3
4.

73
×

10
−1

3
1.

54
×

10
−1

3
2.

86
×

10
−1

4
1.

14
×

10
−1

4
3.

24
×

10
−1

4
1.

71
×

10
−1

4
4.

30
×

10
−1

4
5
.6

8
×

1
0
−

1
5

2
.5

0
×

1
0
−

1
5

6.
81
×

10
−4

1.
91
×

10
−4

f 1
2

3.
14
×

10
1

8.
42
×

10
1

1.
60
×

10
3

5.
64
×

10
1

1.
57
×

10
1

5.
52
×

10
0

2.
46
×

10
1

6.
01
×

10
1

2.
20
×

10
1

5.
61
×

10
0

1
.5

1
×

1
0

1
4
.9

1
×

1
0

0

f 1
3

3.
14
×

10
1

9.
36
×

10
0

1.
81
×

10
3

5.
60
×

10
1

2.
63
×

10
1

7.
29
×

10
0

2.
27
×

10
1

7.
64
×

10
0

2
.1

3
×

1
0

1
6
.6

5
×

1
0

0
2.

70
×

10
1

7.
51
×

10
0

f 1
4

1.
09
×

10
0

4.
05
×

10
0

2.
85
×

10
0

1.
28
×

10
0

2.
48
×

10
−1

5.
23
×

10
−1

6
.2

5
×

1
0
−

3
1
.1

4
×

1
0
−

2
2.

10
×

10
−2

1.
80
×

10
−2

7.
47
×

10
−1

3.
05
×

10
−1

f 1
5

3.
49
×

10
3

1.
22
×

10
2

1.
57
×

10
4

6.
11
×

10
2

3.
21
×

10
3

1
.0

6
×

1
0

2
2.

65
×

10
3

1.
28
×

10
2

5.
09
×

10
3

1.
40
×

10
2

2
.6

2
×

1
0

3
1.

10
×

10
2

f 1
6

1.
65
×

10
0

5.
11
×

10
0

2.
07
×

10
0

2
.5

7
×

1
0
−

1
1.

57
×

10
0

3.
98
×

10
0

2.
15
×

10
0

5.
66
×

10
0

2.
49
×

10
0

5.
97
×

10
0

8
.4

9
×

1
0
−

1
3.

75
×

10
−1

f 1
7

3.
11
×

10
0

8.
81
×

10
1

1.
07
×

10
2

1.
06
×

10
2

3
.0

4
×

1
0

0
8.

67
×

10
0

3
.0

4
×

1
0

0
8
.6

6
×

1
0

0
3.

27
×

10
0

8.
66
×

10
0

3.
09
×

10
0

8.
76
×

10
0

f 1
8

3.
88
×

10
2

1.
01
×

10
2

1.
76
×

10
3

5.
02
×

10
2

1.
90
×

10
2

6.
59
×

10
1

3.
45
×

10
2

9.
27
×

10
1

2.
84
×

10
2

7.
53
×

10
1

1
.4

4
×

1
0

2
4
.9

9
×

1
0

1

f 1
9

1.
07
×

10
−1

3.
67
×

10
−1

2.
25
×

10
0

2.
94
×

10
−1

6.
81
×

10
−2

2
.2

6
×

1
0
−

2
1.

54
×

10
−1

6.
58
×

10
−1

4.
56
×

10
−2

2.
29
×

10
−2

4
.4

9
×

1
0
−

2
9.

31
×

10
−2

f 2
0

1.
54
×

10
1

4.
17
×

10
0

5.
00
×

10
1

6.
93
×

10
0

1.
46
×

10
1

4.
11
×

10
0

1.
48
×

10
1

4.
11
×

10
0

1.
46
×

10
1

4.
02
×

10
0

1
.4

1
×

1
0

1
3
.8

2
×

1
0

0

f 2
1

2.
01
×

10
2

5.
59
×

10
1

3.
67
×

10
2

9.
04
×

10
1

2.
06
×

10
2

5.
77
×

10
1

2.
18
×

10
2

6.
27
×

10
1

2.
00
×

10
2

9.
20
×

10
1

1
.0

2
×

1
0

2
5
.3

1
×

1
0

1

f 2
2

1.
16
×

10
2

3.
71
×

10
1

7.
47
×

10
1

2.
64
×

10
1

1.
05
×

10
2

3.
06
×

10
1

1.
15
×

10
2

4.
13
×

10
1

1.
19
×

10
2

3.
20
×

10
1

1
.4

7
×

1
0

1
2
.0

4
×

1
0

0

f 2
3

5.
53
×

10
3

1.
52
×

10
2

2.
16
×

10
4

8.
78
×

10
3

4.
11
×

10
3

1.
35
×

10
2

5.
57
×

10
3

1.
63
×

10
2

5.
87
×

10
3

1.
74
×

10
2

3
.1

8
×

1
0

3
1
.2

6
×

1
0

2

f 2
4

3.
02
×

10
2

8.
33
×

10
1

6.
00
×

10
2

7
.5

6
×

1
0

1
2.

88
×

10
2

8.
13
×

10
1

2.
86
×

10
2

8.
27
×

10
1

2.
86
×

10
2

8.
09
×

10
1

2
.8

0
×

1
0

2
8.

07
×

10
1

f 2
5

3.
15
×

10
2

8.
88
×

10
1

7.
16
×

10
2

9.
05
×

10
0

2
.9

6
×

1
0

2
8
.5

3
×

1
0

1
3.

02
×

10
2

8.
67
×

10
1

3.
00
×

10
2

8
.5

3
×

1
0

1
3.

00
×

10
2

8.
56
×

10
1

f 2
6

2.
01
×

10
2

5.
73
×

10
1

2.
07
×

10
2

3
.9

5
×

1
0
−

1
2.

01
×

10
2

5.
72
×

10
1

2.
01
×

10
2

5.
73
×

10
1

2.
01
×

10
2

5.
72
×

10
1

2
.0

0
×

1
0

2
5.

71
×

10
1

f 2
7

4.
02
×

10
2

1.
34
×

10
1

3.
81
×

10
3

6.
27
×

10
2

1.
11
×

10
3

3.
00
×

10
2

4.
02
×

10
2

1.
90
×

10
1

4.
02
×

10
2

1
.1

4
×

1
0

1
4
.0

0
×

1
0

2
1.

26
×

10
1

f 2
8

1.
64
×

10
2

7.
10
×

10
1

4.
27
×

10
3

5.
67
×

10
2

3.
00
×

10
2

8.
54
×

10
1

3.
13
×

10
2

9.
29
×

10
1

3.
00
×

10
2

8.
70
×

10
1

1
.0

4
×

1
0

2
8
.4

5
×

1
0

1

w
/t

/l
25

/0
/3

25
/0

/3
20

/0
/8

21
/0

/7
22

/1
/5

*
Th

e
be

st
re

su
lt

fo
r

ea
ch

fu
nc

ti
on

is
sh

ow
n

in
bo

ld
fa

ce
.

173

Mathematics 2019, 7, 289

6. Conclusions

To balance exploration and exploitation, an improved version of ABC, called ABC-ESDL,
is proposed in this paper. In ABC-ESDL, there are two modifications: elite strategy (ES) and dimension
learning (DL). The elite strategy is used to guide the search. Good solutions are selected into the
elite set. These elite solutions are used to modify the search model. To maintain the size of the
elite set, a simple replacement method is employed. In dimension learning, the difference between
different dimensions can achieve a large jump to help trapped solutions escape from local minima.
The performance of our approach ABC-ESDL is verified on twelve classical benchmark functions (with
dimensions 30 and 100) and the 2013 IEEE Congress on Evolutionary (CEC 2013) benchmark set.

Computational results of ABC-ESDL are compared with ABC, GABC, IABC, MABC, ABCVSS,
and DFSABC-elite. For D = 30 and 100, ABC-ESDL is not worse than ABCVSS, MABC, IABC, GABC,
and ABC. DFSABC-elite is better than ABC-ESDL on only one problem for D = 30 and two problems for
D = 100. For the rest of problems, ABC-ESDL outperforms DFSABC-elite. For the 2013 IEEE Congress
on Evolutionary (CEC 2013) benchmark set, ABC-ESDL still achieves better performances than the
compared algorithms.

Another experiment investigates the effectiveness of ES and DL. Results show that ES or DL can
achieve improvements. ABC with two strategies (both ES and DL) surpasses ABC and ABC with a
single strategy (ES or DL). It confirms the effectiveness of our proposed strategies.

For the onlooker bees, offspring is generated for each elite solution in the elite set. So, an onlooker
bee generates M new solutions when a parent solution Xi is selected. This complexity will increase the
computational time. To reduce the effects of such computational effort, a small parameter M is used.
In the future work, other strategies will be considered to replace the current method. In addition, more
test functions [61] will be considered to further verify the performance of our approach.

Author Contributions: Writing—original draft preparation, S.X. and H.W.; writing—review and editing, W.W.;
visualization, S.X.; supervision, H.W., D.T., Y.W., X.Y., and R.W.

Funding: This work was supported by the National Natural Science Foundation of China (Nos. 61663028,
61703199), the Distinguished Young Talents Plan of Jiang-xi Province (No. 20171BCB23075), the Natural Science
Foundation of Jiangxi Province (No. 20171BAB202035), the Science and Technology Plan Project of Jiangxi
Provincial Education Department (Nos. GJJ170994, GJJ180940), and the Open Research Fund of Jiangxi Province
Key Laboratory of Water Information Cooperative Sensing and Intelligent Processing (No. 2016WICSIP015).

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Kennedy, J. Particle Swarm Optimization. In Proceedings of the 1995 International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

2. Wang, F.; Zhang, H.; Li, K.S.; Lin, Z.Y.; Yang, J.; Shen, X.L. A hybrid particle swarm optimization algorithm
using adaptive learning strategy. Inf. Sci. 2018, 436–437, 162–177. [CrossRef]

3. Souza, T.A.; Vieira, V.J.D.; Souza, M.A.; Correia, S.E.N.; Costa, S.L.N.C.; Costa, W.C.A. Feature selection based
on binary particle swarm optimisation and neural networks for pathological voice detection. Int. J. Bio-Inspir.
Comput. 2018, 11, 91–101. [CrossRef]

4. Sun, C.L.; Jin, Y.C.; Chen, R.; Ding, J.L.; Zeng, J.C. Surrogate-assisted cooperative swarm optimization of
high-dimensional expensive problems. IEEE Trans. Evol. Comput. 2017, 21, 644–660. [CrossRef]

5. Wang, H.; Wu, Z.J.; Rahnamayan, S.; Liu, Y.; Ventresca, M. Enhancing particle swarm optimization using
generalized opposition-based learning. Inf. Sci. 2011, 181, 4699–4714.

6. Karaboga, D. An Idea Based on Honey Bee Swarm for Numerical Optimization; Technical Report-tr06; Engineering
Faculty, Computer Engineering Department, Erciyes University: Kayseri, Turkey, 2005.

7. Amiri, E.; Dehkordi, M.N. Dynamic data clustering by combining improved discrete artificial bee colony
algorithm with fuzzy logic. Int. J. Bio-Inspir. Comput. 2018, 12, 164–172. [CrossRef]

174

Mathematics 2019, 7, 289

8. Meang, Z.; Pan, J.S. HARD-DE: Hierarchical archive based mutation strategy with depth information of
evolution for the enhancement of differential evolution on numerical optimization. IEEE Access 2019, 7,
12832–12854. [CrossRef]

9. Meang, Z.; Pan, J.S.; Kong, L.P. Parameters with adaptive learning mechanism (PALM) for the enhancement
of differential evolution. Knowl.-Based Syst. 2018, 141, 92–112. [CrossRef]

10. Yang, X.S. Engineering Optimization: An Introduction with Metaheuristic Applications; John Wiley & Sons:
Etobicoke, ON, Canada, 2010.

11. Wang, H.; Wang, W.; Sun, H.; Rahnamayan, S. Firefly algorithm with random attraction. Int. J. Bio-Inspir.
Comput. 2016, 8, 33–41. [CrossRef]

12. Wang, H.; Wang, W.J.; Cui, Z.H.; Zhou, X.Y.; Zhao, J.; Li, Y. A new dynamic firefly algorithm for demand
estimation of water resources. Inf. Sci. 2018, 438, 95–106. [CrossRef]

13. Wang, H.; Wang, W.J.; Cui, L.Z.; Sun, H.; Zhao, J.; Wang, Y.; Xue, Y. A hybrid multi-objective firefly algorithm
for big data optimization. Appl. Soft Comput. 2018, 69, 806–815. [CrossRef]

14. Wang, G.G.; Deb, S.; Coelho, L.S. Earthworm optimisation algorithm: A bio-inspired metaheuristic algorithm
for global optimisation problems. Int. J. Bio-Inspir. Comput. 2018, 12, 1–22. [CrossRef]

15. Yang, X.S.; Deb, S. Cuckoo Search via Levy Flights. Mathematics 2010, 1, 210–214.
16. Zhang, M.; Wang, H.; Cui, Z.; Chen, J. Hybrid multi-objective cuckoo search with dynamical local search.

Memet. Comput. 2018, 10, 199–208. [CrossRef]
17. Wang, G.G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems.

Memet. Comput. 2016, 10, 1–14. [CrossRef]
18. Cui, Z.; Wang, Y.; Cai, X. A pigeon-inspired optimization algorithm for many-objective optimization

problems. Sci. China Inf. Sci. 2019, 62, 070212. [CrossRef]
19. Yang, X.S. A new metaheuristic bat-inspired algorithm. Comput. Knowl. Technol. 2010, 284, 65–74.
20. Wang, Y.; Wang, P.; Zhang, J.; Cui, Z.; Cai, X.; Zhang, W.; Chen, J. A novel bat algorithm with multiple

strategies coupling for numerical optimization. Mathematics 2019, 7, 135. [CrossRef]
21. Cai, X.J.; Gao, X.Z.; Xue, Y. Improved bat algorithm with optimal forage strategy and random disturbance

strategy. Int. J. Bio-Inspir. Comput. 2016, 8, 205–214. [CrossRef]
22. Cui, Z.H.; Xue, F.; Cai, X.J.; Gao, Y.; Wang, G.G.; Chen, J.J. Detection of malicious code variants based on

deep learning. IEEE Trans. Ind. Inf. 2018, 14, 3187–3196. [CrossRef]
23. Cai, X.; Wang, H.; Cui, Z.; Cai, J.; Xue, Y.; Wang, L. Bat algorithm with triangle-flipping strategy for numerical

optimization. Int. J. Mach. Learn. Cybern. 2018, 9, 199–215. [CrossRef]
24. Wang, G.G.; Guo, L.H.; Gandomi, A.H.; Hao, G.S.; Wang, H.Q. Chaotic krill herd algorithm. Inf. Sci. 2014,

274, 17–34. [CrossRef]
25. Wang, G.G.; Gandomi, A.H.; Alavi, A.H. An effective krill herd algorithm with migration operator in

biogeography-based optimization. Appl. Math. Model. 2014, 38, 2454–2462. [CrossRef]
26. Wang, G.G.; Gandomi, A.H.; Alavi, A.H. Stud krill herd algorithm. Neurocomputing 2014, 128, 363–370.

[CrossRef]
27. Wang, G.G.; Guo, L.H.; Wang, H.Q.; Duan, H.; Luo, L.; Li, J. Incorporating mutation scheme into krill herd

algorithm for global numerical optimization. Neural Comput. Appl. 2014, 24, 853–871. [CrossRef]
28. Grimaccia, F.; Gruosso, G.; Mussetta, M.; Niccolai, A.; Zich, R.E. Design of tubular permanent magnet

generators for vehicle energy harvesting by means of social network optimization. IEEE Trans. Ind. Electron.
2018, 65, 1884–1892. [CrossRef]

29. Karaboga, D.; Akay, B. A survey: Algorithms simulating bee swarm intelligence. Artif. Intell. Rev. 2009, 31,
61–85. [CrossRef]

30. Kumar, A.; Kumar, D.; Jarial, S.K. A review on artificial bee colony algorithms and their applications to data
clustering. Cybern. Inf. Technol. 2017, 17, 3–28. [CrossRef]

31. Zhu, G.; Kwong, S. Gbest-guided artificial bee colony algorithm for numerical function optimization.
Appl. Math. Comput. 2010, 217, 3166–3173. [CrossRef]

32. Wang, H.; Wu, Z.J.; Rahnamayan, S.; Sun, H.; Liu, Y.; Pan, J.S. Multi-strategy ensemble artificial bee colony
algorithm. Inf. Sci. 2014, 279, 587–603. [CrossRef]

33. Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009,
214, 108–132. [CrossRef]

175

Mathematics 2019, 7, 289

34. Karaboga, D.; Gorkemli, B. A quick artificial bee colony (qABC) algorithm and its performance on
optimization problems. Appl. Soft Comput. 2014, 23, 227–238. [CrossRef]

35. Gao, W.; Liu, S. A modified artificial bee colony algorithm. Comput. Oper. Res. 2012, 39, 687–697. [CrossRef]
36. Cui, L.Z.; Li, G.H.; Lin, Q.Z.; Du, Z.H.; Gao, W.F.; Chen, J.Y.; Lu, N. A novel artificial bee colony algorithm

with depth-first search framework and elite-guided search equation. Inf. Sci. 2016, 367–368, 1012–1044.
[CrossRef]

37. Li, G.H.; Cui, L.Z.; Fu, X.H.; Wen, Z.K.; Lu, N.; Lu, J. Artificial bee colony algorithm with gene recombination
for numerical function optimization. Appl. Soft Comput. 2017, 52, 146–159. [CrossRef]

38. Yao, X.; Chan, F.T.S.; Lin, Y.; Jin, H.; Gao, L.; Wang, X.; Zhou, J. An individual dependent multi-colony
artificial bee colony algorithm. Inf. Sci. 2019. [CrossRef]

39. Kumar, D.; Mishra, K.K. Co-variance guided artificial bee colony. Appl. Soft Comput. 2018, 70, 86–107.
[CrossRef]

40. Yang, J.; Jiang, Q.; Wang, L.; Liu, S.; Zhang, Y.; Li, W.; Wang, B. An adaptive encoding learning for artificial
bee colony algorithms. J. Comput. Sci. 2019, 30, 11–27. [CrossRef]

41. Chen, X.; Tianfield, H.; Li, K. Self-adaptive differential artificial bee colony algorithm for global optimization
problems. Swarm Evol. Comput. 2019, 45, 70–91. [CrossRef]

42. Zhang, X.; Zhang, X. A binary artificial bee colony algorithm for constructing spanning trees in vehicular ad
hoc networks. Ad Hoc Netw. 2017, 58, 198–204. [CrossRef]

43. Zorarpacı, E.; Özel, S.A. A hybrid approach of differential evolution and artificial bee colony for feature
selection. Expert Syst. Appl. 2016, 62, 91–103. [CrossRef]

44. Yuan, X.; Wang, P.; Yuan, Y.; Huang, Y.; Zhang, X. A new quantum inspired chaotic artificial bee colony
algorithm for optimal power flow problem. Energy Convers. Manag. 2015, 100, 1–9. [CrossRef]

45. Dokeroglu, T.; Sevinc, E.; Cosar, A. Artificial bee colony optimization for the quadratic assignment problem.
Appl. Soft Comput. 2019, 76, 595–606. [CrossRef]

46. Kishor, A.; Singh, P.K.; Prakash, J. NSABC: Non-dominated sorting based multi-objective artificial bee colony
algorithm and its application in data clustering. Neurocomputing 2016, 216, 514–533. [CrossRef]

47. Wang, P.; Xue, F.; Li, H.; Cui, Z.; Xie, L.; Chen, J. A multi-objective DV-Hop localization algorithm based on
NSGA-II in internet of things. Mathematics 2019, 7, 184. [CrossRef]

48. Pan, J.S.; Kong, L.P.; Sung, T.W.; Tsai, P.W.; Snasel, V. α-Fraction first strategy for hierarchical wireless sensor
networks. J. Internet Technol. 2018, 19, 1717–1726.

49. Xue, X.S.; Pan, J.S. A compact co-evolutionary algorithm for sensor ontology meta-matching. Knowl. Inf.
Syst. 2018, 56, 335–353. [CrossRef]

50. Hashim, H.A.; Ayinde, B.O.; Abido, M.A. Optimal placement of relay nodes in wireless sensor network
using artificial bee colony algorithm. J. Netw. Comput. Appl. 2016, 64, 239–248. [CrossRef]

51. Wang, H.; Wu, Z.J.; Zhou, X.Y.; Rahnamayan, S. Accelerating artificial bee colony algorithm by using an
external archive. In Proceedings of the IEEE Congress on Evolutionary Computation, Cancun, Mexico, 20–23
June 2013; pp. 517–521.

52. Li, B.; Sun, H.; Zhao, J.; Wang, H.; Wu, R.X. Artificial bee colony algorithm with different dimensional
learning. Appl. Res. Comput. 2016, 33, 1028–1033.

53. Wang, H.; Wang, W.; Zhou, X.; Sun, H.; Zhao, J.; Yu, X.; Cui, Z. Firefly algorithm with neighborhood
attraction. Inf. Sci. 2017, 382, 374–387. [CrossRef]

54. Wang, H.; Sun, H.; Li, C.H.; Rahnamayan, S.; Pan, J.S. Diversity enhanced particle swarm optimization with
neighborhood search. Inf. Sci. 2013, 223, 119–135. [CrossRef]

55. Wang, G.G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans.
Cybern. 2019, 49, 542–555. [CrossRef]

56. Wang, H.; Rahnamayan, S.; Sun, H.; Omran, M.G.H. Gaussian bare-bones differential evolution. IEEE Trans.
Cybern. 2013, 43, 634–647. [CrossRef]

57. Wang, H.; Cui, Z.H.; Sun, H.; Rahnamayan, S.; Yang, X.S. Randomly attracted firefly algorithm with
neighborhood search and dynamic parameter adjustment mechanism. Soft Comput. 2017, 21, 5325–5339.
[CrossRef]

58. Sun, C.L.; Zeng, J.C.; Pan, J.S.; Xue, S.D.; Jin, Y.C. A new fitness estimation strategy for particle swarm
optimization. Inf. Sci. 2013, 221, 355–370. [CrossRef]

176

Mathematics 2019, 7, 289

59. Kiran, M.S.; Hakli, H.; Guanduz, M.; Uguz, H. Artificial bee colony algorithm with variable search strategy
for continuous optimization. Inf. Sci. 2015, 300, 140–157. [CrossRef]

60. Liang, J.J.; Qu, B.Y.; Suganthan, P.N.; Hernández-Díaz, A.G. Problem Definitions and Evaluation Criteria for the
CEC 2013 Special Session and Competition on Real-Parameter Optimization; Tech. Rep. 201212; Computational
Intelligence Laboratory, Zhengzhou University, Zhengzhou China and Nanyang Technological University:
Singapore, 2013.

61. Serani, A.; Leotardi, C.; Iemma, U.; Campana, E.F.; Fasano, G.; Diez, M. Parameter selection in synchronous
and asynchronous deterministic particle swarm optimization for ship hydrodynamics problems. Appl. Soft
Comput. 2016, 49, 313–334. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

177

mathematics

Article

SRIFA: Stochastic Ranking with
Improved-Firefly-Algorithm for Constrained
Optimization Engineering Design Problems

Umesh Balande * and Deepti Shrimankar

Department of CSE, Visvesvaraya National Institute of Technology, Nagpur 440010, India;
dshrimankar@cse.vnit.ac.in
* Correspondence: umeshbalande30@gmail.com

Received: 2 February 2019; Accepted: 5 March 2019; Published: 11 March 2019

Abstract: Firefly-Algorithm (FA) is an eminent nature-inspired swarm-based technique for solving
numerous real world global optimization problems. This paper presents an overview of the constraint
handling techniques. It also includes a hybrid algorithm, namely the Stochastic Ranking with
Improved Firefly Algorithm (SRIFA) for solving constrained real-world engineering optimization
problems. The stochastic ranking approach is broadly used to maintain balance between penalty
and fitness functions. FA is extensively used due to its faster convergence than other metaheuristic
algorithms. The basic FA is modified by incorporating opposite-based learning and random-scale
factor to improve the diversity and performance. Furthermore, SRIFA uses feasibility based rules
to maintain balance between penalty and objective functions. SRIFA is experimented to optimize
24 CEC 2006 standard functions and five well-known engineering constrained-optimization design
problems from the literature to evaluate and analyze the effectiveness of SRIFA. It can be seen that the
overall computational results of SRIFA are better than those of the basic FA. Statistical outcomes of
the SRIFA are significantly superior compared to the other evolutionary algorithms and engineering
design problems in its performance, quality and efficiency.

Keywords: constrained optimization problems (COPs); evolutionary algorithms (EAs); firefly
algorithm (FA); stochastic ranking (SR)

1. Introduction

Nature-Inspired Algorithms (NIAs) are very popular in solving real-life optimization
problems. Hence, designing an efficient NIA is rapidly developing as an interesting research
area. The combination of evolutionary algorithms (EAs) and swarm intelligence (SI) algorithms are
commonly known as NIAs. The use of NIAs is popular and efficient in solving optimization problems
in the research field [1]. EAs are inspired by Darwinian theory. The most popular EAs are genetic
algorithm [2], evolutionary programming [3], evolutionary strategies [4], and genetic programming [5].
The term SI was coined by Gerardo Beni [6], as it mimics behavior of biological agents such as
birds, fish, bees, and so on. Most popular SI algorithms are particle swarm optimization [7], firefly
algorithm [8], ant colony optimization [9], cuckoo search [10] and bat algorithm [11]. Recently, many
new population-based algorithms have been developed to solve various complex optimization problem
such as killer whale algorithm [12], water evaporation algorithm [13], crow search algorithm [14] and
so on. The No-Free-Lunch (NFL) theorem described that there is not a single appropriate NIA to
solve all optimization problems. Consequently, choosing a relevant NIAs for a particular optimization
problem involves a lot of trial and error. Hence, many NIAs are studied and modified to make
them more powerful with regard to efficiency and convergence rate for some optimization problems.
The primary factor of NIAs are intensification (exploitation) and diversification (exploration) [15].

Mathematics 2019, 7, 250; doi:10.3390/math7030250 www.mdpi.com/journal/mathematics178

Mathematics 2019, 7, 250

Exploitation refers to finding a good solution in local search regions, whereas exploration refers to
exploring global search space to generate diverse solutions [16].

Optimization algorithms can be classified in different ways. NIAs can be simply divided into two
types: stochastic and deterministic [17]. Stochastic (in particular, metaheuristic) algorithms always
have some randomness. For example, the firefly algorithm has “α” as a randomness parameter.
This approach provides a probabilistic guarantee for a faster convergence of global optimization
problem, usually to find a global minimum or maximum at an infinite time. In the deterministic
approach, it ensures that, after a finite time, the global optimal solution will be found. This approach
follows a detailed procedure and the path and values of both dimensions of problem and function
are reputable. Hill-climbing is a good example of deterministic algorithm, and it follows same path
(starting point and ending point) whenever the program is executed [18].

Real-world engineering optimization problems contain a number of equality and inequality
constraints, which alter the search space. These problems are termed as Constrained-Optimization
Problems (COPs). The minimization COPs defined as:

Minimize: f (�z) = (z1, z2,, zn) �z ∈ S, (1)

gj(�z) ≤ 0 j = 1, 2, 3, . . . , m; (2)

hj(�z) = 0 j = m + 1, . . . , q ; (3)

lx ≤ k ≤ ux x = 1, 2,, n, (4)

where f (�z) is the objective-function given in Equation (1), (�z) = (z1, z2, z3..., zn) n-dimensional design
variables, lx and ux are the lower and upper bounds, gj(�z) inequality with m constraints and hj(�z)
equality with q− 1 constraints.

The feasible search space F ⊆ S is represented as the equality (q) and inequality (m). Some point
in the z ∈ F contains feasible or infeasible solutions. The active constraint (�z∗) is defined as inequality
constraints that are satisfied when gj(z) ≤ 0 (j = {1, 2, 3, . . . , m}) at given point (�z∗) ∈ F. In feasible
regions, all constraints (i.e., equality constraints) were acknowledged as active constraints at all points.

In NIA problems, most of the constraint-handling techniques deal with inequality constraints.
Hence, we have transformed equality constrained into equality using some tolerance value (ε):∣∣hj(�z)

∣∣− ε ≤ 0, (5)

where j ∈ {m + 1, . . . , q } and ’ε’ is tolerance allowed. Apply the value of tolerance ε for equality
constraints for a given optimization problem. Then, the constraint-violation CVj (�z) of an individual
from the jth constraint can be calculated by

CVj(�z) =

{
max{gj(�z), 0} 1 ≤ j ≤ m,

max{|hj(�z)| − ε, 0} m + 1 ≤ j ≤ q.
(6)

The maximum constraint-violation of�z of every constraint in the all individual or population is
given as:

CVj(�z) = ∑q
j=1 CVj(�z). (7)

With this background, the rest of paper is ordered as follows: Section 2 explains the classification
of constrained-Handling Techniques (CHT); Section 3 deals with an overview of Constrained FA;
Section 4 gives the outline of SR and OBL approaches. Section 5 described the proposed SRIFA with
OBL; the experimental setup and computational outcomes of the SRIFA with 24 CEC 2006 benchmark
test functions are illustrated in Section 6. The comparison of SRIFA with existing metaheuristic
algorithms is also discussed with respect to its performance and effectiveness. The computational

179

Mathematics 2019, 7, 250

results of the SRIFA are examined with an engineering design problem in Section 7. Finally, in Section 8,
conclusions of the paper are given.

2. Constrained-Handling Techniques (CHT)

Classification of CHT

In this section, we provide a literature survey of various CHT approaches that are adapted into
NIAs to solve COPs. The classification of constrained handling approaches is shown in Figure 1. In the
past few decades, various CHTs have been developed, particularly for EAs. Mezura-Montes and
Coello conducted a comprehensive survey of NIA [19].

Constraint-Handling Techniques

Dynamic-Penalty

Static-Penalty

Adaptive-Penalty

Death-Penalty

Decoders

Locating the
boundary of
feasible region

Repair Strategy

Deb Rule for
 selection

Powell and
skolnick

technique

Co-evolution

Constrained
Optimization

by random
evolution

Lagrangian
multipliers

Penalty Functions
Methods

Special representation
Schemes

Ranking Methods

Separation of
Objectives and

Constraints
Hybrid Methods

Multiple Ranking

Tessema and Yen method

Stochastic Ranking

Balanced Ranking Method

Feasibility Rule
Method

FROFI

No Repair

Centroid

COBRA
Fuzzy logic

Miscellaneous
Methods

Ensemble

Hyper-Heuristic

Dynamic Constrained

epsilon-Constrained

MO Methods

Bi -objective

Multi-Objective

Many-objective

parent-centric

Inverse parabolic

Oracle-Penalty

Exact-Penalty

Figure 1. The classification of Constrained-Handling Techniques.

1. Feasibility Rules Approach: The most effective CHT was proposed by Deb [20]. Between any two
solutions Ai and Aj compared, Ai is better than Aj, under the following conditions:

(a) If Ai is a feasible solution, then Aj solution is not.
(b) Between two Ai and Aj feasible solutions, if Ai has better objective value over Aj, then Ai

is preferred.
(c) Between two Ai and Aj infeasible solutions, if Ai has the lowest sum of constraint-violation

over Aj, then Ai is preferred.

Wang and Li [21] integrated a Feasibility-Rule integrated with Objective Function Information
(FROFI), where Differential Evolution (DE) is used as a search algorithm along with feasibility
rule.

2. Penalty Function Method: COPs can be transformed into unconstrained problems using penalty
function. This penalty method includes various techniques such as static-penalty, dynamic-
penalty [22], adaptive-penalty [23], death-penalty [24], oracle-penalty and exact-penalty methods.

3. Special representation scheme: This method includes decoders, locating the boundary of a feasible
solution [25] and repair method [26]. The new repair methods classified into three types:
Constrained Optimization by Radical basis Function Approximation (COBRA) [27], the centroid
and No-pair method.

180

Mathematics 2019, 7, 250

4. Multi-objective Methods (MO) or Vector optimization or Pareto-optimization: It is an optimization
problems that has two or more objectives [28]. There are roughly two types of MO methods:
bi-objective and many-objective.

5. Split-up objective and constraints: There are many techniques to handle split-up objective and
constraints. These techniques are co-evolution, Powell and Skolnick technique, Deb-rule and
ranking method. There are different types of ranking methods such as stochastic ranking,
Tessema and Yen method, multiple ranking and the balanced ranking method.

6. Hybrid Method: The NIAs combined with a classical constrained method or heuristic method
are called as hybrid methods. The hybrid method includes Lagrangian multipliers, constrained
Optimization by random evolution and fuzzy logic [25].

7. Miscellaneous Method: These methods include ensemble [29], ε-constrained [30], dynamic
constrained, hyper-heuristic, parent-centric and inverse parabolic [31].

3. Overview of Constrained FA

3.1. Basic FA

FA is a swarm-based NIAs proposed by Xin-she Yang [8]. Fister et al. [32] carried out in detail
comprehensive review of FA. The basic FA pseudo-code is indicated in Algorithm 1. The mathematical
formulation of the basic FA is as follows (Figure 2):

 Population size (Ps),
Decision variable (D),

Max generation(G)

initialize absorption, randomness, and
attractiveness coefficients.

Rank fireflies A/c to attractiveness

Sort fireflies

Move fireflies

Is optimal
solution

obtained ?

Obtain global minimum

Update
t<G

NO

Yes

Figure 2. Basic Firefly Algorithm (BFA).

Let us consider that attractiveness of FA is assumed as brightness (i.e., fitness function).
The distance between brightness of two fireflies (assume u and v) is given as:

I = I0e−γr2
uv (zu − zv,) (8)

where I is an intensity of light-source parameter, γ is an absorption coefficient, and (zu) is distance
between two fireflies u and v. I0 is the intensity of light source parameter when r = 0. The attractiveness
for two fireflies u and v (u is more attractive than v) is defined as:

β = β0e−γr2
uv (zu − zv) . (9)

181

Mathematics 2019, 7, 250

β0 is attractiveness parameter when r = 0.
Movement of fireflies are basically based on the attractiveness, when a firefly u is less attractive

than firefly v; then, firefly u moves towards firefly v and it is determined by Equation (10):

zv = zv + β0e−γr2
uv (zu − zv) + α

(
rand− 1

2

)
, (10)

where the second term is an attractive parameter, the third term is a randomness parameter and rand
is a vector of random-numbers generated uniform distribution between 0 and 1.

3.2. Constrained FA

The FA Combined with CHT has been widely used for solving COPs. Some typical constrained
FA (CFA) has been briefly discussed below.

To solve engineering optimization problems, the adaptive-FA is designed has been discussed
in [33]. Costa et al. [34] used penalty based techniques to evaluate different test functions for
global optimization with FA. Brajevic et al. [35] developed feasibility-rule based with FA for COPs.
Kulkarni et al. [36] proposed a modified feasibility-rule based for solving COPs using probability.
The upgraded FA (UFA) is proposed to solve mechanical engineering optimization problem [37].
Chou and Ngo designed a multidimensional optimization structure with modified FA (MFA) [38].

Algorithm 1 Stochastic Ranking Approach (SRA)

1: Number of population (N), Pf balanced dominance of two solution of f (�z), CVk (�z) is sum of
constrained violation, m is individual who will be ranked

2: Rank the individual based on Pf and f (�z)
3: Calculate zk = 1, */ k ∈ 1, 2, 3, ..., λ and zk is variable of f(z)
4: for i = 1 to n do
5: for k = 1 to m-1 do
6: Random R = U(0, 1) */random number generator
7: end for
8: if (CVk((zk) = CVk((zk+1) = 0)) or R < Pf then
9: if (f(zk) > f(zk+1)) then

10: swap (zk,zk+1)
11: end if

12: else if (CVk(zk) > CVk(zk+1)) then
13: swap (zk, zk+1)

end if
14: end if
15: if no swapping then break;
16: end if
17: end for

4. Stochastic Ranking and Opposite-Based Learning (OBL)

This section represents an overview of SR and OBL.

4.1. Stochastic Ranking Approach (SRA)

This approach, which was introduced by Runarsson and Yao [39], which balances fitness or
(objective function) and dominance of a penalty approach. Based on this, the SRA uses a simple bubble
sort technique to rank the individuals. To rank the individual in SRM, Pf is introduced, which is used
to compare the fitness function in infeasible area of search space. Normally, when we take any two
individuals for comparison, three possible solutions are formed.

(a) if both individuals are in a feasible region, then the smallest fitness function is given the
highest priority; (b) For both individuals at an infeasible region, an individual having smallest

182

Mathematics 2019, 7, 250

constraint-violation (CVk) is preferred to fitness function and is given the highest priority; and (c) if
one individual is feasible and other is infeasible, then the feasible region individual is given highest
priority. The pseudo code of SRM is given in Algorithm 1.

4.2. Opposition-Based Learning (OBL)

The OBL is suggested by Tizhoosh in the research industry, which is inspired by a relationship
among the candidate and its opposite solution. The main aim of the OBL is to achieve an optimal
solution for a fitness function and enhance the performance of the algorithm [40]. Let us assume that z
∈ [x + y] is any real number, and the opposite solution of z is denoted as ź and defined as

ź = x + y− z. (11)

Let us assume that Z = (z1, z2, z3, . . . , zn) is an n-dimensional decision vector, in which
zi∈[xi + yi] and i = 1, 2, . . . , n. In the opposite vector, p is defined as Ź = (ź1, ź2, ź3, . . . , źn), where
źi = ([xi + yi]− zi).

5. The Proposed Algorithm

The most important factor in NIAs is to maintain diversity of population in search space to
avoid premature convergence. From the intensification and diversification viewpoints, an expansion
in diversity of population revealed that NIAs are in the phase of intensification, while a decreased
population of diversity revealed that NIAs are in the phase of diversification. The adequate balance
between exploration and exploitation is achieved by maintaining a diverse populations. To maintain
balance between intensification and diversification, different approaches were proposed such as
diversity maintenance, diversity learning, diversity control and direct approaches [16]. The diversity
maintenance can be performed using a varying size population, duplication removal and selection of
a randomness parameter.

On the other hand, when the basic FA algorithm is performed with insufficient diversification
(exploration), it leads to a solution stuck in local optima or a suboptimal region. By considering these
issues, a new hybridizing algorithm is proposed by improving basic FA.

5.1. Varying Size of Population

A very common and simple technique is to increase the population size in NIAs to maintain the
diversity of population. However, due to an increase in population size, computation time required
for the execution of NIAs is also increased. To overcome this problem, the OBL concept is applied to
improve the efficiency and performance of basic FA at the initialization phase.

5.2. Improved FA with OBL

In the population-based algorithms, premature convergence in local optimum is a common
problem. In the basic FA, every firefly moves randomly towards the brighter one. In that condition,
population diversity is high. After some generation, the population diversity decreases due to a lack of
selection pressure and this leads to a trap solution at local optima. The diversification of FA is reduced
due to premature convergence. To overcome this problem, the OBL is applied to an initial phase of FA,
in order to increase the diversity of firefly individuals.

In the proposed Improved Firefly Algorithm (IFA), we have to balance intensification and
diversification for better performance and efficiency of the proposed FA. To perform exploration,
a randomization parameter is used to overcome local optimum and to explore global search. To balance
between intensification and diversification, the random-scale factor (R) was applied to generate
randomly populations. Das et al. [41] used a similar approach in DE:

Ru,v = lbv + 0.5(1 + rand(0, 1)) ∗ (ubv − lbv), (12)

183

Mathematics 2019, 7, 250

where Ru,v is a vth parameter of the uth firefly, ubv is upper-bound, lbv is a lower-bound of vth value
and rand (0, 1) is randomly distributed of the random-number.

The movement of fireflies using Equation (10) will be modified as

zv = zv + β0e−γr2
uv (zu − zv) + Ru,v. (13)

5.3. Stochastic Ranking with an Improved Firefly Algorithm (SRIFA)

Many studies are published in literature for solving COPs using EAs and FA. However, it is quite
challenging to apply this approach for constraints effectively handling optimization problems. FA
produces admirable outcomes on COPs and it is well-known for having a quick convergence rate [42].
As a result of the quick convergence rate of FA and popularity of the stochastic-ranking for CHT,
we proposed a hybridized technique for constrained optimization problems, known as Stochastic
Ranking with an Improved Firefly Algorithm (SRIFA). The flowchart of SRIFA is shown in Figure 3.

START

Initialization
phase

Initialize Objective-function (COPs)

Initialize population-size and apply OBL
approach

Initialize attractiveness, absorption ,
and randomness values.

Initialize parameter of SR
U(0,1) is random-value-generator(RVG)

Searching
Phase

Make a copy of firefly population

Apply Random scale factor (R) as in
Eq.(10)

Evaluate each fireflies with SR method

Sort the fireflies and ranked them

 Choose global best firefly

Is any local firefly best
than global best ?

max generation

Update
global best

firefly

Termination
Phase

YES

ENDObtain global minimum or
Maximum

NO
Stopping
 criterion

Figure 3. The flowchart of the SRIFA algorithm.

184

Mathematics 2019, 7, 250

5.4. Duplicate Removal in SRIFA

The duplicate individuals in a population should be eliminated and new individuals should
generated and inserted randomly into SRIFA. Figure 4 represents the duplication removal in SRIFA.

Start

Initial population N
firefly1, firefly2

variable (M)

duplicate
element

found in N

match found, alter firefly
(firefly1==firefly2)

 randomize function to generate fireflies
population firefly2=rand[1,0]

Assign upper and lower bound

Evaluate the firefly2 End

NO

YES

Figure 4. The flowchart of duplication removal in SRIFA.

6. Experimental Results and Discussions

To examine the performance of SRIFA with existing NIAs, the proposed algorithm is applied to
24 numerical benchmark test functions given in CEC 2006 [43]. This preferred benchmark functions
have been thoroughly studied before by various authors.

In Table 1, the main characteristics of 24 test function are determined, where a fitness function
(f(z)), number of variables or dimensions (D), ρ = |Feas|/|SeaR| is expressed as a feasibility ratio between
a feasible solution (Feas) with search region (SeaR), Linear-Inequality constraint (LI), Nonlinear
Inequality constraint (NI), Linear-Equality constraint (LE), Nonlinear Equality constraint (NE), number
active constraint represented as (a∗) and an optimal solution of fitness function denoted (OPT) are
given. For convenience, all equality constraints, i.e., hj(z) are transformed into inequality constraint
hj(z)− ε ≤ 0, where ε = 10−4 is a tolerance value, and its goal is to achieve a feasible solution [43].

6.1. Experimental Design

To investigate the performance and effectiveness of the SRIFA, it is tested over 24 standard-
functions and five well-known engineering design-problems. All experiments of COPs were
experimented on an Intel core (TM) i5− 3570 processor @3.40 GHz with 8 GB RAM memory, where an
SRIFA algorithm was programmed with Matlab 8.4 (R2014b) under Win7 (x64). Table 2 shows the
parameter used to conduct computational experiments of SRIFA algorithms. For all experiments,
30 independent runs were performed for each problem. To investigate efficiency and effectiveness of
the SRIFA, various statistical parameters were used such as best, worst, mean, global optimum and
standard-deviation (Std). Results in bold indicate best results obtained.

185

Mathematics 2019, 7, 250

Table 1. Characteristic of 24 standard-functions.

Problems Dimension Types of Functions ρ (%) L-I N-I L-E N-E a∗ Opt

G01 13 Quadratic 0.0003 9 0 0 0 6 −15.0000
G02 20 Non-linear 99.9962 1 1 0 0 1 −0.8036
G03 10 Non-linear 0.0002 0 0 0 1 1 −1.0000
G04 5 Quadratic 26.9089 0 6 0 0 2 −30,655.5390
G05 4 nonlinear 0.0000 2 0 0 3 3 5126.4970
G06 2 Non-linear 0.0065 0 2 0 0 2 −6961.8140
G07 10 Quadratic 0.0010 3 5 0 0 6 24.3060
G08 2 Non-linear 0.8488 0 2 0 0 0 0.9583
G09 7 Non-linear 0.5319 0 4 0 0 2 680.6300
G10 8 Linear 0.0005 3 3 0 0 6 7049.2480
G11 2 Quadratic 0.0099 0 0 0 1 1 0.7499
G12 3 Quadratic 4.7452 0 9 0 0 0 −1.0000
G13 5 Non-linear 0.0000 0 0 1 2 3 0.0539
G14 10 Non-linear 0.0000 0 0 3 0 3 −47.7650
G15 3 Quadratic 0.0000 0 0 1 1 2 961.7150
G16 5 Non-linear 0.0204 4 34 0 0 4 −1.9050
G17 6 Non-linear 0.0000 0 0 4 4 4 8853.5397
G18 9 Quadratic 0.0000 0 13 0 0 6 −0.8660
G19 15 Non-linear 33.4761 0 5 0 0 0 32.6560
G20 24 Linear 0.0000 0 6 2 12 16 0.0205
G21 7 Linear 0.0000 0 1 0 5 6 193.7250
G22 22 Linear 0.0000 0 1 8 11 19 236.4310
G23 9 Linear 0.0000 0 2 3 1 6 −400.0050
G24 2 Linear 79.6556 0 2 0 0 2 −5.5080

Table 2. Experimental parameters for SRIFA.

Parameters Value Significances

Size of population (NP) 50

Gandomi [44] suggested that 50 fireflies are adequate to
perform experiments for any application. If we
increase the population size, the computational time of
the proposed algorithm will be increased.

Initial randomization value (α0) 0.5
In the literature, many authors suggested that a randomness
parameter must used in range (0, 1). In our experiment,
we have used a 0.5 value.

Initial attractiveness value (β0) 0.2
The attractiveness parameter for our experiment is
0.2 value.

Absorption coefficient (γ) 4
The absorption value is crucial in our experiment.
It determines convergence speed of algorithms.
In most applications, the γ value in range (0.001, 100)

Number of iterations or generations (G) 4800 Total number of iterations.

Total number of function evaluation (NFEs) 240,000
The total number of objective function evaluations
(50 × 4800 = 240,000 evaluations)

Constrained-handling values Initial tolerance value: 0.5 (for equality)

Final tolerance: 1× 10−4 (for equality)

Probability Pf 0.45
It is used to rank objects. Pf is used to compare
the fitness (objective) function in infeasible areas
of the search space.

Varphi (φ) 1 Sum of constrained violation.

6.2. Calibration of SRIFA Parameters

In this section, we have to calibrate the parameter of the SRIFA. According to the strategy of the
SRIFA, described in Figure 2, the SRIFA contains eight parameters: size of population (NP), initial
randomization value (α0), initial attractiveness value (β0), absorption-coefficient (γ), max-generation
(G), total number of function evaluations (NFEs), probability Pf and varphi (φ). To derive a suitable
parameter, we have performed details of fine-tuning by varying parameters of SRIFA. The choice of
each of these parameters as follows: (NP)∈ (5 to 100 with an interval of 5), (α0) ∈ (0.10 to 1.00 with an
interval of 0.10), (β0) ∈ (0.10 to 1.00 with an interval 0.10), (γ) ∈ (0.01 to 100 with an interval of 0.01
until 1 further 5 to 100), (G) ∈ (1000 to 10,000 with an interval of 1000), NFEs ∈ (1000 to 240,000), Pf
= ∈ (0.1 to 0.9 with an interval of 0.1) and (φ) ∈ (0.1 to 1.0 with an interval of 0.1). The best optimal
solutions obtained by SRIFA parameter experiments from the various test functions. In Table 2, the
best parameter value for experiments for the SRIFA are described.

186

Mathematics 2019, 7, 250

6.3. Experimental Results of SRIFA Using a GKLS (GAVIANO, KVASOV, LERA and SERGEYEV) Generator

In this experiment, we have compared the proposed SRIFA with two novel approaches:
Operational Characteristic and Aggregated Operational Zone. An operational characteristic approach
is used for comparing deterministic algorithms, whereas an aggregated operational zone approach is
used by extending the idea of operational characteristics to compare metaheuristic algorithms.

The proposed algorithm is compared with some widely used NIAs (such as DE, PSO and FA)
and the well-known deterministic algorithms such as DIRECT, DIRECT-L (locally-biased version),
and ADC (adaptive diagonal curves). The GKLS test classes generator is used in our experiments.
The generator allows us to randomly generate 100 test instances having local minima and dimension.
In this experiment, eight classes (small and hard) are used (with dimensions of n = 2, 3, 4 and 5) [45].
The control parameters of the GKLS-generator required for each class contain 100 functions and
are defined by the following parameters: design variable or problem dimension (N), radius of the
convergence region (ρ), distance from of the paraboloid vertex and global minimum (r) and tolerance
(δ). The value of control parameters are given in Table 3.

Table 3. Control parameter of the GKLS generator.

N Class r ρ δ

2 Simple 0.9 0.2 104

2 Hard 0.9 0.1 104

3 Simple 0.66 0.2 105

3 Hard 0.9 0.2 105

4 Simple 0.66 0.2 106

4 Hard 0.9 0.2 106

5 Simple 0.66 0.3 107

5 Hard 0.9 0.2 107

From Table 4, we can see that the mean value of generations required for computation
of 100 instances are calculated for each deterministic and metaheuristic algorithms using an
GKLS generator. The values “>m(i)” indicate that the given algorithm did not solve a global
optimization problem i times in 100 × 100 instances (i.e., 1000 runs for deterministic and 10,000
runs for metaheuristic algorithms). The maximum number of generations is set to be 106. The mean
value of generation required for proposed algorithm is less than other algorithms, indicating that the
performance SRIFA is better than the given deterministic and metaheuristic algorithms.

6.4. Experimental Results FA and SRIFA

In our computational experiment, the proposed SRIFA is compared with the basic FA. It differs
from the basic FA in following few points. In the SRIFA, the OBL technique is used to enhance initial
population of algorithm, while, in FA, fixed generation is used to search for optimal solutions. In the
SRIFA, the chaotic map (or logistic map) is used to improve absorption coefficient γ, while, in the
FA, fixed iteration is applied to explore the global solution. The random scale factor (R) was used
to enhance performance in SRIFA. In addition, SRIFA uses Deb’s rules in the form of the stochastic
ranking method.

The experimental results of the SRIFA with basic FA are shown in Table 5. The comparison between
SRIFA and FA are conducted using 24 CEC (Congress on Evolutionary-Computation) benchmark test
functions [43]. The global optimum, CEC 2006 functions, best, worst, mean and standard deviation
(Std) outcomes produced by SRIFA and FA in over 25 runs are described in Table 5.

In Table 5, it is clearly observed that SRIFA provides promising results compared to the basic FA
for all benchmark test functions. The proposed algorithm found optimal or best solutions on all test
functions over 25 runs. For two functions (G20 and G22), we were unable to find any optimal solution.
It should be noted that ’N-F’ refers to no feasible result found.

187

Mathematics 2019, 7, 250

Table 4. Statistical results obtained by deterministic and metaheuristic algorithms using
GKLS generator.

N Class

Deterministic Algorithm Metaheuristic Algorithms
(100 Runs for Each Algorithm and Class) (10,000 Runs for Each Algorithm and Class)

DIRECT DIRECT-L ADC DE PSO FA SRIFA

2 Simple 198.9 292.8 176.3 >52,910.38 (511) >110,102.74 (1046) 1190.3 1008
2 Hard 1063.8 1267.1 675.7 >357,467.49 (3556) >247,232.35 (2282) >4299.6 (3) >3457.6 (3)
3 Simple 1117.7 1785.7 735.8 >165,125.02 (1515) >170,320.10 (1489) 15,269.2 14,987
3 Hard >42,322.7 (4) 4858.9 2006.8 >476,251.20 (4603) >285,499.04 (2501) >21,986.3 (1) 20,989
4 Simple >47,282.9 (4) 18,983.6 5014.1 >462,401.52 (4546) >303,436.36 (2785) 23,166.7 22,752.4
4 Hard >95,708.3 (7) 68,754 16,473 >773,481.03 (7676) >456,996.08 (4157) 40,380.7 38,123.2
5 Simple >16,057.5 (1) 16,758.4 5129.9 >294,839.01 (2815) >181,805.17 (1561) >47,203.1 (16) >45,892.8 (15)
5 Hard >217,215.6 (16) >269,064.4 (4) 30,471.8 >751,930.00 (7473) >250,462.63 (2109) >79,555.2 (38) >76,564 (34)

Table 5. Statistical results obtained by SRIFA and FA on 24 benchmark functions over 25 runs.

Algo. Functions Global Opt Best Worst Mean Std

FA G01 −15.000 −14.420072 −11.281250 −13.840104 1.16 × 100

SRIFA −15.000 −15.000 −15.000 7.86 × 10−13

FA G02 −0.8036191 −0.8036191 −0.5205742 −0.7458475 6.49 × 10−2

SRIFA −0.8036191 −0.800909 −0.80251 8.95 × 10−4

FA G03 −1.000 −1.0005 −1.0005 −1.0005 9.80 × 10−7

SRIFA −1.0005 −1.0005 −1.0005 6.54 × 10−6

FA G04 −30,665.539 −30,665.539 −30,665.539 −30,665.539 2.37 × 10−9

SRIFA −30,665.539 −30,665.54 −30,665.54 6.74 × 10−11

FA G05 5126.49671 5126.49671 5144.3028 5233.2377 2.92 × 101

SRIFA 5126.49671 5126.4967 5126.4967 1.94 × 10−9

FA G06 −6961.8138 −6961.81388 −6961.81388 −6961.81388 1.76 × 10−7

SRIFA −6961.8138 −6961.814 −6961.814 4.26 × 10−8

FA G07 24.306 24.306283 24.310614 24.32652 3.80 × 10−3

SRIFA 24.306 24.306 24.306 2.65 × 10−8

FA G08 −0.09582 −0.09582504 −0.09582504 −0.09582504 1.83 × 10−17

SRIFA −0.09582 −0.09582 −0.09582 5.40 × 10−20

FA G09 680.63 680.630058 680.630063 680.630082 7.11 × 10−6

SRIFA 680.6334 680.6334 680.6334 5.64 × 10−7

FA G10 7049.248 7071.757586 7181.02714 7111.54937 3.00 × 101

SRIFA 7049.2484 7049.2484 7049.2484 5.48 × 10−4

FA G11 0.7499 0.7499 0.7499 0.7499 5.64 × 10−9

SRIFA 0.7499 0.7499 0.7499 8.76 × 10−15

FA G12 −1.000 −1.000 −1.000 −1.000 5.00 × 10−2

SRIFA −1.000 −1.000 −1.000 6.00 × 10−3

FA G13 0.053942 0.054 0.439 0.131 1.54 × 10−1

SRIFA 0.053943 0.053943 0.053943 0.00 × 100

FA G14 −47.765 −47.764879 −47.764563 −47.762878 3.82 × 10−4

SRIFA −47.7658 −47.7658 −47.7658 5.68 × 10−6

FA G15 961.715 961.715 961.715 961.715 8.67 × 10−9

SRIFA 961.7155 961.7155 961.7155 6.34 × 10−11

FA G16 −1.9050 −1.90515 −1.90386 −1.90239 8.76 × 10−5

SRIFA −1.9050 −1.9050 −1.9050 2.55 × 10−10

FA g17 8853.5397 8853.5339 8900.0831 9131.5849 5.52 × 101

SRIFA 8853.5339 8853.5339 8853.5339 5.80 × 10−3

FA G18 −0.8660 −0.8660 −0.8660 −0.8660 7.60 × 10−5

SRIFA −0.8660 −0.8660 −0.8660 6.54 × 10−10

FA G19 32.6560 32.7789 34.6224 38.3827 1.65 × 100

SRIFA 32.6560 32.6560 32.6560 2.22 × 10−6

FA G20 30.0967 ’N-F’ ’N-F’ ’N-F’ ’N-F’
SRIFA ’N-F’ ’N-F’ ’N-F’ ’N-F’

FA G21 193.7250 193.7245 683.1906 350.9696 5.41 × 102

SRIFA 193.7240 193.7240 193.7240 4.26 × 10−4

FA G22 236.4310 ’N-F’ ’N-F’ ’N-F’ ’N-F’
SRIFA ’N-F’ ’N-F’ ’N-F’ ’N-F’

FA G23 −400.0050 −347.917268 −347.9345669 −347.923470 7.54 × 10−3

SRIFA −400.0050 −400.0052 −400.0050 5.65 × 10−4

FA G24 −5.5080 −5.5081 −5.5080 −5.5080 1.11 × 10−5

SRIFA −5.5081 −5.5080 −5.5080 1.21 × 10−13

188

Mathematics 2019, 7, 250

6.5. Comparison of SRIFA with Other NIAs

To investigate the performance and effectiveness of the SRIFA, these results are compared with five
metaheuristic algorithms. These algorithms are stochastic ranking with a particle-swarm-optimization
(SRPSO) [46], self adaptive mix of particle-swarm-optimization (SAMO-PSO) [47], upgraded firefly
algorithm (UFA) [37], an ensemble of constraint handling techniques for evolutionary-programming
(ECHT-EP2) [48] and a novel differential-evolution algorithm (NDE) [49]. To evaluate proper
comparisons of these algorithms, the same number of function evaluations (NFEs = 240,000)
were chosen.

The statistical outcomes achieved by SRPSO, SAMO-PSO, UFA, ECHT-EP2 and NDE for
24 standard functions are listed in Table 6. The outcomes given in bold letter indicates best or
optimal solution. N-A denotes “Not Available”. The benchmark function G20 and G22 are discarded
from the analysis, due to no feasible results were obtained.

On comparing SRIFA with SRPSO for 22 functions as described in Table 6, it is clearly seen
that, for all test functions, statistical outcomes indicate better performance in most cases. The SRIFA
obtained the best or the same optimal values among five metaheuristic algorithms. In terms of mean
outcomes, SRIFA shows better outcomes to test functions G02, G14, G17, G21 and G23 for all four
metaheuristic algorithms (i.e., SAMO-PSO, ECHT-EP2, UFA and NDE). SRIFA obtained worse mean
outcomes to test function G19 than NDE. In the rest of all test functions, SRIFA was superior to all
compared metaheuristic algorithms.

6.6. Statistical Analysis with Wilcoxon’s and Friedman Test

Statistical analysis can be classified as parametric and non-parametric test (also known as
distribution-free tests). In parametric tests, some assumptions are made about data parameters,
while, in non-parametric tests, no assumptions are made for data parameters. We performed statistical
analysis of data by non-parametric tests. It mainly consists of a Wilcoxon test (pair-wise comparison)
and Friedman test (multiple comparisons) [50].

The outcomes of statistical analysis after conducting a Wilcoxon-test between SRIFA and the other
five metaheuristic algorithms are shown in Table 7. The R+ value indicates that the first algorithm
is significantly superior than the second algorithm, whereas R− indicates that the second algorithm
performs better than the first algorithm. In Table 7, it is observed that R+ values are higher than
R− values in all cases. Thus, we can conclude that SRIFA significantly outperforms compared to all
metaheuristic algorithms.

The statistical analysis outcomes by applying Friedman test are shown in Table 8. We have ranked
the given metaheuristic algorithms corresponding to their mean value. From Table 8, SRIFA obtained
first ranking (i.e., the lowest value gets the first rank) compared to all metaheuristic algorithms over the
22 test functions. The average ranking of the SRIFA algorithm based on the Friedman test is described
in Figure 5.

6.7. Computational Complexity of SRIFA

In order to reduce complexity of the given problem, constraints are normalized. Let n
be population size and t is iteration. Generally in NIAs, at each iteration, a complexity is
O(n ∗ FEs + Co f ∗ FEs), where FEs is the maximum amount of function evaluations allowed and
and Co f is the cost of objective function. At the initialization phase of SRIFA, the computational
complexity of population generated randomly by the OBL technique is O(nt). In a searching and
termination phase, the computational complexity of two inner loops of FA and stochastic ranking
using a bubble sort are O(n2t + n(log(n))) +O(nt)). The total computational complexity of SRIFA is
O(n, t)= O(nt)+ O(n2t + nlogn) +O(nt) ≈ O(n2t).

189

Mathematics 2019, 7, 250

Table 6. Statistical outcomes achieved by SRPSO, SAMO-PSO, ECHT-EP2, UFA, NDE AND SRIFA.

Fun Features SRPSO SAMO-PSO ECHT-EP2 UFA NDE SRIFA

G01 Best −15.00 −15.00 −15.000 −15.000 −15.000 −15.000
Mean −15.00 −15.00 −15.000 −15.000 −15.000 −15.000
Worst −15.00 N-A −15.000001 −15.000001 −15.000001 −15.000

SD 5.27 × 10−12 0.00 × 100 0.00 × 100 8.95 × 10−10 0.00 × 100 7.86 × 10−13

G02 Best −0.80346805 0.8036191 −0.8036191 −0.8036191 −0.803480 −0.8036191
Mean −0.788615 −0.79606 −0.7998220 −0.7961871 −0.801809 −0.80251
Worst −0.7572932 N-A −0.7851820 −0.7851820 −0.800495 −0.800909

SD 1.31 × 10−3 5.3420 × 10−3 6.29 × 10−3 7.48 × 10−3 5.10 × 10−4 8.95 × 10−4

G03 Best −0.9997 −1.0005 −1.0005 −1.0005 −1.0005001 −1.0005
Mean −0.9985 −1.0005001 −1.0005 −1.0005 −1.0005001 −1.0005
Worst −0.996532 N-A −1.0005 −1.0005 −1.0005001 −1.0005

SD 8.18 × 10−5 0.02 × 100 0.02 × 100 1.75 × 10−6 0.00 × 100 6.54 × 10−6

G04 Best −30,665.538 −30,665.539 −30,665.53867 −30,665.539 −30,665.539 −30,665.539
Mean −30,665.5386 −30,665.539 −30,665.53867 −30,665.539 −30,665.539 −30,665.539
Worst −30,665.536 N-A −30,665.538 −30,665.539 −30,665.539 −30,665.539

SD 4.05 × 10−5 0.00 × 100 0.00 × 100 6.11 × 10−9 0.00 × 100 6.74 × 10−11

G05 Best 5126.4985 5126.4967 5126.4967 5126.4967 5126.4967 5126.4967
Mean 5129.9010 5126.496 5126.496 5126.496 5126.496 5126.496
Worst 5145.93 N-A 5126.496 5126.496 5126.496 5126.496

SD 5.11 1.3169 × 10−10 0.00 × 100 1.11 × 10−8 0.00 × 100 1.94 × 10−9

G06 Best −6961.8139 −6961.8138 −6961.8138 −6961.8138 −6961.8138 −6961.8138
Mean −6916.1370 −6961.8138 −6961.8138 −6961.8138 −6961.8138 −6961.8138
Worst −6323.3140 N-A −6961.8138 −6961.8138 −6961.8138 −6961.8138

SD 138.331 0.00 × 100 0.00 × 100 3.87 × 10−8 0.00 × 100 4.26 × 10−8

G07 Best 24.312803 24.306209 24.3062 24.306209 24.306209 24.3062
Mean 24.38 24.306209 24.3063 24.306209 24.306209 24.306
Worst 24.885038 N-A 24.3063 24.306209 24.306209 24.306

SD 1.13 × 10−2 1.9289 × 10−8 3.19 × 10−5 1.97 × 10−9 1.35 × 10−14 2.65 × 10−8

G08 Best −0.09582 −0.095825 −0.09582504 −0.09582504 −0.095825 −0.09582
Mean −0.095823 −0.095825 −0.095825 −0.095825 −0.095825 −0.09582
Worst −0.095825 N-A −0.09582504 −0.09582504 −0.095825 −0.09582

SD 2.80 × 10−11 0.00 × 100 0.00 × 100 1.70 × 10−17 0.00 × 100 5.40 × 10−20

G09 Best 680.63004 680.630057 680.630057 680.630057 680.630057 680.6334
Mean 680.66052 680.6300 680.6300 680.6300 680.6300 680.6300
Worst 680.766 N-A 680.6300 680.6300 680.6300 680.6300

SD 3.33 × 10−3 0.00 × 100 2.61 × 10−8 5.84 × 10−10 0.00 × 100 5.64 × 10−7

G10 Best 7076.397 7049.24802 7049.2483 7049.24802 7049.24802 7049.2484
Mean 7340.6964 7049.2480 7049.249 7049.2480 7049.2480 7049.2480
Worst 8075.92 N-A 7049.2501 7049.24802 7049.24802 7049.2484

SD 255.37 1.5064 × 10−5 6.60 × 10−4 2.26 × 10−7 3.41 × 10−9 5.48 × 10−4

G11 Best 0.75 0.749999 0.749999 0.7499 0.749999 0.7499
Mean 0.75 0.749999 0.749999 0.7499 0.749999 0.7499
Worst 0.75 N-A 0.749999 0.7499 0.749999 0.7499

SD 9.44 × 10−5 0.00 × 100 3.40E-16 9.26E-16 0.00 × 100 8.76 × 10−15

G12 Best −1 −1.000 −1.000 −1.000 −1.000 −1.000
Mean −1 −1.000 −1.000 −1.000 −1.000 −1.000
Worst −1 N-A −1.000 −1.000 −1.000 −1.000

SD 2.62 × 10−11 0.00 × 100 0.00 × 100 0.00 × 100 0.00 × 100 6.00 × 10−3

G13 Best N-A 0.053941 0.053941 0.053941 0.053941 0.053941
Mean N-A 0.0539415 0.0539415 0.0539415 0.0539415 0.053943
Worst N-A N-A 0.0539415 0.0539415 0.0539415 0.053943

SD N-A 0.00 × 100 1.30 × 10−12 1.43 × 10−12 0.00 × 100 0.00 × 100

G14 Best N-A −47.7648 −47.7649 −47.76489 −47.7648 −47.7658
Mean N-A −47.7648 −47.7648 −47.76489 −47.7648 −47.7658
Worst N-A N-A N-A −47.76489 −47.7648 −47.7658

SD N-A 4.043 × 10−2 N-A 2.34 × 10−6 5.14 × 10−15 5.68 × 10−6

190

Mathematics 2019, 7, 250

Table 6. Cont.

Fun Features SRPSO SAMO-PSO ECHT-EP2 UFA NDE SRIFA

G15 Best 961.7151 961.7150 961.7150 961.7150 961.7150 961.7150
Mean 961.7207 961.7150 961.7150 961.7150 961.7150 961.7150
Worst 961.7712 N-A N-A 961.7150 961.7150 961.7155

SD 1.12 × 10−2 0.00 × 100 N-A 1.46 × 10−11 0.00 × 100 6.34 × 10−11

G16 Best −1.9051 −1.9051 −1.9051 −1.9051 −1.9051 −1.9050
Mean −1.9050 −1.9051 −1.9050 −1.9050 −1.9050 −1.9050
Worst −1.9051 N-A N-A −1.9051 −1.9051 −1.9050

SD 1.12 × 10−11 1.15 × 10−5 N-A 1.58 × 10−11 0.00 × 100 2.55 × 10−10

G17 Best N-A 8853.5338 8853.5397 8853.5338 8853.5338 8853.5338
Mean N-A 8853.5338 8853.8871 8853.5338 8853.5338 8853.5338
Worst N-A N-A N-A 8853.5338 8853.5338 8853.5338

SD N-A 0.00 × 100 N-A 2.18 × 10−8 0.00 × 100 5.80 × 10−3

G18 Best N-A −0.8660 −0.8660 −0.8660 −0.8660 −0.8660
Mean N-A −0.8660 −0.8660 −0.8660 −0.8660 −0.8660
Worst N-A N-A N-A −0.8660 −0.8660 −0.8660

SD N-A 7.0436 × 10−7 N-A 3.39 × 10−10 0.00 × 100 6.54 × 10−10

G19 Best N-A 32.6555 32.6555 32.6555 32.6555 32.6560
Mean N-A 32.6556 36.4274 32.6555 32.6556 32.6560
Worst N-A N-A N-A 32.6555 32.6557 32.6560

SD N-A 6.145 × 10−2 N-A 1.37 × 10−8 3.73 × 10−5 2.22 × 10−6

G20 Best N-A N-A N-A N-A N-A N-A
Mean N-A N-A N-A N-A N-A N-A
Worst N-A N-A N-A N-A N-A N-A

SD N-A N-A N-A N-A N-A N-A

G21 Best N-A 193.7255 193.7251 266.5 193.72451 193.7250
Mean N-A 193.7251 246.0915 255.5590 193.7251 193.7250
Worst N-A N-A N-A 520.1656 193.724 193.7260

SD N-A 1.9643 × 10−2 N-A 9.13 × 101 6.26 × 10−11 4.26 × 10−4

G22 Best N-A N-A N-A N-A N-A N-A
Mean N-A N-A N-A N-A N-A N-A
Worst N-A N-A N-A N-A N-A N-A

SD N-A N-A N-A N-A N-A N-A

G23 Best N-A −400.0551 −355.661 −400.0551 −400.0551 −400.005
Mean N-A −400.0551 −194.7603 −400.0551 −400.0551 −400.0050
Worst N-A N-A N-A −400.0551 −400.0551 −400.0052

SD N-A 1.96 × 101 N-A 5.08 × 10−8 3.45 × 10−9 5.65 × 10−4

G24 Best −5.5080 −5.5080 −5.5080 −5.5080 −5.5080 −5.5080
Mean −5.5080 −5.5080 −5.5080 −5.5080 −5.5080 −5.5080
Worst −5.5080 N-A N-A −5.5080 −5.5080 −5.5080

SD 2.69 × 10−11 0.00 × 100 N-A 5.37 × 10−13 0.00 × 100 1.21 × 10−13

Table 7. Results obtained by a Wilcoxon-test for SRIFA against SRPSO, SAMO-PSO, ECHT-EP2,
UFA and NDE.

Algorithms R+ R− p-value Best Equal Worst Decision

SRIFA versus SRPSO 176 3 0.465 17 3 2 +
SRIFA versus SAMO-PSO 167 38 0.363 14 7 1 +
SRIFA versus ECHT-EP2 142 17 0.002 15 3 4 +

SRIFA versus UFA 45 19 0.016 10 8 4 ≈
SRIFA versus NDE 67 25 0.691 14 4 6 ≈

191

Mathematics 2019, 7, 250

Table 8. Results obtained Friedman test for all metaheuristic algorithms.

Functions SRPSO SAMO-PSO ECHT-EP2 UFA NDE SRIFA

G01 4.5 4.5 4.5 4.5 4.5 4.5
G02 6 7 5 4.5 3 3
G03 4 4.5 6 6 4 4
G04 4.5 4.5 4.5 4.5 4.5 4.5
G05 4.5 4.5 4.5 4.5 4.5 3
G06 4.5 6 6 4.5 4.5 4.5
G07 3.5 4.5 3.5 3.5 3.5 3.5
G08 4.5 7 4.5 4.5 4.5 4.5
G09 6 4.5 6 6 4.5 4.5
G10 6 4.5 4.5 4.5 3 3
G11 4.5 7 3.5 4.5 4.5 3
G12 4.5 4.5 4.5 4.5 4.5 4.5
G13 4 4.5 4 4 4 4
G14 3.5 4 3.5 3.5 3.5 3.5
G15 3 7 4.5 4.5 4.5 4.5
G16 4.5 8 4.5 4.5 4.5 4.5
G17 4.5 4.5 4.5 2 2 2
G18 4.5 3.5 3 3.5 3 3
G19 5.5 8 4 5 5 4
G20 N-A N-A N-A N-A N-A N-A
G21 6 6 4.5 2.5 2.5 2.5
G22 N-A N-A N-A N-A N-A N-A
G23 8 7 6 3.5 1.5 1.5
G24 6 8 4.5 4.5 4.5 3.5

Avearge rank 4.8409091 5.613636364 4.5454545 4.25 3.8409091 3.6136

Figure 5. Average ranking of the proposed algorithm with various metaheuristic algorithms.

7. SRIFA for Constrained Engineering Design Problems

In this section, we evaluate the efficiency and performance of SRIFA by solving five widely used
constrained engineering design problems. These problems are: (i) tension or compression spring
design [51]; (ii) welded-beam problem [52]; (iii) pressure-vessel problem [53]; (iv) three-bar truss
problem [51]; and (v) speed-reducer problem [53]. For every engineering design problem, statistical
outcomes were calculated by executing 25 independent runs for each problem. The mathematical
formulation of all five constrained engineering design problems are given in “Appendix A”.

Every engineering problem has unique characteristics. The best value of constraints, parameter
and objective values obtained by SRIFA for all five engineering problems are listed in Table 9.
The statistical outcomes and number of function-evaluations (NFEs) of SRIFA for all five engineering
design problems are listed in Table 10. These results were obtained by SRIFA over 25 independent runs.

192

Mathematics 2019, 7, 250

Table 9. Best outcomes of parameter objective and constraints values for over engineering-problems.

Tension/Compression Welded-Beam Pressure-Vessel Three-Truss-Problem Speed-Reducer

x1 0.0516776638592 0.205729638946844 0.8125 0.788675145296995 3.50000000002504
x2 0.3567324816961 3.47048866663245 0.4375 0.40824826019360 0.70000000000023
x3 11.2881015418157 9.03662391025916 - - 17
x4 - 0.20572963979284 42.0984455958043 - 7.30000000000014
x5 - - 176.63659584313 - 7.71531991152672
x6 - - - - 3.35021466610421
x7 - - - - 5.28665446498064
x8 - - - - -
x9 - - - - -

x10 - - - - -
F(x) 0.012665232805563 1.72485231254328 6059.714335 263.895843376515 2994.47106614799

G1(x) 0 −0.000063371885873 −0.0000000000000873 −0.070525402833398 −0.073915280394101
G2(x) −1.216754326628263 −0.000002714066983 −0.00035880820872 −1.467936135628140 −0.197998527141053
G3(x) −4.0521785529112 −0.000000000839532 −0.000000016701007 −0.602589267205258 −0.499172248101033
G4(x) −0.727728835000534 −3.432983781912125 −0.633634041562312 - −0.904643904554311
G5(x) - −0.080729638942761 - - −0.000000000000654
G6(x) - −0.235540322583421 - - −0.000000000000212
G7(x) - −0.000000209274321 - - −0.702499999999991
G8(x) - - - - −0.000000000000209
G9(x) - - - - −0.795833333333279

G10(x) - - - - −0.051325753542591
G11(x) - - - - −0.000000000001243

Table 10. Statistical outcomes achieved by SRIFA for all five engineering problems over
25 independent runs.

Problems Best-Value Mean-Value Worst-Value SD NFEs

Tension/Compression 0.0126652328 0.0126652329 0.0126652333 6.54 × 10−10 2000
Welded-beam 1.7248523087 1.7248523087 1.7248523089 8.940 × 10−12 2000
pressure-vessel 6059.7143350561 6059.7143351 6059.7143352069 6.87 × 10−8 2000
Three-truss 263.8958433765 263.8958433768 263.8958433770 6.21 × 10−11 1500
Speed-reducer 2996.348165 2996.348165 2996.348165 8.95 × 10−12 3000

7.1. Tension/Compression Spring Design

A tension/compression spring-design problem is formulated to minimize weight with respect
to four constraints. These four constraints are shear stress, deflection, surge frequency and outside
diameter. There are three design variables, namely: mean coil (D), wire-diameter d and the amount of
active-coils N.

This proposed SRIFA approach is compared to SRPSO [46], MVDE [54], BA [44], MBA [55],
JAYA [56], PVS [57], UABC [58], IPSO [59] and AFA [33]. The comparative results obtained by SRIFA
for nine NIAs are given in Table 11. It is clearly observed that SRIFA provides the most optimum
results over nine metaheuristic algorithms. The mean, worst and SD values obtained by SRIFA are
superior to those for other algorithms. Hence, we can draw conclusions that SRIFA performs better in
terms of statistical values. The comparison of the number of function evacuations (NFEs) with various
NIAs is plotted in Figure 6.

Table 11. Statistical results of comparison between SRIFA and NIAs for tension/compression spring
design problem.

Algorithm Best-Value Mean-Value Worst-Value SD NFEs

SRPSO 0.012668 0.012678 0.012685 7.05 × 10−6 20,000
MVDE 0.012665272 0.012667324 0.012719055 2.45 × 10−6 10,000

BA 0.01266522 0.01350052 0.0168954 3.09 × 10−6 24,000
MBA 0.012665 0.012713 0.0129 6.30 × 10−5 7650
Jaya 0.012665 0.012666 0.012679 4.90 × 10−4 10,000
PVS 0.01267 0.012838 0.013141 N-A 10,000

UABC 0.012665 0.012683 N-A 3.31 × 10−5 15,000
IPSO 0.01266523 0.013676527 0.01782864 1.57 × 10−3 4000
AFA 0.012665305 0.126770446 0.000128058 0.012711688 50,000

SRIFA 0.0126652328 0.0126652329 0.0126652333 6.54 × 10−10 2000

193

Mathematics 2019, 7, 250

Figure 6. NIAs with NFEs for the tension/compression problem.

7.2. Welded-Beam Problem

The main objective of the welded-beam problem is to minimize fabrication costs with respect to
seven constraints. These constraints are bending stress in the beam (σ), shear stress (τ), deflection of
beam (δ), buckling load on the bar (Pc), side constraints, weld thickness and member thickness (L).

Attempts have been made by many researchers to solve the welded-beam-design problem.
The SRIFA was compared with SRPSO, MVDE, BA, MBA, JAYA, MFA, FA, IPSO and AFA. The
statistical results obtained by SRIFA on comparing with nine metaheuristic algorithms are described
in Table 12. It can be seen that statistical results obtained from SRIFA performs better than all
metaheuristic algorithms.

Table 12. Statistical results of comparison between SRIFA and NIAs for welded-beam problem.

Algorithm Best-Value Mean-Value Worst-Value SD NFEs

SRPSO 1.72486658 1.72489934 1.72542212 1.12 × 10−6 20,000
MVDE 1.7248527 1.7248621 1.7249215 7.88 × 10−6 15,000

BA 1.7312065 1.878656 2.3455793 0.2677989 50,000
MBA 1.724853 1.724853 1.724853 6.94 × 10−19 47,340
JAYA 1.724852 1.724852 1.724853 3.30 × 10−2 10,000
MFA 1.7249 1.7277 1.7327 2.40 × 10−3 50,000
FA 1.7312065 1.878665 2.3455793 2.68 × 10−1 50,000

IPSO 1.7248624 1.7248528 1.7248523 2.02 × 10−6 12,500
AFA 1.724853 1.724853 1.724853 0.00 × 100 50,000

SRIFA 1.7248523087 1.7248523087 1.7248523089 8.940 × 10−12 2000

The results obtained by the best optimum value for SRIFA performs superior to almost all of the
seven algorithms (i.e., SRPSO, MVDE, BA, MBA, MFA, FA, and IPSO) but almost the same optimum
value for JAYA and AFA. In terms of mean results obtained by SRIFA, it performs better than all
metaheuristic algorithms except AFA as it contains the same optimum mean value. The standard
deviation (SD) obtained by SRIFA is slightly worse than the SD obtained by MBA. From Table 12, it
can be seen that SRIFA is superior in terms of SD for all remaining algorithms. The smallest NFE result
is obtained by SRIFA as compared to all of the metaheuristic algorithms. The comparisons of NFEs
with all NIAs are shown in Figure 7.

194

Mathematics 2019, 7, 250

Figure 7. NIAs with NFEs for welded-beam problem.

7.3. Pressure-Vessel Problem

The main purpose of the pressure-vessel problem is to minimize the manufacturing cost of
a cylindrical-vessel with respect to four constraints. These four constraints are thickness of head (Th),
thickness of pressure vessel (Ts), length of vessel without head (L) and inner radius of the vessel (R).

The SRIFA is optimized with SRPSO, MVDE, BA, EBA [60], FA [44], PVS, UABC, IPSO and
AFA. The statistical results obtained by SRIFA for nine metaheuristic algorithms are listed in Table 13.
It is clearly seen that SRIFA has the same best optimum value when compared to six algorithms
(MVDE, BA, EBA, PVS, UABC and IPSO). The mean, worst, SD and NFE results obtained by SRIFA
are superior to all NIAs. The comparisons of NFEs with all NIAs are shown in Figure 8.

Table 13. Statistical results of comparison between SRIFA and NIAs for the pressure-vessel problem.

Algorithm Best-Value Mean-Value Worst-Value SD NFEs

SRPSO 6086.20 6042.84 6315.01 8.04 × 101 20,000
MVDE 6059.714387 6059.997236 6090.533528 2.91 × 100 15,000

BA 6059.71 6179.13 6318.95 1.37 × 102 15,000
EBA 6059.71 6173.67 6370.77 1.42 × 102 15,000
FA 5890.383 5937.3379 6258.96825 1.65 × 102 25,000

PVS 6059.714 6063.643 6090.526 N-A 42,100
UABC 6059.714335 6192.116211 N-A 2.04 × 102 15,000
IPSO 6059.7143 6068.7539 6090.5314 1.40 × 101 7500
AFA 6059.71427196 6090.52614259 6064.33605261 1.13 × 101 50,000

SRIFA 6059.7143350561 6059.7143351 6059.7143352069 6.87 × 10−8 2000

Figure 8. NIAs with NFEs for pressure-vessel problem.

195

Mathematics 2019, 7, 250

7.4. Three-Bar-Truss Problem

The main purpose of the given three-bar-truss problem is to minimize the volume of a three-bar
truss with respect to three stress constraints.

The SRIFA is compared with SRPSO, MVDE, NDE [49], MAL-FA [61], UABC, WCA [62] and UFA.
The statistical results obtained by SRIFA in comparison with the seven NIAs are described in Table 14.
It is clearly seen that SRIFA has almost the same best optimum value except with the UABC algorithm.
In terms of mean and worst results obtained, SRIFA performed better compared to all metaheuristic
algorithms except NDE and UFA, which contain the same optimum mean and worst value. The
standard deviation (SD) obtained by SRIFA is superior to all metaheuristic algorithms. The smallest
NFE value is obtained by SRIFA compared to all other metaheuristic algorithms. The comparisons of
NFEs with all other NIAs are shown in Figure 9.

Table 14. Statistical results of comparison between SRIFA and NIAs for the three-bar truss problem.

Algorithm Best-Value Mean-Value Worst-Value SD NFEs

SRPSO 263.8958440 263.8977800 263.9079550 3.02 × 10−5 20,000
MVDE 263.8958434 263.8958434 263.8958548 2.55 × 10−6 7000
NDE 263.8958434 263.8958434 263.8958434 0.00 × 100 4000

MAL-FA 263.895843 263.896101 263.895847 9.70 × 10−7 4000
UABC 263.895843 263.895843 N-A 0.00 × 100 12,000
WCA 263.895843 263.896201 263.895903 8.71 × 10−5 5250
UFA 263.8958433765 263.8958433768 263.8958433770 1.92 × 10−10 4500

SRIFA 263.8958433765 263.8958433768 263.8958433770 6.21 × 10−11 1500

Figure 9. NIAs with NFEs for three-bar-truss problem.

7.5. Speed-Reducer Problem

The goal of the given problem is to minimize the speed-reducer of weight with respect to eleven
constraints. This problem has seven design variables that are gear face, number of teeth in pinion,
teeth module, length of first shaft between bearings. diameter of first shaft, length of second shaft
between bearings, and diameter of second shaft.

The proposed SRIFA approach is compared with SRPSO, MVDE, NDE, MBA, JAYA, MBA, UABC,
PVS, IPSO and AFA. The statistical results obtained by SRIFA for nine metaheuristic algorithms are
listed in Table 15. It can be observed that the SRIFA provides the best optimum value among all eight
metaheuristic algorithms except JAYA (they have the same optimum value). The statistical results
(best, mean and worst) value obtained by SRIFA and JAYA algorithm is almost the same, while SRIFA
requires less NFEs for executing the algorithm. Hence, we can conclude that SRIFA performed better
in terms of statistical values. Comparisons of number of function evacuations (NFEs) with various
metaheuristic algorithm are plotted in Figure 10.

196

Mathematics 2019, 7, 250

Table 15. Statistical results of comparison between SRIFA and NIAs for the speed-reducer problem.

Algorithm Best-Value Mean-Value Worst-Value SD NFEs

SRPSO 2514.97 2700.10 2860.13 8.73 × 101 20,000
MVDE 2994.471066 2994.471066 2994.471069 2.819316 × 10−7 30,000
NDE 2994.471066 2994.471066 2994.471066 4.17 × 10−12 18,000
MBA 2994.482453 2996.769019 2999.652444 1.56 × 100 6300
JAYA 2996.348 2996.348 2996.348 0.00 × 100 10,000

UABC 2994.471066 2994.471072 N-A 5.98 × 10−6 15,000
PVS 2994.47326 2994.7253 2994.8327 N-A 6000
IPSO 2994.471066 2994.471066 2994.471066 2.65 × 10−9 5000
AFA 2996.372698 2996.514874 2996.514874 9.00 × 10−2 50,000

SRIFA 2996.348165 2996.348165 2996.348165 8.95 × 10−12 3000

Figure 10. NIAs with NFEs for the speed-reducer problem.

8. Conclusions

This paper proposes a review of constrained handling techniques and a new hybrid algorithm
known as a Stochastic Ranking with an Improved Firefly Algorithm (SRIFA) to solve a constrained
optimization problem. In population-based problems, stagnation and premature convergence occurs
due to imbalance between exploration and exploitation during the development process that traps the
solution in the local optimal. To overcome this problem, the Opposite Based Learning (OBL) approach
was applied to basic FA. This OBL technique was used at an initial population, which leads to increased
diversity of the problem and improves the performance of the proposed algorithm.

The random scale factor was incorporated into basic FA, for balancing intensification and
diversification. It helps to overcome the premature convergence and increase the performance of the
proposed algorithm. The SRIFA was applied to 24 CEC benchmark test functions and five constrained
engineering design problems. Various computational experiments were conducted to check the
effectiveness and quality of the proposed algorithm. The statistical results obtained from SRIFA when
compared to those of the FA clearly indicated that our SRIFA outperformed in terms of statistical values.

Furthermore, the computational experiments demonstrated that the performance of SRIFA was
better compared to five NIAs. The performance and efficiency of the proposed algorithm were
significantly superior to other metaheuristic algorithms presented from the literature. The statistical
analysis of SRIFA was conducted using the Wilcoxon’s and Friedman test. The results obtained
proved that efficiency, quality and performance of SRIFA was statistically superior compared to NIAs.

197

Mathematics 2019, 7, 250

Moreover, SRIFA was also applied to the five constrained engineering design problems efficiently.
In the future, SRIFA can be modified and extended to explain multi-objective problems.

Author Contributions: Conceptualization, U.B.; methodology, U.B. and D.S.; software, U.B. and D.S.; validation,
U.B. and D.S.; formal analysis, U.B. and D.S.; investigation, U.B.; resources, D.S.; data curation, D.S.;
writing—original draft preparation, U.B.; writing—review and editing, U.B. and D.S.; supervision, D.S.

Acknowledgments: The authors would like to thank Dr. Yaroslav Sergeev for sharing GKLS generator. The
authors would also like to thank Mr. Rohit for his valuable suggestions, which contribute a lot to technical
improvement of the manuscript.

Conflicts of Interest: The authors have declared no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

COPs Constrained Optimization Problems
CHT Constrained Handling Techniques
EAs Evolutionary Algorithms
FA Firefly Algorithm
OBL Opposite-Based Learning
NIAs Nature Inspired Algorithms
NFEs Number of Function Evaluations
SRA Stochastic Ranking Approach
SRIFA Stochastic Ranking with Improved Firefly Algorithm

Appendix A

Appendix A.1. Tension/Compression Spring Design Problem

f
(
�Z
)
= (z3 + 2) z2z2

1,

subject to:

G1 (�z) = 1− z3
2z3

71,785x4
1

,

G2 (�z) = 4z2
2 − z1z2/12,566

(
z2z3

1 − z4
1

)
+

1/5108x2
1 − 1 ≤ 0,

G3 (�z) = 1− 140.45z1/z2
2z3 ≤ 0,

G4 (�z) = z2 + z1/1.5 − 1 ≤ 0,

0.05 ≤ z1 ≤ 2,

0.25 ≤ z2 ≤ 1.3,

2 ≤ z3 ≤ 15.

198

Mathematics 2019, 7, 250

Appendix A.2. Welded-Beam-Design Problem

f
(
�Z
)
= 1.10471z2

1z2 + 0.04811z3z4 (14 + z2) ,

subject to:

G1 (�z) = τ (�z)− τmax ≤ 0,

G2 (�z) = σ (�z)− σmax ≤ 0,

G3 (�z) = z1 − z4 ≤ 0,

G4 (�z) = 0.10471z2
1 + 0.4811z3z4 (14 + z2)− 5 ≤ 0,

G5 (�z) = 0.125− z1 ≤ 0,

G6 (�z) = δ (�z)− δmax ≤ 0,

G7 (�z) = P− Pc (�z) ≤ 0,

0.1 ≤ zi ≤ 2 i = 1, 4,

0.1 ≤ zi ≤ 10 i = 2, 3,

where

τ (�z) =
√
(τι) + 2τιτιι

z2

2R
τιι , τι =

P√
2z1z2

, τιι =
MR

J
,

M = P
(

L +
z2

2

)
, R =

√
x2

2
4

+

(
z1 + z2

2

)2
,

J = 2

⎧⎨⎩√2z1z2

⎡⎣√ z2
2

4
+

(
z1 + z2

2

)2
⎤⎦⎫⎬⎭ , σ (�z) =

6PL
z4z2

3
,

δ (�z) =
4PL3

Ex3
3z4

, Pc (�z) =
4.013E

√
x2

3x6
4

36
L2

(
1− z3

2L

√
E

4G

)
,

P = 6000 lb, L = 14 in, E = 30× 106 psi,

G = 12× 106 psi,

τmax = 13, 600 psi, σmax = 30,000 psi, δmax = 0.25 in.

Appendix A.3. Pressure-Vessel Design Problem

f
(
�Z
)
= 0.6224z1z3z4 + 1.7781z2z2

3 + 3.1661z2
1z4+

19.84z2
1z3,

subject to:

G1 (�z) = −z1 + 0.0193z,

G2 (�z) = −z2 + 0.00954z3 ≤ 0,

G3 (�z) = −πz2
3z4 − 4

3
πz2

3 + 12, 96, 000 ≤ 0,

G4 (�z) = z4 − 240 ≤ 0,

0 ≤ z1 ≤ 100 i = 1, 2,

10 ≤ z1 ≤ 200 i = 3, 4.

199

Mathematics 2019, 7, 250

Appendix A.4. Three-Bar-Truss Design Problem

f
(
�Z
)
=

(
2 +

√
2z1z2

)
× l,

subject to:

G1 (�z) =
√

2z1 + z2√
2z1

2 + 2z1z2
p− ρ ≤ 0,

G2 (�z) =
z2√

2z1
2 + 2z1z2

p− ρ ≤ 0,

G1 (�z) =
1√

2z1
2 + 2z1z2

p− ρ ≤ 0,

0 ≤ z1 ≤ 1 i = 1, 2,

l = 100 cm, P = 2 kN/cm2, σ = 2 kN/cm3.

Appendix A.5. Speed-Reducer-Design Problem

f
(
�Z
)
= 0.7854z1z2

2

(
3.3333z2

3 + 14.933z3 − 43.0934
)
−

1.508z1

(
z2

6 + z2
7

)
+ 7.4777

(
z3

6 + z3
7

)
+ 0.7854

(
z4x2

6 + z5z2
7

)
,

subject to

G1 (�z) =
27

z1z2
2z3

− 1 ≤ 0,

G2 (�z) =
397.5
z1z2

2z2
3
− 1 ≤ 0,

G3 (�z) =
1.93z3

4
z2z4

6z3
− 1 ≤ 0,

G4 (�z) =
1.93z3

5

z2z4
7z3

− 1 ≤ 0,

G5 (�z) =

[
(745z4/z2z3)2 + 16.9× 106

]1/2

110x3
6

− 1 ≤ 0,

G6 (�z) =

[
(745z5/z2z3)2 + 157.5× 106

]1/2

85z3
7

− 1 ≤ 0,

G7 (�z) =
z2z3

40
− 1 ≤ 0,

G8 (�z) =
5z2

z1
− 1 ≤ 0,

G9 (�z) =
z1

12z2
− 1 ≤ 0,

G10 (�z) =
15z6 + 1.9

z4
− 1 ≤ 0,

G11 (�z) =
11z7 + 1.9

z5
− 1 ≤ 0,

where

2.6 ≤ z1 ≤ 3.6, 0.7 ≤ z2 ≤ 0.8, 17 ≤ z3 ≤ 28,

7.3 ≤ z4, z5 ≤ 8.3, 2.9 ≤ z6 ≤ 3.9, 5 ≤ z7 ≤ 5.5.

200

Mathematics 2019, 7, 250

References

1. Slowik, A.; Kwasnicka, H. Nature Inspired Methods and Their Industry Applications—Swarm Intelligence
Algorithms. IEEE Trans. Ind. Inform. 2018, 14, 1004–1015. [CrossRef]

2. Goldberg, D.E.; Holland, J.H. Genetic Algorithms and Machine Learning. Mach. Learn. 1988, 3, 95–99.
[CrossRef]

3. Fogel, D.B. An introduction to simulated evolutionary optimization. IEEE Trans. Neural Netw. 1994, 5, 3–14.
[CrossRef] [PubMed]

4. Beyer, H.G.; Schwefel, H.P. Evolution strategies—A comprehensive introduction. Nat. Comput. 2002, 1, 3–52.
[CrossRef]

5. Koza, J.R. Genetic Programming: On the Programming of Computers by Means of Natural Selection; MIT Press:
Cambridge, MA, USA, 1992.

6. Beni, G. From Swarm Intelligence to Swarm Robotics. In Swarm Robotics; Springer: Berlin/Heidelberg,
Germany, 2005; pp. 1–9.

7. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International
Conference on Neural Networks, Perth, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

8. Yang, X.S. Firefly algorithm, stochastic test functions and design optimisation. Int. J. Bio-Inspired Comput.
2010, 2, 78–84. [CrossRef]

9. Dorigo, M.; Birattari, M. Ant Colony Optimization. In Encyclopedia of Machine Learning; Springer: Boston,
MA, USA, 2010; pp. 36–39.

10. Yang, X.; Deb, S. Cuckoo Search via Lévy flights. In Proceedings of the 2009 World Congress on Nature
Biologically Inspired Computing (NaBIC), Coimbatore, India, 9–11 December 2009; pp. 210–214.

11. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. In Nature Inspired Cooperative Strategies for
Optimization (NICSO 2010); Springer: Berlin/Heidelberg, Germany, 2010; pp. 65–74.

12. Biyanto, T.R.; Irawan, S.; Febrianto, H.Y.; Afdanny, N.; Rahman, A.H.; Gunawan, K.S.; Pratama, J.A.;
Bethiana, T.N. Killer Whale Algorithm: An Algorithm Inspired by the Life of Killer Whale.
Procedia Comput. Sci. 2017, 124, 151–157. [CrossRef]

13. Saha, A.; Das, P.; Chakraborty, A.K. Water evaporation algorithm: A new metaheuristic algorithm towards
the solution of optimal power flow. Eng. Sci. Technol. Int. J. 2017, 20, 1540–1552. [CrossRef]

14. Abdelaziz, A.Y.; Fathy, A. A novel approach based on crow search algorithm for optimal selection of
conductor size in radial distribution networks. Eng. Sci. Technol. Int. J. 2017, 20, 391–402. [CrossRef]

15. Blum, C.; Roli, A. Metaheuristics in Combinatorial Optimization: Overview and Conceptual Comparison.
ACM Comput. Surv. 2003, 35, 268–308. [CrossRef]

16. Črepinšek, M.; Liu, S.H.; Mernik, M. Exploration and Exploitation in Evolutionary Algorithms: A Survey.
ACM Comput. Surv. 2013, 45, 35:1–35:33. [CrossRef]

17. Sergeyev, Y.D.; Kvasov, D.E.; Mukhametzhanov, M.S. Emmental-Type GKLS-Based Multiextremal Smooth
Test Problems with Non-linear Constraints. In Learning and Intelligent Optimization; Battiti, R., Kvasov, D.E.,
Sergeyev, Y.D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 383–388.

18. Kvasov, D.E.; Mukhametzhanov, M.S. Metaheuristic vs. deterministic global optimization algorithms:
The univariate case. Appl. Math. Comput. 2018, 318, 245–259. [CrossRef]

19. Mezura-Montes, E.; Coello, C.A.C. Constraint-handling in nature-inspired numerical optimization: Past,
present and future. Swarm Evol. Comput. 2011, 1, 173–194. [CrossRef]

20. Deb, K. An efficient constraint handling method for genetic algorithms. Comput. Methods Appl. Mech. Eng.
2000, 186, 311–338. [CrossRef]

21. Wang, Y.; Wang, B.; Li, H.; Yen, G.G. Incorporating Objective Function Information Into the Feasibility Rule
for Constrained Evolutionary Optimization. IEEE Trans. Cybern. 2016, 46, 2938–2952. [CrossRef] [PubMed]

22. Tasgetiren, M.F.; Suganthan, P.N. A Multi-Populated Differential Evolution Algorithm for Solving
Constrained Optimization Problem. In Proceedings of the 2006 IEEE International Conference on
Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; pp. 33–40.

23. Farmani, R.; Wright, J.A. Self-adaptive fitness formulation for constrained optimization. IEEE Trans.
Evol. Comput. 2003, 7, 445–455. [CrossRef]

24. Kramer, O.; Schwefel, H.P. On three new approaches to handle constraints within evolution strategies.
Natural Comput. 2006, 5, 363–385. [CrossRef]

201

Mathematics 2019, 7, 250

25. Coello, C.A.C. Theoretical and numerical constraint-handling techniques used with evolutionary algorithms:
A survey of the state of the art. Comput. Methods Appl. Mech. Eng. 2002, 191, 1245–1287. [CrossRef]

26. Chootinan, P.; Chen, A. Constraint handling in genetic algorithms using a gradient-based repair method.
Comput. Oper. Res. 2006, 33, 2263–2281. [CrossRef]

27. Regis, R.G. Constrained optimization by radial basis function interpolation for high-dimensional expensive
black-box problems with infeasible initial points. Eng. Optim. 2014, 46, 218–243. [CrossRef]

28. Mezura-Montes, E.; Reyes-Sierra, M.; Coello, C.A.C. Multi-objective Optimization Using Differential
Evolution: A Survey of the State-of-the-Art. In Advances in Differential Evolution; Springer: Berlin/Heidelberg,
Germany, 2008; pp. 173–196.

29. Mallipeddi, R.; Das, S.; Suganthan, P.N. Ensemble of Constraint Handling Techniques for Single Objective
Constrained Optimization. In Evolutionary Constrained Optimization; Springer: New Delhi, India, 2015;
pp. 231–248.

30. Takahama, T.; Sakai, S.; Iwane, N. Solving Nonlinear Constrained Optimization Problems by the e
Constrained Differential Evolution. In Proceedings of the 2006 IEEE International Conference on Systems,
Man and Cybernetics, Taipei, Taiwan, 8–11 October 2006; Volume 3, pp. 2322–2327.

31. Padhye, N.; Mittal, P.; Deb, K. Feasibility Preserving Constraint-handling Strategies for Real Parameter
Evolutionary Optimization. Comput. Optim. Appl. 2015, 62, 851–890. [CrossRef]

32. Fister, I.; Yang, X.S.; Fister, D. Firefly Algorithm: A Brief Review of the Expanding Literature. In Cuckoo
Search and Firefly Algorithm: Theory and Applications; Springer International Publishing: Cham, Switzerland,
2014; pp. 347–360.

33. Baykasoğlu, A.; Ozsoydan, F.B. Adaptive firefly algorithm with chaos for mechanical design optimization
problems. Appl. Soft Comput. 2015, 36, 152–164. [CrossRef]

34. Costa, M.F.P.; Rocha, A.M.A.C.; Francisco, R.B.; Fernandes, E.M.G.P. Firefly penalty-based algorithm for
bound constrained mixed-integer nonlinear programming. Optimization 2016, 65, 1085–1104. [CrossRef]

35. Brajevic, I.; Tuba, M.; Bacanin, N. Firefly Algorithm with a Feasibility-Based Rules for Constrained
Optimization. In Proceedings of the 6th WSEAS European Computing Conference, Prague, Czech Republic,
24–26 September 2012; pp. 163–168.

36. Deshpande, A.M.; Phatnani, G.M.; Kulkarni, A.J. Constraint handling in Firefly Algorithm. In Proceedings
of the 2013 IEEE International Conference on Cybernetics (CYBCO), Lausanne, Switzerland, 13–15 July 2013;
pp. 186–190.

37. Brajević, I.; Ignjatović, J. An upgraded firefly algorithm with feasibility-based rules for constrained
engineering optimization problems. J. Intell. Manuf. 2018. [CrossRef]

38. Chou, J.S.; Ngo, N.T. Modified Firefly Algorithm for Multidimensional Optimization in Structural Design
Problems. Struct. Multidiscip. Optim. 2017, 55, 2013–2028. [CrossRef]

39. Runarsson, T.P.; Yao, X. Stochastic ranking for constrained evolutionary optimization. IEEE Trans.
Evol. Comput. 2000, 4, 284–294. [CrossRef]

40. Tizhoosh, H.R. Opposition-Based Learning: A New Scheme for Machine Intelligence. In Proceedings
of the International Conference on Computational Intelligence for Modelling, Control and Automation
and International Conference on Intelligent Agents, Web Technologies and Internet Commerce
(CIMCA-IAWTIC’06), Vienna, Austria, 28–30 November 2005; Volume 1, pp. 695–701.

41. Das, S.; Konar, A.; Chakraborty, U.K. Two Improved Differential Evolution Schemes for Faster Global Search.
In Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation, Washington, DC,
USA, 25–29 June 2005; pp. 991–998.

42. Ismail, M.M.; Othman, M.A.; Sulaiman, H.A.; Misran, M.H.; Ramlee, R.H.; Abidin, A.F.Z.; Nordin, N.A.;
Zakaria, M.I.; Ayob, M.N.; Yakop, F. Firefly algorithm for path optimization in PCB holes drilling process.
In Proceedings of the 2012 International Conference on Green and Ubiquitous Technology, Jakarta, Indonesia,
30 June–1 July 2012; pp. 110–113.

43. Liang, J.; Runarsson, T.P.; Mezura-Montes, E.; Clerc, M.; Suganthan, P.N.; Coello, C.C.; Deb, K. Problem
definitions and evaluation criteria for the CEC 2006 special session on constrained real-parameter
optimization. J. Appl. Mech. 2006, 41, 8–31.

44. Gandomi, A.H.; Yang, X.S.; Alavi, A.H. Mixed variable structural optimization using Firefly Algorithm.
Comput. Struct. 2011, 89, 2325–2336. [CrossRef]

202

Mathematics 2019, 7, 250

45. Sergeyev, Y.D.; Kvasov, D.; Mukhametzhanov, M. On the efficiency of nature-inspired metaheuristics in
expensive global optimization with limited budget. Sci. Rep. 2018, 8, 453. [CrossRef] [PubMed]

46. Ali, L.; Sabat, S.L.; Udgata, S.K. Particle Swarm Optimisation with Stochastic Ranking for Constrained
Numerical and Engineering Benchmark Problems. Int. J. Bio-Inspired Comput. 2012, 4, 155–166. [CrossRef]

47. Elsayed, S.M.; Sarker, R.A.; Mezura-Montes, E. Self-adaptive mix of particle swarm methodologies for
constrained optimization. Inf. Sci. 2014, 277, 216–233. [CrossRef]

48. Mallipeddi, R.; Suganthan, P.N. Ensemble of Constraint Handling Techniques. IEEE Trans. Evol. Comput.
2010, 14, 561–579. [CrossRef]

49. Mohamed, A.W. A novel differential evolution algorithm for solving constrained engineering optimization
problems. J. Intell. Manuf. 2018, 29, 659–692. [CrossRef]

50. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.
2011, 1, 3–18. [CrossRef]

51. Ray, T.; Liew, K.M. Society and civilization: An optimization algorithm based on the simulation of social
behavior. IEEE Trans. Evol. Comput. 2003, 7, 386–396. [CrossRef]

52. zhuo Huang, F.; Wang, L.; He, Q. An effective co-evolutionary differential evolution for constrained
optimization. Appl. Math. Comput. 2007, 186, 340–356. [CrossRef]

53. Lee, K.S.; Geem, Z.W. A new meta-heuristic algorithm for continuous engineering optimization: Harmony
search theory and practice. Comput. Methods Appl. Mech. Eng. 2005, 194, 3902–3933. [CrossRef]

54. de Melo, V.V.; Carosio, G.L. Investigating Multi-View Differential Evolution for solving constrained
engineering design problems. Expert Syst. Appl. 2013, 40, 3370–3377. [CrossRef]

55. Sadollah, A.; Bahreininejad, A.; Eskandar, H.; Hamdi, M. Mine blast algorithm: A new population based
algorithm for solving constrained engineering optimization problems. Appl. Soft Comput. 2013, 13, 2592–2612.
[CrossRef]

56. Rao, R.V.; Waghmare, G. A new optimization algorithm for solving complex constrained design optimization
problems. Eng. Optim. 2017, 49, 60–83. [CrossRef]

57. Savsani, P.; Savsani, V. Passing vehicle search (PVS): A novel metaheuristic algorithm. Appl. Math. Model.
2016, 40, 3951–3978. [CrossRef]

58. Brajevic, I.; Tuba, M. An upgraded artificial bee colony (ABC) algorithm for constrained optimization
problems. J. Intell. Manuf. 2013, 24, 729–740. [CrossRef]

59. Guedria, N.B. Improved accelerated PSO algorithm for mechanical engineering optimization problems.
Appl. Soft Comput. 2016, 40, 455–467. [CrossRef]

60. Yılmaz, S.; Küçüksille, E.U. A new modification approach on bat algorithm for solving optimization
problems. Appl. Soft Comput. 2015, 28, 259–275. [CrossRef]

61. Balande, U.; Shrimankar, D. An oracle penalty and modified augmented Lagrangian methods with firefly
algorithm for constrained optimization problems. Oper. Res. 2017. [CrossRef]

62. Eskandar, H.; Sadollah, A.; Bahreininejad, A.; Hamdi, M. Water cycle algorithm—A novel metaheuristic
optimization method for solving constrained engineering optimization problems. Comput. Struct. 2012,
110–111, 151–166. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

203

mathematics

Article

A Novel Hybrid Algorithm for Minimum Total
Dominating Set Problem

Fuyu Yuan, Chenxi Li, Xin Gao, Minghao Yin * and Yiyuan Wang *

School of Computer Science and Information Technology, Northeast Normal University, Changchun 130000,
China; yuanfuyu@aliyun.com (F.Y.); icx935@nenu.edu.cn (C.L.); gaolzzxin@gmail.com (X.G.)
* Correspondence: ymh@nenu.edu.cn (M.Y.); yiyuanwangjlu@126.com (Y.W.)

Received: 14 January 2019; Accepted: 24 February 2019; Published: 27 February 2019

Abstract: The minimum total dominating set (MTDS) problem is a variant of the classical dominating
set problem. In this paper, we propose a hybrid evolutionary algorithm, which combines local
search and genetic algorithm to solve MTDS. Firstly, a novel scoring heuristic is implemented to
increase the searching effectiveness and thus get better solutions. Specially, a population including
several initial solutions is created first to make the algorithm search more regions and then the local
search phase further improves the initial solutions by swapping vertices effectively. Secondly, the
repair-based crossover operation creates new solutions to make the algorithm search more feasible
regions. Experiments on the classical benchmark DIMACS are carried out to test the performance of
the proposed algorithm, and the experimental results show that our algorithm performs much better
than its competitor on all instances.

Keywords: minimum total dominating set; evolutionary algorithm; genetic algorithm; local search

1. Introduction

Given an undirected graph G = (V, E), a dominating set (DS) is a subset of vertices S ∈ V that
each vertex in V\S is adjacent to at least one vertex in S. For each vertex v ∈ V, vertex v must have a
neigbor in S, and this dominating set is called a total dominating set (TDS). We can easily conclude that
TDS is a typical variant of DS. The minimum total dominating set (MTDS) problem aims to identify
the minimum size of TDS in a given graph. MTDS has many applications in various fields, such as
sensor and ad hoc communications and networks as well as gateway placement problems [1–3].

MTDS is proven to be NP-hard (non-deterministic polynomial) [4], which means unless P = NP,
there is no polynomial time to solve this problem. At present, Zhu proposed a novel one-stage analysis
for greedy algorithms [5] with approximation ratio ln(δ− 0.5) + 1.5 where δ is the maximum degree
of the given graph. This algorithm also used a super-modular greedy potential function, which was a
desirable property in mathematics. However, in real life and industrial production, the size of problems
is always very large. When the size of problems is increased [6–9], the approximation algorithm will
be invalid. Considering these circumstances, researchers often use heuristic algorithms [10–13] to
deal with these problems. Although the heuristic algorithms cannot guarantee the optimality of the
solution they obtain, they can find high-quality solutions effectively within a reasonable time. Thus,
in this paper we propose a hybrid evolution method combining local search and genetic algorithm
(HELG) to solve MTDS.

Evolutionary algorithms include genetic algorithm, genetic programming, evolution strategies
and evolution programming, etc. Among them, genetic algorithm as a classical method is the most
widely used. Genetic algorithm is a computational model to simulate the natural selection and genetic
mechanism of Darwin’s biological evolution theory. It is a method to search the optimal solution by
simulating the natural evolution process. Genetic algorithm begins with a population representing

Mathematics 2019, 7, 222; doi:10.3390/math7030222 www.mdpi.com/journal/mathematics204

Mathematics 2019, 7, 222

the potential solution set of the problem, and a population consists of a certain number of individuals
encoded by genes. After the first generation of the population, according to the principle of survival
of the fittest, the evolution of generations produces more and better approximate solutions. In each
generation, the selection is based on the fitness of the individual in the problem domain. Individuals,
by means of genetic operators of natural genetics, perform crossovers and mutations to produce
populations representing new solution sets.

Recently, evolutionary algorithms play an important role in solving optimization problems. It is
common to adjust evolutionary algorithm to solve problems by adding a different problem-related
mechanism. One possible improvement is the hybrid of evolutionary method and local search
algorithm. Przewozniczek et al. investigated the pros and cons of hybridization on the baseof a hard
practical and up-to-date problem and then proposed an effective optimization method for solving the
routing and spectrum allocation of multicast flows problem in elastic optical networks [14]. Połap et al.
proposed three proposition to increase the efficiency of classical meta-heuristic methods [15]. In this
paper, the proposed algorithm takes advantage of local search framework as well as genetic algorithm.

Firstly, the algorithm creates a population including several individuals as initial solutions in
our algorithm. Then, for each initial solution, we prove its solution via the local search. After local
search, a repair-based crossover operation is proposed to improve the searchability of the algorithm.
The algorithm randomly selects two solutions in the population and randomly exchanges several
vertices of them. After crossover, if the obtained solutions are infeasible, the algorithm will repair
them. This operation enables the algorithm to search larger areas, resulting in obtaining more feaisble
solutions. In addition, we use a scoring function to help the method choose vertices more effective.
In detail, each vertex is assigned to a cost value, and then we calculate the scoring value of every
vertex by the cost value. The scoring function is used to measure the benefits of the state changing of a
vertex. Whenever the algorithm swaps a pair of vertices, we should try to increase the benefits of the
candidate solution and reduce the loss. This scoring value makes our algorithm efficient. When the
original HELG fails to find improved solutions, this heuristic can make the algorithm escape from the
local optimal.

Based on the above strategies, we design a hybrid evolutionary algorithm HELG for MTDS.
Since we are the first to solve MTDS with a heuristic algorithm, in order to evaluate the efficiency
of HELG, we carry out some experiments to compare HELG with a greedy algorithm and a
classical metaheuristics algorithm, the ant colony optimization (ACO) algorithm [16,17] for MTDS.
The experimental results show that on most instances our algorithm performs much better than the
greedy algorithm.

The remaining sections are arranged as follows: in Section 2, we give some necessary notations
and definitions. In Section 3, we introduce the novel scoring heuristic. The evolution algorithm HELG
for MTDS is described in Section 4. Section 5 gives the experimental evaluations and the experimental
results analysis. Finally, we summarize this paper and list future work.

2. Preliminaries

Given an undirected graph G = (V, E) with vertex set V and edge set E, each edge is a 2-element
subset of V. For an edge e = (u, v), vertices u and v are the endpoints of e, and u is adjacent to v.
The distance between u and v means the number of edges from the shortest path of u to v and is defined
by dist(u, v). Then the ith level neighborhood of a vertex v is defined by Ni(v) = {u|dist(u, v) = i}.
Specifically, N(v) = N1(v). The degree of a vertex v is deg(v) = |N(v)|.

A set D of V is a dominating set if each vertex not in D is adjacent to at least one vertex in D.
Total dominating set is a variant of dominating set. The definition of total dominating set is as follows.

Definition 1. (total dominating set) Given an undirected graph G = (V, E), a total dominating set (TDS) is a
subset D of V that every vertex of G is adjacent to some vertices in D, whether it is in D or not.

205

Mathematics 2019, 7, 222

The minimum total dominating set (MTDS) problem aims at identifying the TDS with the
minimum size in a given graph.

3. Scoring Heuristic

In our algorithm, we need to maintain a total dominating set as a candidate solution CS during
the construction and local search phases. It is important to decide which vertex should be added into
or removed from CS. In this section, we will introduce an effective scoring heuristic that can be used
to decide how to choose the vertices to be added and removed.

Given an undirected graph G = (V, E), a cost value denoted by ω(v) is applied to each vertex
v ∈ V, which will be maintained during the local search. For each vertex v ∈ V, ω(v) is initialized as 1
in the construction phase. In the local search phase, if CS uncovers the vertex v, the value of ω(v) will
be increased by 1 such that these uncovered vertices will have more opportunities to be selected.

Based on the cost value described above, the vertex scoring method will be defined. We denote
the scoring function as s, the scoring method is divided into two cases as follows:

• v �∈ CS. The value of s(v) is the total cost value of vertices which will become dominated by CS
after adding vertex v into CS.

• v ∈ CS. The value of s(v) is the opposite number of the total cost value of vertices which will
become not dominated by CS after removing vertex v from CS.

The vertex scoring method is used to measure the benefits of changing the state of v. Obviously, if
v ∈ CS, s(v) ≤ 0. Otherwise, s(v) ≥ 0. This method can decide how to choose the vertices to be added
and removed.

4. Evolution Algorithm HELG for MTDS

In this section, we propose a hybrid evolutionary algorithm combining local search and genetic
algorithm. The algorithm includes three important phases: generation of a population including n
initial solutions, local search, and a repair-based crossover operation.

4.1. Population Initialization

We first generate a population including n initial solutions. We use a preprocessing method and
the restricted candidate list (RCL) to initialize a population. In the process of preprocessing, based
on the definition of MTDS, if the degree of a vertex is 1, its neighborhood will be added into CS and
forbidden to be removed from CS during the search. A function probid is used to implement this
process. For a vertex v, if probid(v) = 1, v will be forbidden to be removed from CS in the subsequent
search. RCL contains the vertices with good benefits. The algorithm chooses vertices from RCL
randomly to construct an initial candidate solution.

The pseudo code of construction phase is shown in Algorithm 1.
At first, the index k and population Pop are initialized (line 1). Then the n individuals are created

(lines 2–18). For each individual, the scoring function s of each vertex, the probid value of each vertex
and the candidate solution CS are initialized (lines 3–5). Then, the algorithm starts the preprocessing
process (lines 6–9). If the degree of a vertex corresponds to 1, the algorithm adds its neighborhood into
CS. Then the probid value of them will be assigned to 1 which means that they will be forbidden to be
removed from CS in the following phase. The algorithm then enters a loop to add vertices into CS
until it becomes a TDS (lines 10–16). The maximum value smax and the minimum value smin of s are
calculated in lines 11 and 12. The vertices whose scoring values are not less than smin + μ(smax − smin)

comprise the RCL (line 13). Here, μ is a parameter that belongs to [0, 1]. Then we choose a vertex u
from RCL randomly and add it into CS (lines 14–15). The scoring values of u and the 1st and 2nd level
neighborhood are updated in line 16. Then the just created individual is added into the Pop (line 17).
Then, k is updated in line 18. In the end, we return the population Pop (line 19).

206

Mathematics 2019, 7, 222

Algorithm 1: create_population (n)
Input: the population size n
Output: the initial population Pop

1 k ← 0, Pop ← {};
2 while k < n do

3 Initialize the scoring function s of each vertex based on the cost value ω;
4 Initialize the probid value of each vertex as 0;
5 CS ← {};
6 for each v ∈ V do

7 if deg(v) == 1 then

8 CS ← CS ∪ N(v);
9 probid(N(v))← 1;

10 while CS is not a TDS do

11 smax ←MAX{s(v) > 0, v ∈ V/CS};
12 smin ←MIN{s(v) > 0, v ∈ V/CS};
13 RCL← {v|s(v) ≥ smin + μ(smax − smin), v ∈ V/CS};
14 u ← choose a vertex u from RCL randomly;
15 CS ← CS ∪ {u};
16 update s(u), s(v1), and s(v2) for each vertex v1 ∈ N(u) and v2 ∈ N2(u);

17 Pop ← Pop ∪ CS;
18 k ++;

19 return Pop;

4.2. Local Search Phase

Several candidate solutions are built in create_population phase. The local search phase explores
the neighborhood of the initial candidate solution to improve the solution quality and obtain a
smaller one. If no better solution is found, the algorithm will return the current solution as a local
optimum. Otherwise, the improved solution will be the new best candidate solution. This phase is
executed iteratively.

The pseudo code of local search phase is shown in Algorithm 2.
At the beginning of the algorithm, the number of iterations k and the local optimal solution CS∗

are initialized (line 1). Then the algorithm enters a loop until the maximum number of iterations mstep
is reached (line 2). In the search process, once a better solution is found, the algorithm updates CS∗

by CS and removes a vertex with the highest s from CS (lines 3–9). The probid value of the selected
vertex is forbidden to be 1. The number of iterations k is set to 0 (line 4). The scoring values of the just
removed vertex and its 1st and 2nd level neighborhood are updated in line 8. Otherwise, the algorithm
will remove a vertex v with the highest s and probid(v) �= 1 from CS, breaking ties randomly (line 9).
The corresponding scoring values are updated in line 11. Subsequently, the algorithm selects a vertex
with the highest score and adds it to CS (lines 12–13). After that, the cost value of each undominated
vertex v and the scoring function of each v ∈ V are updated (lines 14–15). The step of iteration is
increased by 1 (line 16). In the end, the algorithm returns CS∗ as a local optimal solution.

207

Mathematics 2019, 7, 222

Algorithm 2: LocalSearch (CS, mstep)
Input: an initial candidate solution CS, the maximum number of iterations mstep
Output: an improved candidate solution CS∗

1 Initialize k ← 0, CS∗ ← CS;
2 while k < mstep do

3 if CS is a TDS then

4 k = 0;
5 CS∗ ← CS;
6 v ← select v from CS with the highest s(v), and probid(v) �= 1, breaking ties randomly;
7 CS ← CS/{v};
8 update s(v), s(u1) and s(u2) for each u1 ∈ N(v) and u2 ∈ N2(v);

9 v ← select v from CS with the highest s(v) and probid(v) �= 1, breaking ties randomly;
10 CS ← CS/{v};
11 update s(v), s(u1), and s(u2) for each u1 ∈ N(v) and u2 ∈ N2(v);
12 v1 ← randomly select undominated vertex v′ and select v1 from N(v′) with the highest s(v1),

breaking ties randomly;
13 CS ← CS ∪ {v1};
14 ω(v)++ for each undominated vertex v;
15 update s(u) for each u ∈ V;
16 k++;

17 return CS∗;

4.3. Repair-Based Crossover Operation

Genetic algorithms often use crossover to increase the diversity of the algorithm. The central role
of biological evolution in nature is the recombination of biological genes (plus mutations). Similarly,
the central role of genetic algorithms is the crossover operator of genetic algorithm. The so-called
crossover refers to the operation of replacing the partial structure of two parent individuals to generate
a new individual. Through crossover, the searchability of genetic algorithm has been greatly improved.

In this paper, we propose a repair-based crossover operation. After local search, our algorithm
obtains an improved population. We choose two solutions from the population randomly, and then
exchange the vertices in the two solutions with probability 0.5.

Because of the particularity of MTDS, the obtained solutions after crossover may be infeasible.
So we should repair the infeasible solutions and make them become total dominating sets. After
crossover, we check if the obtained solutions are total dominating sets. If a solution is infeasible, we
add some reasonable vertices through population initialization phase until it is feasible. Then we
perform a redundancy remove operation. For the solution obtained by crossover, we remove a vertex
and check whether the solution is feasible. If it is feasible, the vertex will be removed, and otherwise
it will be added back. The redundancy remove operation performs iteratively until every vertex has
been checked.

The solution obtained by the repair-based crossover operation will replace the two old solutions
into the population.

4.4. The Framework of HELG

In this paper, we propose a hybrid evolutionary algorithm HELG that combines local search and
genetic algorithm. The algorithm first generates a population including n initial solutions, and then
applies local search to improve each solution. The obtained n solutions will perform crossover to
produce new solutions. This algorithm will perform iteratively until time limit is satisfied.

The framework of HELG is shown in Algorithm 3 and described as below.

208

Mathematics 2019, 7, 222

Algorithm 3: HELG(G)
Input: an undirected graph G
Output: the best solution CS∗ found

1 initialize CS∗;
2 Pop = {S1, ..., Sn} ← create_population(n);
3 while time limit is not satisfied do

4 for each CS ∈ Pop do

5 CS ← LocalSearch(CS, mstep);
6 if |CS| < |CS∗| then

7 CS∗ ← CS;

8 Pop ← Crossover(Pop);
9 choose the best CS from Pop;

10 if |CS| < |CS∗| then

11 CS∗ ← CS;

12 return CS∗;

At first, the algorithm initializes the best solution CS∗ and a population Pop (lines 1–2). Then the
algorithm performs a loop (lines 3–11). For each solution CS of Pop, we use local search to improve
the quality of solution and if CS is better than CS∗, CS∗ is updated by CS (lines 4–7). For the obtained
n solutions, we perform the repair-based crossover operation to generate new solutions (line 8). If the
best solution CS among Pop is better than CS∗, CS∗ is updated by CS (lines 9–11) When the time limit
is satisfied, the best solution CS∗ is returned (line 12).

5. Experiments

In this section, we carry out a series of experiments to evaluate the efficiency of our algorithm.
The experiments are carried out on a classical benchmark DIMACS (the Center for Discrete
Mathematics and Theoretical Computer Science) [18]. We select 61 instances in the DIMACS benchmark.
The instances are from industry and generated by various models.

HELG is implemented in C++ and compiled by g++ with the -O3 option. We run the algorithm
on a machine with Intel(R) Xeon(R) CPU E7-4830 @2.13Ghz and 4GB memory under Linux. For each
instance, the HELG algorithm runs 30 times independently with different random seeds, until the time
limit (100 s) is satisfied. HELG has three important parameters (i.e., n, μ and mstep). In the population
creation phase, we set the RCL parameter μ = 0.1 and n = 10. In the local search phase, we set the
maximum number of iterations mstep = 100.

Since we are the first to solve MTDS with a heuristic algorithm, in order to evaluate the efficiency
of HELG, a greedy algorithm is as our control method which uses the same scoring heuristic. At first,
the candidate solution CS is empty. The greedy algorithm selects the vertex with the highest score
value and adds it into CS every time. When CS becomes a TDS, the algorithm stops and returns CS as
the optimal solution. Another comparison algorithm we use is a classical metaheuristics algorithm,
the ant colony optimization (ACO) algorithm [16,17], which uses the same initialization procedure
with our algorithm. We use this algorithm as a comparison algorithm to evaluate the effectiveness of
our algorithm. For each instance, the ACO also runs 30 times independently with different random
seeds, until the time limit (100 s) is satisfied.

For each instance, MIN is the minimum total dominating set found, AVG is the average size of
10 solutions, and Time is the running time when the algorithm gets the minimum total dominating set.
Because the greedy algorithm is only executed once for each instance, it has no average value and the
time is less than 1. Better solutions and time are expressed in bold.

The experimental results are shown in Tables 1 and 2. Compared with the greedy algorithm,
HELG can obtain better minimum solutions in 52 instances. In the remaining 9 instances, HELG gets
the same minimum solutions with the greedy algorithm. Compared with ACO, HELG can obtain better

209

Mathematics 2019, 7, 222

minimum solutions in 40 instances. In the remaining 21 instances, HELG gets the same minimum size
with ACO. Among them, HELG gets better average values than ACO in 16 instances, and gets the
same average value with ACO but performs faster in 5 instances. The DIMACS benchmark is divided
into 10 groups. We choose 1 instance from every group. Every instance is run 30 times independently.
The visualized comparisons of ACO and HELG can be seen by Kolmogorov-Smirnov test in Figure 1,
which shows the distribution of the total dominating set values. From these, we can observe that
HELG performs much better than ACO and greedy algorithm.

Table 1. Experimental results of greedy algorithm, ACO, and HELG on DIMACS I. The better minimum
or average solution values are in bold.

Instances Vertices Edges
Greedy ACO HELG

MIN Time MIN AVG Time MIN AVG Time

brock200_2 200 10,024 7 <1 6 6 0.3 6 6 0.21
brock200_4 200 6811 10 <1 9 9 2.28 9 9 1.93
brock400_2 400 20,014 19 <1 16 16.3 6.28 15 15 5.39
brock400_4 400 20,035 19 <1 14 16.3 34.6 14 15.1 25.16
brock800_2 800 111,434 15 <1 13 14.2 15.2 12 12.3 10.5
brock800_4 800 111,957 18 <1 15 16.2 7.63 13 13 6.75

c-fat200-1.CLQ 200 1534 23 <1 22 22 48.62 20 20.3 43.93
c-fat200-2.CLQ 200 3235 12 <1 10 11 8.45 10 10 4.02
c-fat200-5.CLQ 200 8473 5 <1 5 5.3 13.51 4 4 2.46
c-fat500-1.CLQ 500 4459 53 <1 50 51.2 20.73 47 48.1 10.41
c-fat500-2.CLQ 500 9139 26 <1 24 25.9 79.62 23 23.5 74.99
c-fat500-5.CLQ 500 23,191 10 <1 9 9 11.12 9 9 8.08

C1000.9 1000 49,421 47 <1 45 45.6 68.45 44 44.3 64.97
C125.9 125 787 30 <1 21 22 45.2 20 21.1 38.16
C2000.5 2000 999,164 9 <1 10 10 46.7 9 9.5 43.37
C2000.9 2000 199,468 52 <1 51 52.4 17.89 50 51.6 11.64
C250.9 250 3141 33 <1 28 29 80.34 27 28.2 76.81
C4000.5 4000 3,997,732 11 <1 11 12.4 160.8 11 11.6 154.97
C500.9 500 12,418 39 <1 37 38.3 97.7 34 36.6 91.68

DSJC1000.5 1000 249,674 9 <1 8 9.1 11.6 8 8.8 7.38
DSJC500.5 500 62,126 9 <1 8 8 27.84 7 7.4 24.5

gen200_p0.9_44 200 1990 33 <1 26 27.2 77.1 26 26.6 76.25
gen200_p0.9_55 200 1990 31 <1 29 30.2 78.65 25 26.2 71.54
gen400_p0.9_55 400 7980 38 <1 35 35.5 53.2 34 35 51.65
gen400_p0.9_65 400 7980 38 <1 33 35 66.4 33 34.3 58.49
gen400_p0.9_75 400 7980 38 <1 35 36 27.5 33 35.2 20.4
hamming10-4 1024 89,600 23 <1 23 23 45.2 21 22.6 41.77
hamming6-2 64 192 19 <1 15 16.2 39.7 15 15.6 35.86
hamming6-4 64 1312 3 <1 3 3 0.01 3 3 0.01
hamming8-2 256 1024 69 <1 63 65 17.9 62 64.4 11.33
hamming8-4 256 11,776 9 <1 6 7.2 59.6 6 6.5 57.68

To further illustrate the efficiency contribution of our algorithm, we show the time-to-target
plot [12,19] in Figure 2 to compare HELG with ACO on brock400_4 and its target 14. To obtain the
plot, we performed 100 independent runs of each algorithm on brock400_4. The figure shows that the
probabilities of finding a solution of the target value by HELG are approximately 30% and 70% in at
most 13.78 and 33.43 s, respectively, whereas the probabilities of finding a solution of the target value
by ACO are approximately 30% and 70% in at most 23.62 and 43.47 s respectively, considerably longer
than HELG. From that, we can observe that the strategies we used in HELG are very effective.

The experimental results show that our algorithm performs much better than the comparison
algorithms. This proves that the genetic algorithm and local search in our algorithm are both
very effective.

210

Mathematics 2019, 7, 222

brock400_4 c-fat500-2.CLQ

C4000.5 DSJC1000.5

hamming8-4 johnson32-2-4

keller6 MANN_a9

p_hat1500-1.CLQ san400_0.7_3
Figure 1. The total dominating set values obtained by · · · : ACO; −: HELG. Kolmogorov-Smirnov test
can be applied to display the distribution of these values.

211

Mathematics 2019, 7, 222

Table 2. Experimental results of greedy algorithm, ACO, and HELG on DIMACS II. The better minimum
or average solution values are in bold.

Instances Vertices Edges
Greedy ACO HELG

MIN Time MIN AVG Time MIN AVG Time

johnson16-2-4 120 1680 11 <1 10 11.2 32.6 10 10.4 30.72
johnson32-2-4 496 14,880 24 <1 23 24.5 34.8 23 23.5 33.38
johnson8-2-4 28 168 5 <1 5 5.8 0.01 5 5 0
johnson8-4-4 70 560 12 <1 8 8 16.43 7 7.5 9.81

keller4 171 5100 8 <1 8 8 10.45 7 7.4 4.52
keller5 776 74,710 16 <1 17 17 8.28 15 16.5 2.16
keller6 3361 1,026,582 30 <1 30 30.8 61.2 29 29.6 54.68

MANN_a27 378 702 113 <1 75 77.4 100.63 67 79.5 81.69
MANN_a45 1035 1980 90 <1 90 90 3.25 90 90 0.03
MANN_a81 3321 6480 162 <1 162 163 1.28 162 162 0.17
MANN_a9 45 72 20 <1 16 18.6 40.5 16 16.8 34.05

p_hat1500-1.CLQ 1500 839,327 26 <1 24 26.7 26.5 24 24.5 18.01
p_hat1500-2.CLQ 1500 555,290 11 <1 13 14.1 98.6 8 9.2 87.62
p_hat1500-3.CLQ 1500 277,006 5 <1 5 6.1 63.2 4 4.9 59.48
p_hat300-1.CLQ 300 33,917 16 <1 17 18.4 126.3 14 15.2 97.86
p_hat300-2.CLQ 300 22,922 6 <1 7 7 4.58 6 6.5 0.54
p_hat300-3.CLQ 300 11,460 4 <1 4 5 35.48 3 3.1 31.86
p_hat700-1.CLQ 700 183,651 21 <1 21 21 74.69 17 20 64.01
p_hat700-2.CLQ 700 122,922 9 <1 11 13 54.31 8 10.2 48.35
p_hat700-3.CLQ 700 61,640 4 <1 4 5 6.43 4 4.4 3.25

san1000 1000 249,000 6 <1 7 8 8.45 6 6.5 4.73
san200_0.7_1 200 5970 9 <1 8 9 6.7 8 8.8 1.57
san200_0.7_2 200 5970 10 <1 9 9.4 75.12 7 7.9 63.8
san200_0.9_1 200 1990 29 <1 24 24 30.5 22 23.9 25.07
san200_0.9_2 200 1990 30 <1 27 27.8 86.5 24 25.9 77.4
san200_0.9_3 200 1990 31 <1 27 27.6 45.65 25 26.6 34.13
san400_0.5_1 400 39,900 5 <1 6 6 8.41 4 5.4 2.12
san400_0.7_1 400 23,940 13 <1 13 13 27.4 9 10.5 19.49
san400_0.7_2 400 23,940 11 <1 10 11 100.6 9 10.7 92.22
san400_0.7_3 400 23,940 14 <1 12 13.1 87.45 10 10.8 69.77

Figure 2. Time-to-target plot comparing HELG with ACO on instance brock400_4 and its target 14.

6. Summary and Future Work

This paper proposes a hybrid evolutionary algorithm combining local search and genetic algorithm to
solve MTDS. A scoring heuristic is used to improve the efficiency of the algorithm. In the population
initialization phase, we create a population including several initial solutions. In the local search
phase, the algorithm improves the initial solutions by adding and removing operations. After that,
we propose a repair-based crossover operation to increase the diversity of our algorithm. A series
of experiments are carried out to evaluate the algorithm. The experimental results show that HELG
performs well in solving MTDS.

In the future, we would like to design more efficient evolutionary algorithms to solve MTDS.
We would like to relax this problem, such as the found MTDS is missing the adjacency of one vertex.

212

Mathematics 2019, 7, 222

We will study evolutionary algorithms in more MDS-related problems, for example, the multi-objective
MDS optimization problem.

Author Contributions: Software, X.G. and C.L.; Methodology, F.Y. and Y.W.; Writing–original draft preparation,
F.Y. and C.L.; Writing—review and editing, C.L. and M.Y.

Funding: This research and the APC was supported by the Fundamental Research Funds for the Central
Universities 2412018QD022 and Education Department of Jilin Province JJKH20190289KJ, NSFC (under grant nos.
61502464, 61503074, 61806050) and China National 973 Program 2014CB340301.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Subhadrabandhu, D.; Sarkar, S.; Anjum, F. Efficacy of misuse detection in ad hoc networks. In Proceedings
of the 2004 First IEEE Communications Society Conference on Sensor and Ad Hoc Communications and
Networks, IEEE SECON 2004, Santa Clara, CA, USA, 4–7 October 2004; pp. 97–107.

2. Aoun, B.; Boutaba, R.; Iraqi, Y.; Kenward, G. Gateway Placement Optimization in Wireless Mesh Networks
With QoS Constraints. IEEE J. Sel. Areas Commun. 2006, 24, 2127–2136. [CrossRef]

3. Chen, Y.P.; Liestman, A.L. Approximating minimum size weakly-connected dominating sets for clustering
mobile ad hoc networks. In Proceedings of the International Symposium on Mobile Ad Hoc Networking
and Computing, Lausanne, Switzerland, 9–11 June 2002; pp. 165–172.

4. Garey, M.R.; Johnson, D.S. Computers and Intractability: A Guide to the Theory of NP-Completeness; W.H. Freeman
and Company: New York, NY, USA, 1990.

5. Zhu, J. Approximation for minimum total dominating set. In Proceedings of the International Conference
on Interaction Sciences: Information Technology, Culture and Human, Seoul, Korea, 24–26 November 2009;
pp. 119–124.

6. Cai, S.; Su, K.; Luo, C.; Sattar, A. NuMVC: An efficient local search algorithm for minimum vertex cover.
J. Artif. Intell. Res. 2013, 46, 687–716. [CrossRef]

7. Ping, H.; Yin, M.H. An upper (lower) bound for Max (Min) CSP. Sci. China (Inf. Sci.) 2014, 57, 1–9.
8. Cai, S.; Lin, J.; Luo, C. Finding A Small Vertex Cover in Massive Sparse Graphs: Construct, Local Search,

and Preprocess. J. Artif. Intell. Res. 2017, 59, 463–494. [CrossRef]
9. Wang, Y.; Cai, S.; Yin, M. Two Efficient Local Search Algorithms for Maximum Weight Clique Problem.

In Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, Phoenix, AZ, USA, 12–17 February
2016; pp. 805–811.

10. Wang, Y.; Cai, S.; Chen, J.; Yin, M. A Fast Local Search Algorithm for Minimum Weight Dominating Set
Problem on Massive Graphs. In Proceedings of the Twenty-Seventh International Joint Conference on
Artificial Intelligence (IJCAI-18), Stockholm, Sweden, 13–19 July 2018; pp. 1514–1522.

11. Wang, Y.; Cai, S.; Yin, M. Local search for minimum weight dominating set with two-level configuration
checking and frequency based scoring function. J. Artif. Intell. Res. 2017, 58, 267–295. [CrossRef]

12. Wang, Y.; Li, C.; Sun, H; Yin, M. MLQCC: An improved local search algorithm for the set k covering problem.
Int. Trans. Oper. Res. 2019, 26, 856–887. [CrossRef]

13. Wang, Y.; Cai, S.; Yin, M. New heuristic approaches for maximum balanced biclique problem. Inf. Sci. 2018,
432, 362–375. [CrossRef]

14. Przewozniczek, M.W.; Walkowiak, K.; Aibin, M. The evolutionary cost of baldwin effect in the routing and
spectrum allocation problem in elastic optical networks. Appl. Soft Comput. 2017, 52, 843–862. [CrossRef]

15. Połap, D.; Kęsik, K.; Woźniak, M.; Damaševičius, R. Parallel Technique for the Metaheuristic Algorithms
Using Devoted Local Search and Manipulating the Solutions Space. Appl. Sci. 2018, 8, 293. [CrossRef]

16. Romania, Q.S. Ant colony optimization applied to minimum weight dominating set problem. In Proceedings
of the 12th WSEAS International Conference on Automatic Control, Modelling & Simulation, Catania, Italy,
29–31 May 2010.

17. Dorigo, M.; Stützle, T. Ant Colony Optimization. In Proceedings of the 1999 Congress on Evolutionary
Computation-CEC99 (Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999; pp. 1470–1477.

213

Mathematics 2019, 7, 222

18. Johnson, D.S.; Trick, M.A. Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge,
October 11–13, 1993; American Mathematical Soc.: Providence, RI, USA, 1996; Volume 26.

19. Aiex, R.M.; Resende, M.G.; Ribeiro, C.C. TTT plots: A perl program to create time-to-target plots. Optim. Lett.
2007, 1, 355–366. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

214

mathematics

Article

First-Arrival Travel Times Picking through Sliding
Windows and Fuzzy C-Means

Lei Gao 1,*, Zhen-yun Jiang 1 and Fan Min 1,2

1 School of Computer Science, Southwest Petroleum University, Chengdu 610500, China;
jiangzyswpu@163.com (Z.-y.J.); minfanphd@163.com (F.M.)

2 Institute for Artificial Intelligence, Southwest Petroleum University, Chengdu 610500, China
* Correspondence: largeleier@163.com; Tel.: +86-137-0802-3716

Received: 27 January 2019; Accepted: 25 February 2019; Published:27 February 2019

Abstract: First-arrival picking is a critical step in seismic data processing. This paper proposes
the first-arrival picking through sliding windows and fuzzy c-means (FPSF) algorithm with two
stages. The first stage detects a range using sliding windows on vertical and horizontal directions.
The second stage obtains the first-arrival travel times from the range using fuzzy c-means coupled
with particle swarm optimization. Results on both noisy and preprocessed field data show that the
FPSF algorithm is more accurate than classical methods.

Keywords: first-arrival picking; fuzzy c-means; particle swarm optimization; range detection

1. Introduction

Seismic refraction data analysis is one of the principal methods for near-surface modeling [1–4].
A critical step of the method is first-arrival picking for direct and head waves. It influences the
effectiveness of many steps such as static correction [5,6] and velocity modeling [7]. Misidentifications
of these arrival times may have significant effects on the hypocenters [8]. However, the raw seismic
traces are always contaminated by strong background noise with complex near-surface conditions [7].
The main challenge is to accurately extract the first arrivals under the noise interference [9,10] and
irregular topography [11]. According to Akram and Eaton [8], there is an urgent need for automatic
picking methods as the scale of seismic data continues to grow.

There are three main types of first-arrival picking methods. The first is Coppens’ method [12] and
its variants. It uses energy ratios within two amplitude windows to process the data [12]. Al-Ghamdi
and Saeed [13] improved this method by using adaptive thresholds. The multi-window algorithm [14]
uses three moving windows instead. Moreover, it distinguishes signals from noise using the average
of the absolute amplitudes in each window. Sabbione and Velis [15] used a modified form of Coppens’
method along with entropy and fractal-dimension methods to pick first-arrival travel times. The second
is the direct correlation method [16]. The direct correlation method was proposed by Molyneux and
Schmitt [16]. It uses the maximum cross correlation value as a criterion [16], which fails in data sets
with low signal-to-noise ratio (S/N). The third is the backpropagation neural networks method [17].
It applies backpropagation neural networks in first-arrival refraction event picking and seismic data
trace editing [17].

Recently, a new algorithm based on fuzzy c-means is proposed to deal with low signal-to-noise
ratio data [18]. It divides microseismic data into two clusters according to the different levels of
similarity between the signals and noise. Thus, the initial time of the signal cluster is regarded
as the first-arrival time. Others have reported many automatic picking schemes such as digital
image segmentation [19], STA/LTA method [20,21], Akaike information criterion [22], fractal-based
algorithm [23] and TDEE [11]. However, the detection accuracy of existing algorithms is still unsatisfactory.

Mathematics 2019, 7, 221; doi:10.3390/math7030221 www.mdpi.com/journal/mathematics215

Mathematics 2019, 7, 221

In this paper, we propose the first-arrival picking through sliding windows and fuzzy c-means
(FPSF) algorithm. Figure 1 illustrates the overall structure of our algorithm through an example. In the
range detection stage, each trace is processed with a vertical sliding window to seek the first-arrival
interval of each trace. Then, the horizontal window is employed to adjust the window for each trace.
In this way, the first-arrival range is identified. In the first-arrival travel times picking stage, a particle
swarm optimization (PSO) algorithm seeks original cluster centers. Finally, a fuzzy c-means (FCM)
picks the first-arrival travel times.

Figure 1. The framework of the FPSF algorithm (In the middle part, red indicates first-arrival intervals
or initial clustering centers; In the right-top part, red indicates the first-arrival range; In the right-bottom
part, red indicates first arrivals).

FPSF presents two new features to handle the challenge mentioned earlier. One is to introduce
a range detection stage before first-arrival picking. We design a range detection technique using
sliding windows on vertical and horizontal directions. On the one hand, the energy of single trace will
abruptly shift in the first-arrival interval. Hence, a vertical sliding window is employed for keeping
track of inner-trace change. The quality of the window is measured by the difference between its upper
and lower parts, and its position in the trace. It finds the interval where the energy values suddenly
shift the most. On the other hand, the first-arrival travel times of adjacent traces are approximate.
Hence, a horizontal sliding window is employed for keeping track of inter-trace change. It adjusts the
locations of vertical windows to ensure their similarities. All vertical windows of each trace consist of
first-arrival range. With this technique, the data size is decreased dramatically, and the accuracy can
be improved.

The other is to employ PSO and FCM for clustering seismic data. FCM is successful in image
processing, so the application to our data is expected [18]. The data is restricted to the first-arrival
range. First, an improved particle swarm optimization is used to determine original cluster centers.
Second, an improved fuzzy c-means which has original cluster centers will pick up first-arrival travel
times among the range.

Experiments are undertaken on two field data sets. We compare FPSF with some methods
including modified Coppens’ method (MCM) [15], the direct correlation method (DC) [16],
and backpropagation neural networks method (BNN) [17]. Results show that FPSF is accurate.
FPSF can be used in many domains such as image processing and seismic data processing.

The rest of the paper is organized as follows. In Section 2, we review some related works.
In Section 3, we build a data model, define the first-arrival picking problem and introduce some
concepts. In Section 4, we elaborate on the principle of the new method of this paper. In the sequel,

216

Mathematics 2019, 7, 221

two field data sets are experimented to verify the effectiveness of the method in Section 5. Finally,
Section 6 summarizes this paper.

2. Related Works

The history of seismic refraction data analysis can be traced back to the 1920s [6]. Seismic refraction
data analysis tasks include deconvolution [24], dynamic correction [25], static correction [26,27], speed
analysis [28], and migration [29]. Picking first arrivals [19] is an important pre-processing stage for
these tasks. For example, the effectiveness of static corrections depends on the precise of the first
arrivals [6,15].

There are three strategies in the development of picking first arrivals. The manual strategy
relies solely on the experts, therefore it is time-consuming and occasionally inaccurate [15,19,23,30].
To make the matter worse, this strategy can lead to biased and inconsistent picks because it relies on
the subjectivity of the selection operator [15].

The man–machine interaction strategy provides experts with software for visual
inspection [19,23,30]. The expert should identify a few first arrivals, and then the software will
pick the others. In case of some difficult situations, the expert interfere with the process. Naturally,
this strategy is more efficient. However, the whole procedure is still very time consuming and subjective.

The automatic strategy [15,16,23] aims to provide more efficient and intelligent solution. It requires
the development of advanced machine learning and data mining algorithms. Note that this strategy
does not prevent experts from intervening. Experts should check the result and correct it if necessary.
Naturally, if the algorithm works well, manual intervention is rare.

Currently, there are many well-known seismic data processing systems, such as Promax [31],
CGG (refering to wikipedia), Focus and Grisys [32]. They all contain the key step of picking first
arrivals. Affected by data quality and parameter setting, the results of each software program are very
different. Therefore, an accurate, efficient and stable algorithm for this problem is needed.

3. Preliminaries

In this section, we build a data model, define the first-arrival picking problem and introduce some
basic concepts. Table 1 lists notations used throughout the paper.

3.1. Data Model

Single shot gather is a basic concept in the field of geophysical prospecting.

Definition 1. A single shot gather is an m× n matrix S = [si,j], where n is the number of traces, m is the
number of samples for each trace, and si,j is the energy value of the ith sample of the jth trace.

Figure 2a illustrates an original single shot gather with 1000 samples and 800 traces. The horizontal
coordinate is the number of traces. The vertical coordinate is the number of samples. The amplitude
values of samples are the energy values. Black and white points correspond to positive and negative
amplitudes, respectively. To cope with different geophones and different traces, we pre-process our
data normalized to the range [−1, 1].

3.2. First-Arrival Picking

We consider the following problem.

Problem 1. The first-arrival picking problem.
Input: A single shot gather S;
Output: F = [f (1), f (2), . . . , f (n)], where ∀j ∈ [1..n], f (j) ∈ [1..m] is the first-arrival time of the j-th trace.

217

Mathematics 2019, 7, 221

Table 1. Notations.

Notation Meaning

S The single shot gather
F The first-arrival times
l The vertical window size
b The horizontal window size
λ The starting index of the current window
a The energy ratio weight
k The search step size
Λ The starting index array of result windows
n The number of traces
m The number of samples for each trace
R The first-arrival range matrix
θ The parameters of fitness function
π The parameters of fitness function
B The boundary matrix
B1 The position boundary matrix
B2 The velocity range matrix
g The dimension of the input problem
f The fitness function
M The number of particles
δ1 The inertia weight of each particle’s velocity
δ2 The global influence weight
w The inertia weight
T The maximum iteration times
ε The convergent error
x∗ The solution of the best particle
U The first-arrival range matrix
e The number of clustering centers
γ The fuzzy indicator
JFCM The objective function
ck The center of the k-th cluster
dk(i, j) The distance between si,j and ck

That is, for any trace j, there is exactly one sample f (j) corresponding to the first-arrival travel time.
Figure 2b shows the output of first-arrival picking with the input shown in Figure 2a. Every trace

has one first-arrival travel time. The red point is the first-arrival location of every trace.

(a) input (b) output

Figure 2. Field data and first-arrival travel times.

3.3. Fuzzy c-Means

FCM algorithm was proposed by Dunn [33]. It was promoted as the general FCM clustering
algorithm by Bezdek [34]. FCM has been used in many fields such as image segmentation [35–37].

218

Mathematics 2019, 7, 221

The fuzzy set was conceived as a result of an attempt to come to grips with the problem of imprecisely
defined categories [34]. K-means determines whether or not a group of objects form a cluster. Different
from k-means, FCM determines the belonging of an object to a class with a matter of degree [34,38].
When objects X consists of k compact well separated clusters, k-means generates a limiting partition
with membership functions which closely approximate the characteristic functions of the clusters.
However, when X is not the union of k compact well separated clusters, the limiting partition is truly
fuzzy in the sense that the values of its component membership functions differ substantially from 0 or
1 over certain regions of X. The fuzzy algorithm seems significantly less prone to the “cluster-splitting”
tendency and may also be less easily diverted to uninteresting locally optimal partitions Dunn [33].

Let O = {o1, o2, . . . , oN} be a set of objects. The standard fuzzy c-means objective function for
partitioning O into e clusters is given by [37,39]:

min Jα =
e

∑
i=1

N

∑
k=1

uα
ikdβ

ik, (1)

where uik ∈ [0, 1] is the degree of ok belonging to the i-th cluster, α is the fuzzy indicator, dik = ‖ok − ci‖
is the distance between ok and ci, and ci is the center of the i-th cluster.

We also require the sum of the degrees of each object be 1, i.e., ∑e
i=1 uik = 1 ∀k ∈ [1..N]. In many

applications, the Euclidean distance is employed to compute dik, and β = 2.

3.4. Particle Swarm Optimization

Particle swarm optimization was first proposed by [40]. It is a nature-inspired meta-heuristic
approach applied to solve optimisation problems in different fields [41–45].

For an optimisation problem with M particles. Let x′i(t) denote the best solution that particle i
has obtained until iteration t . Let x∗(t) denote the best solution obtained among all the particles so far.
To search for the optimal solution, each particle updates its velocity vi(t) and position xi(t) according
to Equation (2) and (3) [46] :

vi(t + 1) = wvj(t) + δ1rand1 × (x′i(t)− xi(t)) + δ2rand2 × (x∗(t)− xi(t)), (2)

xi(t + 1) = xi(t) + vi(t), (3)

where t is the current iteration, rand1 and rand2 are the random variables in the range of [0, 1], δ1 and
δ2 are the two positive acceleration constants to adjust relative velocity with respect to best global and
local positions and the inertia weight w is used to balance the capabilities of the global exploration.

4. The Proposed Algorithm

The algorithm framework has been illustrated in Figure 1. The range detection stage is composed
of vertical window sliding and horizontal window sliding. The first-arrival picking stage is composed
of PSO and FCM. This section describes each stage in detail.

4.1. Range Detection

This subsection explains the range detection stage with a vertical sliding window and a horizontal
sliding window.

We apply a vertical sliding window to capture the energy which is large, early and shift abrupt in
each trace. Let the window size be l and the starting index of the current window of the j-th trace be λj.
We design the following optimization objective function:

min r(l, λj) = a×
(1 + ∑l/2

i=1 si+λj ,j)

(1 + ∑l
i=l/2+1 si+λj ,j)

+ (1− a)× lλj, (4)

219

Mathematics 2019, 7, 221

where a is the energy ratio weight. Here, the first part expresses the ratio between the upper and
lower part of the window. The smaller the value, the larger the shift. The second part expresses the
evaluation of the position of the window. The smaller the value, the earlier the travel time. The weight
a is used to obtain a trade-off between these two values.

Algorithm 1 lists the vertical window sliding process. Line 1 initializes the minimal value of the
object function value r∗. Lines 2 to 10 show the process of sliding a vertical window with a step size of
k. Line 3 calculates the sum of the upper part of the window us. Line 4 calculates the sum of the lower
part of the window ls. Line 5 computes object function value of the current window according to
Equation (4). Lines 6 to 9 determine if the update condition has been reached. If so, update the minimal
value of the object function value r∗ and the starting index of the vertical window λj in Lines 7 and 8.

Algorithm 1: Vertical Window Sliding for One Trace
Input: The j-th trace s·,j = [s1,j, s2,j, . . . , sm,j], window size l, ratio weight a and search step size

k.
Output: The starting index of the result window λj.
Method: verticalSliding.

1: r∗ = +∞; // Initialize

2: for (i = 1 step k to m− l) do

3: us = ∑
i+ l

2−1
i si,j; // The sum of the upper part

4: ls = ∑i+l
i+ l

2
si,j; // The sum of the lower part

5: r = a× (1 + us)/(1 + ls) + (1− a)× l × i; // Compute r

6: if (r < r∗) then

7: r∗ = r;

8: λj = i; // Update the starting index

9: end if

10: end for

11: return λj;

We apply a horizontal window to adjust the neighboring first-arrival intervals determined by the
vertical windows. Median filtering is employed to smooth the first-arrival intervals in the window to
ensure their similarity.

Definition 2. First-arrival range matrix is an l × n matrix R = [si,j], where l is the size of vertical window
and n is the number of traces. It saves the first-arrival range including first arrivals. This matrix stores the
range of the first arrivals. The size of the original data set S has been reduced from m× n to l × n.

Algorithm 2 lists the horizontal window sliding process. Lines 1 to 9 show the process of sliding
a horizontal window. Line 2 moves the horizontal window in step size b. Line 3 obtains the median of
the window m. Lines 4 to 7 determine whether the difference between each element in the window
and the median is too large. If so, update this value with a large difference to the median in Line 6.

After the above steps, range detection stage has been completed and the first-arrival range
expressed by the first-arrival range matrix (R) has been confirmed. This is one kind of dimensionality
reduction techniques [47] and data size is directly reduced by 90%. Just as pre-processing can help
increase the accuracy [48], range detection stage can be viewed as a pre-processing stage.

220

Mathematics 2019, 7, 221

Algorithm 2: Horizontal Window Sliding

Input: The starting index array of result windows Λ = [λ1, λ2, . . . , λn], vertical window size l
and horizontal window size b.

Output: Range starting index array Λ.
Method: horizontalSliding.

1: for (i = 1 to n
b) do

2: H = [λ(i−1)×b+1, λ(i−1)×b+2, . . . , λi×b]; // Move the horizontal window
3: m = median(H); // Get the median of the window
4: for (j = 1 to b) do

5: if (abs(H[j]−m) � l
2) then

6: Λ[j + (i− 1)× b] = m; // Update the value with a large difference
7: end if

8: end for

9: end for

10: return Λ;

4.2. First-Arrival Picking from the Range

This subsection explains the first-arrival picking stage with PSO and FCM. The data field at this
stage is the first-arrival range confirmed by range detection stage.

We employ PSO to find the original clustering centers of FCM according to the advantages
of PSO including global optimization and fast convergence [49]. Specifically, we use the following
fitness function:

f (xi) =
θ

π + JFCM
, (5)

where θ and π are the parameters of fitness function with the constraint θ ≤ π . The JFCM is the
objective function of the FCM clustering method we employed. The parameter θ was usually proposed
as 2 [39].

The particle swarm velocity iterative update formula is Equation (2). The particle swarm position
iterative update formula is Equation (3).

Definition 3. Boundaries are represented by a g× 2 matrix B = [bi,j], where bi,1 is the lower bound, and bi,2
is the respective upper bound.

Here, we have two boundaries, the position boundary and the velocity boundary. Let B1 be the
position boundary, and let B2 be the velocity boundary.

Algorithm 3 lists the process of particle swarm optimization. Lines 1 to 4 initialize each of the
particle’s position xi and velocity vi with random values. Line 5 initializes iteration times t. Lines 6
to 11 calculate the fitness function and record best solution of each particle according to Equation (5).
Line 9 records best solution of each particle itself. Line 12 finds the optimal particle. Line 14 updates
the global optimal particle. Lines 16 to 21 update velocity and position of each particle. Line 17
updates the velocity of each particle according to Equation (2). Lines 18 and 20 determine whether the
velocity and position are out of boundaries. Line 19 updates the position of each particle according to
Equation (3).

We employ FCM to pick first arrivals according to the similarity of the first-arrival energy values
of adjacent traces. The fuzzy c-means algorithm iteratively calculates on the seismic data set to obtain
the clustering center that minimize the objective function.

221

Mathematics 2019, 7, 221

Algorithm 3: PSO

Input: The fitness function f , the matrices of position boundary B1 and velocity boundary B2,
the number of particles M, the inertia weight of each particle’s velocity δ1, the global influence
weight δ2, the inertia weight w, the maximum iteration times T and the convergent error ε.

Output: Solution of the best particle x∗.
Method: particleSwarmOptimization.

1: for (i = 1 to M) do

2: xi = rand(B1); // Initialize position xi and velocity vi
3: vi = rand(B2);
4: end for
5: t = 1; // Initialize iteration times t
6: while (t ≤ T && !check_convergence(ε)) do

7: for (i = 1 to M) do

8: if (f (xi) > pi) then

9: [pi, x′i] = f (xi); // Record optimal solution of each particle
10: end if
11: end for
12: [pcbest, x∗] = f ind_best([p1, p2, . . . , pM]); // Find optimal particle
13: if (pgbest < pcbest) then

14: update_pbest(pgbest, x∗); // Update global optimal particle
15: end if
16: for (i = 1 to M) do

17: vi = update_velocity(vi, x′i , w, δ1, δ2); // Update particle velocity vi
18: vi = check_and_adjust(vi, B2); // Check and adjust
19: xi = update_position(vi); // Update particle position xi.
20: xi = check_and_adjust(xi, B1); // Check and adjust
21: end for
22: t = t + 1;
23: end while
24: return x∗;

Definition 4. First-arrival range matrix is an l × n × e matrix U = [ui,j,k], where l is the height of the
first-arrival range, n is the number of traces, e is the number of clustering centers, and ui,j,k is the membership
degree of si,j belonging to the k-th cluster.

We use the following objective function:

JFCM = ∑
i,j

e

∑
k=1

uγ
i,j,kdk(i, j)2, (6)

where γ is the fuzzy indicator, dk(i, j) = ‖si,j − ck‖ is the distance between si,j and ck, and ck is the
center of the k-th cluster.

The membership degree is updated according to

ui,j,k =
1

∑c
p=1(dk(i, j)/dp(i, j))2/(γ−1)

. (7)

The clustering center is updated according to

ck =
∑i,j(ui,j,k)

γsi,j

∑i,j(ui,j,k)γ
. (8)

Algorithm 4 lists the process of fuzzy c-means. Line 1 initializes membership matrix U. Line 2
computes clustering objective function value J according to Equation (6). Lines 3 to 6 iteratively update

222

Mathematics 2019, 7, 221

membership matrix U and clustering center array x∗. Line 4 updates membership matrix U according
to Equation (7). Line 5 updates clustering center array x∗ according to Equation (8).

Algorithm 4: FCM

Input: Original clustering center array x∗, the first-arrival range matrix R, the number of
clusters e, the fuzzy indicator γ and the convergent error σ.

Output: Membership matrix U and clustering center array x∗.
Method: fuzzyClusterMethod.

1: U = update_matrix_U(x∗, R, e, γ); // // Initialize membership matrix U
2: J = J(U, x∗); // Compute function value J according to Equation (6)
3: while (!check_convergence(δ)) do

4: U = update_matrix_U(x∗, R, e, γ); // Update U according to Equation (7)
5: x∗ = update_centers_X(U, R, γ); // Update x∗ according to Equation (8)
6: end while// Check the convergence
7: return U, x∗;

After the FCM processing, e clustering centers can be fixed. The data is divided into 10 classes
and one of the classes is the result of first-arrival picking. After the above steps, the first-arrival picking
stage has been completed and the first-arrival travel times have been confirmed.

5. Experimental Results

This section shows the experimental results with two data sets.
Figure 3a shows the field microseismic data consists of 280 shots from Xinjiang, China. Every shot

has about 400 traces and time sampling interval is 2 ms. Figure 3b shows the result of range detection.
Figure 3c shows the result of FPSF.

(a) microseismic data (b) result of range detection (c) result of FPSF

Figure 3. First arrivals picked by FPSF for field microseismic record. (a) field microseismic record;
(b) the result of range detection; (c) the result of FPSF.

Figure 4a shows the field microseismic data consists of 150 shots from Sichuan, China. Every shot
has about 500 traces and time sampling interval is 2 ms. Figure 4b shows the result of range detection.
Figure 4c shows the result of FPSF.

223

Mathematics 2019, 7, 221

(a) microseismic data (b) result of range detection (c) result of FPSF

Figure 4. First arrivals picked by FPSF for field microseismic record. (a) field microseismic record;
(b) the result of range detection; (c) the result of FPSF.

Figure 5a shows Xinjiang field microseismic data. Figure 5b shows the comparison of the difference
among the values by the MCM method (purple spots), BNN method (blue spots), DC method (green
spots) and FPSF (red spots).

(a) microseismic data (b) the results of different methods

Figure 5. First arrivals picked by FPSF for field microseismic record. (a) field microseismic record;
(b) the result of different methods: MCM (purple), BNN (blue), DC (green), FPSF (red).

Table 2 shows the accuracy of each method for different data sets. We can find out that FPSF is
more accurate than BNN, DC on the two data sets and MCM on one data set. In general, FPSF shows
superiority over BNN, DC and MCM on the two data sets.

Table 2. Accuracy comparison.

Data Sources (Data Length) BNN DC MCM FPSF

Xinjiang (300200) 31.5% 81% 84% 96.5%
Sichuan (160064) 3.125% 4.69% 82.81% 81.25%

224

Mathematics 2019, 7, 221

6. Conclusions

At the current stage of developments of artificial intelligence, we urgently need new theories
applied to seismic exploration rather than sticking to the theory of seismic exploration itself. In this
paper, we propose the first-arrival picking through sliding windows and fuzzy c-means (FPSF)
algorithm. The biggest difference from the conventional methods that are currently available is
that our method does not directly pick up the first-arrival travel times but determines a first-arrival
range before picking. Combined with the characteristics of seismic data, we have improved some
methods, such as particle swarm optimization and fuzzy c-means. Experiments with Xinjiang’s data
set with 280 shots and Sichun’s data set with 150 shots show that the proposed method can significantly
improve accuracy and stability. In the future, we will apply the idea of FPSF to other domains such as
image processing.

Author Contributions: Conceptualization, L.G.; Data curation, L.G.; Formal analysis, L.G. and F.M.; Funding
acquisition, L.G.; Investigation, L.G.; Methodology, L.G. and F.M.; Project administration, L.G. and F.M.; Resources,
Z.-y.J.; Software, Z.-y.J.; Supervision, Z.-y.J. and F.M.; Validation, F.M.; Visualization, F.M.; Writing—original draft,
L.G.; Writing—review and editing, L.G., Z.-y.J. and F.M.

Funding: This work is supported by the Natural Science Foundation of China under Grant No. 41604114.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Waheed, U.B.; Flagg, G.; Yarman, C.E. First-arrival traveltime tomography for anisotropic media using the
adjoint-state method. Geophysics 2016, 81, R147–R155. [CrossRef]

2. Zelt, C.; Haines, S.; Powers, M.; Sheehan, J.; Rohdewald, S.; Link, C.; Hayashi, K.; Zhao, D.; Zhou, H.W.;
Burton, B.; et al. Blind test of methods for obtaining 2-D near-surface seismic velocity models from
first-arrival traveltimes. J. Environ. Eng. Geophys. 2013, 18, 183–194. [CrossRef]

3. Sun, M.Y.; Zhang, J.; Zhang, W. Alternating first-arrival traveltime tomography and waveform inversion for
near-surface imaging. Geophysics 2017, 82, R245–R257. [CrossRef]

4. Zhu, X.H.; Valasek, P.; Roy, B.; Shaw, S.; Howell, J.; Whitney, S.; Whitmore, N.D.; Anno, P. Recent applications
of turning-ray tomography. Geophysics 2008, 73, VE243–VE254. [CrossRef]

5. Kahrizi, A.; Hashemi, H. Neuron curve as a tool for performance evaluation of MLP and RBF architecture in
first break picking of seismic data. J. Appl. Geophys. 2014, 108, 159–166. [CrossRef]

6. Yilmaz, Ö. Seismic Data Analysis: Processing, Inversion, and Interpretation of Seismic Data; Society of Exploration
Geophysicists: Tulsa, OK, USA, 2001; Volume 1. [CrossRef]

7. An, S.; Hu, T.Y.; Peng, G.X. Three-Dimensional cumulant-based coherent integration method to enhance
first-break seismic signals. IEEE Trans. Geosci. Remote Sens. 2017, 55, 2089–2096. [CrossRef]

8. Akram, J.; Eaton, D.W. A review and appraisal of arrival-time picking methods for downhole microseismic
data. Geophysics 2016, 81, KS71–KS91. [CrossRef]

9. Li, Y.; Wang, Y.; Lin, H.B.; Zhong, T. First arrival time picking for microseismic data based on DWSW
algorithm. J. Seismol. 2018, 22, 833–840. [CrossRef]

10. Hu, R.Q.; Wang, Y.C. A first arrival detection method for low SNR microseismic signal. Acta Geophys. 2018,
66, 945–957. [CrossRef]

11. Lan, H.Q.; Zhang, Z.J. A high-order fast-sweeping scheme for calculating first-arrival travel times with an
trregular surface. Bull. Seismol. Soc. Am. 2013, 103, 2070–2082. [CrossRef]

12. Coppens, F. First arrival picking on common-offset trace collections for automatic estimation of static
corrections. Geophys. Prospect. 1985, 33, 1212–1231. [CrossRef]

13. Al-Ghamdi.; Saeed, A. Automatic First Arrival Picking Using Energy Ratios; ProQuest: Ann Arbor, MI,
USA, 2007.

14. Chen, M.; Li, Y.; Xie, J. A novel SVM-Based method for seismic first-arrival detecting. Appl. Mech. Mater.
2010, 29–32, 973–978. [CrossRef]

15. Sabbione, J.I.; Velis, D. Automatic first-breaks picking: New strategies and algorithms. Geophysics 2010,
75, V67–V76. [CrossRef]

225

Mathematics 2019, 7, 221

16. Molyneux, J.B.; Schmitt, D.R. First-break timing: Arrival onset times by direct correlation. Geophysics 1999,
64, 1492–1501. [CrossRef]

17. McCormack, M.D.; Zaucha, D.E.; Dushek, D.W. First-break refraction event picking and seismic data trace
editing using neural networks. Geophysics 1993, 58, 67–78. [CrossRef]

18. Zhu, D.; Li, Y.; Zhang, C. Automatic time picking for microseismic data based on a fuzzy c-means clustering
algorithm. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1900–1904. [CrossRef]

19. Mousa, W.A.; Al-Shuhail, A.A.; Al-Lehyani, A. A new technique for first-arrival picking of refracted seismic
data based on digital image segmentation. Geophysics 2011, 76, V79–V89. [CrossRef]

20. Allen, R.V. Automatic earthquake recognition and timing from single traces. Bull. Seismol. Soc. Am. 1978,
68, 1521–1532.

21. Wong, J.; Han, L.J.; Bancroft, J.C.; Stewart, R.R. Automatic time-picking of first arrivals on noisy microseismic
data. Can. Soc. Explor. Eeophys. Conf. Abstr. 2009, 1, 1–4.

22. Takanami, T.; Kitagawa, G. Estimation of the arrival times of seismic waves by multivariate time series
model. Ann. Inst. Stat. Math. 1991, 43, 407–433. [CrossRef]

23. Boschetti, F.; Dentith, M.D.; List, R.D. A fractal-based algorithm for detecting first arrivals on seismic traces.
Geophysics 1996, 61, 1095–1102. [CrossRef]

24. Tian, N.; Fan, T.G.; Hu, G.Y.; Zhang, R.W.; Zhou, J.N.; Le, J. The roles of the spatial regularization in seismic
deconvolution. Acta Geod. Geophys. 2016, 51, 43–55. [CrossRef]

25. Bertrand, A.; MacBeth, C. Repeatability enhancement in deep-water permanent seismic installations:
A dynamic correction for seawater velocity variations. Geophys. Prospect. 2005, 53, 229–242. [CrossRef]

26. Strong, S.; Hearn, S. Statics correction methods for 3D converted-wave (PS) seismic reflection. Explor. Geophys.
2017, 48, 237–245. [CrossRef]

27. Cox, M. Static Corrections for Seismic Reflection Surveys; Society of Exploration Geophysicists: Tulsa, OK,
USA, 1999. [CrossRef]

28. Naus-Thijssen, F.M.J.; Goupee, A.J.; Vel, S.S.; Johnson, S.E. The influence of microstructure on seismic wave
speed anisotropy in the crust: Computational analysis of quartz-muscovite rocks. Geophys. J. Int. 2011,
185, 609–621. [CrossRef]

29. Li, Q.H.; Jia, X.F. Generalized staining algorithm for seismic modeling and migration. Geophysics 2017,
82, T17–T26. [CrossRef]

30. Hatherly, P.J. A computer method for determining seismic first arrival times. Geophysics 1982, 47, 1431–1436.
[CrossRef]

31. Fajaryanti, R.; Manik, H.M.; Purwanto, C. Application of multichannel seismic reflection method to measure
temperature in Sulawesi Sea. IOP Conf. Ser. Earth Environ. Sci. 2018, 176, 012044. [CrossRef]

32. Wang, F.Y.; Zhao, C.B.; Feng, S.Y.; Ji, J.F.; Tian, X.F.; Wei, X.Q.; Li, Y.Q.; Li, J.C.; Hua, X.S. Seismogenic
structure of the 2013 Lushan M (s) 7. 0 earthquake revealed by a deep seismic reflection profile. Chin. J.
Geophys. Chin. Ed. 2015, 58, 3183–3192.

33. Dunn, J.C. A fuzzy relative of the ISODATA process and its use in detecting compact well-separated clusters.
J. Cybern. 1973, 3, 32–57. [CrossRef]

34. Bezdek, J.C. Pattern recognition with fuzzy objective function algorithms. Adv. Appl. Pattern Recognit. 1981,
22, 203–239.

35. Jia, Z.X.; Xia, Y.; Chen, Q.; Sun, Q.S.; Xia, D.S.; Feng, D.D. Fuzzy c-means clustering with weighted image
patch for image segmentation. Appl. Soft Comput. 2012, 12, 1659–1667. [CrossRef]

36. Shafei, B.; Steidl, G. Segmentation of images with separating layers by fuzzy c-means and convex
optimization. J. Vis. Commun. Image Represent. 2012, 23, 611–621. [CrossRef]

37. Szilágyi, L.; Szilágyi, S.M.; Benyó, Z. A modified FCM algorithm for fast segmentation of brain MR images.
In Analysis and Design of Intelligent Systems using Soft Computing Techniques; Springer: Berlin/Heidelberg,
Germany, 2007; pp. 119–127. [CrossRef]

38. Ahmed, M.N.; Yamany, S.M.; Mohamed, N.; Farag, A.A.; Moriarty, T. A modified fuzzy c-means algorithm
for bias field estimation and segmentation of MRI data. IEEE Trans. Med. Imaging 2002, 21, 193–199.
[CrossRef] [PubMed]

39. Bezdek, J.C.; Pal, S.K. Fuzzy Models for Pattern Recognition; IEEE Press: New York, NY, USA, 1992; Volume 56.
40. Kennedy, J. Particle swarm optimization. In Encyclopedia of Machine Learning; Springer: Boston, MA, USA,

2011; pp. 760–766. [CrossRef]

226

Mathematics 2019, 7, 221

41. Ganguly, S.; Sahoo, N.C.; Das, D. Multi-objective particle swarm optimization based on;fuzzy-pareto-
dominance for possibilistic planning of electrical;distribution systems incorporating distributed generation.
Fuzzy Sets Syst. 2013, 213, 47–73. [CrossRef]

42. Tsekouras, G.E.; Tsimikas, J. On training RBF neural networks using input-output fuzzy clustering and
particle swarm optimization. Fuzzy Sets Syst. 2013, 221, 65–89. [CrossRef]

43. Wang, G.G.; Guo, L.H.; Gandomi, A.H.; Hao, G.S.; Wang, H.Q. Chaotic krill herd algorithm. Inf. Sci. 2014,
274, 17–34. [CrossRef]

44. Wang, G.G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans. Cybern.
2017, 49, 542–555. [CrossRef] [PubMed]

45. Fang, Y.; Liu, Z.H.; Min, F. A PSO algorithm for multi-objective cost-sensitive attribute reduction on numeric
data with error ranges. Soft Comput. 2017, 21, 7173–7189. [CrossRef]

46. Ding, S.C.; Hang, J.; Wei, B.L.; Wang, Q.J. Modelling of supercapacitors based on SVM and PSO algorithms.
IET Electr. Power Appl. 2018, 12, 502–507. [CrossRef]

47. Keogh, E.; Chakrabarti, K.; Pazzani, M.; Mehrotra, S. Dimensionality reduction for fast similarity search in
large time series databases. Knowl. Inf. Syst. 2001, 3, 263–286. [CrossRef]

48. Mousas, C.; Anagnostopoulos, C.N. Learning motion features for example-based finger motion estimation
for virtual characters. 3D Res. 2017, 8, 25. [CrossRef]

49. Liu, H.; Xiao, G.F. Improved fuzzy clustering image segmentation algorithm based on particle swarm
optimization. Comput. Eng. Appl. 2013, 49, 37–52. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

227

mathematics

Article

A Multi-Objective DV-Hop Localization Algorithm
Based on NSGA-II in Internet of Things

Penghong Wang 1, Fei Xue 2, Hangjuan Li 1, Zhihua Cui 1,*, Liping Xie 1,* and Jinjun Chen 3

1 Complex System and Computational Intelligent Laboratory, Taiyuan University of Science and Technology,
Taiyuan 030024, China; penghongwang@sina.cn (P.W.); L15536914519@163.com (H.L.)

2 School of Information, Beijing Wuzi University, Beijing 101149, China; xuefei2004@126.com
3 Department of Computer Science and Software Engineering, Swinburne University of Technology,

Melbourne 3000, Australia; jinjun.chen@gmail.com
* Correspondence: cuizhihua@tyust.edu.cn (Z.C.); lipingxie1978@163.com (L.X.);

Tel.: +86-138-3459-9274 (Z.C.); +86-136-4341-3592 (L.X.)

Received: 17 December 2018; Accepted: 7 February 2019; Published: 15 February 2019

Abstract: Locating node technology, as the most fundamental component of wireless sensor networks
(WSNs) and internet of things (IoT), is a pivotal problem. Distance vector-hop technique (DV-Hop)
is frequently used for location node estimation in WSN, but it has a poor estimation precision.
In this paper, a multi-objective DV-Hop localization algorithm based on NSGA-II is designed,
called NSGA-II-DV-Hop. In NSGA-II-DV-Hop, a new multi-objective model is constructed, and an
enhanced constraint strategy is adopted based on all beacon nodes to enhance the DV-Hop positioning
estimation precision, and test four new complex network topologies. Simulation results demonstrate
that the precision performance of NSGA-II-DV-Hop significantly outperforms than other algorithms,
such as CS-DV-Hop, OCS-LC-DV-Hop, and MODE-DV-Hop algorithms.

Keywords: wireless sensor networks (WSNs); DV-Hop algorithm; multi-objective DV-Hop
localization algorithm; NSGA-II-DV-Hop

1. Introduction

As the hottest research topics currently, internet of things (IoT) contains many technologies such
as cyber physical systems [1,2], embedded system technology, network information technology, and so
on. And wireless sensor networks (WSNs) [3,4], as an important branch of cyber physical systems,
have become an innovation and area of research under the spotlight worldwide. Moreover, WSNs
technology is so popular that it has been applied in various fields, including the military and national
defense, industry [5], disaster relief, medical treatment, environmental monitoring [6], and so on [7].
However, for most WSNs applications, sensor node location information plays a key role; generally,
the information obtained from WSNs would be meaningless, if sensor node locations were unknown
in applications such as smart grid, object tracking, and location-based routing. Hence, the sensor node
localization technology is a critical issue in the rapid development of WSNs and even IoT technology.

Currently, the BeiDou navigation satellite system (BDS) [8,9] and global positioning system
(GPS) [10] are generally considered to be the most capable systems for obtaining the exact location.
However, it’s worth mentioning that due to the expensive cost, it is almost impossible to complete
the full coverage installation of BDS equipment in the whole WSNs. Besides, its positioning accuracy
is invariably not satisfactory enough in some special contexts, including the indoor, mine tunnel,
canyon, and other complex environments. As a result, it has begun to receive researchers’ attention
that the use of interactions and connectivity information between sensor nodes for positioning. Using
this information, researchers have proposed a series of localization algorithms. These algorithms
are generally classified as a range-based localization algorithm or range-free localization algorithm,

Mathematics 2019, 7, 184; doi:10.3390/math7020184 www.mdpi.com/journal/mathematics228

Mathematics 2019, 7, 184

depending on whether they are independent of the additional hardware devices. These hardware
devices are necessary to obtain the requisite information for the range-based localization algorithm,
such as point-to-point distances and angles between sensor nodes. The information between the
sensor nodes ensures that the range-based algorithm can achieve accurate positioning, including
RSSI [11], ToA [12], and AoA [13], but it requires extensive CPU time and a mass of energy. In contrast,
the range-free localization algorithm only needs to ensure the connectivity between sensor nodes,
including APIT [14], Centroid [15], Amorphous [16], and DV-Hop [17]. Due to cost constraints, it’s
widely used in a large and complex network.

DV-Hop localization algorithm, as a representative range-free positioning algorithm, has garnered
extensive attention because of its simple positioning principle. Its main principle is that the beacon
nodes (node location information is known) use the connectivity between nodes to send packets
to other nodes in the network to obtain the minimum hop count between the beacon nodes and
unknown nodes (node location information is unknown). And then, the average distances per
hop of beacon nodes are calculated using the position and hop count information of the beacon
nodes. Finally, the locations of the unknown nodes are estimated by calculating the distance between
the unknown nodes to each beacon node. Compared to other range-free positioning algorithms,
it is easier to bring into operation, but the low positioning accuracy has become a problem to be
solved. For this reason, scholars propose various improved algorithms based on DV-Hop localization
algorithm, including the deterministic algorithms [18–20] and bio-inspired optimization algorithms.
In addition, Mobility-Assisted Localization in WSNs has also been widely studied by scholars, such as
Rezazadeh [21], who proposed a path planning mechanism to improve the accuracy of mobile assisted
localization. Alomari improved the path planning method and proposed a path planning strategy
based on dynamic fuzzy-logic [22], and proposed an obstacle avoidance strategy based on swarm
intelligence optimization [23].

In recent years, with the excellent performance of intelligent computing in various complex
optimization problems, various bionic algorithms have been proposed, such as particle swarm
optimization (PSO) [24], ant colony optimization (ACO) [25], bat algorithm (BA) [26–28], Differential
Evolution (DE) [29], Firefly algorithm (FA) [30–32], and so on [33]. Compared with the mathematics
optimization methods, these biological inspired algorithms show some unique advantages. First,
they don’t depend on the requirement of any gradient information in the variable space; in addition,
they are insensitive to the initial value and insusceptible to local entrapment. These optimization
algorithms play a very good role in practical applications, such as [34–40], however, with the increasing
amount of data in the IoT era, many problems in the real world include multiple decision variables
and evaluation indicators. Single-objective optimization has gradually revealed defects for solving
such problems. For this reason, multi-objective optimization algorithms based on bionics have also
been proposed and are used in various fields, including Multi-Objective Particle Swarm Optimizers
(MOPSO) [41,42], multi-objective evolutionary algorithm based on decomposition (MOEA/D) [43],
hybrid multi-objective cuckoo search (HMOCS) [44,45], and so on [46,47].

In this paper, we propose a multi-objective DV-Hop localization algorithm based on NSGA-II [48]
to solve the sensor node localization problem in WSNs. The remainder of this paper is arrayed as
follows. In Section 2, DV-Hop with optimization algorithms and problems are reviewed. In Section 3,
standard DV-Hop and NSGA-II are presented. In Section 4, a multi-objective DV-Hop localization
model is structured and NSGA-II-DV-Hop is proposed. Simulation results and performance analysis
are summarized in Section 5. Lastly, the conclusion is summarized in Section 6.

229

Mathematics 2019, 7, 184

2. Related Works

In the last few years, with the maturity of various stochastic optimization algorithms in theory,
more attention has been paid to the practical application of the algorithm. In 1975, Holland [49]
proposed the theory and method of genetic algorithm by studying the genetic evolution process in
the natural environment. And after a series of research work, Goldberg [50] formally presented the
genetic algorithm (GA) in 1989. In 2007, on the basis of solving the numerical optimization by genetic
algorithm, Nan [51] proposed to apply the real-coded GA to WSNs. And in 2010, Gao [52] developed
an improved GA to solve wireless sensor localization problem in WSNs. Moreover, Bo [53] also applied
GA to solve the problem of WSNs location, and proposed a population constraint strategy based on
three beacon nodes to solve the feasible domain of the population.

Furthermore, Yang [54] presented a cuckoo search (CS) algorithm based on Levy flights in 2009.
In 2014, Sun [55] developed the CS algorithm and applied it to the DV-Hop positioning algorithm
and achieved good positioning results. Based on this, Zhang [56] proposed a weight-oriented CS
algorithm (WOCS), and combined it with DV-Hop to locate the unknown sensor nodes in WSNs.
The paper improved the search ability of the CS algorithm for unknown nodes by limiting the hop
count (which is the minimum hop count between the unknown nodes and each beacon node) in the
DV-Hop algorithm. Furthermore, Cui [57] further developed the WOCS algorithm, and proposed
an oriented CS algorithm based on the Lévy-Cauchy distribution (OCS-LC) in 2017. This improved
strategy is applied to solve the positioning problem of sensor nodes in WSN, and compared with the
CS algorithm, there is a large performance improvement when the number of sensor nodes is small.
However, these studies were based on the study of the location performance of sensor nodes in a large
area, but ignored the positioning performance of sensor nodes in complex terrain. In response to this
phenomenon, Cui [58] studied the positioning performance of sensor nodes in C-shaped random and
C-shaped grids in 2018. Nevertheless, in this research, the nodes in the network are required to obey
Uniform distribution, which is unimaginable in practical production applications. Not only is this so,
a common feature of these studies is that more effort is devoted to the improvement of algorithmic
search strategies, while ignoring improvements to the original model.

In these studies, although the positioning accuracy has been improved, there are some defects.
According to the calculation formula (Equation (7)) of the single-objective model, the population
gradually converges to the estimated position as the number of iterations increases, as shown in
Figure 4 of the part IV. The actual position of the unknown node is UN, but the population will
converge to the UN∗1 and UN∗2 points, which will bring a large error.

To solve this problem, we propose three other complex terrains for research, including coal mine
tunnels [59,60], lake terrain, and canyons terrain. In these specific cases, for the distribution of sensor
nodes some new features emerge. For instance, in the coal mine tunnel, the nodes are distributed in
narrow tunnels that are interlaced, and the nodes are densely distributed. This requires the algorithm
to have a good positioning effect when the number of nodes and the number of beacon nodes are large.
However, in the lake terrain, the nodes are distributed around the lake, which leads to communication
difficulty when the communication radius is small. Therefore, the algorithm is required to have a
strong positioning capability when the communication radius is small and the number of nodes is
small. And in the canyons terrain, the nodes are distributed in the canyon among several mountains.
In this case, the algorithm is required to have better stable positioning accuracy when the radius and the
beacon nodes are small. So, in this paper, we propose a multi-objective DV-Hop localization algorithm
based on NSGA-II. The biggest highlight of this paper is to abandon the idea that scholars blindly
improve the algorithm search strategy, and change the objective function model in the algorithm to
achieve more precise positioning of unknown nodes. A constraint strategy based on all beacon nodes
is proposed based on the three beacon nodes constraint strategy.

230

Mathematics 2019, 7, 184

3. DV-Hop Algorithm and NSGA-II Algorithm

3.1. DV-Hop Algorithm

In this subsection, we will detail the specific implementation process of the DV-Hop algorithm.
Phase 1: Communication detection and broadcasting phase.
At this stage, it is mainly to detect whether direct communication between any two nodes is

possible, and also to record the minimum hops count that nodes can communicate with each other.
The specific process is that each beacon node broadcasts a packet to the network (the packet includes
its location and its own minimum hop count information to other nodes), and the initialization value of
each node hop count information is 0. Each time the packet is forwarded, the number of hop count is
increased by one. Among them, each node only records the minimum hop count information between
it and other nodes.

Phase 2: Distance estimation phase.
Since the position information of the beacon node is known, the Hopsizei (the average distance

per hop between any two beacon nodes) can be obtained by Equation (1).

HopSizei =

∑
j �=i

√
(xi − xj)

2 + (yi − yj)
2

∑
j �=i

hij
(1)

where (xi, yi), (xj, yj) are the coordinates of beacon nodes i and j respectively, and hij is the minimum
hop count between the beacon nodes which is calculated by Phase 1.

And then, the dik (the distance between beacon node i and unknown node k) is estimated by
Equation (2).

dik = Hopsizei × hik (2)

where hik is the minimum hop count between the beacon node i and unknown node k.
Phase 3: Unknown node coordinate estimation phase.
For the unknown node k, if more than three distances have been estimated by Equation (2), the

position of the unknown node k can be calculated mathematically, such as the trilateral measuring
method. The computational equation is⎧⎪⎨⎪⎩

(x1 − x)2 + (y1 − y)2 = d2
1

· · ·
(xn − x)2 + (yn − y)2 = d2

n

(3)

where (x, y) represents the unknown nodes’ coordinates, (xn, yn) denotes the coordinates of beacon
node n, and dn denotes the distance estimated by Equation (2).

Convert Equation (3) to a matrix form AX = b, where A, b, and X are described as the following
Equations (4) and (5), respectively.

A =

⎛⎜⎝ 2(x1 − xn)

· · ·
2(xn−1 − xn)

2(y1 − yn)

· · ·
2(yn−1 − yn)

⎞⎟⎠, X =

(
x
y

)
(4)

b =

⎛⎜⎝ x2
1 − x2

n + y2
1 − y2

n + d2
n − d2

1
. . .

x2
n−1 − x2

n + y2
n−1 − y2

n + d2
n − d2

n−1

⎞⎟⎠ (5)

231

Mathematics 2019, 7, 184

Based on Equations (4) and (5), the location of the unknown node can be obtained by the least
square method. The calculation equation can be expressed as Equation (6).

X̂ = (AT A)
−1

ATb (5)

The flowchart of DV-Hop algorithm is introduced in Figure 1.

Figure 1. The distance vector-hop technique (DV-Hop) flowchart.

3.2. NSGA-II Algorithm

A non-dominated sorting genetic algorithm II (NSGA-II) was first proposed in [48] as a biological
heuristics algorithm which usually used to solve complex industrial optimization problems. The
algorithm has been widely concerned by scholars since its invention due to its faster convergence
speed, stronger robustness, and better draw near the true Pareto-optimal front. In NSGA-II algorithm,
its core operation contains two parts. One part includes the three traditional operation processes in
GA, such as crossover, selection, and mutation; the other part refers to the unique non-dominated
sorting operation in the multi-objective optimization algorithm. Therein, the selection operation will
retain some of the better individuals with their fitness values (which refer to the non-dominated sorted
value). The mutation operation is designed according to the genetic mutation in the biology, in order
to ensure that the algorithm has strong global convergence ability. Conversely, the crossover operation
is designed based on the principle that homologous chromosomes cross to generate new species to
improve the algorithm search ability.

The pseudo-code of NSGA-II algorithm is introduced in Algorithm 1.

232

Mathematics 2019, 7, 184

Algorithm 1: The pseudo-code of NSGA-II
Begin

Input: Population: NP; Dimension: D; Maximum Generation: Gmax; Cross
probability: Pc; mutation probability: Pm.

Initialization: compute objective values, fast non-dominated sort, selection,
crossover and mutation.

Generation = 1;
While Generation < Gmax do

Combine parent and offspring population, compute objective values
and fast non-dominated sort.
Selection operation.

If rand() < Pc
Crossover operation;
End
If rand() < Pm

Mutation operation;
End
Generation = Generation+1;

End
Output: The best individuals

End

4. The Proposed Multi-Objective Algorithm

In this paper, we propose a multi-objective DV-Hop localization algorithm based on NSGA-II,
which achieves the purpose of improving the positioning accuracy by adopting multi-objective
improvement on the original objective.

4.1. The Multi-Objective Model

In the traditional DV-Hop algorithm based on optimization algorithm, Equation (7) is recognized
as the most typical objective function.

f itness1 = min(
m

∑
i=1
|
√
(xi − x)2 + (yi − y)2 − di|) (7)

where di denotes the estimated distance in the simulation experiment between beacon node i and
an unknown node, (xi, yi) represents the location of the beacon node i, (x, y) denotes the location of
the unknown node, f itness1 denotes the objective (which refers to one of the objective functions in
this paper).

However, this objective function is determined by Equation (8), and Equation (8) is the core theory
of the combination of the optimization algorithm and the DV-Hop algorithm. For unknown node j,
assume (x, y) is the actual location, and the estimated distances are d1, d2, . . . , dn in the simulation
experiment for all beacon nodes, the corresponding errors are δ1, δ2, . . . , δn. Then, the relationship

among them can be expressed as follows: under the premise that the value of
√
(xn − x)2 + (yn − y)2

is constant, the smaller δ1, δ2, . . . , δn, the more accurate the positioning accuracy. Therefore, convert
Equation (8) to a function form y = ax, the objective function is expressed as Equation (7).

233

Mathematics 2019, 7, 184

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

√
(x1 − x)2 + (y1 − y)2 = d1 + δ1√
(x2 − x)2 + (y2 − y)2 = d2 + δ2

· · ·√
(xn − x)2 + (yn − y)2 = dn + δn

(8)

Nevertheless, (x, y) is the unknown node estimated position rather than the actual position, and
d1, d2, . . . , dn are obtained in the second phase of the DV-Hop algorithm, and are constant. This means
that the position obtained by Equation (7) (the objective function) is closer to the position under the
estimated distance, rather than the true exact position. Based on this phenomenon, we present to add
an objective function to strengthen the search constraint on the exact position.

Suppose there are some sensor nodes in the detected area, which contain the beacon nodes and
unknown nodes, such as Figure 2. In Figure 2, BN denotes the beacon node; UN1, UN2, UN3 denote
the unknown nodes, respectively; R denotes the communication radius; and Disi is the actual distance
between UNi and BN; the circular area is the communication area of the BN. When the number of
unknown nodes is enough to fill the entire the circular area, the average distance between UNi and
BN is calculated as Equation (9).

avg_dis =
� R

0 2πr2dr� R
0 2πrdr

=
2
3

R (9)

avg_dis denotes the average distance between UNi and BN, and also represents the average
distance per hop between sensor nodes. Particularly, different from HopSizei is that the calculation
result of avg_dis is the theoretical value of the average distance from the unknown node to the beacon
node in per hop. Therefore, the theoretical distance disik from the unknown node k to each beacon
node i is calculated as Equation (10).

disik = avg_dis× hik (10)

where hik is the minimum hop count between the beacon node i and unknown node k.

BN

RUN

UN

UNDis

Dis
Dis

Figure 2. Distance relationship of sensor nodes.

Similarly, we define the second objective function as follows:

f itness2 = min(
m

∑
i=1
|
√
(xi − x)2 + (yi − y)2 − disi|) (11)

234

Mathematics 2019, 7, 184

For the sake of clarity, we will elaborate on the difference between our proposed multi-objective
and traditional single-objective (We use three beacon nodes BN1, BN2, BN3 and one unknown node
UN for analysis). Figure 3 shows the constraint principle of the objective function in ideal conditions.
At the moment, the unknown node i in the population finally converges the location of the UN, and
this location is the exact position.

However, the estimated distance is usually accompanied by errors. Therefore, the single-objective
function constraint principle in the estimated distance is shown in Figure 4. Where, UN is defined as
the actual location of the unknown node, BN1, BN2 indicate the beacon nodes, d1, d2 are calculated
by Equation (2), UN∗1 , UN∗2 represent the estimated location of the unknown node which calculated
with Equation (7) in ideal circumstances. It is not difficult to see that the error between the potential
optimal solution set found by the single-objective function model and the real position is still large.

Figure 3. Constraint principle in ideal conditions.

d d

BN BN

UN

UN

UN

Figure 4. Single-objective constraint principle.

For the defects of single-objective optimization, we propose to use the multi-objective optimization
method to reduce the error, such as Figure 5. Figure 5 is composed of two parts, one part is the decision
space on the left side and the other part is the objective space on the right side. Where, f1, f2 respectively
represent two contradictory objective function models that we proposed, dis1, dis2 are calculated by
Equation (10). As can be seen from the Figure 5, a solution in the objective space corresponds to
multiple potential optimal solutions in the decision space. That means that multi-objective models can
find more potential optimal solutions in the decision space than the single objective model. Meanwhile,
it contains the potential optimal solution that the single-objective model can find. According to this
theory, the error of the estimated position obtained by using the multi-objective model must be less
than or equal to the single-objective model.

235

Mathematics 2019, 7, 184

f

f

d d

BN
BN

UN
dis dis

Figure 5. Multi-objective constraint principle.

4.2. Population Constraint Strategy

In addition to improvements to the model, this paper also improves the algorithm’s search strategy.
In reference [34], the author proposed a population constraint strategy based on three beacon nodes
to solve the feasible domain of the population, such as Figure 6a (where BN1, BN2, BN3 denote the
beacon nodes, UN is the unknown node, H1, H2, H3 represent the minimum hop count, R represents
the radius and the shadow area is the feasible domain). The expression is as follows:⎧⎨⎩ max

i=1,2,3
(xi − RHi) ≤ xUN ≤ min

i=1,2,3
(xi + RHi)

max
i=1,2,3

(yi − RHi) ≤ yUN ≤ min
i=1,2,3

(yi + RHi)
(12)

However, when the distance among the three beacon nodes is relatively close and they are
located on the same side of the unknown node, the feasible domain of the population is still larger.
In this situation, the robustness of the positioning accuracy deteriorates. In this paper, we propose
a population constraint strategy based on all beacon nodes, such as Figure 6b. The expression is
as follows: ⎧⎨⎩ max

i=1,2,...,n
(xi − RHi) ≤ x′UN ≤ min

i=1,2,...,n
(xi + RHi)

max
i=1,2,...,n

(yi − RHi) ≤ y′UN ≤ min
i=1,2,...,n

(yi + RHi)
(13)

As the number of beacon nodes increases, the probability of the beacon nodes being on the same
side of the unknown node decreases correspondingly. This means that the constraint enhancement
from the beacon nodes has different directions, and thus the population feasible region decreases.
As shown in Figure 6b, the feasible domain of population is significantly reduced compared to
Figure 6a. By reducing the feasible region of the population, the convergence speed of the algorithm
can be accelerated and the positioning accuracy improved.

RH

RH

RH

BN

BN

BN

RH

RH

RH
iRH

RH

BN

iBN
BN

BN

BN

(a) (b)

Figure 6. Population constraint strategy. (a) Population constraint based on three beacon nodes;
(b) Population constraint based on all beacon nodes.

236

Mathematics 2019, 7, 184

4.3. NSGA-II-DV-Hop Algorithm

The construction process of the multi-objective model was introduced before. In this section, the
solution process of the model will be introduced. NSGA-II is considered by this paper to be a feasible
and reliable algorithm for solving multi-objective models. The pseudo-code of NSGA-II-DV-Hop is
introduced in Algorithm 2.

Algorithm 2: The pseudo-code of NSGA-II-DV-Hop
Begin
Input: Communication radius, number of nodes, beacon nodes, and the location of
beacon nodes; Population: NP; Dimension: D; Maximum Generation: Gmax; Cross
probability: Pc; mutation probability: Pm.
DV-Hop algorithm with Figure 1.
Initialization: Compute objective values with Equation (7) and Equation (11), fast

non-dominated sort, selection, crossover and mutation.
Population constraint strategy with Equation (13).
Generation = 1;
While Generation < Gmax do
Combine parent and offspring population; compute objective values with Equation
(7), Equation (11), and fast non-dominated sort.
Selection operation.

If rand() < Pc
Perform cross-operations on the positions of different individuals in the

population;
End
If rand() < Pm

Randomly generate a position that satisfies the boundary condition;
End
If (the position is contradictory with the boundary condition)

Randomly generate a position that satisfies the boundary condition.
end
Generation = Generation+1;

End
Calculate average localization error with Equation (14).
Output: The best location and average localization error.
End

5. Experimental Results and Analysis

5.1. Experimental Environment and Evaluation Criteria

To verify the effectiveness of NSGA-II-DV-Hop, extensive experiments were conducted in
MATLAB 2016a. Experimental results will be compared with other three algorithms, including
the DV-Hop, CS-DV-Hop, OCS-LC-DV-Hop, and MODE-DV-Hop. Experiment content tests the
four different complex networks, including the Random, C-shaped random, O-shaped random, and
X-shaped random, as shown in Figure 7. These different network topologies represent different
application backgrounds, including plain terrain, canyons terrain, lake terrain, and coal mine tunnels
(where all nodes are randomly employed). In addition, the detected area is a 100× 100 m square
region, and other parameters are listed in Table 1.

237

Mathematics 2019, 7, 184

(a) (b)

(c) (d)

Figure 7. Four different complex networks topologies. (a) The random topology; (b) The C-shaped
random topology; (c) The O-shaped random topology; (d) The X-shaped random topology.

Table 1. Parameter settings.

Parameter Value

Pc 1
Pm 1/c (c refers to the variable dimension)

Population 20
Largest iterations 500

R(m) 25
Nodes 100

Beacon nodes 20

In order to compare the positioning performance of different algorithms more fairly, the average
localization error (ALE) of unknown nodes is employed as the evaluation criterion. The specific
calculation formula is as follows:

ALE =
100

M× R

M

∑
i=1

√
(x′i − xi)

2 + (y′i − yi)
2 (14)

where M and R note the number of unknown nodes and communication radius respectively; (x′i , y′i)
represents the estimated location and (xi, yi) denotes the exact location.

5.2. Two Objective Function Relationships

In order to verify whether the multi-objective DV-Hop localization algorithm based on NSGA-II
proposed in this paper is feasible, we performed the relationship between two objective functions in
different network topologies. The results are shown in Figure 8. In Figure 8a–d respectively show the
relationship between the two objective functions in four network topologies, and these relationships
are contradictory. The experimental results also demonstrate that the method we proposed is feasible.

238

Mathematics 2019, 7, 184

(a) (b)

(c) (d)

Figure 8. Two objective function relationships in four different network topologies. (a) The random
topology; (b) The C-shaped random topology; (c) The O-shaped random topology; (d) The X-shaped
random topology.

In addition, in multi-objective optimization, the solutions obtained after the optimization
completed are the Pareto-optimal solutions. These equivalent solutions can be selected according to
the actual situation. In this paper, to make the operation simpler, the minimum value of the sum of the
two objective values in the solution set is identified as the optimal solution for comparison.

5.3. Influence of Communication Radius

In this experimental phase, the influences of different communication radius on the localization
performance are performed. And the communication radius will change from 15 to 40, when the
number of nodes and the beacon nodes remain unchanged. The simulation results are shown in Table 2
and Figure 9a–d.

Figure 9a shows the ALE of four algorithms in random topology, and in this topology,
NSGA-II-DV-Hop is slightly inferior to the CS-DV-Hop and OCS-LC-DV-Hop algorithm, but
significantly better than the DV-Hop algorithm. However, in the other three network topologies
(Figure 9b–d, the ALE of NSGA-II-DV-Hop always has the lowest localization error no matter what
kind of communication radius.

From Table 2, compared with DV-Hop, NSGA-II-DV-Hop can reduce a maximum of 21.91%,
114.77%, 69.71%, and 39.29% on localization errors, respectively. In particular, in the C-shaped random
network topology, compared with CS-DV-Hop and OCS-LC-DV-Hop, the positioning accuracy of
the NSGA-II-DV-Hop algorithm is improved by 26.74% and 24.42%, respectively. In addition, the
performance of MODE-DV-Hop is similar to NSGA-II-DV-Hop.

239

Mathematics 2019, 7, 184

Table 2. Average localization error (ALE) of different algorithms in different network topologies and
communication radius.

Communication Radius 15 20 25 30 35 40

random
topology

DV-Hop 65.24 46.14 33.25 28.92 27.59 26.54
CS-DV-Hop 48.17 26.52 23.58 22.15 21.44 18.54

OCS-LC-DV-Hop 38.52 24.58 21.83 20.84 19.01 17.65
MODE-DV-Hop 52.71 24.84 21.30 20.32 19.93 18.13
NSGAII-DV-Hop 52.57 24.23 22.09 21.46 20.19 18.06

C-shaped
random
topology

DV-Hop 172.33 112.53 63.73 49.78 44.81 41.62
CS-DV-Hop 84.30 62.38 38.17 31.25 31.42 29.93

OCS-LC-DV-Hop 81.98 58.59 37.35 30.46 32.09 29.36
MODE-DV-Hop 66.80 51.23 34.20 30.44 27.74 28.72
NSGAII-DV-Hop 57.56 49.54 32.89 28.89 28.87 28.37

O-shaped
random
topology

DV-Hop 117.88 56.50 44.77 39.39 29.24 31.28
CS-DV-Hop 48.27 30.51 31.83 26.72 20.44 21.38

OCS-LC-DV-Hop 49.32 31.05 23.77 26.86 20.85 21.98
MODE-DV-Hop 47.81 27.44 23.67 23.24 18.48 19.97
NSGAII-DV-Hop 48.17 25.78 22.59 22.96 17.80 19.06

X-shaped
random
topology

DV-Hop 80.18 54.22 43.49 39.39 37.15 36.29
CS-DV-Hop 42.84 32.54 34.51 30.46 30.55 26.28

OCS-LC-DV-Hop 45.68 33.60 35.84 32.43 30.41 26.60
MODE-DV-Hop 43.04 31.37 29.65 27.88 24.93 26.38
NSGAII-DV-Hop 40.89 32.49 29.18 29.39 27.30 25.93

(a) (b)

(c) (d)

Figure 9. The ALE of four network topologies in different communication radius. (a) The random
topology; (b) The C-shaped random topology; (c) The O-shaped random topology; (d) The X-shaped
random topology.

5.4. Influence of Nodes

The number of nodes incrementally increases from 50 to 100 in this simulation phase, and the
number of beacon nodes and communication radius stay the same. The experiment results are given
in Table 3 and Figure 10.

240

Mathematics 2019, 7, 184

Table 3. ALE of different algorithms in different network topologies and number of nodes.

Number of Nodes 50 60 70 80 90 100

random
topology

DV-Hop 51.70 43.60 30.56 32.57 33.13 33.25
CS-DV-Hop 26.98 25.65 24.94 24.78 24.99 23.58

OCS-LC-DV-Hop 24.35 24.17 23.57 23.39 22.43 21.83
MODE-DV-Hop 27.41 27.83 26.98 23.29 21.89 21.30
NSGAII-DV-Hop 27.95 25.82 26.31 22.84 22.64 22.09

C-shaped
random
topology

DV-Hop 76.27 75.39 70.34 66.42 65.12 63.73
CS-DV-Hop 46.12 45.19 41.73 41.18 39.21 38.17

OCS-LC-DV-Hop 43.98 43.07 40.63 39.64 38.68 37.35
MODE-DV-Hop 39.05 42.74 36.04 36.01 36.18 34.20
NSGAII-DV-Hop 34.01 37.24 34.56 34.92 33.52 32.89

O-shaped
random
topology

DV-Hop 33.92 40.59 40.82 41.80 42.46 44.77
CS-DV-Hop 22.54 21.16 22.20 22.66 22.06 31.83

OCS-LC-DV-Hop 21.63 23.48 23.12 23.31 22.84 23.77
MODE-DV-Hop 20.18 20.47 22.60 22.75 23.56 23.67
NSGAII-DV-Hop 18.79 21.78 22.03 21.70 22.16 22.59

X-shaped
random
topology

DV-Hop 34.16 36.47 38.00 40.31 40.30 43.49
CS-DV-Hop 33.98 31.64 32.58 33.74 33.68 34.51

OCS-LC-DV-Hop 35.34 34.21 35.27 35.86 35.13 35.84
MODE-DV-Hop 29.03 27.90 29.21 28.20 27.52 29.65
NSGAII-DV-Hop 30.07 27.27 28.55 28.25 27.54 29.18

(a) (b)

(c) (d)

Figure 10. The ALE of four network topologies in different number of nodes. (a) The random
topology; (b) The C-shaped random topology; (c) The O-shaped random topology; (d) The X-shaped
random topology.

From Figure 10, we can see that in C-shaped and X-shaped random network topologies, the
localization accuracy of NSGA-II-DV-Hop and MODE-DV-Hop algorithms are significantly superior
to CS-DV-Hop, OCS-LC-DV-Hop, and DV-Hop algorithms. And in the Random or O-shaped

241

Mathematics 2019, 7, 184

network topologies, the performance of NSGA-II-DV-Hop is slightly better than the CS-DV-Hop
and OCS-LC-DV-Hop, but always superior to the DV-Hop algorithm.

As depicted in Table 3, NSGA-II-DV-Hop has excellent positioning performance. Compared
with the DV-Hop localization algorithm, the ALEs of NSGA-II-DV-Hop are less than 4.25–23.75%,
30.84–42.26%, 15.13–22.18%, and 4.09–14.31% respectively. The most conspicuous improvement occurs
in X-shaped and C-Shaped topologies, and the ALEs are reduced by 7.61% and 9.97% more than
OCS-LC-DV-Hop algorithm, respectively. Compared with the MODE-DV-Hop, the precision of the
NSGA-II-DV-Hop is slightly better.

5.5. Influence of Beacon Nodes

In this simulation phase, the number of beacon nodes incrementally increases from 5 to 20, and
the number of nodes and communication radius remain the same. The experiment results are given in
Table 4 and Figure 11.

Table 4. ALE of different algorithms in different network topologies and number of beacon nodes.

Number of Baecon Nodes 5 10 15 20 25 30

random
topology

DV-Hop 49.21 38.21 38.77 33.25 28.31 32.48
CS-DV-Hop 38.76 29.67 28.59 23.58 22.88 20.94

OCS-LC-DV-Hop 36.98 28.72 26.80 21.83 21.01 19.22
MODE-DV-Hop 35.99 24.41 23.62 21.30 20.11 17.49
NSGAII-DV-Hop 34.74 23.25 21.90 22.09 20.81 19.43

C-shaped
random
topology

DV-Hop 88.45 67.42 69.45 63.73 64.88 69.80
CS-DV-Hop 101.44 48.14 42.49 38.17 49.41 53.24

OCS-LC-DV-Hop 102.36 49.62 41.73 37.35 51.77 52.90
MODE-DV-Hop 74.48 37.55 40.08 34.20 37.43 36.11
NSGAII-DV-Hop 67.25 34.78 36.83 32.89 35.34 34.63

O-shaped
random
topology

DV-Hop 98.08 79.95 38.47 44.77 38.28 40.49
CS-DV-Hop 42.65 36.22 30.35 31.83 34.84 37.10

OCS-LC-DV-Hop 45.15 36.60 33.17 23.77 34.99 35.72
MODE-DV-Hop 42.59 35.76 23.97 23.67 23.86 21.88
NSGAII-DV-Hop 41.14 30.23 23.46 22.59 23.38 21.47

X-shaped
random
topology

DV-Hop 58.46 59.14 47.89 43.49 46.66 48.57
CS-DV-Hop 51.90 40.74 41.54 34.51 47.54 44.36

OCS-LC-DV-Hop 48.83 39.74 46.47 35.84 45.32 45.87
MODE-DV-Hop 45.76 34.70 32.19 29.65 28.96 25.75
NSGAII-DV-Hop 42.74 35.03 30.81 29.18 29.29 27.25

As shown in Figure 11, we can see that the positioning accuracy of NSGA-II-DV-Hop always has
an advantage over the other three localization algorithms no matter which topologies. Furthermore,
as the number of beacon nodes increases, the ALEs of NSGA-II-DV-Hop present a declining trend,
but the ALE of the other three algorithms fluctuate upwards and downwards. The reason causing
this kind of phenomenon is that in the complex network topology, the unknown nodes at the edge
of the detected area increases, and the feasible domain of the unknown node satisfies the probability
increase of Figure 6a, so that the positioning performance deteriorates. Inversely, the NSGA-II-DV-Hop
algorithm proposed in this paper adopts the principle of Figure 6b, which reduces the feasible domain
of the unknown node, so that the algorithm has more reliable positioning performance.

As shown in Table 4, the original DV-Hop always has the worst localization performance;
and NSGA-II-DV-Hop algorithm has the greatest degree of enhancement no matter which network
topologies. Especially, compared with the OCS-LC-DV-Hop, NSGA-II-DV-Hop positioning accuracy
increased by up to 35.11% and 18.62% respectively in C-shaped and X-shaped network topologies.
And the minimum ALEs always are in NSGA-II-DV-Hop and MODE-DV-Hop.

242

Mathematics 2019, 7, 184

(a) (b)

(c) (d)

Figure 11. The ALE of four network topologies in different number of beacon nodes. (a) The random
topology; (b) The C-shaped random topology; (c) The O-shaped random topology; (d) The X-shaped
random topology.

5.6. The Standard Deviation and the Confidence Intervals

As can be seen from Table 5, the standard deviations of the NSGA-II-DV-Hop and MODE-DV-Hop
are larger than the CS-DV-Hop and OCS-LC-DV-Hop, which is because the multi-objective model
has more potential optimal solutions, such as Figure 5. However, it is worth paying attention that
the confidence intervals of NSGA-II-DV-Hop and MODE-DV-Hop are less than the CS-DV-Hop and
OCS-LC-DV-Hop in most cases, which means that the performance of the multi-objective model
is reliable.

Table 5. The standard deviation and confidence intervals of different algorithms in four
network topologies.

Random
Topology

C-Shaped
Random Topology

O-Shaped
Random Topology

X-Shaped
Random Topology

the standard
deviation and
the confidence

intervals
(probably at

95%)

CS-DV-Hop

0.5636 0.5241 0.1390 0.2150
[0.46, 0.67] [0.41, 0.70] [0.11, 0.19] [0.17, 0.29]

23.5816 38.1680 31.8336 34.5050
[23.12, 24.03] [37.97, 38.36] [31.78, 31.89] [34.42, 34.59]

OCS-LC-DV-Hop

0.9243 0.4277 0.6448 0.1736
[0.67, 1.31] [0.34, 0.58] [0.51, 0.87] [0.13, 0.23]

21.8342 37.3458 23.7727 35.8445
[21.04, 22.21] [37.19, 37.51] [23.53, 24.01] [35.77, 35.91]

MODE-DV-Hop

1.2770 0.7446 0.6658 1.1133
[1.02, 1.71] [0.59, 1.00] [0.53, 0.89] [0.88, 1.49]

21.3018 34.2048 23.6688 29.6472
[20.82, 21.77] [33.92, 34.48] [23.42, 23.91] [29.23, 30.06]

NSGA-II-DV-Hop

0.7005 0.4887 0.4911 0.8246
[0.55, 0.94] [0.38, 0.66] [0.39, 0.66] [0.65, 1.11]

22.0850 32.8934 22.5942 29.1820
[21.82, 22.35] [32.71, 33.08] [22.41, 22.77] [28.87, 29.48]

243

Mathematics 2019, 7, 184

6. Conclusions

This paper proposes a multi-objective DV-Hop localization algorithm based on NSGA-II called
NSGA-II-DV-Hop. To further reduce the positioning error, the traditional DV-Hop localization
algorithm based on single-objective optimization algorithm is transformed into a multi-objective
DV-Hop localization algorithm. We use the multi-objective constraint approach to reduce the
convergence domain of unknown nodes and achieve the purpose of improving positioning accuracy.
In addition, we also improve the search strategy of the algorithm, changing the population constraint
strategy based on three beacon nodes to the population constraint strategy based on all beacon nodes.
The simulation results demonstrate that this improved strategy can effectively reduce the sensitivity of
the algorithm positioning performance to the number of beacon nodes. Furthermore, this paper also
tests four complex network topologies in different backgrounds, and the experimental results show
that NSGA-II-DV-Hop significantly outperforms original DV-Hop, CS-DV-Hop, OCS-LC-DV-Hop,
and MODE-DV-Hop in all topologies, which also validates the practicability and reliability of this
multi-objective model.

And in the future, we will continue to study the error distribution characteristics of the estimated
distance in different network topologies and the construction of multi-objective models when there are
obstacles in the network.

Author Contributions: Conceptualization, P.W.; Data curation, P.W. and F.X.; Formal analysis, P.W., H.L., Z.C.
and J.C.; Funding acquisition, Z.C.; Methodology, P.W.; Project administration, Z.C.; Writing—original draft, P.W.,
and H.L.; Writing—review & editing, P.W., H.L. and Z.C.

Acknowledgments: This work is supported by the National Natural Science Foundation of China under Grant
No.61806138, No.U1636220, No.61663028 and No.61403271, Natural Science Foundation of Shanxi Province
under Grant No.201801D121127, Scientific and Technological innovation Team of Shanxi Province under Grant
No.201805D131007, PhD Research Startup Foundation of Taiyuan University of Science and Technology under
Grant No.20182002.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Khaitan, S.K.; Mccalley, J.D. Design Techniques and Applications of Cyber physical Systems: A Survey.
IEEE Syst. J. 2015, 9, 350–365. [CrossRef]

2. Lee, E.A. Cyber Physical Systems: Design Challenges. In Proceedings of the IEEE International Symposium
on Object Oriented Real-Time Distributed Computing, Orlando, FL, USA, 5–7 May 2008; pp. 363–369.

3. Akyildiz, I.F.; Su, W.; Sankarasubramaniam, Y.; Cayirci, E. A survey on sensor networks. IEEE Commun. Mag.
2002, 40, 102–114. [CrossRef]

4. Guo, P.; Wang, J.; Li, B.; Lee, S.Y. A variable threshold-value authentication architecture for wireless mesh
networks. J. Internet Technol. 2014, 15, 929–936.

5. Wang, Z.; Wang, X.; Liu, L.; Huang, M.; Zhang, Y. Decentralized feedback control for wireless sensor and
actuator networks with multiple controllers. Int. J. Mach. Learn. Cybern. 2017, 8, 1471–1483. [CrossRef]

6. Chandanapalli, S.B.; Reddy, E.S.; Lakshmi, D.R. DFTDT: Distributed functional tangent decision tree for
aqua status prediction in wireless sensor networks. Int. J. Mach. Learn. Cybern. 2017, 9, 1419–1434. [CrossRef]

7. Suo, H.; Wan, J.; Huang, L.; Zou, C. Issues and Challenges of Wireless Sensor Networks Localization in
Emerging Applications. In Proceedings of the International Conference on Computer Science and Electronics
Engineering, Hangzhou, China, 23–25 March 2012; IEEE Computer Society: Washington, DC, USA, 2012;
pp. 447–451.

8. Yang, Y.X.; Li, J.L.; Xu, J.Y.; Tang, J.; Guo, H.; He, H. Contribution of the Compass satellite navigation system
to global PNT users. Sci. Bull. 2011, 56, 2813. [CrossRef]

9. Montenbruck, O.; Steigenberger, P.; Hugentobler, U.; Teunissen, P.; Nakamura, S. Initial assessment of the
COMPASS/BeiDou-2 regional navigation satellite system. GPS Solut. 2013, 17, 211–222. [CrossRef]

10. Kaplan, E.D. Understanding GPS: Principles and Application. J. Atmos. Sol.-Terr. Phys. 1996, 59, 598–599.

244

Mathematics 2019, 7, 184

11. Girod, L.; Bychkovskiy, V.; Elson, J.; Estrin, D. Locating tiny sensors in time and space: A case study.
In Proceedings of the IEEE International Conference on Computer Design: VLSI in Computers and Processors,
Freiberg, Germany, 18 September 2002; IEEE Computer Society: Washington, DC, USA, 2002; pp. 214–219.

12. Harter, A.; Hopper, A.; Steggles, P.; Ward, A.; Webster, P. The anatomy of a context-aware application.
Wirel. Netw. 2002, 8, 187–197. [CrossRef]

13. Niculescu, D.; Nath, B. Ad hoc positioning system (APS) using AOA. In Proceedings of the Joint Conference
of the IEEE Computer and Communications, San Francisco, CA, USA, 30 March–3 April 2003; pp. 1734–1743.

14. He, T.; Huang, C.; Blum, B.M.; Stankovic, J.A.; Abdelzaher, T. Range-free localization schemes in large
scale sensor networks. In Proceedings of the IEEE Mobicom, San Diego, CA, USA, 14–19 September 2003;
pp. 81–95.

15. Capkun, S.; Hamdi, M.; Hubaux, J.P. GPS-free positioning in mobile ad-hoc networks. In Proceedings of the
Hawaii International Conference on System Sciences, Maui, HI, USA, 6 January 2002; p. 10.

16. Nagpal, R. Organizing a Global Coordinate System from Local Information on an Amorphous Computer.
Available online: https://dspace.mit.edu/handle/1721.1/5926 (accessed on 16 December 2018).

17. Niculescu, D.; Nath, B. DV Based Positioning in Ad Hoc Networks. Telecommun. Syst. 2003, 22, 267–280.
[CrossRef]

18. Zhao, J.; Jia, H. A hybrid localization algorithm based on DV-Distance and the twice-weighted centroid for
WSN. In Proceedings of the IEEE International Conference on Computer Science and Information Technology,
Chengdu, China, 9–11 July 2010; pp. 590–594.

19. Hou, S.; Zhou, X.; Liu, X. A novel DV-Hop localization algorithm for asymmetry distributed wireless sensor
networks. In Proceedings of the IEEE International Conference on Computer Science and Information
Technology, Chengdu, China, 9–11 July 2010; pp. 243–248.

20. Qian, Q.; Shen, X.; Chen, H. An Improved Node Localization Algorithm Based on DV-Hop for Wireless
Sensor Networks. Comput. Sci. Inf. Syst. 2011, 8, 953–972. [CrossRef]

21. Rezazadeh, J.; Moradi, M.; Ismail, A.S.; Dutkiewicz, E. Superior Path Planning Mechanism for Mobile
Beacon-Assisted Localization in Wireless Sensor Networks. IEEE Sens. J. 2014, 14, 3052–3064. [CrossRef]

22. Alomari, A.; Phillips, W.; Aslam, N.; Comeau, F. Dynamic Fuzzy-Logic Based Path Planning for
Mobility-Assisted Localization in Wireless Sensor Networks. Sensors 2017, 17, 1904. [CrossRef] [PubMed]

23. Alomari, A.; Phillips, W.; Aslam, N.; Comeau, F. Swarm Intelligence Optimization Techniques for
Obstacle-Avoidance Mobility-Assisted Localization in Wireless Sensor Networks. IEEE Access 2017,
2169–3536. [CrossRef]

24. Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the IEEE International Conference
on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948.

25. Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization-artificial ants as a computational intelligence
technique. IEEE Comput. Intell. Mag. 2006, 1, 28–39. [CrossRef]

26. Cai, X.; Wang, H.; Cui, Z.; Cai, J.; Xue, Y.; Wang, L. Bat algorithm with triangle-flipping strategy for numerical
optimization. Int. J. Mach. Learn. Cybern. 2018, 9, 199–215. [CrossRef]

27. Cai, X.; Gao, X.; Xue, Y. Improved bat algorithm with optimal forage strategy and random disturbance
strategy. Int. J. Bio-Inspired Comput. 2016, 8, 205–214. [CrossRef]

28. Cui, Z.; Li, F.; Zhang, W. Bat algorithm with principal component analysis. Int. J. Mach. Learn. Cybern. 2018.
[CrossRef]

29. Storn, R.; Price, K. Differential evolution: A simple and efficient heuristic for global optimization over
continuous space. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]

30. Wang, H.; Wang, W.; Zhou, X.; Sun, H.; Jia, Z.; Yu, X.; Cui, Z. Firefly algorithm with neighborhood attraction.
Inf. Sci. 2017, 382, 374–387. [CrossRef]

31. Yu, G.; Feng, Y. Improving firefly algorithm using hybrid strategies. Int. J. Comput. Sci. Math. 2018, 9,
163–170. [CrossRef]

32. Yu, W.X.; Wang, J. A new method to solve optimization problems via fixed point of firefly algorithm. Int. J.
Bio-Inspired Comput. 2018, 11, 249–256. [CrossRef]

33. Deb, S.; Deb, S.; Gao, X.Z.; et al. A new metaheuristic optimization algorithm motivated by elephant herding
behaviour. Int. J. Bio-Inspired Comput. 2017, 8, 394–409.

34. Cui, Z.; Cao, Y.; Cai, X.; Cai, J.; Chen, J. Optimal LEACH protocol with modified bat algorithm for big data
sensing systems in Internet of Things. J. Parallel Distrib. Comput. 2017. [CrossRef]

245

Mathematics 2019, 7, 184

35. Gao, M.L.; He, X.H.; Luo, D.S.; Jiang, J.; Teng, Q.Z. Object tracking with improved firefly algorithm. Int. J.
Comput. Sci. Math. 2018, 9, 219–231.

36. Arloff, W.; Schmitt, K.R.B.; Venstrom, L. A parameter estimation method for stiff ordinary differential
equations using particle swarm optimization. Int. J. Comput. Sci. Math. 2018, 9, 419–432. [CrossRef]

37. Cortes, P.; Guadix, J.; Muñuzuri, J.; Onoeva, L. A discrete particle swarm optimization algorithm to operate
distributed energy generation networks efficiently. Int. J. Bio-Inspired Comput. 2018, 12, 226–235. [CrossRef]

38. Wang, Y.; Wang, P.; Zhang, J.; Cui, Z.; Cai, X.; Zhang, W.; Chen, J. A Novel Bat Algorithm with Multiple
Strategies Coupling for Numerical Optimization. Mathematics 2019, 7, 135. [CrossRef]

39. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.; Chen, J. Detectin of malicious code variants based on deep learning.
IEEE Trans. Ind. Inform. 2018, 14, 3187–3196. [CrossRef]

40. Niu, Y.; Tian, Z.; Zhang, M.; Cai, X.; Li, J. Adaptive two-SVM multi-objective cuckoo search algorithm for
software defect prediction. Int. J. Comput. Sci. Math. 2018, 11, 282–291. [CrossRef]

41. Reyes-Sierra, M.; Coello Coello, C.A. Multi-Objective Particle Swarm Optimizers: A Survey of the
State-of-the-Art. Int. J. Comput. Intell. Res. 2006, 2, 287–308.

42. Bougherara, M.; Nedjah, N.; de Macedo Mourelle, L.; Rahmoun, R.; Sadok, A.; Bennouar, D. IP
assignment for efficient NoC-based system design using multi-objective particle swarm optimization. Int. J.
Bio-Inspired Comput. 2018, 12, 203–213. [CrossRef]

43. Zhang, Q.; Li, H. MOEA/D: A multi-objective evolutionary algorithm based on decomposition. IEEE Trans.
Evol. Comput. 2007, 11, 712–731. [CrossRef]

44. Zhang, M.; Wang, H.; Cui, Z.; Chen, J. Hybrid multi-objective cuckoo search with dynamical local search.
Memet. Comput. 2018, 10, 199–208. [CrossRef]

45. Cao, Y.; Ding, Z.; Xue, F.; Rong, X. An improved twin support vector machine based on multi-objective
cuckoo search for software defect prediction. Int. J. Bio-Inspired Comput. 2018, 11, 282–291. [CrossRef]

46. Cui, Z.; Zhang, J.; Wang, Y.; Cao, Y.; Cai, X.; Zhang, W.; Chen, J. A pigeon-inspired optimization algorithm
for many-objective optimization problems. Sci. China Inf. Sci. 2019. [CrossRef]

47. Wang, G.; Cai, X.; Cui, Z.; Min, G.; Chen, J. High Performance Computing for Cyber Physical Social Systems
by Using Evolutionary Multi-Objective Optimization Algorithm. IEEE Trans. Emerg. Top. Comput. 2017.
[CrossRef]

48. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T.A.M.T. A fast and elitist multi-objective genetic algorithm:
NSGA-II. IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]

49. Holland, J.H. Adaptation in Natural and Artificial Systems; The University of Michigan Press: Ann Arbor, MI,
USA, 1975.

50. Goldberg, D.E. Genetic Algorithms in Search, Optimization and Machine Learning; Addison-Wesley Publishing
Company: Boston, MA, USA, 1989; pp. 2104–2116.

51. Nan, G.F.; Li, M.Q.; Li, J. Estimation of Node Localization with a Real-Coded Genetic Algorithm in WSNs.
In Proceedings of the 2007 International Conference on Machine Learning and Cybernetics, Hong Kong,
China, 19–22 August 2007; pp. 873–878.

52. Yang, G.; Yi, Z.; Tianquan, N.; Keke, Y.; Tongtong, X. An improved genetic algorithm for wireless sensor
networks localization. In Proceedings of the IEEE Fifth International Conference on Bio-Inspired Computing:
Theories and Applications, Changsha, China, 23–26 September 2010; pp. 439–443.

53. Bo, P.; Lei, L. An improved localization algorithm based on genetic algorithm in wireless sensor networks.
Cogn. Neurodyn. 2015, 9, 249–256.

54. Yang, X.S.; Deb, S. Cuckoo search via Levy flights. In Proceedings of the World Congress on Nature &
Biologically Inspired Computing, Coimbatore, India, 9–11 December 2009; pp. 210–214.

55. Sun, B.; Cui, Z.; Dai, C.; Chen, W. DV-Hop Localization Algorithm with Cuckoo Search. Sens. Lett. 2014, 12,
444–447. [CrossRef]

56. Zhang, M.; Zhu, Z.; Cui, Z. DV-hop localization algorithm with weight-based oriented cuckoo search
algorithm. In Proceedings of the Chinese Control Conference, Dalian, China, 26–28 July 2017; pp. 2534–2539.

57. Cui, Z.; Sun, B.; Wang, G.; Xue, Y.; Chen, J. A novel oriented cuckoo search algorithm to improve DV-Hop
performance for cyber-physical systems. J. Parallel Distrib. Comput. 2017, 103, 42–52. [CrossRef]

58. Cui, L.; Xu, C.; Li, G.; Minga, Z.; Fenga, Y.; Lua, N. A High Accurate Localization Algorithm with DV-Hop
and Differential Evolution for Wireless Sensor Network. Appl. Soft Comput. 2018, 68, 39–52. [CrossRef]

246

Mathematics 2019, 7, 184

59. Chen, W.; Jiang, X.; Li, X.; Gao, J.; Xu, X.; Ding, S. Wireless Sensor Network nodes correlation method in coal
mine tunnel based on Bayesian decision. Meas. J. Int. Meas. Confed. 2013, 46, 2335–2340. [CrossRef]

60. Farjow, W.; Raahemifar, K.; Fernando, X. Novel wireless channels characterization model for underground
mines. Appl. Math. Model. 2015, 39, 5997–6007. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

247

mathematics

Article

Monarch Butterfly Optimization for Facility Layout
Design Based on a Single Loop Material
Handling Path

Minhee Kim and Junjae Chae *

School of Air Transport, Transportation and Logistics, Korea Aerospace University, 76, Hanggonddaehak-ro,
Deoyang-gu, Goyang-si, Gyeonggi-do 10540, Korea; meenykim@kau.kr
* Correspondence: jchae@kau.ac.kr

Received: 26 December 2018; Accepted: 31 January 2019; Published: 6 February 2019

Abstract: Facility layout problems (FLPs) are concerned with the non-overlapping arrangement
of facilities. The objective of many FLP-based studies is to minimize the total material handling
cost between facilities, which are considered as rectangular blocks of given space. However, it is
important to integrate a layout design associated with continual material flow when the system uses
circulating material handling equipment. The present study proposes approaches to solve the layout
design and shortest single loop material handling path. Monarch butterfly optimization (MBO),
a recently-announced meta-heuristic algorithm, is applied to determine the layout configuration.
A loop construction method is proposed to construct a single loop material handling path for
the given layout in every MBO iteration. A slicing tree structure (STS) is used to represent the
layout configuration in solution form. A total of 11 instances are tested to evaluate the algorithm’s
performance. The proposed approach generates solutions as intended within a reasonable amount
of time.

Keywords: facility layout design; single loop; monarch butterfly optimization; slicing tree structure;
material handling path; integrated design

1. Introduction

A facility layout design has significant value to the manufacturing world. From the machine lines
to the path of material handling equipment, many factors related to operation efficiency depend on
the facility layout design [1]. Because a layout configuration is directly related to the material handling
performance in a factory or workspace, researchers have been studying optimal facility layouts with
various approaches. In academia, this came to be called the facility layout problem (FLP).

The FLP ranges over an arrangement of blocks in a given area [2]. The blocks, which are regarded
as departments, can be machines, workspaces or even buildings. In an FLP, departments that are
known in size have to be arranged in a given space without overlapping [3]. For cases where each
department has a different size, the term unequal area facility layout problem (UAFLP) has been
coined. In this study, we use the acronym FLP to mean UAFLP. Mixed integer programming (MIP)
can be used to solve FLPs. However, FLPs are categorized as NP-hard because they encounter many
restrictions, including location or aspect ratio limitations. These restrictions prevent FLPs from being
solved in a reasonable amount of computational time [4]. Therefore, to solve large-sized problems of
generally more than 12 departments, various meta-heuristic approaches have been used [5–8].

In this study, monarch butterfly optimization (MBO), a relatively new meta-heuristic, is adopted
to solve the FLP. Inspired by the monarch butterfly species, MBO mimics the butterfly’s group
migration [9]. MBO has a simple concept and parameters relative to other meta-heuristic algorithms.
The simple structure of the algorithm facilitates the implementation of complicated expressions of the

Mathematics 2019, 7, 154; doi:10.3390/math7020154 www.mdpi.com/journal/mathematics248

Mathematics 2019, 7, 154

layout representation in computer code. In addition, several studies have successfully demonstrated
MBO’s performance [10–14].

When solving an FLP using meta-heuristics, a layout representation method is necessary to
construct the department sequence. Indeed, various heuristic methods concerned with layout
representation have been proposed. However, pre-defined layout representations such as the
flexible bay structure (FBS) or slicing tree structure (STS) have been widely used to easily represent
the layout scheme. When assigning the departments to floor space, the FBS only considers one
cutting direction. Therefore, the FBS is relatively easy to apply and takes less computational time.
However, the STS allows both the vertical and horizontal directions. While this makes the STS more
complicated and adds computational time, it also produces a greater variety of layout configurations
that combine two directions than the FBS [6]. Most previous studies dealt with loop-based FLPs by
using FBS representation. We adopt the STS to gain greater flexibility in solution space and to obtain
better solutions.

To estimate the fitness value of the obtained layout, various evaluation methods can be applied.
Typically, a rectilinear distance-based approach is used [15] to evaluate the results. However, in this
study, a single loop distance is applied to evaluate the layout. This single loop can be regarded
as route-of-path-based material handling equipment such as automated guided vehicles (AGVs) or
power and free systems. This kind of measurement can aid the design of certain layouts operated with
path-based vehicles. We define a single loop distance as the size of a single loop where the material
handling equipment can access all of the departments through the path, and the path is never crossed.

To find a single loop in the obtained layout, the single loop construction method is proposed in this
study. Before constructing a single loop, a department-searching procedure is conducted to determine
a feasible layout. After searching every adjacent department, the single loop department is determined
based on the number of adjacent departments. If there are no more departments to be included,
the single loop construction method can be finished, and a single loop is obtained. This process is
embedded in every MBO iteration, and single loop size minimization becomes the main objective of
the layout design.

This paper proceeds as follows. The research background and the literature review are introduced
in Section 2, Section 3 deals with the layout representation method and the adoption of MBO in the
FLP. Section 4 defines the MBO approach with respect to the FLP. The computational results of this
research and the conclusion are described in Sections 5 and 6, respectively.

2. Background and Literature Review

According to Kochhar et al. [16], because the importance of facility layout has come to the fore,
the FLP has been widely studied. As mentioned, the FLP deals with the placement of departments
in a given area without overlapping [17]. Typically, a good facility layout is directly related to the
material handling cost. Therefore, the objective function value (OFV), which is used to evaluate the
layout configuration, is also related to the movement between departments [18]. Several distance
measurements exist, as shown in Figure 1. The rectilinear distance in Figure 1a is composed of the
absolute distance between two datum points of the department on both the x and y axis. On the
contrary, the Euclidean distance, which is the shortest diagonal distance, can be seen in Figure 1d [19].
The contour distance is described in Figure 1b. In this measurement, the movement between two
departments must occur along the adjacent department’s boundary. Figure 1c deals with the single
loop distance. As previously defined, all departments should be accessible through a single loop.
Therefore, in this case, the single loop distance can be the OFV of the layout.

249

Mathematics 2019, 7, 154

(a) (b) (c) (d)

Figure 1. Examples of distance measurement. (a) Rectilinear distance; (b) Contour distance; (c) Single
loop distance; (d) Euclidean distance.

However, in terms of operating circulating path-based material handling systems, the layout
configured for the shortest single loop might be helpful. For instance, the derived single loop path
can be regarded as a practically appropriate planned path for vehicle-based systems [20]. In this way,
the FLP with the single loop can be an industrial alternative to that of general FLPs that deal with
traditional distances between departments. Moreover, the single loop is much simpler than other loop
networks because there are no interactions or departments along the path [21].

Two early approaches to the single loop under an FLP were conducted by Tanchoco and
Sinriech [22] and Sinriech and Tanchoco [21] in the 1990s. They considered a single loop to be a
more effective and cost-saving alternative for material handling equipment operation. In their papers,
the optimal single-loop (OSL) guide paths for AGVs were proposed for the single closed loop guide
path layout. A valid single loop problem and single loop station location problem were developed by
the authors and worked well with the general FLPs. Asef-Vaziri et al. [23] defined an FLP with a single
loop as the shortest loop design problem (SLDP) and introduced improved integer linear programming
(ILP). To demonstrate its performance, several problems were tested. Subsequently, Ahmadi-Javid
and Ramshe [24] corrected the ILP formulation and developed a cutting-plane algorithm to generate
reasonable computational results. Over time, other researchers have tried to develop a variety of
powerful meta-heuristics to obtain better layout solutions in less computational time. In Yang and
Peters’ research [25], a two-step heuristic approach was proposed for an open-field type layout with
a single loop path. Their approach combined a space-filling curve with simulated annealing (SA).
In the first step, a traditional block layout with a directed loop was solved with the combined heuristic
approach. Next, an MIP formulation was solved using the spatial coordinate and orientation location
inputs from the first stage. Hojabri et al. [26] suggested a decomposition algorithm for solving a single
loop material flow. In the process of finding the solution, all departments were located along a loop
and removed randomly from that loop until a feasible loop was found. This proposed algorithm was
successful in solving large problems in a short amount of time. Jahandideh et al. [27] introduced a
genetic algorithm (GA) to design a unidirectional loop in an FLP by considering the total loaded and
empty trips. Asef-Vaziri et al. [28] proposed a single loop-based facility layout design. They used
a hybrid GA and noted that the computational time could be effectively reduced even with a large
number of departments.

Additional forms of single loop FLPs were studied by other researchers. Chae and Peters [29] used
a single loop structure as a department placement guideline and applied SA to search for solutions.
Niroomand et al. [30] built on Chae and Peters’ department placement strategy and used a modified
migrating birds optimization to find a better layout configuration for a closed loop-based facility layout
problem (CLLP). Kang et al. [31] applied the cuckoo search algorithm to a CLLP and showed that the
algorithm generated quality solutions for the CLLP. More details about loop-based FLPs can be read in
the review papers provided by Asef-Vaziri and Laporte [32] and Asef-Vaziri and Kazemi [20].

To solve FLPs using various meta-heuristic approaches, a proper layout representation should be
encoded to adopt the meta-heuristics. Various layout representations have been proposed. For example,

250

Mathematics 2019, 7, 154

Kulturel-Konak and Konak [33] proposed location/shape representation, which employs the shape
and centroid coordinates of the departments. Gonçalves and Resende [19] suggested the empty
maximal spaces (EMSs) method as a layout representation. The EMSs method lists every department’s
minimum and maximum vertex. Instead of developing new heuristics, pre-defined and well-known
layout representation methods have also been used. In essence, the FBS and STS methods are based
on the cutting action and the combination of this numeric information. The FBS is a common layout
representation method. It is relatively simple to adopt because it only locates the departments in
one bay direction, horizontal or vertical [4]. In contrast, both horizontal and vertical directions are
allowed in the STS [34]. Therefore, the STS can show more diverse layout configurations than the
FBS [5]. To broaden the search space and find better solutions, we adopt the STS. The STS is explained
in Section 4.1 in detail.

For the solution process, a recently introduced meta-heuristic algorithm, Wang et al.’s monarch
butterfly optimization (MBO) [9], is used to solve the FLP in our study. MBO mimics the movement of
the monarch butterfly species between eastern North America and Mexico. Basically, the butterflies are
divided into two groups that are represented as Land 1 and Land 2. The butterflies in these two groups
migrate separately according to (1) the migration operator and (2) the butterfly adjusting operator.
The two operators each have a role in maintaining and developing butterfly individuals to achieve
better solutions. MBO has relatively less computation time and decision parameters, and several
studies have adopted MBO for various optimization problems. Wang et al. [14] proposed a new
version of MBO with a self-adaptive crossover operator and greedy strategy. In its original form,
MBO updates the newly generated butterfly without any restrictions. However, to improve the fitness
value and convergence, a new solution can be updated when the fitness value is better than the
previous one. Ghanem and Jantan [35] combined MBO with artificial bee colony (ABC) optimization
to achieve global solution searching ability. To avoid the proposed algorithm falling into the local
optimal solution, a modified butterfly adjusting operator is used as a mutation operator in ABC. Chen
et al. [10] introduced MBO with the greedy strategy to solve the dynamic vehicle routing problem
(DVRP), which is a transformed version of a VRP with dynamic customer appearance. The introduced
algorithm outperformed the existing methods while drawing several new best solutions. By all
accounts, MBO performed reasonably well with various optimization instances. Therefore, due to
these advantages, we apply MBO to solve our layout design based on the shortest single loop path.

3. Problem Description

As mentioned, the FLP deals with the arrangement of departments in a given floor space.
The general version of the FLP can be formulated mathematically as an MIP model to find the
optimal solution [36]. Following this, many researchers modified MIP models to increase effectiveness
and efficiency [37–39]. We introduce a conceptual model for comprehension. For the material handling
equipment, which circulates along the single loop, the size of the loop is very important. Therefore,
the objective function is to minimize the size of the single loop. The parameters and variables used in
this study are introduced in Table 1.

251

Mathematics 2019, 7, 154

Table 1. Parameters and variables.

Parameters and Variables

n The number of departments
Ls The x or y size of the floor space, where s = {x, y}
ls
i The x or y size of the department i

lbs
i , ubs

i The valid lower bound and upper bound of ls
i

gs
i The centroid coordinate of department i in a direction of s

cs
i The south-west coordinate of department i in a direction of s

sld The size of the single loop.

θx
ij

1, when the department i is on the left of the j.
0, otherwise

θ
y
ij

1, when the department i is lower than that of the j.
0, otherwise

Minimize sld = F∗(S) (1)

s.t. ai = lx
i × ly

i , ∀i (2)

lbs
i ≤ ls

i ≤ ubs
i , ∀i, s = x, y (3)

y

∑
s=x

(
θs

ij + θs
ji

)
= 1, ∀i �= j (4)

gs
i +

ls
i
2
≤ gs

j −
ls
j

2
+ Ls

(
1− θs

ij

)
, ∀i �= j, s = x, y (5)

ls
i /2 ≤ gs

i ≤ Ls − ls
i /2, ∀i �= j (6)

θs
ij ∈ {0, 1}, ∀i �= j, s = x, y (7)

The objective function (1) deals with the size of the single loop, where S indicates the feasible
layout and it is determined based on the Equations (2) to (7). The responsive single loop size is shown
as the function in (1), F(S). Thus, the final goal of the model is to find the layout which can provide
the shortest single loop material handling path. As mentioned, these constraints are used to solve
a general FLP with the rectilinear distance metric, specifically the UAFLP, after linearizing the area
constraint, (2), and making the form an MIP [36–39]. Equation (3) restricts the size of each department,
and (4) and (5) place the department in the given floor space without overlapping. All of the placed
departments should be within a given floor space by Equation (6).

However, the layout configuration determined in the slicing tree structure, which we use in this
study, is a little different from the layout generated by the MIP model. The basic structure of the slicing
tree and the method of searching for the layout design are explained in Sections 4.1 and 4.2, respectively.

As mentioned, the models to find the shortest loop in a given layout were proposed by several
studies [23,24,40,41]. In this study, searching for the shortest loop in the layout should proceed in every
iteration of the layout design process. Thus, we introduce a simple conceptual model to explain how
the shortest loop could be constructed in a given layout using the STS.

The smallest size of a loop can be obtained by evaluating possible single loops in a given layout.
Thus, the objective function F∗(S), as shown in Equation (8), indicates the minimum value among the
possible single loop. The measure of the single loop size is calculated as follows, where T indicates the
set of departments placed inside of the loop boundary.

F(S)← ∑
i∈T

2
(

lx
i + ly

i

)
− ∑

i∈T
∑
j∈T

2
(

dlx
ij + dly

ij

)
(8)

The left term indicates the sum of the perimeter of departments that are in T, and the right term
indicates the sum of the border of departments i and j, which are in T and adjacent to each other.
Finally, this measure should return the minimum value to the objective function (1).

252

Mathematics 2019, 7, 154

An example of this calculation is shown in Figure 2. As shown in Figure 2, the size of the loop can
be calculated as the sum of the perimeter of the two departments. If we calculate separately in the x
and y directions, it is equivalent to twice of length in the x direction (Figure 2a) plus twice the length
in the y direction excluding the shared border of the departments (Figure 2b). The x axis contains the
distances of x(1− 2), x(3− 4), x(5− 6), and x(6− 7). In this case, there are no duplicated distances
between the adjacent departments. The y axis contains the distances of y(1− 2), y(3− 4), y(4− 5),
and y(6− 7). In this case, the distance of y(4− 5) is shared by two adjacent departments. Therefore,
this duplicated distance (dly

ij) should be subtracted. The measurement criterion of dls
ij is described in

detail in Section 4.3.

(a) (b)

Figure 2. Loop distance measurements. (a) On the x axis; (b) On the y axis.

4. Layout Design with MBO and Single Loop Construction

As explained in Section 3, the problems we deal with are divided into two parts: the layout design
and the single loop construction. In the layout design part, we use the STS to obtain the basic layout
configuration, and we determine the single loop for a given layout in the single loop construction
section. MBO is used to search for a better layout, which forms the shorter single loop.

4.1. Layout Representation

An FLP needs a layout representation method to be shown its layout in a certain code. The STS
is adopted as a layout representation in our study. In principle, the STS has more encoding vectors
than FBS, which represent components of the STS such as the department and slicing cutting sequence.
Therefore, generally, the FBS has been adopted for layout representation because of its relative
simplicity [27,28]. However, by allowing both directions, the STS can offer a greater variety of
layouts than the FBS, as shown in Figure 3.

(a) (b)

Figure 3. Layout representation. (a) Flexible bay structure; (b) Slicing tree structure.

253

Mathematics 2019, 7, 154

Basically, the STS is composed of an internal and external node. The internal node represents
the horizontal and vertical cutting direction. The external node, on the other hand, represents the
sequence of departments in a layout [6].

As shown in Figure 4, the horizontal and vertical directions are symbolized as binary values.
This type of STS with binary vectors was originally from [42,43]. In the authors’ papers, the STS
sequence of a layout with n number of departments can be represented with n leaves and n − 1
nodes. In this study, an STS with three encoding sequences is adopted, as described in Figure 5. First,
the department sequence (1-3-2-5-4-6) is horizontally divided into two branches (1-3 and 2-5-4-6)
because the cut orientation is 2 with a cut code of 0. Next, from the given cut orientation code of 1,
the sub-branch (1-3) is separated into individual departments. At this point, the inverse vertical cut
occurs because the cut code is 3 rather than 1. Accordingly, the sub-branch (1-3) is separated into 3 and
1 sequentially. The other sub-branches separate in a likewise fashion. In the third step, the sub-branch
(2-5-4-6) is divided into two parts vertically, (2-5) and (4-6). Sequentially, the sub-branch (2-5) is
horizontally divided into individual departments (2) and (5). The other sub-branch, (4-6), is divided
into (4) and (6) by a vertical cut.

4

6

5

3

2 1

H

V

VV

23

1

4

H

6 5
(a) (b)

Figure 4. An example of the slicing tree structure. (a) Layout representation; (b) Tree structure.

1

64

3

2

5

H

V

VV

3

4 6

1 H

2 5

1 3 2 5 4 6

2 5 4 63 1
(Inverse)

2 5

4 6

Department Sequence

Cut Orientation

Cut Code

3 2 5 41

2 1 4 3

0 03 1

6
1 2 3 4 5

5

1
Figure 5. Slicing tree encoding scheme.

Komarudin and Wong [44] first introduced this type of STS, which is composed of the department
sequence, the cut orientation, and the cut code. The department sequence indicates the order of
departments in a line. The cut orientation shows the location where the horizontal or vertical cut
occurs. Lastly, the cut code represents the cutting direction, and this is usually composed of binary

254

Mathematics 2019, 7, 154

vectors. Using this structure as a basis, Kang and Chae [5] extended the cut code from 0 to 3 to represent
the inverse assignment and decrease the computation time. Likewise, in this study, the cut code is
represented as 0 for the horizontal direction, 1 for the vertical direction, 2 for the inverse horizontal
direction and 3 for the inverse vertical direction.

4.2. Monarch Butterfly Optimization

MBO was introduced by Wang et al. [9] for the first time. Inspired by the behavior of the monarch
butterfly, MBO mimics the migration patterns of this species. The monarch butterfly migrates from
the northern USA and southern Canada to Mexico during the summer and autumn. In this regard,
the migrating butterfly population can be divided into two groups: Land 1 and Land 2. To simplify
the migration of the monarch butterfly, the butterfly individuals stay in Land 1 for four months and
Land 2 for seven months. The butterfly individuals in Land 2 move to Land 1 in April. On the other
hand, the butterfly individuals in Land 1 move to Land 2 in September. Accordingly, the butterflies in
Land 1 (NP1) and Land 2 (NP2) compose the total butterfly population (NP). This can be expressed as
Equations (9) and (10).

NP1 = �p ∗ NP� (9)

NP2 = NP− NP1 (10)

p stands for the rate (%) of butterfly individuals staying in Land 1. Therefore, the subpopulation in
Land 1 can be expressed as �p ∗ NP� where a is the nearest integer that is greater than or equal to a.

After dividing the population, the new butterfly individuals in Land 1 and Land 2 can be
generated by each operator in parallel (i.e., the migration operator and butterfly adjusting operator).
After the operator application, the fitness values of each generated individual are evaluated. If the
newly generated individual has a better fitness value than the previous one, the old parent individual
is replaced with the new one via the greedy strategy, as in Equation (11) [10].

xt+1
i,new =

⎧⎨⎩xt+1
i , if f

(
xt+1

i

)
< f

(
xt

i
)

xt
i , otherwise

(11)

The overall process of the updating scheme can be seen in Figure 6.

Land 1

Update
Butterfly IndividualButterfly new

[Butterfly in Subpop #1] or [Butterfly in Subpop #2]
[Butterfly 1]

[Butterfly 2]

[Butterfly 3]

[Butterfly np1]

Migration
Operator

(a)

Land 2

Update
Butterfly IndividualButterfly new

[Butterfly Best] or [Butterfly in Subpop #2] or Swap[Butterfly 1]

[Butterfly 2]

[Butterfly np2]

Adjusting
Operator

(b)

Figure 6. Updating process of MBO. (a) Migration operator; (b) Butterfly adjusting operator.

255

Mathematics 2019, 7, 154

As mentioned, butterflies in Land 1 and Land 2 undergo their updating process simultaneously.
The migration operator, which is the operator in Land 1, is driven by a modified random number r,
which is a random decimal fraction multiplied by peri. According to the original author, peri can be
regarded as a value of 1.2, which reflects the migration period of a 12-month a year.

Operator 1: Migration Operator

Begin

for (all monarch butterfly in Subpopulation 1)
r = random number ∗ peri
if (r ≤ p)

xt+1 = xt
r1

in Subpopulation 1 (12)
Else

xt+1 = xt
r2

in Subpopulation 2 (13)
End

End

End

In Equation (12), x is an individual butterfly that has three separate representations: a department
sequence, cut orientation and cut code. t is the current generation. Thus, xt is a butterfly of
the generation t. Similarly, xt

r1
indicates an individual butterfly that is randomly selected from

Subpopulation 1, and xt
r2

indicates the one from Subpopulation 2. The new individual from Land 1,
xt+1, is randomly selected from Subpopulation 1 if r is less than or equal to p, as shown in Equation (12).
If r is greater than p, a new butterfly is selected in Subpopulation 2, as shown in Equation (13).
p, the butterfly adjusting ratio, is set to 0.41 (5/12) in accordance with the migration period in
Land 1 [9].

The butterflies in Land 2 are updated via the other updating operator, the butterfly
adjusting operator.

Operator 2: Butterfly Adjusting Operator

Begin

for (all monarch butterfly in Subpopulation 2)
rand = random number
if (rand ≤ p)

xt+1 = xt
best (14)

Else

xt+1 = xt
r3

in Subpopulation 2 (15)
if (rand > bar)

swap two components in the
random Subpopulation

(16)

End

End

End

For Subpopulation 2-oriented butterflies, if the random number rand is lower than or equal to p,
the current best butterfly individual can exist in a new generation, as in Equation (14). This ensures
that the butterfly, which provides the best fitness value, continues to the next generation. On the other
hand, if rand is greater than p, a randomly selected butterfly in Land 2 can become a new butterfly,
as in Equation (15). But in the case of Equation (16), this can be modified by a butterfly adjusting rate,
bar. If rand is greater than bar, two components in the parent butterfly are swapped randomly and this
generates a new offspring. The process of swapping two departments is described in Figure 7.

256

Mathematics 2019, 7, 154

Figure 7. Swapping process.

By using this meta-heuristic approach with the STS, the evaluation method of an obtained layout
is described in the next section.

4.3. Loop Construction Method

The single loop construction method is heuristically constructed in this study. The adjacent rule,
which helps to find the adjacent relationship between departments, is modeled, and the loop sequence
heuristic is established using the adjacent rules. For the candidate department i and the relevant
department j, the adjacent rules can be defined as below.

According to Figure 8, cx
i is a coordinate from the west corner of Department i on the x axis.

In the same way, cy
i is a coordinate from the south corner of Department i on the y axis. lx

i and
ly
i are the horizontal and vertical length of Department i on each axis, respectively. The following

description is an example of the adjacent rules between Departments i and j on the y axis. At least
one adjacent rule must be satisfied. The examples of adjacent rules can be seen in Figure 9. In this
process, adjacent duplication is allowed because the reverse adjacent case of the departments must be
considered. As shown in Figure 10, if the departments only share a vertex, this case is not regarded as
an adjacency.

Figure 8. The example of coordinates.

257

Mathematics 2019, 7, 154

(a) (b)

(c) (d)

Figure 9. Examples of adjacent cases. (a) Upper adjacent; (b) Lower adjacent; (c) Dual adjacent-1;
(d) Dual adjacent-2.

Figure 10. A case with non-contiguous departments.

• If cy
i ≤ cy

j < cy
i + ly

i , Departments i and j have an upper adjacent relationship.

• If cy
i < cy

j + ly
j ≤ cy

i + ly
i , Departments i and j have a lower adjacent relationship.

• The upper two conditions are satisfied with a dual adjacent-1 relationship.
• If cy

i = cy
j and ly

i = ly
j , Departments i and j have a dual adjacent-2 relationship.

With these adjacent cases, the duplicated distance of Departments i and j (dls
ij) can be represented

as follows.

(a) Upper adjacent dls
ij =

∣∣∣ls
i − cs

j

∣∣∣
(b) Lower adjacent dls

ij =
∣∣∣ls

i −
(

ls
j + cs

j − cs
i

)∣∣∣
(c-1) Dual adjacent -1 dls

ij =
∣∣∣ls

i −
(
(ls

j + cs
j)−

(
cs

i + ls
i
))− (

cs
j − cs

i

)∣∣∣
(c-2) The opposite case of dual adjacent -1 dls

ij =
∣∣∣ls

j −
(
(ls

j + cs
j)−

(
cs

i + ls
i
))− (

cs
i − cs

j

)∣∣∣
(d) Dual adjacent -2 dls

ij = ls
i = ls

j

258

Mathematics 2019, 7, 154

The single loop construction method follows a number of steps. In the initial stage, all departments
are regarded as loop candidate departments, and each department, except the comparison target,
must be compared to determine if it is adjacent to the target or not. The illustration of a single loop
construction is shown in Figure 11.

• Step 0. Initialize all loop measuring sequences.
• Step 1. For all loop candidate departments, explore every adjacent department using the adjacent

rules. The adjacent departments are stored in the adjacent row of each candidate target. Once the
exploration is done, eliminate the duplicated departments in each adjacent row.

• Step 2. When the exploration is finished, choose one candidate department (loop department)
that has the most adjacent departments and put it in the loop sequence list. Remove the adjacent
row of the candidate department from the adjacent row group.

• Step 3. Remove the adjacent departments that belong to the chosen loop department from each of
the adjacent rows.

• Step 4. Remove the loop department and adjacent departments that belong to the loop department
from the adjacent waiting list.

• Step 5. Iterate Steps 2 to 4 until there are no remaining departments in the adjacent waiting
list. When selecting the loop candidate department, it must contain the loop department as an
adjacent department.

• Step 6. Measure the loop size with the departments in the loop sequence.

All lists and rows must be initialized in Step 0. Following Figure 11a, the adjacent departments
are explored and stored in the adjacent row of the corresponding target department. Afterwards,
in Figure 11b, the adjacent row of Department 1 with the largest number of adjacent departments is
chosen to be a loop department, and this can be stored in the loop list. The adjacent departments (2, 4, 5,
6, and 7) in the adjacent row of Department 1 are now located on the loop. Therefore, they can be erased
from the adjacent waiting list. However, there is still a remaining department (3) that is not located on
the loop, and the next iteration must occur. Shown in Figure 11c, the adjacent row of Departments
4 and 6 have the same number of remaining departments. At this time, to minimize the loop size,
the department that makes the entire size of the loop smaller can be chosen. Therefore, Department
6 can be selected. Repeating the previous iteration, Department 6 is selected as a loop department,
and the adjacent department (3) can be removed from the adjacent waiting list. Because the adjacent
waiting list is empty, the loop list is completed.

The single loop construction strategy proposed in this study is relatively easy to understand.
Moreover, this seems to be a reasonable method to find a loop department in the layout that is
constructed by using the STS because the STS can represent complicated layouts.

259

Mathematics 2019, 7, 154

1

2

3

4

5

6

7

Adjacent Row Group

2 4 5 6 7

751 4

4 6

1 2 3 6

1 6 7

1 3 4 5

1 2 5

1

2

7

4

3

5

6

Given Layout

Loop List

1 2 3 4 5 6 7
Adjacent Waiting List

(a)

1

2

3

4

5

6

7

Adjacent Row Group

2 4 5 6 7

751 4

4 6

1 2 3 6

1 6 7

1 3 4 5

1 2 5

1

2

7

4

3

5

6

Given Layout

Loop List

1 2 3 4 5 6 7
Adjacent Waiting List

1

(b)

1

2

3

4

5

6

7

Adjacent Row Group

2 4 5 6 7

751 4

4 6

1 2 3 6

1 6 7

1 3 4 5

1 2 5

1

2

7

4

5

6

Given Layout

Loop List

1 2 3 4 5 6 7
Adjacent Waiting List

1 6

3

(c)

Figure 11. Single loop construction steps. (a) Step 1; (b) Steps 2–4 with Iteration 1; (c) Steps 2–4 with
Iteration 2.

260

Mathematics 2019, 7, 154

5. Computational Results

5.1. Experiment Information

The computational experiments with a set of well-known instances were tested to evaluate the
performance of the proposed algorithms. The program was coded in JAVA, and the experiment
was conducted on a computer with an Intel Core i5 CPU processor (3.5 GHz) and 8 GB of memory.
The parameter setting for the experiment can be seen in Table 2.

Table 2. Parameters used in MBO.

Name Rate

NP No. of departments
p 5/12

bar 5/12
peri 1.2

NP, the total number of butterfly individuals, is set as equal to the number of departments of each
instance. The size of NP correspondingly increases when the amount of instances increases to secure
the diversification of a solution set. The remainders are set following the original parameter setting
of [9]. Many studies using MBO [10–12,14,35] have adopted this same parameter setting because the
original setting was based on the bio-inspired migration rate of the monarch butterfly.

Information regarding well-known instances is introduced in Table 3. From FO7 to AB20, the sum
of every department’s size is the same as the given floor space. For the vC10s problem, the minimum
length of the department is given as 5 instead of the aspect ratio. KC15 and KC25 are introduced in
this study for the first time to estimate the performance of the algorithm under the problem diversity.
The area information of KC15 and KC25 can be confirmed in Tables A1 and A2. The compactness of
SC30 and SC35 are less than 1.0. Simply speaking, the sum of the department’s area sizes is less than
the given floor size. Therefore, the empty spaces are regarded as dummy departments in this study.
It is unnecessary for the dummy departments to be located along the loop, and their aspect ratio is
assumed to be free.

Table 3. The instance information.

Name
Number of

Departments
Floor Space

(W × H)
Shape

Constraint
Reference

FO7 7 8.54 × 13.00 ar = 5 Meller et al. [37]
FO8 8 11.31 × 13.00 ar = 5 Meller et al. [37]
FO9 9 12.00 × 13.00 ar = 5 Meller et al. [37]

vC10s 10 25.00 × 51.00 lmin = 5 van Camp et al. [45]
vC10a 10 25.00 × 51.00 ar = 5 van Camp et al. [45]
KC15 15 2.00 × 3.00 ar = 3 This study
AB20 20 2.00 × 3.00 ar = 4 Armour and Buffa [46]
KC25 25 3.00 × 3.00 ar = 4 This study
SC30 30 15.00 × 12.00 ar = 5 Liu and Meller [47]
SC35 35 16.00 × 15.00 ar = 4 Liu and Meller [47]
DU62 62 117.124 × 117.124 ar = 4 Dunker et al. [48]

5.2. Experiment Results

Several well-known instances from 7 to 62 departments are tested to evaluate the performance
of the algorithm. The best OFV, the average OFV, and the corresponding computation time can be
seen in Table 4. Since the STS can show the cutting style that can be obtained from both FBS and STS,
as shown in Figures 12 and 13, the obtained layouts of FO7, FO8, FO9, and vC10a tend to have a
bay-cutting layout form, which can also be derived by the FBS. On the other hand, the rest of the layouts

261

Mathematics 2019, 7, 154

are composed of both vertical and horizontal cuts that can be easily seen in the STS representation,
as shown in Figures 13–16. It can be said that that as the number of departments increases, the layout
tends to have an STS-like look.

Table 4. The experiment results.

Name Best OFV Best’s CPU Time Average OFV Average CPU Time

FO7 12.10 10.56 13.10 11.03
FO8 12.01 9.10 16.80 13.82
FO9 12.82 12.85 15.14 14.37

vC10s 72.84 30.13 80.24 41.62
vC10a 43.81 35.03 48.16 38.74
KC15 4.89 40.45 6.12 41.82
AB20 6.00 91.42 8.97 93.52
KC25 9.18 103.59 13.05 118.40
SC30 36.78 412.38 59.13 406.67
SC35 54.50 778.52 86.24 711.49
DU62 509.41 1151.37 722.63 1104.65

5
7 1

4

6

2

3

4

2

5 3

8

1
7

8

5

6
4

17

8

3

9

2

(a) (b) (c)

Figure 12. Layout configurations. (a) FO7; (b) FO8; (c) FO9.

6

4

10

7

3

5

8

2

1

9

6

4

10 7
3

5
8

2 19

10

4

11

3

8

12

5

16

9

2

15

13

14

7

(a) (b) (c)

Figure 13. Layout configurations. (a) vC10s; (b) vC10a; (c) KC15.

262

Mathematics 2019, 7, 154

11

16

2
3

1

5 14
18

9
7

8

13

19

4 610

17
15

12

20

2

24

1

4

16

8

12

6

21

15

11

13

22

23

10

5

14

17

19

9

3

25

18

7

20

(a) (b)

Figure 14. Layout configurations. (a) AB20; (b) KC25.

29 16

31

129

3

19

2

27

18

420

10

32 24 14

11

7
1

2622

302115 13 6 5 8

172
3

2
5

2
8

32 20

1927

94

1233

10 26 1
14

22
21

15

18

1630172

8
35

11
34 31

2913

6

3

5

724 2
5

2
8

2
3

36

38

37

(a) (b)

Figure 15. Layout configurations. (a) SC30; (b) SC35.

263

Mathematics 2019, 7, 154

54
20 25

41

47
56

27

3

55 59

42 29

22

46

62

44

49

53

31

34

37

40 2

43 21

24

11

18

1 26 4

58 19

6

60

50 57

36

38 16 5

32

30

52

51

28

35

12

61

39

8

48

9

17

45

10

23

7

14

13

33

15

Figure 16. Layout configuration for DU62.

To the best of our knowledge, there is no previous literature that solves the UAFLP with the
objective of determining the shortest single loop distance. Therefore, a direct comparison to the
objective function used in other methods would not be appropriate. However, a comparison of
computation times for similar instances would offer a clue in terms of the performance of the proposed
MBO. Table 5 compares the present results with those provided by Asef-vaziri et al. [28]. Their approach
is similar in that the pre-defined layout representation is used with a meta-heuristic to determine
the layout design based on a single loop. The objective function and the values in [28] are different,
as mentioned. The objective of [28] includes the loaded and empty flow between pairs of I/O points,
while this study finds the shortest single loop material handling path. There are several factors that
affect computation time. The computer system could be one of them. The results in [28] are generated
from an 8GB RAM computer with a core-i7 CPU, while this study uses an 8GB RAM computer with
a core-i5 CPU. Data structure also affects the computation time. AB20 is the only instance that uses
both methods, and the proposed method provides a slightly faster CPU time. We are able to confirm
that the proposed heuristic and MBO in this study can solve the problem in a relatively reasonable
computation time, as shown in Table 4.

Table 5. The computation time comparison.

This Study Asef-vaziri et al. [28]

Problem Average OFV Average CPU time Problem Average OFV CPU time

FO7 13.10 11.03
FO8 16.80 13.82
FO9 15.14 14.37

vC10s 80.24 41.62 vC10 2.32 24.00
vC10a 48.16 38.74
KC15 6.12 41.82 ML15 2.22 60.00
AB20 8.97 93.52 AB20 1.25 101.00
KC25 13.05 118.40 ML25 2.03 181.00
SC30 59.13 406.67 TA30 1.57 471.00
SC35 86.24 711.49 KG37 2.06 507.00
DU62 722.63 1104.65 DE62 1.38 1487.00

The layout configurations of SC30 and SC35 are shown in Figure 15. The area compactness
of SC30 and SC35 is less than 1. That means the floor space is greater than the total department

264

Mathematics 2019, 7, 154

area. Thus, the dummy departments are included to solve the problem in the given layout structure.
The departments, for which the numbers are greater than the given problem size in Figure 15, are the
dummy department. For instance, department 38 in Figure 15b is one of the dummy departments,
and thus, the single loop does not need to proceed through to any segment of the department. Figure 16
shows the layout configuration of DU62, and this problem does not include the dummy department.

6. Conclusions

Facility layout problems (FLPs) are placement problems that consider changes in the width
and height of non-overlapping departments in a certain space. Several distance measurements,
including the rectilinear distance or Euclidean distance, have been suggested to evaluate the obtained
layout. However, these distance measurements are not appropriate for certain material handling
systems such as circulating AVGs or power and free systems. Therefore, to determine a layout that
considers the usage of circulating path-based equipment, we proposed a single loop construction
method with a meta-heuristic, MBO. The MBO mimics the monarch butterfly’s migration patterns.
Its performance has been verified in various optimization problems. The MBO is relatively easy to
apply and modify compared to other evolutionary algorithms because it has very simple operators
and parameter sets.

The objective function of this study is the single loop size minimization for the circulating material
handling equipment path. To evaluate the objective function values (OFVs), a single loop construction
method that finds the single loop while minimizing the OFVs was introduced.

To evaluate the algorithm performance, several well-known instances were tested.
MBO successfully found the single loop in a reasonable amount of time. The proposed algorithm tends
to generate favorable solutions. Further studies can search for better layout placements considering
better loop construction heuristics with reduced computation times. Additionally, improving MBO
with other powerful methods could yield potential developments. As mentioned, to generate better
solutions with MBO, some researchers took specific operators from other meta-heuristic algorithms.
It might be a meaningful challenge to find different operators which fit with MBO.

Author Contributions: Conceptualization, M.K. and J.C.; methodology, M.K.; software, M.K.; validation, M.K.
and J.C.; formal analysis, M.K.; investigation, M.K.; resources, J.C.; data curation, M.K.; writing—original draft
preparation, M.K.; writing—review and editing, J.C.; visualization, M.K.; supervision, J.C.; project administration,
J.C.; funding acquisition, J.C.

Funding: This work was supported by a 2017 Korea Aerospace University faculty research grant.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The instances used in this study is basically brought from other papers. However, two instances
were created in this study for department size of 15 and 25. The specific area information of the new
instances as follows.

Table A1. The department area of KC15.

Department
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Area 0.5 0.4 0.6 0.18 0.45 0.45 0.45 0.45 0.21 0.1 0.74 0.42 0.25 0.5 0.3

265

Mathematics 2019, 7, 154

Table A2. The department area of KC25.

Department
number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Area 0.33 0.5 0.4 0.38 0.45 0.49 0.45 0.24 0.14 0.3 0.3 0.42 0.25 0.5 0.3

Department
number 16 17 18 19 20 21 22 23 24 25

Area 0.45 0.51 0.44 0.34 0.3 0.43 0.24 0.3 0.3 0.24

References

1. Tompkins, J.A.; White, J.A.; Bozer, Y.A.; Tanchoco, J.M.A. Facilities Planning, 4th ed.; John Wiley & Sons:
Hoboken, NJ, USA, 2010.

2. Kusiak, A.; Heragu, S.S. The facility layout problem. Eur. J. Oper. Res. 1987, 29, 229–251. [CrossRef]
3. Ingole, S.; Singh, D. Unequal-area, fixed-shape facility layout problems using the firefly algorithm.

Eng. Optim. 2017, 49, 1097–1115. [CrossRef]
4. Tate, D.M.; Smith, A.E. Unequal-area facility layout by genetic search. IIE Trans. 1995, 27, 465–472. [CrossRef]
5. Kang, S.; Chae, J. Harmony search for the layout design of an unequal area facility. Expert Syst. Appl. 2017,

79, 269–281. [CrossRef]
6. Drira, A.; Pierreval, H.; Hajri-Gabouj, S. Facility layout problems: A survey. Annu. Rev. Control 2007, 31,

255–267. [CrossRef]
7. Shouman, M.A.; Nawara, G.M.; Reyad, A.H.; El-darandaly, K. Facility layout problem (FLP) and intelligent

techniques: A survey. In Proceedings of the 7th International Conference on Production Engineeering,
Design and Control(PEDAC), Alexandria, Egypt, 13–15 February 2001; pp. 409–422.

8. Meller, R.D.; Gau, K.Y. The facility layout problem: Recent and emerging trends and perspectives.
J. Manuf. Syst. 1996, 15, 351–366. [CrossRef]

9. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2015, 1–20. [CrossRef]
10. Chen, S.; Chen, R.; Gao, J. A Monarch Butterfly Optimization for the Dynamic Vehicle Routing Problem.

Algorithms 2017, 10, 107. [CrossRef]
11. Ghetas, M.; Yong, C.H.; Sumari, P. Harmony-based monarch butterfly optimization algorithm. In 2015 IEEE

International Conference on Control System, Computing and Engineering (ICCSCE); IEEE: George Town, Malaysia,
2015; pp. 156–161.

12. Wang, G.-G.; Hao, G.-S.; Cheng, S.; Qin, Q. A Discrete Monarch Butterfly Optimization for Chinese TSP
Problem. In International Conference in Swarm Intelligence; Springer: Cham, Switzerland, 2016; Volume 9712,
pp. 165–173.

13. Wang, G.-G.; Deb, S.; Zhao, X.; Cui, Z. A new monarch butterfly optimization with an improved crossover
operator. Oper. Res. 2018, 18, 731–755. [CrossRef]

14. Wang, G.-G.; Zhao, X.; Deb, S. A Novel Monarch Butterfly Optimization with Greedy Strategy and
Self-Adaptive. In 2015 Second International Conference on Soft Computing and Machine Intelligence (ISCMI);
IEEE: Hong Kong, China, 2015; pp. 45–50.

15. Chittratanawat, S.; Noble, J.S. An integrated approach for facility layout, P/D location and material handling
system design. Int. J. Prod. Res. 1999, 37, 683–706. [CrossRef]

16. Kochhar, J.S.; Foster, B.T.; Heragu, S.S. HOPE: A genetic algorithm for the unequal area facility layout
problem. Comput. Oper. Res. 1998, 25, 583–594. [CrossRef]

17. Scholz, D.; Petrick, A.; Domschke, W. STaTS: A Slicing Tree and Tabu Search based heuristic for the unequal
area facility layout problem. Eur. J. Oper. Res. 2009, 197, 166–178. [CrossRef]

18. Bukchin, Y.; Tzur, M. A new MILP approach for the facility process-layout design problem with rectangular
and L/T shape departments. Int. J. Prod. Res. 2014, 52, 7339–7359. [CrossRef]

19. Gonçalves, J.F.; Resende, M.G.C. A biased random-key genetic algorithm for the unequal area facility layout
problem. Eur. J. Oper. Res. 2015, 246, 86–107. [CrossRef]

20. Asef-Vaziri, A.; Kazemi, M. Covering and connectivity constraints in loop-based formulation of material
flow network design in facility layout. Eur. J. Oper. Res. 2018, 264, 1033–1044. [CrossRef]

266

Mathematics 2019, 7, 154

21. Sinriech, D.; Tanchoco, J.M.A. Solution methods for the mathematical models of single-loop AGV systems.
Int. J. Prod. Res. 1993, 31, 705–725. [CrossRef]

22. Tanchoco, J.M.A.; Sinriech, D. OSL—optimal single-loop guide paths for AGVS. Int. J. Prod. Res. 1992, 30,
665–681. [CrossRef]

23. Asef-Vaziri, A.; Laporte, G.; Sriskandarajah, C. The block layout shortest loop design problem. IIE Trans.
2000, 32, 727–734. [CrossRef]

24. Ahmadi-Javid, A.; Ramshe, N. On the block layout shortest loop design problem. IIE Trans. 2013, 45, 494–501.
[CrossRef]

25. Yang, T.; Peters, B.A.; Tu, M. Layout design for flexible manufacturing systems considering single-loop
directional flow patterns. Eur. J. Oper. Res. 2005, 164, 440–455. [CrossRef]

26. Hojabri, H.; Hojabri, A.; Jaafari, A.A.; Farahani, L.N. A Loop Material Flow System Design. Eng. Comput. Sci.
2010, 3, 1544–1545.

27. Jahandideh, H.; Asef-Vaziri, A.; Modarres, M. Genetic Algorithm for Designing a Convenient Facility Layout
for a Circular Flow Path. Available online: https://arxiv.org/vc/arxiv/papers/1211/1211.2361v1.pdf
(accessed on 6 December 2018).

28. Asef-Vaziri, A.; Jahandideh, H.; Modarres, M. Loop-based facility layout design under flexible bay structures.
Int. J. Prod. Econ. 2017, 193, 713–725. [CrossRef]

29. Chae, J.; Peters, B.A. A simulated annealing algorithm based on a closed loop layout for facility layout design
in flexible manufacturing systems. Int. J. Prod. Res. 2006, 44, 2561–2572. [CrossRef]

30. Niroomand, S.; Hadi-Vencheh, A.; Şahin, R.; Vizvári, B. Modified migrating birds optimization algorithm
for closed loop layout with exact distances in flexible manufacturing systems. Expert Syst. Appl. 2015, 42,
6586–6597. [CrossRef]

31. Kang, S.; Kim, M.; Chae, J. A closed loop based facility layout design using a cuckoo search algorithm.
Expert Syst. Appl. 2018, 93, 322–335. [CrossRef]

32. Asef-Vaziri, A.; Laporte, G. Loop based facility planning and material handling. Eur. J. Oper. Res. 2005, 164,
1–11. [CrossRef]

33. Kulturel-Konak, S.; Konak, A. Linear Programming Based Genetic Algorithm for the Unequal Area Facility
Layout Problem. Int. J. Prod. Res. 2013, 51, 4302–4324. [CrossRef]

34. Azadivar, F.; Wang, J. Facility layout optimization using simulation and genetic algorithms. Int. J. Prod. Res.
2000, 38, 4369–4383. [CrossRef]

35. Ghanem, W.A.H.M.; Jantan, A. Hybridizing artificial bee colony with monarch butterfly optimization for
numerical optimization problems. Neural Comput. Appl. 2018, 30, 163–181. [CrossRef]

36. Montreuil, B. A Modelling Framework for Integrating Layout Design and flow Network Design. In Material
Handling ’90; Springer: Berlin, Heidelberg, 1991; Volume 2, pp. 95–115. ISBN 978-3-642-84356-3.

37. Meller, R.D.; Narayanan, V.; Vance, P.H. Optimal facility layout design. Oper. Res. Lett. 1998, 23, 117–127.
[CrossRef]

38. Sherali, H.D.; Fraticelli, B.M.P.; Meller, R.D. Enhanced Model Formulations for Optimal Facility Layout.
Oper. Res. 2003, 51, 629–644. [CrossRef]

39. Castillo, I.; Westerlund, T. An ε-accurate model for optimal unequal-area block layout design.
Comput. Oper. Res. 2005, 32, 429–447. [CrossRef]

40. Farahani, R.Z.; Laporte, G.; Sharifyazdi, M. A practical exact algorithm for the shortest loop design problem
in a block layout. Int. J. Prod. Res. 2005, 43, 1879–1887. [CrossRef]

41. Asef-Vaziri, A.; Ortiz, R.A. The value of the shortest loop covering all work centers in a manufacturing
facility layout. Int. J. Prod. Res. 2008, 46, 703–722. [CrossRef]

42. Tam, K.Y. Genetic algorithms, function optimization, and facility layout design. Eur. J. Oper. Res. 1992, 63,
322–346. [CrossRef]

43. Tam, K.Y. A simulated annealing algorithm for allocating space to manufacturing cells. Int. J. Prod. Res. 1992,
30, 63–87. [CrossRef]

44. Komarudin, K.; Wong, K.Y. Applying Ant System for solving Unequal Area Facility Layout Problems. Eur. J.
Oper. Res. 2010, 202, 730–746. [CrossRef]

45. van Camp, D.J.; Carter, M.W.; Vannelli, A. A nonlinear optimization approach for solving facility layout
problems. Eur. J. Oper. Res. 1992, 57, 174–189. [CrossRef]

267

Mathematics 2019, 7, 154

46. Armour, G.C.; Buffa, E.S. A Heuristic Algorithm and Simulation Approach to Relative Location of Facilities.
Manage. Sci. 1963, 9, 294–309. [CrossRef]

47. Liu, Q.; Meller, R.D. A sequence-pair representation and MIP-model- based heuristic for the facility layout
problem with rectangular departments. IIE Trans. 2007, 39, 377–394. [CrossRef]

48. Dunker, T.; Radons, G.; Westkämper, E. A coevolutionary algorithm for a facility layout problem. Int. J. Prod.
Res. 2003, 41, 3479–3500. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

268

mathematics

Article

A Novel Bat Algorithm with Multiple Strategies
Coupling for Numerical Optimization

Yechuang Wang 1, Penghong Wang 1, Jiangjiang Zhang 1, Zhihua Cui 1,*, Xingjuan Cai 1,

Wensheng Zhang 2 and Jinjun Chen 3

1 Complex System and Computational Intelligent Laboratory, Taiyuan University of Science and Technology,
Taiyuan 030024, China; yechuangwang@sina.com (Y.W.); penghongwang@sina.cn (P.W.);
jiangofyouth@163.com (J.Z.); xingjuancai@gmail.com (X.C.)

2 State Key Laboratory of Intelligent Control and Management of Complex Systems,
Institute of Automation Chinese Academy of Sciences, Beijing 100190, China; wensheng.zhang@ia.ac.cn

3 Department of Computer Science and Software Engineering, Swinburne University of Technology,
Melbourne 3000, Australia; jinjun.chen@gmail.com

* Correspondence: zhihua.cui@hotmail.com; Tel.: +86-138-3459-9274

Received: 10 December 2018; Accepted: 21 January 2019; Published: 1 February 2019

Abstract: A bat algorithm (BA) is a heuristic algorithm that operates by imitating the echolocation
behavior of bats to perform global optimization. The BA is widely used in various optimization
problems because of its excellent performance. In the bat algorithm, the global search capability
is determined by the parameter loudness and frequency. However, experiments show that each
operator in the algorithm can only improve the performance of the algorithm at a certain time. In this
paper, a novel bat algorithm with multiple strategies coupling (mixBA) is proposed to solve this
problem. To prove the effectiveness of the algorithm, we compared it with CEC2013 benchmarks test
suits. Furthermore, the Wilcoxon and Friedman tests were conducted to distinguish the differences
between it and other algorithms. The results prove that the proposed algorithm is significantly
superior to others on the majority of benchmark functions.

Keywords: bat algorithm (BA); bat algorithm with multiple strategy coupling (mixBA); CEC2013
benchmarks; Wilcoxon test; Friedman test

1. Introduction

In the past ten years, many heuristic optimization algorithms, such as particle swarm optimization
(PSO) [1–3], ant colony optimization (ACO) [4,5], bat algorithm (BA) with triangle-flipping strategy [6],
fly algorithm (FA) [7–9], cuckoo search [10–13], pigeon-inspired optimization algorithm, and genetic
algorithm (GA) [14], have been developed to solve complex computational problems. It became
popular because of its superior ability, which deals with a variety of complex issues. Moreover,
it has been proven that there is no heuristic algorithm that can perform generally enough to solve
all optimization problems [15]. Therefore, scholars have tried to solve these problems with different
bionic algorithms.

BA [16–19] is a novel heuristic optimization algorithm, inspired by the echolocation behavior of
bats. This algorithm carries out the search process using artificial bats as search agents mimicking the
natural pulse loudness and emission rate of real bats. To improve the performance of BA, different
strategies have been proposed. We will elaborate in the following three research situations.

(I) Parameter adjustment

For the standard BA algorithm, four main parameters are required: frequency, emission, constants,
and emission rate. The frequency is used to balance the impact of the historical optimal position on the

Mathematics 2019, 7, 135; doi:10.3390/math7020135 www.mdpi.com/journal/mathematics269

Mathematics 2019, 7, 135

current position. The bat individual will search far from the group historical position when the search
range of frequency is large, and vice versa. In general, the choice of frequency range is determined by
different issues. Hasançebi [20] set the pulse frequency range to [0–1]. Gandomi and Yang [21] sets the
frequency range to [0–2] in the chaotic bat algorithm. Fister et al. [22] sets the frequency to [0–5] in
their algorithm. Ali [23] sets the frequency to [0–100] in the power system. Xie et al. [24] proposed an
adaptive adjustment strategy for frequency. Pérez et al. [25] designed a fuzzy controller to dynamically
adjust the range of pulse frequencies, while Liu [26] replaced the frequency with a Lévy distribution.
To improve the local search capability, Yilmaz and Kucuksille [27] added a random item with two
randomly selected bats to explore more search space. Cai [28] introduced a linear decreasing function
into the bat algorithm to enhance the global search capability.

(II) Formula adjustment

In terms of global search, the step size of the standard BA algorithm decreases with the increase
of iterations, which causes the algorithm to be sensitive to local optimum. Focusing on this problem,
Bahmani-Firouzi and Azizipanah-Abarghooee [29] proposed four different velocity updating strategies
to keep a balance between exploitation and exploration. Inspired by PSO, Yilmaz and Kucuksille [30]
put the inertia weight into the velocity update equation. Xie et al [24] use random parts associated
with Lévy distributions instead of avoidance. To improve the local search capability, four differential
evolutionary strategies were employed to replace the original local search pattern in the standard
BA [31]. Xie et al. [32] also incorporated the Lévy flight in the velocity update equation, but four
randomly selected bats were used to guide the search pattern. Zhu et al. [33] replace the swarm
historical best position with the mean best position to enhance the convergence speed.

(III) Application

BA has been widely applied to various areas, including classification, wireless sensor [34],
and data mining. Yang and Gandomi [35] proposed a bat algorithm to solve multi-objective problems;
Bora et al. [36] proposed a bat-inspired optimization approach to solve the brushless direct current
(DC) wheel motor problem; Sambariya and Prasad [37] proposed a metaheuristic bat algorithm for
solving robust turning of power system stabilizer for small signal stability enhancement; Sathya and
Ansari [38] highlighted the load frequency control using dual mode bat algorithm based scheduling
of PI controllers for interconnected power systems; Sun and Xu [39] proposed node localization of
wireless sensor networks based on a hybrid bat-quasi-newton algorithm; Cao et al. [40] improved low
energy adaptive clustering hierarchy protocol based on a local centroid bat algorithm.

Furthermore, there are many applications in big data and machine learning [41,42], such as
Hamidzadeh et al. [43], who proposed a novel method called chaotic bat algorithm for support vector
data description (SVDD) (CBA-SVDD) to design effective descriptions of data. Alsalibi [44] proposed a
novel membrane-inspired binary bat algorithm for facial feature selection. Furthermore, it outperforms
recent state-of-the-art face recognition methods on three benchmark databases. Therefore, the bat
algorithm has a wide range of applications. In addition, the bat algorithm has been proposed to
optimize support vector machine (SVM) parameters that reduce the classification error [45]. Notably,
increasing SVM prediction accuracy and avoiding local optimal trap using the bat algorithm has been
very helpful in biomedical research [46,47].

The rest of this paper is organized as follows. Section 2 provides a brief description of the standard
BA. In Section 3, we listed eight improvement strategies and proposed a novel bat algorithm with
multiple strategy coupling. Numerical experiments on the CEC2013 benchmark set are conducted in
Section 4. Finally, the discussion and future work are given in Section 5.

2. Bat Algorithm

The bat algorithm [48] was proposed by Xin-She Yang, based on the echolocation of microbats.
Bats usually use echolocation to find food. During removal, bats usually send out short pulses,

270

Mathematics 2019, 7, 135

however, when they encounter food, their pulse send out rates increase and the frequency goes
up. The increase in frequency means frequency-tuning, which shortens the echolocations’ time and
increases the location accuracy. In the standard bat algorithm, each individual i has a defined position
xi(t) and velocity vi(t) in the search space, which will be updated as the number of iterations increases.
The new positions xi(t) and velocities vi(t) can be calculated as follows:

xi(t + 1) = xi(t) + vi(t + 1) (1)

vi(t + 1) = vi(t) + (xi(t)− p(t)) · fi (2)

fi = fmin + (fmax − fmin) · β (3)

where β is a random vector with uniform distribution, the range of which is [0, 1]. p(t) is the current
global optimal solution and fmin = 0, fmax = 1.

As we also know, whether BA has global and local search capabilities depends on its parameters;
therefore, it is necessary to achieve a balance between global search and local search capabilities by
adopting adaptive parameters. The formula for the local search strategy is as follows:

xi(t + 1) =
→
p (t) + εA(t) (4)

where ε is a random number from [−1, 1], A(t) is the average loudness of population.
In addition, it achieves global search by controlling loudness Ai(t + 1) and pulse rate ri(t + 1).

Ai(t + 1) = αAi(t) (5)

ri(t + 1) = ri(0)[1− exp(−γt)] (6)

where α and γ are constants and α > 0, γ > 0. Ai(0) and ri(0) are initial values of loudness and pulse
rate, respectively.

The following describes the execution steps of the standard bat algorithm.

Step 1: For each bat, initialize the position, velocity, and parameters and randomly generate the
frequency with Equation (3).

Step 2: Update the position and velocity of each bat with Equations (1) and (2).
Step 3: For each bat, generate a random number (0 < rand1 < 1). Update the temp position and

calculate the fitness value for corresponding bat with Equation (4) if rand1 < ri(t).
Step 4: For each bat, generate a random number (0 < rand2 < 1). Update Ai(t) and ri(t) with

Equations (5) and (6), respectively, if rand2 < Ai(t) and f (xi(t)) < f (p(t)).
Step 5: Sort each individual based on fitness values and save the best position.
Step 6: The algorithm is finished if the condition is met, otherwise, move on to Step 2.

Detailed steps about the standard bat algorithm are presented in Figure 1.

271

Mathematics 2019, 7, 135

Initialize the position, velocity and
parameters

 evaluate individuals and save the
best position

Update the velocity and position

Update the temp position with Eq.(4)

Evaluate its fitness

Update the loudness and emission

Update the best position

Stop criterion is met?

end

Out put the best position

Y

Y

N

N

N

Y

Begin

Figure 1. The flowchart of the standard bat algorithm (BA).

3. Bat Algorithm with Multiple Strategy Coupling

Through a large number of experimental studies, we found that different operators play an
important role in the convergence ability of the algorithm. When the development operator increases,
the global convergence ability of the algorithm becomes weaker; when the exploration operator
increases, the convergence accuracy will be insufficient. Therefore, in this paper, we propose a multiple
strategy autonomous selection strategy. The main idea is that different individuals choose which
strategy to update the position according to the quality of fitness. In this paper, the bat algorithm with
multiple strategy coupling (mixBA) formed will adopt the following eight strategies.

• (1) The velocity and position formula of the original algorithm are adopted [42]:

xik(t + 1) = xik(t) + vik(t + 1) (7)

vik(t + 1) = vik(t) + (xik(t)− pk(t)) · fi (8)

• (2) The velocity and position formula of the improved algorithm are adopted [29]:

xik(t + 1) = xik(t) + vik(t + 1) (9)

vik(t + 1) = vik(t) + (xik(t)− wk(t)) · fi (10)

where wk is the position of the worst individual.

272

Mathematics 2019, 7, 135

• (3) The position and velocity formula of Levy flight was adopted by Xie et al. [24]:

f t
i = ((fmax − fmin)

t
nt

+ fmin)β (11)

vt
i = (x̂i − x∗) f t

i (12)

xt
i = x̂i + usign[rand(1)− 1

2
]⊕ Levy(λ) (13)

where β is a random constant, nt is a constant, x̂i is the best position of the ith bat, and x∗ is the
best position of those found so far. Levy(λ) (1 < λ ≤ 3) is step length of the Levy flight and ⊕
stands for dot product.

• (4) The position and velocity formula of Levy flight was adopted by Liu [26]:

xt+1
i = xt

i + Levy(λ)⊗ (xt
i − x∗) (14)

xt
i and xt+1

i are ith the position of t bat in generation and t + 1 generation, respectively.
• (5) The position and velocity formula with the idea of genetic algorithms was adopted:

xi(t + 1) = Dxi(t) + (1− D)x∗i (t) (15)

The formula is a two-point crossover operator in simulation genetic algorithm.
• (6) The position and velocity formula with the idea of PSO was adopted:

vik(t + 1) = vik(t) + r1(xik(t)− pgk(t))i + r2(xik(t)− pik(t)) (16)

xik(t + 1) = xik(t) + vik(t + 1) (17)

where r1 and r2 are random constants and pgk is the best position by the entire swarm.

• (7) A local disturbance strategy based on inertial parameters is adopted:

xi(t + 1) = x∗i (t) + wr (18)

w = wmax − (wmax − wmin) · t/Tmax (19)

where wmax and wmin are the maximum and minimum values, respectively, of inertia weight and
Tmax is the maximum number of iterations.

• (8) The local search strategy of flight to optimal position is adopted.

xi(t + 1) = x∗i (t) + r · (pgk(t)− xik(t)) (20)

where pgk is the best position by the entire swarm and r is a random constant.

The above strategies are chosen by the form of probability. Therefore, the number of bat
individuals of choosing different strategies varies from generation to generation. Each strategy
adjusts the probability of it being selected according to evaluation results. When the fitness value is
better, the probability of the strategy will be adjusted by Equation (21).

P(n + 1) = P(n) + (1− λ) · P(n) (21)

Otherwise, it is calculated as follows:

P(n + 1) = λ · P(n) (22)

273

Mathematics 2019, 7, 135

where λ = 0.75, which is a parameter used to adjust the rate of probability change. The larger λ is, the
slower the rate of probability reduction will be. To ensure the diversity of the population, we define
the probability lower bound for each strategy as 0.01. The procedure of the bat algorithm with multiple
strategy coupling is shown in Table 1.

Table 1. The procedure of the bat algorithm (BA) with multiple strategy coupling.

Algorithm 1: Bat algorithm with multiple strategy coupling

Begin
For each bat, initialize the position, velocity, parameters and probability table;
While (stop criterion is met)

Randomly generate the frequency for each bat with Equation 3;
Evaluate its fitness;

Switch num = 8
Case 1 (rand < p1)
Update the velocity and position with strategy1.
Case 2 (p1 < rand < p2)
Update the velocity and position with strategy2
Case 3 (p2 < rand < p3)
Update the velocity and position with strategy3.
Case 4 (p3 < rand < p4)
Update the velocity and position with strategy4.
Case 5 (p4 < rand < p5)
Update the velocity and position with strategy5.
Case 6 (p5 < rand < p6)
Update the velocity and position with strategy6.
Case 7 (p6 < rand < p7)
Update the velocity and position with strategy7.
Case 8 (p7 < rand < p8)
Update the velocity and position with strategy8.

Evaluate its fitness;
If the position is update
Update the loudness and emission rate;
Update the probability table;

If pi < 0
Pi = 0.001;
End

End
Rank the bats and save the best position;

End
Output the best position;
End

4. Experimental Result

4.1. Text Functions and Parameter

The algorithm is tested on the CEC2013 benchmark set [43]. The test set can be divided into three
groups, as shown in Table 2.

Table 2. The CEC2013 benchmark set.

F1–F5 belongs to uni-modal functions
F6–F20 belongs to multi-modal functions
F21–F28 belongs to composition functions

The experiment is tested on Matlab 2016a environment (2016a, MathWorks, Natick, MA, USA).
For details of parameter settings for the bat algorithm with multiple strategies coupling (mixBA), please

274

Mathematics 2019, 7, 135

refer to Table 3. It is worth emphasizing that the parameters of the adopted strategy are not optimized
in this paper. In our algorithm, we used the following indicators to evaluate the experimental results.

meanerror =

∣∣∣∣∣∣∣∣∣
51
∑

j=1
f j

51
− ftrue

∣∣∣∣∣∣∣∣∣ (23)

where ftrue is the actual solution set of the test set.

Table 3. The CEC2013 benchmark set.

Pop size 100
Run 51
Frequency [0, 5]
A(0) 0.95
r(0) 0.9
α 0.99
γ 0.9
Search Domain [−100, 100]D

4.2. Comparison of MixBA with State-of-the-Art Algorithms

In this section, we will compare mixBA with six other algorithms. The algorithms involved are
presented in Table 4.

Table 4. The involved algorithm.

Bat algorithm with multiple strategy coupling (mixBA);
Standard bat algorithm (SBA);
Self-adaptive heterogeneous particle swarm optimization (PSO) [49];
Bat algorithm with Lévy distribution (LBA1) [26];
Bat algorithm with Lévy distribution (LBA2) [32];
Bat algorithm with arithmetic centroid strategy (ACBA) [40]
Oriented cuckoo search (OCS) [34]

The experimental results will be compared with the standard bat algorithm (SBA), PSO,
bat algorithm with Lévy distribution LBA1, LBA2, bat algorithm with arithmetic centroid strategy
(ACBA), and oriented cuckoo search (OCS) algorithms. Table A1 (in Appendix A) shows the average
error obtained by different algorithms in different test functions. In the last line of the table, w refers
to the number of mixBA algorithms superior to other algorithms in the test function, t indicates the
number of performances similar to other algorithms, and L refers to the number of mixBA algorithms
inferior to other algorithms. The dynamic comparison can be viewed in Figure 2.

From Table A1, mixBA won 27 functions, 28 functions, and 26 functions compared with SBA,
LBA1, and LBA2, respectively. Compared with the mixBA algorithm, the PSO and OCS algorithm has
seven functions and six functions, respectively, that are good.

For most of the test functions, the SBA does not find the global optimal solution. For ACBA
and PSO, it only finds optimal solutions on function F1 and F5. LBA1 and LBA2 showed excellent
searching ability on functions F11, F14, and F17. OCS obtains good solutions on functions F1, F4, and
F5. MixBA can find reasonable solutions on the most of the functions.

275

Mathematics 2019, 7, 135

(1) F1 (2) F2

(3) F3 (4) F4

(5) F5 (6) F6

Figure 2. Cont.

276

Mathematics 2019, 7, 135

(7) F7 (8) F8

(9) F9 (10) F10

(11) F11 (12) F12

Figure 2. Cont.

277

Mathematics 2019, 7, 135

(13) F13 (14) F14

(15) F15 (16) F16

(17) F17 (18) F18

Figure 2. Cont.

278

Mathematics 2019, 7, 135

(19) F19 (20) F20

(21) F21 (22) F22

(23) F23 (24) F24

Figure 2. Cont.

279

Mathematics 2019, 7, 135

(25) F25 (26) F26

(27) F27 (28) F28

Figure 2. The convergence curves of different algorithms on the benchmark set. SBA—standard bat
algorithm; ACBA—bat algorithm with arithmetic centroid strategy; LBA—bat algorithm with Lévy
distribution; PSO—particle swarm optimization; OCS—oriented cuckoo search.

Table 5 presents the statistical results obtained by Friedman tests [30,50]. The smaller the ranking
value, the better the performance of the algorithm. From the results, we can get the ranks of seven
algorithms as follows: SBA, LBA1, LBA2, ACBA, PSO, OCS, mixBA. The highest ranking shows that
mixBA is the best algorithm among the seven algorithms.

Table 5. Friedman test for the seven algorithms. SBA—standard bat algorithm; ACBA—bat algorithm
with arithmetic centroid strategy; LBA—bat algorithm with Lévy distribution; PSO—particle swarm
optimization; OCS—oriented cuckoo search.

Algorithm Rankings

SBA 5.86
ACBA 3.59
LBA1 5.61
LBA2 5.05

FK-PSO 3.09
OCS 2.86

mixBA 1.95

280

Mathematics 2019, 7, 135

Table 6 shows the results of the Wilcoxon test [51]. For SBA, ACBA, LBA1, LBA2 and PSO
algorithm,p < 0.05. The results of this experiment show that the performance of mixBA is far superior
to that of other algorithms. For OCS, the p-value is approximately equal to the 0.05 significance level.

Table 6. Wilcoxon test for the seven algorithms.

mixBA vs p-Value

SBA 0
ACBA 0
LBA1 0
LBA2 0

FK-PSO 0.04
OCS 0.068

Figure 2 shows the convergence of different algorithms in different test functions. In most cases,
our proposed algorithm has better results. However, it is undeniable that in a few cases, our proposed
algorithm shows poor performance compared with other algorithms, such as in F11, F14, F16, F17,
F22, F24, and F26. This is because the magnitude of the probability adjustment of the strategy is large,
which leads to the algorithm prematurely selecting a certain strategy to make the algorithm fall into the
local optimal. In addition, Table A2 shows the runtime of each algorithm on the CEC2013 benchmark
set. It is obvious that the running time of the mixBA algorithm is slightly higher than that of SBA on
F1 and F2, but significantly smaller than other algorithms in other test functions.

5. Conclusions

Bio-inspired computation is a collection for stochastic optimization algorithms inspired by
biological phenomenon. BA is novel bio-inspired algorithm inspired by bat behaviors, and has
been used to solve engineering optimization problems. However, with a single optimization strategy,
it shows weakness in solving various complex optimization problems. To tackle this issue, this paper
proposes a bat algorithm with multiple strategy coupling (mixBA) to improve the performance of BA.
The simulation results show that the performance of the mixBA is superior to that of other algorithms.
This is because of the adoption of adaptive multi-strategies coupling rules. The algorithm can adjust
the probabilities of different strategies based on the evaluation index. In most cases, this manner
guarantees the global convergence and local exploration ability of the algorithm. However, in some
cases, this treatment causes other strategies to be ignored early and fall into the local optimum. This is
the reason that the proposed algorithm performs worse than the other ones in some test functions,
such as F11, F14, F16, F17, F22, F24, and F26. Therefore, we will continue to explore the impact of
the probability change of the strategies on optimization performance in subsequent studies and seek
better solutions.

Author Contributions: Writing—original draft preparation, Y.W.; writing—review and editing, P.W.; visualization,
J.Z.; supervision, Z.C., X.C., W.Z., and J.C.

Acknowledgments: This work is supported by the National Natural Science Foundation of China under Grant
No. 61806138, No. U1636220, and No. 61663028; Natural Science Foundation of Shanxi Province under
Grant No. 201801D121127; Scientific and Technological innovation Team of Shanxi Province under Grant
No. 201805D131007; PhD Research Startup Foundation of Taiyuan University of Science and Technology under
Grant No. 20182002; and Zhejiang Provincial Natural Science Foundation of China under Grant No. Y18F030036.

Conflicts of Interest: The authors declare no conflict of interest.

281

Mathematics 2019, 7, 135

Appendix A

Table A1. Comparison results for mixBA and the other six algorithms.

Function SBA ACBA LBA1 LBA2 FK-PSO OCS mixBA

F1 1.96 × 100 0.00 × 100 8.24 × 10−1 3.59 × 10−1 0.00 × 100 4.51 × 10−5 1.98 × 10−5

F2 3.69 × 106 3.04 × 105 3.54 × 106 2.23 × 106 1.59 × 106 3.18 × 100 1.27 × 103

F3 3.44 × 108 6.47 × 107 4.78 × 108 3.58 × 108 2.40 × 108 9.96 × 106 3.38 × 107

F4 3.20 × 104 1.22 × 102 1.45 × 104 6.85 × 103 4.78 × 102 7.53 × 10−3 6.80 × 101

F5 5.86 × 10−1 0.00 × 100 4.74 × 10−1 2.76 × 10−1 0.00 × 100 4.26 × 10−3 5.82 × 10−3

F6 5.63 × 101 2.87 × 101 5.07 × 101 4.85 × 101 2.29 × 101 8.79 × 100 1.45 × 101

F7 2.16 × 102 9.30 × 101 1.77 × 102 2.00 × 102 6.39 × 101 6.07 × 101 5.61 × 101

F8 2.09 × 101 2.10 × 101 2.09 × 101 2.10 × 101 2.09 × 101 2.10 × 101 2.09 × 101

F9 3.57 × 101 2.99 × 101 3.40 × 101 3.62 × 101 1.85 × 101 2.79 × 101 2.55 × 101

F10 1.32 × 100 1.92 × 10−1 1.23 × 100 1.07 × 100 2.29 × 10−1 1.40 × 10−2 1.77 × 10−2

F11 4.07 × 102 1.77 × 102 1.49 × 102 3.16 × 101 2.36 × 101 6.83 × 101 6.05 × 101

F12 4.06 × 102 2.73 × 102 7.42 × 102 7.18 × 102 5.64 × 101 1.07 × 102 1.03 × 102

F13 4.37 × 102 3.33 × 102 5.59 × 102 5.11 × 102 1.23 × 102 1.84 × 102 1.14 × 102

F14 4.78 × 103 2.18 × 103 3.17 × 103 1.15 × 103 7.04 × 103 2.39 × 103 1.63 × 102

F15 4.89 × 103 3.76 × 103 4.76 × 103 4.83 × 103 3.42 × 103 3.55 × 103 2.82 × 103

F16 2.16 × 100 5.61 × 10−1 1.33 × 100 1.54 × 100 8.48 × 10−1 1.65 × 100 9.50 × 10−1

F17 8.92 × 102 1.96 × 102 3.36 × 102 1.61 × 102 5.26 × 102 1.61 × 102 1.33 × 102

F18 9.44 × 102 2.16 × 102 3.28 × 102 3.35 × 102 6.81 × 102 1.86 × 102 1.45 × 102

F19 6.07 × 101 1.34 × 101 1.89 × 101 1.28 × 101 3.12 × 101 7.38 × 101 6.07 × 100

F20 1.44 × 101 1.24 × 101 1.47 × 101 1.49 × 101 1.20 × 101 1.19 × 101 1.14 × 101

F21 3.38 × 102 3.22 × 102 3.22 × 102 3.05 × 102 3.11 × 102 2.88 × 102 3.01 × 102

F22 5.94 × 103 2.70 × 103 3.32 × 103 1.20 × 103 8.59 × 103 2.81 × 103 1.58 × 103

F23 5.77 × 103 4.79 × 103 6.03 × 103 5.82 × 103 3.57 × 103 4.10 × 103 3.75 × 103

F24 3.15 × 102 2.79 × 102 3.22 × 102 3.23 × 102 2.48 × 102 2.67 × 102 2.57 × 102

F25 3.49 × 102 3.14 × 102 3.53 × 102 3.54 × 102 2.49 × 102 3.01 × 102 2.94 × 102

F26 2.00 × 102 2.37 × 102 3.54 × 102 3.36 × 102 2.95 × 102 2.00 × 102 2.72 × 102

F27 1.28 × 103 1.10 × 103 1.33 × 103 1.35 × 103 7.76 × 102 9.84 × 102 8.91 × 102

F28 3.42 × 103 2.74 × 103 4.68 × 103 4.34 × 103 4.01 × 102 3.48 × 102 3.00 × 102

w\t\l 27\1\0 27\1\0 28\0\0 26\1\1 21\7\0 22\6\0 -

Table A2. The computation time of each algorithm.

Function SBA ACBA LBA1 LBA2 FK-PSO OCS mixBA

F1 3.23 × 101 4.82 × 101 9.22 × 101 9.07 × 101 4.01 × 101 1.10 × 102 3.29 × 101

F2 5.81 × 101 7.88 × 101 1.28 × 102 1.26 × 102 7.14 × 101 1.43 × 102 5.17 × 101

F3 6.29 × 101 8.53 × 101 1.31 × 102 1.30 × 102 7.77 × 101 1.44 × 102 5.05 × 101

F4 4.26 × 101 6.09 × 101 1.06 × 102 1.06 × 102 5.16 × 101 1.24 × 102 4.13 × 101

F5 3.32 × 101 5.05 × 101 9.42 × 101 9.40 × 101 4.23 × 101 1.12 × 102 3.40 × 101

F6 4.02 × 101 6.14 × 101 1.04 × 102 1.05 × 102 5.20 × 101 1.21 × 102 3.85 × 101

F7 1.40 × 101 1.65 × 102 2.21 × 102 2.21 × 102 1.70 × 102 2.38 × 102 8.21 × 101

F8 1.26 × 101 1.39 × 102 2.02 × 102 1.90 × 102 1.34 × 102 2.10 × 102 8.55 × 101

F9 8.54 × 101 8.99 × 102 1.09 × 103 1.10 × 103 1.03 × 103 1.13 × 103 3.59 × 102

F10 7.14 × 101 9.06 × 101 1.39 × 102 1.38 × 102 8.77 × 101 1.56 × 102 5.02 × 101

F11 8.00 × 101 1.03 × 102 1.47 × 102 1.47 × 102 9.95 × 102 1.69 × 102 5.58 × 101

F12 1.03 × 101 1.27 × 102 1.76 × 102 1.75 × 102 1.31 × 102 1.97 × 102 6.68 × 101

F13 1.05 × 101 1.20 × 102 1.75 × 102 1.76 × 102 1.33 × 102 1.99 × 102 6.67 × 101

F14 8.75 × 101 1.09 × 102 1.56 × 102 1.57 × 102 1.06 × 102 1.77 × 102 6.67 × 101

F15 9.49 × 101 1.20 × 102 1.67 × 102 1.68 × 102 1.18 × 102 1.87 × 102 6.87 × 101

F16 2.13 × 102 2.47 × 102 3.15 × 102 3.11 × 102 2.66 × 102 3.26 × 102 1.23 × 102

F17 5.90 × 101 8.09 × 101 1.29 × 102 1.27 × 102 7.07 × 102 1.41 × 102 4.89 × 101

F18 7.50 × 101 9.68 × 101 1.52 × 102 1.47 × 102 9.27 × 102 1.62 × 102 5.59 × 101

F19 5.01 × 101 6.72 × 101 1.18 × 102 1.14 × 102 6.43 × 101 1.30 × 102 4.25 × 102

F20 9.18 × 101 9.34 × 101 1.62 × 102 1.66 × 102 1.10 × 102 1.83 × 102 5.71 × 102

282

Mathematics 2019, 7, 135

Table A2. Cont.

Function SBA ACBA LBA1 LBA2 FK-PSO OCS mixBA

F21 2.07 × 102 2.47 × 102 3.08 × 102 2.97 × 102 2.55 × 102 3.15 × 102 1.04 × 102

F22 2.61 × 101 2.96 × 102 3.72 × 102 3.58 × 102 3.17 × 102 3.81 × 102 1.32 × 102

F23 2.85 × 101 3.22 × 102 4.02 × 102 3.90 × 102 3.50 × 102 4.09 × 102 1.42 × 102

F24 1.05 × 103 1.11 × 103 1.37 × 103 1.31 × 103 1.31 × 103 1.33 × 103 4.27 × 102

F25 1.05 × 103 1.12 × 103 1.35 × 103 1.33 × 103 1.29 × 103 1.32 × 103 4.35 × 102

F26 1.17 × 103 1.25 × 103 1.49 × 103 1.46 × 103 1.4 × 103 1.47 × 103 4.85 × 102

F27 1.14 × 103 1.17 × 103 1.44 × 103 1.42 × 103 1.40 × 103 1.42 × 103 4.62 × 102

F28 3.98 × 102 4.35 × 102 5.25 × 102 5.21 × 102 4.83 × 102 5.14 × 102 1.70 × 102

w\t\l 26\0\2 28\0\0 28\0\0 28\0\0 28\0\0 28\0\0 -

References

1. Yang, X.S. Swarm Intelligence and Bio-Inspired Computation: Theory and Applications; Elsevier Science Publishers
B. V.: New York, NY, USA, 2013. [CrossRef]

2. Eberhart, R.; Kennedy, J. A new optimizer using particle swarm theory. In Proceedings of the International
Symposium on MICRO Machine and Human Science, Nagoya, Japan, 4–6 October 1995; pp. 39–43. [CrossRef]

3. Pan, J. Diversity enhanced particle swarm optimization with neighborhood search. Inf. Sci. 2013, 223,
119–135. [CrossRef]

4. Dorigo, M.; Stützle, T. Ant Colony Optimization: Overview and Recent Advances. In Handbook of
Metaheuristics; Springer: Cham, Switzerland, 2010. [CrossRef]

5. Stodola, P.; Mazal, J. Applying the Ant Colony Optimization Algorithm to the Capacitated Multi-Depot Vehicle
Routing Problem; Inderscience Publishers: Geneva, Switzerland, 2016. [CrossRef]

6. Cai, X.; Wang, H.; Cui, Z.; Cai, J.; Xue, Y.; Wang, L. Bat algorithm with triangle-flipping strategy for numerical
optimization. Int. J. Mach. Learn. Cybern. 2018, 9, 199–215. [CrossRef]

7. Yang, X.S.; Deb, S. Cuckoo Search via Levy Flights. Mathematics 2010, 210–214. [CrossRef]
8. Cui, Z.; Li, F.; Zhang, W. Bat algorithm with principal component analysis. Int. J. Mach. Learn. Cybern. 2018,

1–20. [CrossRef]
9. Zhang, M.; Wang, H.; Cui, Z.; Chen, J. Hybrid multi-objective cuckoo search with dynamical local search.

Memet. Comput. 2018, 10, 199–208. [CrossRef]
10. Wang, H.; Wang, W.; Sun, H.; Rahnamayan, S. Firefly algorithm with random attraction. Int. J.

Bio-Inspired Comput. 2016, 8, 33–41. [CrossRef]
11. Wang, H.; Wang, W.; Zhou, X.; Sun, H.; Zhao, J.; Yu, X.; Cui, Z. Firefly algorithm with neighborhood

attraction. Inf. Sci. 2017, 382, 374–387. [CrossRef]
12. Iglesias, A.; Gálvez, A.; Collantes, M. Global-Support Rational Curve Method for Data Approximation with

Bat Algorithm. In Proceedings of the IFIP International Conference on Artificial Intelligence Applications
and Innovations, Bayonne, France, 14–17 September 2015. [CrossRef]

13. Iglesias, A.; Gálvez, A. Memetic electromagnetism algorithm for surface reconstruction with rational bivariate
Bernstein basis functions. Natural Comput. 2017, 16, 1–15. [CrossRef]

14. Holland, J.H. Adaptation in Natural and Artificial System; MIT Press: Cambridge, MA, USA, 1992. [CrossRef]
15. Zhao, S.Z.; Suganthan, P.N.; Zhang, Q. Decomposition-Based Multiobjective Evolutionary Algorithm with

an Ensemble of Neighborhood Sizes. IEEE Trans. Evol. Comput. 2012, 16, 442–446. [CrossRef]
16. Yang, X.S. A New Metaheuristic Bat-Inspired Algorithm. Comput. Knowl. Technol. 2010, 28, 65–74.
17. Yang, X. Bat algorithm for multi-objective optimization. Int. J. Bio-Inspired Comput. 2012, 3, 267–274. [CrossRef]
18. Tharakeshwar, T.K.; Seetharamu, K.N.; Prasad, B.D. Multi-objective optimization using bat algorithm for

shell and tube heat exchangers. Appl. Therm. Eng. 2017, 110, 1029–1038. [CrossRef]
19. Damasceno, N.C.; Filho, O.G. PI controller optimization for a heat exchanger through metaheuristic Bat

Algorithm, Particle Swarm Optimization, Flower Pollination Algorithm and Cuckoo Search Algorithm.
IEEE Lat. Am. Trans. 2017, 15, 1801–1807. [CrossRef]

20. Hasançebi, O.; Teke, T.; Pekcan, O. A bat-inspired algorithm for structural optimization. Comput. Struct.
2013, 128, 77–90. [CrossRef]

21. Gandomi, A.H.; Yang, X.S. Chaotic bat algorithm. J. Comput. Sci. 2014, 5, 224–232. [CrossRef]

283

Mathematics 2019, 7, 135

22. Fister, I.; Fong, S.; Brest, J. A novel hybrid self-adaptive bat algorithm. Sci. World J. 2014, 2014, 709–738.
[CrossRef] [PubMed]

23. Ali, E.S. Optimization of Power System Stabilizers using BAT search algorithm. Int. J. Electr. Power
Energy Syst. 2014, 61, 683–690. [CrossRef]

24. Xie, J.; Zhou, Y.Q.; Chen, H. A bat algorithm based on Lévy flights trajectory. Pattern Recognit. Artif. Intell.
2013, 26, 829–837. [CrossRef]

25. Pérez, J.; Valdez, F.; Castillo, O. A New Bat Algorithm Augmentation Using Fuzzy Logic for Dynamical
Parameter Adaptation. In Proceedings of the Mexican International Conference on Artificial Intelligence,
Cuernavaca, Mexico, 25–31 October 2015; Springer: Cham, Switzerland, 2015; pp. 433–442. [CrossRef]

26. Liu, C. Bat algorithm with Levy flight characteristics. CAAI Trans. Intell. Syst. 2013, 3, 240–246.
27. Yilmaz, S.; Kucuksille, E.U. Improved Bat Algorithm (IBA) on Continuous Optimization Problems. Lect. Notes

Softw. Eng. 2013, 1, 279. [CrossRef]
28. Cai, X.; Wang, L.; Kang, Q.; Wu, Q. Adaptive bat algorithm for coverage of wireless sensor network. Int. J.

Wirel. Mob. Comput. 2015, 8, 271–276. [CrossRef]
29. Bahmani-Firouzi, B.; Azizipanah-Abarghooee, R. Optimal sizing of battery energy storage for micro-grid

operation management using a new improved bat algorithm. Int. J. Electr. Power Energy Syst. 2014, 56, 42–54.
[CrossRef]

30. Yilmaz, S.; Kucuksille, E.U. A new modification approach on bat algorithm for solving optimization problems.
Appl. Soft Comput. 2015, 28, 259–275. [CrossRef]

31. Deng, Y.; Duan, H. Chaotic mutated bat algorithm optimized edge potential function for target matching.
In Proceedings of the 10th Conference on Industrial Electronics and Applications (ICIEA), Auckland,
New Zealand, 15–17 June 2015. [CrossRef]

32. Xie, J.; Zhou, Y.; Chen, H. A Novel Bat Algorithm Based on Differential Operator and Lévy Flights Trajectory.
Comput. Intell. Neurosci. 2013, 2013, 453–812. [CrossRef] [PubMed]

33. Zhu, B.; Zhu, W.; Liu, Z.; Duan, Q.; Cao, L. A Novel Quantum-Behaved Bat Algorithm with Mean Best
Position Directed for Numerical Optimization. Comput. Intell. Neurosci. 2016, 2016, 1–17. [CrossRef]

34. Cui, Z.; Sun, B.; Wang, G.; Xue, Y.; Chen, J. A novel oriented cuckoo search algorithm to improve DV-Hop
performance for cyber-physical systems. J. Parallel Distrib. Comput. 2017, 103, 42–52. [CrossRef]

35. Yang, X.S.; Gandomi, A.H. Bat Algorithm: A Novel Approach for Global Engineering Optimization.
Eng. Comput. 2012, 29, 464–483. [CrossRef]

36. Bora, T.C.; Coelho, L.D.S.; Lebensztajn, L. Bat-Inspired Optimization Approach for the Brushless DC Wheel
Motor Problem. IEEE Trans. Magn. 2012, 48, 947–950. [CrossRef]

37. Sambariya, D.K.; Prasad, R. Robust tuning of power system stabilizer for small signal stability enhancement
using metaheuristic bat algorithm. Int. J. Electr. Power Energy Syst. 2014, 61, 229–238. [CrossRef]

38. Sathya, M.R.; Ansari, M.M.T. Load frequency control using Bat inspired algorithm based dual mode gain
scheduling of PI controllers for interconnected power system. Int. J. Electr. Power Energy Syst. 2015, 64,
365–374. [CrossRef]

39. Sun, S.; Xu, B. Node localization of wireless sensor networks based on hybrid bat-quasi-Newton algorithm.
J. Comput. Appl. 2015, 11, 38–42. [CrossRef]

40. Cao, Y.; Cui, Z.; Li, F.; Dai, C.; Chen, W. Improved Low Energy Adaptive Clustering Hierarchy Protocol
Based on Local Centroid Bat Algorithm. Sens. Lett. 2014, 12, 1372–1377. [CrossRef]

41. Cui, Z.; Cao, Y.; Cai, X.; Cai, J.; Chen, J. Optimal LEACH protocol with modified bat algorithm for big data
sensing systems in Internet of Things. J. Parallel Distrib. Comput. 2017. [CrossRef]

42. Cui, Z.; Xue, F.; Cai, X.; Cao, Y.; Wang, G.G.; Chen, J. Detectin of malicious code variants based on deep
learning. IEEE Trans. Ind. Inform. 2018, 14, 3187–3196. [CrossRef]

43. Hamidzadeh, J.; Sadeghi, R.; Namaei, N. Weighted Support Vector Data Description based on Chaotic Bat
Algorithm. Appl. Soft Comput. 2017, 60, 540–551. [CrossRef]

44. Alsalibi, B.; Venkat, I.; Al-Betar, M.A. A membrane-inspired bat algorithm to recognize faces in unconstrained
scenarios. Eng. Appl. Artif. Intell. 2017, 64, 242–260. [CrossRef]

45. Cui, Z.; Zhang, J.; Wang, Y.; Cao, Y.; Cai, X.; Zhang, W.; Chen, J. A pigeon-inspired optimization algorithm
for many-objective optimization problems. Sci. China Inf. Sci 2019. [CrossRef]

46. Tharwat, A.; Hassanien, A.E.; Elnaghi, B.E. A BA-based algorithm for parameter optimization of Support
Vector Machine. Pattern Recognit. Lett. 2016, 93, 13–22. [CrossRef]

284

Mathematics 2019, 7, 135

47. Basith, S.; Manavalan, B.; Shin, T.H.; Lee, G. iGHBP: Computational identification of growth hormone
binding proteins from sequences using extremely randomised tree. Comput. Struct. Biotechnol. J. 2018, 16,
412–420. [CrossRef]

48. Zamuda, A.; Brest, J.; Mezura-Montes, E. Structured Population Size Reduction Differential Evolution with
Multiple Mutation Strategies on CEC 2013 real parameter optimization. In Proceedings of the IEEE Congress
on Evolutionary Computation, Cancun, Mexico, 20–23 June 2013; pp. 1925–1931. [CrossRef]

49. Manavalan, B.; Subramaniyam, S.; Shin, T.H.; Kim, M.O.; Lee, G. Machine-learning-based prediction of
cell-penetrating peptides and their uptake efficiency with improved accuracy. J. Proteome Res. 2018, 17,
2715–2726. [CrossRef]

50. Friedman, J.H. Fast sparse regression and classification. Int. J. Forecast. 2012, 28, 722–738. [CrossRef]
51. Sun, H.; Wang, K.; Zhao, J.; Yu, X. Artificial bee colony algorithm with improved special centre. Int. J. Comput.

Sci. Math. 2017, 7, 548–553. [CrossRef]

© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

285

mathematics

Article

Search Acceleration of Evolutionary Multi-Objective
Optimization Using an Estimated Convergence Point

Yan Pei 1,*, Jun Yu 2 and Hideyuki Takagi 3

1 Computer Science Division, University of Aizu, Aizuwakamatsu 965-8580, Japan
2 Graduate School of Design, Kyushu University, Fukuoka 815-8540, Japan; yujun@kyudai.jp
3 Faculty of Design, Kyushu University, Fukuoka 815-8540, Japan; takagi@design.kyushu-u.ac.jp
* Correspondence: peiyan@u-aizu.ac.jp; Tel.: +81-242-37-2765

Received: 21 November 2018; Accepted: 23 January 2019; Published: 28 January 2019

Abstract: We propose a method to accelerate evolutionary multi-objective optimization (EMO)
search using an estimated convergence point. Pareto improvement from the last generation to the
current generation supports information of promising Pareto solution areas in both an objective space
and a parameter space. We use this information to construct a set of moving vectors and estimate a
non-dominated Pareto point from these moving vectors. In this work, we attempt to use different
methods for constructing moving vectors, and use the convergence point estimated by using the
moving vectors to accelerate EMO search. From our evaluation results, we found that the landscape
of Pareto improvement has a uni-modal distribution characteristic in an objective space, and has a
multi-modal distribution characteristic in a parameter space. Our proposed method can enhance
EMO search when the landscape of Pareto improvement has a uni-modal distribution characteristic
in a parameter space, and by chance also does that when landscape of Pareto improvement has a
multi-modal distribution characteristic in a parameter space. The proposed methods can not only
obtain more Pareto solutions compared with the conventional non-dominant sorting genetic algorithm
(NSGA)-II algorithm, but can also increase the diversity of Pareto solutions. This indicates that our
proposed method can enhance the search capability of EMO in both Pareto dominance and solution
diversity. We also found that the method of constructing moving vectors is a primary issue for the
success of our proposed method. We analyze and discuss this method with several evaluation metrics
and statistical tests. The proposed method has potential to enhance EMO embedding deterministic
learning methods in stochastic optimization algorithms.

Keywords: evolutionary multi-objective optimization; convergence point; acceleration search;
evolutionary computation; optimization

1. Introduction

In the research area of optimization, there are single objective optimization problems and
multi-objective optimization problems. The difference between these two categories of optimization
problems lies in the number of fitness functions. The single objective optimization attempts to obtain
only one optimal solution in one parameter space, i.e., one fitness landscape. The multi-objective
optimization tries to satisfy more than one optimal condition or target, i.e., more than one fitness
landscape. Usually, these optimal conditions in multi-objective optimization conflict with each other,
and cannot be combined into one optimal condition. Single objective optimization and multi-objective
optimization have different search targets because of the requirements of algorithm design. One tries
to obtain a better optimum, the other seeks to obtain more non-dominated solutions on Pareto front.

Most multi-objective optimization research pays attention to the diversity and the number of
non-dominated Pareto solutions. Evolutionary multi-objective optimization (EMO) algorithms are
efficient and effective when handling multi-objective optimization problems. The EMO keeps the

Mathematics 2019, 7, 129; doi:10.3390/math7020129 www.mdpi.com/journal/mathematics286

Mathematics 2019, 7, 129

multiple objective functions independently and uses Pareto-based ranking schemes to maintain feasible
solutions. However, the determinative programming methods use a scalarization method that needs to
transfer multiple objectives into one objective. State-of-the-art studies on EMO concentrate on Pareto
dominance handling in an objective space, which is tied to generating solutions to approximate the
Pareto solution frontiers [1]. The primary disadvantages of EMO are its optimization capability and
the non-guarantee of Pareto optimality, which cannot be perfectly solved by Pareto dominance studies
in EMO.

A fitness approximation method is widely used in the evolutionary computation (EC) community
to reduce the computational cost of fitness evaluations and is expected to estimate the global optimum
solution area. Reference [2] investigated several approximation methods, such as polynomial models,
kriging models, neural networks, and others. Reference [3] proposed a framework to manage
approximation models in EC search. Reference [4] made a survey on the advances of approximating
a fitness function in EC algorithms and presented some future research challenges. Inspired by
the scale-spacing method [5], a uni-modal function was used to approximate a fitness function for
estimating the peak point, and the EC algorithm used it as an elite individual to increase convergence
speed [6]. The same method was extended into a dimension reduction space for fitness landscape
approximation to enhance EC algorithms [7,8]. A fitness approximation mechanism was introduced
into genetic algorithms to obtain the optimal solutions satisfactorily and quickly, and can reduce
computational cost at the same time [9]. It was a unique approach to filter frequency components
for approximating a fitness landscape [10], which uniformly samples in parameter space firstly,
and the re-sampled EC individuals are used to obtain frequency information using the discrete
Fourier transform. There are many methods to accelerate EC convergence using a fitness approximate
model [11–17], and many potential subjects need to be studied further [18,19]. Reference [20] presents a
comprehensive survey on the fitness approximation methods in interactive evolutionary computation
(IEC). Those methods not only can enhance IEC search, but also can enhance conventional EC
search [21].

The estimation method presents a novel perspective using mathematical approaches to calculate
a convergence point (Convergence means of modeling the tendency for generic characteristics of
populations to stabilize over time, in EC, convergence point means the global optimum in single
objective problems ideally.) of a population. This is a great solution that enhances search of a stochastic
optimization algorithm using a deterministic method embedded into a stochastic optimization
process. Using an estimated point to accelerate EC search is one such method that implements
this research philosophy [22]. The individual moving from one generation to the next supports
convergence information of EC search condition. We used such information to mathematically
estimate a convergence point as an elite individual to enhance single objective optimization search [23].
A clustering method was developed for bipolar tasks (Bipolar tasks mean there are two peaks in a fitness
landscape in a problem, e.g., combination of two Gaussian functions N(μ1, σ1) + N(μ2, σ2) presents
two peaks in the landscape.), which proposed four improvements to increase the accuracy of estimated
convergence points and was applied to a multi-modal optimization problem [24]. We attempted to
combine EC algorithms with the estimation framework for bipolar tasks and analyzed the effect of
proposed four improvements. From our previous studies, we found that this estimation method is
effective in single objective optimization [23].

Pareto improvement information from the current generation to the next supports the promising
search areas of Pareto frontier solutions in both an objective space and a parameter space. In this paper,
we extend the method of estimating a convergence point into the EMO algorithm to find potential
non-dominated solution areas in search spaces using the estimation information from the objective
spaces. By putting an estimated point into an EMO search and deleting a dominated solution, the EMO
algorithm can find more non-dominated solutions in early generations, which is a factor that motivates
this study. We use the NSGA-II algorithm to evaluate our study hypothesis and verify the performance
of the framework that combines the estimation method with EMO, and attempt to enhance EMO search.

287

Mathematics 2019, 7, 129

This demonstrates one of original aspects of this work. We undertake a comparative study between
the NSGA-II algorithm with and without the estimation method using multi-objective optimization
benchmark problems and statistical tests. The advantages and disadvantages of proposed method are
presented, analyzed, and discussed using experimental evaluation results.

Following this introductory section, we introduce a variety of EMO techniques and algorithms
in the Section 2. We make a brief review on the estimation algorithm for a uni-modal optimization
problem in the Section 3. In the Section 4, we explain how to extend such estimation methods to
accelerate EMO search. There are three primary steps in this framework. The first is finding the
pair information of moving vectors in objective space of EMO, the second is the estimation of a
convergence point in a parameter space, and the third is the insertion of an estimated point by deleting
a dominated solution to enhance EMO search. In the Section 5, we evaluate our method using the
NSGA-II algorithm and some multi-objective benchmark problems, and analyze its optimization
performance and characteristics of population distribution in both an objective space and a parameter
space. We discuss and analyze the evaluation results using statistical tests in the Section 6. The results
demonstrate that the proposed method can obtain more non-dominate Pareto solutions early. Finally,
we make a conclusion of the whole work, and present some open research topics and future work in
the Section 7.

2. Evolutionary Multi-Objective Optimization

Multi-objective optimization problems lie in many real-world applications and they contain
multiple optimization objectives that conflict with each other. This makes conventional optimization
algorithms (deterministic optimization method), e.g., linear programming method [25] and
Newton-Raphson method [26], difficult to apply when solving these problems. One solution of
the multi-objective optimization problems is to transform multiple objectives into a single objective by
assigning different weights to each objective for a combination. This requires us to have a degree of
deep understanding of multi-objective optimization problems.

Currently, more popular approaches use evolutionary multi-objective optimization algorithms
because of various well-defined features and characteristics, such as strong robustness, ease of use,
intelligence, and others. Almost all of these pay attention to finding a set of trade-off optimal solutions
(known as Pareto optimal solutions), instead of a single optimal solution. The Pareto dominance
and diversity of solutions are two primary subjects in EMO research. One attempts to obtain many
non-dominated Pareto solutions, and the other tries to obtain Pareto solutions in a wide area on Pareto
solution front. Here, we make a brief review of several techniques, strategies, and algorithms that
solve the problems of EMO with regards to these two aspects.

2.1. Non-dominated Sorting Method

Non-dominated sorting is an elite mechanism for building a new generation of EMO algorithms
for handling the non-dominated Pareto solutions. It is one of EMO selection strategies. The main
motivation of this method is to find the non-dominated solutions by pairwise comparisons of all
individuals. Here, a non-dominated individual means that there are no other individuals, whose all
objectives are better than this one. The basic and formal calculation process of non-dominant sorting
method can be implemented as the following steps.

1. Getting the first individual as a current individual;
2. Comparing all objectives of the current individual with those of all other individuals;
3. Counting the domination count Np, which means the number of individuals that dominant the

current individual;
4. Setting the individuals satisfy Np = 0 as the first front, and remove these individuals from the

generation temporally;
5. Repeating the above process until every individual is processed.

288

Mathematics 2019, 7, 129

2.2. Crowding Distance Techniques

The Pareto solution diversity issue is also an important indicator of measurement in EMO
algorithms. If the solution diversity is insufficient, it is easy to lead the Pareto optimal solutions not to
be covered. Many methods attempt to maintain the solution diversity as much as possible in EMO
algorithms. One of these methods uses a sharing parameter to keep the diversity during EMO search.
However, it requires the preset and optimization of the parameter, and EMO performance depends on
the setting. Crowding distance technique is another solution for handling this predefined parameter
problems, which is calculated using a set of individuals.

The primary motivation of a crowding distance is to measure an individual density by distances.
There is an aggregation level of the adjacent individuals in parameter space. Figure 1 presents
a two-dimensional example of crowding distance calculation, where f1 and f2 are two objectives.
The crowding distance can be calculated by averaging the length and width of the cuboid (marked by
dash line). Averaging of the length and width of the cuboid (marked by dash line) is used to calculate
the crowding distance for each individual.

Figure 1. Two-dimensional example of crowding distance [27], the crowding distance is calculated

within one Pareto front, its calculation method is crowding_distance = ∑P
o=1

objo(i+1)−objo(i−1)
objomax−objomin

, where o is
the index of the number of objective functions, P is the number of objective functions, i is the index of
individual, and obj is the value of an objective function.

Any EMO algorithms sort all individuals according to their first objective. We calculate the
difference, i.e., objo(i+1) − objo(i−1), between two adjacent individuals for all individuals. The first
and last individual are set to infinite. This method calculates all crowding distances using multiple
objectives. Finally, the final crowding distance of each individual is set to the mean of its crowding
distances in all objectives.

2.3. NSGA and Its Variants

The NSGA is the first generation of EMO algorithm that uses non-dominated sorting techniques
to find multiple Pareto optimal solutions with a single simulation running [28]. However, it has still
suffered from several criticisms, including those relating to its high computational cost, lack of elitism,
and the requirement for the setting of sharing parameter. Subsequently, its improved version, NSGA-II,
was proposed to overcome all the above limitations at once by introducing fast non-dominated sorting
and a tournament selection using a crowding distance to reduce computational complexity [27]. It has
become one of the most popular EMO algorithms that are used to solve problems of multi-objective
optimization. Recently, a more powerful version, NSGA-III [29], was also proposed, where a clustering
operator replaces the crowding distance operator in NSGA-II to solve many-objective optimization

289

Mathematics 2019, 7, 129

problems. Actually, there are also many other EMO algorithms based on non-dominated sorting and
have achieved satisfactory results, such as MOGA [30], NPGA [31], SPEA [32], SPEA2 [33], PESA [34],
PESA-II [35], multi-objective chaotic evolution [36], etc.

Although various EMO algorithms have been proposed and have achieved outstanding results,
most of them only focus on the study in an objective space. We therefore try to use moving vectors as a
bridge between a parameter space and an objective space to analyze the landscapes of the two spaces.
The motivation of this study promotes to use a mathematical method to estimate a convergence point
in a parameter space using these moving vectors’ information from its objective space. We expect this
research to provoke the EMO researchers’ attention towards the parameter space and encourage them
to notice the connection between the two spaces for designing better EMO algorithms.

3. Estimating a Convergence Point

3.1. Notation Definitions

Before we explain how to estimate a convergence point from moving vectors, we offer some
notations for better understanding of this section in advance. When an EC algorithm searches in a
d-dimensional parameter space with n individuals (n, d ∈ Z+), we notate the i-th individual in the
current generation, a corresponding relative individual in the next generation, and their moving vector
to be ai, ci, and bi = ci − ai, respectively, {ai, bi, ci ∈ Rd; i = 1, 2, ..., n} (See Figure 2). The unit vector
of bi is defined as b′ i = bi/‖bi‖ (bT

i bi = 1). There are n moving vectors, and ai is a starting point
of bi.

We notate x ∈ Rd as the estimated convergence point that has the minimal distance to the lines
made by extending the line segments b′ i. This point, x, has a higher possibility to locate near the
optimal solution in EC optimization problems. The x is indicated by the � mark in the Figure 2. We will
explain how to obtain the x point by a deterministic mathematical method. In this work, all vectors are
presented as column vectors.

a
1

c
1

a
2

c
2

a
3

c
3

a
n

c
n

Figure 2. The convergence point (�) can be estimated by the moving vectors (bi) between individuals
(ai, i = 1, 2, ..., n) in the k-th generation and their offspring (ci, i = 1, 2, ..., n) in the (k + 1)-th generation.

3.2. Estimation Method of a Point from Moving Vectors

This section is primarily adopted from our previous work in reference [22]. From the principle of
the law of large numbers, the estimated convergent point is the nearest one to the extension lines of
these moving vectors. The lines of moving vectors can be expressed as ai + tib

′
i, ti ∈ R. The nearest

290

Mathematics 2019, 7, 129

point that is close to these extension lines can be obtained by solving the optimization problem shown
in Equation (1).

x = min
x,{ti}

J(x, {ti}) = min
x,{ti}

n

∑
i=1
‖ai + tib

′
i − x‖2 (1)

The shortest line segment from the estimated convergence point x to the extended moving vector
ai + tib

′
i, ti ∈ R is ai + tib

′
i − x, ti ∈ R, and the relation of this line segment and the moving vector b

or its unit vector b′ is orthogonal. Equation (2) presents this orthogonal condition.

b′Ti (ai + tib
′
i − x) = 0 (orthogonal condition) (2)

From this orthogonal condition, we can use x to express ti, i.e., ti =
(b′ i)T(x−ai)
‖b′ i‖2 and introduce it to

Equation (1) to reduce the number of optimization parameter. The derivation process is presented in
Equation (3), where Id is an identity matrix, and Hi = b′ ib′

T
i − Id.

x = min
x,{ti}

n

∑
i=1
‖ai + tib

′
i − x‖2

= min
x

n

∑
i=1
‖ b′ i

(b′ i)T(x− ai)

‖b′ i‖2 − (x− ai)‖2

= min
x

n

∑
i=1
‖
{

b′ ib′
T
i

‖b′ i‖2 − Id

}
(x− ai)‖2

= min
x

n

∑
i=1
‖Hi(x− ai)‖2

(3)

Next, we can obtain the following objective function (Equation (4)) from Equation (1) where we
have eliminated the term {ti}.

J(x) =
n

∑
i=1

(x− ai)
THT

i Hi(x− ai) (4)

Our goal is obtained by minimizing J(x) regarding x. Estimation of x, i.e., x̂, is obtained by
partially differentiating each element of x and setting them equal to 0 (shown in Equation (5)).

∂J(x)
∂x

= 2
n

∑
i=1

HT
i Hi(x− ai)

= 2

{(
n

∑
i=1

HT
i Hi

)
x−

(
n

∑
i=1

HT
i Hiai

)}
= 0 (5)

Thus, the estimation of Equation (6) is obtained.

x̂ =

(
n

∑
i=1

HT
i Hi

)−1 (n

∑
i=1

HT
i Hiai

)
(6)

Since Hi has the characteristic of HT
i Hi = H2

i = Hi, i.e., a projection matrix, Equation (6) can be
rewritten as in Equation (7), which we can use to estimate a convergence point using moving vectors.

291

Mathematics 2019, 7, 129

x̂ =

(
n

∑
i=1

Hi

)−1 (n

∑
i=1

Hiai

)

=

{
n

∑
i=1

(
Id − b′ ib′

T
i

)}−1 { n

∑
i=1

(
Id − b′ ib′

T
i

)
ai

}
(7)

Besides these derivatives exactly estimating a convergence point, two approximated calculation
methods are described in [22].

4. Accelerating EMO Search Using an Estimated Convergence Point

4.1. Philosophy of the Proposal

There are two subjects studied in the EMO algorithm research field; one study is the Pareto
dominance issue, and the other one is EMO solution diversity issue. Almost all research on these two
issues focuses on special handling in an objective space of an EMO algorithm, and frequently ignore
the search condition in a parameter space. EMO algorithms try to find more non-dominated solutions
with diversity. The solutions on the first Pareto solution frontier from the last generation to the next in
an objective space supports information on how moving the variables in a parameter space can find
promising Pareto solutions.

In Figure 3, we can find a set of the pairs of moving vectors in a parameter space in accord
with the Pareto dominance information obtained in an objective space. We can use the moving
vector information to estimate a convergence point that presents a promising area where Pareto
solutions would be in a parameter space. We put such an estimated convergence point of a parameter
space into EMO search and remove one of dominated solutions. EMO search should be enhanced
considering such search information, and hopefully, EMO algorithm can find more non-dominated
Pareto solutions quickly. This is a study hypothesis and motivation of our proposal that utilities an
estimated convergence point to accelerate EMO search.

Figure 3. Estimation of promising Pareto solution area in parameter space using the dominance
information from objective space to enhance EMO search.

4.2. Estimation of Pareto Solution Frontier in a Parameter Space from Pareto Improvement Information in an
Objective Space

There are three primary steps and/or issues in the proposed method to enhance EMO search.
The first step/issue is how to make pairs of moving vectors in a parameter space from Pareto
improvement information obtained in an objective space. We make two candidate groups of
non-dominated solutions in the current generation and in the last generation, so Pareto solution
improvement information can be obtained from these two group individuals. Here, we design two
methods to make moving vector pairs (bi = ci − ai in Figure 2) .

292

Mathematics 2019, 7, 129

• We pick up one of non-dominated solutions in an objective space from one group, and find the
nearest non-dominated solution in the other group, and then find their corresponding individuals
in a parameter space to make these two solutions form a pair. (Estimation in objective space)

• We pick up one of non-dominated solutions in an objective space from one group, and find its
corresponding individual in a parameter space, and then find this individual’s nearest individual
in a parameter space to make these two solutions form a pair. (Estimation in parameter space)

After this, we delete these two solutions from the two groups, and we repeat this processing until
one of groups becomes empty.

The second step estimates a convergence point in a parameter space using the moving vector pairs
obtained from the first step. The estimation method uses Equation (7) to implement. The estimated
point has high potential in the non-dominated Pareto solution frontier, and can therefore accelerate
EMO search.

• Besides estimating only one estimated point, we can also estimate one point from only one
single objective space each by each individually and use them together to accelerate EMO search
(Estimation in each single objective space).

In the third step, we put the estimated convergence point as a search elite individual into EMO
algorithms, and delete one/more of the dominated solutions in the current generation to enhance
EMO search. This is the primary implementation within our proposal.

5. Experimental Evaluations

5.1. Experiment Setting

We use five multi-objective benchmark functions from the ZDT test suite [37] to evaluate our
proposed methods. We embed our proposed method into conventional NSGA-II [27] with different
constructing methods of moving vector, and compare our proposed method with NSGA-II. Table 1
presents the benchmark function’s mathematical expressions. We examine these functions with three
dimensional settings, i.e., two dimensions (2-D), 10-D, and 30-D. Table 2 shows the parameter settings
of conventional NSGA-II algorithm used in the evaluation experiments.

Table 1. Multi-objective benchmark function used in evaluation [27]. All the Pareto frontier are g(x) = 1.

Functions Definition

ZDT1

f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x)]

g(x) = 1 + 9 ∑n
i=2 xi
n−1

ZDT2

f1(x) = x1
f2(x) = g(x)[1− (x1

g(x))
2]

g(x) = 1 + 9 ∑n
i=2 xi
n−1

ZDT3

f1(x) = x1

f2(x) = g(x)[1−
√

x1
g(x) − x1

g(x) sin(10πx1)]

g(x) = 1 + 9 ∑n
i=2 xi
n−1

ZDT4
f1(x) = x1
f2(x) = g(x)[1− (x1

g(x))
2]

g(x) = 1 + 10(n− 1) + ∑n
i=2[x

2
i − 10 cos(4πxi)]

ZDT6

f1(x) = 1− exp(−4πx1) sin6(6πx1)

f2(x) = g(x)[1− (
f (x1)
g(x))

2]

g(x) = 1 + 9[∑n
i=2 xi
n−1]0.25

293

Mathematics 2019, 7, 129

Three experiments are designed where different methods of constructing moving vectors,
and these combined with the conventional NSGA-II algorithm. The legends displayed in figures
and tables have the following meanings.

• NSGA-II; conventional NSGA-II algorithm;
• Estimation in objective space; we construct moving vectors from two subsequent non-dominated

solution set in an objective space;
• Estimation in parameter space; we find the nearest offspring individual for each one in a parent

generation, and make pairs in a parameter space; and
• Estimation in each single objective space; we consider each objective independently and

estimation convergence point for each objective, where the estimated points may not be best on
all objectives, but they have good potential in some objectives.

Table 2. NSGA-II algorithm parameter setting.

population size for 2-D, 10-D, and 30-D 20, 50, and 100
crossover rate 0.8
mutation rate 0.05
max. # of fitness evaluations, MAXNFC, for 2-D, 10-D, and 30-D search 400, 1000, and 10,000
dimensions of benchmark functions, D 2, 10, and 30
of trial runs 30

5.2. Evaluation Metrics

We set the stop conditions of each evaluation using the number of fitness calls instead of
generations for fair evaluation, because our proposed methods increase additional fitness cost
consumption. We set the stop conditions as 400 times, 1000 times, and 10,000 times of fitness evaluations
in 2-D, 10-D, and 30-D problems, respectively. Besides, we test each benchmark function with 30 trial
runs in three different dimensional settings.

Conventional NSGA-II is adopted as an example algorithm; other EMO algorithms can be also
applied. Although there are many ways to generate estimated points, the greedy replacement strategy,
where the estimated points will replace with the worst ranked and low diversity individuals to keep
the same population size, is adopted in the proposed acceleration framework. To analyze the effect of
the proposed acceleration framework, we calculate the number of non-dominated Pareto solutions in
each generation shown in Figures 4–6.

Hyper volume [38] is used to evaluate the diversity and acceleration performance of our proposal.
Table 3 presents the hyper volume values of our proposed method and conventional NSGA-II algorithm
at the stop condition in three different dimensional settings. We apply Wilcoxon signed-rank test for
30 trail runs data to evaluate the significance of hyper volume obtained by conventional NSGA-II and
our proposal. Some functions without hyper volume value is due to reference point [−1, 1] setting.

294

Mathematics 2019, 7, 129

0 2 4 6 8 10 12 14 16 18 20
Generations

4

6

8

10

12

14

16

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

0 2 4 6 8 10 12 14 16 18 20
Generations

3

4

5

6

7

8

9

10

11

12

13

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

ZDT1 ZDT2

0 2 4 6 8 10 12 14 16 18 20
Generations

4

5

6

7

8

9

10

11

12

13

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

0 2 4 6 8 10 12 14 16 18 20
Generations

2

4

6

8

10

12

14

16

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

ZDT3 ZDT4

0 2 4 6 8 10 12 14 16 18 20
Generations

1

2

3

4

5

6

7

8

9

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

ZDT6
Figure 4. The number of Pareto solutions in every generation for 2-D benchmark problems. We can
observe that proposed method can obtain more Pareto solutions for the most of cases.

295

Mathematics 2019, 7, 129

0 2 4 6 8 10 12 14 16 18 20
Generations

5

10

15

20

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

0 2 4 6 8 10 12 14 16 18 20
Generations

2.5

3

3.5

4

4.5

5

5.5

6

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

ZDT1 ZDT2

0 2 4 6 8 10 12 14 16 18 20
Generations

4

6

8

10

12

14

16

18

20

22

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

0 2 4 6 8 10 12 14 16 18 20
Generations

1

2

3

4

5

6

7

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

ZDT3 ZDT4

0 2 4 6 8 10 12 14 16 18 20
Generations

0

1

2

3

4

5

6

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

ZDT6
Figure 5. The number of Pareto solutions in every generation for 10-D benchmark problems. We can
observe that proposed method can obtain more Pareto solutions for the most of cases.

296

Mathematics 2019, 7, 129

0 10 20 30 40 50 60 70 80 90 100
Generations

0

10

20

30

40

50

60

70

80

90

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

0 10 20 30 40 50 60 70 80 90 100
Generations

0

10

20

30

40

50

60

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

ZDT1 ZDT2

0 10 20 30 40 50 60 70 80 90 100
Generations

0

10

20

30

40

50

60

70

80

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

0 10 20 30 40 50 60 70 80 90 100
Generations

0

1

2

3

4

5

6

7

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

ZDT3 ZDT4

0 10 20 30 40 50 60 70 80 90 100
Generations

0

2

4

6

8

10

12

14

16

N
um

be
r

of
 P

ar
et

o
F

ro
nt

ie
r

NSGA II
Estimation in objective space
Estimation in parameter space
Estimation in single objective space

ZDT6
Figure 6. The number of Pareto solutions in every generation for 30-D benchmark problems. We can
observe that proposed method can obtain more Pareto solutions for the most of cases.

297

Mathematics 2019, 7, 129

Table 3. The average hypervolume values from 30 trials running of 4 methods in 2 dimensions (2-D),
10-D, and 30-D. Symbol † means that there is a significant difference between NSGA-II and Proposed
method, i.e., NSGA-II + Estimation Point. The reference point is [1,1]. Obj., Para., and SinglePara.
present objective space, parameter space, and each single parameter space, respective.

2-D tasks

Func. NSGA-II Estimation in Obj. Estimation in Para. Estimation in SinglePara.

ZDT1 0.414567 0.417300 0.453833 † 0.480533 †

ZDT2 0.109833 0.117367 0.124367 0.113867

ZDT3 0.556733 0.552433 0.622733 † 0.622600 †

ZDT4 0.255733 0.261600 0.284933 † 0.337167 †

ZDT6 0.000033 0.002033 0.001833 0.000967

10-D tasks

Func. NSGA-II Estimation in Obj. Estimation in Para Estimation in SinglePara

ZDT1 0.328033 0.337767 0.345533 0.339433

ZDT2 0.008633 0.012367 0.010100 0.008933

ZDT3 0.564067 0.545767 0.589400 0.588933

30-D tasks

Func. NSGA-II Estimation in Obj. Estimation in Para Estimation in SinglePara

ZDT1 0.647167 0.654000 0.651533 0.648633

ZDT2 0.183333 0.157567 0.187700 0.190433

ZDT3 0.796133 0.792600 0.791533 0.794767

ZDT6 0.066233 0.068433 0.069633 0.066733

6. Discussions

6.1. Pareto Improvement of the Proposal

Pareto dominance and Pareto solution diversity are two metrics to evaluate the performance
of EMO algorithms. In this work, we calculated the average number of Pareto solutions in every
generation for each benchmark problem; see Figures 4–6. This is one of evaluation metrics for Pareto
dominance in EMO. We also calculated hyper volume values at the maximal number of function calls
for each dimension setting, and applied Wilcoxon signed-rank test to verify the significant difference
among hyper volume values in Table 3. This is a demonstration of Pareto solution diversity for each
EMO algorithm. We analyze and discuss our proposed method using these results.

From Figures 4–6, we can observe that methods estimating a convergence point in a parameter
space and in a single objective space can obtain more Pareto solutions from all five multi-objective
benchmark problems in 2-D setting. Method estimating a convergence point in an objective space
fails in two benchmark functions, i.e., ZDT1 and ZDT3 in 2-D tasks. It indicates that moving vectors
constructed from information of the nearest points in an objective space cannot exactly estimate
the non-dominated Pareto frontier area in a parameter space. The same case can also be found
in 10-D benchmark setting for ZDT3 and ZDT4, and 30-D benchmark setting for ZDT1, ZDT3,
and ZDT4. We need to further consider improving the estimation the accuracy of estimation method
of a convergence point in an objective space.

That in a single objective space works well in most of cases because this method replaces more
than one estimated convergence point, and increases the population diversity for EMO algorithms.
This indicates that the better individuals in each objective can improve optimization performance of
EMO algorithms, although there are conflicts among multi-objective functions when EMO searches for
non-dominated Pareto solutions. From this viewpoint, elite strategy-based EC acceleration methods

298

Mathematics 2019, 7, 129

can be applied not only in single objective problems, but also have a potential to be applied in
multi-objective problems.

From observation of Table 3, the values of hyper volume from our proposed method are bigger
than those from conventional NSGA-II algorithm for the most of tasks in 2-D benchmark problems.
The Wilcoxon signed-rank test results showed a significant difference between our proposed method
and the conventional NSGA-II algorithm in estimation in a parameter space and estimation in a single
objective space. These results demonstrate that our proposed method can obtain non-dominated
Pareto solution with more diversities for EMO algorithms. However, it is not significant shown in
10-D and 30-D benchmark problems. It is a limitation for our proposal, and we need to improve it in
our future work.

6.2. Topological Structure of Moving Vectors and Modality Characteristic of Pareto Improvement

The basic philosophy of our proposed method to accelerate EMO search lies in three hypotheses.
First, we can obtain the information to improve non-dominated Pareto solutions through Pareto
solution evolutions from the last generation to the current generation in an objective space. Second,
after we obtain the information, the moving vectors can be made in an objective space or in a parameter
space. Third, the estimated convergence point of these moving vectors has a high possibility that locals
in the non-dominated Pareto solution frontier area in a parameter space. From the modality viewpoint,
the distribution of Pareto solutions shows a uni-modal characteristic in the objective space. In the case
of the Pareto improvement from the last generation to the current generation, do the corresponding
individuals also present a uni-modal distribution characteristic in a parameter space? We examine this
question here.

We present improved EMO evolutions along three generations’ EMO evolution condition
both in an objective space and a parameter space for these benchmark functions with 2-D setting
(see Figures 7 and 8). The arrows demonstrate the Pareto improvement directions between two
generations in both spaces. From Figures 7 and 8, we observe that with regards to the directions
of arrows in an objective space, all of them are towards almost the same direction, i.e., their angles
are less than 90 degrees. However, in the parameter space, the arrows are not towards the same
direction. It displays a multi-modal distribution characteristic, e.g., in the ZDT4 and ZDT6 benchmark
problems. From these observations, it indicates that Pareto improvement in the objective space
presents a uni-modal characteristic, while it presents a multi-modal characteristic in a parameter space.
In Figure 4, the numbers of the first Pareto frontier solution from four methods are almost the same,
but their acceleration performances are not significant. This is one our discovery on the modality
characteristic of Pareto improvement in both an objective space and a parameter space.

From Figures 7 and 8, there is a multi-modal characteristic in a parameter space when the Pareto
improvement occurs from one generation to the next. The third hypothesis of proposed method is not
always correct, therefore, the proposed method can work well in the uni-modal condition of Pareto
improvement, and by chance well in the multi-modal one. From Table 3, there is not a significant
difference between NSGA-II algorithm and our proposed method in ZDT6. This experiment’s results
verify our analysis and observations. The multi-modal characteristic of Pareto improvement in a
parameter space is an issue when applying our proposal to enhance EMO search.

299

Mathematics 2019, 7, 129

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

objective space 1

0

1

2

3

4

5

6

7

8

9

ob
je

ct
iv

e
sp

ac
e

2

objective space ZDT1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

parameter space 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pa
ra

m
et

er
 s

pa
ce

 2

parameter space ZDT1

ZDT1

0 0.2 0.4 0.6 0.8 1

objective space 1

0

1

2

3

4

5

6

7

8

9

10

ob
je

ct
iv

e
sp

ac
e

2

objective space ZDT2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

parameter space 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pa
ra

m
et

er
 s

pa
ce

 2

parameter space ZDT2

ZDT2

0 0.2 0.4 0.6 0.8 1

objective space 1

-1

0

1

2

3

4

5

6

7

8

9

ob
je

ct
iv

e
sp

ac
e

2

objective space ZDT3

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

parameter space 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pa
ra

m
et

er
 s

pa
ce

 2

parameter space ZDT3

ZDT3
Figure 7. Two-dimensional demonstration of Pareto solution improvement in an objective space (left)
and their corresponding individuals in parameter space (right) of ZDT1, ZDT2, and ZDT3. The arrows
show directions of both Pareto solution improvement and moving vectors. We can observe that there
is a uni-modal landscape for Pareto solution improvement in an objective space; however, it is a
multi-modal landscape for Pareto improvement in a parameter space. The green point is the estimated
convergence point, most of the red points and most of the blue points are in the first generation and in
the third generation, respectively.

300

Mathematics 2019, 7, 129

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1 1.2

objective space 1

0

5

10

15

20

25

30

35

40

45

ob
je

ct
iv

e
sp

ac
e

2

objective space ZDT4

-0.2 0 0.2 0.4 0.6 0.8 1

parameter space 1

-5

-4

-3

-2

-1

0

1

2

3

4

5

pa
ra

m
et

er
 s

pa
ce

 2

parameter space ZDT4

ZDT4

0 0.2 0.4 0.6 0.8 1 1.2

objective space 1

0

1

2

3

4

5

6

7

8

9

10

ob
je

ct
iv

e
sp

ac
e

2

objective space ZDT6

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

parameter space 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

pa
ra

m
et

er
 s

pa
ce

 2

parameter space ZDT6

ZDT6
Figure 8. Two-dimensional demonstration of Pareto solution improvement in an objective space (left)
and their corresponding individuals in parameter space (right) of ZDT4, and ZDT6. The arrows
show directions of both Pareto solution improvement and moving vectors. We can observe that there
is a uni-modal landscape for Pareto solution improvement in an objective space; however, it is a
multi-modal landscape for Pareto improvement in a parameter space. The green point is the estimated
convergence point, most of the red points and most of the blue points are in the first generation and in
the third generation, respectively.

7. Conclusions and Future Work

In this work, we use an estimated convergence point from dominance information of Pareto
solution improvement to enhance EMO search. We use NSGA-II as a test algorithm and five
multi-objective functions to qualitatively evaluate our proposal. We found that our proposed method
can enhance EMO search in some benchmark problems, especially for the high-dimensional and
complex multi-objective problems which can obtain a greater number of Pareto solutions. We also
analyzed the modality of the Pareto improvement in both an objective space and a parameter space.
We found that the Pareto improvement in an objective space demonstrates a uni-modal characteristic,
but a multi-modal one in parameter space. It is one of the discoveries in this work.

In the future, we will further investigate the proposed method in a variety of multi-objective
problems, especially for real-world problems. How to find the exact pairs information of moving
vectors is one of the potential study subjects in our method. It influences the accuracy of estimated point
to make different performances of our proposed by using the point. The multi-modal characteristic of
moving vectors in a parameter space is an issue for our estimation method. We will use clustering
methods to find the representative moving vectors to find the estimated point in a parameter space.
Another study issue is a search condition using multi-objective fitness landscape and an estimated
convergence point. These and other study subjects will be involved in our future research work.

301

Mathematics 2019, 7, 129

Author Contributions: Conceptualization, Y.P.; Funding acquisition, Y.P. and H.T.; Investigation, Y.P. and J.Y.;
Methodology, Y.P. and H.T.; Project administration, H.T.; Software, Y.P. and J.Y.; Validation, Y.P.; Visualization, Y.P.;
Writing—original draft, Y.P.

Funding: Japan Society for the Promotion of Science: JP15K00340 and 18K11470.

Acknowledgments: The work is supported by the JSPS Grant-in-Aid for Scientific Research C (JP15K00340
and 18K11470).

Conflicts of Interest: The author declares that there is no conflict of interests regarding the publication of
this paper.

References

1. Li, B.; Li, J.; Tang, K.; Yao, X. Many-objective evolutionary algorithms: A survey. ACM Comput. Surv. 2015, 48, 13.
[CrossRef]

2. Jin, Y. A comprehensive survey of fitness approximation in evolutionary computation. Soft Comput. 2005,
9, 3–12. [CrossRef]

3. Jin, Y.; Olhofer, M.; Sendhoff, B. A Framework for evolutionary optimization with approximate fitness
functions. IEEE Trans. Evol. Comput. 2002, 6, 481–494.

4. Jin, Y. Surrogate-assisted evolutionary computation: Recent advances and future challenges. Swarm Evol. Comput.
2011, 1, 61–70. [CrossRef]

5. Witkin, A.P. Scale-space filtering. In Proceedings of the 8th International Joint Conference Artificial
Intelligence, Karlsruhe, Germany, 8–12 August 1983; pp. 1019–1022.

6. Takagi, H.; Ingu, T.; Ohnishi, K. Accelerating a GA convergence by fitting a single-peak function. J. Soft
2003, 15, 219–229. [CrossRef]

7. Pei, Y.; Takagi, H. Accelerating IEC and EC searches with elite obtained by dimensionality reduction in
regression spaces. Evol. Intell. 2013, 6, 27–40. [CrossRef]

8. Pei, Y.; Zheng, S.; Tan, Y.; Takagi, H. Effectiveness of approximation strategy in surrogate-assisted fireworks
algorithm. Int. J. Mach. Learn. Cybern. 2015, 6, 795–810. [CrossRef]

9. Zhao, N.; Zhao, Y.; Fu, C. Genetic algorithm with fitness approximate mechanism. J. Natl. Univ. Def. Technol.
2014, 36, 116–121.

10. Pei, Y.; Takagi, H. Fourier analysis of the fitness landscape for evolutionary search acceleration. In Proceedings
of the 2012 IEEE Congress on Evolutionary Computation, Brisbane, Australia, 10–15 June 2012; pp. 1–7.

11. Michael, D.S.; Hod, L. Coevolution of fitness predictors. IEEE Trans. Evol. Comput. 2008, 12, 736–749.
12. Michael, D.S.; Hod, L. Co-evolution of fitness maximizers and fitness predictors. In Proceedings of the

Genetic and Evolutionary Computation Conference, Washington, DC, USA, 25–29 June 2005; pp. 1–8.
13. Michael, D.S.; Hod, L. Co-evolving fitness predictors for accelerating evaluations and reducing sampling.

Genet. Programm. Theory Pract. IV 2006, 5, 113–130.
14. Michael, D.S.; Hod, L. Predicting solution rank to improve performance. In Proceedings of the 12th Annual

Genetic and Evolutionary Computation Conference, Portland, OR, USA, 7–11 July 2010; pp. 949–955.
15. He, Y.; Yuen, S.Y.; Lou, Y. Exploratory landscape analysis using algorithm based sampling. In Proceedings

of the 2018 Genetic and Evolutionary Computation Conference Companion, Kyoto, Japan, 15–19 July 2018;
pp. 211–212.

16. Mersmann, O.; Bischl, B.; Trautmann, H.; Preuss, M.; Weihs, C.; Rudolph, G. Exploratory landscape analysis.
In Proceedings of the Genetic and Evolutionary Computation Conference, Dublin, Ireland, 12–16 July 2011;
pp. 829–836.

17. Wang, G.G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans.
Cybern. 2017. [CrossRef] [PubMed]

18. Wang, G.G.; Guo, L.; Gandomi, A.H.; Hao, G.S.; Wang, H. Chaotic krill herd algorithm. Inf. Sci. 2014,
274, 17–34. [CrossRef]

19. Pei, Y. Chaotic evolution: fusion of chaotic ergodicity and evolutionary iteration for optimization.
Nat. Comput. 2014, 13, 79–96. [CrossRef]

20. Pei, Y.; Takagi, H. Research progress survey on interactive evolutionary computation. J. Ambient Intell.
Hum. Comput. 2018, 1–14. [CrossRef]

302

Mathematics 2019, 7, 129

21. Pei, Y.; Takagi, H. A survey on accelerating evolutionary computation approaches. In Proceedings of
the 2011 International Conference of Soft Computing and Pattern Recognition (SoCPaR), Dalian, China,
14–16 October 2011; IEEE: Piscataway, NJ, USA, 2011; pp. 201–206.

22. Murata, N.; Nishii, R.; Takagi, H.; Pei, Y. Analytical estimation of the convergence point of populations.
In Proceedings of the 2015 IEEE Congress on Evolutionary Computation, Sendai, Japan, 25–28 May 2015;
IEEE: Piscataway, NJ, USA, 2015; pp. 2619–2624.

23. Yu, J.; Pei, Y.; Takagi, H. Accelerating evolutionary computation using estimated convergence points.
In Proceedings of the 2016 IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada,
24–29 July 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1438–1444.

24. Yu, J.; Takagi, H. Clustering of moving vectors for evolutionary computation. In Proceedings of
the 2015 7th International Conference of Soft Computing and Pattern Recognition, Fukuoka, Japan,
13–15 November 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 169–174.

25. Dantzig, G.B. Maximization of a Linear Function of Variables Subject to Linear Inequalities; John Wiley & Sons:
New York, NY, USA, 1951.

26. Wallis, J. A treatise of algebra, both historical and practical. Philos. Trans. 1685, 15, 1095–1106.
27. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]
28. Srinvas, N.; Deb, K. Multi-objective function optimization using non-dominated sorting genetic algorithms.

Evol. Comput. 1994, 2, 221–248. [CrossRef]
29. Deb, K.; Jain, H. An evolutionary many-objective optimization algorithm using reference-point-based

nondominated sorting approach, Part I: Solving Problems With Box Constraints. IEEE Trans. Evol. Comput.
2013, 18, 577–601. [CrossRef]

30. Carlos, M.F.; Peter, F. Genetic algorithms for multiobjective optimization: Formulation discussion and
generalization. In Proceedings of the 5th International Conference on Genetic Algorithms, Urbana,
Champaign, IL, USA, 17–21 July 1993; pp. 416–423.

31. Rey Horn, J.; Nafpliotis, N.; Goldberg, D.E. A niched Pareto genetic algorithm for multiobjective optimization.
In Proceedings of the First IEEE Conference on Evolutionary Computation, Orlando, FL, USA, 27–29 June
1994; pp. 82–87.

32. Zitzler, E.; Thiele, L. Multi-Objective evolutionary algorithms: A comparative case study and the strength
Pareto approach. IEEE Trans. Evol. Comput. 1999, 3, 257–271. [CrossRef]

33. Eckart, Z.; Marco, L.; Lothar, T. SPEA2: Improving the strength Pareto evolutionary algorithm. In Evolutionary
Methods for Design, Optimization and Control with Applications to Industrial Problems, Proceedings of the
EUROGEN2001 Conference, Athens, Greece, 19–21 September 2001; International Center for Numerical Methods
in Engineering: Barcelona, Spain, 2001; pp. 95–100.

34. David, W., C.; Joshua, D., K.; Martin, J., O. The Pareto-envelope based selection algorithm for multi-objective
optimization. In Proceedings of the 6th International Conference on Parallel Problem Solving from Nature,
Paris, France, 18–20 September 2000; pp. 839–848.

35. Corne, D.W.; Jerram, N.R.; Knowles, J.D.; Oates, M.J.; J, M. PESA-II: Region-based selection in evolutionary
multiobjective optimization. In Proceedings of the Genetic and Evolutionary Computation Conference,
San Francisco, CA, USA, 7–11 July 2001; pp. 283–290.

36. Pei, Y.; Hao, J. Non-dominated sorting and crowding distance based multi-objective chaotic evolution.
In International Conference in Swarm Intelligence; Springer: Cham, Switzerland, 2017; pp. 15–22.

37. Zitzler, E.; Deb, K.; Thiele, L. Comparison of multiobjective evolutionary algorithms: Empirical results.
Evol. Comput. 2000, 8, 173–195. [CrossRef] [PubMed]

38. Zitzler, E.; Brockhoff, D.; Thiele, L. The hypervolume indicator revisited: On the design of Pareto-compliant
indicators via weighted integration. In Evolutionary Multi-Criterion Optimization; Springer: Berlin, Germany,
2007; pp. 862–876.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

303

mathematics

Article

The Importance of Transfer Function in Solving
Set-Union Knapsack Problem Based on Discrete Moth
Search Algorithm

Yanhong Feng 1,2,3, Haizhong An 1,2,* and Xiangyun Gao 1,2

1 School of Economics and Management, China University of Geosciences, Beijing 100083, China;
qinfyh@hgu.edu.cn (Y.F.); gaoxy@cugb.edu.cn (X.G.)

2 Key Laboratory of Carrying Capacity Assessment for Resource and Environment,
Ministry of Natural Resources, Beijing 100083, China

3 School of Information Engineering, Hebei GEO University, Shijiazhuang 050031, China
* Correspondence: ahz369@cugb.edu.cn

Received: 1 September 2018; Accepted: 10 December 2018; Published: 24 December 2018

Abstract: Moth search (MS) algorithm, originally proposed to solve continuous optimization
problems, is a novel bio-inspired metaheuristic algorithm. At present, there seems to be little concern
about using MS to solve discrete optimization problems. One of the most common and efficient
ways to discretize MS is to use a transfer function, which is in charge of mapping a continuous
search space to a discrete search space. In this paper, twelve transfer functions divided into three
families, S-shaped (named S1, S2, S3, and S4), V-shaped (named V1, V2, V3, and V4), and other
shapes (named O1, O2, O3, and O4), are combined with MS, and then twelve discrete versions MS
algorithms are proposed for solving set-union knapsack problem (SUKP). Three groups of fifteen
SUKP instances are employed to evaluate the importance of these transfer functions. The results
show that O4 is the best transfer function when combined with MS to solve SUKP. Meanwhile,
the importance of the transfer function in terms of improving the quality of solutions and convergence
rate is demonstrated as well.

Keywords: set-union knapsack problem; moth search algorithm; transfer function; discrete algorithm

1. Introduction

The knapsack problem (KP) [1] is still considered as one of the most challenging and interesting
classical combinatorial optimization problems, because it is non-deterministic polynomial hard
problem and has many important applications in reality. As an extension of the standard 0–1 knapsack
problem (0–1 KP) [2], the set-union knapsack problem (SUKP) [3] is a novel KP model recently
introduced in [4,5]. The SUKP finds many practical applications such as financial decision making [4],
data stream compression [6], flexible manufacturing machine [3], and public key prototype [7].

The classical 0–1 KP is one of the simplest KP model in which each item has a unique value and
weight. However, SUKP is constructed of a set of items S = {U1, U2, U3, . . . , Um} and a set of elements
U = {u1, u2, u3, . . . , un}. Each item is associated with a subset of elements. In SUKP, each item has
a nonnegative profit and each element has a nonnegative weight. The goal is to maximize the total
profit of a subset of items S∗ ⊂ S such that the total weight of the corresponding element does not
exceed the maximum capacity of knapsack C. Hence, SUKP is more complicated and more difficult to
handle than the standard 0–1 KP. Thus far, only a few researchers have studied this issue despite its
practical importance and NP-hard character. For example, Goldschmidt et al. applied the dynamic
programming (DP) algorithm for SUKP [3]. However, when the exact algorithm is used, no satisfactory
approximate solution is usually obtained in polynomial time. Afterwards, Ashwin [4] proposed

Mathematics 2019, 7, 17; doi:10.3390/math7010017 www.mdpi.com/journal/mathematics304

Mathematics 2019, 7, 17

an approximation algorithm A-SUKP for SUKP. Obviously, A-SUKP also has to face the inevitable
problem, that is, how to compromise between achieving a high-quality solution and exponential
runtime. Recently, He et al. [5] presented a binary artificial bee colony algorithm (BABC) to solve SUKP
and comparative studies were conducted among BABC, A-SUKP, and binary differential evolution
(DE) [8]. The results verified that BABC outperformed A-SUKP method. Ozsoydan et al. [9] proposed
a swarm intelligence-based algorithm for the SUKP and designed an effective mutation procedure.
Although this method does not require transfer functions, it lacks generality. Therefore, it is urgent to
find an efficient metaheuristic algorithm to address SUKP whether from the perspective of academic
research or practical application.

As a relatively novel nature-inspired metaheuristic algorithm, moth search (MS) algorithm was
recently developed for continuous optimization by Wang [10]. Computational experiments have
shown that MS is not only effective but also efficient when addressing unconstrained continuous
optimization problems, compared with five state-of-the-art metaheuristic algorithms. Because of its
relative novelty, extensive research on MS is relatively scarce, especially discrete version MS algorithm.
Feng et al. presented a binary moth search algorithm (BMS) for discounted {0–1} knapsack problem
(DKP) [11].

As we all know, the metaheuristic algorithm is usually discretized in two ways: direct
discretization and indirect discretization. Direct discretization is usually achieved by modifying
the evolutionary operator of the original algorithm to solve a particular discrete problem. This method
depends on the algorithm used and the problem solved. Obviously, the disadvantages of direct
discretization are lack of versatility and complicated operation. The latter is discretized by establishing
a mapping relationship between continuous space and discrete space. Concretely speaking, indirect
discretization is usually achieved by an appropriate transfer function to convert real-valued variables
into discrete variables. Many discrete versions of swarm intelligence algorithms using transfer
functions have been proposed to solve various optimization problems. Discrete binary particle
swarm optimization [12], discrete firefly algorithm [13], and binary harmony search algorithm [14]
are among the most typical algorithms. Through analyzing the literature, many kinds of transfer
functions can be used, such as sigmoid function [12], tanh function [15], etc. However, most existing
metaheuristics only consider one transfer function. Little research concentrates on the importance
of transfer functions in solving discrete problems. In addition, a few studies [16,17] investigate the
efficiency of multiple transfer functions.

In this paper, twelve principal transfer functions are used and then twelve new discrete
MS algorithms are proposed to solve SUKP. These functions include four S-shaped transfer
functions [16,17], named S1, S2, S3, and S4, respectively; four V-shaped transfer functions [16,17],
named V1, V2, V3, and V4, respectively; and four other shapes transfer functions (Angle modulation
method [18,19], Nearest integer method [20,21], Normalization method [22], and Rectified linear unit
method [23]), named O1, O2, O3, and O4, respectively. Therefore, combining twelve transfer functions
with MS algorithm, twelve discrete MS algorithms are naturally proposed, named as MSS1, MSS2,
MSS3, MSS4, MSV1, MSV2, MSV3, MSV4, MSO1, MSO2, MSO3, and MSO4, respectively.

The remainder of the paper is organized as follows. In Section 2, we briefly introduce the SUKP
problem and MS algorithm. The families of transfer functions and repair optimization mechanism
are presented in Section 3. In Section 4, the twelve discrete MS algorithms are compared to shed light
on how the transfer functions affect the performance of the algorithm. After that, the best algorithm
(MSO4) is compared with five state-of-the-art methods on fifteen SUKP instances. Finally, we draw
conclusions and suggest some directions for future research.

2. Background

To describe discrete MS algorithm for the SUKP, we first explain the mathematical model of SUKP
and then introduce the MS algorithm.

305

Mathematics 2019, 7, 17

2.1. Set-Union Knapsack Problem

The set-union knapsack problem (SUKP) [3,4] is a variant of the classical 0–1 knapsack problem
(0–1 KP). More formally, the SUKP can be defined as follows: given a set of elements U = {u1, u2, u3,
. . . , un} and a set of items S = {U1, U2, U3, . . . , Um}, such that S is the cover of U, and Ui �= ∅∧Ui ⊂ U
(i = 1, 2, 3, . . . , m) and each item Ui has a value pi > 0. Each element uj (j = 1, 2, 3, . . . , n) has a
weight wj > 0. Suppose that set A consists of some items packed into the knapsack with capacity C,
namely A ⊆ S. Then, the profit of A is defined as P(A) = ∑

Ui∈A
pi and the weight of A is defined as

W(A) = ∑uj∈ ∪
Ui∈A

Ui
wj. The objective of the SUKP is to find a subset A that maximizes the total value

P(A) on condition that the total weight W(A) ≤ C. Then, the mathematical model of SUKP can be
formulated as follows:

Max P(A) = ∑
Ui∈A

pi (1)

subject to W(A) = ∑
uj∈ ∪

Ui∈A
Ui

wj ≤ C, A ⊆ S (2)

where pi (i = 1, 2, 3, . . . , m), wj (j = 1, 2, 3, . . . , n), and C are all positive integers.
Recently, an integer programming model is proposed by He et al. [5] to solve SUKP easily by

using metaheuristic algorithm; the new mathematical model of SUKP can be defined as follows:

Max f (Y) = ∑m
i=1 yi pi (3)

subject to W(AY) = ∑j∈ ∪
Ui∈AY

Ui
wj ≤ C (4)

Obviously, all the 0–1 vectors Y = [y1, y2, y3, . . . , ym] ∈ {0, 1}m are the potential solutions of SUKP.
A solution satisfying the constraint of Equation (4) is a feasible solution; otherwise, it is an infeasible
solution. AY = {Ui|yi ∈ Y, yi = 1, 1 ≤ i ≤ m} ⊆ S. Then, yi = 1 if and only if Ui ∈ AY.

2.2. Moth Search Algorithm

The MS algorithm [10] is a novel metaheuristic algorithm that was inspired by the phototaxis
and Lévy flights of the moths in nature, which are the two most representative characteristics of
moths. The MS is akin to other population-based swarm intelligence algorithms. However, MS differs
from most the population-based metaheuristic algorithms, such as genetic algorithm (GA) [24,25]
and particle swarm optimization algorithm (PSO) [26,27], which consist of only one population, as,
in MS, the whole population is divided into two subpopulations according to the fitness, namely
subpopulation1 and subpopulation2.

The MS starts its evolutionary process by first randomly generating n moth individuals. Each
moth individual represents a candidate solution to the corresponding problem with a specific fitness
function. In MS, two operators are considered including Lévy flights operator and straight flight
operator. Correspondingly, an individual update in subpopulation1 and subpopulation2 is generated
by performing Lévy flights operator and straight flight operator, respectively.

i. Lévy flights: For each individual i in subpopulation1, it will fly around the best one in the form
of Lévy flights. The resulting new solution is calculated based on Equations (5)–(7).

xt+1
i = xt

i + αL(s) (5)

α = Smax/t2 (6)

L(s) =
(β− 1)Γ(β− 1)sin(π(β−1)

2)

πsβ
(7)

306

Mathematics 2019, 7, 17

where xi
t and xi

t+1 denote the position of moth i at generation t and t + 1, respectively. α denotes
the scale factor related to specific problem. Smax is the max walk step and it takes the value 1.0
in this paper. L(s) represents the step drawn from Lévy flights and Γ(x) is the gamma function.
In this paper, β = 1.5 and s can be regarded as the position of moth individual in the solution
space then sβ is the β power of s.

ii. Straight flights: for each individual i in subpopulation2, it will fly towards that source of light
in line. The resulting new solution is formulated as Equation (8).

xt+1
i =

{
λ× (xt

i + ϕ× (xt
best − xt

i)) i f rand > 0.5
λ× (xt

i +
1
ϕ × (xt

best − xt
i)) else

(8)

where λ and ϕ represent scale factor and acceleration factor, respectively. xt
best is the best

individual at generation t. Rand is a function generating a random number uniformly
distributed in (0, 1).

3. Discrete MS Optimization Method for SUKP

In this section, we describe the newly proposed discrete MS for SUKP. The main purpose of
extending MS algorithm to solve the novel SUKP is to investigate the significant role of the transfer
functions in terms of improving the quality of solutions and convergence rate. The basic MS algorithm
was initially proposed for continuous optimization problems, while SUKP belongs to a discrete
optimization problem with constraints. Therefore, the SUKP problem must contain three key elements,
namely, discretization method, solution representation, and constraint handling. The three key
elements are described in detail subsequently.

3.1. Transfer Functions

Transfer function is a major contributor of the discrete MS algorithm; therefore, it deserves
special attention and research. In this section, 12 transfer functions are introduced. According
to the shape of transfer function curve, we divide the twelve transfer functions into three groups:
S-shaped transfer functions [12], V-shaped transfer functions [15], and other-shaped (O-shaped)
transfer functions [19,21]. As described above, each group consists of four functions, which are named
as Si, Vi, and Oi (i = 1, 2, 3, 4), respectively. These transfer functions are presented in Table 1 and
Figure 1.

Table 1. Twelve transfer functions.

Number Mathematical Formula

S1 [17] T(x) = 1
1+e−2x

S2 [12] T(x) = 1
1+e−x

S3 [17] T(x) = 1
1+e−x/2

S4 [17] T(x) = 1
1+e−x/3

V1 [20] T(x) =
∣∣∣er f (

√
π

2 x)
∣∣∣ = ∣∣∣∣√2

π

∫ √
π

2 x
0 e−t2

dt
∣∣∣∣

V2 [12] T(x) = |tanh(x)|
V3 [17] T(x) =

∣∣∣ x√
1+x2

∣∣∣
V4 [17] T(x) =

∣∣∣ 2
π arctan(π

2 x)
∣∣∣

O1 [18] T(x) = sin(2π(x− a) ∗ b ∗ cos(2π(x− a) ∗ c)) + d
(a = 0, b = 1, c = 1, d = 0)

O2 [20] T(x) = �|xmod2|�
O3 [22] T(x) = (x+xmin)

(|xmin |+xmax)
(xmin ≤ x ≤ xmax)

O4 [23] T(x) = x

307

Mathematics 2019, 7, 17

Figure 1. Twelve transfer functions.

As stated in the literature [16,17], the transfer functions define the probability that the element of
position vector of each moth individual changes from 0 to 1, and vice versa. Therefore, an appropriate
transfer function should ensure that a real-valued vector in a continuous search space is mapped to the
value 1 in a binary search space with greater probability. Suppose applying the transfer function T(x)
will return a function value y (y = 1 or y = 0) through a mapping method. The probability of a transfer
function with a value of 1 (PR) is displayed in Figure 2. Three groups of items, namely, 100 items,
300 items, and 500 items, were selected to count the PR value:

PR =

N
∑

i=1
{yi|yi = 1}

N
× 100% (9)

where N represents the number of items. The value of longitudinal axis in Figure 2 is the average of
PR among 100 independent runs.

Figure 2. Probability of transfer function with a value of 1.

As shown in Figure 2, the four S-shaped transfer functions have similar PR values, which are
close to 0.5. However, the PR values of the four V-shaped transfer functions differ considerably. V2 has

308

Mathematics 2019, 7, 17

the best PR value while the PR value of V3 is less than 0.2. It seems that V3 combining with MS should
show poor performance. Similarly, V4 also demonstrates unsatisfactory performance, with a PR value
of less than 0.25. Of the four other shapes of transfer functions, O1, O3, and O4 obtain a similar PR
value, that is, close to 0.5. The PR value of O2 is slightly smaller than that of O1, O3, and O4. In sum,
according to the preliminary analysis of PR values, it seems that V3, V4, and O2 are not suitable for
combining with MS to solve binary optimization problems.

3.2. Solution Representation

The basic MS is a real-valued algorithm and each moth individual is represented as a real-valued
vector. Two main operators are defined in continuous space. However, SUKP is a discrete optimization
problem with constraints and the solution is a binary vector. In this paper, the most general and
simplest method, mapping the real-valued vectors into binary ones by transfer functions, is opted.
Concretely speaking, a real-valued vector X = [x1, x2, . . . , xm] ∈ [−a, a]m still evolves in continuous
space. Here, m is the number of items and a is a positive real value, and a = 5.0 in this paper. Then,
transfer function T(x) is used to map X into a binary vector Y = [y1, y2, . . . , ym] ∈ {0, 1}m. According to
the feature of these transfer functions, three mapping methods are as follows.

The first mapping method: Choose a transfer function from S1–S4, V1–V4, and O3.

yi =

{
1 i f rand() ≥ T(xi)

0 else
(10)

where rand() is a random number in (0, 1). In Figure 1, it can be observed that S-shaped transfer
functions, V-shaped transfer functions, and O3 will return a random real number between 0 and 1.
Therefore, the comparison of rand() to T(xi) equals 1 or 0. Then, the mapping procedure is shown as
Table 2.

Table 2. The first mapping procedure according to S2 transfer function.

Element x0 x1 x2 x3 x4 x5 x6 x7 x8 x9

X 2.96 3.32 −3.25 2.65 2.61 −1.57 −0.07 0.91 1.04 1.68
T(X) 0.95 0.97 0.04 0.93 0.93 0.17 0.48 0.71 0.74 0.84

Rand() 0.61 0.17 0.07 0.15 0.08 0.86 0.72 0.39 0.80 0.62
Y 0 0 1 0 0 1 1 0 1 0

The second mapping method: Choose the transfer function O2.

yi = T(xi) (11)

The third mapping method: Choose either O1 or O4 as the transfer function.

yi =

{
1 i f T(xi) ≥ 0
0 else

(12)

Then, the quality of any feasible solution Y is evaluated by the objective function f of the SUKP.
Given a potential solution Y = [y1, y2, . . . , ym], the objective function value f (Y) is defined by

f (Y) =
m

∑
i=1

yi pi (13)

3.3. Repair Mechanism and Greedy Optimization

Clearly, SUKP is a kind of important combinatorial optimization problem with constraints. Due
to the existence of constraints, the feasible search space of decision variables becomes irregular,

309

Mathematics 2019, 7, 17

which will increase the difficulty of finding the optimal solution. Among the many constraint
processing techniques, repairing the infeasible solution is a common method to solve the combinatorial
optimization problem. Michalewicz [28] introduced an evolutionary system based on repair technology.
Obviously, repairing technique is dependent on specific problems and different repairing method must
be designed for different problems. Consequently, He et al. [5] designed a repairing and optimization
algorithm (named S-GROA) for SUKP, which can not only repair infeasible solutions but also further
optimize feasible solutions. On the basis of S-GROA [5], a quadratic greedy repair and optimization
strategy (QGROS) is proposed by Liu et al. [29]. In this paper, QGROS is adopted. The preprocessing
phase of QGROS can be summarized as follows:

(1) Compute the frequency dj of the element j (j = 1, 2, 3, . . . , n) in the subsets U1, U2, U3, . . . , Um.

(2) Calculate the unit weight Ri of the item i (i = 1, 2, 3, . . . , m).

Ri = ∑j∈Ui
(wj/dj) (14)

(3) Record the profit density of each item in S according to PDi.

PDi = pi/Ri(i = 1, 2, 3, . . . , m) (15)

(4) Sort all the items in a non-ascending order based on PDi (i = 1, 2, 3, . . . , m) and then the index
value recorded in an array H[1 . . . m].

(5) Define a term AY = {Ui|yi ∈ Y∧ yi = 1, 1 ≤ i ≤ m} for any binary vector Y = [y1, y2, . . . , ym]
∈{0, 1}m.

The pseudocode of QGROS [29] is outlined in Algorithm 1.

Algorithm 1. QGROS algorithm for SUKP.

Begin

Step 1: Input: the candidate solution Y = [y1, y2, . . . , ym] ∈ {0, 1}m, H[1 . . . m].
Step 2: Initialization. The m-dimensional binary vector Z = [0, 0, . . . , 0].
Step 3: Greedy repair stage

For i = 1 to m do

If (yH[i] = 1 and W(AZ ∪ {H[i]}) ≤ C)
ZH[i] = 1 and AZ = AZ ∪ {H[i]} .

End if

End for

Y← Z.
Step 4: Quadratic greedy stage

Do not consider the elements that have been packed into the knapsack,
recalculate dj (j = 1, 2, 3, . . . , n), Ri (i = 1, 2, 3, . . . , m), and H[1 . . . m]

Step 5: Optimization sate

For i = 1 to m do

If (yH[i] = 0 and W(AZ ∪ {H[i]}) ≤ C)
yH[i] = 1 and AY = AY ∪ {H[i]} .

End if

End for

Step 6: Output:Y = [y1, y2, . . . , ym] and f (Y)
End.

In Algorithm 1, we can observe that QGROS consists of three stages. The first stage is determining
whether the constraints are met for the items in the potential solution that are ready to be packed
into the knapsack. At this stage, items in the potential solution that are intended to be packed into

310

Mathematics 2019, 7, 17

knapsack but violate constraints will be removed. Therefore, all solutions are feasible after this stage.
The second stage is recalculating the frequency of each element, the unit weight of each item, and the
array H[1 . . . m]. The third stage is optimizing the remaining items by loading appropriate items into
the knapsack with the aim of maximizing the use of the remaining capacity. At this stage, items in the
feasible solution that are not intended to be loaded in the knapsack but satisfy the constraints will be
loaded. Hence, after this stage, all solutions remain feasible and the quality of solutions is improved.

3.4. The Main Scheme of Discrete MS for SUKP

Having discussed all the components of the discrete MS algorithms in detail, the complete
procedure is outlined in Algorithm 2.

3.5. Computational Complexity of the Discrete MS Algorithm

Computational complexity is the main criterion for evaluating the running time of an algorithm,
which can be calculated according to its structure and implementation. In Algorithm 2, it can
be seen that the computing time in each iteration is mainly dependent on the number of moths,
problem dimension, and sorting of items as well as moth individual in each iteration. In addition,
the computational complexity is mainly determined by Steps 1–4. In Step 1, since the Quicksort
algorithm is used, the average and the worst computational costs are O(mlogm) and O(m2), respectively.
In Step 2, the initialization of N moth individuals costs time O(N × m) = O(m2). In Step 3, the fitness
calculation of N moth individuals costs time O(N). In Step 4, Lévy flight operator has time complexity
O(N/2 × m) = O(m2), straight flight operator has time complexity O(N/2 × m) = O(m2), QGROS has
time complexity O(m× n), and sorting the population with Quicksort has average time complexity and
worst time complexity of O(NlogN) and O(N2), respectively. Consequently, the overall computational
complexity is O(mlogm) + O(m2) + O(N) + O(m2) + O(m2) + O(m × n) + O(NlogN) = O(m2), where m is
the number of items and N is the number of moths.

4. Results and Discussion

In this section, we present experimental studies on the proposed discrete MS algorithms for
solving SUKP.

311

Mathematics 2019, 7, 17

Algorithm 2. The main procedure of discrete MS algorithm for SUKP.

Begin

Step 1: Sorting.

Sort all items in S in non-increasing order according to PDi (0 ≤ i ≤ m), and
the indexes of items are recorded in array H [0 . . . m].

Step 2: Initialization.

Set the maximum iteration number MaxGen and iteration counter G = 1;
β = 1.5; the acceleration factor ϕ = 0.618.
Generate N moth individuals randomly {X1, X2, . . . , XN}, Xi ∈ [−a, a]m.
Divide the whole population into two subpopulations with equal size:
subpopulation1 and subpopulation2, according to their fitness.
Calculate the corresponding binary vector Yi = T(Xi) by using transfer
functions (i = 1, 2, . . . , N).

Perform repair and optimization with QGROS.
Step 3: Fitness calculation.

Calculate the initial fitness of each individual, f (Yi), 1 ≤ i ≤ N.
Step 4: While G < MaxGen do

Update subpopulation 1 by using Lévy flight operator.
Update subpopulation 2 by using fly straightly operator.
Calculate the corresponding binary vector Yi = T(Xi) by using transfer
functions (i = 1, 2, . . . , N).
Perform repair and optimization with QGROS.
Evaluate the fitness of the population and record the <Xgbest, Ygbest>.
G = G + 1.
Recombine the two newly-generated subpopulations.
Sort the population by fitness.
Divide the whole population into subpopulation 1 and subpopulation 2.

Step 5: End while

Step 6: Output: the best results.
End.

Test instance: Three groups of thirty SUKP instances were recently presented by He et al. [5].
What needs to be specified is that the set of items S = {U1, U2, U3, . . . , Um} is represented as a
0–1 matrix M = (rij), with m rows and n columns. For each element rij in M (i = 1, 2, . . . , m; j = 1,
2, . . . , n), rij = 1 if and only if uj = Ui. Therefore, each instance contains four factors: (1) m denotes
the number of items; (2) n denotes the number of elements; (3) density of element 1 in the matrix
Mα ∈ {0.1, 0.15}; and (4) the ratio of C to the sum of all elements β ∈ {0.75, 0.85}. According to the
relationship between m and n, three types of instances are generated. The first group: 10 SUKP
instances with m > n, m ∈ {100, 200, 300, 400, 500} and n ∈ {85, 185, 285, 385, 485}, named as
F01–F10, respectively. The second group: 10 SUKP instances with m = n, m ∈ {100, 200, 300, 400,
500} and n ∈ {100, 200, 300, 400, 500}, named as S01–S10, respectively. The third group: 10 SUKP
instances with m < n, m ∈ {85, 185, 285, 385, 485} and n ∈ {100, 200, 300, 400, 500}, named as T01–T10,
respectively. We selected five instances in each group with α = 0.1 and β = 0.75. The instances can
be downloaded at http://sncet.com/ThreekindsofSUKPinstances(EAs).rar. Three categories with
different relationships between m and n (m > n, m = n, and m < n) of 15 SUKP instances were selected
for testing. The parameters and the best solution value (Best*) [5] are shown in Table 3.

312

Mathematics 2019, 7, 17

Table 3. The parameters and the best solution value provided in [5] for 15 SUKP instances.

Number Instance m n Capacity Best*

1 F01 100 85 12,015 13,251
2 F03 200 185 22,809 13,241
3 F05 300 285 36,126 10,553
4 F07 400 385 50,856 10,766
5 F09 500 485 60,351 11,031
6 S01 100 100 11,223 14,044
7 S03 200 200 25,630 11,846
8 S05 300 300 38,289 12,304
9 S07 400 400 49,822 10,626
10 S09 500 500 63,902 10,755
11 T01 85 100 12,180 11,664
12 T03 185 200 25,405 13,047
13 T05 285 300 38,922 11,158
14 T07 385 400 49,815 10,085
15 T09 485 500 62,516 10,823

Experimental environment: For fair comparisons, all proposed algorithms in this paper were
coded in C++ and in the Microsoft Visual Studio 2015 environment. All the experiments were run on a
PC with Intel (R) Core (TM) i7-7500 CPU (2.90 GHz and 8.00 GB RAM).

On the stopping condition, we followed the original paper [5] and set the iteration number
MaxGen equal to max {m, n} for all SUKP instances. Here, m denotes the number of items and n is the
number of elements in each SUKP instance. In addition, the population size of all the algorithms was
set to N = 20. For each SUKP instance, we carried out 100 independent replications.

The parameters for the proposed discrete MS algorithms were set as follows: the max step
Smax = 1.0, acceleration factor ϕ = 0.618, and the index β = 1.5.

4.1. The Performance of Discrete MS Algorithm with Different Transfer Functions

Computational results are summarized in Table 4, which records the results for SUKP instances
with m > n, m = n, and m < n, respectively. For each instance, we give several criteria to evaluate the
comprehensive performance of the twelve discrete MS algorithms. “Best” and “Mean” refer to the best
value and the average value for each instance obtained by each algorithm among 100 independent
runs. The best solution provided in [5] are given in parentheses in the first column.

313

Mathematics 2019, 7, 17

T
a

b
le

4
.

Th
e

be
st

va
lu

es
an

d
av

er
ag

e
va

lu
es

of
tw

el
ve

di
sc

re
te

M
S

al
go

ri
th

m
s

on
15

SU
K

P
in

st
an

ce
s.

N
u

m
b

e
r

C
ri

te
ri

o
n

M
S

S
1

M
S

S
2

M
S

S
3

M
S

S
4

M
S

V
1

M
S

V
2

M
S

V
3

M
S

V
4

M
S

O
1

M
S

O
2

M
S

O
3

M
S

O
4

F0
1

Be
st

12
,6

98
13

,2
83

12
,8

61
13

,0
57

13
,0

03
13

,0
03

13
,0

44
13

,0
44

12
,9

73
12

,6
78

13
,2

83
13

,2
83

(1
32

51
)

M
ea

n
12

,2
50

13
,1

02
12

,1
68

12
,2

27
12

,5
64

12
,7

40
12

,8
58

12
,6

97
12

,3
20

12
,0

66
13

,0
52

13
,0

62
F0

3
Be

st
12

,7
62

13
,2

86
12

,2
16

12
,1

89
12

,8
75

12
,6

39
11

,9
53

12
,2

67
13

,1
75

12
,2

55
13

,3
22

13
,5

21
(1

32
41

)
M

ea
n

11
,7

77
12

,8
60

11
,4

65
11

,2
61

12
,1

76
12

,1
00

11
,3

21
11

,1
93

12
,3

71
11

,0
07

13
,1

01
13

,1
93

F0
5

Be
st

10
,1

42
10

,6
68

99
74

10
,0

47
99

66
95

62
97

52
94

60
10

,5
39

96
56

10
,6

43
11

,1
27

(1
05

53
)

M
ea

n
95

88
10

,1
96

94
65

93
93

93
52

91
20

92
50

91
31

98
22

89
87

10
,3

81
10

,3
02

F0
7

Be
st

10
,4

56
11

,3
21

97
93

10
,0

05
10

,6
25

95
39

99
17

98
14

10
,9

06
98

01
11

,3
21

11
,4

35
(1

07
66

)
M

ea
n

97
50

10
,6

44
93

49
94

67
10

,0
42

91
50

93
17

92
65

10
,1

41
90

28
10

,8
33

10
,4

11
F0

9
Be

st
10

,6
69

11
,4

10
10

,6
42

10
,4

61
10

,7
18

10
,7

25
10

,5
98

10
,2

88
11

,2
79

98
08

11
,1

72
11

,0
31

(1
10

31
)

M
ea

n
10

,2
93

10
,9

13
10

,0
82

99
65

10
,4

20
99

69
10

,1
34

99
97

10
,6

48
94

29
10

,7
50

10
,7

16
S0

1
Be

st
13

,4
05

14
,0

44
13

,0
80

13
,6

11
13

,3
96

13
,8

14
13

,7
21

13
,7

21
13

,6
59

13
,2

02
14

,0
03

14
,0

44
(1

40
44

)
M

ea
n

12
,7

25
13

,4
78

12
,4

18
12

,6
07

13
,2

11
13

,5
69

13
,5

40
13

,5
03

12
,8

99
12

,3
39

13
,5

83
13

,6
49

S0
3

Be
st

11
,2

49
11

,1
04

10
,9

04
11

,2
95

11
,3

29
10

,8
02

10
,4

81
10

,8
08

11
,7

57
11

,1
47

11
,8

73
12

,3
50

(1
18

46
)

M
ea

n
10

,4
69

10
,5

76
10

,2
82

10
,2

85
10

,6
22

98
79

10
,1

12
10

,2
12

10
,7

89
99

75
11

,4
19

11
,5

08
S0

5
Be

st
11

,6
49

12
,0

71
11

,4
72

11
,4

59
11

,7
99

11
,6

86
11

,4
21

11
,3

80
11

,8
62

11
,0

48
12

,2
40

12
,5

98
(1

23
04

)
M

ea
n

10
,9

79
11

,6
50

10
,7

53
10

,7
87

11
,1

99
11

,2
06

10
,8

98
11

,1
65

11
,2

72
10

,1
53

11
,7

21
11

,5
41

S0
7

Be
st

10
,3

30
10

,9
90

10
,2

18
10

,0
73

10
,1

77
96

69
99

57
99

77
10

,6
50

10
,0

06
10

,7
22

10
,7

27
(1

06
26

)
M

ea
n

98
31

10
,3

79
97

66
96

81
99

68
92

86
93

72
94

60
10

,0
19

94
26

10
,3

27
10

,3
43

S0
9

Be
st

10
,0

74
10

,4
95

99
95

10
,0

37
99

38
10

,0
25

10
,0

43
10

,0
52

10
,1

99
95

53
10

,3
55

10
,3

55
(1

07
55

)
M

ea
n

97
19

99
68

95
83

96
75

96
54

97
07

98
04

97
13

98
07

9,
12

7
10

,0
56

99
19

T0
1

Be
st

11
,0

34
11

,5
73

11
,1

58
11

,3
32

11
,4

27
11

,0
27

11
,1

51
11

,0
76

11
,1

95
11

,1
59

11
,5

19
11

,7
35

(1
16

64
)

M
ea

n
10

,5
77

11
,2

59
10

,4
91

10
,5

01
10

,8
12

10
,5

72
10

,4
96

10
,7

81
10

,5
68

10
,4

95
11

,2
76

11
,2

87
T0

3
Be

st
12

,2
34

13
,3

06
12

,3
57

12
,1

36
12

,4
15

12
,6

33
12

,0
39

11
,8

29
12

,7
98

12
,0

85
13

,3
78

13
,6

47
(1

30
47

)
M

ea
n

11
,5

49
12

,6
21

11
,6

24
11

,5
22

11
,7

45
11

,7
43

11
,5

35
11

,4
00

11
,9

80
11

,2
67

12
,9

48
13

,0
00

T0
5

Be
st

11
,0

25
11

,1
73

11
,1

67
10

,7
65

10
,8

14
10

,7
25

10
,4

85
11

,2
40

11
,1

83
10

,2
99

11
,2

26
11

,3
91

(1
11

58
)

M
ea

n
10

,3
85

10
,8

71
10

,2
47

10
,1

18
10

,6
35

10
,2

29
10

,0
59

10
,7

35
10

,6
51

95
84

10
,9

57
10

,8
16

T0
7

Be
st

96
76

96
09

91
40

91
69

95
94

93
03

90
49

89
65

96
75

91
98

97
83

97
39

(1
00

85
)

M
ea

n
89

87
92

64
88

73
88

75
91

61
91

31
86

42
87

33
91

54
86

94
92

61
92

40
T0

9
Be

st
10

,2
08

10
,5

49
10

,1
31

10
,0

94
10

,1
15

10
,2

01
98

66
10

,0
05

10
,4

50
99

89
10

,6
60

10
,5

39
(1

08
23

)
M

ea
n

98
56

10
,2

05
97

53
97

11
99

49
97

71
95

06
97

14
99

85
93

32
10

,3
50

10
,1

90

314

Mathematics 2019, 7, 17

In Table 4, it can be easily observed that MSO4 outperforms the eleven other discrete MS
algorithms and demonstrates the best comprehensive performance when solving all fifteen SUKP
instances. In addition, MSS2 and MSO3 show comparable performance.

To evaluate the performance of each algorithm, the relative percentage deviation (RPD) was
defined to represent the similarity between the best value obtained by each algorithm and the best
solution 5. The RPD of each SUKP instance is calculated as follows.

RPD = (Best∗ − Best)/Best∗ × 100 (16)

where Best∗ is the best solution provided in [5]. Clearly, if the value of RPD is less than 0, the algorithm
updates the best solution of the SUKP test instance in [5]. The statistical results are shown in Table 5.

Table 5. The effect of twelve transfer functions on the performance of discrete MS algorithm
(RPD values).

Number MSS1 MSS2 MSS3 MSS4 MSV1 MSV2 MSV3 MSV4 MSO1 MSO2 MSO3 MSO4

F01 4.17 −0.24 2.94 1.46 1.87 1.87 1.56 1.56 2.10 4.32 −0.24 −0.24
F03 3.62 −0.34 7.74 7.95 2.76 4.55 9.73 7.36 0.50 7.45 −0.61 −2.11
F05 3.89 −1.09 5.49 4.79 5.56 9.39 7.59 10.36 0.13 8.50 −0.85 −5.44
F07 2.88 −5.16 9.04 7.07 1.31 11.40 7.89 8.84 −1.30 8.96 −5.16 −6.21
F09 3.28 −3.44 3.53 5.17 2.84 2.77 3.93 6.74 −2.25 11.09 −1.28 0.00
S01 4.55 0.00 6.86 3.08 4.61 1.64 2.30 2.30 2.74 6.00 0.29 0.00
S03 5.04 6.26 7.95 4.65 4.36 8.81 11.52 8.76 0.75 5.90 −0.23 −4.25
S05 5.32 1.89 6.76 6.87 4.10 5.02 7.18 7.51 3.59 10.21 0.52 −2.39
S07 2.79 −3.43 3.84 5.20 4.23 9.01 6.30 6.11 −0.23 5.83 −0.90 −0.95
S09 6.33 2.42 7.07 6.68 7.60 6.79 6.62 6.54 5.17 11.18 3.72 3.72
T01 5.40 0.78 4.34 2.85 2.03 5.46 4.40 5.04 4.02 4.33 1.24 −0.61
T03 6.23 −1.99 5.29 6.98 4.84 3.17 7.73 9.34 1.91 7.37 −2.54 −4.60
T05 1.19 −0.13 −0.08 3.52 3.08 3.88 6.03 −0.73 −0.22 7.70 −0.61 −2.09
T07 4.06 4.72 9.37 9.08 4.87 7.75 10.27 11.11 4.07 8.80 2.99 3.43
T09 5.68 2.53 6.39 6.74 6.54 5.75 8.84 7.56 3.45 7.71 1.51 2.62

Mean 4.30 0.19 5.77 5.47 4.04 5.82 6.79 6.56 1.63 7.69 −0.14 −1.28

In Table 5, it can be seen that, in all twelve discrete MS algorithms, MSS2, MSS3, MSV4, MSO1,
MSO3, and MSO4 all update the best solutions [5]. However, MSS3 and MSV4 update only one SUKP
instance, T05. MSO1 updates the instances F07, F09, S07, and T05. Moreover, MSO4 still keeps the
best performance because its total average RPD is only −1.28. The total average RPD of MSO3 is
−0.14, which implies that MSO3 is slightly worse than MSO4 but outperforms the ten other discrete
MS algorithms. Obviously, MSS2 is the third best of the twelve discrete MS algorithms. Indeed, it can
also be seen that MSO4 updates and obtains the best solutions [5] ten and two times (out of 15), i.e.,
66.67% and 13.33% of the whole instance set, respectively. MSO3 updates and fails to find the best
solutions 5 nine and six times (out of 15), i.e., 60.00% and 40.00% of the whole instance set, respectively.
MSS2 updates and obtains the best solutions 5 eight (53.33%) and one times (6.60%), respectively.

To further evaluate the comprehensive performance of twelve discrete MS algorithms in solving
fifteen SUKP instances, the average ranking based on the best values are displayed in Table 6 and
Figure 3, respectively. In Table 6 and Figure 3, the average ranking value of MSO4 is 1.60 and it still
ranks first. In addition, MSO3 and MSS2 are the second and the third best algorithms, respectively,
which is very consistent with the previous analysis. The ranking of twelve discrete MS algorithms
based on the best values are as follows:

MSO4 MSO3 MSS2 MSO1 MSS1 MSV1 MSS4 MSS3
= MSV2 MSV4 MSV3 MSO2

(17)

315

Mathematics 2019, 7, 17

Table 6. Ranks of twelve discrete MS algorithms based on the best values.

Number MSS1 MSS2 MSS3 MSS4 MSV1 MSV2 MSV3 MSV4 MSO1 MSO2 MSO3 MSO4

F01 11 1 10 4 7 7 5 5 9 12 1 1
F03 6 3 10 11 5 7 12 8 4 9 2 1
F05 5 2 7 6 8 11 9 12 4 10 3 1
F07 5 1 6 8 7 12 11 10 4 9 3 2
F09 7 1 8 10 6 5 9 11 2 12 3 4
S01 9 1 12 8 10 4 5 5 7 11 3 1
S03 6 8 9 5 4 11 12 10 3 7 2 1
S05 7 3 8 9 5 6 10 11 4 12 2 1
S07 5 1 6 8 7 12 11 10 4 9 3 2
S09 6 1 10 8 11 9 7 6 4 12 2 2
T01 11 2 8 5 4 12 9 10 6 7 3 1
T03 8 3 7 9 6 5 11 12 4 10 2 1
T05 7 5 6 9 8 10 11 2 4 12 3 1
T07 3 5 10 9 6 7 11 12 4 8 1 2
T09 5 2 7 9 8 6 12 10 4 11 1 3

Mean 6.67 2.60 8.27 7.87 6.80 8.27 9.67 8.93 4.47 10.07 2.27 1.60

By looking closely at Figures 2 and 3, it is not difficult to see that V3, V4, and O2 exhibit the worst
performance, which is consistent in the two figures. Similar to the previous analysis in Figure 2, O1,
O3, and O4 show satisfactory performance among 12 transfer functions. Thus, it can be inferred that
PR value can be used as a criterion for selecting transfer functions.

Figure 3. Comparison of the average rank of 12 discrete MS algorithms for 15 SUKP instances.

To analyze the experimental results for statistical purposes, we selected three representative
instances (F09, S09, and T09) and provided boxplots in Figures 4–6. In Figure 4, the boxplot of MSS2
has greater value and less height than those of other eleven algorithms. In Figures 5 and 6, MSO3
exhibits a similar phenomenon as MSS2 in Figure 4. Additionally, the performance of MSO2 is the
worst. In Figures 4–6, we can also observe that MSO3 performs slightly better than MSO4 in solving
large-scale instances.

316

Mathematics 2019, 7, 17

Figure 4. Boxplot of the best values on F09 in 100 runs.

Figure 5. Boxplot of the best values on S09 in 100 runs.

Figure 6. Boxplot of the best values on T09 in 100 runs.

Moreover, optimization process of each algorithm in solving F09, S09, and T09 instances is given
in Figures 7–9, respectively. In these three figures, all the function values are the average best values
achieved from 100 runs. In Figure 7, the initial value of MSS2 is greater than that of other algorithms

317

Mathematics 2019, 7, 17

and then it quickly converges to the global optimum. For MSO3, the same scene appears in Figures 8
and 9. Overall, MSS2 and MSO3 have stronger optimization ability and faster convergence speed than
the other discrete MS algorithms.

Figure 7. The convergence graph of twelve discrete MS algorithms on F09.

Figure 8. The convergence graph of twelve discrete MS algorithms on S09.

Figure 9. The convergence graph of twelve discrete MS algorithms on T09.

318

Mathematics 2019, 7, 17

Through the above experimental analysis, the following conclusions can be drawn: (1) For
S-shaped transfer functions, the combination of S2 and MS (MSS2) is the most effective. (2) As far
as V-shaped transfer functions are concerned, the combination of V1 and MS (MSV1) shows the best
performance. (3) In the case of other shapes transfer functions, the more effective algorithms are MSO4,
MSO3, and MSO1. (4) By comparing the family of S-shaped transfer functions and V-shaped transfer
functions, the family of S-shaped transfer functions with MS is suitable for solving SUKP problem.
(5) MSO4 has advantages over other algorithms in terms of the quality of solutions. (6) As far as the
stability and convergence rate are concerned, MSO3 and MSS2 perform better than other algorithms.

Overall, it is evident that MSO4 has the best results (considering RPD values and average
ranking values) on fifteen SUKP instances. Therefore, it appears that the proposed other-shapes
family of transfer functions, particularly the O4 function, has many advantages combined with other
algorithms to solve binary optimization problems. Additionally, the O3 function and S2 function are
also suitable functions that can be considered for selection. In brief, these results demonstrate that
the transfer function plays a very important role in solving SUKP using discrete MS algorithm. Thus,
by carefully selecting the appropriate transfer function, the performance of discrete MS algorithm can
be improved obviously.

4.2. Estimation of the Solution Space

SUKP is a binary coded problem and the solution space can be represented as a graph G = (V, E),
in which vertex set V = S, where S is the set of solutions for a SUKP instance, S = {0, 1}n and edge set
E = {(s, s′) ∈ S× S|d(s, s′) = dmin }, where dmin is the minimum distance between two points in the
search space. Especially, hamming distance is used to describe the similarity between individuals.
Obviously, the minimum distance is 0 when all bits have the same value and the maximum distance is
n, where n is the dimension of SUKP instance.

Here, MSO4 is specially selected to analyze the solution space for F01, S01, and T01 SUKP instance.
The distribution of fitness at generation 0 and generation 100 is presented in Figures 10–12. The distance
between each individual and the best individual is given in Figures 13–15. In Figures 10–12, we can
see that, at generation 0, the fitness values are more dispersed and worse than that at generation 100.
In Figure 13, it can be observed that the hamming distance varies from 0 to 35 at generation 0 while the
range is 0 to 12 at generation 100. Moreover, the hamming distance can be divided into eight levels at
generation 100, which demonstrates that all individuals tend to some superior individuals. However,
this phenomenon is not evident in S01 and T01.

Figure 10. The distribution graph of fitness on MSO4 for F01.

319

Mathematics 2019, 7, 17

Figure 11. The distribution graph of fitness on MSO4 for S01.

Figure 12. The distribution graph of fitness on MSO4 for T01.

Figure 13. The distance to the best individual for F01.

320

Mathematics 2019, 7, 17

Figure 14. The distance to the best individual for S01.

Figure 15. The distance to the best individual for T01.

To intuitively understand the similarity of the solutions, the spatial structure of the solutions at
generation 100 is illustrated in Figures 16–18. In Figure 16, the first node (denoting the first individual)
has the maximum degree which also shows more individuals have approached the better individual.
However, the value of degree is not much different in Figures 17 and 18. This result is consistent with
the previous analysis.

321

Mathematics 2019, 7, 17

Figure 16. The spatial structure graph for F01 at generation 100.

Figure 17. The spatial structure graph for S01 at generation 100.

Figure 18. The spatial structure graph for T01 at generation 100.

4.3. Discrete MS Algorithm vs. Other Optimization Algorithms

To further verify the performance of discrete MS algorithm, we chose MSO4 algorithm to compare
with five other optimization algorithms. These comparison algorithms include PSO [12], DE [8],

322

Mathematics 2019, 7, 17

global harmony search (GHS) [30], firefly algorithm (FA) [31], and monarch butterfly optimization
(MBO) [32,33]. In DE, the DE/rand/1/bin scheme was adopted. PSO, FA, and MBO are classical or
novel swarm intelligence algorithms that simulate the social behavior of birds, firefly, and monarch
butterfly, respectively. DE is derived from evolutionary theory in nature and has been proved to be
one of the most promising stochastic real-value optimization algorithms. GHS is an efficient variant of
HS, which imitates the music improvisation process. It is also noteworthy that all five comparison
algorithms adopt the discretization method introduced in this paper and combine with O4, respectively.
The parameter setting for each algorithm are shown in Table 7.

Table 7. The parameter settings of six algorithms on SUKP.

Algorithm Parameters Value

PSO
Cognitive constant C1 1.0

Social constant C2 1.0
Inertial constant W 0.3

DE
Weighting factor F 0.9

Crossover constant CR 0.3

GHS
Harmony memory considering rate HMCR 0.9

Pitch adjusting rate PAR 0.3

FA
Alpha 0.2
Beta 1.0

Gamma 1.0

MBO

Migration ratio 3/12
Migration period 1.4

Butterfly adjusting rate 1/12
Max step 1.0

MSO4
Max step Smax 1.0

Acceleration factor ϕ 0.618
Lévy distribution parameter β 1.5

The best results and average results obtained by six methods over 100 independent runs as well
the average time cost of each computation (unit: second, represented as “time”) are summarized in
Table 8. The frequency (TBest and TMean) and average ranking (RBest and RMean) of each algorithm
with the best performance based on the best values and average values are also recorded in Table 8.
The average time cost of each computation for solving fifteen SUKP instances is illustrated in Figure 19.
In Table 8, on best, MSO4 outperforms other methods on eight of fifteen instances (F01, F03, F05, F07,
S01, S03, S05, and T03). MBO is the second most effective. In terms of average ranking, there is little
difference between the performance of MSO4 and MBO. In terms of the average time cost, it can be
observed in Figure 19 that DE has the slowest computing speed. However, GHS has surprisingly fast
solving speed. In addition, MSO4 is second among the six algorithms. Overall, the computing speed
of PSO, FA, MBO and MSO4 shows little difference.

323

Mathematics 2019, 7, 17

Table 8. Computational results and comparisons on the Best and Mean on 15 SUKP instances.

Number Criterion PSO DE GHS FA MBO MSO4

F01 Best 13,283 13,125 13,251 13,283 13,283 13,283
(13251) Mean 12,981 12,923 12,492 13,041 12,941 13,062

Time 1.297 1.923 0.330 1.627 3.684 1.398
F03 Best 13,319 13,172 12,323 13,282 13,381 13,521

(13241) Mean 12,697 12,443 11,231 12,544 12,886 13,193
Time 8.643 13.381 0.603 11.552 11.676 7.901

F05 Best 10,408 10,214 10,512 10,191 10,786 11,127
(10553) Mean 9825 9420 10,179 9092 10,210 10,302

Time 28.628 41.633 0.928 45.647 40.938 24.912
F07 Best 11,091 10,135 11,255 9740 11,142 11,435

(10766) Mean 10,613 9573 10,642 9226 10,463 10,411
Time 63.290 124.504 1.637 97.102 61.588 56.838

F09 Best 11,046 11,016 11,536 11,099 11,546 11,031
(11031) Mean 10,473 10,443 11,199 10,473 10,736 10,716

Time 138.551 225.749 3.179 170.035 157.478 124.378
S01 Best 13,814 13,519 13,522 13,814 14,044 14,044

(14044) Mean 13,575 12,964 12,656 13,472 13,612 13,649
Time 1.608 2.800 0.358 1.805 2.617 1.646

S03 Best 11,914 11,085 11,531 11,406 11,955 12,350
(11846) Mean 10,978 10,408 10,925 10,833 11,056 11,508

Time 8.437 14.543 0.476 10.753 9.371 8.112
S05 Best 12,574 12,071 12,104 11,398 12,369 12,598

(12304) Mean 11,709 11,251 11,492 10,993 11,604 11,541
Time 35.259 46.302 1.014 37.130 26.551 28.612

S07 Best 10,669 10,267 10,952 10,241 10,906 10,727
(10626) Mean 10,217 9753 10,497 9827 10,237 10,343

Time 79.622 101.118 1.718 77.458 76.049 58.433
S09 Best 10,352 10,100 10,434 10,057 10,633 10,355

(10755) Mean 10,104 9708 10,239 9766 10,139 9919
Time 144.377 242.428 3.013 167.492 153.835 121.622

T01 Best 11,752 11,469 11,434 11,755 11,748 11,735
(11664) Mean 11,152 10,930 10,370 11,226 11,207 11,287

Time 1.517 1.892 0.407 1.722 1.668 1.354
T03 Best 13,100 9624 12,618 11,487 13,008 13,647

(13047) Mean 12,091 9,122 11,855 10,880 12,189 13,000
Time 7.964 12.708 0.507 11.958 10.702 7.642

T05 Best 11,032 10,669 11,071 11,557 11,090 11,391
(11158) Mean 10,656 10,490 10,722 10,983 10,686 10,816

Time 31.753 41.176 0.822 32.175 25.044 24.539
T07 Best 9790 9250 9857 9,392 9770 9739

(10085) Mean 9636 8897 9447 8,895 9322 9240
Time 62.079 113.779 1.639 79.984 67.675 57.000

T09 Best 10,482 10,260 10,643 10,207 10,661 10,539
(10823) Mean 10,111 9717 10,306 9783 10,249 10,190

Time 121.926 195.754 2.896 144.926 136.766 114.066
TBest 1 0 2 3 5 8

TMean 2 0 5 1 0 6
RBest 3.27 5.47 3.40 4.40 2.20 2.27

RMean 3.17 5.47 3.27 4.43 2.53 2.13

324

Mathematics 2019, 7, 17

Figure 19. The average time cost of each computation for solving fifteen SUKP instances.

To investigate the difference between the results obtained by MSO4 and those by the comparison
algorithm from the perspective of statistics, Wilcoxon’s rank sum tests with the 5% significance level
were performed. The results of rank sum tests are recorded in Table 9. In Table 9, “1” and “−1” indicate
that MSO4 is superior or inferior to the corresponding comparison algorithm, respectively, while
“0” shows that there is no statistical difference at 5% significance level between the two comparison
algorithms. The statistical result is shown in Table 9.

In Table 8, MSO4 outperforms PSO and DE on all fifteen instances. In addition, MSO4 performs
better than GHS and FA on most of the instances except for S05 and F01, respectively. Meanwhile,
MSO4 is superior to MBO on eleven instances except for F07, F09, S01, and S05. Statistically, there is no
difference between the performance of MSO4 and that of MBO for these four instances.

Considering the results shown in Tables 8 and 9, a conclusion can be drawn that the performance
of MSO4 is superior to or at least quite competitive with the five other methods.

Table 9. Results of rank sum tests for MSO4 with the comparison algorithms.

MSO4 PSO DE GHS FA MBO

F01 1 1 1 0 1
F03 1 1 1 1 1
F05 1 1 1 1 1
F07 1 1 1 1 0
F09 1 1 1 1 0
S01 1 1 1 1 0
S03 1 1 1 1 1
S05 1 1 0 1 0
S07 1 1 1 1 1
S09 1 1 1 1 1
T01 1 1 1 1 1
T03 1 1 1 1 1
T05 1 1 1 1 1
T07 1 1 1 1 1
T09 1 1 1 1 1

1 15 15 14 14 11
0 0 0 1 1 4
−1 0 0 0 0 0

325

Mathematics 2019, 7, 17

5. Conclusions

In this paper, twelve different transfer functions-based discrete MS algorithms are proposed for
solving SUKP. These transfer functions can be divided into three families, S-shaped, V-shaped, and
other-shaped transfer functions. To investigate the performance of twelve discrete MS algorithms,
three groups of fifteen SUKP instances were employed and the experimental results were compared
and analyzed comprehensively. From the experimental results, we found that MSO4 has the best
performance. Furthermore, the relative percentage deviation (RPD) was calculated to evaluate the
similarity between the best value obtained by each algorithm and the best solution provided in [5].
The results show that six algorithms update the best solutions [5] for 11 SUKP instances. The results
also indicate that four other shapes transfer functions, especially the O4 function combined with MS,
have merits for solving discrete optimization problems.

The comparison results on the fifteen SUKP instances among MSO4 and five state-of-the-art
algorithms show that MSO4 performs competitively.

There are several possible directions for further study. First, we will investigate some new
transfer functions on other algorithms such as krill herd algorithm (KH) [34–38], fruit fly optimization
algorithm (FOA) [39], earthworm optimization algorithm (EWA) [40], and cuckoo search (CS) [41,42].
Second, we will study other techniques to discrete continuous optimization algorithms such as k-means
framework [43]. Third, we will apply these twelve transfer functions-based discrete MS algorithms
to other related and more complicated binary optimization problems including multidimensional
knapsack problem (MKP) [39] and flow shop scheduling problem (FSSP) [44]. Finally, we will
incorporate other strategies, namely, information feedback [45] and chaos theory [46], into MS to
improve the performance of the algorithm.

Author Contributions: Writing and methodology, Y.F.; supervision, H.A.; review and editing, X.G.

Funding: This research was funded by National Natural Science Foundation of China, grant number 61806069,
Key Research and Development Projects of Hebei Province, grant number 17210905.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Cormen, T.H.; Leiserson, C.E.; Rivest, R.L.; Stein, C. Introduction to Algorithms; MIT Press: Cambridge, MA,
USA, 2009.

2. Du, D.Z.; Ko, K.I. Theory of Computational Complexity; John Wiley & Sons: Hoboken, NJ, USA, 2011.
3. Goldschmidt, O.; Nehme, D.; Yu, G. Note: On the set-union knapsack problem. Naval Res. Logist. (NRL)

1994, 41, 833–842. [CrossRef]
4. Arulselvan, A. A note on the set union knapsack problem. Discret. Appl. Math. 2014, 169, 214–218. [CrossRef]
5. He, Y.; Xie, H.; Wong, T.L.; Wang, X. A novel binary artificial bee colony algorithm for the set-union knapsack

problem. Future Gener. Comput. Syst. 2017, 78, 77–86. [CrossRef]
6. Yang, X.; Vernitski, A.; Carrea, L. An approximate dynamic programming approach for improving accuracy

of lossy data compression by Bloom filters. Eur. J. Oper. Res. 2016, 252, 985–994. [CrossRef]
7. Schneier, B. Applied Cryptography: Protocols, Algorithms, and Source Code in C; John Wiley & Sons: Hoboken,

NJ, USA, 2007.
8. Engelbrecht, A.P.; Pampara, G. Binary differential evolution strategies. In Proceedings of the IEEE Congress

on Evolutionary Computation, Singapore, 25–28 September 2007; pp. 1942–1947.
9. Ozsoydan, F.B.; Baykasoglu, A. A swarm intelligence-based algorithm for the set-union knapsack problem.

Future Gener. Comput. Syst. 2018, 93, 560–569. [CrossRef]
10. Wang, G.G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems.

Memetic Comput. 2016. [CrossRef]
11. Feng, Y.; Wang, G.G. Binary moth search algorithm for discounted 0-1 knapsack problem. IEEE Access 2018,

6, 10708–10719. [CrossRef]

326

Mathematics 2019, 7, 17

12. Kennedy, J.; Eberhart, R.C. A discrete binary version of the particle swarm algorithm. In Proceedings of the
1997 IEEE International Conference on Systems, Man, and Cybernetics—Computational Cybernetics and
Simulation, Orlando, FL, USA, 12–15 October 1997; Volume 5, pp. 4104–4108.

13. Karthikeyan, S.; Asokan, P.; Nickolas, S.; Page, T. A hybrid discrete firefly algorithm for solving
multi-objective flexible job shop scheduling problems. Int. J. Bio-Inspired Comput. 2015, 7, 386–401. [CrossRef]

14. Kong, X.; Gao, L.; Ouyang, H.; Li, S. A simplified binary harmony search algorithm for large scale 0-1
knapsack problems. Expert Syst. Appl. 2015, 42, 5337–5355. [CrossRef]

15. Rashedi, E.; Nezamabadi-Pour, H.; Saryazdi, S. BGSA: Binary gravitational search algorithm. Nat. Comput.
2010, 9, 727–745. [CrossRef]

16. Saremi, S.; Mirjalili, S.; Lewis, A. How important is a transfer function in discrete heuristic algorithms.
Neural Comput. Appl. 2015, 26, 625–640. [CrossRef]

17. Mirjalili, S.; Lewis, A. S-shaped versus V-shaped transfer functions for binary particle swarm optimization.
Swarm Evol. Comput. 2013, 9, 1–14. [CrossRef]

18. Pampara, G.; Franken, N.; Engelbrecht, A.P. Combining particle swarm optimisation with angle modulation
to solve binary problems. In Proceedings of the 2005 IEEE Congress on Evolutionary Computation,
Edinburgh, UK, 2–5 September 2005; Volume 1, pp. 89–96.

19. Leonard, B.J.; Engelbrecht, A.P.; Cleghorn, C.W. Critical considerations on angle modulated particle swarm
optimisers. Swarm Intell. 2015, 9, 291–314. [CrossRef]

20. Costa, M.F.P.; Rocha, A.M.A.C.; Francisco, R.B.; Fernandes, E.M.G.P. Heuristic-based firefly algorithm for
bound constrained nonlinear binary optimization. Adv. Oper. Res. 2014, 2014, 215182. [CrossRef]

21. Burnwal, S.; Deb, S. Scheduling optimization of flexible manufacturing system using cuckoo search-based
approach. Int. J. Adv. Manuf. Technol. 2013, 64, 951–959. [CrossRef]

22. Pampará, G.; Engelbrecht, A.P. Binary artificial bee colony optimization. In Proceedings of the 2011 IEEE
Symposium on Swarm Intelligence (SIS), Paris, France, 11–15 April 2011; pp. 1–8.

23. Zhu, H.; He, Y.; Wang, X.; Tsang, E.C.C. Discrete differential evolutions for the discounted {0-1} knapsack
problem. Int. J. Bio-Inspired Comput. 2017, 10, 219–238. [CrossRef]

24. Changdar, C.; Mahapatra, G.S.; Pal, R.K. An improved genetic algorithm based approach to solve constrained
knapsack problem in fuzzy environment. Expert Syst. Appl. 2015, 42, 2276–2286. [CrossRef]

25. Lim, T.Y.; Al-Betar, M.A.; Khader, A.T. Taming the 0/1 knapsack problem with monogamous pairs genetic
algorithm. Expert Syst. Appl. 2016, 54, 241–250. [CrossRef]

26. Cao, L.; Xu, L.; Goodman, E.D. A neighbor-based learning particle swarm optimizer with short-term and
long-term memory for dynamic optimization problems. Inf. Sci. 2018, 453, 463–485. [CrossRef]

27. Chih, M. Three pseudo-utility ratio-inspired particle swarm optimization with local search for
multidimensional knapsack problem. Swarm Evol. Comput. 2017, 39. [CrossRef]

28. Michalewicz, Z.; Nazhiyath, G. Genocop III: A co-evolutionary algorithm for numerical optimization
problems with nonlinear constraints. In Proceedings of the 1995 IEEE International Conference on
Evolutionary Computation, Perth, Western Austrilia, 29 November–1 December 1995; Volume 2, pp. 647–651.

29. Liu, X.J.; He, Y.C.; Wu, C.C. Quadratic greedy mutated crow search algorithm for solving set-union knapsack
problem. Microelectro. Comput. 2018, 35, 13–19.

30. Omran, M.G.H.; Mahdavi, M. Global-best harmony search. Appl. Math. Comput. 2008, 198, 643–656.
[CrossRef]

31. Yang, X.S. Firefly Algorithm, Lévy Flights and Global Optimization. In Research and Development in Intelligent
Systems XXVI; Springer: London, UK, 2010; pp. 209–218.

32. Wang, G.-G.; Deb, S.; Cui, Z. Monarch butterfly optimization. Neural Comput. Appl. 2015, 1–20. [CrossRef]
33. Feng, Y.; Wang, G.G.; Li, W.; Li, N. Multi-strategy monarch butterfly optimization algorithm for discounted

{0-1} knapsack problem. Neural Comput. Appl. 2017, 1–18. [CrossRef]
34. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H. An effective krill herd algorithm with migration operator in

biogeography-based optimization. Appl. Math. Model. 2014, 38, 2454–2462. [CrossRef]
35. Wang, G.-G.; Gandomi, A.H.; Alavi, A.H. Stud krill herd algorithm. Neurocomputing 2014, 128, 363–370.

[CrossRef]
36. Wang, G.; Guo, L.; Wang, H.; Duan, H.; Liu, L.; Li, J. Incorporating mutation scheme into krill herd algorithm

for global numerical optimization. Neural Comput. Appl. 2014, 24, 853–871. [CrossRef]

327

Mathematics 2019, 7, 17

37. Wang, H.; Yi, J.-H. An improved optimization method based on krill herd and artificial bee colony with
information exchange. Memetic Comput. 2017. [CrossRef]

38. Wang, G.-G.; Deb, S.; Gandomi, A.H.; Alavi, A.H. Opposition-based krill herd algorithm with Cauchy
mutation and position clamping. Neurocomputing 2016, 177, 147–157. [CrossRef]

39. Wang, L.; Zheng, X.L.; Wang, S.Y. A novel binary fruit fly optimization algorithm for solving the
multidimensional knapsack problem. Knowl.-Based Syst. 2013, 48, 17–23. [CrossRef]

40. Wang, G.-G.; Deb, S.; Coelho, L.D.S. Earthworm optimization algorithm: A bio-inspired metaheuristic
algorithm for global optimization problems. Int. J. Bio-Inspired Comput. 2015. [CrossRef]

41. Cui, Z.; Sun, B.; Wang, G.-G.; Xue, Y.; Chen, J. A novel oriented cuckoo search algorithm to improve DV-Hop
performance for cyber-physical systems. J. Parallel. Distr. Comput. 2017, 103, 42–52. [CrossRef]

42. Wang, G.-G.; Gandomi, A.H.; Zhao, X.; Chu, H.E. Hybridizing harmony search algorithm with cuckoo search
for global numerical optimization. Soft Comput. 2016, 20, 273–285. [CrossRef]

43. García, J.; Crawford, B.; Soto, R.; Castro, C.; Paredes, F. A k-means binarization framework applied to
multidimensional knapsack problem. Appl. Intell. 2018, 48, 357–380. [CrossRef]

44. Deng, J.; Wang, L. A competitive memetic algorithm for multi-objective distributed permutation flow shop
scheduling problem. Swarm Evolut. Comput. 2016, 32, 107–112. [CrossRef]

45. Wang, G.-G.; Tan, Y. Improving metaheuristic algorithms with information feedback models. IEEE Trans.
Cybern. 2017. [CrossRef] [PubMed]

46. Wang, G.-G.; Guo, L.; Gandomi, A.H.; Hao, G.-S.; Wang, H. Chaotic krill herd algorithm. Inf. Sci. 2014, 274,
17–34. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

328

mathematics

Article

A Novel Simple Particle Swarm Optimization
Algorithm for Global Optimization

Xin Zhang, Dexuan Zou * and Xin Shen

School of Electrical Engineering & Automation, Jiangsu Normal University, Xuzhou 221116, China;
2020160848@jsnu.edu.cn (X.Z.); 2020160838@jsnu.edu.cn (X.S.)
* Correspondence: 6020110007@jsnu.edu.cn; Tel.: +86-181-2003-0371

Received: 28 October 2018; Accepted: 19 November 2018; Published: 27 November 2018

Abstract: In order to overcome the several shortcomings of Particle Swarm Optimization (PSO)
e.g., premature convergence, low accuracy and poor global searching ability, a novel Simple Particle
Swarm Optimization based on Random weight and Confidence term (SPSORC) is proposed in
this paper. The original two improvements of the algorithm are called Simple Particle Swarm
Optimization (SPSO) and Simple Particle Swarm Optimization with Confidence term (SPSOC),
respectively. The former has the characteristics of more simple structure and faster convergence
speed, and the latter increases particle diversity. SPSORC takes into account the advantages of
both and enhances exploitation capability of algorithm. Twenty-two benchmark functions and
four state-of-the-art improvement strategies are introduced so as to facilitate more fair comparison.
In addition, a t-test is used to analyze the differences in large amounts of data. The stability and
the search efficiency of algorithms are evaluated by comparing the success rates and the average
iteration times obtained from 50-dimensional benchmark functions. The results show that the SPSO
and its improved algorithms perform well comparing with several kinds of improved PSO algorithms
according to both search time and computing accuracy. SPSORC, in particular, is more competent for
the optimization of complex problems. In all, it has more desirable convergence, stronger stability
and higher accuracy.

Keywords: particle swarm optimization; confidence term; random weight; benchmark functions;
t-test; success rates; average iteration times

1. Introduction

Since the 1950s, heuristic algorithms based on evolutionary algorithms (EAs) [1] have sprung up
and been widely applied to the field of optimization control, such as moth search (MS) algorithm [2,3],
genetic algorithm (GA) [4], ant colony optimization (ACO) algorithm [5], differential evolution
(DE) algorithm [6], simulated annealing (SA) algorithm [7], krill herd (KH) algorithm, etc. [8–12].
Compared with traditional optimization methods such as golden section [13], Newton method [14,15],
gradient method [16], heuristic algorithms have better biological characteristics and higher efficiency.
It has been proved that heuristic algorithms perform well in some advanced existing fields e.g.,
grid computing [17], the superfluid management of 5G Networks [18], TCP/IP Mobile Cloud [19],
IIR system identification [20], etc.

The Particle Swarm Optimization (PSO) algorithm proposed by Kennedy and Eberhart [21,22] in
1995 is also a member of the heuristic algorithm. Unlike other EAs, PSO does not require such steps as
crossover, mutation, and selection, and it has fewer parameters. Its optimization process relies entirely
on formula iteration, hence its calculation burden is low. The efficiency is very high, especially for
continuous unimodal function model optimization. Due to these advantages, it has been widely used
in various theoretical and practical problems such as function optimization [23], Non-Deterministic
Polynomial(NP) problem [24], and multi-objective optimization [25].

Mathematics 2018, 6, 287; doi:10.3390/math6120287 www.mdpi.com/journal/mathematics329

Mathematics 2018, 6, 287

PSO is a typical algorithm that relies on swarm intelligence [26–31] to optimize complex problems,
and it is inspired by the foraging behavior of birds. It can be imagined that a group of gold rushers find
gold in a region. They all have instruments that can detect gold mines under the stratum, and they can
communicate with their nearest gold rushers. Through communication, they can know whether the
person next to them finds gold. At the beginning, in order to explore this area more comprehensively,
they randomly select a location to explore and maintain a certain distance. As the exploration begins,
if someone finds some gold, the neighboring gold rushers can choose whether to change his position
based on his own experience and whether he trusts him. This constant search may make it easier to
find more gold than to be alone. In this example, a group of gold rushers and the gold are, respectively,
equivalent to the particles of PSO and the optima that needs to be searched.

In actual operation, it is observed that PSO is very prone to premature convergence and falls
into the local optima when faced with multimodal functions, especially some ones with traps or
discontinuities. Based on this observation, a huge amount of particle swarm optimization variants have
been proposed to deal with these issues. From the literature, it can be clearly observed that most of the
existing PSO algorithms can be roughly divided into six categories: principle study, parameter setting,
topology improvement, updating formula improvement, hybrid mechanism, practical application.

1. Principle study: The inertia weight factor, which adjusts the ability of PSO algorithm in local
and global search was introduced by Shi and Eberhart [32], effectively avoiding falling into local
optimum for PSO. Shi and Eberhart provided a way of thinking for future improvement. In 2001,
Parsopoulos and Vrahatis [33]’s research showed that basic PSO can work effectively and stably in
noisy environments, and in many cases, the presence of noise can also help PSO avoid falling into
local optimum. The basic PSO was introduced for continuous nonlinear function [21,22]. However,
because the basic PSO is easy to fall into the local optima, local PSO(LPSO) [34] was introduced in
2002. Clerc and Kennedy [35] proposed a constriction factor to enhance the explosion, stability,
and convergence in a multidimensional complex space. Xu and Yu [36] used the super-martingale
convergence theorem to analyze the convergence of the particle swarm optimization algorithm.
The results showed that the particle swarm optimization algorithm achieves the global optima in
probability and the quantum-behaved particle swarm optimization (QPSO) [37] has also been
proved to have global convergence.

2. Parameter setting: A particle swarm optimization with fitness adjustment parameters (PSOFAB) [38],
based on the fitness performance, was proposed in order to converge to an approximate optimal
solution. The experimental results were analyzed by the Wilcoxon signed rank test, and its analysis
showed that PSOFAP [38] is effective in increasing the convergence speed and the solution
quality. It accurately adapts the parameter value without performing parametric sensitivity
analysis. The inertia weight of the hybrid particle swarm optimization incorporating fuzzy
reasoning and weighted particle (HPSOFW) [39] is changed based on defuzzification output.
The chaotic binary PSO with time-varying acceleration coefficients (CBPSOTVAC) [40] using
116 benchmark problems from the OR-Library to test has time-varying acceleration coefficients
for the multidimensional knapsack problem. A self-organizing hierarchical PSO [41] also uses
time-varying acceleration coefficients.

3. Topology improvement: In 2006, Kennedy and Mendes [42] explained the neighborhood
topologies in fully informed and best-of-neighborhood particle swarms in detail. A dynamic
multiswarm particle swarm optimizer (DMSPSO) [43] was proposed, and it adopts a neighborhood
topology including a random selection of small swarms with small neighborhood. Moreover, the
regrouped group is dynamic and randomly assigned. In 2014, FNNPSO [44] use Fluid Neural
Networks (FNNs) to create a dynamic neighborhood mechanism. The results showed that
FNNPSO can outperform both the standard PSO algorithm and PCGT-PSO. Sun and Li proposed a
two-swarm cooperation particle swarm optimization (TCPSO) [45] that used the slave swarm and
the master swarm to exchange the information, which is beneficial for enhancing the convergence
speed and maintaining the swarm diversity in TCPSO, and particles update the next particle

330

Mathematics 2018, 6, 287

with information from its neighboring particles, rather than its own history best solution and
current velocity. This strategy makes the particles of the subordinate group more inclined to
local optimization, thus accelerating convergence. Inspired by the cluster reaction of the starlings,
Netjinda et al. [46] used the collective response mechanism to influence the velocity and position
of the current particle by seven adjacent ones, thereby increasing the diversity of the particles.
A nonparametric particle swarm optimization (NP-PSO) [47] combines local and global topologies
with two quadratic interpolation operations to enhance the PSO capability without tuning any
algorithmic parameter.

4. Updating formula improvement: Mendes [48] changed the PSO’s velocity and personal best
solution updating formula and proposed a fully informed particle swarm (FIPS) algorithm to
make good use of the whole entire swarm. Mendes [49] proposed a Comprehensive learning
particle swarm optimizer (CLPSO) whose velocity updating formula eliminates the influence from
global best solution to to suit the multimodal functions, and CLPSO uses two tournament-selected
particles to help particles study better case during iteration. The results showed that CLPSO
performs better than other PSO variants for multimodal problems. A learning particle swarm
optimization (*LPSO) algorithm [50] was proposed with a new framework that changed the
velocity updating formula so as to organically hybridize PSO with another optimization technique.
*LPSO is composed of two cascading layers: exemplar generation and a basic PSO algorithm
updating method. A new global particle swarm optimization (NGPSO) algorithm [51] uses a new
position updating equation that relies on the global best particle to guide the searching activities
of all particles. In the latter part of the NGPSO search, the random distribution based on uniform
distribution is used to increase the particle swarm diversity and avoid premature convergence.
Kiran proposed a PSO with a distribution-based position update rule (PSOd) [52] whose position
updating formula is combined with three variables.

5. Hybrid mechanism: In 2014, Wang et al. [53] proposed a series of chaotic particle-swarm krill
herd (CPKH) algorithms for global numerical optimization. The CPKH is a hybird Krill herd
(KH) [54] algorithm with APSO [55] which has a mutation operator and chaotic theory. This hybrid
algorithm, which with an appropriate chaotic map performs superiorly to the standard KH
and other population-based optimization, has quick exploitation for solution. DPSO [56] is
a accelerated PSO (APSO) [55] algorithm hybridized with a DE algorithm mutation operator.
It has a superior performance due to combining the advantages from both APSO and DE. Wang
et al., finally, studied and analyzed the effect of the DPSO parameters on convergence and
performance by detailed parameter sensitivity studies. In he hybrid learning particle swarm
optimizer with genetic disturbance (HLPSO-GD) [57], the genetic disturbance is used to cross
the corresponding particle in the external archive, and new individuals are generated, which
will improve the swarm’s ability to escape from the local optima. Gong et al. proposed a
genetic learning particle swarm optimization (GLPSO) algorithm that uses genetic evolution
to breed promising exemplars based on *LPSO [50] enhancing the global search ability and
search efficiency of PSO. PSOTD [58] namely a particle swarm optimization algorithm with two
differential mutation, which has a novel structure with two swarms and two layers including
bottom layer and top layer, was proposed for 44 benchmark functions. HNPPSO [59] is a novel
particle swarm optimization combined with a multi-crossover operation, a vertical crossover,
and an exemplar-based learning strategy. To deal with production scheduling optimization in
foundry, a hybrid PSO combined the SA [7] algorithm [60] was proposed.

6. Practical application: Zou et al. used NGPSO [51] to solve the economic emission dispatch
(EED) problems and the results showed that NGPSO is the most efficient approach for solving
the economic emission dispatch (EED) problems. PS-CTPSO [61] based on the predatory search
strategy was proposed to do with web service combinatorial optimization, which is an NP
problem, and it improves overall ergodicity. To improve the changeability of ship inner shell,
IPSO [62] was proposed for a 50,000 DWT product oil tanker. MBPSO [63] was proposed for sensor

331

Mathematics 2018, 6, 287

management of LEO constellation to the problem of utilizing a low Earth orbit (LEO) infrared
constellation in order to track the midcourse ballistic missile. GLNPSO [64] is for a capacitated
Location-Routing Problem. The particle swarm algorithm is also applied to many other practical
problems e.g., PID (Proportion Integration Differentiation) controller [65], optimal strategies
of energy management integrated with transmission control for a hybrid electric vehicle [66],
production scheduling optimization in foundry [60], etc.

In view of the shortcomings of PSO [21,22], three improvements are proposed in this paper.
The first is Simple Particle Swarm Algorithm (SPSO). It does not use the velocity updating formula,
and abandons the use of self-cognitive term. Although the speed of the algorithm has been greatly
improved, some deficiencies have been found in actual tests. It is observed that the particles’ difference
is too small to jump out of the local optimal solution, which is not suitable for searching for multimodal
problems. For this purpose, a second improvement named Simple Particle Swarm Optimization
with Confidence Term (SPSOC) is proposed in this paper. That is, the confidence term is introduced
in the SPSO’s position updating formula. Although having a slight increase in time compared to
SPSO, the results show that SPSOC is better for multi-peak function optimization. On the basis of this,
the inertia weight is improved by introducing the difference between the stochastic objective function
value and the worst one, and the final improvement is called Simple Particle Swarm Optimization based
on Random weight and Confidence term (SPSORC). The inertial weight not only has a crucial effect
on its convergence, but also plays an important role in balancing exploration and exploitation during
the evolution. The strategy in this paper makes particle position movements more random. A large
number of experiments suggest that all three improvements are very effective, and the combination of
the three improvements has greatly improved the search efficiency of the particle swarm algorithm.

The rest of this paper is organized as follows: Section 2 introduces the basic PSO [21,22] and three
recently improved PSO methods. In Section 3, three improvements are presented in detail. In Section 4,
some analysis of PSO is further discussed. The experimental results are discussed and analyzed
between four state-of-the-art PSOs and three improved ones proposed in this paper. Finally, this paper
presents some important conclusions and the outlook of future work in Section 5.

2. Related Works

2.1. The Basic PSO

In general, the particle swarm optimization algorithm is composed of the position updating
formula and the velocity updating formula. Each particle iterates with reference to its own history best
solution pbest and the global best value gbest to change position and velocity information. The basic
particle swarm optimization (bPSO) [21,22] algorithm iteration formula is as follows:

vt+1
in = vt

in + c1r1(pt
best − xt

in) + c2r2(gt
best − xt

in), (1)

xt+1
in = xt

in + vt+1
in . (2)

As shown in the above formula, Equations (1) and (2) are the velocity updating formula and the
position updating formula, respectively. The particles whose population is m search for the optima in
the -dimensional space. In that process, the i-th particle’s position in the n-dimensional space is xin
and the current velocity is vin. pbest is the individual history best solution and gbest is the global one.
t is the current iteration numbers. c1 and c2 are cognitive and social factors, and r1 and r2 are random
numbers belonging to [0,1). Figure 1 is an optimization procedure of PSO.

From Figure 1, the area U is the solution space of a function. O is the theoretical optima that needs
to be found. xt

i is the position of the initial particle. The velocity vt
i is the current particle velocity.

vt+1
i is the velocity after being affected by various aspects. Particle memory influence and swarm

influence are parallel to the connecting lines from xt
i to gbest and pbest, respectively, indicating the

influence from gbest and pbest. In this generation, the particle i is affected by vt
i first. After particle

332

Mathematics 2018, 6, 287

memory influence and swarm influence, i arrives at xt+1
i from xt

i at velocity vt+1
i . From the next

iteration, the particle will move from xt+1
i towards the new position. It keeps iterating as the step

above and moves to the theoretical optima more and more close.

Figure 1. Optimization procedure of bPSO.

The velocity updating formula had changed to Equation (3), when Shi and Eberhart put the inertia
weight ω into it, and the position updating formula remained unchanged:

vt+1
in = ωvt

in + c1r1(pt
best − xt

in) + c2r2(gt
best − xt

in). (3)

The introduction of inertia weight effectively keeps a balance between the local and global search
capability. The larger the inertia weight, the stronger the global search capability of the algorithm.
On the contrary, the local search capability is more prominent. This particle swarm optimization model
is the most commonly used nowadays, and many scholars have improved it.

The steps to achieve it are as follows:

Step 1: Initialize the population randomly. Set the maximum number of iterations, population size,
inertia weight, cognitive factors, social factors, position limits and the maximum velocity limit.

Step 2: Calculate the fitness of each particle according to fitness function or models.
Step 3: Compare the fitness of each particle with its own history best solution pbest. If the fitness is

smaller than pbest, the smaller value is assigned to pbest, otherwise, pbest is reserved. Then,
the fitness is compared with the global best solution gbest, and the method is the same as
selecting pbest.

Step 4: Use Equations (2) and (3) to update the particle position and velocity. In addition, we must
make sure that its velocity and position are, respectively, within the maximum velocity limit
and position limits.

Step 5: Check if the theoretical optimum is reached, output the value and stop the operation; otherwise,
return to Step 2 (Section 2.1) until it reaches the theoretical optima or peaks the maximum
number of iterations.

In this paper, a basic particle swarm optimization with decreasing linear inertia weight is used.
The weight formula is as Equation (4):

ω = ωmax − ωmax−ωmin
T × t. (4)

In Equation (4), ωmax is starting weight. ωmin is final weight. tmax is the maximum number of
iterations. PSO needs to set a still more larger starting weight ωmax according to the influence of inertia
weight on the search capability of PSO, so as to pay more attention to the global optima. As the number
of iterations increases, the weight will be decreased. The search process would be more inclined to
explore the local optima, which is more conducive to the final convergence.

333

Mathematics 2018, 6, 287

2.2. The PSO with a Distribution-Based Position Update Rule

In 2017, a distribution-based update rule for PSO (PSOd) [52] algorithm was proposed by Kiran.
This improved strategy changed PSO’s iteration formula.

xt+1
in = μ + σ× Z. (5)

Those three variables in Equation (5) work by Equations (6)–(8):

μ =
xt

in+pt
best+gt

best
3 , (6)

σ =

√
(xt

in−μ)2+(pt
best−μ)2+(pt

best−μ)2

3 , (7)

Z = (−2 ln k1)
1
2 × cos(2πk2). (8)

It works as follows:

Step 1: The population is initialized randomly.
Step 2: The fitness is calculated and compared to get the best individual history solution and the best

global one.
Step 3: Equation (5) is used to update the particle position that is limited in the upper and lower limits.
Step 4: If the termination condition is met, the best solution is reported.

2.3. A Hybrid PSO with Sine Cosine Acceleration Coefficients

In order to make better use of parameters on PSO algorithm, such as inertia weight, learning
factors, etc., Chen et al. proposed a hybrid PSO algorithm with the sine cosine acceleration coefficients
(HPSOscac) [67].

Step 1: The population is initialized randomly.
Step 2: The reverse population of the initial population is calculated by Equation (9)

x
′
in = xmax + xmin − xin. (9)

In this equation, xin and x
′
in are initial population and reverse population, respectively. xmax

and xmin are combined the upper and lower limits of particles position i.e., the solution
space boundary.

Step 3: Fitness values of those two populations are sorted, and the best half is used as the initial
population. Then, the pbest and gbest are obtained by comparing.

Step 4: Equations (10) and (11) are used to update the inertia weight and learning factors, respectively:{
ωt+1 = c

4 × sin (πωt),
ω1 = 0.4; cε(0, 4],

(10)

{
c1 = 2× sin ((1− t

T)× π
2) + 0.5,

c2 = 2× cos ((1− t
T)× π

2) + 0.5.
(11)

Among them, c is a constant among 0 and 4. c1 and c2 are cognitive and social factors, respectively.
Step 5: Updating the particle velocity and position, use Equations (1) and (12). The particle position

updating formula is as follows:

xt+1
in = xt

in ×Wt
in + vt

in ×Wt′
in + ρ× gt

best ×Wt
in. (12)

334

Mathematics 2018, 6, 287

Wt
in and Wt′

in are the dynamic weights that control position and velocity terms. Its formula is
like Equation (13). ρ is a random value between 0 and l:

⎧⎪⎨⎪⎩ Wt
in =

exp fi
favg

1+exp − fi
favg

t ,

Wt′
in = 1−Wt

in.

(13)

In this formula, fi is the particle fitness value, and favg is the average one.
Step 6: The iteration is ended if end condition is reached. Otherwise, it comes back to Step 2

(Section 2.3).

2.4. A Two-Swarm Cooperative PSO

A two-swarm cooperative particle swarm optimization (TCPSO) [45] was proposed who uses
two particle swarms, the slave swarm and the master swarm with the clear division of their works to
overcome the shortcomings such as lack of diversity, slow convergence in the later period, etc. It works
like the following:

Step 1: Initialization. Initialize the slave swarm and the master swarm’s velocity and position randomly.
Step 2: Calculate the fitness of these two swarms and get the gS

best , pS
best , gbest and pM

best . The first two
come from the slave swarm and the last two come from the master swarm.

Step 3: Reproduction and updating.

Step 3.1: Update the slave swarm by Equations (14) and (15). Ensure that velocity and position are
within the limits:

vS,t+1
in = cS

1 r1(1− r2)(xS,t
kn − xS,t

in) + cS
2 (1− r1)r2(gbest − xS,t

in), (14)

xS,t+1
in = xS,t

in + vS,t+1
in . (15)

S in these two formulas means that this variable from the slave swarm, except gbest in
Equation (14) from the master swarm. Finally, we will get the gS

best. xk is randomly chosen
from the neighberhood of the xi according to Equation (16) [42]:

kε

{
[i− l

2 + 1, i + l
2], i f l is even,

[i− l−1
2 , i + l−1

2], i f l is odd.
(16)

l is the size of neighborhood. Sun and Li found that the size of neighborhood equal to 2 is
best in their experiments.

Step 3.2: Update the master swarm by Equations (17) and (18). Ensure that velocity and position are
within the limits:

vM,t+1
in = ωMvM,t

in + cM
1 r1(1− r2)(1− r3)(pM

best − xM,t
in) + cM

2 r2(1− r1)(1− r3)(gS
best − xM,t

in)

+ cM
3 r3(1− r1)(1− r2)(gbest − xM,t

in)
(17)

xM,t+1
in = xM,t

in + vM,t+1
in . (18)

M here means that this variable is from the master swarm. In the end of Step 3.2 (Section 2.4),
gbest wil be obtained for the next iteration.

Step 4: Get the optima if it meets the termination condition; otherwise, go to Step 2 (Section 2.4).

335

Mathematics 2018, 6, 287

3. SPSO, SPSOC, SPSORC

3.1. Simple PSO

Zou et al. proposed a novel harmony search algorithm [68] that used the optimal harmony and
worst harmony in the harmony memory to guide the configuration of the harmony vector. It obtained
very suitable results. Inspired by its thoughts, we try to round off the velocity formula and cognitive
term of PSO and directly use the social term to control the algorithm optimization, so that the formula
Equation (21) is the most simplified, namely the Simple Particle Swarm Optimization (SPSO) algorithm.
According to the results of the literature [69], the influence of the velocity term on the performance
of the particle swarm algorithm can be neglected. Drawing on literature [69], we can simply do the
following derivation. Before abandoning the velocity updating formula, SPSO velocity updating
formula is shown as follows. Particles’ positions are updated according to Equation(2):

vt+1
in = ωvt

in + cr(gt
best − xt

in). (19)

According to Equations (19) and (2), we make the following assumptions:

Hypothesis 1. The update of particles per dimension is independent from each other, except that gbest is the
one that connects the information to the other dimensions.

Hypothesis 2. When particle i is updated, the other particles’ velocities and positions are not changed.

Hypothesis 3. The particles’ positions are moving continuously.

According to the above assumptions, it is only necessary to prove a certain dimension of a certain
particle search process that can be universal. Iterating over Equations (19) and (2) yields a second-order
differential equation:

xt+2 + (rc−ω− 1)xt+1 + ωxt = rcgt
best. (20)

We can observe that there is no velocity updating in Equation (20). This result can be applied to
each dimension update of other particles. Now, we get SPSO’s updating formula:

xt+1
in = ωxt

in + cr(gt
best − xt

in). (21)

SPSO only uses this formula to iterate. The experimental results show that this strategy improves
the search efficiency and stability of the bPSO.

It works like the following:

Step 1: The maximum generation, population number, inertia weight, learning factor are set up.
Population is initialized.

Step 2: Fitness is calculated according to the function.
Step 3: Every particle compares with its history best solution to get the pbest and compares with the

global best one to get the gbest.
Step 4: Particle position is updated by Equation (21).
Step 5: If the theoretical optimal value is not found, the program returns to Step 2 (Section 3.1);

otherwise, the program stops.

After changing, the particle direction is only affected by the global optima. Graphical display of
one of the particle optimization process is shown in Figure 2.

336

Mathematics 2018, 6, 287

Figure 2. Optimization procedure of SPSO.

As shown in the figure, compared with the bPSO optimization process diagram in Section 2.1,
in the optimization of SPSO, the particles are only affected by gbest and the direction of the particles
always faces gbest . This feature also brings some drawbacks. For example, whether the algorithm can
or cannot search for the theoretical optima depends entirely on the selection position of the global
optima, which makes it likely for particles develop in a certain local optimal direction. It is possible
to reach the current gbest value directly if the movement is fast enough. This is a search trajectory of
one, while when all particles are only optimized in one direction, it obviously reduces the difference
between the population. The lack of diversity directly leads to the fact that SPSO are easily trapped in
local optimal solutions.

What is gratifying is that SPSO is very fast because of the simplification. This is very suitable for
single-peak problems. This advantage can be clearly reflected in the experimental results in Section 4.
However, the unconstrained functions, especially single-peak problems, are a minority after all. In
order to make this improvement apply into more functions or environment, we propose adding a
confidence term so that some part of the particles can determine the distance to advance based on its
own level of trust to gbest, so as to get rid of the defects that all particles are looking for at one point.

3.2. SPSO with Confidence Term

In order to better solve the multimodal problem and make the improvement universal, we decided
to add a confidence item(SPSOC) that rewrites Equation (21) into Equation (22):

xt+1
in = ω1xt

in + cr1(gt
best − xt

in)−ω2r2gt
best. (22)

Compared with SPSO, the algorithm formula adds one item, namely the confidence term. ω2 is
the inertia weight of the confidence term. r2 is the random value between [0, 1].

Referring to Figure 3, the principle of the item can be understood as: at a certain iteration,
the position calculated by the SPSO moves a distance suffered from confidence influence. The effect is
equivalent to the particle being optimized from xt

i to x
′t+1
i . Then, the particle retreats a distance from

the beginning in the opposite direction to the gbest direction. Finally, this particle reaches the position
of xt+1

i . Using the inertia weight ω2 and the random number r2, the distance of the particles retreating
in the opposite direction would be uncertain. It can be imagined that the degree of particles trust
at different generation is different, that is, the influence of gbest is different. This improvement can
effectively slow the convergence of particles, so that the particles are not too dense, thus maintaining
particle diversity.

337

Mathematics 2018, 6, 287

Figure 3. Optimization procedure of SPSOC.

A discussion of the impact of this improved algorithm using a combination of different weights
will be explained in the experiment of Section 4.4. In order to minimize the program running time
and ensure that the program structure is simple and the effect is optimal, this paper makes ω1 = ω2.
SPSOC’s iteration process is the same as SPSO.

3.3. SPSOC Based on Random Weight

Adding a confidence item to the SPSO does significantly enhance the search ability of the
algorithm, but it does not achieve theoretical optimization when searching for most of the benchmark
functions. Compared with many improved PSOs proposed recently, SPSOC has no big advantage
except for the short amount of time. Therefore, we think about randomization improvement of inertia
weight named SPSOC based on random weight (SPSORC). The improved inertia weight formula is
shown in Equation (23):

ω =

⎧⎨⎩
pr

best− fbest
fworst− fbest

, i f set minimum as target,
fbest−pr

best
fbest− fworst

, i f set maximum as target.
(23)

In this formula, if we set the minimum as the target we want to find, fbest is the minimum fitness
in the current iteration, fworst is the worst fitness target value in the current iteration, and pr

best is one
of the most pbest that a random particle has searched for from total swarm.

The use of Equation (23) allows the weights to be generated randomly, which effectively reduces
the possibility that the algorithm falls into a local solution and enhance the exploitation capability.
This strategy will at least make algorithms better for some multimodel problems. The random weight,
however, also increases the risk of finding non-optimal solutions. This will be reflected in the large
amount of experimental data in Section 4, but the experimental results show that the overall search
ability of SPSOC has been very significantly improved.

It is more concise that the flow of SPSORC is similar to that of the bPSO, which just calculates the
random weight. Its procedure is shown in Table 1.

338

Mathematics 2018, 6, 287

Table 1. The procedure of SPSORC.

Line Procedure of SPSORC

1 Initialize parameters: dimension N, population size m, iteration number T, weight ω, learing factors
c1, c2, etc; % Step 1

2 Initialize and reserve matrix space: pbest = [Inf11· · · InfmN], gbest = [Inf1· · · Infm],
xmin = lower limits of position, xmax = upper limits;

3 For i = 1:m
4 For j = 1:N
5 Randomly initialize velosity and position: vin, xin; % Step 2
6 End For
7 End For

8 For i = 1:m
9 Calculate the fitness. Compared to get the p1

best and g1
best

10 End For

11 While the optima is not found or the termination condition is not met
12 Calculate the fbest and fworst. Then, get the ω by Equation (23); % Step 3
13 For i = 1:m
14 For j = 1:N
15 Update the particle positon according to Equation (22); % Step 4
16 If xt

in > xmax
17 xt

in = xmax;
18 ElseIf xt

in < xmin
19 xt

in = xmin;
20 End If
21 End For

22 Substitute the current particle into the fitness formula to calculate the fitness value of the current
particle;

23 Compare to get the pbest and gbest ;
24 End For
25 End While

26 Return Results. % Step 5

4. Experimental Study and Results Analysis

4.1. Benchmark Functions

The aim of this improved strategy is to solve the problem of unconstrained optimization
better. In order to demonstrate the effectiveness of the algorithm more fully, this experiment will
use 22 commonly used benchmark functions to simulate and contrast, including the unimodal
benchmark functions represented by Sphere Function, the complex multimodel solution functions
such as Rastrigrin Problem, the ill-conditioned quadratic Rosenbrock function, Xin–She Yang 3 with
discontinuity and trap near the optimal solution, noise-containing functions like Quartic Function and
other functions which is hard to find the best solution. Of course, these 22 functions also contain four
test functions (f7, f15, f20 and f21) with negative optima.

These 22 benchmark functions arranged in alphabetical order are shown in Table A1. The following
test functions may change slightly in form for consistency or convenience because of the large
number of types for test function versions, but the test results will not be affected. The last column,
‘Accuracy (50)’, is the convergence accuracy we want to reach for the test function in the 50-dimensional
case, which will be used in Section 4.5.3, ‘Success Rate and Average Iteration Times’.

4.2. Parameters Setting and Simulation Environment

One of the reasons why particle swarm optimization algorithm was proposed late but had a
relatively wide range of use is that it needs fewer parameters and is set up simply. When dealing with
general problems, its requirements on population numbers, the maximum iteration numbers and other
parameters are not high, which also determines that the algorithm has the advantages of small size
and fast searching speed when it is implemented. Under normal circumstances, the population set at

339

Mathematics 2018, 6, 287

40 can get a good solution for most problems. More complex problems can be solved by increasing the
population number and the maximum iteration times.

Table 2 is about the specific parameter settings. NR is the number of times each algorithm searches
for the benchmark functions. m is population number. T is the maximum iteration times per search.
ωmax and ωmin are the maximum weight and the minimum weight. c1 and c2 are the acceleration
factors.

Table 2. Parameters for candidates.

NR m T ωmax ωmin c1 c2 c3

bPSO 30 40 100 0.9 0.4 2 2 -
PSOd 30 40 100 - - - - -

HPSOscac 30 40 100 Equation (10) - Equation (11) Equation (11) -
TCPSO 30 80 100 0.9 - 1.6 1.6 1.6
SPSO 30 40 100 0.9 0.4 - 2 -

SPSOC 30 40 100 0.9 0.4 - 2 -
SPSORC 30 40 100 Equation (23) - - 2 -

Simulation environment is shown in Table 3.

Table 3. Simulation environment.

Operation System Windows 7 Professional (× 32)

CPU Core 2 Duo 2.26 GHz
Memory 4.00 GB
Platform Matlab R2014a
Network Gigabit Ethernet

4.3. Discussion on Improvement Necessity For SPSO

The search speed is a great advantage of SPSO because of a simple structure. However, its advantages
are its disadvantages. The over-simplified structure makes the SPSO’s population lack of diversity,
which makes it converge to local optima quickly, so the further improvement of SPSO becomes
indispensable. Therefore, in Section 3, we present two improvements to SPSO. In this section, we will
let SPSO, SPSOC and SPSORC solve the high dimension benchmark functions. Then, we discuss the
necessity of those two improvement steps in Section 3 by analyzing its results.

In this experiment, the function dimension is set to 200 dimensions. The other parameters are
consistent with the parameter setting table in Table 2 of Section 4.2. Table 4 shows the optimal results
of the experiment. The minimum number in each set of data (min and mean) is represented in bold in
the following table.

From the experimental results for the 200-dimensional benchmark functions in Table 4, we can
see that SPSORC can search the other 21 functions for the theoretical optimal solution or a better
solution than SPSO and SPSOC except for searching Quartic Function with noises. The optimization
results of SPSO and SPSOC, however, are in straitened circumstances compared to SPSORC. SPSO gets
better solutions four times, while SPSOC gets better solutions six times. Compared with the 30 search
average solutions of SPSO and SPSOC, the optima of SPSOC is also smaller. it is indicated that the
solution searched by SPSO after adding the confidence item can be kept smaller and its performance
is greatly improved and the optimization capability is more enhanced after using random inertia
weight. Thus, it can be seen that the two improvements to the SPSO are very necessary. SPSO is more
inclined to exploration, which is more conducive to the local search of particles. Confidence term
change the trajectory of some particles, which increases particle diversity. Meanwhile, the random
inertia weight balances the exploitation capabilities of the algorithm so that it improves the search
range and robustness of the algorithm significantly.

340

Mathematics 2018, 6, 287

Table 4. Discussion on the necessity of improving SPSO.

Instance
SPSO SPSOC SPSORC

min mean min mean min max

f1 4.44 × 10−15 4.44 × 10−15 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 1.48 × 10−15

f2 1.53 × 10−18 5.91 × 10−3 6.94 × 10−56 6.93 × 10−50 0 6.65 × 10−268

f3 2.16 × 10−35 2.68 × 10−35 3.84 × 10−106 1.33 × 10−97 0 0
f4 5.40 × 10−76 7.42 × 10−76 2.27 × 10−216 8.96 × 10−195 0 0
f5 0 8.32 × 10−3 0 0 0 3.37 × 10−16

f6 1.61 × 10−30 2.63 × 10−30 2.88 × 10−102 4.12 × 10−93 0 0
f7 −1.12 × 101 7.87 × 10−2 −1.49 × 102 −1.49 × 102 −1.49 × 102 −1.49 × 102

f8 9.51 × 10−1 6.61 × 101 0 0 0 1.87 × 101

f9 2.33 × 10−4 3.15 × 10−2 9.12 × 10−4 2.30 × 10−2 5.75 × 10−3 3.63 × 10−1

f10 0 4.52 × 101 0 0 0 6.51 × 10−16

f11 1.49 × 102 1.49 × 102 1.49 × 102 1.49 × 102 1.48 × 102 1.49 × 102

f12 7.97 × 10−33 2.79 × 10−32 2.95 × 10−82 8.39 × 10−21 0 1.77 × 10−04

f13 6.25 × 10−49 1.07 × 10−45 1.89 × 10−75 1.24 × 10−60 0 0
f14 1.20 × 10−17 1.36 × 10−17 5.46 × 10−55 3.75 × 10−47 0 1.48 × 10−270

f15 −5.26 × 103 −3.37 × 103 −4.31 × 103 −2.61 × 103 −5.99 × 103 −3.80 × 103

f16 1.21 × 10−34 1.47 × 10−34 1.91 × 10−106 1.81 × 10−96 0 1.90 × 10−321

f17 0 1.64 × 10−315 0 0 0 1.36 × 10−256

f18 1.76 × 10−29 2.81 × 10−6 2.34 × 10−60 1.85 × 10−18 0 0
f19 7.48 × 10−25 1.02 × 10−16 1.75 × 10−21 1.04 × 10−14 0 3.96 × 10−20

f20 3.63 × 10−55 3.95 × 10−43 7.93 × 10−46 1.69 × 10−33 −1 −1
f21 1.75 × 10−44 1.78 × 10−42 1.59 × 10−36 4.71 × 10−32 −1 −1
f22 2.61 × 10−36 3.15 × 10−36 2.20 × 10−33 6.20 × 10−14 0 2.14 × 10−8

4.4. Discussion on Weight Selection for SPSOC

The proposed SPSOC has two inertia weights. The first inertia weight balances the search ability
to global optima and the local one, while the second weight determines the degree to which the particle
converges to the global optima in current generation. Obviously, whether these two weights are set
properly or not has a significant impact on the performance of the algorithm. Then, the discussion of
how these two inertia weights should be selected becomes quite necessary. The experiment comparing
the optimal solution and the average solution found by the algorithm with different weights introduces
three kinds of inertia weight strategies, which are divided into six kinds of situations. Those three
kinds of inertia weights used in the experiment are as follows:

1. Linear decreasing inertia weight, i.e., Equation (4);
2. Classic nonlinear dynamic inertia weight, i.e., Equation (24);

ω =

{
ωmax, xin > favg,
ωmin − (ωmax −ωmin)× xin− fmin

favg− fmin
, xin ≤ favg. (24)

3. Random inertia weight proposed in this paper, i.e., Equation (23).

Table 5 reports the results of this experiment. Taking ω2,1 for example, the first subscript 2
indicates that ω1 in Equation (22) uses the second kind of weight formula i.e., Equation (24), and the
second subscript 1 indicates that ω2 uses the first kind of weight formula i.e., Equation (4). The others
are similar. Experimental benchmark functions’ upper dimensions are set at 100. We represnt the
minimum value for min and mean in bold in the following table.

341

Mathematics 2018, 6, 287

Table 5. Discussion on the weights selection of SPSOC.

Instance
Different Weight Matching

ω21 ω31 ω32 ω11 ω22 ω22

f1
min 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16 8.88 × 10−16

mean 1.80 × 101 3.85 × 10−15 1.27 × 101 8.88 × 10−16 1.53 × 101 1.36 × 10−15

f2
min 1.54 × 10−85 4.67 × 10−65 9.25 × 10−83 8.09 × 10−61 2.10 × 10−80 0

mean 4.34 × 10−16 1.53 × 10−57 7.90 × 10−75 2.73 × 10−53 4.14 × 10−63 0

f3
min 7.53 × 10−163 3.54 × 10−125 1.81 × 10−169 8.92 × 10−122 2.07 × 10−156 0

mean 1.75 × 10−38 4.85 × 10−109 4.84 × 10−91 1.37 × 10−101 4.97 × 10−50 0

f4
min 1.78 × 10−240 8.32 × 10−258 0 4.48 × 10−235 2.22 × 10−304 0

mean 1.68 × 10−34 7.32 × 10−214 5.03 × 10−106 1.99 × 10−205 2.65 × 10−21 0

f5
min 0 0 2.17 × 101 0 0 0

mean 1.20 × 102 0 2.17 × 101 0 2.17 × 10−2 0

f6
min 2.20 × 10−161 2.59 × 10−121 1.45 × 10−155 6.26 × 10−114 1.41 × 10−151 0

mean 3.58 × 10−67 4.98 × 10−104 7.88 × 10−142 2.66 × 10−92 9.16 × 10−72 0

f7
min −9 −9 −9 −9 −9 −9

mean −9 −9 −9 −9 −9 −9

f8
min 1.30 0 9.02 × 10−1 0 9.02 × 10−1 0

mean 1.50 1.54 1.60 7.29 × 10−2 1.25 3.25 × 10−1

f9
min 9.13 × 10−4 1.37 × 10−3 1.51 × 10−3 1.05 × 10−3 5.92 × 10−4 2.71 × 10−3

mean 2.01 × 10−2 3.16 × 10−2 4.61 × 10−2 1.51 × 10−2 3.11 × 10−2 4.44 × 10−2

f10
min 0 0 0 0 0 0

mean 2.89 × 101 0 0 0 5.67 × 10−7 0

f11
min 7.28 8.03 7.69 8.04 7.86 7.97

mean 8.09 8.83 8.81 8.45 8.22 8.54

f12
min 1.60 × 10−157 1.76 × 10−116 8.56 × 10−158 5.08 × 10−105 2.32 × 10−148 0

mean 3.04 × 10−22 7.01 × 10−8 9.69 × 101 6.71 × 10−67 3.90 × 10−35 0

f13
min 1.35 × 10−96 2.36 × 10−73 1.39 × 10−93 2.91 × 10−77 1.92 × 10−92 0

mean 9.62 × 10−26 3.02 × 10−59 3.63 × 10−43 7.25 × 10−58 2.42 × 10−41 0

f14
min 1.56 × 10−84 1.14 × 10−64 2.91 × 10−85 1.66 × 10−60 6.95 × 10−84 0

mean 4.04 × 10−56 1.89 × 10−55 1.94 × 10−67 3.04 × 10−52 5.80 × 10−35 0

f15
min −1.60 × 103 −1.57 × 103 −1.52 × 103 −1.36 × 103 −1.38 × 103 −1.34 × 103

mean −8.99 × 102 −9.81 × 102 −1.05 × 103 −8.06 × 102 −8.09 × 102 −8.84 × 102

f16
min 9.16 × 10−164 1.56 × 10−121 3.15 × 10−164 3.83 × 10−117 1.96 × 10−150 0

mean 2.09 × 10−27 9.99 × 10−101 1.05 × 10−144 1.05 × 10−97 1.04 × 10−62 0

f17
min 1.78 × 10−199 2.74 × 10−154 1.09 × 10−192 8.20 × 10−148 2.80 × 10−158 0

mean 6.33 × 10−1 1.43 × 10−116 1.63 × 10−33 2.37 × 10−118 6.53 × 10−24 0

f18
min 5.61 × 10−84 1.49 × 10−52 1.97 × 10−82 2.24 × 10−59 7.48 × 10−80 0

mean 3.89 × 10−13 7.36 × 10−19 1.94 × 10−19 4.60 × 10−29 1.48 × 10−19 0

f19
min 3.54 × 10−3 1.01 × 10−2 9.08 × 10−3 1.47 × 10−2 1.09 × 10−2 0

mean 6.15 × 10−2 4.33 × 10−2 4.10 × 10−2 9.36 × 10−2 7.27 × 10−2 2.24 × 10−2

f20
min 3.97 × 10−25 7.05 × 10−17 3.97 × 10−25 1.81 × 10−12 3.97 × 10−25 −1

mean 3.68 × 10−14 2.75 × 10−11 4.58 × 10−10 1.01 × 10−7 3.97 × 10−25 −1

f21
min 9.28 × 10−4 5.44 × 10−4 1.88 × 10−3 1.61 × 10−3 2.95 −1

mean 2.85 2.35 × 10−3 1.07 × 10−1 3.14 × 10−3 2.95 −1

f22
min 7.70 × 10−155 7.35 × 10−115 3.27 × 10−159 1.75 × 10−113 1.61 × 10−146 0

mean 3.08 × 10−30 2.71 × 10−45 5.07 × 10−100 2.32 × 10−88 1.26 × 10−40 0

As can be seen from the experimental data in Table 5, when the ω1 and ω2 take the random
weights proposed in this paper, the obtained optima are satisfactory. It has 19 times to find the best
solution, but only dominated by other algorithms when searching for the three functions (f9, f11 and
f15)—followed by ω1 using the second kind of weight improvement strategy and ω2 using the first
strategy with the way. This method has six times to search for smaller results. The conclusion of this
discussion is that the optimization of the algorithm is better when ω1 is equal to ω2. If they all use
the randomized weights proposed in this paper at the same time, the capability of the SPSOC will be
the best and it can easily do this with most of the benchmark functions. Comparing with the 30-times
average values, we can find that, when the weight ω1 is equal to ω2, the average value is smaller and
the randomization strategy proposed in this paper is the best among them. If they use the same weight
equation, the algorithm will be simpler and faster because only one weight needs to be calculated.

342

Mathematics 2018, 6, 287

However, this paper uses only six kinds of collocation ways which are combined into three kinds
of improvement strategies to carry on the simulation experiment. Whether there is a better weight
improvement strategy to make SPSOC have a better performance needs to be further developed
and improved.

4.5. Comparison and Analysis with Other PSOs

The most commonly used method which better reflects that the improved algorithm is excellent
is bound to be compared with other classical improvement methods. In this section, we have
a comparative test between three improved strategies proposed in this paper and bPSO and its
three representative improved ones namely, bPSO, PSOd, HPSO-SCAC and TCPSO. The experiment
consists of three parts mainy. The first part is to test the seven kinds of particle swarm algorithms
separately for 0-dimensional, 50-dimensional and 100-dimensional functions. Each function is searched
for 30 times. A t-test is used to analyze the large amount of experimental data obtained. Twenty-two
distinct evolution curves of fitness from optimizng 100-dimensional functions will be analyzed briefly.
Here, all the experiments were conducted on the same conditions as Zhang et al. [70,71]. The second
part is to analyze the complexity by the Big O notation [72] and the actual running time for search for
the optima in 50-dimensional problems. The third part is to calculate the success rate and the average
iteration times of seven algorithms in solving twenty-two 50-dimensional problems, respectively.
The stability and effectiveness of the algorithm will be analyzed by these two indices. More details of
those three parts will be elaborated in sequence in the following subsections.

4.5.1. Different Dimensional Experiments and t-Test Analysis

Students’ t-test (t-test) is a frequently used method of data analysis in statistics to compare
whether two sets of data is in one solution space or not, that is, the comparasion for data differences.
In this paper, a two-independent-samples t-test as the following formulas is used to analyze the
difference between the 30 optima searched by SPSORC and the 30 ones by others:

t = (X̄1−X̄2)−(μ1−μ2)
SX̄1−X̄2

= (X̄1−X̄2)
SX̄1−X̄2

, (25)

SX̄1−X̄2
=

√
S2

c
n1

+ S2
c

n2
, (26)

where X̄1 and X̄2 are, respectively, the average of two sets of data; S2
c is the combined variance;

The sample size is 30; the two-tailed test level is taken as 0.05. The Matlab R2014a test2 function
(MathWorks, Natick, MA, USA) instruction is used to calculate directly so as to avoid unnecessary
calculation error in the paper.Table 6 shows the optima of the seven improved algorithms for the
10-dimensional, 50-dimensional and 100-dimensional benchmark functions from Table A1, respectively.
In Table 6, each algorithm solves the specified function 30 times separately and minimum value(min),
average values(mean) and standard deviation values(std) of them are calculated. The minimum one of
this three sets of data are highlighted in boldface. ‘+’, ‘−’ and ‘=’ respectively indicate that the SPSORC
results are ‘better’ than, ‘worse’ than and ‘same’ as the improved algorithm. To calculate the SPSORC’s
net score for convenience, ‘1’, ‘−1’, and ‘0’ corresponding to the three symbols here indicate the score
of the SPSORC.

343

Mathematics 2018, 6, 287

T
a

b
le

6
.

O
pt

im
iz

at
io

n
re

su
lt

s
fo

r
th

e
fu

nc
ti

on
in

3
ki

nd
s

of
di

m
en

si
on

.

1
0

5
0

1
0

0

m
in

m
e

a
n

st
d

tt
e

st
m

in
m

e
a

n
st

d
tt

e
st

m
in

m
e

a
n

st
d

tt
e

st

f 1

bP
SO

3.
16
×

10
−1

1.
29

6.
68
×

10
−1

+(
1)

1.
26
×

10
1

1.
77
×

10
1

1.
82

+(
1)

1.
95
×

10
1

2.
02
×

10
1

3.
23
×

10
−1

+(
1)

PS
O

d
1.

16
3.

32
1.

64
+(

1)
1.

09
×

10
1

1.
36
×

10
1

1.
16

+(
1)

1.
39
×

10
1

1.
54
×

10
1

6.
67
×

10
−1

+(
1)

H
PS

O
sc

ac
2.

08
×

10
−1

0
2.

20
5.

69
+(

1)
1.

68
×

10
−1

1
1.

13
2.

98
+(

1)
6.

66
×

10
−1

0
6.

94
×

10
−1

2.
65

=(
0)

T
C

PS
O

8.
92
×

10
−0

1
2.

08
6.

35
×

10
−1

+(
1)

1.
03
×

10
1

1.
39
×

10
1

2.
08

+(
1)

1.
72
×

10
1

1.
85
×

10
1

7.
74
×

10
−1

+(
1)

SP
SO

8
.8

8
×

1
0
−1

6
3.

38
×

10
−1

5
1.

66
×

10
−1

5
+(

1)
8

.8
8
×

1
0
−1

6
3.

73
×

10
−1

5
1.

45
×

10
−1

5
+(

1)
8

.8
8
×

1
0
−1

6
3.

85
×

10
−1

5
1.

35
×

10
−1

5
+(

1)
SP

SO
C

8
.8

8
×

1
0
−1

6
8

.8
8
×

1
0
−1

6
0

=(
0)

8
.8

8
×

1
0
−1

6
8

.8
8
×

1
0
−1

6
0

=(
0)

8
.8

8
×

1
0
−1

6
8

.8
8
×

1
0
−1

6
0

−(
−1

)
SP

SO
R

C
8

.8
8
×

1
0
−1

6
8

.8
8
×

1
0
−1

6
0

8
.8

8
×

1
0
−1

6
8

.8
8
×

1
0
−1

6
0

8
.8

8
×

1
0
−1

6
2.

19
×

10
−1

5
4.

01
×

10
−1

5

f 2

bP
SO

3.
46
×

10
−2

6.
10
×

10
−1

6.
44
×

10
−1

+(
1)

3.
97
×

10
1

5.
60
×

10
1

8.
63

+(
1)

1.
43
×

10
2

1.
68
×

10
2

1.
25
×

10
1

+(
1)

PS
O

d
4.

28
×

10
−3

1.
29
×

10
−1

1.
79
×

10
−1

+(
1)

1.
53
×

10
1

2.
12
×

10
1

4.
77

+(
1)

5.
40
×

10
1

6.
94
×

10
1

1.
07
×

10
1

+(
1)

H
PS

O
sc

ac
0

6.
88
×

10
−7

7
3.

77
×

10
−7

6
=(

0)
0

1.
27
×

10
−6

8
6.

95
×

10
−6

8
=(

0)
0

8.
67
×

10
−4

9
4.

75
×

10
−4

8
=(

0)
TC

PS
O

6.
42
×

10
−2

1.
46

1.
69

+(
1)

2.
24
×

10
1

4.
92
×

10
1

1.
33
×

10
1

+(
1)

1.
05
×

10
2

1.
35
×

10
2

2.
11
×

10
1

+(
1)

SP
SO

2.
58
×

10
−2

4
2.

81
×

10
−2

1.
49
×

10
−1

=(
0)

4.
28
×

10
−2

0
2.

40
×

10
−4

1.
25
×

10
−3

=(
0)

3.
06
×

10
−1

9
1.

94
×

10
−3

1.
06
×

10
−2

=(
0)

SP
SO

C
7.

18
×

10
−5

9
1.

01
×

10
−4

5
5.

54
×

10
−4

5
=(

0)
2.

12
×

10
−5

6
5.

22
×

10
−4

1
2.

73
×

10
−4

0
=(

0)
1.

07
×

10
−5

3
5.

71
×

10
−4

2
2.

35
×

10
−4

1
=(

0)
SP

SO
R

C
0

0
0

0
5.

61
×

10
−2

81
0

0
0

0

f 3

bP
SO

1.
31
×

10
−3

8.
95
×

10
−1

4.
78

=(
0)

7.
69
×

10
2

1.
37
×

10
3

4.
27
×

10
2

+(
1)

1.
12
×

10
4

1.
37
×

10
4

1.
33
×

10
3

+(
1)

PS
O

d
6.

53
×

10
−4

2.
91
×

10
−1

3.
50
×

10
−1

+(
1)

2.
95
×

10
2

5.
68
×

10
2

1.
66
×

10
2

+(
1)

2.
88
×

10
3

4.
32
×

10
3

1.
02
×

10
3

+(
1)

H
PS

O
sc

ac
0

8.
09
×

10
−1

32
4.

43
×

10
−1

31
=(

0)
0

1.
62
×

10
−1

55
8.

88
×

10
−1

55
=(

0)
0

3.
60
×

10
−1

20
1.

97
×

10
−1

19
=(

0)
TC

PS
O

1.
66
×

10
−2

7.
68
×

10
−2

6.
09
×

10
−2

+(
1)

1.
70
×

10
2

4.
56
×

10
2

2.
85
×

10
2

+(
1)

3.
40
×

10
3

5.
24
×

10
3

1.
15
×

10
3

+(
1)

SP
SO

1.
80
×

10
−5

2
2.

39
×

10
−4

6
6.

91
×

10
−4

6
=(

0)
2.

97
×

10
−3

8
1.

11
×

10
−3

2
4.

16
×

10
−3

2
=(

0)
3.

39
×

10
−3

5
2.

39
×

10
−2

9
1.

31
×

10
−2

8
=(

0)
SP

SO
C

4.
92
×

10
−1

12
3.

50
×

10
−9

0
1.

89
×

10
−8

9
=(

0)
1.

91
×

10
−1

08
9.

54
×

10
−7

3
5.

22
×

10
−7

2
=(

0)
7.

38
×

10
−1

04
5.

55
×

10
−6

9
3.

04
×

10
−6

8
=(

0)
SP

SO
R

C
0

0
0

0
0

0
0

0
0

f 4

bP
SO

2.
10
×

10
−8

5.
60
×

10
−7

5.
78
×

10
−7

+(
1)

7.
19

3.
05
×

10
1

1.
35
×

10
1

+(
1)

2.
32
×

10
2

4.
93
×

10
2

1.
54
×

10
2

+(
1)

PS
O

d
3.

81
×

10
−7

4.
00
×

10
−4

9.
29
×

10
−4

+(
1)

1.
69

4.
84

2.
59

+(
1)

1.
94
×

10
1

6.
03
×

10
1

2.
18
×

10
1

+(
1)

H
PS

O
sc

ac
0

9.
26
×

10
−2

85
0

+(
1)

0
6.

20
×

10
−2

24
0

+(
1)

0
1.

36
×

10
−2

74
0

+(
1)

TC
PS

O
2.

30
×

10
−8

3.
68
×

10
−6

4.
79
×

10
−6

+(
1)

4.
50
×

10
−1

4.
35

6.
46

+(
1)

4.
11
×

10
1

1.
07
×

10
2

5.
20
×

10
1

+(
1)

SP
SO

6.
17
×

10
−1

08
4.

10
×

10
−9

4
2.

23
×

10
−9

3
=(

0)
9.

65
×

10
−8

3
3.

38
×

10
−7

2
1.

77
×

10
−7

1
=(

0)
4.

66
×

10
−7

8
1.

25
×

10
−6

9
4.

73
×

10
−6

9
=(

0)
SP

SO
C

5.
88
×

10
−2

34
1.

19
×

10
−1

83
0

=(
0)

2.
87
×

10
−2

18
1.

52
×

10
−1

52
8.

31
×

10
−1

52
=(

0)
1.

56
×

10
−2

22
4.

13
×

10
−1

55
2.

26
×

10
−1

54
=(

0)
SP

SO
R

C
0

1
.7

3
×

1
0
−3

21
0

0
2

.9
6
×

1
0
−3

23
0

0
2

.0
2
×

1
0
−3

20
0

f 5

bP
SO

4.
22
×

10
−1

9.
36
×

10
−1

1.
64
×

10
−1

+(
1)

6.
46
×

10
1

2.
11
×

10
2

6.
99
×

10
1

+(
1)

8.
91
×

10
2

1.
15
×

10
3

1.
48
×

10
2

+(
1)

PS
O

d
1.

37
×

10
−1

8.
46
×

10
−1

6.
67
×

10
−1

+(
1)

4.
36
×

10
1

8.
91
×

10
1

2.
69
×

10
1

+(
1)

2.
38
×

10
2

3.
18
×

10
2

4.
27
×

10
1

+(
1)

H
PS

O
sc

ac
3.

38
×

10
−6

6.
26
×

10
1

1.
14
×

10
2

+(
1)

7.
84
×

10
−2

4.
02
×

10
2

5.
68
×

10
2

+(
1)

1.
57
×

10
−5

1.
37
×

10
3

1.
67
×

10
3

+(
1)

TC
PS

O
1.

04
1.

16
9.

72
×

10
−2

+(
1)

1.
90
×

10
1

6.
24
×

10
1

3.
63
×

10
1

+(
1)

2.
46
×

10
2

4.
14
×

10
2

7.
97
×

10
1

+(
1)

SP
SO

0
3.

87
×

10
−1

3.
41
×

10
−1

+(
1)

0
5.

40
×

10
−2

1.
49
×

10
−1

=(
0)

0
7.

33
×

10
−3

2.
37
×

10
−2

=(
0)

SP
SO

C
0

0
0

−(
−1

)
0

0
0

=(
0)

0
0

0
=(

0)
SP

SO
R

C
0

3.
70
×

10
−1

8
2.

03
×

10
−1

7
0

0
0

0
5.

18
×

10
−1

7
1.

23
×

10
−1

6

344

Mathematics 2018, 6, 287

T
a

b
le

6
.

C
on

t.

1
0

5
0

1
0

0

m
in

m
e

a
n

st
d

tt
e

st
m

in
m

e
a

n
st

d
tt

e
st

m
in

m
e

a
n

st
d

tt
e

st

f 6

bP
SO

4.
16
×

10
3

6.
97
×

10
5

1.
22
×

10
6

+(
1)

1.
38
×

10
8

3.
70
×

10
8

1.
82
×

10
8

+(
1)

7.
95
×

10
8

1.
90
×

10
9

6.
34
×

10
8

+(
1)

PS
O

d
2.

60
×

10
3

5.
58
×

10
4

7.
67
×

10
4

+(
1)

1.
80
×

10
7

8.
68
×

10
7

4.
80
×

10
7

+(
1)

2.
99
×

10
8

5.
38
×

10
8

1.
37
×

10
8

+(
1)

H
PS

O
sc

ac
0

3.
69
×

10
−1

49
2.

02
×

10
−1

48
=(

0)
0

3.
77
×

10
−1

57
2.

06
×

10
−1

56
=(

0)
0

3.
40
×

10
−1

24
1.

86
×

10
−1

23
=(

0)
T

C
PS

O
5.

51
×

10
4

8.
43
×

10
5

1.
26
×

10
6

+(
1)

4.
79
×

10
7

1.
91
×

10
8

1.
33
×

10
8

+(
1)

3.
51
×

10
8

1.
04
×

10
9

6.
43
×

10
8

+(
1)

SP
SO

1.
44
×

10
−4

5
5.

73
×

10
−4

1
1.

56
×

10
−4

0
+(

1)
1.

71
×

10
−3

3
1.

72
×

10
−2

8
7.

68
×

10
−2

8
=(

0)
8.

51
×

10
−3

3
2.

42
×

10
−2

7
5.

20
×

10
−2

7
+(

1)
SP

SO
C

3.
77
×

10
−1

13
8.

59
×

10
−8

4
4.

71
×

10
−8

3
+(

1)
1.

15
×

10
−1

01
1.

94
×

10
−7

6
7.

40
×

10
−7

6
=(

0)
1.

47
×

10
−1

02
1.

67
×

10
−7

6
9.

16
×

10
−7

6
+(

1)
SP

SO
R

C
0

0
0

0
0

0
0

0
0

f 7

bP
SO

−6
.7

6
−5

.3
2

6.
63
×

10
−1

+(
1)

−1
.2

0
×

10
1

−9
.1

6
1.

64
+(

1)
−1

.6
6
×

10
1

−1
.2

3
×

10
1

2.
52

+(
1)

PS
O

d
−7

.9
3

−6
.4

9
6.

48
×

10
−1

+(
1)

−2
.6

4
×

10
1

−2
.1

3
×

10
1

2.
01

+(
1)

−3
.7

8
×

10
1

−3
.2

7
×

10
1

2.
57

+(
1)

H
PS

O
sc

ac
−2

.4
6

−2
.4

6
4.

73
×

10
−1

+(
1)

−3
.5

1
−4

.3
9

4.
35

+(
1)

−1
.4

8
×

10
1

−5
.4

0
4.

02
+(

1)
T

C
PS

O
−6

.8
3

−4
.9

1
9.

48
×

10
−1

+(
1)

−1
.4

3
×

10
1

−8
.6

6
3.

01
+(

1)
−1

.5
8
×

10
1

−9
.5

2
3.

65
+(

1)
SP

SO
−9

−5
.4

7
2.

81
+(

1)
−4

.9
0
×

1
0

1
−1

.2
0
×

10
1

1.
79
×

10
1

+(
1)

−3
.3

1
×

10
1

−3
.9

6
8.

44
+(

1)
SP

SO
C

−9
−9

0
=(

0)
−4

.9
0
×

1
0

1
−4

.9
0
×

1
0
+

01
0

=(
0)

−9
.9

0
×

1
0

1
−9

.9
0
×

1
0

1
0

−(
−1

)
SP

SO
R

C
−9

−9
0

−4
.9

0
×

1
0

1
−4

.9
0
×

1
0

1
0

−9
.9

0
×

1
0

1
−9

.9
0
×

1
0

1
2.

64
×

10
−1

5

f 8

bP
SO

9.
02
×

10
−1

1.
71

5.
13
×

10
−1

+(
1)

1.
04
×

10
1

1.
24
×

10
1

1.
36

+(
1)

2.
39
×

10
1

2.
69
×

10
1

1.
36

+(
1)

PS
O

d
1.

65
2.

41
3.

26
×

10
−1

+(
1)

1.
94
×

10
1

2.
11
×

10
1

6
.6

5
×

1
0
−1

+(
1)

4.
29
×

10
1

4.
53
×

10
1

9.
08
×

10
−1

+(
1)

H
PS

O
sc

ac
2.

22
×

10
−1

6
1.

82
1.

47
+(

1)
6.

75
×

10
−1

2
1.

43
×

10
1

9.
26

+(
1)

9.
03
×

10
−6

2.
68
×

10
1

2.
09
×

10
1

+(
1)

T
C

PS
O

7.
05
×

10
−1

1.
68

7.
04
×

10
−1

+(
1)

9.
91

1.
19
×

10
1

1.
05

+(
1)

2.
33
×

10
1

2.
56
×

10
1

1.
65

+(
1)

SP
SO

1.
47

2.
81

5.
56
×

10
−1

+(
1)

2.
11
×

10
−4

1.
87
×

10
1

6.
17

+(
1)

6.
62
×

10
−1

4.
30
×

10
1

8.
94

+(
1)

SP
SO

C
0

2
.8

7
×

1
0
−2

1
.5

7
×

1
0
−1

-(
-1

)
0

6
.5

8
×

1
0
−1

3.
60

−(
−1

)
0

1.
50

8.
22

+(
1)

SP
SO

R
C

0
4.

43
×

10
−1

1.
16

0
1.

47
5.

59
0

0
0

f 9

bP
SO

1.
97
×

10
−2

9.
62
×

10
−2

5.
02
×

10
−2

+(
1)

4.
21

2.
94
×

10
1

1.
63
×

10
1

+(
1)

2.
64
×

10
2

4.
90
×

10
2

1.
22
×

10
2

+(
1)

PS
O

d
1.

23
×

10
−2

5.
86
×

10
−2

3.
47
×

10
−2

+(
1)

3.
09

6.
44

3.
01

+(
1)

3.
35
×

10
1

6.
07
×

10
1

2.
06
×

10
1

+(
1)

H
PS

O
sc

ac
4.

17
×

10
−1

1.
27
×

10
1

1.
70
×

10
1

+(
1)

6.
76

8.
72
×

10
2

6.
17
×

10
2

+(
1)

7.
34
×

10
1

3.
51
×

10
3

2.
21
×

10
3

+(
1)

TC
PS

O
2.

68
×

10
−2

7.
16
×

10
−2

4.
05
×

10
−2

+(
1)

2.
39

5.
04

3.
05

+(
1)

6.
29
×

10
1

1.
07
×

10
2

4.
38
×

10
1

+(
1)

SP
SO

2.
16
×

10
−4

2.
27
×

10
−2

2
.1

6
×

1
0
−2

=(
0)

2.
39
×

10
−3

2
.1

3
×

1
0
−2

1.
70
×

10
−2

−(
−1

)
2.

52
×

10
−3

3.
08
×

10
−2

2.
90
×

10
−2

−(
−1

)
SP

SO
C

9.
79
×

10
−4

2
.0

7
×

1
0
−2

2.
35
×

10
−2

=(
0)

1
.0

0
×

1
0
−3

2.
15
×

10
−2

1
.6

5
×

1
0
−2

+(
1)

9
.1

1
×

1
0
−4

2
.1

5
×

1
0
−2

1
.6

6
×

1
0
−2

−(
−1

)
SP

SO
R

C
7

.0
3
×

1
0
−4

3.
65
×

10
−2

3.
08
×

10
−2

4.
43
×

10
−3

6.
27
×

10
−2

5.
32
×

10
−2

5.
05
×

10
−3

1.
72
×

10
−1

2.
82
×

10
−1

f 1
0

bP
SO

8.
03

2.
76
×

10
1

1.
21
×

10
1

+(
1)

4.
55
×

10
2

5.
47
×

10
2

5.
13
×

10
1

+(
1)

1.
05
×

10
3

1.
31
×

10
3

9.
25
×

10
1

+(
1)

PS
O

d
1.

05
×

10
−1

8.
86

4.
17

+(
1)

1.
65
×

10
2

2.
06
×

10
2

2.
38
×

10
1

+(
1)

5.
15
×

10
2

6.
36
×

10
2

5.
58
×

10
1

+(
1)

H
PS

O
sc

ac
9.

35
×

10
−5

5.
13
×

10
1

5.
40
×

10
1

+(
1)

2.
50
×

10
−1

3.
47
×

10
2

3.
03
×

10
2

+(
1)

3.
08
×

10
−1

6.
13
×

10
2

5.
71
×

10
2

+(
1)

T
C

PS
O

1.
12
×

10
1

4.
68
×

10
1

2.
10
×

10
1

+(
1)

4.
02
×

10
2

5.
42
×

10
2

7.
35
×

10
1

+(
1)

1.
03
×

10
3

1.
22
×

10
3

1.
15
×

10
2

+(
1)

SP
SO

0
1.

78
×

10
1

2.
31
×

10
1

+(
1)

0
1.

09
3.

67
=(

0)
0

3.
24
×

10
−1

1.
24

=(
0)

SP
SO

C
0

0
0

=(
0)

0
0

0
=(

0)
0

0
0

=(
0)

SP
SO

R
C

0
0

0
0

0
0

0
2.

96
×

10
−1

6
9.

43
×

10
−1

6

345

Mathematics 2018, 6, 287

T
a

b
le

6
.

C
on

t.

1
0

5
0

1
0

0

m
in

m
e

a
n

st
d

tt
e

st
m

in
m

e
a

n
st

d
tt

e
st

m
in

m
e

a
n

st
d

tt
e

st

f 1
1

bP
SO

1.
31
×

10
1

6.
35
×

10
3

2.
28
×

10
04

=(
0)

5.
06
×

10
6

1.
71
×

10
7

8.
00
×

10
6

+(
1)

1.
80
×

10
8

2.
98
×

10
8

7.
48
×

10
7

+(
1)

PS
O

d
6

.5
0

8.
95
×

10
2

2.
03
×

10
3

+(
1)

1.
89
×

10
6

6.
49
×

10
6

3.
13
×

10
6

+(
1)

2.
08
×

10
7

4.
22
×

10
7

1.
46
×

10
7

+(
1)

H
PS

O
sc

ac
9.

00
×

10
3

8.
68
×

10
7

8.
12
×

10
7

+(
1)

5.
64
×

10
7

1.
01
×

10
9

6.
13
×

10
8

+(
1)

2.
42
×

10
8

2.
41
×

10
9

1.
33
×

10
9

+(
1)

TC
PS

O
4.

24
×

10
1

8.
01
×

10
2

1.
04
×

10
3

+(
1)

5.
18
×

10
5

2.
45
×

10
6

1.
01
×

10
6

+(
1)

3.
84
×

10
7

7.
88
×

10
7

3.
19
×

10
7

+(
1)

SP
SO

7.
74

8
.1

5
1

.2
8
×

1
0
−1

−(
−1

)
4

.8
1
×

1
0

1
4

.8
7
×

1
0

1
3.

08
×

10
−1

−(
−1

)
9

.8
1
×

1
0

1
9

.8
8
×

1
0

1
2.

02
×

10
−1

=(
0)

SP
SO

C
8.

11
8.

32
1.

99
×

10
−1

+(
1)

4.
81
×

10
1

4.
87
×

10
1

3.
05
×

10
−1

+(
1)

9.
82
×

10
1

9.
89
×

10
1

1
.4

8
×

1
0
−1

=(
0)

SP
SO

R
C

8.
00

8.
64

6.
52
×

10
−1

4.
86
×

10
1

4.
89
×

10
1

1
.0

5
×

1
0
−1

9.
82
×

10
1

9.
89
×

10
1

1.
54
×

10
−1

f 1
2

bP
SO

6.
41
×

10
2

3.
89
×

10
3

1.
89
×

10
3

+(
1)

3.
09
×

10
5

1.
53
×

10
6

1.
12
×

10
6

+(
1)

5.
44
×

10
6

1.
94
×

10
7

1.
18
×

10
7

+(
1)

PS
O

d
1.

66
×

10
2

1.
73
×

10
3

7.
79
×

10
2

+(
1)

1.
23
×

10
5

3.
16
×

10
5

1.
43
×

10
5

+(
1)

1.
26
×

10
6

4.
46
×

10
6

2.
47
×

10
6

+(
1)

H
PS

O
sc

ac
0

7.
30
×

10
−1

31
4.

00
×

10
−1

30
=(

0)
0

1.
56
×

10
−1

44
8.

56
×

10
−1

44
=(

0)
0

1.
10
×

10
−1

20
6.

01
×

10
−1

20
=(

0)
TC

PS
O

4.
44
×

10
2

3.
89
×

10
3

1.
64
×

10
3

+(
1)

5.
48
×

10
5

2.
50
×

10
6

1.
72
×

10
6

+(
1)

1.
05
×

10
7

3.
86
×

10
7

3.
14
×

10
7

+(
1)

SP
SO

2.
39
×

10
−4

5
9.

73
×

10
−4

2
3.

27
×

10
−4

1
=(

0)
1.

84
×

10
−3

8
1.

73
×

10
−3

6
3.

39
×

10
−3

6
+(

1)
1.

09
×

10
−3

6
5.

55
×

10
−3

5
8.

02
×

10
−3

5
+(

1)
SP

SO
C

3.
41
×

10
−1

17
3.

44
×

10
−5

2
1.

56
×

10
−5

1
=(

0)
8.

83
×

10
−7

4
2.

38
×

10
−2

4
9.

28
×

10
−2

4
+(

1)
8.

79
×

10
−6

6
2.

06
1.

13
×

10
1

+(
1)

SP
SO

R
C

0
0

0
0

0
0

0
0

0

f 1
3

bP
SO

5.
56
×

10
−9

1.
23
×

10
−6

2.
22
×

10
−6

+(
1)

7.
47
×

10
−1

0
1.

01
×

10
−6

1.
96
×

10
−6

+(
1)

1.
25
×

10
−8

9.
08
×

10
−7

1.
18
×

10
−6

+(
1)

PS
O

d
1.

42
×

10
−3

4
1.

88
×

10
−3

0
4.

49
×

10
−3

0
+(

1)
7.

15
×

10
−3

6
6.

07
×

10
−3

1
1.

23
×

10
−3

0
+(

1)
6.

10
×

10
−3

5
4.

29
×

10
−3

0
1.

65
×

10
−2

9
=(

0)
H

PS
O

sc
ac

0
1.

06
×

10
−8

3
5.

79
×

10
−8

3
=(

0)
0

1.
13
×

10
−7

3
6.

15
×

10
−7

3
=(

0)
3.

62
×

10
−3

21
3.

14
×

10
−8

6
1.

25
×

10
−8

5
=(

0)
T

C
PS

O
3.

23
×

10
−4

2.
43
×

10
−2

2.
73
×

10
−2

+(
1)

4.
45
×

10
−0

4
1.

88
×

10
−2

1.
83
×

10
−2

+(
1)

2.
17
×

10
−4

2.
45
×

10
−2

2.
75
×

10
−2

+(
1)

SP
SO

3.
11
×

10
−5

1
5.

41
×

10
−4

7
1.

16
×

10
−4

6
+(

1)
3.

93
×

10
−5

3
6.

62
×

10
−4

7
1.

57
×

10
−4

6
+(

1)
8.

32
×

10
−5

2
1.

34
×

10
−4

5
5.

05
×

10
−4

5
=(

0)
SP

SO
C

7.
15
×

10
−7

7
4.

92
×

10
−6

0
2.

68
×

10
−5

9
+(

1)
2.

13
×

10
−7

7
7.

72
×

10
−6

0
4.

23
×

10
−5

9
+(

1)
3.

79
×

10
−7

9
1.

10
×

10
−6

0
6.

01
×

10
−6

0
=(

0)
SP

SO
R

C
0

0
0

0
0

0
0

0
0

f 1
4

bP
SO

6.
81
×

10
−2

2.
34
×

10
−1

1.
12
×

10
−1

+(
1)

8.
67
×

10
1

3.
08
×

10
2

9.
07
×

10
2

=(
0)

2.
94
×

10
2

3.
55
×

10
2

2.
47
×

10
1

+(
1)

PS
O

d
2.

74
×

10
−2

6.
15
×

10
−1

5.
46
×

10
−1

+(
1)

3.
43
×

10
1

5.
81
×

10
1

1.
55
×

10
1

+(
1)

1.
19
×

10
2

1.
62
×

10
2

2.
39
×

10
1

+(
1)

H
PS

O
sc

ac
0

1.
04
×

10
−5

9
5.

71
×

10
−5

9
=(

0)
1.

79
×

10
−2

38
3.

77
×

10
−6

1
1.

45
×

10
−6

0
=(

0)
0

5.
56
×

10
−6

3
2.

57
×

10
−6

2
=(

0)
TC

PS
O

2.
30
×

10
−1

4.
88
×

10
−1

1.
66
×

10
−1

+(
1)

9.
95
×

10
1

8.
94
×

10
13

4.
83
×

10
14

=(
0)

3.
25
×

10
2

1.
60
×

10
37

7.
61
×

10
37

=(
0)

SP
SO

1.
38
×

10
−2

5
1.

28
×

10
−2

3
2.

21
×

10
−2

3
+(

1)
6.

30
×

10
−2

0
3.

34
×

10
−1

7
6.

71
×

10
−1

7
+(

1)
1.

70
×

10
−1

9
2.

24
×

10
−1

5
5.

95
×

10
−1

5
+(

1)
SP

SO
C

8.
49
×

10
−5

8
9.

72
×

10
−4

8
3.

86
×

10
−4

7
+(

1)
7.

86
×

10
−5

5
1.

25
×

10
−3

4
6.

82
×

10
−3

4
+(

1)
2.

92
×

10
−5

6
3.

42
×

10
−3

7
1.

85
×

10
−3

6
+(

1)
SP

SO
R

C
0

0
0

0
0

0
0

0
0

f 1
5

bP
SO

−3
.8

3
×

10
3

−3
.4

1
×

10
3

3.
02
×

10
2

+(
1)

−1
.3

1
×

10
4

−1
.1

2
×

1
0

4
1.

03
×

10
3

−(
−1

)
−1

.9
1
×

10
4

−1
.5

7
×

10
4

1.
40
×

10
3

−(
−1

)
PS

O
d

−3
.8

3
×

10
3

−3
.1

8
×

10
3

3.
54
×

10
2

+(
1)

−1
.1

0
×

10
4

−9
.4

0
×

10
3

7.
22
×

10
2

+(
1)

−1
.7

7
×

10
4

−1
.4

6
×

10
4

1.
31
×

10
3

−(
−1

)
H

PS
O

sc
ac

−1
.9

1
×

10
3

−1
.2

8
×

10
3

3.
96
×

10
2

+(
1)

−5
.6

2
×

10
3

−3
.3

4
×

10
3

1.
02
×

10
3

+(
1)

−7
.5

8
×

10
3

−4
.8

7
×

10
3

1.
20
×

10
3

+(
1)

T
C

PS
O

−4
.0

6
×

1
0

3
−3

.4
1
×

1
0

3
3.

01
×

10
2

−(
−1

)
−1

.3
4
×

1
0

4
−1

.1
1
×

10
4

9.
24
×

10
2

+(
1)

−2
.0

4
×

1
0

4
−1

.7
2
×

1
0

4
1.

78
×

10
3

−(
−1

)
SP

SO
−1

.5
1
×

10
3

−9
.5

3
×

10
2

2.
22
×

10
2

=(
0)

−3
.0

5
×

10
3

−1
.9

1
×

10
3

5.
22
×

10
2

=(
0)

−4
.1

2
×

10
3

−2
.6

9
×

10
3

6.
78
×

10
2

=(
0)

SP
SO

C
−1

.1
9
×

10
3

−7
.0

2
×

10
2

1
.8

9
×

1
0

2
=(

0)
−2

.6
1
×

10
3

−1
.5

4
×

10
3

4.
49
×

10
2

=(
0)

−3
.6

2
×

10
3

−2
.0

9
×

10
3

6.
72
×

10
2

=(
0)

SP
SO

R
C

−1
.3

5
×

10
3

−8
.6

9
×

10
2

2.
55
×

10
2

−2
.6

2
×

10
3

−1
.8

7
×

10
3

4
.1

6
×

1
0

2
−4

.2
6
×

10
3

−2
.8

2
×

10
3

6
.1

1
×

1
0

2

346

Mathematics 2018, 6, 287

T
a

b
le

6
.

C
on

t.

1
0

5
0

1
0

0

m
in

m
e

a
n

st
d

tt
e

st
m

in
m

e
a

n
st

d
tt

e
st

m
in

m
e

a
n

st
d

tt
e

st

f 1
6

bP
SO

2.
15
×

10
−1

2.
48

2.
76

+(
1)

7.
73
×

10
3

1.
87
×

10
4

6.
62
×

10
3

+(
1)

9.
11
×

10
4

1.
15
×

10
5

1.
47
×

10
4

+(
1)

PS
O

d
9.

32
×

10
−1

1.
02
×

10
1

1.
21
×

10
1

+(
1)

4.
26
×

10
3

9.
67
×

10
3

2.
81
×

10
3

+(
1)

2.
34
×

10
4

3.
40
×

10
4

6.
67
×

10
3

+(
1)

H
PS

O
sc

ac
0

6.
95
×

10
−1

26
3.

81
×

10
−1

25
=(

0)
0

5.
30
×

10
−1

44
2.

90
×

10
−1

43
=(

0)
0

1.
15
×

10
−9

2
6.

31
×

10
−9

2
=(

0)
T

C
PS

O
1.

41
7.

52
5.

62
+(

1)
1.

74
×

10
3

6.
23
×

10
3

4.
27
×

10
3

+(
1)

3.
12
×

10
4

5.
11
×

10
4

1.
05
×

10
4

+(
1)

SP
SO

1.
38
×

10
−5

0
3.

20
×

10
−4

4
1.

11
×

10
−4

3
=(

0)
2.

69
×

10
−3

6
5.

43
×

10
−3

2
1.

61
×

10
−3

1
=(

0)
3.

40
×

10
−3

5
8.

65
×

10
−3

0
2.

53
×

10
−2

9
=(

0)
SP

SO
C

2.
11
×

10
−1

14
3.

46
×

10
−8

9
1.

66
×

10
−8

8
=(

0)
8.

39
×

10
−1

07
5.

65
×

10
−7

0
3.

10
×

10
−6

9
=(

0)
2.

21
×

10
−1

03
5.

27
×

10
−7

9
2.

85
×

10
−7

8
=(

0)
SP

SO
R

C
0

0
0

0
0

0
0

0
0

f 1
7

bP
SO

2.
52
×

10
−1

2
1.

09
×

10
−8

2.
37
×

10
−8

+(
1)

7.
44
×

10
−5

5
2.

75
×

10
−3

2.
89
×

10
−3

+(
1)

1.
48
×

10
−2

2.
36
×

10
−1

2.
58
×

10
−1

+(
1)

PS
O

d
2.

07
×

10
−1

1
3.

03
×

10
−6

9.
79
×

10
−6

=(
0)

5.
86
×

10
−8

4.
53
×

10
−5

7.
70
×

10
−5

+(
1)

7.
17
×

10
−7

1.
85
×

10
−4

3.
29
×

10
−4

+(
1)

H
PS

O
sc

ac
0

5.
38
×

10
−1

35
2.

95
×

10
−1

34
=(

0)
0

2.
62
×

10
−1

48
1.

34
×

10
−1

47
=(

0)
0

2.
87
×

10
−1

54
1.

57
×

10
−1

53
=(

0)
TC

PS
O

1.
51
×

10
−8

6.
10
×

10
−7

6.
72
×

10
−7

+(
1)

6.
45
×

10
−6

5.
69
×

10
−4

1.
10
×

10
−3

+(
1)

1.
48
×

10
−3

1.
27
×

10
−1

3.
65
×

10
−1

=(
0)

SP
SO

1.
16
×

10
−9

4
4.

96
×

10
−8

6
1.

50
×

10
−8

5
=(

0)
6.

17
×

10
−9

4
1.

10
×

10
−8

4
5.

95
×

10
−8

4
=(

0)
1.

78
×

10
−9

2
8.

69
×

10
−8

7
1.

71
×

10
−8

6
+(

1)
SP

SO
C

8.
84
×

10
−1

41
1.

97
×

10
−1

15
1.

08
×

10
−1

14
=(

1)
6.

16
×

10
−1

58
1.

01
×

10
−1

21
5.

52
×

10
−1

21
=(

0)
2.

52
×

10
−1

46
1.

22
×

10
−1

18
6.

19
×

10
−1

18
+(

1)
SP

SO
R

C
0

0
0

0
0

0
0

4
.9

4
×

1
0
−3

24
0

f 1
8

bP
SO

5.
10
×

10
−4

6.
20
×

10
−1

2.
15

=(
0)

1.
82
×

10
13

2.
27
×

10
19

1.
11
×

10
20

=(
0)

2.
83
×

10
34

6.
97
×

10
46

3.
76
×

10
47

=(
0)

PS
O

d
5.

79
×

10
−4

3.
73
×

10
−1

6.
15
×

10
−1

+(
1)

2.
48
×

10
4

8.
59
×

10
10

4.
26
×

10
11

=(
0)

8.
86
×

10
20

5.
66
×

10
32

2.
80
×

10
33

=(
0)

H
PS

O
sc

ac
5.

26
×

10
−3

19
1.

20
×

10
3

3.
72
×

10
3

+(
1)

4.
63
×

10
−2

37
3.

53
×

10
28

1.
66
×

10
29

=(
0)

0
2.

88
×

10
54

1.
34
×

10
55

=(
0)

T
C

PS
O

2.
75
×

10
−3

3.
15
×

10
−1

4.
89
×

10
−1

+(
1)

1.
10
×

10
8

4.
18
×

10
16

2.
20
×

10
17

=(
0)

4.
98
×

10
30

1.
22
×

10
42

6.
28
×

10
42

=(
0)

SP
SO

2.
25
×

10
−3

1
1.

23
×

10
−4

6.
69
×

10
−4

=(
0)

1.
65
×

10
−3

3
3.

98
×

10
−6

2.
12
×

10
−5

=(
0)

1.
97
×

10
−3

4
1.

67
×

10
−5

6.
35
×

10
−5

=(
0)

SP
SO

C
4.

34
×

10
−7

0
2.

51
×

10
−2

1
1.

37
×

10
−2

0
=(

0)
5.

00
×

10
−6

4
2.

23
×

10
−8

1.
22
×

10
−7

=(
0)

7.
22
×

10
−6

3
3.

73
×

10
−2

0
2.

04
×

10
−1

9
=(

0)
SP

SO
R

C
0

0
0

0
0

0
0

0
0

f 1
9

bP
SO

9.
08
×

10
−4

2.
66
×

10
−3

4.
25
×

10
−4

=(
0)

1.
59
×

10
−1

9
1

.6
8
×

1
0
−1

9
3.

35
×

10
−2

1
+(

1)
1.

88
×

10
−4

0
1

.9
4
×

1
0
−4

0
3.

45
×

10
−4

2
−(
−1

)
PS

O
d

5.
66
×

10
−4

9
.6

4
×

1
0
−4

3
.4

9
×

1
0
−4

−(
−1

)
8.

35
×

10
−1

8
1.

41
×

10
−1

6
2.

64
×

10
−1

6
+(

1)
3.

03
×

10
−3

1
1.

19
×

10
−2

8
3.

03
×

10
−2

8
−(
−1

)
H

PS
O

sc
ac

1.
59
×

10
−3

3.
43
×

10
−3

3.
74
×

10
−4

=(
0)

1.
79
×

10
−1

9
1.

79
×

10
−1

9
4

.9
0
×

1
0
−3

5
+(

1)
2.

04
×

10
−4

0
2.

04
×

10
−4

0
4

.1
5
×

1
0
−5

6
−(
−1

)
TC

PS
O

2.
12
×

10
−3

3.
50
×

10
−3

2.
34
×

10
−3

=(
0)

1.
45
×

10
−1

9
9.

59
×

10
−1

6
5.

21
×

10
−1

5
+(

1)
1

.6
9
×

1
0
−4

0
4.

24
×

10
−3

4
2.

32
×

10
−3

3
−(
−1

)
SP

SO
7.

91
×

10
−3

5.
49
×

10
−2

3.
83
×

10
−2

+(
1)

1.
32
×

10
−1

0
4.

32
×

10
−7

8.
07
×

10
−7

=(
0)

1.
24
×

10
−1

6
2.

36
×

10
−1

2
1.

22
×

10
−1

1
=(

0)
SP

SO
C

2.
34
×

10
−2

9.
80
×

10
−2

5.
49
×

10
−2

+(
1)

1.
79
×

10
−8

3.
53
×

10
−5

4.
99
×

10
−5

=(
0)

2.
94
×

10
−1

3
1.

58
×

10
−0

9
4.

91
×

10
−9

=(
0)

SP
SO

R
C

0
9.

35
2.

22
×

10
−2

0
3.

81
×

10
−7

6.
51
×

10
−7

3.
57
×

10
−1

8
1.

13
×

10
−1

3
2.

35
×

10
−1

3

f 2
0

bP
SO

3.
97
×

10
−2

5
3.

97
×

10
−2

5
1.

87
×

10
−4

0
+(

1)
9.

83
×

10
−1

23
9.

83
×

10
−1

23
0

+(
1)

9.
66
×

10
−2

45
9.

66
×

10
−2

45
0

+(
1)

PS
O

d
4.

66
×

10
−2

5
2.

90
×

10
−1

9
1.

51
×

10
−1

8
+(

1)
4.

66
×

10
−6

3
1.

10
×

10
−5

1
5.

13
×

10
−5

1
+(

1)
7.

68
×

10
−9

0
1.

59
×

10
−7

3
8.

73
×

10
−7

3
+(

1)
H

PS
O

sc
ac

3.
97
×

10
−2

5
3.

97
×

10
−2

5
1.

87
×

10
−4

0
+(

1)
9.

83
×

10
−1

23
9.

83
×

10
−1

23
0

+(
1)

9.
66
×

10
−2

45
9.

66
×

10
−2

45
0

+(
1)

TC
PS

O
3.

97
×

10
−2

5
3.

97
×

10
−2

5
1.

87
×

10
−4

0
+(

1)
9.

83
×

10
−1

23
9.

83
×

10
−1

23
0

+(
1)

9.
66
×

10
−2

45
9.

66
×

10
−2

45
0

+(
1)

SP
SO

9.
48
×

10
−1

4
2.

11
×

10
−8

9.
45
×

10
−8

+(
1)

8.
01
×

10
−3

1
1.

32
×

10
−2

1
4.

61
×

10
−2

1
+(

1)
1.

95
×

10
−4

9
3.

65
×

10
−3

4
1.

91
×

10
−3

3
+(

1)
SP

SO
C

1.
15
×

10
−1

2
4.

77
×

10
−7

1.
37
×

10
−6

+(
1)

1.
19
×

10
−2

2
2.

22
×

10
−1

6
4.

89
×

10
−1

6
+(

1)
1.

69
×

10
−4

1
5.

40
×

10
−2

2
2.

89
×

10
−2

1
+(

1)
SP

SO
R

C
−1

.0
0

−1
.0

0
0

−1
.0

0
−9

.3
3
×

1
0
−1

2.
54
×

10
−1

−1
.0

0
−9

.0
0
×

1
0
−1

3.
05
×

10
−1

347

Mathematics 2018, 6, 287

T
a

b
le

6
.

C
on

t.

1
0

5
0

1
0
0

m
in

m
e
a
n

st
d

tt
e
st

m
in

m
e
a
n

st
d

tt
e
st

m
in

m
e
a
n

st
d

tt
e
st

f 2
1

bP
SO

3.
73
×

10
−7

3.
57
×

10
−6

3.
53
×

10
−6

+(
1)

5.
81
×

10
−1

9
9.

30
×

10
−1

7
1.

28
×

10
−1

6
+(

1)
1.

04
×

10
−3

2
4.

59
×

10
−2

9
9.

83
×

10
−2

9
+(

1)
PS

O
d

2.
54
×

10
−8

8.
53
×

10
−6

1.
06
×

10
−5

+(
1)

1.
35
×

10
−2

0
6.

03
×

10
−2

0
5
.1

9
×

1
0
−2

0
+(

1)
3.

97
×

10
−3

9
7.

51
×

10
−3

8
9
.2

4
×

1
0
−3

8
+(

1)
H

PS
O

sc
ac

−1
.0

0
-5

.2
7
×

10
−1

5.
13
×

10
−1

+(
1)

−1
.0

0
-3

.3
3
×

10
−2

1.
83
×

10
−1

+(
1)

3.
14
×

10
−3

1
1.

87
×

10
−1

4
5.

55
×

10
−1

4
+(

1)
T

C
PS

O
8.

71
×

10
−7

1.
33
×

10
−5

1.
67
×

10
−5

+(
1)

6.
93
×

10
−2

0
2.

42
×

10
−1

8
3.

80
×

10
−1

8
+(

1)
1.

30
×

10
−3

8
1.

17
×

10
−3

2
5.

38
×

10
−3

2
+(

1)
SP

SO
4.

39
×

10
−4

1.
04
×

10
−3

3.
19
×

10
−4

+(
1)

4.
00
×

10
−1

6
2.

15
×

10
−1

4
1.

99
×

10
−1

4
+(

1)
2.

51
×

10
−2

9
6.

77
×

10
−2

7
1.

10
×

10
−2

6
+(

1)
SP

SO
C

6.
88
×

10
−4

3.
24
×

10
−3

1.
69
×

10
−3

+(
1)

9.
35
×

10
−1

4
7.

28
×

10
−1

2
1.

12
×

10
−1

1
+(

1)
1.

13
×

10
−2

5
3.

10
×

10
−2

2
6.

75
×

10
−2

2
+(

1)
SP

SO
R

C
−1

.0
0

−1
.0

0
0

−1
.0

0
−1

.0
0

2.
92
×

10
−1

7
−1

.0
0

−1
.0

0
2.

92
×

10
−1

7

f 2
2

bP
SO

2.
26

2.
62
×

10
1

2.
76
×

10
1

+(
1)

1.
16
×

10
3

2.
76
×

10
3

4.
53
×

10
3

+(
1)

3.
39
×

10
3

1.
70
×

10
5

5.
90
×

10
5

=(
0)

PS
O

d
5.

39
×

10
−1

4.
98

2.
55

+(
1)

1.
80
×

10
2

3.
28
×

10
2

9.
49
×

10
1

+(
1)

7.
23
×

10
2

9.
14
×

10
2

1.
20
×

10
2

+(
1)

H
PS

O
sc

ac
0

1.
93
×

10
−1

74
0

+(
1)

0
1.

17
×

10
−1

67
0

+(
1)

0
1
.8

9
×

1
0
−1

43
1
.0

4
×

1
0
−1

42
=(

0)
TC

PS
O

5.
77
×

10
−1

1.
15
×

10
1

1.
52
×

10
1

+(
1)

1.
03
×

10
3

1.
60
×

10
4

5.
36
×

10
4

=(
0)

2.
51
×

10
3

6.
23
×

10
5

2.
09
×

10
6

=(
0)

SP
SO

1.
63
×

10
−4

8
1.

59
×

10
−4

3
6.

83
×

10
−4

3
=(

0)
1.

69
×

10
−4

0
3.

13
×

10
−3

8
6.

42
×

10
−3

8
+(

1)
1.

89
×

10
−4

0
3.

88
×

10
−3

8
8.

35
×

10
−3

8
=(

0)
SP

SO
C

1.
29
×

10
−1

13
1.

69
×

10
−8

1
8.

46
×

10
−8

1
=(

0)
3.

35
×

10
−6

1
2.

71
×

10
−2

9
1.

08
×

10
−2

8
+(

1)
8.

00
×

10
−6

1
3.

24
×

10
−2

0
1.

76
×

10
−1

9
=(

0)
SP

SO
R

C
0

0
0

0
0

0
0

1.
64
×

10
−4

8.
99
×

10
−4

348

Mathematics 2018, 6, 287

The search results of the heuristic algorithm are random, so the average value (mean) of the
results after multiple searches is the most valuable data. Observing the mean values in Table 6,
when searching for 10-dimensional functions, we can see that SPSORC outperforms the other six PSO
on 16 functions (f1, f2, f3, f4, f6, f7, f10, f12, f13, f14, f16, f17, f18, f20, f21 and f22) in terms of the criteria
‘mean’, and 15 out of 16 were theoretical optimal solutions. Secondly, the number of that SPSOC find
the minimum mean solutions for 10-dimensional functions is 6 times (f1, f5, f7, f8, f9, f10). PSOd,
TCPSO and SPSO only find the minimum mean once. bPSO and HPSOscac are unable to search for
the minimum mean at one time. Regarding the three functions (f1, f7, f10), SPSOC and SPSORC can
obtain the same mean.

On the other hand, both SPSORC and HPSOscac can find the same values in many functions
including f2, f3, f4, f6, f12, f13, f14, f16, f17, f21 and f22. In addition, SPSORC has achieved the best
results for ninth, indicating that SPSORC and HPSOscac have the opportunity to yield a better solution
than the average one, but the results are volatility, especially for HPSOscac.

The use of standard deviation (std) can observe the volatility of the algorithm results. The standard
deviation is a measure of the degree to which a set of data averages is dispersed. A larger standard
deviation represents a larger difference between most of the values and their average values; a smaller
standard deviation means that these values are closer to the average. It is clear that the standard
deviation of SPSORC is almost the smallest of all algorithms.

The comparison of ‘min’, ‘mean’ and ‘std’ from 50-dimensional and 100-dimensional dimensional
functions between SPSORC and other six PSO variants is also illustrated in Table 6. It is clearly seen
that, for both 50-dimensional and 100-dimensional functions except for f9, f11, f15, f19, SPSORC is
able to obtain better ‘mean’ than the most of the other improved strategies. In 50-dimensional optima
values, SPSORC outperforms the other six PSOs on 17 functions (f1, f2, f3, f4, f5, f6, f7, f10, f12, f13,
f14, f16, f17, f18, f20, f21 and f22), in which, 14 out of 17 were searched for theoretical optima. SPSOC
has searched for the best solution five times (f1, f5 , f7, f8, f10). Then, PSOd and SPSO has two times
(f15, f19) and once (f9), respectively. Regrettably, other algorithms have no chance. Almost the same
situation also appears in 100-dimensional results. In addition, as for ‘std’ of SPSORC, it should be
noted that the ‘std’ without any fluctuations many times is markedly superior to that of the others.
Second, with regard to the experimental results comparison in 100-dimensional results of Table 6,
SPSOC is also able to achieve good performance with smaller mean value such as for f1, f5, f7, f9 and
f10 out of the twenty-two 100-dimensional test functions.

To sum up, from Table 6, it has been identified experimentally that SPSORC is superior or highly
competitive with several improved PSO variants, and this improving strategy is shown to be able to
find fairly good solutions for most of the well-known benchmark functions.

Table 7 is a summary of the scores based on the t-test analysis of search results in three kinds
of dimensions. Score is the net score of SPSORC, which is better than the score obtained by the
comparison function minus the number of comparison functions. Take the comparison result of SPSOC
and RSMPSOc in Table 7 as an example, that is, the A6 algorithm in 100-dimensional in Table 7.
The SPSORC result is seven times better than SPSOC and three times worse than SPSOC. Therefore, the
net score of SPSORC is: Score = 7− 3 = 4, and the calculation process of other net scores is the same.

Observed from Table 7, SPSORC has a stable net score for these six algorithms, all greater than 0.
Careful observation can show us that the performance is slightly higher in the 50-dimensional scores
compared to 10-and-100 dimensions. It is again proven that the capability of SPSORC is better than
bPSO, PSOd, HPSOscac, TCPSO, SPSO and SPSOC, especially when solving the 50-dimensional
problem. The convergence curves of seven improved PSO algorithms on twenty-two benchmark
functions with 100 dimensions are plotted in Section 4.5.1 Figure 4, respectively.

349

Mathematics 2018, 6, 287

(a) legend (b) f1 (c) f2 (d) f3

(e) f4 (f) f5 (g) f6 (h) f7

(i) f8 (j) f9 (k) f10 (l) f11

(m) f12 (n) f13 (o) f14 (p) f15

(q) f16 (r) f17 (s) f18 (t) f19

(u) f20 (v) f21 (w) f22

Figure 4. Average convergence curves of seven improved PSO algorithms for twenty-two functions in
10 dimensions.

350

Mathematics 2018, 6, 287

Table 7. Simulation environment.

N Results bPSO PSOd HPSOscac SPSO SPSOC SPSORC

10
+ 18 20 12 20 11 6
= 4 1 10 1 10 14
− 0 1 0 1 1 2

Score 18 19 12 19 10 4

50
+ 19 21 13 19 9 8
= 2 1 9 3 11 13
− 1 0 0 0 2 1

Score 18 21 13 19 7 7

100
+ 18 18 10 16 9 7
= 2 2 11 4 12 12
− 2 2 1 2 1 3

Score 16 16 9 14 8 4

Figure 4a is the legend for the other twenty-two convergence curves. Figure 4b indicates that, on f1,
PSPSOC converges the fastest in the early stage among the seven improvements. HPSOscac converges
relatively slowly compared to SPSORC. The order of performance on f1 is SPSORC, HPSOscac, SPSOC,
SPSO, bPSO, PSOd, TCPSO. Almost the same situation occurs simultaneously on the other 11 function
convergence curves. This should be the effect of algorithm simplifying so that the algorithm can
converge very quickly in the early stage. On f3, f4, f5, et al., RSPSO has found the best solution within
the maximum generation. Figure 4 l,m, on f11 and f12, show that SPSORC converges relatively slowly
compared to HPSOscac in the beginning, but it surpasses HPSOscac in about 20th generation.

Next, it is further analyzed by the box diagram in Figure 5. Box diagram is mainly used to reflect
the characteristics of the original data distribution, and can also compare the distribution characteristics
of multiple sets of data. On the same number of axes, the box plots of several sets of data are arranged
in parallel. Shape information such as median, tail length, outliers, and distribution intervals of several
batches of data can be seen at a glance. + indicates an abnormal point.

From Figure 5a, the order of these boxes from high to low is bPSO, TCPSO, PSOd, HPSOscac,
SPSO, SPSORC and SPSOC, respectively. The upper quartile and median values of bPSO and TCPSO
are closer to the upper edge, which indicates that the data of the two algorithms are more biased toward
larger values. In comparison, the box of PSOd is more symmetrical and the data distribution is relatively
uniform. Unfortunately, the distribution of the boxes of these three algorithms is too high, and the
search results are not good. The box of HPSOscac is at the bottom of the coordinate system. However,
we can clearly see that there are many outliers in its data. Some even have exceeded the median of
PSOd. Its skewed nature tends to be smaller, but the distribution of data is more scattered. Compared
with the above four algorithms, the distribution of the boxes of the three algorithms proposed in this
paper is obviously more optimistic. The optimization results of the three algorithms are almost neat,
concentrated and smaller. The situation of other box diagrams is not much different from that of Figure
5a. Throughout the 22 box diagrams in Figure 5, the bPSO, PSOd, HPSOscac and TCPSO seem to have
more difficulty locating the solution than the SPSORC for from the box diagrams. The boxes of PSOd
are mostly too top, followed by TCPSO. HPSOscac has a lot of outliers. Its maximum and minimum
span is large, and distribution is extremely non-uniform and decentral. It is observed that the results
of HPSOscac are highly volatile and the improvement of the algorithm is unstable. This may be related
to its weight mixed with the trigonometric function. For the above reasons, the results of SPSORC and
SPSOC are not obvious in the box diagram, almost all posted at the bottom. Combining the results of
Table 6, we can roughly know that SPSORC has better performance, and the more oblate box can show
that the 30 search results have little differences and the performance is very stable.

To sum up, the test results indicate that : Both confidence term and random weight can enhance
diversity. The former can yield a significant improvement in performance, while the latter can preserve
much more diversity. The aforementioned two methods are compatible. Combining both of them
with SPSO can preserve the highest diversity and achieve the best overall performance among the six
improved strategies.

351

Mathematics 2018, 6, 287

(a) f1 (b) f2 (c) f3 (d) f4

(e) f5 (f) f6 (g) f7 (h) f8

(i) f9 (j) f10 (k) f11 (l) f12

(m) f13 (n) f14 (o) f15 (p) f16

(q) f17 (r) f18 (s) f19 (t) f20

(u) f21 (v) f22

Figure 5. Box diagram of thirty results, each function with 100 dimensions.

352

Mathematics 2018, 6, 287

4.5.2. Algorithm Complexity Analysis

Comparing the steps of the bPSO algorithm, the time complexity of SPSO’s two improvements
mainly depends on two aspects: (1) random initialization, and (2) particle velocity and position updating.
These two parts can all be expressed as O(m×N) by the Big O notation [72], in that, m is the population
and N is the problem dimensions. In this paper, we haven’t changed the algorithm’s initialization
method, so we only compare the time complexity from particle velocity and position updating.
The SPSO, which does not consider the inertia weight updating and confidence term calculating, has
a reduced computational complexity compared to the basic particle swarm optimization algorithm,
but the Big O notation can also be represented by O(m× N). Compared with the bPSO and the SPSO,
the most complex algorithm we proposed is named SPSORC, which has increased weight, and the
confidence term has surely increased in computational complexity, but we can see from Table 1 that its
loop body has not changed. According to the Big O notation, its time complexity is still O(m× N).
Overall, the complexity of SPSO and its two improved ones are not increased by orders of magnitude.

Then, we analyze the real computational time from Table 8. In Table 8, we show the computational
time for three kinds of dimension functions.

Table 8. Real computational time.

N Alg bPSO PSOd HPSOscac TCPSO SPSO SPSOC SPSORC

10

f1 0.0346 0.0408 0.0681 0.0755 0.0193 0.0293 0.0298
f2 0.0324 0.0396 0.0651 0.0731 0.0188 0.0295 0.0296
f3 0.0309 0.0374 0.0606 0.0673 0.0178 0.0280 0.0274
f4 0.0378 0.0465 0.0700 0.0857 0.0269 0.0374 0.0367
f5 0.0334 0.0421 0.0655 0.0783 0.0196 0.0298 0.0304
f6 0.0358 0.0444 0.0676 0.0825 0.0245 0.0349 0.0348
f7 0.0380 0.0449 0.1343 0.0856 0.0244 0.0328 0.0332
f8 0.0542 0.0626 0.0867 0.1214 0.0423 0.0517 0.0561
f9 0.0484 0.0559 0.0815 0.1066 0.0362 0.0470 0.0475
f10 0.0329 0.0410 0.0654 0.0758 0.0199 0.0294 0.0311
f11 0.0303 0.0388 0.0623 0.0704 0.0174 0.0278 0.0286
f12 0.0428 0.0517 0.0760 0.0967 0.0313 0.0421 0.0423
f13 0.0288 0.0378 0.0622 0.0676 0.0180 0.0285 0.0289
f14 0.0290 0.0381 0.0608 0.0690 0.0181 0.0286 0.0280
f15 0.0355 0.0435 0.0736 0.0803 0.0215 0.0325 0.0324
f16 0.0288 0.0379 0.0624 0.0681 0.0181 0.0289 0.0280
f17 0.0365 0.0462 0.0681 0.0852 0.0265 0.0368 0.0363
f18 0.0471 0.0555 0.0800 0.1043 0.0347 0.0466 0.0466
f19 0.0358 0.0428 0.0676 0.0812 0.0220 0.0319 0.0319
f20 0.0447 0.0543 0.0769 0.1006 0.0339 0.0439 0.0407
f21 0.0406 0.0488 0.0745 0.0914 0.0269 0.0369 0.0347
f22 0.0294 0.0381 0.0617 0.0695 0.0181 0.0292 0.0287

50

f1 0.1515 0.1912 0.2889 0.3502 0.0813 0.1311 0.1325
f2 0.1515 0.1874 0.2897 0.3465 0.0815 0.1329 0.1329
f3 0.1323 0.1718 0.2726 0.3145 0.0732 0.1247 0.1241
f4 0.1798 0.2172 0.3179 0.4042 0.1174 0.1713 0.1704
f5 0.1589 0.1976 0.2964 0.3633 0.0868 0.1378 0.1383
f6 0.1761 0.2157 0.3130 0.3969 0.1163 0.1687 0.1678
f7 0.1820 0.2190 0.5396 0.4080 0.1150 0.1543 0.1552
f8 0.2847 0.3195 0.4206 0.5978 0.2137 0.2620 0.2682
f9 0.2330 0.2727 0.3809 0.5160 0.1716 0.2246 0.2250
f10 0.1554 0.1933 0.2921 0.3546 0.0851 0.1343 0.1356
f11 0.1380 0.1775 0.2819 0.3236 0.0765 0.1289 0.1295
f12 0.2696 0.3012 0.4074 0.5677 0.1996 0.2533 0.2527
f13 0.1306 0.1709 0.2713 0.3072 0.0702 0.1236 0.1246
f14 0.1324 0.1733 0.2629 0.3136 0.0744 0.1287 0.1276
f15 0.1569 0.1965 0.3368 0.3581 0.0913 0.1459 0.1466
f16 0.1348 0.1727 0.2703 0.3113 0.0727 0.1262 0.1244
f17 0.1738 0.2125 0.3016 0.3952 0.1126 0.1623 0.1649
f18 0.2277 0.2688 0.3719 0.5035 0.1682 0.2176 0.2197
f19 0.1644 0.2027 0.2985 0.3724 0.0985 0.1469 0.1495
f20 0.2089 0.2507 0.3380 0.4681 0.1501 0.1996 0.1881
f21 0.1892 0.2241 0.3240 0.4226 0.1209 0.1707 0.1541
f22 0.1308 0.1680 0.2694 0.3077 0.0700 0.1220 0.1222

353

Mathematics 2018, 6, 287

Table 8. Cont.

N Alg bPSO PSOd HPSOscac TCPSO SPSO SPSOC SPSORC

100

f1 0.2977 0.3719 0.5642 0.6830 0.1561 0.2571 0.2612
f2 0.3023 0.3793 0.5775 0.6944 0.1595 0.2655 0.2660
f3 0.2665 0.3431 0.5417 0.6247 0.1416 0.2485 0.2491
f4 0.3588 0.4369 0.6381 0.8083 0.2379 0.3400 0.3387
f5 0.3158 0.3929 0.5894 0.7232 0.1716 0.2729 0.2756
f6 0.3555 0.4288 0.6287 0.7992 0.2284 0.3352 0.3343
f7 0.3655 0.4419 1.3028 0.8107 0.2323 0.3049 0.3061
f8 0.5580 0.6271 0.8395 1.2018 0.4311 0.5230 0.5311
f9 0.4651 0.5443 0.7505 1.0211 0.3380 0.4447 0.4465
f10 0.3098 0.3841 0.5771 0.7101 0.1667 0.2646 0.2687
f11 0.2744 0.3521 0.5583 0.6413 0.1477 0.2529 0.2522
f12 0.6752 0.7524 0.9544 1.4332 0.5468 0.6518 0.6535
f13 0.2651 0.3426 0.5400 0.6193 0.1385 0.2442 0.2468
f14 0.3217 0.3646 0.5121 0.6165 0.1431 0.2478 0.2477
f15 0.3154 0.3918 0.6178 0.7155 0.1852 0.2899 0.2911
f16 0.2632 0.3413 0.5416 0.6519 0.1466 0.2518 0.2498
f17 0.3599 0.4450 0.6326 0.8335 0.2255 0.3279 0.3377
f18 0.4758 0.5581 0.7631 1.0589 0.3491 0.4483 0.4592
f19 0.3406 0.4093 0.6189 0.7589 0.1980 0.2975 0.3253
f20 0.4381 0.5238 0.6735 0.9385 0.2970 0.4000 0.3777
f21 0.3812 0.4604 0.6413 0.8513 0.2433 0.3474 0.3103
f22 0.2658 0.3424 0.5421 0.6204 0.1367 0.2440 0.2443

The time in Table 8 is the average time required to run 30 times independently. The average length
of time varies slightly depending on the problem. Observing the running time of the seven algorithms,
it is certain that the running time of SPSORC is similar to the computational time of other algorithms.
It is clear that the lowest running time is obtained by SPSO, since it greatly simplifies bPSO. SPSOC has
increased slightly over time due to confidence term. HPSOscac’s trigonometric function improvement
strategy makes the algorithm better applicable to multimodal problems. However, because the
regularity distribution of the trigonometric function increases the particle diversity, the particle is
difficult to converge at the later stage, and the actual calculation time is longer. TCPSO uses the
dual population to optimize problems through information exchange. Thus, SPSO and its improved
strategies do not simply consume runtime to improve algorithm performance. The real computational
time is basically distributed as Figure 6. A1–A7 are namely bPSO, PSOd, HPSOscac, TCPSO, SPSO,
SPSOC and SPSORC.

Figure 6. Real computational time of f11 in 50 dimensions.

4.5.3. Success Rate and Average Iteration Times

The success rate (SR) is the percentage between the times that each algorithm can successfully
achieve convergence accuracy for function optimization and the total number of times. The average
iterations times (AIT) is the average iteration numbers required by the algorithm to find the
convergence accuracy. The former can examine the stability and accuracy of the algorithm, while the

354

Mathematics 2018, 6, 287

latter mainly examines the efficiency of the algorithm. The convergence accuracy used for the success
rate and the average iteration times in this paper is the accuracy of the 50-dimensional test functions
we want to meet. The specific values can refer to the last column of Table A1. The other parameters
are set according to Table 2. Figure 7 shows the Radar charts with average iteration times of eight
functions. We can surely, in Figure 7, find that the point of SPSORC is always close to the center origin.

(a) f1 (b) f2 (c) f5 (d) f8

(e) f10 (f) f11 (g) f20 (h) f22

Figure 7. Radar charts of average iteration times.

Specific data for the average iteration times and the success rate of the seven algorithms in solving
50-dimensional problems are referred to in Table ‘AIT’ is the average iteration times. ‘SR’ represents
the success rate. In order to facilitate the use of differentials, ‘SR’ is expressed in percentage form.
The results round off to retain two digits after the decimal point. ‘−’ means that the algorithm fails to
search this function when convergence accuracy is reached within the maximum generations. For the
convenience of observation, we will show the minimum AIT and the maximum SR for each function
in the bold format.

The results can be analyzed from Table 9. bPSO, PSOd, TCPSO and SPSO have higher success
rates three times. SPSOC and HPSOscac gets six and seven times, respectively. SPSORC, surprisingly,
has 15 times, and seven of them (f12, f13, f14, f17, f18, f20, f21) have the best success rate that none of
the other six algorithms have achieved. One can see that the SPSORC strategy has a wider range of
types, high precision and stability. Comparing the average iteration times, it is clearly shown that
TCPSO, SPSO and SPSOC do not get the lowest average iteration times.

The above two data comparisons reveal that SPSORC has a large advantage compared with the
other six algorithms. Not only is it more stable, but the search efficiency is also faster. When faced
with a unimodal function, SPSORC can converge to effective precision more quickly. For other
multi-peak complex problems, it is not to be outdone, except for the extremely difficult functions
such as Rosenbrock Function and Schwefel’s Problem 2.26, which show weak stability. It can be
stated that the improved method can be adapted to a variety of test environments, and the results are
quite excellent.

355

Mathematics 2018, 6, 287

T
a

b
le

9
.

Su
cc

es
s

ra
te

an
d

av
er

ag
e

it
er

at
io

n
ti

m
es

.

b
P

S
O

P
S

O
d

H
P

S
O

sc
a

c
T

C
P

S
O

S
P

S
O

S
P

S
O

C
S

P
S

O
R

C

A
IT

S
R

A
IT

S
R

A
IT

S
R

A
IT

S
R

A
IT

S
R

A
IT

S
R

A
IT

S
R

f 1
-

0.
00

%
-

0.
00

%
32

.7
0

0.
00

%
-

0.
00

%
1

5
.8

7
3.

33
%

53
.5

0
1

0
0

.0
0

%
18

.9
0

93
.3

3%
f 2

-
0.

00
%

-
0.

00
%

51
.5

3
1

0
0

.0
0

%
-

0.
00

%
-

0.
00

%
-

0.
00

%
2

3
.3

7
1

0
0

.0
0

%
f 3

-
0.

00
%

-
0.

00
%

35
.3

3
1

0
0

.0
0

%
-

0.
00

%
-

1
0

0
.0

0
%

77
.3

3
1

0
0

.0
0

%
1

7
.5

0
1

0
0

.0
0

%
f 4

-
0.

00
%

-
0.

00
%

58
.6

0
1

0
0

.0
0

%
-

0.
00

%
-

0.
00

%
-

0.
00

%
1

6
.4

7
1

0
0

.0
0

%
f 5

-
0.

00
%

-
0.

00
%

16
.4

3
0.

00
%

-
0.

00
%

56
.8

0
76

.6
7%

38
.9

7
1

0
0

.0
0

%
1

1
.0

0
1

0
0

.0
0

%
f 6

-
0.

00
%

-
0.

00
%

54
.7

3
1

0
0

.0
0

%
-

0.
00

%
-

0.
00

%
-

0.
00

%
2

0
.7

0
1

0
0

.0
0

%
f 7

-
1

0
0

.0
0

%
-

1
0

0
.0

0
%

-
36

.6
7%

-
1

0
0

.0
0

%
-

1
0

0
.0

0
%

34
.5

0
10

0.
00

%
1

3
.7

7
1

0
0

.0
0

%
f 8

-
0.

00
%

-
0.

00
%

25
.0

0
0.

00
%

-
0.

00
%

-
0.

00
%

37
.0

3
9

6
.6

7
%

2
1

.8
0

9
6

.6
7

%
f 9

-
0.

00
%

-
0.

00
%

6
.2

7
0.

00
%

-
0.

00
%

12
.3

0
96

.6
7%

7.
40

1
0

0
.0

0
%

11
.8

0
66

.6
7%

f 1
0

-
0.

00
%

-
0.

00
%

23
.3

7
0.

00
%

-
0.

00
%

63
.0

7
53

.3
3%

36
.8

0
1

0
0

.0
0

%
1

4
.4

0
1

0
0

.0
0

%
f 1

1
-

0.
00

%
-

0.
00

%
7.

87
0.

00
%

-
0.

00
%

28
.3

0
1

0
0

.0
0

%
15

.3
0

1
0

0
.0

0
%

5
.3

3
1

0
0

.0
0

%
f 1

2
-

0.
00

%
-

0.
00

%
56

.9
3

10
0.

00
%

-
0.

00
%

-
0.

00
%

-
0.

00
%

20
.9

7
1

0
0

.0
0

%
f 1

3
2

.8
3

0.
00

%
-

0.
00

%
62

.9
3

93
.3

3%
4.

67
0.

00
%

-
0.

00
%

-
0.

00
%

19
.5

7
1

0
0

.0
0

%
f 1

4
-

0.
00

%
-

0.
00

%
66

.7
0

96
.6

7%
-

0.
00

%
-

0.
00

%
-

0.
00

%
1

6
.5

0
1

0
0

.0
0

%
f 1

5
1.

20
1

0
0

.0
0

%
1

.1
0

1
0

0
.0

0
%

1.
20

60
.0

0%
1.

37
1

0
0

.0
0

%
1.

23
16

.6
7%

4.
27

0.
00

%
2.

30
10

.0
0%

f 1
6

-
0.

00
%

-
0.

00
%

57
.7

3
1

0
0

.0
0

%
-

0.
00

%
-

0.
00

%
−

0.
00

%
2

4
.5

0
1

0
0

.0
0

%
f 1

7
-

0.
00

%
-

0.
00

%
26

.6
3

43
.3

3%
-

0.
00

%
-

0.
00

%
-

0.
00

%
2

0
.0

7
1

0
0

.0
0

%
f 1

8
-

0.
00

%
-

0.
00

%
14

.6
3

36
.6

7%
-

0.
00

%
-

0.
00

%
-

0.
00

%
8

.2
0

1
0

0
.0

0
%

f 1
9

1.
67

1
0

0
.0

0
%

6.
30

1
0

0
.0

0
%

1
.0

0
1

0
0

.0
0

%
1.

60
1

0
0

.0
0

%
9.

20
3.

33
%

4.
07

0.
00

%
1.

20
16

.6
7%

f 2
0

−
0.

00
%

-
0.

00
%

-
0.

00
%

-
0.

00
%

-
0.

00
%

-
0.

00
%

2
.5

3
9

0
.0

0
%

f 2
1

-
0.

00
%

-
0.

00
%

0
.6

3
0.

00
%

-
0.

00
%

-
0.

00
%

-
0.

00
%

16
.7

3
9

6
.6

7
%

f 2
2

-
0.

00
%

-
0.

00
%

38
.3

0
1

0
0

.0
0

%
-

0.
00

%
-

0.
00

%
-

0.
00

%
1

3
.1

7
1

0
0

.0
0

%

356

Mathematics 2018, 6, 287

5. Conclusions

Due to the effect on particle swarm optimization, in this paper, a Simple Particle Swarm
Optimization based on Confidence term and Random inertia weight namely SPSORC has been
proposed. SPSORC adopts three different improving strategies—first, particle updating formulas only
use positional items and social items to enhance the exploration capability; second, the confidence term
is introduced to increase particle diversity and avoid excessive particle convergence. Finally, a random
inertia weight is formulated to keep the balance between exploration and exploitation. Extensive
experiments in Section 4 on twenty-two benchmark functions validate and discuss SPSO and its further
improvements’ effectiveness, efficiency, robustness and scalability. It has been demonstrated that, in
most cases, SPSORC performs a better capability of exploitation and exploration than, or at least highly
competitively with, basic PSO and its state-of-the-art improved ones introduced in this paper.

In our future work, we intend to incorporate different initialization strategies, multi-swarm
and hybrid algorithms into SPSORC. This may result in very competitive algorithms. Obviously,
many adaptive methods for PSO have been proposed. In order to improve the performance of
the proposed approach and its application, the research on particle swarm optimization algorithm
and its improvements is a promising research direction. Furthermore, we will apply the proposed
approach to solve some other practical existing engineering optimization problems, e.g., machine-tool
spindle design, logistics distribution region partitioning problem, economic load dispatch problem, etc.
With these evolutionary algorithms, it is unnecessary to know the computing environment and to
calculate the gradient and other information. Thus, it is helpful to save on the cost of computing.
Even better, we can calculate the problem with more dimensions and goals at once, including some
discontinuous problems.

Author Contributions: X.Z. suggested the improving strategy and wrote the original draft preparation. D.Z. was
responsible for checking this paper. X.S. provided a provincial project.

Funding: The National Natural Science Foundation of China (No. 61403174) and the Postgraduate Research and
Practice Innovation Program of Jiangsu Province (No. KYCX17_1575, No. KYCX17_1576).

Acknowledgments: This work was supported by the National Natural Science Foundation of China (No. 61403174)
and the Postgraduate Research and Practice Innovation Program of Jiangsu Province (No. KYCX17_1575,
No. KYCX17_1576).

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

The following abbreviations are used in this manuscript:

PSO Particle Swarm Optimization
bPSO The basic PSO [21,22]
PSOd A distribution-based update rule for PSO [52]
HPSOscac A hybrid PSO with sine cosine acceleration coefficients [67]
TCPSO A two-swarm cooperative PSO [45]
SPSO Simple PSO
SPSOC Simple PSO with Confidence Term
SPSORC Simple PSO based on Random weight and Confidence term
v Particle velocity
x Particle position
pbest Personal historical best solution
gbest Global best solution
ω Inertia weight
ωmax The maximum weight
ωmin The minimum wight
c1 Self-cognitive factor
c2 Social communication factor
U (in Figures 1–3) Solution space of a function
O (in Figures 1–3) The theoretical optima of a function
i The current particle
n The current dimension

357

Mathematics 2018, 6, 287

N The maximum dimension
t The current generation
T The upper limit of generation
NR The number of times that algorithm search for problem
m Population size

min
The minimum values from the optima in which algorithms search for the problem
30 times

mean
The average values for the optima in which algorithms search for the problem
30 times

std
The average values for the optima in which algorithms search for the problem
30 times

ttest (in Table 6) t-test results
AIT (in Section 4.5.2) Average iteration times
SR (in Section 4.5.2) Success rate
A1–A7 (in Figures 5 and 6) bPSO, PSOd, HPSOscac, TCPSO, SPSO, SPSOC and SPSORC, respectively

Appendix A. Benchmark Function Appendix

Table A1. Benchmark functions.

Instance Expression Domain Analytical Solution Accuracy (50)

Ackley’s Path Function f1(x) = −20e−0.2
√

1
30 ∑N

i=1 x2
i [−32, 32] f1(0, · · · , 0) = 8.88̇× 10−16 1× 10−15

− e
1

30 ∑N
i=1 cos 2πxi + 20 + e

Alpine Function f2(x) =
N
∑

i=1
|xi sin(xi) + 0.1xi | [−10, 10] f2(0, · · · , 0) = 0 1× 10−60

Axis Parallel
Hyperellipsoid f3(x) =

N
∑

i=1
ix2

i [−5.12, 5.12] f3(0, · · · , 0) = 0 1× 10−15

De Jong’s Function 4
(no noise) f4(x) =

N
∑

i=1
ix4

i [−1.28, 1.28] f4(0, · · · , 0) = 0 1× 10−240

Girewank Problem f5(x) = 1
4000

N
∑

i=1
x2

i −
N
∏
i=1

(
xi√

i
) + 1 [−600, 600] f5(0, · · · , 0) = 0 1× 10−15

High Conditioned
Elliptic Function f6(x) =

N
∑

i=1
(106)

i−1
n−1 x2

i [−100, 100] f6(0, · · · , 0) = 0 1× 10−110

Inverted Cosine f7(x) = −N−1
∑

i=1
(e
−x2

i −x2
i+1−0.5xi xi+1

8) [−5, 5] f7(0, · · · , 0) = −N + 1 −4.9× 10−1

Wave Function × cos(4
√

x2
i + x2

i+1 + 0.5xi xi+1)

Pathological Function f8(x) =
N−1
∑

i=1
(0.5 +

sin2
√

100x2
i +x2

i+1−0.5

1+ 1
1000 (x2

i −2xi xi+1+x2
i+1)

) [−100, 100] f8(0, · · · , 0) = 0 1× 10−5

Quartic Function,
i.e, noise f9(x) =

N
∑

i=1
ix4

i +rand[0, 1) [−10, 10] f9(0, · · · , 0) = 0 1× 10−1

Rastrigin Problem f10(x) =
N
∑

i=1
[x2

i − 10 cos(2πxi) + 10] [−5.12, 5.12] f10(0, · · · , 0) = 0 1× 10−20

Rosenbrock Problem f11(x) =
N−1
∑

i=1
[100(xi+1 − x2

i)
2 + (xi − 1)2] [−30, 30] f11(0, · · · , 0) = 0 5× 101

Schwefel’s Problem 1.2 f12(x) =
N
∑

i=1
(

m
∑

j=1
xj)

2 [−100, 100] f12(0, · · · , 0) = 0 1× 10−100

Schwefel’s
Problem 2.21

f13(x) = max
i
|xi |, 1 ≤ i ≤ 30 [−100, 100] f13(0, · · · , 0) = 0 1× 10−80

Schwefel’s
Problem 2.22 f14(x) =

N
∑

i=1
|xi |+

N
∏
i=1
|xi | [−10, 10] f14(0, · · · , 0) = 0 1× 10−60

Schwefel’s Problem 2.26 f15(x) =
N
∑

i=1
|xi sin(xi) + 0.1xi | [−500, 500] f15(s, · · · , s) = −419 N −2.5× 103

s ≈ 420.97

Sphere Function f16(x) =
N
∑

i=1
x2

i [−100, 100] f16(0, · · · , 0) = 0 1× 10−120

Sum of Different
Power Function f17(x) =

N
∑

i=1
|xi |i+1 [−1, 1] f17(0, · · · , 0) = 0 1× 10−300

Xin–She Yang 1 f18(x) =
N
∑

i=1
rand[0, 1)× |xi |i [−5, 5] f18(0, · · · , 0) = 0 1× 10−60

Xin–She Yang 2 f19(x) =
∑N

i=1 |xi |

e∑N
i=1 sin x2

i
[−2π, 2π] f19(0, · · · , 0) = 0 1× 10−8

358

Mathematics 2018, 6, 287

Table A1. Cont.

Instance Expression Domain Analytical Solution Accuracy (50)

Xin–She Yang 3 f20(x) = e
−∑N

i=1(
xi
β
)2α

− 2e−∑N
i=1 x2

i
N
∏
i=1

cos2 xi [−20, 20] f20(0, · · · , 0) = −1 −1
β = 15, α = 3

Xin–She Yang 4 f21(x) = [
N
∑

i=1
sin2 xi − e−∑N

i=1 x2
i]e

N
∑

i=1
sin2√|xi | [−10, 10] f21(0, · · · , 0) = −1 −1

Zakharov Function f22(x) =
N
∑

i=1
x2

i + (
N
∑

i=1
0.5ix2

i)
2 + (

N
∑

i=1
0.5ix2

i)
4 [−5, 10] f22(0, · · · , 0) = 0 1× 10−80

References

1. Denysiuk, R.; Gaspar-Cunha, A. Multiobjective Evolutionary Algorithm Based on Vector Angle Neighborhood.
Swarm Evol. Comput. 2017, 37, 663–670. [CrossRef]

2. Wang, G.G. Moth search algorithm: A bio-inspired metaheuristic algorithm for global optimization problems.
Memet. Comput. 2016, 10, 1–14. [CrossRef]

3. Feng ,Y.H.; Wang, G.G. Binary moth search algorithm for discounted 0–1 knapsack problem. IEEE Access
2018, 6, 10708–10719. [CrossRef]

4. Grefenstette, J.J. Genetic algorithms and machine learning. Mach. Learn. 1988, 3, 95–99. [CrossRef]
5. Dorigo, M.; Gambardella, L.M. Ant colony system: A cooperative learning approach to the traveling

salesman problem. IEEE Trans. Evol. Comput. 1997, 1, 53–66. [CrossRef]
6. Storn, R.; Price, K. Differential Evolution—A Simple and Efficient Heuristic for global Optimization over

Continuous Spaces. J. Glob. Optim. 1997, 11, 341–359. [CrossRef]
7. Kirkpatrick, S.; Vecchi, M.P. Optimization by simulated annealing. Science 1983, 220, 671–680._0035.

[CrossRef] [PubMed]
8. Wang, G.G.; Gandomi, A.H.; Alavi, A.H.; Deb, S. A multi-stage krill herd algorithm for global numerical

optimization. Int. J. Artif. Intell. Tools 2016, 25, 1550030. [CrossRef]
9. Wang, G.G.; Deb, S.; Gandomi, A.H.; Alavi, A.H. Opposition-based krill herd algorithm with Cauchy

mutation and position clamping. Neurocomputing 2016, 177, 147–157. [CrossRef]
10. Wang, G.G.; Gandomi, A.H.; Alavi, A.H. An effective krill herd algorithm with migration operator in

biogeography-based optimization. Appl. Math. Model. 2014, 38, 2454–2462. [CrossRef]
11. Wang, G.G.; Guo, L.H.; Wang, H.Q.; Duan, H.; Liu, L.; Li, J. Incorporating mutation scheme into krill herd

algorithm for global numerical optimization. Neural Comput. Appl. 2014, 24, 853–871. [CrossRef]
12. Wang, G.G.; Gandomi, A.H.; Hao, G.S. Hybrid krill herd algorithm with differential evolution for global

numerical optimization. Neural Comput. Appl. 2014, 25, 297–308. [CrossRef]
13. Ding, X.; Guo, H.; Guo, S. Efficiency Enhancement of Traction System Based on Loss Models and Golden

Section Search in Electric Vehicle. Energy Procedia 2017, 105, 2923–2928. [CrossRef]
14. Ramos, H.; Monteiro, M.T.T. A new approach based on the Newton’s method to solve systems of nonlinear

equations. J. Comput. Appl. Math. 2016, 318, 3–13. [CrossRef]
15. Fazio, A.R.D.; Russo, M.; Valeri, S.; Santis, M.D. Linear method for steady-state analysis of radial distribution

systems. Int. J. Electr. Power Energy Syst. 2018, 99, 744–755. [CrossRef]
16. Du, X.; Zhang, P.; Ma, W. Some modified conjugate gradient methods for unconstrained optimization.

J. Comput. Appl. Math. 2016, 305, 92–114. [CrossRef]
17. Pooranian, Z.; Shojafar, M.; Abawajy, J.H.; Abraham, A. An efficient meta-heuristic algorithm for grid

computing. J. Comb. Optim. 2015, 30, 413–434. [CrossRef]
18. Shojafar, M.; Chiaraviglio, L.; Blefari-Melazzi, N.; Salsano, S. P5G: A Bio-Inspired Algorithm for the

Superfluid Management of 5G Networks. In Proceedings of the GLOBECOM 2017: 2017 IEEE Global
Communications Conference, Singapore, 4–8 December 2017; pp. 1–7. [CrossRef]

19. Shojafar, M.; Cordeschi, N.; Abawajy, J.H.; Baccarelli, E. Adaptive Energy-Efficient QoS-Aware Scheduling
Algorithm for TCP/IP Mobile Cloud. In Proceedings of the IEEE Globecom Workshops, San Diego, CA,
USA, 6–10 December 2015; pp. 1–6. [CrossRef]

20. Zou, D.X.; Deb, S.; Wang, G.G. Solving IIR system identification by a variant of particle swarm optimization.
Neural Comput. Appl. 2018, 30, 685–698. [CrossRef]

359

Mathematics 2018, 6, 287

21. Kennedy, J. Particle Swarm Optimization. In Proceedings of the 1995 International Conference on Neural
Networks, Perth, WA, Australia, 27 November–1 December 1995; Volume 4, pp. 1942–1948. [CrossRef]

22. Shi, Y.H.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the 1999
Congress on Evolutionary Computation-CEC99(Cat. No. 99TH8406), Washington, DC, USA, 6–9 July 1999;
pp. 1945–1950. [CrossRef]

23. Chen, Y.; Li, L.; Xiao, J.; Yang, Y.; Liang, J.; Li, T. Particle swarm optimizer with crossover operation. Eng. Appl.
Artif. Intell. 2018, 70, 159–169. [CrossRef]

24. Zou, D.; Gao, L.; Li, S.; Wu, J.; Wang, X. A novel global harmony search algorithm for task assignment
problem. J. Syst. Softw. 2010, 83, 1678–1688. [CrossRef]

25. Niu, W.J.; Feng, Z.K.; Cheng, C.T.; Wu, X.Y. A parallel multi-objective particle swarm optimization for cascade
hydropower reservoir operation in southwest China. Appl. Soft Comput. 2018, 70, 562–575. [CrossRef]

26. Feng, Y.; Wang, G.G.; Deb, S.; Lu, M.; Zhao, X.J. Solving 0–1 knapsack problem by a novel binary monarch
butterfly optimization. Neural Comput. Appl. 2017, 28, 1619–1634. [CrossRef]

27. Wang, G.G.; Deb, S.; Coelho, L.D.S. Elephant Herding Optimization. In Proceedings of the International
Symposium on Computational and Business Intelligence, Bali, Indonesia, 7–9 December 2015; pp. 1–5.
[CrossRef]

28. Wang, G.; Guo, L.; Gandomi, A.H.; Cao, L.; Alavi, A.H.; Duan, H.; Li, J. Levy-flight krill herd algorithm.
Math. Probl. Eng. 2013, 2013, 682073. [CrossRef]

29. Wang, G.G.; Gandomi, A.H.; Alavi, A.H. Stud krill herd algorithm. Neurocomputing 2014, 128, 363–370.
[CrossRef]

30. Wang, G.G.; Deb, S.; Coelho, L. Earthworm optimization algorithm: A bio-inspired metaheuristic algorithm
for global optimization problems. Int. J. Bio-Inspired Comput. 2018, 12, 1–22. [CrossRef]

31. Wang, G.G.; Chu, H.; Mirjalili, S. Three-dimensional path planning for UCAV using an improved bat
algorithm. Aerosp. Sci. Technol. 2016, 49, 231–238. [CrossRef]

32. Shi, Y.; Eberhart, R. A modified particle swarm optimizer. In Proceedings of the 1998 IEEE International
Conference on Evolutionary Computation Proceedings, IEEE World Congress on Computational Intelligence
(Cat. No.98TH8360), Anchorage, AK, USA, 4–9 May 1998; pp. 69–73. [CrossRef]

33. Parsopoulos, K.E.; Vrahatis, M.N. Particle swarm optimizer in noisy and continuously changing
environments. In Artificial Intelligence and Soft Computing; Hamza, M.H., Ed.; IASTED/ACTA Press: Anaheim,
CA, USA, 2001; pp. 289–294.

34. Kennedy, J.; Mendes, R. Population structure and particle swarm performance. In Proceedings of the IEEE
Congress on Evolutionary Computation, Honolulu, HI, USA, 12–17 May 2002; Volume 2, pp. 1671–1676.
[CrossRef]

35. Clerc, M.; Kennedy, J. The particle swarm-explosion, stability, and convergence in a multidimensional
complex space. IEEE Trans. Evol. Comput. 2002, 6, 58–73. [CrossRef]

36. Xu, G.; Yu, G. Reprint of: On convergence analysis of particle swarm optimization algorithm. J. Shanxi
Norm. Univ. 2018, 4, 25–32. [CrossRef]

37. Sun, J.; Wu, X.; Palade, V.; Fang, W.; Lai, C.H.; Xu, W.B. Convergence analysis and improvements of
quantum-behaved particle swarm optimization. Inf. Sci. 2012, 193, 81–103. [CrossRef]

38. Li, S.F.; Cheng, C.Y. Particle Swarm Optimization with Fitness Adjustment Parameters. Comput. Ind. Eng.
2017, 113, 831–841. [CrossRef]

39. Li, N.J.; Wang, W.; Hsu, C.C.J. Hybrid particle swarm optimization incorporating fuzzy reasoning and
weighted particle. Neurocomputing 2015, 167, 488–501. [CrossRef]

40. Chih, M.; Lin, C.J.; Chern, M.S.; Ou, T.Y. Particle swarm optimization with time-varying acceleration
coefficients for the multidimensional knapsack problem. J. Chin. Inst. Ind. Eng. 2014, 33, 77–102. [CrossRef]

41. Ratnaweera, A.; Halgamuge, S.K.; Watson, H.C. Self-organizing hierarchical particle swarm optimizer with
time-varying acceleration coefficients. IEEE Trans. Evol. Comput. 2004, 8, 240–255. [CrossRef]

42. Kennedy, J.; Mendes, R. Neighborhood topologies in fully informed and best-of-neighborhood particle
swarms. IEEE Trans. Syst. Man Cybern. Part C 2006, 36, 515–519. [CrossRef]

43. Zhao, S.Z.; Suganthan, P.N.; Pan, Q.K.; Tasgetiren, M.F. Dynamic multi-swarm particle swarm optimizer
with harmony search. Expert Syst. Appl. 2011, 38, 3735–3742. [CrossRef]

360

Mathematics 2018, 6, 287

44. Majercik, S.M. Using Fluid Neural Networks to Create Dynamic Neighborhood Topologies in Particle Swarm
Optimization. In Proceedings of the International Conference on Swarm Intelligence, Brussels, Belgium,
10–12 September 2014; Springer: Cham, Switzerland; New York, NY, USA, 2014; Volume 8667, pp. 270–277.
[CrossRef]

45. Sun, S.; Li, J. A two-swarm cooperative particle swarms optimization. Swarm Evol. Comput. 2014, 15, 1–18.
[CrossRef]

46. Netjinda, N.; Achalakul, T.; Sirinaovakul, B. Particle Swarm Optimization inspired by starling flock behavior.
Appl. Soft Comput. 2015, 35, 411–422. [CrossRef]

47. Beheshti, Z.; Shamsuddin, S.M. Non-parametric particle swarm optimization for global optimization.
Appl. Soft Comput. 2015, 28, 345–359. [CrossRef]

48. Mendes, R.; Kennedy, J.; Neves, J. The fully informed particle swarm: Simpler, maybe better. IEEE Trans.
Evol. Comput. 2004, 8, 204–210. [CrossRef]

49. Liang, J.J.; Qin, A.K.; Suganthan, P.N.; Subramanian, B. Comprehensive learning particle swarm optimizer
for global optimization of multimodal functions. IEEE Trans. Evol. Comput. 2006, 10, 281–295. [CrossRef]

50. Gong, Y.J.; Li, J.J.; Zhou, Y.; Li, Y.; Chung, H.S.H.; Shi, Y.H.; Zhang, J. Genetic Learning Particle Swarm
Optimization. IEEE Trans. Cybern. 2017, 46, 2277–2290. [CrossRef]

51. Zou, D.; Li, S.; Li, Z.; Kong, X. A new global particle swarm optimization for the economic emission dispatch
with or without transmission losses. Energy Convers. Manag. 2017, 139, 45–70. [CrossRef]

52. Kiran, M.S. Particle Swarm Optimization with a New Update Mechanism. Appl. Soft Comput. 2017,
60, 607–680. [CrossRef]

53. Wang, G.G.; Gandomi, A.H.; Alavi, A.H. A chaotic particle-swarm krill herd algorithm for global numerical
optimization. Kybernetes 2013, 42, 962–978. [CrossRef]

54. Gandomi, A.H.; Alavi, A.H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci.
Numer. Simul. 2012, 17, 4831–4845. [CrossRef]

55. Yang, X.S. Nature-Inspired Metaheuristic Algorithm; Luniver Press: Beckington, UK, 2008; ISBN 1905986106,
9781905986101.

56. Wang, G.G.; Gandomi, A.H.; Yang, X.S.; Alavi, A.H. A novel improved accelerated particle swarm
optimization algorithm for global numerical optimization. Eng. Comput. 2014, 31, 1198–1220. [CrossRef]

57. Liu, Y.; Niu, B.; Luo, Y. Hybrid learning particle swarm optimizer with genetic disturbance. Neurocomputing
2015, 151, 1237–1247. [CrossRef]

58. Chen, Y.; Li, L.; Peng, H.; Xiao, J.; Yang, Y.; Shi Y. Particle Swarm Optimizer with two differential mutation.
Appl. Soft Comput. 2017, 61, 314–330. [CrossRef]

59. Liu, Z.G.; Ji, X.H.; Liu, Y.X. Hybrid Non-parametric Particle Swarm Optimization and its Stability Analysis.
Expert Syst. Appl. 2017, 92, 256–275. [CrossRef]

60. Bewoor, L.A.; Prakash, V.C.; Sapkal, S.U. Production scheduling optimization in foundry using hybrid
Particle Swarm Optimization algorithm. Procedia Manuf. 2018, 22, 57–64. [CrossRef]

61. Xu, X.; Rong, H.; Pereira, E.; Trovati, M.W. Predatory Search-based Chaos Turbo Particle Swarm Optimization
(PS-CTPSO): A new particle swarm optimisation algorithm for Web service combination problems.
Future Gener. Comput. Syst. 2018, 89, 375–386. [CrossRef]

62. Guan, G.; Yang, Q.; Gu, W.W.; Jiang W.; Lin, Y. Ship inner shell optimization based on the improved particle
swarm optimization algorithm. Adv. Eng. Softw. 2018, 123, 104–116. [CrossRef]

63. Qin, Z.; Liang, Y.G. Sensor Management of LEO Constellation Using Modified Binary Particle Swarm
Optimization. Optik 2018, 172, 879–891. [CrossRef]

64. Peng, Z.; Manier, H.; Manier, M.A. Particle Swarm Optimization for Capacitated Location-Routing Problem.
IFAC PapersOnLine 2017, 50, 14668–14673. [CrossRef]

65. Copot, C.; Thi, T.M.; Ionescu, C. PID based Particle Swarm Optimization in Offices Light Control.
IFAC PapersOnLine 2018, 51, 382–387. [CrossRef]

66. Chen, S.Y.; Wu, C.H.; Hung, Y.H.; Chung, C.T. Optimal Strategies of Energy Management Integrated with
Transmission Control for a Hybrid Electric Vehicle using Dynamic Particle Swarm Optimization. Energy
2018, 160, 154–170. [CrossRef]

67. Chen, K.; Zhou, F.; Yin, L.; Wang, S.; Wang, Y.; Wan, F. A Hybrid Particle Swarm Optimizer with Sine Cosine
Acceleration Coefficients. Inf. Sci. 2017, 422, 218–241. [CrossRef]

361

Mathematics 2018, 6, 287

68. Zou, D.; Gao, L.; Wu. J.; Li, S. Novel global harmony search algorithm for unconstrained problems.
Neurocomputing 2010, 73, 3308–3318. [CrossRef]

69. Hu, W.; Li, Z.S. A Simpler and More Effective Particle Swarm Optimization Algorithm. J. Softw. 2007,
18, 861–868. [CrossRef]

70. Zhang, X.; Zou, D.X.; Kong, Z.; Shen, X. A Hybrid Gravitational Search Algorithm for Unconstrained
Problems. In Proceedings of the 30th Chinese Control and Decision Conference, Shenyang, China,
9–11 June 2018; pp. 5277–5284. [CrossRef]

71. Zhang, X.; Zou, D.X.; Shen, X. A Simplified and Efficient Gravitational Search Algorithm for Unconstrained
Optimization Problems. In Proceedings of the 2017 International Conference on Vision, Image and Signal
Processing, Osaka, Japan, 22–24 September 2017 ; pp. 11–17. [CrossRef]

72. Müller, P. Analytische Zahlentheorie. In Funktionentheorie 1; Springer: Berlin/Heidelberg, Germany, 2006;
pp. 386–456. [CrossRef]

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

362

mathematics

Article

Energy-Efficient Scheduling for a Job Shop Using an
Improved Whale Optimization Algorithm

Tianhua Jiang 1,*, Chao Zhang 2, Huiqi Zhu 1, Jiuchun Gu 1 and Guanlong Deng 3

1 School of Transportation, Ludong University, Yantai 264025, China; zhuhuiqi0505@126.com (H.Z.);
gujiuchun@163.com (J.G.)

2 Department of Computer Science and Technology, Henan Institute of Technology, Xinxiang 453003, China;
zhangchao915@foxmail.com

3 School of Information and Electrical Engineering, Ludong University, Yantai 264025, China; dglag@163.com
* Correspondence: jth1127@163.com

Received: 28 September 2018; Accepted: 26 October 2018; Published: 28 October 2018

Abstract: Under the current environmental pressure, many manufacturing enterprises are urged or
forced to adopt effective energy-saving measures. However, environmental metrics, such as energy
consumption and CO2 emission, are seldom considered in the traditional production scheduling
problems. Recently, the energy-related scheduling problem has been paid increasingly more attention
by researchers. In this paper, an energy-efficient job shop scheduling problem (EJSP) is investigated
with the objective of minimizing the sum of the energy consumption cost and the completion-time
cost. As the classical JSP is well known as a non-deterministic polynomial-time hard (NP-hard)
problem, an improved whale optimization algorithm (IWOA) is presented to solve the energy-efficient
scheduling problem. The improvement is performed using dispatching rules (DR), a nonlinear
convergence factor (NCF), and a mutation operation (MO). The DR is used to enhance the initial
solution quality and overcome the drawbacks of the random population. The NCF is adopted to
balance the abilities of exploration and exploitation of the algorithm. The MO is employed to reduce
the possibility of falling into local optimum to avoid the premature convergence. To validate the
effectiveness of the proposed algorithm, extensive simulations have been performed in the experiment
section. The computational data demonstrate the promising advantages of the proposed IWOA for
the energy-efficient job shop scheduling problem.

Keywords: energy-efficient job shop scheduling; dispatching rule; nonlinear convergence factor;
mutation operation; whale optimization algorithm

1. Introduction

Nowadays, manufacturing enterprises are facing not only the economic pressure, but also
environmental challenges. With the consideration of sustainable development, reducing energy
consumption becomes an important target for manufacturing companies. To implement such measures,
some researchers focused on developing more energy-efficient machines or machining processes [1,2].
However, it has been indicated that a significant energy-saving opportunity may be missed by
focusing solely on the machines or processes, and the operational method can be adopted from the
manufacturing system-level perspective [3]. In recent years, increasingly more attention has been paid
to production scheduling problems with the consideration of energy efficiency. Compared with the
investment in new energy-saving machines and production redesign, the optimization of scheduling
scheme requires a modest investment and is more easily applied to existing production systems.

One of the earliest energy-efficient production scheduling methods was investigated by
Mouzon et al. [4]. They developed a turn-on/off scheduling strategy of machines to control the
overall energy consumption. Some dispatching rules are proposed to solve the multi-objective

Mathematics 2018, 6, 220; doi:10.3390/math6110220 www.mdpi.com/journal/mathematics363

Mathematics 2018, 6, 220

mathematical model with the objective of minimizing the energy consumption and total completion
time. Since then, energy-efficient production scheduling has become a new research spot in the
manufacturing field. Mouzon and Yildirim [5] proposed a greedy randomized multi-objective
adaptive searching algorithm to minimize total energy consumption and total tardiness in a
single-machine system. Yildirim and Mouzon [6] developed a multi-objective genetic algorithm
to deal with a single-machine scheduling problem with the objective of minimizing the energy
consumption and completion time. Shrouf et al. [7] designed a genetic algorithm for a single-machine
scheduling with the consideration of variable energy prices. Che et al. [8] considered a single-machine
scheduling problem under the time-of-use (TOU) strategy. Li et al. [9] presented an energy-aware
multi-objective optimization algorithm for the hybrid flow shop scheduling problem with the setup
energy consumption. Liu et al. [10] proposed a branch-and-bound algorithm for the permutation
flow shop scheduling problem in order to minimize the wasted energy consumption. Dai et al. [11]
proposed a genetic-simulated annealing algorithm to optimize makespan and energy consumption in
a flexible flow shop. Ding et al. [12] considered an energy-efficient permutation flow shop scheduling
problem to minimize total carbon emissions and makespan. Mansouri and Aktas [13] addressed
multi-objective genetic algorithms for a two-machine flow shop scheduling problem to optimize
energy consumption and makespan. Luo et al. [14] presented an ant colony optimization algorithm
with the criterion to minimize production efficiency and electric power cost in a hybrid flow shop.
Regarding the above literature, most of the corresponding studies are oriented to a single machine [5–8]
and flow shop [9–14]. By contrast, the energy-efficient job shop scheduling problem is not fully studied.
However, many real-life problems can be taken as a job shop scheduling problem (JSP), such as
production scheduling in the industry, departure and arrival times of logistic problems, the delivery
times of orders in a company, and so on [15]. Therefore, in this paper, the job shop is selected
as the research object, and the scheduling problem is investigated from the perspective of energy
consumption reduction.

In some actual manufacturing systems, machines can not be frequently turned on/off because
restarting action may consume a large amount of additional energy or damage the machine tools [16].
Under this situation, the framework of machine speed scaling is an alternative method to control the
energy consumption in the workshop, by which machines are allowed to work at different speeds when
processing different jobs. When the machine works at a higher speed, the processing time decreases
but the amount of energy consumption increases, and when the machine works at a lower speed,
the processing time increases while the amount of energy consumption decreases. Compared with the
classical JSP, the complexity of the EJSP under study mainly lies in the addition of an energy-related
objective and machine speed selection. As the classical JSP is well known as an NP-hard problem, it is
clear that the EJSP is difficult to solve using exact methods. Although meta-heuristic algorithms have
been paid increasingly more attention by researchers in the manufacturing field, its application to the
energy-efficient job shop scheduling problem with machine speed scaling framework appears to be
limited. Salido et al. [15] presented a multi-objective genetic algorithm with the objective of minimizing
the makespan and the energy consumption. Zhang and Chiong [16] proposed a multi-objective genetic
algorithm and two local search strategies to optimize the total energy consumption and total weighted
tardiness. Tang and Dai [17] proposed a genetic-simulated annealing algorithm to minimize the
makespan and energy consumption. Escamilla et al. [18] presented a genetic algorithm to minimize the
makespan and the energy consumption. Yin et al. [19] developed a multi-objective genetic algorithm
based on simplex lattice design to optimize the productivity, energy efficiency, and noise. In view of the
complexity of the problem under study, meta-heuristic algorithms can achieve satisfactory scheduling
within a reasonable time. The application of a meta-heuristic algorithm on the EJSP will be a research
hot spot in the manufacturing field.

Because of their promising advantage, meta-heuristic algorithms have received increasing interest
in solving complex optimization problems [20]. Recently, many meta-heuristic algorithms have been
presented and improved to solve various problems [21–32]. Whale optimization algorithm (WOA) is a

364

Mathematics 2018, 6, 220

new swarm-based algorithm, which mimics the hunting behavior of humpback whales in nature [33].
It is well-known that the cooperation between exploration and exploitation is very important for the
searching ability of a meta-heuristic algorithm. For the existing meta-heuristics, some algorithms have
better global search abilities, while others have better local search abilities. In general, a well-designed
hybrid method is used to balance the capacity of exploration and exploitation. By contrast, the main
unique feature of the WOA algorithm is that it can maintain a good relationship between exploration
and exploitation by self-tuning some parameters in the iteration process. At present, WOA has
been adopted to deal with a variety of optimization problems in different fields; for example, global
optimization [34], feature selection [35], content-based image retrieval [36], 0–1 knapsack problem [37],
permutation flow shop scheduling problem [38], and so on. By considering its efficiency, an improved
whale optimization algorithm (IWOA) is developed for solving the energy-efficient job shop scheduling
problem with machine speed scaling framework. However, to the best of the authors’ knowledge,
the research on WOA to solve the EJSP has not yet been attempted. This paper aims to develop
the IWOA in solving the EJSP with the objective of minimizing the energy consumption cost and
completion-time cost. The main improvement of the algorithm lies on the introduction of dispatching
rules (DR), nonlinear convergence factor (NCF), and mutation operation (MO), where DR is used
to create the suitable initial population, NCF is adopted to balance the capacities of exploration
and exploitation, and MO is employed to maintain the diversity of the population and avoid the
premature convergence. Extensive experiments are conducted to validate the effectiveness of the
proposed algorithm.

The rest of this paper is organized as follows. Section 2 introduces the description of the problem.
Section 3 addresses the original whale optimization algorithm. Section 4 describes the implementation
of the proposed IWOA algorithm. Section 5 shows the experimental results of IWOA and Section 6
provides conclusions and future works.

2. Problem Description

The EJSP can be described as follows: n jobs need to be processed on m machines in the workshop.
The main difference between the EJSP and the classical JSP is that each machine can adjust its speed for
different jobs in a finite and discrete speed set v = {v1, v2, . . . , vd}. The higher the speed of machine,
the shorter the processing time of the operation assigned to it. When job i is assigned to machine k,
there is a basic processing time represented by qik. If vd is selected, the processing time of job i can
be measured by pikd, that is, pikd = qik/vd, and the energy consumption cost per unit time is defined
as Ekd. For job i on machine k, if vd′ > vd, Ekd′ × pikd′ > Ekd × pikd holds. In other words, a machine
working at a higher speed will decrease the processing time, but increase the energy consumption cost.
Some additional constraints are involved as follows:

(1) Any job can not be processed on more than one machine simultaneously.
(2) Each machine can only process one operation at a time.
(3) Preemption is not allowed once a job starts to be processed on a machine.
(4) Setup time is not considered in this paper.
(5) The speed of a machine can not be changed during the processing of an operation.
(6) Each machine can not be turned off completely until all jobs assigned to it are finished. During

the idle periods, each machine will be on a stand-by mode with energy consumption cost per
unit time SEk.

For such a problem, two sub-problems should be considered, that is, operation permutation
and speed-level selection. For the classical JSP, the complete time or its related cost is very
important for optimization decision-making. However, under the current environmental pressure,
environmental metrics can not be ignored in the energy-efficient scheduling problem; for example,
energy-consumption cost. Therefore, the optimization objective of the problem under study is aiming

365

Mathematics 2018, 6, 220

to obtain an optimal scheduling scheme to minimize the sum of energy-consumption cost and
completion-time cost.

min F =
n

∑
i=1

m

∑
k=1

Dk

∑
d=1

Ekd pikdxikd +
m

∑
k=1

SEk(Ck −Wk) + λCmax (1)

s.t.
Dk

∑
d=1

xikd = 1, i = 1, 2, . . . , n; k = 1, 2, . . . , m (2)

Cik −
Dk

∑
d=1

pikdxikd + L(1− yijk) ≥ Cij, . . . i = 1, 2, . . . , n; j, k = 1, 2, . . . , m (3)

Clk − Cik + L(1− zilk) ≥
Dk

∑
d=1

plkdxlkd, i, l = 1, 2, . . . , n; k = 1, 2, . . . , m (4)

Cik ≥ 0, i = 1, 2, . . . , n; k = 1, 2, . . . , m (5)

xikd ∈ {0, 1}, i = 1, 2, . . . , n; k = 1, 2, . . . , m; d = 1, 2, . . . , Dk (6)

yijk ∈ {0, 1}, i = 1, 2, . . . , n; j, k = 1, 2, . . . , m (7)

silk ∈ {0, 1}, i, l = 1, 2, . . . , n; k = 1, 2, . . . , m (8)

where F means the sum of energy-consumption cost and completion-time cost. Ekd denotes the energy
consumption cost per unit time of machine k with speed-level d. pikd is the processing time of job
i on machine k with speed-level d. xikd is a 0–1 variable, if job i is processed on machine k with
speed-level d, xikd = 1; otherwise, xikd = 0. Dk means the number of adjustable speed levels of machine
k. SEk is the energy consumption cost per unit time of machine k in the stand-by mode. Ck denotes
the final completion time of machine k. Wk represents the total workload of machine k. Cmax defines
the final completion time of jobs (makespan) in the workshop. λ is the cost coefficient relevant to
final completion-time. Cik is the completion time of job i processing on machine k. L is a big position
number. yijk is a 0–1 variable, if machine j performs job i prior to machine k, yijk = 1; otherwise, yijk = 0.
silk is a 0–1 variable, if job i is processed on machine k prior to job l, silk = 1; otherwise, silk = 0.

Equation (1) defines the optimization objective of the problem; constraint (2) ensures that the
machine’s speed can not be adjusted when an operation is processing on it; constraint (3) represents
the precedence constraints between operations of a job; constraint (4) means that each machine only
processes one operation at the same time; constraint (5) denotes the nonnegative feature of completion
time; constraints (6)–(8) show the relevant 0–1 variables.

3. Overview of the Original WOA

The whale optimization algorithm (WOA) is a new population-based optimization algorithm,
which mimics the hunting behavior of humpback whales in nature [33]. In this algorithm, two searching
phases are involved for exploitation and exploration. In the exploitation phase, the position of each
whale is updated by bubble-net attacking strategy, which is conducted by shrinking encircling the prey
and the spiral shape movement based on the best solution discovered so far. In the exploration phase,
the position of each whale is updated according to a randomly selected search agent rather than the
best solution discovered so far. Because of the space limit, the overview of the original WOA is briefly
shown below. The more detailed introduction can be easily found in the literature [33].

3.1. Exploitation Phase

(1) Shrinking encircling mechanism

366

Mathematics 2018, 6, 220

Humpback whales can observe the location of prey and encircle them in the hunting process.
To model the algorithm, the current best search agent is assumed to be the target prey or close to the
optimal solution. When the best search agent is discovered, other whales will update their positions
towards the best whale, which can be represented as follows:

D =|C ·X∗(t)−X(t)| (9)

X(t + 1) = X∗(t)−A ·D (10)

A = 2ar− a (11)

C = 2r (12)

where t is the current iteration number, X∗ indicates the position vector of the best search agent found
so far, and X defines the position vector of an individual whale. A and C are coefficient vectors.
| | means the absolute value, and · is an element-by-element multiplication. r denotes a random
vector inside [0, 1]. The elements of a are linearly decreased from 2 to 0 over the course of iterations.
The shrinking encircling mechanism is implemented by decreasing the element value of a according to
Equation (13), where tmax is the maximum of the iteration.

a = 2− 2t
tmax

(13)

(2) Spiral updating mechanism

In addition to the shrinking encircling behavior, a spiral path is created to simulate the
helix-shaped movement of whales, which can be defined as follows:

X(t + 1) = D′ · ebl · cos(2πl) + X∗(t) (14)

D′ =
∣∣X∗(t)−X(t)| (15)

where b is a constant used to determine the shape of the logarithmic spiral and l is a random number
inside [−1, 1].

In the exploitation phase, whales move around the prey in a shrinking circle and along a spiral
path simultaneously, which are chosen according to a probability of 50%. This can be represented by
Equation (16), where h is a random number in the range [0, 1].

X(t + 1) =

{
X∗(t)−A ·D if h < 0.5
D′ · ebl · cos(2πl) + X∗(t) if h ≥ 0.5

(16)

3.2. Exploration Phase

Except for the bubble-net attacking mechanism, the humpback whales search for prey randomly
in the exploration phase. The mechanism is also conducted based on the variation of the vector A.
When |A|< 1 , the exploitation is utilized by updating the positions towards the current best search
agent, when |A|≥ 1 , the exploration is adopted to search the global optimum. The mathematical
model can be represented as follows:

D′′ =|C ·Xrand(t)−X(t)| (17)

X(t + 1) = Xrand(t)−A ·D′′ (18)

where Xrand is a position vector selected from the current population at random.

367

Mathematics 2018, 6, 220

3.3. Pseudo Code of WOA

The pseudo code of the original WOA algorithm can be shown in Figure 1.

Figure 1. The pseudo code of the original whale optimization algorithm (WOA).

4. Implement of the Proposed IWOA

4.1. Scheduling Solution Representation

As mentioned above, the energy-efficient job shop scheduling problem consists of two
sub-problems, that is, operation permutation and speed-level selection. To obtain a feasible scheduling
scheme, it needs to choose suitable processing speeds for jobs and arrange them on each machine.
Therefore, the scheduling solution can be represented by a two-segment string with the size of 2mn.
The first segment tries to arrange the processing sequence of operations on each machine, and the
second aims to choose an appropriate speed level for each job.

Taking a 3× 2 (three jobs, two machines) EJSP, for example, five speed levels are considered
for each job on machines. The scheduling solution can be shown by Figure 2. For the first segment,
each element means the job code, where the elements with the same values represent different
operations of the same job. For the second segment, each element represents the speed-level selected
for the relevant job, which is stored in a given order. Oik represents the kth operation of job i.

3 2 2 3 1 4 4 2 4 2 5

Speed-level selectionOperation permutation

1

Figure 2. Scheduling solution representation.

4.2. Individual Position Vector

In the proposed IWOA, the individual position is still a multi-dimensional real vector, which
is also made up by two segments, that is, X = {x(1), x(2), . . . , x(mn), x(mn + 1), . . . , x(2mn)},
where x(j) ∈ [xmin, xmax], j = 1, 2, . . . , 2mn. The first segment X1 = {x(1), x(2), . . . , x(mn)} presents
the information of operation permutation, and the second segment X2 = {x(mn + 1), . . . , x(2mn)}
gives the information of speed-level selection. For the above 3× 2 EJSP (three jobs, two machines),
the individual position vector can be shown by Figure 3, where element values are stored according to
the given order.

368

Mathematics 2018, 6, 220

2.4 -2.8 0.3 -2.5 1.9 1.1 0.9 -1.6 1.5 -1.5 2.7-0.5

Speed-level selectionOperation permutation
Figure 3. Individual position vector.

4.3. Conversion between Individual Position Vector and Scheduling Solution

The original WOA was proposed to deal with the continuous optimization problem. However,
considering the discrete characteristics of the EJSP, it is very important to find a method to establish
the mapping relationship between the individual position vector and the discrete scheduling solution.
In the previous study, a method is proposed to implement the conversion between the continuous
individual vector and the discrete scheduling solution for the classical flexible job shop (FJSP) [39].
It is known that FJSP is made up by operation permutation and machine selection. Seen from Figure 2,
the structure of the solution is similar to that of the FJSP, where the speed-level selection is taken place
of the machine selection vector. Therefore, the conversion method in the literature [39] is modified for
the EJSP in this study. To facilitate the expression, the intervals [xmin, xmax] are all set as [−ε, ε], ε > 0
in the proposed method.

4.3.1. Conversion from Individual Position Vector to Scheduling Solution

For the operation permutation segment, the ranked-order-value (ROV) rule is used to implement
the conversion from the individual position to the scheduling solution. In the rule, position values in
X1 are first ranked in an increasing order, then the operation permutation can be acquired according to
the new order, which is shown in Figure 4.

Job code 1 1 2 2 3 3

X1 -0.5 2.4 -2.8 0.3 -2.5 1.9

Ranked order -2.8 -2.5 -0.5 0.3 1.9 2.4

Operation
permutation 2 3 1 2 3 1

Figure 4. The conversion process from individual position vector to operation permutation.

For the speed-level selection segment, the conversion process can be modified from the method
proposed by Yuan and Xu [40], which can be represented by Equation (19). z(j) denotes the size of
alternative speed-level set for the operation corresponding to the jth element, u(j) means the selected
speed level, u(j) ∈ [1, z(j)]. In the procedure, x(j) is first converted to a real number belonging to
[1, z(j)], then u(j) is given the nearest integer value for the converted real number. For the above
example, ε = 3 and z(j) = 5. The conversion process is shown in Figure 5.

u(j) = round(
x(j) + ε

2ε
(z(j)− 1) + 1), 1 ≤ j ≤ mn (19)

369

Mathematics 2018, 6, 220

X2 1.1 0.9 -1.6 1.5 -1.5 2.7

converted real
number 3.7 3.6 1.9 4.0 2.0 4.8

Speed
selection 4 4 2 4 2 5

Figure 5. The conversion process from individual position vector to speed-level selection.

4.3.2. Conversion from Scheduling Solution to Individual Position Vector

For the operation permutation segment, mn real numbers are first randomly generated between
[−ε, ε] and then ranked in an increasing order. According to the ranked order and the scheduling
solution, the individual position vector X1 can be obtained according to the conversion process in
Figure 6.

Job code 1 1 2 2 3 3

X1 -2.8 1.9 -0.5 0.3 -2.5 2.4

Random
number -0.5 2.4 -2.8 0.3 -2.5 1.9

Ranked order -2.8 -2.5 -0.5 0.3 1.9 2.4

Scheduling
solution 1 3 2 2 1 3

Figure 6. The conversion process from operation permutation to individual position vector.

For the speed-level selection segment, the conversion is generally an inverse process of
Equation (19). However, there is a special case, that is, z(j) = 1, x(j) is obtained by choosing a
random value between [−ε, ε]. The conversion process is shown in Figure 7.

x(j) =

{
2ε

z(j)−1 (u(j)− 1)− ε, z(j) �= 1

x(j) ∈ [−ε, ε], z(j) = 1
(20)

X2 1.5 1.5 -1.5 1.5 -1.5 3.0

Speed-level
selection 4 4 2 4 2 5

Figure 7. The conversion process from speed-level selection to individual position vector.

4.4. Initial Scheduling Generation

For a population-based optimization algorithm, the quality of initial solutions is very important
for the computational performance. According to the characteristics of the scheduling solution,
the population initialization process can be divided into two phases. In the speed-level selection
phase, a random generation rule is employed to obtain the initial speeds for jobs. In the operation
permutation phase, five dispatching rules are adopted as follows: the Most Work Remaining (MWR),
the Most Operation Remaining (MOR), the Shortest Processing Time (SPT), the Longest Processing

370

Mathematics 2018, 6, 220

Time (LPT), and the Random Rule (RR). Each dispatching rule is randomly selected to generate a
scheduling solution.

MWR: give the highest priority to the job with the most amount of remaining work.
MOR: give the highest priority to the job with the most number of remaining operations.
SPT: give the highest priority to the job with the shortest processing time.
LPT: give the highest priority to the job with the longest processing time.
RR: select jobs for the permutation at random.

4.5. Nonlinear Convergence Factor

Like other population-based optimization algorithms, the cooperation between the abilities of
exploitation and exploration is crucial for the performance of the algorithm. As seen from Figure 1,
a suitable adjustment of search vector A can allow the WOA algorithm to smoothly transition between
exploration and exploitation. By decreasing the value of A, some iterations are focused on exploration
(|A|≥ 1) and the others are devoted to exploitation (|A|< 1). According to Equation (11), the value
of A is determined by the variation of a. However, a are linearly decreased from 2 to 0 over the
course of iterations, which can not well reflect the nonlinear search process of the algorithm. Therefore,
a nonlinear adjustment curve of a is adopted in (21), where amax and amin define the maximum and
minimum values of a, respectively.

a = amax − (amax − amin) sin(tπ/(2tmax)) (21)

4.6. Mutation Operation

According to the characteristics of the WOA, whales cluster around the local optimum at the
latter stage of the optimization, which will decrease the population diversity and lead to premature
convergence. In this study, a kind of adaptive mutation operator is presented to overcome this
drawback, where the mutation rate of each individual can be calculate according to Equation (15).
pg defines the mutation rate of the gth individual and f represents the fitness function Q

F , where Q
is a constant. fmax and fmin are the maximum and minimum values of f in the current generation,
respectively. In Equation (15), the mutation rate of each whale is changed along with the fitness in
the evolution process. If a random number is smaller than pg, the mutation operations for the two
segments are conducted.

For the operation permutation segment, an inverse mutation operator is used to inverse the order
of elements between two randomly selected positions in a candidate individual. For the speed-level
selection segment, a single-point mutation is employed to select a new speed level to take place of the
original one, and then a new individual position is obtained by Equation (20).

pg(t) = 1− fmax(t)− fg(t)
fmax(t)− fmin(t)

(22)

4.7. Pseudo Code of IWOA

The pseudo code of the IWOA algorithm can be shown in Figure 8.

371

Mathematics 2018, 6, 220

Figure 8. The pseudo code of the improved WOA (IWOA).

5. Computational Results

5.1. Experimental Settings

The implementation of the proposed IWOA algorithm is coded by using Fortran language and run
on VMware Workstation with 2GB main memory under WinXP. In this section, 38 instances modified
from those of the classical JSP (FT06, FT10, and FT20 in the work of [41] and LA01–LA35 in the work
of [42]) are used to validate the efficiency of the IWOA. For each instance, ten independent replications
are run by different algorithms. Here, the processing times in the classical JSP are taken as the basic
processing times. The speed for processing operations can be selected from v = {v1, v2, v3, v4, v5} =
{1.0, 1.2, 1.5, 2.0, 2.5}. The energy consumption cost per unit time of machine k can be calculated
according to Ekd = ξk × v2

d, d = 1, 2, 3, 4, 5, where ξk is randomly generated following a discrete
uniform distribution in the literature [2,4]. The stand-by energy consumption cost per unit time of
machine k is calculated by SEk = ξk/4. In addition, the completion time cost per unit time λ is set to
be 15.0.

5.2. Effectiveness of the Improvement Strategies

In this paper, three strategies are adopted to improve the performance of the IWOA algorithm,
namely, DR, NCF, and MO. In this subsection, the effectiveness of the three strategies are first tested.
In Table 1, instance names are listed in the first column, and computational data are reported in
the following columns. ‘IWOA’ is the proposed algorithm in this study. ‘IWOA-R’ represents the
algorithm where the initial solutions are only created by the random rule. ‘IWOA-L’ represents the
algorithm where the elements of a are linearly decreased by Equation (13). ‘IWOA-NMO’ represents
the algorithm where the mutation operation is excluded from the IWOA algorithm. In addition,
‘Best’ represents the best value in the ten runs. ‘Avg’ means the average results of the ten runs. ‘SD’ is
the standard deviation of total cost obtained by ten runs. ‘Time’ is the average computational time
(in seconds) in the ten runs. Boldface denotes the optimal values obtained by algorithms. To facilitate
the comparison, the same parameters are set for the compared algorithms, for example, population
size is 200 and maximum iteration is 2000.

372

Mathematics 2018, 6, 220

T
a

b
le

1
.

Ef
fe

ct
iv

en
es

s
an

al
ys

is
of

im
pr

ov
em

en
ts

tr
at

eg
y.

In
st

a
n

ce
IW

O
A

-R
IW

O
A

-L
IW

O
A

-N
M

O
IW

O
A

B
es

t
A

vg
SD

Ti
m

e
B

es
t

A
vg

SD
Ti

m
e

B
es

t
A

vg
SD

Ti
m

e
B

es
t

A
vg

SD
Ti

m
e

FT
06

1
3

6
4

.4
1

3
8

1
.5

13
.1

27
.0

13
74

.4
13

84
.3

6.
7

27
.0

13
83

.3
13

89
.8

6
.9

15
.9

13
70

.4
13

82
.8

6
.2

26
.9

FT
10

31
,7

56
.9

32
,6

89
.8

65
2.

5
10

8.
2

31
,8

09
.4

32
,5

64
.2

56
9.

2
10

9.
6

31
,7

20
.1

3
2

,3
9

4
.9

3
2

2
.9

64
.0

3
1

,6
1

9
.3

32
,7

26
.4

64
9.

4
10

7.
8

FT
20

35
,2

25
.1

35
,9

25
.9

3
3

7
.0

11
1.

5
35

,1
38

.0
35

,8
88

.1
42

5.
9

11
3.

7
35

,0
05

.8
35

,5
25

.3
37

0.
1

66
.2

3
4

,5
4

4
.2

3
5

,1
5

5
.7

37
6.

8
11

1.
4

LA
01

18
,0

53
.5

18
,2

78
.0

16
4.

1
40

.8
1

8
,0

3
1

.3
18

,2
81

.8
15

7.
6

39
.2

18
,0

33
.6

18
,4

08
.3

24
3.

7
23

.6
18

,0
96

.0
1

8
,2

0
4

.8
8

8
.8

39
.0

LA
02

17
,6

63
.3

1
7

,8
9

3
.5

1
3

1
.0

38
.5

17
,6

99
.8

17
,9

35
.7

16
0.

5
38

.7
17

,9
11

.5
18

,2
53

.6
21

8.
7

23
.3

1
7

,6
6

1
.0

17
,9

67
.5

15
7.

8
38

.2
LA

03
1

5
,6

7
9

.5
1

5
,8

7
7

.2
1

4
2

.5
38

.5
15

,7
65

.6
15

,9
89

.5
18

9.
1

38
.8

15
,8

73
.5

16
,1

53
.8

18
3.

0
23

.2
15

,6
79

.6
15

,9
13

.4
21

9.
2

38
.7

LA
04

16
,1

14
.6

16
,3

27
.7

11
9.

2
38

.0
16

,2
23

.0
16

,3
84

.8
1

0
7

.1
40

.0
16

,1
29

.9
16

,4
67

.2
21

5.
8

23
.5

1
6

,0
3

9
.7

1
6

,2
0

9
.3

13
6.

1
38

.0
LA

05
14

,5
06

.1
14

,6
67

.6
9

6
.0

38
.6

14
,4

47
.2

14
,6

57
.9

13
3.

4
39

.7
14

,6
13

.5
14

,8
13

.4
13

8.
4

23
.6

1
4

,4
4

2
.6

1
4

,6
0

8
.0

97
.8

38
.2

LA
06

2
5

,1
4

5
.6

25
,5

29
.1

20
6.

2
68

.7
25

,2
48

.1
25

,6
54

.4
20

4.
1

69
.4

25
,4

64
.8

25
,7

58
.7

19
6.

6
40

.8
25

,1
98

.4
2

5
,5

0
1

.0
1

3
4

.8
68

.2
LA

07
24

,5
10

.7
24

,7
70

.1
1

8
3

.8
67

.0
24

,5
34

.1
24

,8
68

.4
22

7.
2

67
.1

24
,5

13
.2

24
,8

67
.2

23
8.

4
39

.9
2

4
,1

7
2

.9
2

4
,6

1
9

.2
20

3.
1

66
.3

LA
08

24
,5

11
.2

2
4

,7
6

5
.4

21
3.

7
73

.6
24

,7
17

.8
24

,8
89

.7
1

3
2

.6
73

.9
24

,7
00

.3
24

,9
22

.0
14

0.
0

39
.5

2
4

,4
2

2
.8

24
,7

75
.7

20
2.

1
67

.6
LA

09
27

,3
49

.1
2

7
,5

3
8

.6
13

6.
5

72
.3

27
,4

01
.1

27
,6

92
.2

1
2

2
.0

74
.0

27
,6

10
.5

27
,7

98
.6

14
9.

9
44

.0
2

7
,3

2
9

.5
27

,6
08

.6
12

2.
5

73
.5

LA
10

2
4

,9
5

9
.0

25
,3

49
.7

21
6.

4
73

.6
25

,2
10

.1
25

,4
55

.5
1

6
4

.4
73

.5
25

,2
06

.4
25

,4
05

.9
16

4.
9

43
.9

25
,0

81
.3

2
5

,3
1

5
.5

17
8.

9
73

.2
LA

11
34

,2
87

.2
34

,6
68

.2
2

1
3

.6
11

2.
6

34
,4

06
.6

34
,6

97
.8

22
0.

4
11

3.
9

34
,2

27
.4

34
,7

06
.6

23
3.

3
64

.6
3

4
,2

2
1

.7
3

4
,6

5
9

.8
25

8.
5

11
0.

1
LA

12
29

,9
27

.1
30

,2
82

.2
17

8.
2

11
0.

8
30

,2
13

.3
30

,4
32

.0
16

3.
0

11
1.

9
30

,0
88

.7
30

,2
87

.8
1

5
9

.4
64

.3
2

9
,9

0
5

.6
3

0
,2

2
1

.5
17

3.
9

11
1.

6
LA

13
3

2
,9

7
4

.4
3

3
,3

1
6

.7
23

2.
8

11
0.

4
33

,3
79

.4
33

,6
17

.1
14

3.
1

11
7.

0
33

,1
92

.5
33

,4
01

.8
1

2
4

.9
67

.5
33

,1
98

.1
33

,4
90

.7
21

6.
0

11
0.

2
LA

14
33

,9
91

.7
3

4
,1

1
6

.7
1

1
4

.7
11

3.
3

34
,0

84
.4

34
,4

78
.8

18
7.

5
11

4.
7

33
,9

79
.4

34
,3

98
.0

24
9.

7
67

.2
3

3
,7

9
4

.5
34

,2
14

.3
24

2.
8

11
4.

0
LA

15
35

,8
17

.5
3

6
,1

0
2

.2
1

5
9

.3
11

3.
9

36
,0

17
.9

36
,3

27
.0

20
9.

0
11

5.
1

35
,9

79
.6

36
,3

15
.0

25
8.

1
66

.2
3

5
,8

0
2

.4
36

,1
99

.8
20

3.
0

11
3.

1
LA

16
31

,5
72

.7
32

,1
71

.2
54

9.
2

10
9.

1
31

,7
46

.8
32

,4
80

.8
45

3.
5

11
1.

4
32

,2
15

.1
32

,8
56

.2
3

1
3

.0
64

.5
3

1
,5

1
6

.7
3

2
,1

1
8

.2
39

7.
7

10
8.

9
LA

17
27

,7
34

.0
28

,2
59

.8
2

4
9

.5
11

0.
7

28
,2

58
.8

28
,7

10
.7

26
5.

3
11

1.
4

28
,1

03
.6

28
,5

70
.6

27
7.

9
64

.4
2

7
,6

0
6

.6
2

8
,1

6
6

.0
37

7.
8

11
0.

1
LA

18
3

0
,6

3
1

.3
3

1
,3

0
0

.5
29

1.
1

10
6.

2
31

,1
47

.3
31

,5
30

.1
1

8
8

.4
10

8.
3

31
,1

92
.0

31
,4

65
.4

24
3.

4
63

.0
30

,8
26

.6
31

,4
80

.9
52

5.
1

10
7.

5
LA

19
30

,9
38

.3
3

1
,4

3
2

.7
2

7
0

.4
10

8.
1

30
,9

51
.9

31
,6

08
.5

34
3.

4
10

9.
3

3
0

,6
2

6
.6

31
,6

84
.9

49
1.

6
63

.3
31

,1
67

.9
31

,6
53

.8
35

2.
9

10
8.

5
LA

20
32

,9
59

.8
33

,4
81

.9
37

9.
0

10
8.

3
33

,1
21

.5
33

,8
16

.8
50

1.
0

10
8.

0
33

,2
13

.6
33

,8
63

.7
3

6
5

.5
61

.6
3

2
,6

7
5

.2
3

3
,3

5
9

.4
38

4.
3

10
4.

1
LA

21
46

,0
10

.4
46

,7
75

.4
47

3.
7

19
9.

4
46

,4
75

.3
47

,2
52

.7
66

5.
3

19
6.

7
4

5
,8

1
4

.5
4

6
,5

6
7

.8
70

7.
6

11
5.

4
46

,1
39

.7
46

,5
95

.8
2

5
6

.6
19

0.
7

LA
22

41
,0

08
.2

42
,2

85
.9

72
1.

5
19

1.
3

41
,5

28
.4

42
,4

18
.6

4
3

0
.6

19
7.

2
4

0
,9

6
0

.6
4

2
,0

7
8

.4
64

0.
5

11
6.

3
41

,3
78

.6
42

,1
85

.1
55

6.
5

19
3.

9
LA

23
44

,9
57

.1
45

,6
87

.4
61

9.
0

19
1.

6
45

,3
03

.6
46

,2
03

.4
6

0
2

.4
20

3.
2

45
,5

27
.4

46
,1

42
.1

72
2.

9
11

6.
1

4
4

,8
4

8
.3

4
5

,6
5

5
.5

62
6.

4
19

5.
5

LA
24

42
,9

21
.1

44
,0

18
.8

4
4

2
.6

19
1.

0
43

,1
42

.3
44

,2
58

.3
61

4.
3

18
5.

4
42

,5
87

.5
43

,8
19

.4
77

5.
2

10
8.

0
4

1
,7

4
7

.3
4

3
,4

8
7

.9
86

9.
3

19
1.

3
LA

25
4

2
,3

9
7

.1
4

2
,9

2
5

.9
33

2.
0

18
4.

0
42

,8
05

.1
43

,6
93

.6
47

0.
3

18
6.

2
42

,6
02

.1
43

,1
75

.7
3

1
0

.0
10

6.
4

43
,3

28
.0

43
,6

86
.9

36
4.

9
18

5.
7

LA
26

59
,0

10
.9

59
,7

83
.1

4
2

6
.7

28
9.

8
60

,0
87

.4
60

,9
12

.2
56

9.
9

29
9.

8
5

8
,3

8
1

.8
5

9
,6

4
5

.3
74

5.
5

17
1.

7
58

,9
56

.5
60

,3
61

.9
79

2.
4

29
2.

0
LA

27
60

,2
58

.6
62

,0
40

.3
10

17
.7

28
8.

8
60

,8
15

.2
62

,2
14

.4
87

1.
5

28
6.

9
6

0
,1

0
6

.7
6

1
,7

0
6

.2
86

7.
3

16
6.

3
60

,3
45

.2
61

,8
34

.3
7

0
1

.7
28

7.
3

LA
28

59
,7

76
.6

6
0

,4
1

9
.2

60
6.

8
26

8.
6

59
,1

57
.5

61
,8

59
.0

14
48

.4
29

2.
5

5
9

,1
3

1
.6

60
,6

00
.6

77
7.

6
16

2.
5

59
,3

61
.1

60
,9

33
.3

5
8

0
.5

28
2.

0
LA

29
57

,1
39

.0
58

,0
76

.0
5

9
6

.4
27

8.
2

5
6

,9
0

8
.8

58
,3

45
.2

11
48

.2
29

0.
1

56
,9

27
.2

58
,1

45
.1

70
5.

9
16

9.
8

56
,9

71
.4

5
8

,0
2

8
.9

93
4.

3
28

9.
8

LA
30

6
0

,6
8

9
.9

6
1

,3
9

6
.5

6
9

6
.2

27
9.

7
61

,6
80

.8
62

,9
24

.5
12

26
.9

28
0.

1
60

,8
56

.4
62

,3
05

.2
10

64
.5

15
6.

9
60

,8
49

.4
61

,9
70

.9
75

3.
8

28
0.

0
LA

31
85

,4
98

.9
87

,0
45

.9
11

49
.1

53
2.

6
85

,7
08

.0
87

,8
71

.1
15

97
.1

58
7.

8
85

,1
80

.3
86

,5
49

.2
14

22
.7

32
0.

8
8

5
,1

2
1

.3
8

6
,3

0
1

.1
5

5
1

.2
58

8.
0

LA
32

90
,2

82
.2

93
,0

19
.1

1
0

4
9

.8
57

2.
0

92
,7

04
.6

94
,8

34
.7

16
47

.9
57

2.
5

8
9

,9
4

9
.9

9
2

,8
3

3
.3

19
37

.3
32

1.
6

91
,5

52
.0

92
,8

48
.3

12
08

.2
57

0.
5

LA
33

8
3

,1
2

8
.1

84
,7

80
.9

13
76

.6
59

2.
1

85
,5

35
.2

86
,5

04
.5

71
2.

2
56

3.
3

83
,4

08
.3

8
4

,7
7

6
.2

10
63

.2
31

4.
6

83
,4

06
.5

84
,8

98
.0

6
6

7
.4

55
7.

6
LA

34
85

,2
78

.7
87

,0
79

.6
1

1
7

2
.8

59
6.

9
86

,8
13

.6
88

,8
50

.1
13

95
.4

59
0.

0
8

4
,9

5
0

.7
8

6
,4

7
1

.5
16

15
.4

33
4.

5
85

,9
21

.4
87

,3
69

.6
13

79
.5

57
8.

7
LA

35
8

6
,4

1
8

.3
88

,4
66

.7
16

06
.2

57
8.

2
88

,9
08

.5
90

,4
62

.3
11

68
.2

58
2.

1
87

,2
12

.1
8

7
,9

7
6

.7
5

9
0

.0
32

7.
6

87
,3

27
.1

89
,2

08
.7

13
36

.9
56

3.
3

373

Mathematics 2018, 6, 220

From the experimental data in Table 1, the following can be observed: (1) In comparisons of the
‘Best’ value, the IWOA algorithm yields 18 optimal values, which is significantly better than the other
three algorithms. The second best algorithm, namely IWOA-R, only obtains 10 optimal values. (2) In
comparisons of the ‘Avg’ value, the IWOA algorithm yields 16 optimal values, which is more than
those of the other three algorithms. The second best algorithm, namely IWOA-R, can obtain 13 optimal
values. (3) In comparisons of the ‘SD’ value, IWOA-R performs better than other three algorithms.
The second best algorithm, the proposed IWOA algorithm, yields 8 optimal values, which is more
than those of IWOA-L and IWOA-NMO. (4) In comparisons of the ‘Time’ value, IWOA-NMO spends a
shorter time than other three algorithms. Compared with the IWOA-NMO, the increase of computation
time is mainly the result of the addition of the mutation operation in IWOA.

5.3. Effectiveness of the Proposed IWOA

To demonstrate the effectiveness of the proposed IWOA algorithm, the proposed algorithm is
compared with genetic algorithm 1 (GA1), genetic algorithm 2 (GA2), and the teaching-learning
based optimization (TLBO) algorithm. For GA1, the initial population is generated by the proposed
DR. The precedence preserving order-based crossover (POX) and the two-point crossover (TPX) are
adopted as the crossover operators for the operation permutation and the speed selection, respectively.
In addition, the swap mutation and one-point mutation are adopted for the operation permutation
and the speed selection, respectively. For GA2, the algorithm in the work of [18] is used for solving
the problem under study. For the TLBO, the algorithm in the work of [43] is modified with the
addition of speed selection. Parameters are set as follows: In GA1 and GA2, the population size is
200, the maximum of iteration is 2000, the crossover rate is 0.8, and the mutation rate is 0.1. In the
TLBO, the population size is 200 and the maximum of iteration is 2000. Ten independent replications
are conducted for each instance.

From the experimental data in Table 2, the following can be easily observed: (1) In comparisons of
the ‘Best’ value, the proposed IWOA algorithm can obtain all the optimal values. (2) In comparisons
of the ‘Avg’ value, the proposed IWOA algorithm can also obtain all the optimal values. (3) In
comparisons of the ‘SD’ value, the IWOA algorithm yields 15 optimal values, which is better than
GA1 and GA2. (4) In comparisons of the ‘Time’ value, GA1 spends a shorter time than other two
algorithms. The proposed IWOA spends more time because it contains the conversion process between
the individual position vector and the scheduling solution. However, by comparison, the IWOA can
yield the best values in an acceptable time.

374

Mathematics 2018, 6, 220

T
a

b
le

2
.

C
om

pa
ri

so
n

be
tw

ee
n

di
ff

er
en

ta
lg

or
it

hm
s.

In
st

a
n

cc
e

G
A

1
G

A
2

T
L

B
O

IW
O

A

B
es

t
A

vg
SD

Ti
m

e
B

es
t

A
vg

SD
Ti

m
e

B
es

t
A

vg
SD

Ti
m

e
B

es
t

A
vg

SD
Ti

m
e

FT
06

15
28

.0
15

40
.6

10
.0

6.
2

15
50

.6
15

82
.9

20
.0

7.
3

16
39

.3
16

58
.4

13
.5

81
.9

1
3

7
0

.4
1

3
8

2
.8

6
.2

26
.9

FT
10

37
,1

45
.2

38
,3

22
.0

81
9.

8
22

.8
38

,6
38

.7
39

,7
72

.5
62

0.
2

30
.1

38
,7

19
.6

39
,6

18
.0

4
2

3
.7

37
0.

4
3

1
,6

1
9

.3
3

2
,7

2
6

.4
64

9.
4

10
7.

8
FT

20
41

,5
73

.8
42

,2
12

.4
49

6.
4

25
.7

42
,7

77
.3

43
,8

77
.3

51
4.

1
32

.7
41

,7
16

.3
42

,1
61

.3
2

4
5

.1
77

2.
6

3
4

,5
4

4
.2

3
5

,1
5

5
.7

37
6.

8
11

1.
4

LA
01

20
,9

29
.0

21
,2

39
.9

16
6.

4
9.

9
21

,8
45

.8
22

,3
02

.7
27

9.
7

11
.6

22
,7

66
.9

23
,0

52
.0

18
1.

5
16

3.
8

1
8

,0
9

6
.0

1
8

,2
0

4
.8

8
8

.8
39

.0
LA

02
20

,3
21

.9
20

,8
01

.4
21

9.
9

9.
8

21
,2

23
.0

21
,6

26
.4

33
0.

1
11

.3
21

,4
80

.3
21

,8
75

.7
20

0.
7

16
4.

8
1

7
,6

6
1

.0
1

7
,9

6
7

.5
1

5
7

.8
38

.2
LA

03
18

,4
36

.8
18

,8
95

.8
29

9.
5

9.
9

19
,2

69
.9

19
,6

24
.5

22
7.

7
11

.5
19

,6
40

.7
20

,0
34

.8
1

5
8

.8
16

3.
2

1
5

,6
7

9
.6

1
5

,9
1

3
.4

21
9.

2
38

.7
LA

04
18

,3
90

.9
19

,0
37

.8
27

7.
2

9.
9

19
,0

85
.3

19
,6

20
.1

21
6.

7
11

.5
19

,9
83

.2
20

,4
47

.2
26

5.
1

16
3.

1
1

6
,0

3
9

.7
1

6
,2

0
9

.3
1

3
6

.1
38

.0
LA

05
16

,5
01

.3
16

,8
29

.2
18

5.
7

9.
8

17
,4

24
.2

17
,7

32
.9

22
8.

1
11

.6
18

,1
11

.9
18

,3
72

.4
12

1.
5

16
3.

4
1

4
,4

4
2

.6
1

4
,6

0
8

.0
9

7
.8

38
.2

LA
06

29
,6

45
.5

29
,8

32
.5

15
6.

9
16

.7
30

,3
32

.6
31

,1
56

.2
42

8.
6

21
.1

30
,9

25
.3

31
,7

57
.5

35
1.

9
39

0.
8

2
5

,1
9

8
.4

2
5

,5
0

1
.0

1
3

4
.8

68
.2

LA
07

28
,2

88
.9

28
,8

21
.7

30
6.

8
16

.7
29

,6
14

.2
30

,2
78

.9
42

2.
5

21
.2

30
,2

93
.6

30
,4

94
.5

1
5

6
.5

40
9.

5
2

4
,1

7
2

.9
2

4
,6

1
9

.2
20

3.
1

66
.3

LA
08

28
,4

18
.7

28
,9

59
.5

28
8.

3
17

.0
29

,4
42

.4
30

,5
91

.2
46

3.
1

21
.3

30
,5

74
.5

30
,8

29
.1

1
6

8
.8

41
6.

2
2

4
,4

2
2

.8
2

4
,7

7
5

.7
20

2.
1

67
.6

LA
09

31
,4

87
.4

32
,0

28
.0

30
0.

4
16

.9
32

,6
52

.8
33

,3
83

.0
47

6.
8

21
.3

33
,5

63
.3

34
,1

37
.6

39
1.

2
41

2.
3

2
7

,3
2

9
.5

2
7

,6
0

8
.6

1
2

2
.5

73
.5

LA
10

29
,0

21
.5

29
,7

03
.9

35
6.

9
16

.8
30

,7
53

.2
31

,2
72

.7
27

6.
3

21
.2

32
,0

18
.4

32
,3

11
.7

20
1.

3
41

6.
1

2
5

,0
8

1
.3

2
5

,3
1

5
.5

1
7

8
.9

73
.2

LA
11

39
,7

35
.1

40
,7

32
.2

56
3.

2
25

.6
40

,6
91

.1
42

,3
80

.5
69

4.
1

29
.9

42
,0

98
.2

42
,5

68
.8

2
5

0
.3

83
1.

8
3

4
2

,2
1

.7
3

4
,6

5
9

.8
25

8.
5

11
0.

1
LA

12
34

,3
60

.3
35

,1
09

.6
56

7.
1

25
.2

36
,1

16
.2

36
,7

05
.9

36
4.

6
30

.2
36

,6
85

.3
37

,0
24

.0
21

0.
6

76
7.

1
2

9
,9

0
5

.6
3

0
,2

2
1

.5
1

7
3

.9
11

1.
6

LA
13

37
,6

41
.6

38
,7

59
.5

90
2.

9
25

.5
40

,0
46

.0
41

,0
36

.5
37

7.
0

30
.8

40
,8

66
.4

41
,1

99
.9

1
6

8
.7

77
5.

3
3

3
,1

9
8

.1
3

3
,4

9
0

.7
21

6.
0

11
0.

2
LA

14
40

,0
79

.5
40

,6
57

.0
40

7.
2

25
.5

42
,0

35
.5

42
,6

68
.4

30
7.

0
30

.3
42

,6
44

.1
43

,0
63

.7
2

3
5

.5
80

4.
6

3
3

,7
9

4
.5

3
4

,2
1

4
.3

24
2.

8
11

4.
0

LA
15

42
,1

38
.3

42
,6

30
.5

35
5.

8
25

.6
44

,2
65

.0
44

,8
65

.7
40

6.
6

30
.6

43
,7

29
.4

44
,0

87
.5

25
0.

3
80

0.
1

3
5

,8
0

2
.4

3
6

,1
9

9
.8

2
0

3
.0

11
3.

1
LA

16
37

,2
45

.6
38

,1
60

.1
77

5.
0

23
.2

39
,3

52
.3

40
,1

91
.7

50
5.

5
28

.0
39

,6
37

.1
40

,3
41

.5
3

6
6

.2
40

6.
5

3
1

,5
1

6
.7

3
2

,1
1

8
.2

39
7.

7
10

8.
9

LA
17

32
,6

93
.6

33
,1

80
.5

45
0.

0
23

.0
34

,3
19

.1
35

,0
11

.7
47

5.
3

27
.9

34
,7

07
.3

35
,2

80
.3

3
7

5
.9

40
0.

3
2

7
,6

0
6

.6
2

8
,1

6
6

.0
37

7.
8

11
0.

1
LA

18
35

,4
69

.3
36

,7
51

.3
64

8.
4

23
.2

37
,3

26
.8

38
,5

36
.1

61
1.

9
27

.9
38

,2
04

.9
39

,0
38

.9
3

6
8

.0
39

2.
1

3
0

,8
2

6
.6

3
1

,4
8

0
.9

52
5.

1
10

7.
5

LA
19

36
,0

99
.4

37
,0

03
.0

64
9.

9
23

.1
38

,3
59

.7
39

,1
77

.2
40

5.
7

27
.7

38
,1

86
.7

38
,9

62
.7

39
1.

6
40

4.
3

3
1

,1
6

7
.9

3
1

,6
5

3
.8

3
5

2
.9

10
8.

5
LA

20
38

,1
79

.1
39

,3
48

.4
54

6.
1

22
.8

40
,6

26
.2

41
,8

34
.9

59
6.

4
28

.1
41

,5
19

.6
41

,9
82

.8
2

7
8

.8
40

0.
4

3
2

,6
7

5
.2

3
3

,3
5

9
.4

38
4.

3
10

4.
1

LA
21

54
,6

07
.7

55
,7

86
.4

64
1.

3
40

.5
57

,2
76

.3
58

,9
07

.5
65

6.
6

52
.5

56
,9

61
.4

57
,7

07
.3

38
9.

4
94

9.
1

4
6

,1
3

9
.7

4
6

,5
9

5
.8

2
5

6
.6

19
0.

7
LA

22
49

,5
59

.5
51

,2
84

.0
75

5.
0

40
.6

51
,4

57
.2

53
,3

73
.3

92
4.

2
50

.9
52

,2
80

.6
52

,5
41

.4
1

8
3

.0
89

3.
2

4
1

,3
7

8
.6

4
2

,1
8

5
.1

55
6.

5
19

3.
9

LA
23

53
,9

17
.7

54
,6

12
.9

56
1.

0
40

.6
56

,4
99

.0
57

,6
83

.4
68

2.
8

52
.0

56
,7

09
.3

57
,1

64
.8

2
5

9
.8

95
5.

8
4

4
,8

4
8

.3
4

5
,6

5
5

.5
62

6.
4

19
5.

5
LA

24
51

,0
56

.0
52

,3
93

.9
82

6.
4

40
.7

54
,5

03
.0

55
,4

57
.0

71
6.

7
53

.2
53

,0
32

.8
54

,0
86

.9
5

5
9

.4
93

6.
2

4
1

,7
4

7
.3

4
3

,4
8

7
.9

86
9.

3
19

1.
3

LA
25

51
,5

83
.8

52
,2

36
.1

38
9.

8
40

.5
54

,1
28

.9
51

,8
23

.4
49

6.
6

51
.8

52
,7

44
.1

53
,6

44
.7

48
5.

7
94

0.
4

4
3

,3
2

8
.0

4
3

,6
8

6
.9

3
6

4
.9

18
5.

7
LA

26
70

,9
51

.3
72

,0
97

.3
89

5.
9

60
.7

75
,1

80
.8

75
,8

17
.0

54
7.

6
80

.9
73

,6
34

.3
73

,9
67

.6
2

8
8

.3
18

07
.0

5
8

,9
5

6
.5

6
0

,3
6

1
.9

79
2.

4
29

2.
0

LA
27

72
,4

13
.8

74
,9

74
.8

10
04

.8
61

.3
76

,6
73

.0
78

,0
85

.6
80

7.
9

86
.4

75
,2

45
.7

75
,6

83
.7

3
2

2
.5

18
45

.4
6

0
,3

4
5

.2
6

1
,8

3
4

.3
70

1.
7

28
7.

3
LA

28
71

,3
65

.7
72

,7
74

.3
78

2.
7

61
.3

74
,9

18
.6

76
,4

72
.9

83
4.

1
85

.3
73

,7
22

.1
74

,6
69

.0
60

8.
7

17
80

.7
5

9
,3

6
1

.1
6

0
,9

3
3

.3
5

8
0

.5
28

2.
0

LA
29

67
,3

54
.4

69
,0

77
.6

12
35

.2
60

.9
70

,7
44

.8
72

,1
50

.4
10

41
.7

84
.8

69
,9

80
.3

70
,7

06
.9

4
8

2
.7

17
77

.3
5

6
,9

7
1

.4
5

8
,0

2
8

.9
93

4.
3

28
9.

8
LA

30
72

,7
07

.5
73

,9
66

.6
5

8
9

.3
59

.8
76

,7
37

.0
77

,5
47

.9
65

9.
0

85
.1

74
,1

60
.6

75
,3

29
.5

71
1.

6
17

92
.8

6
0

,8
4

9
.4

6
1

,9
7

0
.9

75
3.

8
28

0.
0

LA
31

99
,5

56
.7

10
4,

31
9.

6
20

41
.1

11
3.

8
10

6,
69

1.
4

10
8,

27
5.

1
97

9.
2

16
8.

9
10

3,
70

7.
5

10
4,

56
6.

3
70

3.
8

48
07

.2
8

5
,1

2
1

.3
8

6
,3

0
1

.1
5

5
1

.2
58

8.
0

LA
32

11
0,

24
1.

3
11

2,
29

9.
6

12
08

.0
11

3.
8

11
5,

25
4.

6
11

7,
10

3.
4

85
9.

6
16

5.
9

11
3,

25
0.

8
11

3,
45

0.
3

2
2

0
.1

49
58

.3
9

1
,5

5
2

.0
9

2
,8

4
8

.3
12

08
.2

57
0.

5
LA

33
10

0,
96

0.
7

10
2,

46
7.

9
11

71
.0

11
1.

3
10

4,
82

6.
8

10
6,

66
0.

0
95

7.
1

17
2.

8
10

2,
47

6.
4

10
3,

05
1.

6
4

2
8

.6
52

73
.3

8
3

,4
0

6
.5

8
4

,8
9

8
.0

66
7.

4
55

7.
6

LA
34

10
2,

23
4.

6
10

4,
52

1.
0

19
02

.4
11

1.
2

10
6,

81
1.

5
10

8,
57

3.
6

73
4.

5
17

2.
7

10
5,

44
0.

0
10

5,
76

8.
8

2
7

5
.5

50
64

.8
8

5
,9

2
1

.4
8

7
,3

6
9

.6
13

79
.5

57
8.

7
LA

35
10

4,
49

7.
8

10
5,

59
9.

2
10

97
.5

11
2.

0
10

7,
67

0.
7

11
0,

46
8.

2
12

10
.6

19
0.

6
10

6,
13

3.
5

10
6,

80
3.

1
7

2
0

.4
48

14
.7

8
7

,3
2

7
.1

8
9

,2
0

8
.7

13
36

.9
56

3.
3

375

Mathematics 2018, 6, 220

6. Conclusions

In this study, an improved whale optimization algorithm (IWOA) is proposed to solve an
energy-efficient job shop scheduling problem. The conversion method between the scheduling solution
and the individual position vector is first designed. After that, three improvement strategies are
adopted in the algorithm, namely, the dispatching rules (DR), the nonlinear convergence factor (NCF),
and the mutation operation (MO). The DR is adopted to generate the initial solutions. The NCF is
used to coordinate the capacity of exploration and exploitation. The MO is employed to avoid the
premature convergence.

Extensive experiments are conducted for testing the performance of the IWOA algorithm.
From the experimental results, it can be seen that the proposed improvement strategies can improve
the computational result of the algorithm. In addition, compared with GA1, GA2, and TLBO, the
proposed IWOA algorithm can obtain better results in an acceptable time.

In future work, the energy-efficient scheduling will be further studied by considering some
more practical constraints, for example, flexible processing routing, time-of-use electricity policy,
and renewable energy, among others. In addition, the energy-efficient scheduling problem will be
extended to some complex workshop, such as flexible job shop and assembly job shop, among others.

Author Contributions: T.J. and C.Z. developed the improved whale optimization algorithm. H.Z. and J.G.
designed the experiments and tested the effectiveness of the IWOA. G.D. provided theoretical knowledge and
refined the paper.

Funding: This research was funded by the Training Foundation of Shandong Natural Science Foundation of
China under Grant ZR2016GP02, the National Natural Science Foundation Project of China under Grant 61403180,
the Special Research and Promotion Program of Henan Province under Grant 182102210257, the Project of Henan
Province Higher Educational Key Research Program under Grant 16A120011, the Project of Shandong Province
Higher Educational Science and Technology Program under Grant J17KA199, and the Talent Introduction Research
Program of Ludong University under Grant 32860301.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Duflou, J.R.; Sutherland, J.W.; Dornfeld, D.; Herrmann, C.; Jeswiet, J.; Kara, S.; Hauschild, M.; Kellens, K.
Towards energy and resource efficient manufacturing: A processes and systems approach. CIRP Ann.-
Manuf. Technol. 2012, 61, 587–609. [CrossRef]

2. Fang, K.; Uhan, N.; Zhao, F.; Sutherland, J.W. A New Shop Scheduling Approach in Support of Sustainable
Manufacturing; Glocalized solutions for sustainability in manufacturing; Springer: Berlin/Heidelberg,
Germany, 2011; pp. 305–310.

3. Liu, Y.; Dong, H.; Lohse, N.; Petrovic, S.; Gindy, V. An investigation into minimising total energy consumption
and total weighted tardiness in job shops. J. Clean. Prod. 2014, 65, 87–96. [CrossRef]

4. Mouzon, G.; Yildirim, M.B.; Twomey, J. Operational methods for minimization of energy consumption of
manufacturing equipment. Int. J. Prod. Res. 2007, 45, 4247–4271. [CrossRef]

5. Mouzon, G.; Yildirim, M.B. A framework to minimise total energy consumption and total tardiness on a
single machine. Int. J. Sustain. Eng. 2008, 1, 105–116. [CrossRef]

6. Yildirim, M.B.; Mouzon, G. Single-machine sustainable production planning to minimize total energy
consumption and total completion time using a multiple objective genetic algorithm. IEEE. Trans. Eng. Manag.
2012, 59, 585–597. [CrossRef]

7. Shrouf, F.; Ordieres-Meré, J.; García-Sánchez, A.; Ortega-Mier, M. Optimizing the production scheduling of a
single machine to minimize total energy consumption costs. J. Clean. Prod. 2014, 67, 197–207. [CrossRef]

8. Che, A.; Zeng, Y.; Lyu, K. An efficient greedy insertion heuristic for energy-conscious single machine
scheduling problem under time-of-use electricity tariffs. J. Clean. Prod. 2016, 129, 565–577. [CrossRef]

9. Li, J.Q.; Sang, H.Y.; Han, Y.Y.; Wang, C.G.; Gao, K.Z. Efficient multi-objective optimization algorithm for
hybrid flow shop scheduling problems with setup energy consumptions. J. Clean. Prod. 2018, 181, 584–598.
[CrossRef]

376

Mathematics 2018, 6, 220

10. Liu, G.S.; Zhang, B.X.; Yang, H.D.; Chen, X.; Huang, G.Q. A branch-and-bound algorithm for minimizing the
energy consumption in the PFS problem. Math. Probl. Eng. 2013, 2013, 546810. [CrossRef]

11. Dai, M.; Tang, D.; Giret, A.; Salido, M.A.; Li, W.D. Energy-efficient scheduling for a flexible flow shop
using an improved genetic-simulated annealing algorithm. Robot. Comput.-Int. Manuf. 2013, 29, 418–429.
[CrossRef]

12. Ding, J.Y.; Song, S.; Wu, C. Carbon-efficient scheduling of flow shops by multi-objective optimization. Eur. J.
Oper. Res. 2016, 248, 758–771. [CrossRef]

13. Mansouri, S.A.; Aktas, E.; Besikci, U. Green scheduling of a two-machine flowshop: Trade-off between
makespan and energy consumption. Eur. J. Oper. Res. 2016, 248, 772–788. [CrossRef]

14. Luo, H.; Du, B.; Huang, G.Q.; Chen, H.; Li, X. Hybrid flow shop scheduling considering machine electricity
consumption cost. Int. J. Prod. Econ. 2013, 146, 423–439. [CrossRef]

15. Salido, M.A.; Escamilla, J.; Giret, A.; Barber, F. A genetic algorithm for energy-efficiency in job-shop
scheduling. Int. J. Adv. Manuf. Technol. 2016, 85, 1303–1314. [CrossRef]

16. Zhang, R.; Chiong, R. Solving the energy-efficient job shop scheduling problem: A multi-objective genetic
algorithm with enhanced local search for minimizing the total weighted tardiness and total energy
consumption. J. Clean. Prod. 2016, 112, 3361–3375. [CrossRef]

17. Tang, D.; Dai, M. Energy-efficient approach to minimizing the energy consumption in an extended job-shop
scheduling problem. Chin. J. Mech. Eng. 2015, 28, 1048–1055. [CrossRef]

18. Escamilla, J.; Salido, M.A.; Giret, A.; Barber, F. A metaheuristic technique for energy-efficiency in job-shop
scheduling. Knowl. Eng. Rev. 2016, 31, 475–485. [CrossRef]

19. Yin, L.; Li, X.; Gao, L.; Lu, C.; Zhang, Z. Energy-efficient job shop scheduling problem with variable spindle
speed using a novel multi-objective algorithm. Adv. Mech. Eng. 2017, 9. [CrossRef]

20. Wang, G.G.; Tan, Y. Improving metaheuristic algorithms with information feedback models.
IEEE. Trans. Cybern. 2017. [CrossRef] [PubMed]

21. Wang, G.G.; Gandomi, A.H.; Alavi, A.H. An effective krill herd algorithm with migration operator in
biogeography-based optimization. Appl. Math. Model. 2014, 38, 2454–2462. [CrossRef]

22. Wang, G.G.; Gandomi, A.H.; Alavi, A.H. Stud krill herd algorithm. Neurocomputing 2014, 128, 363–370.
[CrossRef]

23. Wang, G.G.; Guo, L.; Gandomi, A.H.; Hao, G.S.; Wang, H. Chaotic krill herd algorithm. Inform. Sci. 2014,
274, 17–34. [CrossRef]

24. Wang, G.; Guo, L.; Wang, H.; Duan, H.; Liu, L.; Li, J. Incorporating mutation scheme into krill herd algorithm
for global numerical optimization. Neural Comput. Appl. 2014, 24, 853–871. [CrossRef]

25. Feng, Y.; Wang, G.G.; Dong, J.; Wang, L. Opposition-based learning monarch butterfly optimization with
Gaussian perturbation for large-scale 0-1 knapsack problem. Comput. Electr. Eng. 2018, 67, 454–468.
[CrossRef]

26. Rizk-Allah, R.M.; El-Sehiemy, R.A.; Wang, G.G. A novel parallel hurricane optimization algorithm for secure
emission/economic load dispatch solution. Appl. Soft. Comput. 2018, 63, 206–222. [CrossRef]

27. Jiang, T.H.; Zhang, C. Application of Grey Wolf Optimization for solving combinatorial problems: Job shop
and flexible job shop scheduling cases. IEEE. Access. 2018, 6, 26231–26240. [CrossRef]

28. Jiang, T.H.; Deng, G.L. Optimizing the low-carbon flexible job shop scheduling problem considering energy
consumption. IEEE. Access. 2018, 6, 46346–46355. [CrossRef]

29. Han, Y.Y.; Gong, D.W.; Jin, Y.C.; Pan, Q.K. Evolutionary Multi-objective Blocking Lot-streaming Flow Shop
Scheduling with Machine Breakdowns. IEEE. Trans. Cybern. 2018. [CrossRef]

30. Han, Y.Y.; Liang, J.; Pan, Q.K.; Li, J.Q. Effective hybrid discrete artificial bee colony algorithms for the total
flow time minimization in the blocking flow shop problem. Int. J. Adv. Manuf. Technol. 2013, 67, 397–414.
[CrossRef]

31. Han, Y.Y.; Pan, Q.K.; Li, J.Q.; Sang, H.Y. An improved artificial bee colony algorithm for the blocking flow
shop scheduling problem. Int. J. Adv. Manuf. Technol. 2012, 60, 1149–1159. [CrossRef]

32. Li, J.Q.; Duan, P.Y.; Sang, H.Y.; Wang, S.; Liu, Z.M.; Duan, P. An efficient optimization algorithm for
resource-constrained steelmaking scheduling problems. IEEE. Access. 2018, 6, 33883–33894. [CrossRef]

33. Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [CrossRef]
34. Ling, Y.; Zhou, Y.; Luo, Q. Lévy flight trajectory-based whale optimization algorithm for global optimization.

IEEE. Access. 2017, 5, 6168–6186. [CrossRef]

377

Mathematics 2018, 6, 220

35. Mafarja, M.; Mirjalili, S. Whale optimization approaches for wrapper feature selection. Appl. Soft. Comput.
2018, 62, 441–453. [CrossRef]

36. El Aziz, M.A.; Ewees, A.A.; Hassanien, A.E. Multi-objective whale optimization algorithm for content-based
image retrieval. Multimed. Tools Appl. 2018, 77, 26135–26172. [CrossRef]

37. Abdel-Basset, M.; El-Shahat, D.; Sangaiah, A.K. A modified nature inspired meta-heuristic whale
optimization algorithm for solving 0–1 knapsack problem. Int. J. Mach. Learn. Cybern. 2017, 1–20. [CrossRef]

38. Abdel-Basset, M.; Manogaran, G.; El-Shahat, D.; Mirjalili, S. A hybrid whale optimization algorithm based
on local search strategy for the permutation flow shop scheduling problem. Future Gener. Comput. Syst. 2018,
85, 129–145. [CrossRef]

39. Jiang, T.H. Flexible job shop scheduling problem with hybrid grey wolf optimization algorithm. Control Decis.
2018, 33, 503–508. (In Chinese)

40. Yuan, Y.; Xu, H. Flexible job shop scheduling using hybrid differential evolution algorithms. Comput. Ind. Eng.
2013, 65, 246–260. [CrossRef]

41. Fisher, H.; Thompson, G.L. Probabilistic learning combinations of local job-shop scheduling rules. Ind. Sched.
1963, 3, 225–251.

42. Lawrence, S. Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling
Techniques; Graduate School of Industrial Administration (GSIA), Carnegie Mellon University: Pittsburgh,
PA, USA, 1984.

43. Baykasoglu, A.; Hamzadayi, A.; Kose, S.Y. Testing the performance of teaching-learning based optimization
(TLBO) algorithm on combinatorial problems: Flow shop and job shop scheduling cases. Inform. Sci. 2014,
276, 204–218. [CrossRef]

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

378

mathematics

Article

Urban-Tissue Optimization through
Evolutionary Computation

Diego Navarro-Mateu 1, Mohammed Makki 2 and Ana Cocho-Bermejo 1,*

1 UIC Barcelona School of Architecture, Universitat Internacional de Catalunya, c/ Immaculada 22,
08017 Barcelona, Spain; navarro@uic.es

2 Architectural Association, 36 Bedford Square, Bloomsbury, London WC1B 3ES, UK;
mohammed.makki@aaschool.ac.uk

* Correspondence: acocho@uic.es

Received: 1 August 2018; Accepted: 29 September 2018; Published: 2 October 2018

Abstract: The experiments analyzed in this paper focus their research on the use of Evolutionary
Computation (EC) applied to a parametrized urban tissue. Through the application of EC, it is
possible to develop a design under a single model that addresses multiple conflicting objectives.
The experiments presented are based on Cerdà’s master plan in Barcelona, specifically on the iconic
Eixample block which is grouped into a 4 × 4 urban Superblock. The proposal aims to reach the
existing high density of the city while reclaiming the block relations proposed by Cerdà’s original
plan. Generating and ranking multiple individuals in a population through several generations
ensures a flexible solution rather than a single “optimal” one. Final results in the Pareto front show
a successful and diverse set of solutions that approximate Cerdà’s and the existing Barcelona’s
Eixample states. Further analysis proposes different methodologies and considerations to choose
appropriate individuals within the front depending on design requirements.

Keywords: evolution; computation; urban design; biology; shape grammar; architecture; SPEA 2

1. Introduction

1.1. Relevance of the Interdisciplinary Experiment

Jane Jacobs set the grounds of cities as problems of organized complexity in 1961 [1]. Until then,
academics had defended the idea that any urban-planning problem could be perfectly described with
a clear definition of all of its variables, classifying it as a problem of disorganized complexity or even
as a problem of simplicity. Just recently, the tools for studying cities as the complex systems Jacobs
described have become available for experts within the architectural discipline.

Along his exploration of complexity and the science of design, Simon Herbert [2] in “The sciences
of the artificial” defended the science of the artificial as the science of engineering, but not
engineering-science; understanding the complex system of the city is as an Artifact acting as an interface
between the inner and the outer environment. The science of design is then the science of creating the
artificial. Understanding that, with just minimal assumptions about the inner environment, we can
predict behavior from knowledge of the system goals and its outer environment. So understanding
cities as artificial and adaptable systems that have certain rules makes them particularly susceptible to
simulation via simplified models.

Apart from the quality of the data then, as he stated, adaptation to the environment can be
improved by combining predictive control and homeostatic and feedback methods.

Precedence for the application of an evolutionary model as a problem-solving strategy dates back
to the early 20th century. It has since been developed into a model that has been applied in a multitude
of different fields to provide solutions to problems that required objectivity, optimality, and efficiency.

Mathematics 2018, 6, 189; doi:10.3390/math6100189 www.mdpi.com/journal/mathematics379

Mathematics 2018, 6, 189

1.2. Significance of Variation

Variation of blocks and Superblocks increases the potential for the urban fabric in which they are
embedded to adapt to changes in environmental and climatic conditions. It also helps to construct
patterns of spatial differentiation that are identified with the perception of urban culture and qualities
that make a city a good place to live. The Universal city, beloved in the early 20th century by
Modernists, has been built everywhere, and is all too frequently simply comprised of a uniform array
of a single-block type distributed across a grid, with little, if any, adjustment to specific ecological or
environmental contexts. Their attempts to generate substance and quality within the urban landscape
through copious amounts of noncontextualized repetition have proven to be unsuccessful.

The attempt of predicting how a city will grow, either morphologically or temporally, may have
been the modernist’s biggest challenge. Although it may be possible to make short-term predictions,
driven by rules inherent to strategies of urban design, political influences, economic patterns and social
impacts; long-term predictions are the ones that are usually impossible to make [3] (pp. 109–127).

Today, rapidly changing climatic conditions and the exponential growth and mobility of
populations are accelerating changes to the environmental context of many cities across the world.
The stresses on future cities demand an approach that enables the urban fabric to accommodate rapid
change, allowing territories for the freedom to communicate and overlap with one another in response
to internal and external stimuli within the city’s environment [4].

Moreover, the successive random and subjective choices made by each inhabitant of the city
amplifies the city’s unpredictability, imposing a shift in mindset from understanding a problem to
having a single solution, to one that requires multiple solutions, each unique in its own way.

In an urban context, this variation is explained as a “formal diversity of solutions responding to
the same situations” [3] (p. 112), and although the system cannot be predicted and designed in advance,
it can be addressed through the application of multiple simulations, each generating a population of
solutions, thus bypassing the demand for prediction (which is usually associated with generating a
single solution).

This brings forward the need to clearly differentiate between ‘the solution’ and ‘the population’.
This is best described within biology, where there is a clear boundary between the ‘typologist’ and the
‘populationist’. Leading evolutionary biologist, Ernst Mayr, highlights their distinction in his essay,
Typological versus Population Thinking, where he states, “For the typologist, the type (tidos) is real
and the variation an illusion, while for the populationist, the type (average) is an abstraction and only
the variation is real” [5] (p. 28).

The populationist believes that each solution is unique, and by attempting to define a collection
of unique solutions through a single representative they lose the individual characteristics that defined
each solution within the population. In doing so, an assumption is made: the ‘statistical average’
solution is the best suited to adapt to the stresses of its environment.

However, nature contradicts this, as individuals within a species show significant variation and
display unique traits that have evolved differently in response to the same environmental stresses.

As such, the populationist’s approach of signifying importance to variation between solutions
rather than an average representative serves as an optimal model for generating variation of design
solutions to a design problem that cannot be addressed through a single ‘average’ design solution;
as Mayr states, “An individual that will show in all of its characters the precise mean value for the
population as a whole does not exist” [5] (p. 29).

1.3. Challenge and Hypothesis

The challenge of this research lies in developing a computational process that is capable of
generating adequate variation of urban morphology that is optimal for multiple conflicting objectives.
One widely used approach to multiobjective computation is for the designer to give greater weight to
one objective over the others, or to vary the reactive importance of the objectives in a cascading rank;
however, this makes the process deterministic on the initial conditions and decisions of ranking.

380

Mathematics 2018, 6, 189

1.4. Barcelona’s Urban Model

1.4.1. Urban Growth

In 1859, Ildefons Cerdà proposed ‘L’Eixample’, an urban solution aimed towards accommodating
Barcelona’s growing population through extending the city’s urban fabric beyond its walls.

The distribution of functions within the urban plan would later be the primary cause in
transforming Barcelona into one of the highest population-density cities of Europe [6]. Through
his new plan, Cerdà aimed to address issues of population growth, building density, unsanitary
conditions, illnesses and high mortality rates that were impacting the city’s development during
the 19th century. As such, Cerdà engaged three primary domains: sanitation, circulation, and social
equality. For these reasons, the original project only built on two sides of each block, thus enabling
greater views and better ventilation (Figure 1).

Figure 1. Comparison. (Left) Fragment of Cerdà’s original plan: block types and orientations [7].
(Right) Current state of Barcelona, where all sides and inside parts are built.

1.4.2. Existing Urban Setting

Cerdà’s initial plans attempted to provide a solution to a problem with multiple conflicting
criteria. The primary conflicting criteria were the requirement of accommodating a high-density ratio
yet maintaining a high number of street-accessible green spaces. However, rather than generating a
solution that accommodated both criteria, a trade-off strategy directed the city towards a solution that
prioritized population density over green spaces.

Although unknown at the time, Barcelona was following a preference-based approach that found
it necessary to “convert the task of finding multiple trade-off solutions in a multiobjective optimization
(problem) to one of finding a single solution of a transformed single-objective optimization problem” [8]
(p. 7).

Although Cerda’s original plan engaged a balanced relationship between open space and liveable
space, several changes to the plan were imposed after Cerda’s proposal. Moreover, political and
investment opportunities transformed the original two-sided block with an open courtyard into a
four-sided chamfered block with an enclosed courtyard, thus giving rise to the iconic Barcelona’s
eight-sided block. In doing so, Cerdà’s intention to maintain a high percentage of open spaces as
well as visual connectivity throughout the city was disregarded by the decision to completely modify
the original two-sided block [9] (Figure 2). As such, the green area/inhabitant ratio of Barcelona is
currently recorded as 6.5 m2 per person, which is more than half the ratio recommended by the World
Health Organization, W.H.O. [10].

381

Mathematics 2018, 6, 189

Figure 2. Development of a typical block in the Eixample throughout history.

Modifications to Cerdà’s original plan have been in a continuous state of development (Figure 2).
Most prominently, Barcelona’s driving change factors are: the geographic limitations (Cornella
mountains, Besós river, Llobregat river, and the maritime front), the hierarchical and relational
changes in specific areas such as Barcelona’s future center (Les Glories), and the rethinking of
L’Eixample—which is engaged in this article.

Approved by the Barcelona Town Hall in 2012, the Superblock project (‘super illes’) (Figure 3)
aims to introduce improved and sustainable mobility, public-space rehabilitation, biodiversity and
green areas, accessibility, social cohesion, and energetic self-sufficiency within the city’s fabric.
The Superblock becomes an intermediate unit (smaller than a neighborhood yet larger than block) to
allow for the development of new relationships between blocks and streets [11].

Figure 3. A superblock is composed of 16 blocks arranged in a square grid (4 × 4).

Nonetheless, the existing density of Barcelona constrains attempts to revert the city closer to
Cerda’s original proposal, so only minor changes have been addressed.

Thus, rather than attempting to restructure the existing city, the experiments carried out in
the following chapters apply an evolutionary-design strategy that aims to generate an urban patch
that incorporates Cerdàs’s original design objectives while taking into account Barcelona’s current
population density.

The use of evolutionary population-based solvers empowers the possibility to modify, evaluate,
and select a set of candidate solutions per iteration, rather than a single optimal solution. Such a
process allows all objectives to be considered without the requisite of employing a trade-off strategy
during simulation. More importantly, it allows for the emergence of morphological variation of
different solutions, each suitable for a specific function, thus moving away from the homogeneity of
20th-century urban-planning strategies towards a more bottom–up approach of urban form.

382

Mathematics 2018, 6, 189

2. Materials and Methods

2.1. Evolutionary Strategy

It is concluded that it is an appropriate approach to implement an evolutionary algorithm (EA) for
our particular case of study. Evolutionary computation, based on genes and chromosomes containing
the code for nature’s designs, uses solution populations competing/co-operating to improve over time
through interactions with the environment.

In a comparison between EA vs. derivative-based methods we can clearly state:

• EAs can be much slower (but they are any-time algorithms).
• EAs are less dependent on initial conditions (still need several runs).
• EAs can use alternative error functions: not continuous or differentiable, including structural terms.
• EAs are not easily stuck in local optima.
• EAs are better “scouters” (global searchers).

The experiments in Section 4 employ an evolutionary solver as the underlying driver for the
design process. However, the methods by which different evolutionary strategies apply the principles
of selection and variation are notably diverse in different evolutionary algorithms.

The most progressive multiobjective evolutionary algorithms (e.g., NSGA-2, Strength Pareto
Evolutionary Algorithm 2 (SPEA-2)) excelled through their ability to achieve the most diverse Pareto
optimal set in both an efficient timeframe, as well as a reasonable computational environment [12].
As such, the selected algorithm in which the presented experiments were run is the SPEA-2 [13] within
the Octopus software, an evolutionary solver plugin for the design modeling platform Rhino 3D.

The EA is embedded in a 3D parametric model of the architectural topology capable of reproducing
all variables related to Cerdà’s original plan strategy and Eixample’s current situation (Figure 4).

Figure 4. Workflow diagram explaining the combination between parametric modeling and
evolutionary algorithm (EA).

2.2. Experimental Setup

By Definition, the geometric, environmental, and social relationships constitute the basis of
urban design. These relationships become a complex system with a behavior and efficiency that
are difficult to evaluate and predict. For this reason, being able to establish geometric relationships
within urban patterns in 3D modeling software allows us to manipulate geometry’s mathematical
definition. Once the definition is established, analyses and manipulations of geometrical variables
together with social and environmental ones can be developed through a range of existing plugins.
These plugins allow researchers from the architectural and engineering fields to manipulate such a
complex mathematical set of relationships.

383

Mathematics 2018, 6, 189

In this particular scenario, the experiment was run through the use of multiple plugins within the
3D-NURBS modeling software Rhinoceros3D. Grasshopper3D (visual algorithmic modeling) serves as
the primary platform for Octopus (multiobjective EA, developed by Robert Vierlinger and Bollinger
+ Grohmann Engineers) and Wallacei (analytic engine for data outputted by the EA, developed by
Mohammed Makki and Milad Showkatbakhsh).

Considering the multiple objectives and goals originally aimed by Cerdà, the experiment sets out
to generate an urban patch that optimizes for four primary objectives:

• CY—Larger courtyards for open public spaces (number of mesh faces exposed).
• B—High solar exposure on the building façades (number of mesh faces exposed).
• C—Greater block connectivity (numerical value based on Figure 5).
• DE—High population density (one that is close to the current state) (hab/km2).

All objectives must be maximized, understanding that greater amount of light and open spaces
are always positive characteristics in an overpopulated city.

Figure 5. Connectivity possibilities between the blocks. In order (value): block to opening (0), block
to block (1), and opening to opening (2). Courtyard connectivity is ranked to encourage larger
courtyards between blocks and generate wide fields of view. A low ranking discourages blocks that
have courtyards with one-sided access.

To address the connectivity objective, the phenotype is made up of several blocks. Therefore,
individuals/chromosomes from the experiment are Superblocks composed from 16 blocks (a 4 × 4
grid) (Figure 3). Each of the blocks inside of the phenotype is governed by a gene pool of variables
that transform the block’s morphology. The variables are:

• D—Block Depth (0.3%–0.7%) of the block side.
• Sd—Subdivisions (2–6 parts/side).
• O—Two-sided block’s organization (parallel vs. corner).
• A—Block orientation (0◦, 90◦, 180◦, 270◦).
• Fa—Deletion (amount of blocks’ façades deleted: 0, 1, 2, 3, 4).
• Fn—Minimum and maximum floors (2–6).
• Fex—Minimum and maximum extra floors (2–6).

In the context of the developed experiment, the possible values for the variables are:

D ∈ (0.3, 0.4, 0.5, 0.6, 0.7)

Sd ∈ (2, 3, 4, 5, 6)

O ∈ (p, c)

A ∈ (0, 90, 180, 270)

Fa ∈ (0, 1, 2, 3, 4)

Fn ∈ (2, 3, 4, 5, 6)

Fex ∈ (2, 3, 4, 5, 6)

384

Mathematics 2018, 6, 189

Genes Fn and Fex were programmed to generate random numbers inside the definition of
every individual.

Therefore, the design space is defined by the bounds of the genes’ ranges. The number of
k-element variations (V) of n-elements with repetition allowed, is:

Vn,k = nk (1)

Based on the described genes, the number of possible variations for the variables within
Superblocks and blocks is:

Superblocks variations: (516)(516)(216)(416)(516)(516)(516) = 2.32·1070

Blocks variations: (5)(5)(2)(4)(5)(5)(5)(5) = 25000

Because of the multiobjective nature of the software, objectives are not merged as a single objective.
The population-based evolutionary solver addresses every individual independently for each of the
fitness criteria. Therefore, the optimal solutions within the Pareto front that achieve a high fitness
value regarding one criterion might also be significantly low in another criterion, resulting in “multiple
optimal solutions in its final population” [8] (p. 8).

The Pareto front as a result of a 4-objective (as mentioned before CY, B, C, DE) optimization
problem that is also a 4-dimensional geometry. Figure 6 shows the Pareto front represented by a 3
spatial axis (DE, CY, C), while the 4th (B) is shown as a gradient color.

Figure 6. Octopus plugin screenshot. Since 4 fitness criteria have been set, the Pareto front is also
composed of 4 dimensions. Therefore, a color gradient is represented on top of a 3-dimensional mesh
to represent the 4th criteria (from green to red).

385

Mathematics 2018, 6, 189

The simulation settings should balance a search and optimization strategy that is both explorative
and employs an efficient selection and variation strategy that directs the algorithm towards an optimal
solution set within a feasible number of generations [7]; as such, the following settings were employed:

• Generation size: 100.
• Generation count: 100 (2 + 98).
• Selection method: Elitism 50% (method fixed by the plugin, percentage set by the researcher).
• Mutation Probability: 33% (initial value 10%).
• Mutation Rate: 66% (initial value 50%).
• Crossover Rate: 80% (default 1-point crossover).

The fitness function is defined by geometrical analysis of the resulting phenotypes. Such a
relationship would be complex to evaluate through a pure mathematical model. Therefore, it is
necessary to include and evaluate the geometrical properties of the phenotypes.

• CY—Larger courtyards: courtyard is converted into a mesh with 4425 faces. Each mesh has
a vector attached related to a virtual sun that will validate intersecting operations with the
block itself.

• B—High solar exposure: calculated with vectors in a subdivided mesh to check self-shadowing or
shadows from neighbor buildings. Number of faces in mesh depends on the phenotype.

• C—Greater block connectivity: A network of lines is drawn through proximity operations.
The definition checks intersections with this network to establish its relationship with
neighboring buildings.

• DE—Density objective: based on density in Barcelona’s current Eixample, considering number of
floors and total area built by the phenotype.

Solver parameters have been modified in comparison to previous experiments [14]. Based on
early attempts, the following measures were taken (Figure 6):

1. Because of the low generation size (100 individuals), the probability and strength of mutations
have been increased to 0.33 and 0.66, respectively. Although slower in the process, mutations
should compensate for a low initial population, producing results outside of the original genes.

2. With the same purpose, the amount of genes has been reduced, deleting those that had little or
no effect on the overall shape of the block. The simplification of the phenotype helps to lighten
the computational load and reduces the amount of permutations.

3. Experiment Results

Unlike other single-objective design experiments, the multiobjective evolutionary solver tends to
produce significant geometric variety. Because of the conflicting objectives, rather radical individuals
can be spotted in the Pareto front. The variety of phenotypes throughout the simulation reflected an
appropriate balance of exploration vs. exploitation within the algorithm, thus reducing the risk for the
premature convergence of the population towards a local optimum (Figure 7).

Analysis through the Wallacei plugin demonstrates a successful evolutionary run through
presenting increased diversity within the population accompanied with increased fitness levels.
Figure 8 depicts both higher variance levels for the last generations and increasing trend lines in the
standard deviation for each generation. Standard Deviation Value (Equation (2)) has been calculated
for each generation (x is the solution’s fitness value and μ is the generation’s mean fitness value).

σ =

√
1
N

n

∑
i=1

(xi − μ)2 (2)

386

Mathematics 2018, 6, 189

Consequently, the Normal Distribution (Equation (3)) curve for each generation has been plotted
through the following calculation (to three standard Deviations): (x is the solution’s fitness value, μ is
the generation’s mean fitness value, and σ is the standard deviation value.)

f (x) =
1√
2πσ

e− (
(x−μ)2

2σ2) (3)

On the other hand, mean values have either remained stable or decreased (which, in the context
of the experiment, translates to higher fitness). Moreover, the results in the Mean Values Trend line
charts values (Figure 8) present a noticeable increase on the average fitness per generation, mainly
credited to the connectivity and density objectives.

Further checks on the relationship between the different fitness objectives provide further
indication to the success of the evolutionary simulation. Figure 9 clearly shows an expanding Pareto
front for conflicting criteria. On the other hand, converging objectives generate greater distribution
with a narrower front.

Figure 7. Render with shadow analysis from the last generation (num. 100) that contains 100 individuals
(Superblocks). Individuals have been arranged in a square grid for visual purposes. Each individual is
composed by 16 blocks.

387

Mathematics 2018, 6, 189

Figure 8. Standard deviation graph, standard deviation trend line, and mean values trend line for all
of the fitness criteria: CV Exposure (number of mesh faces), Connectivity (numeric value based on
Figure 5, Density (hab/km2)), and B Exposure (number of mesh faces). Comparison of the objective
fitness values in all generations, from blue (first generation) to red (last generation).

(a) (b) (c)

Figure 9. Pareto front analysis for criteria comparison. (a) Conflicting criteria for Connectivity and
Density; (b) converging criteria for Connectivity and CY Exposure; (c) converging criteria for Density
and B Exposure. Values normalized to the 0–1 range for all objectives.

388

Mathematics 2018, 6, 189

As a result of the strategy employed within the evolutionary solver, a significant number of
solutions are outputted as a final result in each iteration. Even reducing the selection to the Pareto
front makes it inefficient to visually analyze each individual in the simulation. Thus, statistical analysis
of the generated solutions plays a pivotal role in the selection and modification of optimal solutions.
For this reason, phenotypes carefully need to be translated into remapped data in order to approach
significant correlation.

For this reason, the addon Wallacei allows for a better evaluation of the individuals through
Formulas (4) and (5) (the fitness values for each solution are exported through text files from Octopus,
which are then read by Wallacei).

Relative Difference: (xn is the solution’s Ranking for specific fitness criteria).

RD = (|x2 − x1|) + (|x3 − x2|) + (|x4 − x3| . . . + |xn − xn−1|) (4)

Fitness Average: (xn is the solution’s Ranking for specific fitness criteria).

FA =
x1 + x2 + x3 + x4 . . . + xn

n
(5)

Two selection strategies were defined in order to sort the Pareto front individuals using the Parallel
Coordinate Plot: Fitness average ranking and relative difference between ranking. In both strategies,
the top three ranked individuals (26-57-81 and 02-54-52) were selected; results in Figure 10 show great
differences between them. Fitness average has the possibility to introduce extreme individuals that are
specialized in one criterion. This specialization lets the individual reach high rankings by weakening
the other criteria. Meanwhile, Relative Difference individuals tend to find an equilibrium between all
the fitness criteria.

As explained above, the experiment aims to generate an urban tissue that is able to reach
high-density ratios while simultaneously introducing open spaces and incorporating greater courtyard
relationships. Due to the impossibility in reaching the existing Eixample density and Cerdà’s
connectivity at the same time, none of the Pareto solutions was a ‘perfect’ solution. However, multiple
individuals reached a successful equilibrium that would meet W.H.O. requirements without excessively
sacrificing current density. Results provided a largely successful and diverse set of solutions, allowing
the designer to choose a solution (or solutions) that best fit the design objectives.

Figure 10. (Top) First three ranked individuals for Fitness Average (individuals num.: 26, 57, and
81) and Relative Difference (individuals num.: 02, 54, and 52). (Below) Parallel Coordinate Plot
shows fitness relation for the first ranked individual (26 and 02). Individuals 57 and 81 show high
specialization in connectivity and CY exposure, and density and B exposure, respectively.

389

Mathematics 2018, 6, 189

The genome of each phenotype is comprised of all of the individual genes that define the
phenotype’s morphology. In this case, each gene is represented through the numerical parameter that
controls how much morphological change is imposed on the phenotype. Moreover, each genome
is divided into multiple gene sequences, each of which is defined by highlighting the part of the
phenotype to which the gene sequence is applied. The genomes for each of the six selected phenotypes
are presented in Tables 1 and 2 below. Additionally, each phenotype’s genome is plotted as a polyline
and compared to other selected genomes (Figures 11 and 12):

Table 1. The genomes of the phenotypes selected through the analysis of the mean fitness rank (the body
part of the phenotype onto which each gene sequence is applied to is presented in italics).

Phenotype Genome

26

[‘MainCourtyard’,
‘0.6’, ‘0.7’, ‘0.4’, ‘0.3’, ‘0.7’, ‘0.6’, ‘0.6’, ‘0.6’, ‘0.4’, ‘0.4’, ‘0.7’, ‘0.6’, ‘0.6’, ‘0.5’, ‘0.5’, ‘0.6’,
‘SubDivisions’,
‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’,
‘Organization’,
‘5.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘5.0’, ‘5.0’, ‘5.0’, ‘6.0’, ‘6.0’, ‘6.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘5.0’, ‘5.0’,
‘Angle’,
‘2.0’, ‘3.0’, ‘2.0’, ‘2.0’, ‘2.0’, ‘1.0’, ‘0.0’, ‘3.0’, ‘0.0’, ‘0.0’, ‘3.0’, ‘3.0’, ‘3.0’, ‘2.0’, ‘3.0’, ‘2.0’,
‘Connectivity’,
‘1.0’, ‘2.0’, ‘0.0’, ‘3.0’, ‘3.0’, ‘2.0’, ‘1.0’, ‘2.0’, ‘3.0’, ‘3.0’, ‘0.0’, ‘2.0’, ‘1.0’, ‘1.0’, ‘0.0’, ‘3.0’,
‘min_floors’,
‘3.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘5.0’, ‘6.0’, ‘5.0’, ‘5.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘5.0’, ‘5.0’, ‘3.0’, ‘4.0’, ‘5.0’,
‘max_floors’,
‘2.0’, ‘2.0’, ‘6.0’, ‘3.0’, ‘2.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘2.0’, ‘6.0’, ‘6.0’, ‘4.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘4.0’,
‘min_extra_floors’,
‘4.0’, ‘4.0’, ‘4.0’, ‘5.0’, ‘3.0’, ‘1.0’, ‘2.0’, ‘1.0’, ‘3.0’, ‘1.0’, ‘2.0’, ‘5.0’, ‘2.0’, ‘4.0’, ‘5.0’, ‘3.0’,
‘max_extra_floors’,
‘3.0’, ‘2.0’, ‘4.0’, ‘5.0’, ‘0.0’, ‘1.0’, ‘1.0’, ‘4.0’, ‘2.0’, ‘4.0’, ‘1.0’, ‘4.0’, ‘4.0’, ‘2.0’, ‘4.0’, ‘0.0’]

57

[‘MainCourtyard’,
‘0.5’, ‘0.4’, ‘0.6’, ‘0.3’, ‘0.3’, ‘0.5’, ‘0.4’, ‘0.3’, ‘0.5’, ‘0.5’, ‘0.6’, ‘0.6’, ‘0.3’, ‘0.3’, ‘0.4’, ‘0.5’,
‘SubDivisions’,
‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’,
‘Organization’,
‘6.0’, ‘6.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘5.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘5.0’, ‘5.0’, ‘6.0’,
‘Angle’,
‘2.0’, ‘2.0’, ‘2.0’, ‘0.0’, ‘1.0’, ‘1.0’, ‘3.0’, ‘2.0’, ‘2.0’, ‘0.0’, ‘1.0’, ‘0.0’, ‘1.0’, ‘1.0’, ‘3.0’, ‘0.0’,
‘Connectivity’,
‘3.0’, ‘3.0’, ‘4.0’, ‘0.0’, ‘4.0’, ‘3.0’, ‘2.0’, ‘1.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘3.0’, ‘4.0’, ‘4.0’, ‘3.0’, ‘4.0’,
‘min_floors’,
‘4.0’, ‘6.0’, ‘2.0’, ‘5.0’, ‘2.0’, ‘4.0’, ‘3.0’, ‘5.0’, ‘3.0’, ‘6.0’, ‘3.0’, ‘3.0’, ‘5.0’, ‘5.0’, ‘4.0’, ‘4.0’,
‘max_floors’,
‘3.0’, ‘4.0’, ‘6.0’, ‘5.0’, ‘3.0’, ‘3.0’, ‘4.0’, ‘5.0’, ‘2.0’, ‘4.0’, ‘3.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘4.0’, ‘3.0’,
‘min_extra_floors’,
‘2.0’, ‘5.0’, ‘5.0’, ‘4.0’, ‘1.0’, ‘4.0’, ‘3.0’, ‘4.0’, ‘2.0’, ‘5.0’, ‘3.0’, ‘0.0’, ‘3.0’, ‘4.0’, ‘3.0’, ‘1.0’,
‘max_extra_floors’,
‘4.0’, ‘2.0’, ‘5.0’, ‘4.0’, ‘0.0’, ‘2.0’, ‘3.0’, ‘2.0’, ‘5.0’, ‘3.0’, ‘2.0’, ‘4.0’, ‘5.0’, ‘4.0’, ‘3.0’, ‘4.0’]

81

[‘MainCourtyard’,
‘0.6’, ‘0.7’, ‘0.7’, ‘0.5’, ‘0.7’, ‘0.7’, ‘0.7’, ‘0.3’, ‘0.7’, ‘0.6’, ‘0.4’, ‘0.3’, ‘0.7’, ‘0.6’, ‘0.6’, ‘0.6’,
‘SubDivisions’,
‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’,
‘Organization’,
‘5.0’, ‘6.0’, ‘5.0’, ‘5.0’, ‘5.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘5.0’, ‘5.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘6.0’,
‘Angle’,
‘1.0’, ‘1.0’, ‘2.0’, ‘2.0’, ‘1.0’, ‘3.0’, ‘3.0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘2.0’, ‘3.0’, ‘0.0’, ‘0.0’, ‘2.0’, ‘3.0’,
‘Connectivity’,
‘1.0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘1.0’, ‘0.0’, ‘0.0’, ‘1.0’, ‘1.0’, ‘0.0’, ‘0.0’, ‘0.0’, ‘1.0’, ‘2.0’, ‘0.0’, ‘1.0’,
‘min_floors’,
‘5.0’, ‘5.0’, ‘4.0’, ‘6.0’, ‘6.0’, ‘4.0’, ‘5.0’, ‘5.0’, ‘3.0’, ‘4.0’, ‘5.0’, ‘4.0’, ‘5.0’, ‘6.0’, ‘5.0’, ‘3.0’,
‘max_floors’,
‘4.0’, ‘3.0’, ‘3.0’, ‘4.0’, ‘3.0’, ‘5.0’, ‘3.0’, ‘6.0’, ‘3.0’, ‘3.0’, ‘6.0’, ‘6.0’, ‘6.0’, ‘6.0’, ‘3.0’, ‘3.0’,
‘min_extra_floors’,
‘1.0’, ‘5.0’, ‘4.0’, ‘4.0’, ‘2.0’, ‘5.0’, ‘2.0’, ‘1.0’, ‘2.0’, ‘1.0’, ‘4.0’, ‘5.0’, ‘5.0’, ‘5.0’, ‘3.0’, ‘1.0’,
‘max_extra_floors’,
‘3.0’, ‘3.0’, ‘5.0’, ‘5.0’, ‘4.0’, ‘3.0’, ‘5.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘1.0’, ‘5.0’, ‘5.0’, ‘3.0’, ‘5.0’, ‘1.0’]

390

Mathematics 2018, 6, 189

Table 2. The genomes of the phenotypes selected through the analysis of the relative difference rank
(the body part of the phenotype onto which each gene sequence is applied to is presented in italics).

Phenotype Genome

2

[‘MainCourtyard’,
‘0.5’, ‘0.3’, ‘0.6’, ‘0.7’, ‘0.7’, ‘0.3’, ‘0.5’, ‘0.3’, ‘0.7’, ‘0.3’, ‘0.3’, ‘0.4’, ‘0.3’, ‘0.5’, ‘0.4’, ‘0.6’,
‘SubDivisions’,
‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’,
‘Organization’,
‘5.0’, ‘5.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘5.0’, ‘5.0’, ‘5.0’, ‘5.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘5.0’, ‘5.0’, ‘6.0’,
‘Angle’,
‘2.0’, ‘2.0’, ‘2.0’, ‘3.0’, ‘1.0’, ‘0.0’, ‘3.0’, ‘2.0’, ‘0.0’, ‘0.0’, ‘1.0’, ‘0.0’, ‘1.0’, ‘0.0’, ‘3.0’, ‘1.0’,
‘Connectivity’,
‘0.0’, ‘3.0’, ‘1.0’, ‘0.0’, ‘4.0’, ‘3.0’, ‘1.0’, ‘1.0’, ‘2.0’, ‘4.0’, ‘4.0’, ‘3.0’, ‘0.0’, ‘1.0’, ‘2.0’, ‘4.0’,
‘min_floors’,
‘5.0’, ‘5.0’, ‘3.0’, ‘4.0’, ‘6.0’, ‘4.0’, ‘3.0’, ‘5.0’, ‘4.0’, ‘4.0’, ‘3.0’, ‘4.0’, ‘6.0’, ‘4.0’, ‘2.0’, ‘4.0’,
‘max_floors’,
‘6.0’, ‘5.0’, ‘2.0’, ‘3.0’, ‘2.0’, ‘4.0’, ‘4.0’, ‘5.0’, ‘3.0’, ‘4.0’, ‘4.0’, ‘2.0’, ‘4.0’, ‘2.0’, ‘4.0’, ‘3.0’,
‘min_extra_floors’,
‘2.0’, ‘2.0’, ‘5.0’, ‘4.0’, ‘1.0’, ‘3.0’, ‘1.0’, ‘1.0’, ‘1.0’, ‘2.0’, ‘1.0’, ‘0.0’, ‘4.0’, ‘4.0’, ‘3.0’, ‘1.0’,
‘max_extra_floors’,
‘3.0’, ‘2.0’, ‘5.0’, ‘0.0’, ‘4.0’, ‘3.0’, ‘4.0’, ‘0.0’, ‘4.0’, ‘1.0’, ‘5.0’, ‘1.0’, ‘3.0’, ‘5.0’, ‘4.0’, ‘2.0’]

54

[‘MainCourtyard’,
‘0.5’, ‘0.4’, ‘0.6’, ‘0.3’, ‘0.7’, ‘0.5’, ‘0.3’, ‘0.3’, ‘0.4’, ‘0.4’, ‘0.6’, ‘0.6’, ‘0.3’, ‘0.5’, ‘0.5’, ‘0.7’,
‘SubDivisions’,
‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’,
‘Organization’,
‘6.0’, ‘6.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘5.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘5.0’,
‘Angle’,
‘2.0’, ‘3.0’, ‘2.0’, ‘0.0’, ‘2.0’, ‘1.0’, ‘3.0’, ‘2.0’, ‘2.0’, ‘1.0’, ‘1.0’, ‘0.0’, ‘3.0’, ‘0.0’, ‘3.0’, ‘0.0’,
‘Connectivity’,
‘3.0’, ‘0.0’, ‘1.0’, ‘0.0’, ‘4.0’, ‘3.0’, ‘2.0’, ‘1.0’, ‘2.0’, ‘4.0’, ‘3.0’, ‘0.0’, ‘4.0’, ‘4.0’, ‘3.0’, ‘4.0’,
‘min_floors’,
‘5.0’, ‘6.0’, ‘2.0’, ‘5.0’, ‘2.0’, ‘4.0’, ‘5.0’, ‘5.0’, ‘2.0’, ‘6.0’, ‘3.0’, ‘3.0’, ‘5.0’, ‘5.0’, ‘4.0’, ‘4.0’,
‘max_floors’,
‘3.0’, ‘4.0’, ‘5.0’, ‘5.0’, ‘3.0’, ‘4.0’, ‘4.0’, ‘5.0’, ‘2.0’, ‘3.0’, ‘6.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘4.0’, ‘4.0’,
‘min_extra_floors’,
‘5.0’, ‘5.0’, ‘5.0’, ‘4.0’, ‘1.0’, ‘4.0’, ‘3.0’, ‘4.0’, ‘2.0’, ‘4.0’, ‘3.0’, ‘5.0’, ‘3.0’, ‘5.0’, ‘3.0’, ‘1.0’,
‘max_extra_floors’,
‘4.0’, ‘4.0’, ‘5.0’, ‘4.0’, ‘0.0’, ‘3.0’, ‘2.0’, ‘3.0’, ‘5.0’, ‘1.0’, ‘2.0’, ‘4.0’, ‘5.0’, ‘4.0’, ‘3.0’, ‘0.0’]

52

[‘MainCourtyard’,
‘0.5’, ‘0.4’, ‘0.3’, ‘0.3’, ‘0.3’, ‘0.7’, ‘0.6’, ‘0.3’, ‘0.4’, ‘0.5’, ‘0.6’, ‘0.4’, ‘0.7’, ‘0.5’, ‘0.4’, ‘0.6’,
‘SubDivisions’,
‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’, ‘4.0’,
‘Organization’,
‘5.0’, ‘6.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘6.0’, ‘5.0’, ‘6.0’, ‘6.0’, ‘6.0’, ‘6.0’,
‘Angle’,
‘1.0’, ‘2.0’, ‘0.0’, ‘1.0’, ‘1.0’, ‘3.0’, ‘3.0’, ‘1.0’, ‘3.0’, ‘0.0’, ‘2.0’, ‘0.0’, ‘1.0’, ‘1.0’, ‘3.0’, ‘3.0’,
‘Connectivity’,
‘3.0’, ‘2.0’, ‘2.0’, ‘4.0’, ‘4.0’, ‘3.0’, ‘1.0’, ‘2.0’, ‘4.0’, ‘4.0’, ‘1.0’, ‘0.0’, ‘4.0’, ‘1.0’, ‘0.0’, ‘1.0’,
‘min_floors’,
‘4.0’, ‘5.0’, ‘3.0’, ‘6.0’, ‘4.0’, ‘2.0’, ‘4.0’, ‘5.0’, ‘3.0’, ‘4.0’, ‘6.0’, ‘4.0’, ‘5.0’, ‘2.0’, ‘6.0’, ‘3.0’,
‘max_floors’,
‘4.0’, ‘3.0’, ‘5.0’, ‘5.0’, ‘3.0’, ‘3.0’, ‘4.0’, ‘5.0’, ‘2.0’, ‘3.0’, ‘3.0’, ‘3.0’, ‘4.0’, ‘6.0’, ‘6.0’, ‘2.0’,
‘min_extra_floors’,
‘0.0’, ‘4.0’, ‘4.0’, ‘5.0’, ‘1.0’, ‘3.0’, ‘5.0’, ‘1.0’, ‘2.0’, ‘3.0’, ‘2.0’, ‘0.0’, ‘0.0’, ‘4.0’, ‘2.0’, ‘2.0’,
‘max_extra_floors’,
‘5.0’, ‘5.0’, ‘2.0’, ‘2.0’, ‘5.0’, ‘5.0’, ‘4.0’, ‘3.0’, ‘3.0’, ‘1.0’, ‘1.0’, ‘4.0’, ‘5.0’, ‘2.0’, ‘3.0’, ‘1.0’]

Figure 11. Geometric representation of each of the three selected phenotypes’ genomes. In the graph above,
phenotypes are represented through the following polylines: Red—Phenotype 26, Blue—Phenotype 57,
and Magenta—Phenotype 81.

391

Mathematics 2018, 6, 189

Figure 12. Geometric representation of each of the three selected phenotypes’ genomes. In the graph
above, phenotypes are represented through the following polylines: Red—Phenotype 2, Blue—Phenotype
54, and Magenta—Phenotype 52.

The fitness values for each of the six phenotypes presented above are compared to Barcelona’s
current situation (BCS) and Cerdà original plan (COP) in Tables 3 and 4. Results show that most of the
individuals have achieved greater connectivity than the current state while improving density, getting
closer to a realistic approach.

Table 3. Selected individuals based on Fitness Average compared to current and original state.

Num. Individual 57 26 81
Barcelona’s Current

Situation (BCS)
Cerdà Original

Plan (COP)

CY—Courtyard exposure (#faces) 1813 5158 6569 5788 5379
B—Building exposure (#faces) 3473 2620 2069 1491 2945

C—Connectivity (value) 43 30 23 24 39
DE—Density (hab/km2) 9544 17,259 23,596 34,500 10,400

Table 4. Selected individuals based on Relative Difference compared to current and original state.

Num. Individual 2 54 52 BCS COP

CY—Courtyard exposure (#faces) 3604 3117 3632 5788 5379
B—Building exposure (#faces) 2839 2933 2876 1491 2945

C—Connectivity (value) 29 29 29 24 39
DE—Density (hab/km2) 14,924 16,146 14,616 34,500 10,400

4. Discussion

Back, Hammel, and Schwefel [15] argue that “the most significant advantage of using evolutionary
search lies in the gain of flexibility and adaptability to the task at hand”, and while the optimal
solution for a single objective problem is clearly defined, multiple objective problems require the
“robust and powerful search mechanisms” [16] (p. 13) of evolutionary algorithms to find the fittest
solution candidates that take into consideration all of the assigned objectives. The experiments proved
successful by breeding a diverse set of individuals across generations that continued to perform better
towards their fitness criteria. While the experiment did not provide a single optimized solution,
something that is often sought after in design, it did respond to the multiple design objectives of the
design model, providing a diverse set of optimal solutions (Figure 10).

Regarding designer strategies in later stages, it has been proven that the fitness average-ranking
approach generates an adequate variety that can be helpful in situations with solution uncertainty,
especially in complex architectural 3D compositions (Figure 13). On the other hand, in specific
scenarios, it could be interesting to add specific external-criteria values to choose individuals in the
Pareto front. For instance, a minimum density value or a density range that would greatly reduce
options within the front.

The computational environment plays a significant role in the application of an evolutionary
model as a design strategy. The experiments carried out were limited to 100 individuals and
100 generations, a limit imposed by the computational load and time required to carry out the

392

Mathematics 2018, 6, 189

experiments. However, a larger population and generation count would generate greater diversity,
as well as allow for more optimization of the fitness criteria. As mentioned previously, increasing
the mutation rate and probability can help to increase the explorative strength in low-population
situations, but will always delay final optimized results.

Figure 13. 3D aerial view render from generation-100.

As a matter of further research, unsupervised-learning data analysis is considered. Nevertheless,
the quality and number of data obtained are not yet enough.

It is thought that supervised algorithms should be discarded, as choosing the labeling of the
training examples by the authors would be impossible without a minimum grade of subjectivity in the
selection. As it is not yet clear what the procedure for weighting different objectives within the Pareto
front should be, it is not currently possible to select “the best solution”.

In that sense, Machine Learning is thought to be implemented for trying to find and conclude
which one of the obtained solutions might be more appropriate in the case of a realistic application to
Eixample’s urban blocks’ future reorganization.

Future data analysis should be based on a higher number of individuals within the population
and also on a higher number of iterations. Implementing a clustering algorithm is still to be decided.

Logistic regression Kernel-based analysis would probably be discarded during the first trials
stepping into k-means and principal-components analysis (PCA) being self-organizing maps (SOM)
within the scope of the analysis.

It could also be considered to introduce Reinforcement Learning in which every individual is
considered as an Agent with a reward function towards the optimal solution. In this case, again,
the target goal needs to be predefined.

Author Contributions: conceptualization, D.N.-M. and M.M.; methodology, D.N.-M. and M.M.; software, D.N.-M.
and M.M.; validation, A.C.-B., M.M., and D.N.-M.; formal analysis, D.N.-M. and M.M.; investigation, D.N.-M.,
M.M., and A.C.-B.; data curation, D.N.-M.; writing—original draft preparation, D.N.-M., A.C.-B., and M.M.;
writing—review and editing, D.N.-M., A.C.-B., and M.M.; visualization, D.N.-M.; supervision, A.C.-B. and M.M.;
project administration, D.N.-M.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Jacobs, J. The Death and Life of Great American Cities; Random House: New York, NY, USA, 1961; ISBN
067974195X.

2. Simon, H.A. The Sciences of the Artificial, 3rd ed.; MIT Press: Cambridge, MA, USA, 1997; ISBN 9780262691918.

393

Mathematics 2018, 6, 189

3. Soddu, C. Recognizability of the Idea: The Evolutionary Process of Argenia. In Creative Evolutionary
Systems; Corne, D.W., Bentley, P.J., Eds.; Morgan Kaufmann: San Diego, CA, USA, 2002; pp. 109–127.
ISBN 978-1-55860-673-9.

4. Koolhaas, R. Whatever Happened to Urbanism? Des. Q. 1995, 164, 28–31.
5. Mayr, E. Typological Versus Population Thinking. In Evolution and the Diversity of Life: Selected Essays;

Harvard University Press: Cambridge, MA, USA, 1997; pp. 26–29, ISBN 978-0-674-27105-0.
6. Ajuntament de Barcelona Població per Districtes. 2015–2016. Available online: http://www.bcn.cat/

estadistica/catala/dades/anuari/cap02/C020102.htm (accessed on 1 August 2018).
7. Talk Architecture the 3 Drawings of Cerda. Available online: https://talkarchitecture.wordpress.com/2011/

02/06/the-3-drawings-of-cerda/ (accessed on 1 August 2018).
8. Deb, K.; Pratap, A.; Agarwal, S.; Meyarivan, T. A fast and elitist multiobjective genetic algorithm: NSGA-II.

IEEE Trans. Evol. Comput. 2002, 6, 182–197. [CrossRef]
9. Busquets, J. Barcelona: La Construccion Urbanistica de Una Ciudad Compacta; Ediciones del Serbal: Barcelona,

Spain, 2004.
10. Arroyo, F. Barcelona Suspende en Zona Verde|Edición Impresa|EL PAÍS. Available online: https://elpais.

com/diario/2009/10/24/catalunya/1256346439_850215.html (accessed on 1 August 2018).
11. Ajuntament de Barcelona la Superilla Pilot de la Maternitat i Sant Ramon Estarà en Marxa al Mes

D’abril|Superilles. Available online: http://ajuntament.barcelona.cat/superilles/ca/noticia/la-superilla-
pilot-de-la-maternitat-i-sant-ramon-estarza-en-marxa-al-mes-dabril (accessed on 1 August 2018).

12. Luke, S. Essentials of Metaheuristics; Lulu Press, Inc.: Morrisville, NC, USA, 2013; ISBN 9781300549628.
13. Zitzler, E.; Laumanns, M.; Thiele, L. SPEA2: Improving the Strength Pareto Evolutionary Algorithm.

Evol. Methods Des. Optim. Control Appl. Ind. Probl. 2001.
14. Makki, M.; Farzaneh, A.; Navarro, D. The Evolutionary Adaptation of Urban Tissues through Computational

Analysis. In Proceedings of the 33rd eCAADe Conference, Vienna University of Technology, Vienna, Austria,
16–18 September 2015; Martens, B., Wurzer, G., Grasl, T., Lorenz, W.E., Schaffranek, R., Eds.; Volume 2,
pp. 563–571.

15. Back, T.; Hammel, U.; Schwefel, H.P. Evolutionary computation: Comments on the history and current state.
IEEE Trans. Evol. Comput. 1997, 1, 3–17. [CrossRef]

16. Zitzler, E. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications.
TIK-Schriftenreihe 1999.

© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

394

mathematics

Article

A Developed Artificial Bee Colony Algorithm
Based on Cloud Model

Ye Jin 1, Yuehong Sun 1,2,* and Hongjiao Ma 1

1 School of Mathematical Sciences, Nanjing Normal University, Nanjing 210023, China;
160902016@stu.njnu.edu.cn (Y.J.); xuminxi525@163.com (H.M.)

2 Jiangsu Key Laboratory for NSLSCS, Nanjing Normal University, Nanjing 210023, China
* Correspondence: 05234@njnu.edu.cn; Tel.: +86-13451825524

Received: 11 March 2018; Accepted: 10 April 2018; Published: 18 April 2018

Abstract: The Artificial Bee Colony (ABC) algorithm is a bionic intelligent optimization method.
The cloud model is a kind of uncertainty conversion model between a qualitative concept T̃ that is
presented by nature language and its quantitative expression, which integrates probability theory and
the fuzzy mathematics. A developed ABC algorithm based on cloud model is proposed to enhance
accuracy of the basic ABC algorithm and avoid getting trapped into local optima by introducing a
new select mechanism, replacing the onlooker bees’ search formula and changing the scout bees’
updating formula. Experiments on CEC15 show that the new algorithm has a faster convergence
speed and higher accuracy than the basic ABC and some cloud model based ABC variants.

Keywords: artificial bee colony algorithm (ABC); cloud model; normal cloud model; Y conditional
cloud generator; global optimum

1. Introduction

In recent years, the development of metaheuristics [1–3] has advanced. Many scholars have
made a lot of contributions in this area. The Artificial Bee Colony algorithm (ABC) [4] is a novel
swarm intelligence algorithm among the sets of metaheuristics. The ABC algorithm is an optimization
algorithm which mimics the foraging behavior of the honey bee. It provides a population-based
search procedure in which individuals called food positions are modified by the artificial bees with the
increasing of iterations. The bee’s aim is to discover the places of food sources with high nectar amount.

From 2007 to 2009, Karaboga et al. [5–7] presented a comparative study on optimizing a large
set of numerical test functions. They compared the performance of the ABC algorithm with the
genetic algorithm (GA), particle swarm optimization (PSO), differential evolution (DE) and evolution
strategy (ES). The simulation results show that ABC can be efficiently employed to solve engineering
problems with high dimensions. It can produce very good and effective results at a low computational
cost by using only three control parameters (population size, maximum number of fitness evaluations,
limit). Akay et al. [8] studied the parameter tuning of the ABC algorithm and investigated the effect
of control parameters. Afterwards, two modified versions of the ABC algorithm were proposed
successively by Akay et al. [9] and Zhang et al. [10] for efficiently solving real-parameter numerical
optimization problems. Aderhold et al. [11] studied the influence of the population size about the
optimization behavior of ABC and also proposed two variants of ABC which used the new position
update of the artificial bees.

Mathematics 2018, 6, 61; doi:10.3390/math6040061 www.mdpi.com/journal/mathematics395

Mathematics 2018, 6, 61

However, ABC was unsuccessful on some complex unimodal and multimodal functions [7].
So, some modified artificial colony algorithms were put forward in order to improve the performance
of the basic ABC. Zhu et al. [12] proposed an improved ABC algorithm called gbest-guided ABC
(GABC) by incorporating the information of global best solution into the solution search equation to
guide the search of candidate solutions. The experimental results tested on six benchmark functions
showed that GABC outperformed basic ABC. Wu et al. [13] described an improved ABC algorithm to
enhance the global search ability of basic ABC. Guo et al. [14] presented a novel search strategy and
the improved algorithm is called global ABC which has great advantages of convergence property
and solution quality. In 2013, Yu et al. [15] proposed a modified artificial bee colony algorithm
in which global best is introduced to modify the update equation of employed and onlooker bees.
Simulation results on the problem of peak-to-average power ratio reduction in orthogonal frequency
division multiplexing signal and multi-level image segmentation showed that the new algorithm
had better performance than the basic ABC algorithm with the same computational complexity.
Rajasekhar et al. [16] proposed a simple and effective variant of the ABC algorithm based on the
improved self-adaptive mechanism of Rechenbergs 1/5th success rule to enhance the exploitation
capabilities of the basic ABC. Yaghoobi [17] proposed an improved artificial bee colony algorithm for
global numerical optimization in 2017 from three aspects: initialising the population based on chaos
theory; utilising multiple searches in employee and onlooker bee phases; controlling the frequency of
perturbation by a modification rate.

Multi-objective evolutionary algorithms (MOEAs) gained wide attention to solve various
optimization problems in fields of science and engineering. In 2011, Zou et al. [18] presented a
novel algorithm based on ABC to deal with multi-objective optimization problems. The concept of
Pareto dominance was used to determine the flight direction of a bee, and the nondominated solution
vectors which had been found in an external archive were maintained in the proposed algorithm.
The proposed approach was highly competitive and was a viable alternative to solve multi-objective
optimization problems.

The performances of Pareto-dominance based MOEAs degrade if the number of objective
functions is greater than three. Amarjeet et al. [19] proposed a Fuzzy-Pareto dominance driven
Artificial Bee Colony (FP-ABC) to solve the many-objective software module clustering problems
(MaSMCPs) effectively and efficiently in 2017. The contribution of the article was as follows:
the selection process of candidate solution was improved by fuzzy-Pareto dominance; two external
archives had been integrated into the ABC algorithm to balance the convergence and diversity.
A comparative study validated the supremacy of the proposed approach compared to the existing
many-objective optimization algorithms.

A decomposition-based ABC algorithm [20] was also proposed to handle many-objective
optimization problems (MaOPs). In the proposed algorithm, an MaOP was converted into a number
of subproblems which were simultaneously optimized by a modified ABC algorithm. With the help of
a set of weight vectors, a good diversity among solutions is maintained by the decomposition-based
algorithm. The ABC algorithm is highly effective when solving a scalar optimization problem with
a fast convergence speed. Therefore, the new algorithm can balance the convergence and diversity
well. Moreover, subproblems in the proposed algorithm were handled unequally, and computational
resources were dynamically allocated through specially designed onlooker bees and scout bees, which
indeed contributed to performance improvements of the algorithm. The proposed algorithm could
approximate a set of well-converged and properly distributed nondominated solutions for MaOPs
with the high quality of solutions and the rapid running speed.

396

Mathematics 2018, 6, 61

The basic ABC algorithms is often combined with other algorithms and techniques. In 2016, an
additional update equation [21] for all ABC-based optimization algorithms was developed to speed up
the convergence utilizing Bollinger bands [22] which is a technical analysis tool to predict maximum
or minimum future stock prices. Wang et al. [23] proposed a hybridization method based on krill
herd [24] and ABC (KHABC) in 2017. A neighbor food source for onlooker bees in ABC was obtained
from the global optimal solutions, which was found by the KHABC algorithm. During the information
exchange process, the globally best solutions were shared by the krill and bees. The effectiveness of
the proposed methodology was tested for the continuous and discrete optimization.

In this paper, another technique called cloud model [25] will be embedded into the ABC algorithm.
Cloud model is an uncertainty conversion model between a qualitative concept and its quantitative
expression. In 1999, an uncertainty reasoning mechanism of the cloud model was presented and the
cloud model theory was be expanded after that. In addition, Li successfully applied cloud model to
inverted pendulum [26]. Some scholars combined cloud model with ABC because cloud model has
the characteristics of stable tendentiousness and randomness [27–29].

We propose a new algorithm which inherits the excellent exploration ability of the basic ABC
algorithm and the stability and randomness of the cloud model by modifying the selection mechanism
of onlookers, the search formula of onlookers and scout bees’ update formula. The innovation points
of the new algorithm are:

1. The population becomes more diverse in the whole search process by using a different selection
mechanism of onlookers, in which the worse individual will have a larger selection probability
than in basic ABC;

2. Local search ability of the algorithm can be improved by applying the normal cloud generator as
the search formula of onlookers to control the search of onlookers in a suitable range;

3. Historical optimal solutions can be used by Y-conditional cloud generator as scout bees’s update
formula to ensure that the algorithm not only jumps out of local optimum but also avoids a blind
random search.

The remainder of the paper is structured as follows. Section 2 provides the description of the
basic ABC algorithm, followed by the details and framework of the developed ABC algorithm based
on cloud model, as shown in Section 3. Subsequently, Section 4 gives the experiment results on CEC15
of the comparison among the proposed DCABC, the basic ABC, and other ABC variants based on
cloud model. Then in Section 5, the current work is summarized, and the acknowledgements are given
in the end.

2. The Basic ABC Algorithm

There are three kinds of bees, namely, employed bees, onlooker bees and scout bees in the ABC
algorithm. The total population number is Ns; the number of employed bees is Ne and onlookers is
Nu (General define Ne = Nu = Ns

2). In the initialization phase, food sources in the population are
randomly generated and assigned to employed bees as

Xj
i = Xj

min + rand(0, 1)(Xj
max − Xj

min), (1)

where j ∈ {1, 2, . . . , D}, Xmax, Xmin are the upper and lower bounds of the solution vectors, D is the
dimension of the decision variable.

Each employed bee Xi generates a new food source Vi in the neighborhood of its present position:

Vj
i = Xj

i + φ
j
i (Xj

i − Xj
k), (2)

397

Mathematics 2018, 6, 61

where j ∈ {1, 2, . . . , D}, k ∈ {1, 2, . . . , Ne}, k must be different from i, k and j are random generating
indexes, φ

j
i is a random number between [−1, 1]. At the same time, we should guarantee Vi in the field

of definition domain. Vi will be compared to Xi and the employed bee exploits the better food source
by greedy selection mechanism in terms of fitness value f iti in Equation (3):

f iti =

⎧⎨⎩
1

1 + fi
fi ≥ 0

1 + abs(fi) fi < 0
(3)

where fi is the objective value of solution Xi or Vi. Equation (3) is used to calculate fitness values for a
minimization problem, while for maximization problems the objective function can be directly used as
a fitness function.

An onlooker bee evaluates the fitness value of all employed bees, and uses the roulette wheel
method to select a food source Xi updated the same as employed bees according to its probability
value P calculated by the following expression:

P =
0.9 f it(Xi)
Nemax

m=1
f it(Xm)

+ 0.1, (4)

If a food source Xi cannot be improved beyond a predetermined number (limit) of trial counters,
it will be abandoned and the corresponding employed bee will become a scout bee randomly produced
by Equation (1). The algorithm will be terminated after repeating a predefined maximum number of
cycles, denoted as Max_Cycles. The flow chart of ABC algorithm is shown in Algorithm 1.

Algorithm 1: The basic ABC algorithm.
Initialization phase

Initialize the food sources using Equation (1).
Evaluate the fitness value of the food sources using Equation (3), set the current generation

t = 0.
While t ≤ Max_Cycles do

Employed bees phase

Send employed bees to produce new solutions via Equation (2).
Apply greedy selection to evaluate the new solutions.
Calculate the probability using Equation (4).

Onlooker bees phase

Send onlooker bees to produce new solutions via Equation (2).
Apply greedy selection to evaluate the new solutions.

Scout bee phase

Send one scout bee produced by Equation (1) into the search area for discovering a new
food source.

Memorize the best solution found so far.
t = t + 1.

end while

Return the best solution.

3. A Developed Artificial Bee Colony Algorithm Based on Cloud Model (DCABC)

The ABC algorithm is a relatively new and mature swarm intelligence optimization algorithm.
Compared to GA and PSO, ABC has a higher robustness [6]. More and more scholars want to improve
the performance of the ABC algorithm. Zhang [27] put forward an algorithm named PABC with
the new select scheme based on cloud model. For the individual with a better fitness characteristic,

398

Mathematics 2018, 6, 61

the value of probability was likely relatively high, and vice versa. Lin et al. [29] proposed an
improved ABC algorithm based on cloud model (cmABC) to solve the problem that the basic ABC
algorithm suffered from slow convergence and easy stagnation in local optima by calculating food
source through the normal cloud particle operator and reducing the radius of the local search space.
In cmABC, the author also introduced a new selection strategy that made the inferior individual
have more chances to be selected for maintaining diversity. In addition, the best solution found over
time was used to explore a new position in the algorithm. A number of experiments on composition
functions showed that the proposed algorithm had been improved in terms of convergence speed
and solution quality. In this section, we propose a developed ABC algorithm named DCABC which
is based on cloud model with a new choice mechanism of onlookers and new search strategies of
onlooker bees and scouts.

3.1. Cloud Model

Professor Li presented an uncertainty conversion model between a qualitative concept T̃ [30]
presented by nature language and its quantitative expression which is called cloud model on the basis
of traditional fuzzy set theory and probability statistics. He developed and improved a complete set
of cloud theory [31] which consists of cloud model, virtual cloud, cloud operations, cloud transform,
uncertain reasoning and so on.

Suppose U is a quantitative domain of discourse that are represented by precise values
(one-dimensional, two-dimensional or multi-dimensional), and T̃ is a qualitative concept in U. X is an
arbitrary element in U and a random implementation of qualitative concept T̃. The degree of certainty
of X to T̃ expressed as μ(X) is an random number that has stable tendency. The distribution of X on
the domain of discourse U is called cloud model, or simply ‘cloud’ for short. Each pare (X, μ(X)) is
called a cloud droplet, and cloud model can be formulated as follows:

∀X ∈ U −→ μ(X) ∈ [0, 1] (5)

The normal cloud is scattered point cloud model based on normal distribution or half-normal
distribution. Normal cloud model uses a set of independent parameters to work together in order to
express digital characteristics of a qualitative concept and reflect the uncertainty of the concept.
Based on the normal distribution function and membership function, this group of parameters
are represented by three digital characteristics including expectation Ex, entropy En, and hyper
entropy He.

Expectation Ex is a point which can best represent the qualitative concept in domain of discourse
space. It can be considered as the center of gravity of all cloud drop, which can best represent
the coordinates of the qualitative concept on number field. Entropy En stands for the measurable
granularity of the qualitative concept. Entropy also reflects the uncertainty and fuzzy degree of the
qualitative concept. Fuzzy degree means value range that can be accepted by the qualitative concept in
domain of discourse. Hyper entropy He is the measure of entropy’s uncertainty, namely entropy of En.
It reflects randomness of samples which represent qualitative concept values, and reveals the relevance
of fuzziness and randomness. Hyper entropy can also reflect the aggregation extent of cloud droplets.

Given three digital characteristics Ex, En and He, forward cloud generator in Equations (6)–(8)
can produce N cloud droplets of the normal cloud model (Algorithm 2), which are two-dimensional
points (xi, μi) (i ∈ {1, 2, . . . , N}).

En
′
i = N(En, He2), (6)

xi = N(Ex, (En
′
i)

2), (7)

μi = exp{− (xi − Ex)2

2(En′i)
2
}, (8)

399

Mathematics 2018, 6, 61

Algorithm 2: Forward cloud generator algorithm.
Input: Ex, En, He and N.
Output: quantitative value xi of ith cloud droplet and its degree of certainty μi.
Forward cloud generator

Generate a normal random number En
′
i with expectation En and hyper entropy He by

Equation (6);
Generate a normal random number xi with expectation Ex and hyper entropy En

′
i by

Equation (7).
Drop (xi, μi)

Calculate μi by Equation (8);
A cloud droplet(xi, μi) is get.

Repeat

Repeat the above step until N cloud droplets have come into being. (Figure 1)

Figure 1. Forward Cloud Generator.

Given three digital characteristics (Ex, En, He) and a specific degree of certainty μ, cloud generator
refers to Y-conditional cloud generator based on uncertainty reasoning of cloud model. In other words,
every cloud droplet (xi,μ) has the same degree of certainty which belongs to concept T̃. The formula of
Y-conditional cloud generator (Algorithm 3) is:

xi = Ex±
√
−2ln(μ) ∗ En

′
i, (9)

Algorithm 3: Y-conditional cloud generator algorithm.
Input: Ex, En, He, N and μ.
Output: Quantitative values xi of ith cloud droplet and its degree of certainty μ.
Y-conditional cloud generator

Get a normal random number En
′
i with expectation En and hyper entropy He by

Equation (6);
Calculate xi with Ex, En

′
i and μ by Equation (9).

Drop (xi, μ)

A Y-conditional cloud droplet (xi, μ) is get.
Repeat

Repeat the above step until get N cloud droplets. (Figure 2)

Figure 2. Y-Conditional cloud generator.

400

Mathematics 2018, 6, 61

3.2. New Choice Mechanism for Onlookers

3.2.1. New Choice Mechanism

In the basic ABC algorithm, onlooker bees choose the good-quality nectars by employing the
roulette wheel selection scheme. That is to say, the bigger the nectar’s fitness value, the higher the
probability it will be chosen by onlookers. The selection mechanism contains three parts: calculating
the selection probability of each solution in population according to its fitness value; selecting the
candidate solution using the roulette wheel selection method; starting the local search of onlooker bees
around the candidate solution. However, the selection scheme is so greedy that it is easy to lead to the
rapid decrease of population diversity and fall into local optimum. We hope to obtain a reasonable
selection scheme.

Zhang et al. [27] improved the selection strategy based on cloud model with three digital
characteristics Ex, En and He in Equation (10):⎧⎪⎪⎨⎪⎪⎩

Ex =
Ne

max
i=1

f iti

En = Ex− f iti
12

He = En
3

(10)

The possibility of the current individual which is the best can be regarded as the choice
probabilities and can be produced by the positive cloud generator. Thinking differently, it will
be found that the worst individual also contains useful information after several loop iterations. So, we
ensure that the worst individual has larger selection probability. Equation (10) pays more attention to
the inferior individuals. Detailed positive cloud generator operations can be described as follows:⎧⎪⎪⎨⎪⎪⎩

Ex =
Ne

min
i=1

f iti

En = f iti−Ex
12

He = En
3

(11)

The selective probability of the corresponding individual is adjusted as follows:

P = exp{− (x− Ex)2

2(En′)2 }, (12)

where, En
′
= N(En, He2), x = N(Ex, (En

′
)2), N is a normal random number generator.

We find that the individuals closer to Ex(inferior individuals) will get the higher possibility,
namely, selection probability.

3.2.2. Efficiency Analysis

In our proposed algorithm DCABC, Equation (4) is used as the probability selection formula for
onlookers when a random number rand between 0 and 1 are less than or equal to 0.5; otherwise the
selection formula is set by the new choice mechanism in Equation (12). The goal of processing selection
probability in two cases is to avoid the algorithm plunging into local optimum.

To test the effectiveness of the current selection mechanism, the modified and the basic ABC
run independently on CEC15 [32] with dimensions(D) 10, 30 and 50, respectively. We set the initial
population size Ns = 40. The number of employed bees equals to the number of onlookers, which is
Ne = Nu = Ns

2 . The value of ‘limit’ equals to Ne ∗ D [33]. Every experiment is repeated 30 times.
The maximum number of function evaluations (MaxFES) is set as D ∗ 10,000 for all functions [34].
The simulation results is recorded in Table 1. It can be easily observed that the ABC with new choice
mechanism is superior to the basic ABC on most functions. This implies that the new choice mechanism
improves the performance of the basic ABC.

401

Mathematics 2018, 6, 61

Table 1. Experimental Results between ABC with the new choice mechanism (NCMABC) and the
basic ABC.

Functions Criteria ABC (10D) NCMABC (10D) ABC (30D) NCMABC (30D) ABC (50D) NCMABC (50D)

f1 Mean 1.36e+06 1.11e+06 3.73e+06 3.48e+06 1.20e+07 1.05e+07
Std 1.12e+06 6.92e+05 1.46e+06 1.42e+06 3.69e+06 3.49e+06

Rank 2 1 2 1 2 1
f2 Mean 8.57e+02 7.23e+02 7.26e+02 5.84e+02 1.43e+03 1.31e+03

Std 7.52e+02 8.35e+02 6.06e+02 6.77e+02 1.20e+03 1.07e+03
Rank 2 1 2 1 2 1

f3 Mean 2.02e+01 1.95e+01 2.01e+01 2.02e+01 2.02e+01 2.02e+01
Std 3.94e-02 3.12e+00 4.10e-02 4.14e-02 4.52e-02 4.13e-02

Rank 2 1 1 2 2 1
f4 Mean 1.26e+01 1.18e+01 9.77e+01 9.56e+01 2.34e+02 2.32e+02

Std 4.18e+01 3.67e+00 1.80e+01 1.78e+01 2.93e+01 2.89e+01
Rank 2 1 2 1 2 1

f5 Mean 4.31e+02 3.80e+02 2.42e+03 2.37e+03 4.24e+03 4.19e+03
Std 1.49e+02 1.51e+02 2.86e+02 2.71e+02 4.77e+02 3.75e+02

Rank 2 1 2 1 2 1
f6 Mean 5.03e+03 4.47e+03 1.38e+06 1.24e+06 2.20e+06 1.95e+06

Std 4.41e+03 3.10e+03 7.15e+02 6.35e+02 8.30e+02 7.53e+05
Rank 2 1 2 1 2 1

f7 Mean 8.72e+01 7.90e-01 9.39e+00 9.18e+00 1.85e+01 1.59e+01
Std 2.58e+01 2.87e-01 1.25e+00 1.13e+00 8.52e+00 2.02e+00

Rank 2 1 2 1 2 1
f8 Mean 1.32e+04 1.81e+04 4.11e+05 3.90e+05 2.89e+06 2.15e+06

Std 2.14e+04 3.02e+04 3.06e+05 1.96e+05 9.87e+05 8.05e+05
Rank 1 2 2 1 2 1

f9 Mean 9.48e+01 9.32e+01 1.21e+02 1.19e+02 1.62e+02 1.33e+02
Std 2.20e+01 2.35e+01 4.44e+01 4.41e+01 1.13e+02 7.43e+01

Rank 2 1 2 1 2 1
f10 Mean 4.37e+03 4.60e+03 6.88e+05 5.07e+05 8.07e+05 9.57e+05

Std 4.24e+03 7.02e+01 3.57e+05 2.90e+05 4.68e+05 4.39e+05
Rank 1 2 2 1 1 2

f11 Mean 3.01e+02 2.82e+02 3.22e+02 3.21e+02 3.58e+02 3.62e+02
Std 4.70e-01 4.01e-13 7.47e+00 7.40e+00 1.69e+02 1.65e+02

Rank 2 1 2 1 1 2
f12 Mean 1.04e+02 1.04e+02 1.07e+02 1.07e+02 1.10e+02 1.10e+02

Std 7.72e-01 8.03e-01 8.07e-01 6.08e-01 7.41e-01 7.99e-01
Rank 1 1 1 1 1 1

f13 Mean 3.13e+01 3.14e+01 1.02e+02 1.04e+02 1.89e+02 1.89e+02
Std 2.04e+00 2.21e+00 4.35e+00 3.58e+00 4.91e+00 4.25e+02

Rank 1 2 1 2 1 1
f14 Mean 1.86e+03 1.81e+03 3.06e+04 3.06e+04 5.00e+04 4.95e+04

Std 1.37e+03 1.31e+03 4.51e+03 5.57e+03 1.77e+03 1.42e+01
Rank 2 1 1 1 2 1

f15 Mean 1.00e+02 1.00e+02 1.00e+02 1.00e+02 1.02e+02 1.01e+02
Std 2.27e-11 5.54e-12 6.56e-02 6.99e-03 1.23e+00 1.14e+00

Rank 1 1 1 1 2 1

Mean rank 1.67 1.2 1.67 1.13 1.73 1.13
Overall rank 2 1 2 1 2 1

3.3. The New Search Strategy of Onlooker Bees

Lin et al. [29] proposed an improved ABC algorithm based on cloud model (cmABC).
By calculating a candidate food source through the normal cloud operator and reducing the radius of
the local search, the cmABC algorithm was proved to enhance the convergence speed, exploitation
capability and solution quality on the experiments of composition functions. In cmABC, three digital
characteristics of cloud model (Ex, En, He) are given as:⎧⎪⎨⎪⎩

Ex = Xj
i

En = ex
He = En

10

(13)

402

Mathematics 2018, 6, 61

where Xi is the current food sources position, j ∈ {1, 2, . . . , D}, ex is variable. The forward cloud
generator can produce a normal random number Vj

i , which will correspond to the new food sources
position of jth dimension. Detailed operations were described as:{

En
′
= N(En, He2)

Vj
i = N(Ex, En

′2
)

(14)

The greater the value of entropy En, the wider the distribution of cloud droplets and vice versa.
When the search iteration reached a certain number of times, the population was closer and closer to
the optimal solution. A nonlinear decrease strategy to self-adaptive adjust the value of ex was used in
cmABC for the sake of improving the precision of solution and controlling the bees’ search range:

ex = −(Emax − Emin)(t/Tmax)
2 + Emax (15)

where t ∈ {1, 2, 3, . . . , Tmax} was the current number of iterations, Tmax was the maximum number of
cycles. The values of parameters Emax and Emin were set to 5 and 10−4, respectively. In order not to
specify too many parameters, in this paper, three digital characteristics of cloud model (Ex, En, He)
are given as ⎧⎪⎨⎪⎩

Ex = Xj
i

En = 2
3 |Xj

i − Xj
k|

He = En
10

(16)

where j ∈ {1, 2, . . . , D}, k ∈ {1, 2, . . . , Ne}, k must be different from i, k, j are random generating
indexes. This amendment is based on the stable tendency and randomness of normal cloud model.
The entropy En is selected by ‘3σ’ principle of normal cloud model, which can control the onlooker
bees to search in a suitable range.

3.4. Search Strategy of Scouts Combined with Y Conditional Cloud Generator

Employed and onlooker bees look for a better food source around their neighborhoods in each
cycle of the search. If the fitness value of a food source is not improved by a predetermined number of
trials that is equal to the value of ‘Limit’, then that food source is abandoned by its employed bee and
the employed bee associated with that food source becomes a scout bee. In the basic ABC, the scout
randomly finds a new food source to replace the abandoned one by Equation (2), which makes the
convergence rate of the basic ABC slow for not taking full advantage of the historical optimal solution
information. In this section we make the scout bee search a candidate position around the historical
optimal value f itbest (corresponding to Globalmin) by Y-conditional cloud operator. Search strategy
of scouts combined with Y-conditional cloud generator is described in Algorithm 4. The purpose of
setting μ ∈ (0, 0.5) in Step 3 is to guarantee population diversity. Cloud droplets which have smaller
membership degrees are farther from center Ex, that is to say the new food source is farther from
historical optimum Globalmin. However, the historical optimum information is used to generate
a scout, therefore aimless searching of scout bees in the basic ABC algorithm can be avoided to a
certain degree.

Algorithm 4: Search strategy of scouts combined with Y-conditional cloud generator.
Step 1 Set expectation Ex as GlobalParams, which is the position parameters of Globalmin.
Step 2 Entropy En = (Xmax − Xmin)/Ne.
Step 3 Hyper entropy He = En/c2, where c2 = 10.
Step 4 Randomly generate membership degrees μj ∈ (0, 0.5), where j ∈ {1, 2, . . . , D}.
Step 5 Obtain the new food resource Xi according to Equation (9).

403

Mathematics 2018, 6, 61

3.5. DCABC Algorithm

Pseudo code of DCABC algorithm proposed for solving unconstrained optimization problems
is given in Algorithm 5. MaxFES represents the maximum number of function evaluations. FES
represents the number of function evaluations.

Algorithm 5: Pseudo code of DCABC algorithm.
Initialization phase

Using Equation (1) initialize the population of solutions Xj
i , i = 1, 2,. . . ,Ne, j=1, 2,. . . , D.

Evaluate the fitness of the population by Equation (3), set the current FES = Ne .
While FES ≤ MaxFES do

Employed bees phase

Send employed bees to produce new solutions via Equation (2).
Apply greedy selection to evaluate the new solutions.
If rand less than or equal to 0.5, Calculate the selective probability using Equation (4);
Otherwise calculate the probability using Equations (11) and (12).

Onlooker bees phase

Send onlooker bees to produce new solutions via Equations (14) and (16).
Apply greedy selection to evaluate the new solutions.

Scout bee phase

Send one scout bee generated by Algorithm 4 into the search area for discovering a new
food source.

Memorize the best solution found so far.
end while

Return the best solution.

4. Experimental Study of DCABC

4.1. Evaluation Functions

Comparing the proposed DCABC with the basic ABC and the other ABC variants, such as
GABC [12], cmABC [29] and PABC [27], the experimental results of benchmark functions with 10, 30
and 50 decision variables in CEC15 [32] are given under the same machine with an Intel 3.20 GHz
CPU, 8GB memory, and the operating system is Windows 7 with MATLAB 9.0 (R2016a). All functions
in CEC15 have different optimal values f (x∗).

4.2. Parameters Settings

For all compared algorithms including DCABC, the size of initial population is 40, an equal split
of employed bees and onlookers. ′limit′ equals to Ne ∗ D [33]; The dimension is set as 10, 30 and 50 in
turn. In Equation (2) of GABC [12], C = 1.5. In cmABC [29], Emax = 5, Emin = 10−4. The MaxFES is
D ∗ 10,000, which is used as the terminal criterion of five algorithms. Every experiment is repeated
30 times each starting from a random population with different random seeds, the mean results (Mean)
and the standard deviation (Std) of each algorithm are recorded with the format of f (x) – f (x∗) in
Tables 2–4. The best results are highlighted in boldface. Rank records the performance-rank of five
algorithms for dealing with each benchmark function according to their mean results. The overall
rank for each algorithm is defined according to their mean rank values over 15 benchmark problems.
The number of (Best/2ndBest/Worst) is counted for each algorithm.

4.3. Experiments Analysis

DCABC algorithm is better than four other compared algorithms on dimension 10. It can be seen
from Table 2 that DCABC has the best performance on 10 of 15 test problems. DCABC is only worse

404

Mathematics 2018, 6, 61

than ABC, PABC on one and two functions (f9, f3 and f9). It is worth noting that GABC and cmABC
surpass DCABC only on functions f3, f5, and f14. GABC and cmABC generate the best results only on
functions f4 and f9, respectively.

From Table 3, DCABC ranks NO.1 on 11 of 15 functions with dimension 30. Actually, DCABC is
superior to ABC and GABC on all the functions. In contrast, DCABC is inferior to cmABC and PABC
on functions f3 and f9, and cmABC shows the best performance on functions f3, f5, f9, and f14.

Table 2. Experimental Results about ABC and other ABC variants (10D).

Functions Criteria ABC GABC cmABC PABC DCABC

f1 Mean 1.37e+06 5.88e+05 1.39e+06 1.43e+06 8.06e+02
Std 1.12e+06 4.73e+05 8.96e+05 9.72e+05 2.31e+03

Rank 3 2 4 5 1
f2 Mean 8.57e+02 2.32e+03 4.23e+02 8.51e+02 2.88e+02

Std 7.52e+02 2.45e+03 3.52e+02 5.30e+02 1.20e+03
Rank 4 5 2 3 1

f3 Mean 2.01e+01 1.88e+01 1.87e+01 1.98e+01 2.00e+01
Std 3.9e-02 5.07e+00 4.77e+00 1.81e+00 7.88e-03

Rank 5 2 1 3 4
f4 Mean 1.26e+01 5.04e+00 9.30e+00 1.23e+01 7.89e+00

Std 4.18e+00 1.42e+00 3.28e+00 3.94e+00 2.99e+00
Rank 5 1 3 4 2

f5 Mean 4.31e+02 2.31e+02 1.82e+02 3.66e+02 2.61e+02
Std 1.49e+02 1.16e+02 9.83e+01 1.24e+02 1.51e+02

Rank 5 2 1 4 3
f6 Mean 5.03e+03 3.16e+03 3.20e+03 4.13e+03 1.68e+02

Std 4.40e+03 2.36e+03 2.96e+03 4.95e+03 1.97e+02
Rank 5 2 3 4 1

f7 Mean 8.72e-01 4.02e-01 5.07e-01 8.65e-01 3.99e-01
Std 2.58e-01 2.37e-01 3.29e-01 2.68e-01 4.24e-01

Rank 4 2 3 5 1
f8 Mean 1.32e+04 5.04e+03 7.38e+03 1.26e+04 4.25e+02

Std 2.14e+04 4.33e+03 6.80e+03 2.43e+04 1.20e+03
Rank 5 2 3 4 1

f9 Mean 9.48e+01 1.00e+02 6.48e+01 9.59e+01 1.00e+02
Std 2.20e+01 5.66e-02 4.79e+01 1.76e+01 4.12e-02

Rank 2 4 1 3 4
f10 Mean 4.37e+03 1.84e+03 3.28e+03 4.69e+03 4.41e+02

Std 4.24e+03 9.70e+02 5.22e+03 4.73e+03 1.88e+02
Rank 4 2 3 5 1

f11 Mean 3.00e+2 2.45e+02 2.49e+02 2.90e+02 1.92e+02
Std 4.69e-1 1.14e+02 1.07e+02 4.81e+01 1.44e+02

Rank 5 2 3 4 1
f12 Mean 1.04e+02 1.03e+02 1.04e+02 1.04e+02 1.03e+02

Std 7.72e-01 4.95e-01 6.33e-01 6.29e-01 8.95e-01
Rank 2 1 2 2 1

f13 Mean 3.13e+01 2.89e+01 2.95e+01 3.11e+01 2.77e+01
Std 2.04e+00 2.70e+00 2.30e+00 2.01e+00 2.74e+00

Rank 5 2 3 4 1
f14 Mean 1.86e+03 4.76e+02 4.47e+02 1.41e+03 1.14e+03

Std 1.38e+03 8.49e+02 9.03e+02 1.32e+03 1.39e+03
Rank 5 2 1 4 3

f15 Mean 1.00e+02 1.00e+02 1.00e+02 1.00e+02 1.00e+02
Std 2.28e-11 7.75e-06 1.25e-09 1.59e-11 5.42e-04

Rank 1 1 1 1 1

Mean rank 4.00 2.13 2.26 3.67 1.73
Overall rank 4 2 3 4 1

Best/2nd Best/Worst 1/1/8 3/10/1 5/2/0 1/1/3 10/1/0

405

Mathematics 2018, 6, 61

Table 3. Experimental Results about ABC and other ABC variants (30D).

Functions Criteria ABC GABC cmABC PABC DCABC

f1 Mean 3.73e+06 3.11e+06 1.39e+06 1.43e+06 8.06e+02
Std 1.46e+06 2.05e+06 8.96e+05 9.72e+05 2.31e+03

Rank 5 4 2 3 1
f2 Mean 7.26e+02 2.85e+03 4.23e+02 8.51e+02 2.88e+02

Std 6.06e+02 3.77e+03 3.52e+02 5.30e+02 1.20e+03
Rank 3 5 2 4 1

f3 Mean 2.01e+01 2.02e+01 1.87e+01 1.98e+01 2.00e+01
Std 4.10e-02 8.32e-02 4.77e+00 1.81e+00 7.88e-03

Rank 4 5 1 2 3
f4 Mean 9.77e+01 5.50e+01 9.31e+00 1.23e+01 7.89e+00

Std 1.80e+01 9.75e+00 3.28e+00 3.94e+00 2.99e+00
Rank 5 4 2 3 1

f5 Mean 2.42e+03 1.92e+03 1.82e+02 3.66e+02 2.61e+02
Std 2.86e+02 2.96e+02 9.83e+01 1.24e+02 1.51e+02

Rank 5 4 1 3 2
f6 Mean 1.38e+06 1.45e+06 3.20e+03 4.13e+03 1.68e+02

Std 7.15e+05 7.51e+05 2.96e+03 4.95e+03 1.97e+02
Rank 4 5 2 3 1

f7 Mean 9.39e+00 7.04e+00 5.07e-01 8.65e-01 3.99e-01
Std 1.25e+00 1.81e+00 3.29e-01 2.68e-01 4.24e-01

Rank 5 4 2 3 1
f8 Mean 4.11e+05 3.31e+05 7.38e+03 1.26e+04 4.25e+02

Std 3.06e+05 1.91e+05 6.80e+03 2.43e+04 1.20e+03
Rank 5 4 2 3 1

f9 Mean 1.21e+02 1.05e+02 6.48e+01 9.59e+01 1.00e+02
Std 4.44e+01 4.89e-01 4.79e+01 1.76e+01 4.12e-02

Rank 5 4 1 2 3
f10 Mean 6.88e+05 6.84e+05 3.28e+03 4.69e+03 4.41e+02

Std 3.57e+05 5.28e+05 5.22e+03 4.73e+03 1.88e+02
Rank 5 4 2 3 1

f11 Mean 3.22e+02 3.49e+02 2.49e+02 2.90e+02 1.92e+02
Std 7.47e+00 1.11e+02 1.07e+02 4.81e+01 1.44e+02

Rank 4 5 2 3 1
f12 Mean 1.07e+02 1.07e+02 1.04e+02 1.04e+02 1.03e+02

Std 8.07e-01 5.78e-01 6.33e-01 6.29e-01 8.95e-01
Rank 3 3 2 2 1

f13 Mean 1.03e+02 9.91e+01 2.95e+01 3.11e+01 2.77e+01
Std 4.35e+00 2.65e+00 2.30e+00 2.01e+00 2.74e+00

Rank 5 4 2 3 1
f14 Mean 3.06e+04 3.14e+04 4.47e+02 1.41e+03 1.14e+03

Std 4.51e+02 6.51e+02 9.03e+02 1.32e+03 1.39e+03
Rank 4 5 1 3 2

f15 Mean 1.00e+02 1.00e+02 1.00e+02 1.00e+02 1.00e+02
Std 6.56e+02 7.75e-06 1.25e+00 1.59-11 5.42e-04

Rank 1 1 1 1 1

Mean rank 4.20 4.07 1.67 2.73 1.40
Overall rank 5 4 2 3 1

Best/2nd Best/Worst 1/0/8 1/0/5 5/10/0 1/3/0 11/2/0

In Table 4, DCABC outperforms all compared algorithms with dimension 50 on functions f1, f3,
f4, f5, f6, f8, f9, f10, f12, and f15. DCABC cannot beat ABC, GABC, cmABC and PABC on f7 and f11.
PABC shows the best performance on f2 and f14. cmABC is superior to all other algorithms on f3 and
f7. GABC is competitive on function f13. ABC has the best results on function f11, f12 and f14. It is
worth noting that the overall performance of DCABC is the best.

406

Mathematics 2018, 6, 61

Table 4. Experimental Results about ABC and other ABC variants (50D).

Functions Criteria ABC GABC cmABC PABC DCABC

f1 Mean 1.20e+07 1.05e+07 1.00e+07 1.28e+07 3.92e+02
Std 3.69e+06 4.49e+00 2.63e+06 4.65e+06 1.36e+03

Rank 4 3 2 5 1
f2 Mean 1.43e+03 7.88e+03 1.52e+03 1.37e+03 3.74e+03

Std 1.20e+03 7.18e+03 1.04e+03 1.32e+03 7.84e+03
Rank 2 5 3 1 4

f3 Mean 2.02e+01 2.02e+01 2.00e+01 2.01e+01 2.00e+01
Std 4.12e-02 6.70e-02 6.64e-03 3.41e-02 1.56e-02

Rank 3 3 1 2 1
f4 Mean 2.34e+02 2.30e+02 2.71e+02 2.19e+02 1.53e+02

Std 2.93e+01 2.90e+01 3.35e+01 3.04+01 2.42e+01
Rank 4 3 5 2 1

f5 Mean 4.24e+03 4.76e+03 4.14e+03 4.10e+03 3.93e+03
Std 4.77e+02 4.03e+02 4.09e+02 3.34e+02 4.31e+02

Rank 5 2 4 3 1
f6 Mean 2.20e+06 2.45e+06 2.11e+06 2.30e+06 2.25e+03

Std 7.53e+05 1.26e+06 6.63e+05 8.94e+05 1.10e+03
Rank 3 5 2 4 1

f7 Mean 1.85e+01 1.91e+01 1.57e+01 1.72e+01 3.04e+01
Std 8.52e+00 9.91e+00 1.48e+00 6.53e+00 1.56e+01

Rank 3 4 1 2 5
f8 Mean 2.15e+06 2.97e+06 2.35e+06 3.25e+06 3.48e+03

Std 8.87e+05 1.65e+06 6.22e+05 1.02e+06 1.03e+04
Rank 2 4 3 5 1

f9 Mean 1.62e+02 1.08e+02 1.08e+02 1.52e+02 1.07e+02
Std 1.13e+02 5.21e-01 8.44e-01 9.20e+01 5.74e-01

Rank 4 2 2 3 1
f10 Mean 8.07e+05 1.10e+06 9.27e+05 9.86e+05 3.59e+03

Std 4.68e+05 6.62e+05 3.07e+05 4.57e+05 7.45e+02
Rank 2 5 3 4 1

f11 Mean 3.58e+02 6.68e+02 3.99e+02 4.27e+02 8.16e+02
Std 1.69e+02 4.05e+02 2.72e+02 2.89e+02 4.05e+02

Rank 1 4 2 3 5
f12 Mean 1.10e+02 1.19e+02 1.10e+02 1.10e+02 1.10e+02

Std 7.41e-01 4.97e-01 8.35e-01 6.39e-01 9.15e-01
Rank 1 2 1 1 1

f13 Mean 1.89e+02 1.85e+02 1.93e+02 1.88e+02 1.87e+02
Std 4.91e+00 4.43e+00 5.34e+00 6.20e+00 5.88e+00

Rank 4 1 5 3 2
f14 Mean 4.99e+04 5.51e+04 5.02e+04 4.99e+04 5.41e+04

Std 1.77e+03 6.10+03 2.45e+03 1.76e+03 4.57e+03
Rank 1 4 2 1 3

f15 Mean 1.02e+02 1.00e+02 1.00e+02 1.00e+02 1.00e+02
Std 1.23e+00 2.00e-07 3.03e-01 1.59-11 3.89e-04

Rank 2 1 1 1 1

Mean rank 2.73 3.20 2.47 2.67 1.93
Overall rank 4 5 2 3 1

Best/2nd Best/Worst 3/4/1 2/3/3 4/5/2 4/3/2 10/1/2

Unimodal function f1, hybrid function f8 and composition functions f10 are chosen to exhibit the
convergence precision of all compared algorithms. Figures 3–8 are the convergence graphs of five
algorithms. The horizontal axis is the number of function evaluations (FES), and the vertical axis is
the function values over one independent run. In all the figures, DCABC is represented by the black
line with circles, and it has larger descend gradient and gets the minimal error values among the five
algorithms. The convergence speed of DCABC is also obviously superior to the other four algorithms.

407

Mathematics 2018, 6, 61

×

Figure 3. Convergence curves of five algorithms for f1 with D = 30. (The optimal value of f1 is 100).

×

Figure 4. Convergence curves of five algorithms for f1 with D = 50. (The optimal value of f1 is 100).

×

Figure 5. Convergence curves of five algorithms for f8 with D = 30. (The optimal value of f8 is 800).

408

Mathematics 2018, 6, 61

×

Figure 6. Convergence curves of five algorithms for f8 with D = 50. (The optimal value of f8 is 800).

×

Figure 7. Convergence curves of five algorithms for f10 with D = 30. (The optimal value of f10 is 1000).

×

Figure 8. Convergence curves of five algorithms for f10 with D = 50. (The optimal value of f10 is 1000).

409

Mathematics 2018, 6, 61

On the whole, compared to the other three modified ABC algorithms, DCABC can show the best
performance on most of the functions, that is to say this new algorithm is more stable and the solutions
obtained by it have higher precision than other algorithms.

5. Conclusions

In the present study, a developed artificial bee colony algorithm based on cloud model, namely
DCABC, is proposed for the continuous optimization. By using a new selection mechanism, the worse
individual in DCABC has a larger probability to be selected than in basic ABC. DCABC also improves
the local search ability by applying the normal cloud generator as onlookers bees’ formula to control the
search of onlookers in a suitable range. Moreover, historical optimal solutions are used by Y conditional
cloud generator when updating the scout bee to ensure the algorithm jump out of the local optimal.
The effectiveness of the proposed method is tested on CEC15. The results clearly show the superiority
of DCABC over ABC, GABC, cmABC and PABC.

However, there are quite a few issues that merit further investigation such as the diversity of
DCABC. In addition, we hope to show the performance of DCABC by Null Hypothesis Significance
Testing (NHST) [35,36] in our future work. We only test the new algorithm on classical benchmark
functions and have not used it to solve practical problems, such as fault diagnosis [37], path plan [38],
Knapsack [39–41], multi-objective optimization [42], gesture segmentation [43], unit commitment
problem [44], and so on. There is an increasing interest in prompting the performance of DCABC,
which will be our future research direction.

Acknowledgments: This research is partly supported by Humanity and Social Science Youth foundation of
Ministry of Education of China (Grant No. 12YJCZH179), the Natural Science Foundation of the Jiangsu Higher
Education Institutions of China (Grant No. 16KJA110001), the National Natural Science Foundation of China
(Grant No. 11371197), the Foundation of Jiangsu Key Laboratory for NSLSCS (Grant No. 201601).

Author Contributions: These authors contributed equally to this paper.

Conflicts of Interest: No conflict of interest exists in the submission of this article, and it is approved by all
authors for publication.

References

1. Sörensen, K.; Sevaux, M.; Glover, F. A History of Metaheuristics. In Handbook of Heuristics; Springer:
Berlin/Heidelberg, Germany, 2018.

2. Sörensen, K. Metaheuristics-the metaphor exposed. Int. Trans. Oper. Res. 2015, 22, 3–18.
3. Črepinšek, M.; Liu, S.; Mernik, M. Exploration and exploitation in evolutionary algorithms: A survey.

ACM Comput. Surv. 2013, 45, 1–33.
4. Karaboga, D. An Idea Based on Honey bee Swarm for Numerical Optimization; Technical Report-tr06; Engineering

Faculty, Computer Engineering Department, Erciyes University: Kayseri, Turkey, 2005.
5. Karaboga, D.; Basturk, B. Artificial Bee Colony (ABC) optimization algorithm for solving constrained

optimization problems. Found. Fuzzy Log. Soft Comput. 2007, 4529, 789–798.
6. Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput.

2008, 8, 687–697.
7. Karaboga, D.; Akay, B. A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 2009,

214, 108–132.
8. Akay, B.; Karaboga, D. Parameter tuning for the artificial bee colony algorithm. Comput. Collect. Intell. 2009,

5796, 608–619.
9. Akay, B.; Karaboga, D. A modified artificial bee colony algorithm for real-parameter optimization.

Swarm Intell. Appl. 2012, 192, 120–142.
10. Zhang, D.; Guan, X.; Tang, Y.; Tang, Y. Modified artificial bee colony algorithms for numerical optimization.

In Proceedings of the 2011 3rd International Workshop on Intelligent Systems and Applications (ISA), Wuhan,
China, 28–29 May 2011; pp. 1–4.

11. Aderhold, A.; Diwold, K.; Scheidler, A.; Middendorf, M. Artificial bee colony optimization: A new selection
scheme and its performance. Nat. Inspired Coop. Strateg. Optim. (NICSO 2010) 2010, 284, 283–294.

410

Mathematics 2018, 6, 61

12. Zhu, G.; Kwong, S. Gbest-guided artificial bee colony algorithm for numerical function optimization.
Appl. Math. Comput. 2010, 217, 3166–3173.

13. Wu, X.; Hao, D.; Xu, C. An improved method of artificial bee colony algorithm. Appl. Mech. Mater. 2012,
101–102, 315–319.

14. Guo, P.; Cheng, W.; Liang, J. Global artificial bee colony search algorithm for numerical function optimization.
In Proceedings of the 2011 Seventh International Conference on Natural Computation (ICNC), Shanghai,
China, 26–28 July 2011; Volume 3, pp. 1280–1283.

15. Yu, X.; Zhu, Z. A modified artificial bee colony algorithm with its applications in signal processing. Int. J.
Comput. Appl. Technol. 2013, 47, 297–303.

16. Rajasekhar, A.; Pant, M. An improved self-adaptive artificial bee colony algorithm for global optimisation.
Int. J. Swarm Intell. 2014, 1, 115–132.

17. Yaghoobi, T.; Esmaeili, E. An improved artificial bee colony algorithm for global numerical optimisation.
Int. J. Bio-Inspired Comput. 2017, 9, 251–258.

18. Zou, W.; Zhu, Y.; Chen, H.; Zhang, B. Solving multiobjective optimization problems using artificial bee
colony algorithm. Discret. Dyn. Nat. Soc. 2011, 2, 1–37.

19. Amarjeet; Chhabra, J.K. FP-ABC: Fuzzy Pareto-Dominance Driven Artificial Bee Colony Algorithm for
Many-Objective Software Module Clustering. Comput. Lang. Syst. Struct. 2018, 51, 1–21.

20. Xiang, Y.; Zhou, Y.; Tang, L.; Chen, Z. A Decomposition-Based Many-Objective Artificial Bee Colony
Algorithm. IEEE Trans. Cybern. 2017, 99, 1–14.

21. Koçer, B. Bollinger bands approach on boosting ABC algorithm and its variants. Appl. Soft Comput. 2016, 49,
292–312.

22. Bollinger Bands—Trademark Details. 2011. Available online: Justia.com (accessed on 1 April 2018) .
23. Wang, H.; Yi, J. An improved optimization method based on krill herd and artificial bee colony with

information exchange. Memet. Comput. 2017, 2, 1–22.
24. Gandomi, A. H.; Alavi, A. H. Krill herd: A new bio-inspired optimization algorithm. Commun. Nonlinear Sci.

Numer. Simul. 2012, 17, 4831–4845.
25. Li, D.; Liu, C.; Du, Y.; Han, X. Artificial Intelligence with Uncertainty. J. Softw. 2004, 15, 1583–1594.
26. Chen, H.; Li, D.; Shen, D.; Zhang, F. A clouds model applied to controlling inverted pendulum. J. Comput.

Res. Dev. 1999, 36, 1180–1187.
27. Zhang, C.; Pang, Y. Sequential blind signal extraction adopting an artificial bee colony Algorithm algorithm.

J. Inf. Comput. Sci. 2012, 9, 5551–5559.
28. He, D.; Jia, R. Cloud model-based Artificial Bee Colony algorithm’s application in the logistics location

problem. In Proceedings of the International Conference on Information Management, Innovation
Management and Industrial Engineering, Sanya, China, 20–21 October 2012.

29. Lin, X.; Ye, D. Artificial Bee Colony algorithm based on cloud mutation. J. Comput. Appl. 2012, 32, 2538–2541.
30. Li, D.; Meng, H.; Shi, X. Membership clouds and membership clouds generators. Comput. Res. Dev. 1995,

42, 32–41.
31. Di, K.; Li, D.; Li, D. Cloud theory and its applications in spatial data mining and knowledge discovery.

J. Image Graph. 1999, 4, 930–935.
32. Chen, Q.; Liu, B.; Zhang, Q.; Liang, J.; Suganthan, P.N.; Qu, B. Problem Definition and Evaluation Criteria

for CEC 2015 Special Session and Competition on Bound Constrained Single-Objective Computationally Expensive
Numerical Optimization; Technical Report; Computational Intelligence Laboratory, Zhengzhou University:
Zhengzhou, China; Nanyang Technological University: Singapore, 2014.

33. Veček, N.; Liu, S.; Črepinšek, M.; Mernik, M. On the Importance of the Artificial Bee Colony Control
Parameter Limit. Inf. Technol. Control 2017, 46, 566–604.

34. Mernik, M.; Liu, S.; Karaboga, D. On clarifying misconceptions when comparing variants of the Artificial
Bee Colony Algorithm by offering a new implementation. Inf. Sci. 2015, 291, 115–127.

35. Derrac, J.; García, S.; Molina, D.; Herrera, F. A practical tutorial on the use of nonparametric statistical tests
as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm Evol. Comput.
2011, 1, 3–18.

36. Veček, N.; Mernik, M.; Črepinšek, M. A chess rating system for evolutionary algorithms: A new method for
the comparison and ranking of evolutionary algorithms. Inf. Sci. 2014, 277, 656–679.

411

Mathematics 2018, 6, 61

37. Yi, J.; Wang, J.; Wang, G. Improved probabilistic neural networks with self-adaptive strategies for transformer
fault diagnosis problem. Adv. Mech. Eng. 2016, 8, 1–13.

38. Wang, G.; Chu, H.; Mirjalili, S. Three-dimensional path planning for UCAV using an improved bat algorithm.
Aerosp. Sci. Technol. 2016, 49, 231–238.

39. Feng, Y.; Wang, G.; Deb, S.; Lu, M.; Zhao, X. Solving 0-1 knapsack problem by a novel binary monarch
butterfly optimization. Neural Comput. Appl. 2017, 28, 1619–1634.

40. Feng, Y.; Wang, G.; Li, W.; Li, N. Multi-strategy monarch butterfly optimization algorithm for discounted 0-1
knapsack problem. Neural Comput. Appl. 2017, doi:10.1007/s00521-017-2903-1.

41. Feng, Y.; Wang, G.; Dong, J.; Wang, L. Opposition-based learning monarch butterfly optimization
with Gaussian perturbation for large-scale 0-1 knapsack problem. Comput. Electr. Eng. 2017,
doi:10.1016/j.compeleceng.2017.12.014.

42. Rizk-Allah, R.M.; El-Sehiemy, R.A.; Deb, S.; Wang, G. A novel fruit fly framework for multi-objective shape
design of tubular linear synchronous motor. J. Supercomput. 2017, 73, 1235–1256.

43. Liu, K.; Gong, D.; Meng, F.; Chen, H.; Wang, G. Gesture segmentation based on a two-phase estimation of
distribution algorithm. Inf. Sci. 2017, 394–395, 88–105.

44. Srikanth, K.; Panwar, L.K.; Panigrahi, B.K.; Herrera-Viedma, E.; Sangaiah, A.K.; Wang, G.
Meta-heuristic framework: Quantum inspired binary grey wolf optimizer for unit commitment problem.
Comput. Electr. Eng. 2017, doi:10.1016/j.compeleceng.2017.07.023.

c© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

412

MDPI
St. Alban-Anlage 66

4052 Basel
Switzerland

Tel. +41 61 683 77 34
Fax +41 61 302 89 18

www.mdpi.com

Mathematics Editorial Office
E-mail: mathematics@mdpi.com

www.mdpi.com/journal/mathematics

MDPI
St. Alban-Anlage 66
4052 Basel
Switzerland

Tel: +41 61 683 77 34
Fax: +41 61 302 89 18

www.mdpi.com ISBN 978-3-03921-929-2

	Blank Page

