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Abstract: Building an effective Machine Learning (ML) model for a data set is a difficult task involving1

various steps. One of the most important steps is to compare generated substantial amounts of ML models to2

find the optimal one for the deployment. It is challenging to compare such models with dynamic number3

of features. Comparison is more than just finding differences of ML model performance, users are also4

interested in the relations between features and model performance such as feature importance for ML5

explanations. This paper proposes RadialNet Chart, a novel visualisation approach to compare ML models6

trained with a different number of features of a given data set while revealing implicit dependent relations.7

In RadialNet Chart, ML models and features are represented by lines and arcs respectively. These lines8

are generated effectively using a recursive function. The dependence of ML models with dynamic number9

of features is encoded into the structure of visualisation, where ML models and their dependent features10

are directly revealed from related line connections. ML model performance information is encoded with11

colour and line width in RadialNet Chart. Together with the structure of visualisation, feature importance12

can be directly discerned in RadialNet Chart for ML explanations. Compared with other commonly used13

visualisation approaches, RadialNet Chart can help to simplify the ML model comparison process with14

different benefits such as: more efficient to help users focus their attention to find visual elements of interest,15

easier to compare ML performance to find optimal ML model and discern important features visually and16

directly, instead of through complex algorithmic calculations for ML explanations.17

Keywords: Machine learning; performance; bar chart; line chart; radar chart; RadialNet chart; visualisation18

1. Introduction19

We have witnessed a rapid boom of data in recent years from various fields such as infras-20

tructure, transport, energy, health, education, telecommunications, and finance. Together with21

the dramatic advances in Machine Learning (ML), getting insights from these “Big Data” and22

data analytics-driven solutions are increasingly in demand for different purposes. While these23

“Big Data” are used by sophisticated ML algorithms to train ML models which are then evaluated24

by various metrics such as accuracy, the generated substantial amounts of ML models must be25

compared by the engineering designers and analysts to find the optimal one for the deployment.26

Fig. 1 shows a typical pipeline that processes data to find an optimal ML model. Taking a data set27

with multiple features for ML training as an example, multiple features can be grouped differently28

as the input for an ML algorithm to train different ML models. For example, if a data set has29

three features of F1, F2, and F3, these features may have seven different groups: [F1], [F2],30

[F3], [F1, F2], [F1, F3], [F2, F3], and [F1, F2, F3]. Each feature group can be used as the input31

for an ML algorithm to train an ML model, thereby obtaining seven different ML models. It is32

a common thread to find the best/worst model by comparing such models, however it is often33

challenging when having a large number of features. Furthermore, comparison is more than just34

finding differences of ML model performance, users are also interested in the relations between35

features and model performance from comparison to get explanation of models, for example, to36

find which features result in high performance of ML models, and those features are referred37

*This paper is an extended version of our paper published in 2020 IEEE Pacific Visualization Symposium (PacificVis), Tianjin, China, 3-5 June 2020; pp.226-230.
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as high important features, or vice versa. This is because the identification of the most or least38

important features are the key steps for feature engineering in effective and explainable machine39

learning.40

On the other hand, it is widely recognised that visualisations amplify human’s cognition41

during data analysis [1] and proper visualisation of ML outcomes is essential for a human analyst42

to be able to interpret them [2–4]. Viegas and Wattenberg [5] claimed that “data visualisation of43

the performance of algorithms for the purpose of identifying anomalies and generating trust is44

going to be the major growth area in data visualisation in the coming years”. More importantly,45

comparison with visualisation is imperative to identify the optimal model from substantial46

amounts of ML models. Bar chart, radar chart, line chart as well as others [6] are commonly used47

visualisation methods in machine learning to compare different variables. However, comparison48

of ML models with a large number of features is still considered challenging with the aid of these49

commonly used visualisations: the items for comparison and the relationships between them can50

be highly complicated. While these commonly used visualisation approaches not only cause51

information clutters for large number of visual elements (e.g. bars, dots, lines) but also miss52

relation information between features and models, which are significant in ML explanations. It is53

also very difficult for users to differentiate differences of various model performances with these54

commonly used visualisation approaches. Despite the specific focus on visualising comparison in55

recent studies [7–10], little work has been done on the visual comparison of ML models while56

identifying relations between features and ML models (e.g. the most and least important features).57

We explore an approach based on the structure of visualisation in addressing challenges of58

comparison ML models with dynamic number of features: while height information of bars and59

lines in commonly used visualisation approaches only encode one-dimensional information in a60

2-dimensional (2D) space, it is possible to encode ML model information in other dimensions of61

the space. If both visual elements and structure of visualisation can be used to encode information62

of ML models, insights about ML models could be automatically generated, users would not have63

to inspect every model to find optimal one or conduct complex calculations to estimate feature64

importance.65

In this paper, we propose RadialNet Chart (also referred to RadialNet in this paper), a novel66

visualisation approach to compare ML models with different number of features while revealing67

implicit dependent relations. In RadialNet, ML models and features are represented by lines68

and arcs respectively (an arc also represents the model based on the single feature of arc). The69

challenge of revealing dependence of ML models with dynamic number of features is addressed70

by encoding such information into the structure of visualisation, where ML models and their71

dependent features are directly revealed from related line connections. These lines are defined72

using a recursive function to generate them effectively. ML model performance information is73

encoded with colour and line width in RadialNet. It simplifies the comparison of different ML74

models based on these visual encoding. Moreover, together with the structure of visualisation,75

feature importance can be directly discerned in RadialNet for ML explanation. RadialNet uses a76

concept of feature path for ML model lines to avoid a large number of line entangles. And when77

visual elements for ML models are crowded, RadialNet allows to interactively change spanning78

space that RadialNet covers to dynamically control the visual complexities. To understand the79

effectiveness of RadialNet, we conducted a comparison experiment with three commonly used80

visualisation approaches of line chart, bar chart, and radar chart. The comparison experiment81

was evaluated with eleven researchers and developers experienced in machine learning related82

areas. The findings show that RadialNet has advantages in identifying features related to specific83

models as well as directly revealing importance of features (for ML explanations). Furthermore,84

RadialNet is more efficient to help users focus their attention to find visual elements of interest. It85

is more compact to show more information in a limited space compared with other visualisation86

types.87

This paper is the extended version of the conference paper of [10]. This extended version88

includes a detailed literature review with more related works, and more detailed information about89

the methodology. Since the complexity of RadiaNet, this extended version provides detailed90
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Figure 1. The pipeline of getting an optimal ML model for a data set with multiple features.

implementations of RadiaNet. The extended version also includes an extensive evaluation of the91

proposed visualisation approach with user studies for additional insights.92

2. Background and Related Work93

In machine learning, given a fixed number of features, it is possible to use different features94

and their groups to train machine learning algorithms resulting in various machine learning95

models. Users need to compare these models to find the optimal one for their tasks. Getting96

the optimal results out of machine learning models requires a truly understanding of all models.97

However, each data set with a large number of features can have hundreds or even thousands98

of ML models, making it nearly impossible to understand all models based on different feature99

groups in an intuitive fashion. Visualisation can be used to help unlock nuances and insights in100

ML models.101

This section investigates various visualisations from the perspectives of multi-attribute data102

visualisation, visualisation in explanation of machine learning, and comparison visualisation103

in order to demonstrate the state-of-art approaches and challenges for comparison of machine104

learning models with visualisation.105

2.1. Visualisation of Multi-Attribute Data106

The comparison visualisation of machine learning models is related to multi-attribute (or107

multiple features) data visualisation. The visualisation of multi-attribute data has been frequently108

investigated for years [11]. For example, multidimensional projections are one of effective109

methods for visualizing high-dimensional datasets to find structures in the data like groups of110

similar points and outliers. One of classical approaches to visualise multi-attribute data points is111

parallel coordinates [12]. The advantage of this technique is that it can provide an overview of112

data trend. One of obvious disadvantages of parallel coordinates is that it lacks a tabular view113

for presenting value details of each coordinates. SimulSort [13] organizes different attributes of114

data in a tabular and sorts all of the attribute columns simultaneously. However, users still need115

laborious interactions in SimulSort in order to highlight different points for comparison. Zhou116

et al. [14] proposed a visualisation approach for presenting multi-attribute data by combining117

advantages of both parallel coordinates and SimulSort, which organizes various attributes in118

a tabular-like form implicitly. Colours are used to encode data belonging to different groups,119

instead of highlighting attributes of one point at a time as in SimulSort. Such colour encoding120

approach provides an overview of points and their associated attribute details to improve the121

information browsing efficiency. Motivated by such colour encoding, this paper uses colours to122

encode ML model performance to provide an overview of performance for comparison. However,123

such visualisation cannot reveal complex relations between machine learning models and their124

dependent features with dynamic numbers.125

Moreover, the contradiction between the limited space and the large amount of information126

to be presented is another challenge for multi-attribute data visualisation. Coordinated & multiple127

views (CMV) [15] is widely used to extend the limited space of a single view for large data128

set visualisation. Langner et al. [16] presented a framework that uses a set of mobile devices129

to distribute and coordinate multiple visualisation views for the exploration of multivariate130

data. Koytek et al. [17] proposed MyBrush for extending brushing and linking technique by131
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incorporating personal agency in the interactive exploration of data relations in CMV. Sarikaya et132

al. [18] introduced a framework to help determine the design appropriateness of scatterplot for133

task support to modify/expand the traditional scatterplots to scale as the complexity and amount134

of data increases. Most of these investigations focus on the extension of spaces for the complex135

information presentation, however ignore making full use of a given limited space. Our approach136

in this paper aims to encode complex information with less visual elements (e.g. model lines)137

to avoid entangled visual elements in the limited space to improve the information presentation138

efficiency.139

2.2. Visualisation in Explanation of Machine Learning140

Yuan et al. [19] reviewed techniques of visual analytics for machine learning by categorising141

them into techniques before model building, techniques during modeling building, and techniques142

after model building. Chatzimparmpas et al. [20] investigated approaches of enhancing trust in143

ML models with the use of interactive visualization. Visualisation is also used in ML explanations.144

Corresponding to the term of Exploratory Data Analysis (EDA) in terms of the desired outcome145

of the analytic process, Cashman et al. [21] presented a concept of Exploratory Model Analysis146

(EMA) with a user-based visual analytics workflow, which is defined as the process of discovering147

and selecting relevant models that can be used to make predictions on a data source. However, it148

does not consider the comparison of models with different number of features.149

In the early years, visualisation played the role to explain the learning process of simple150

machine learning algorithms in order to understand how the data is processed and results are151

got in machine learning. For example, various visualisation approaches are used to examine152

specific values and probabilities of picked objects visually for Naïve-Bayes [2], decision trees [22],153

Support Vector Machines (SVMs) [23]. Advanced visualisation techniques are then proposed154

to present more complex ML processes. Erra et al. [24] introduced a visual clustering which155

utilises a collective behavioral model, where visualisation helps users to understand and guide156

the clustering process. Paiva et al. [25] presented an approach that employs the similarity tree157

visualisation to distinguish groups of interest within the data set. Visualisation is also used as158

an interaction interface for users in machine learning. For example, Guo et al. [26] introduced a159

visual interface named Nugget Browser allowing users to interactively submit subgroup mining160

queries for discovering interesting patterns dynamically. EnsembleMatrix allows users to visually161

ensemble multiple classifiers together and provides a summary visualisation of results of these162

multiple classifiers [3]. Zhou et al. [27] revealed states of key internal variables of ML models163

with interactive visualisation to let users perceive what is going on inside a model.164

More recent work tries to use visualisation as an interactive tool to facilitate ML diagnosis.165

ModelTracker [28] provides an intuitive visualisation interface for ML performance analysis166

and debugging. Chen et al. [29] proposed an interactive visualisation tool by combining ten167

state-of-the-art visualisation methods in ML (shaded confusion matrix, ManiMatrix, learning168

curve, learning curve of multiple models, McNemar Test matrix, EnsembleMatrix, Customized169

SmartStripes, Customized ModelTracker, confusion matrix with sub-categories, force-directed170

graph) to help users interactively carry out a multi-step diagnosis for ML models. Wongsupha-171

sawat et al. [30] presented an approach called TensorFlow Graph Visualizer to visualise graphs of172

data flow in deep learning to help users debug, understand, and share the structure of their deep173

learning models.174

Visualisations comprise the major body of ML process explanations. However, these175

approaches cannot be directly used for the comparison of machine learning models trained with176

a different number of features, and facilitate the revealing of feature importance directly from177

visualisations of models for ML explanations.178

2.3. Comparison Visualisation179

Supporting comparison is a common challenge in visualisation. Gleicher [7] categorized180

four considerations that abstract comparison when using visualisation. These four considerations181

include to identify: the comparative elements, the comparative challenges, a comparative strategy,182

and a comparative design, which provide a guideline for developing comparison solutions in183
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visualisation. Law et al. [8] presented Duet, a visual analysis system to conduct pairwise184

comparisons. Duet employs minimal specification in comparison by only recommending similar185

and different attributes between them when one object group to be compared is specified. Qi et al.186

[31] presented a visual technique called STBins for visual tracking of individual data sequences187

and also for comparison of multiple sequences. The comparison of sequences is done by showing188

the similarity of sequences within temporal windows. The analysis of subtle deviations between189

different versions of historical prints is important but also a challenge in art history research.190

Plüger et al. [32] developed an approach called VeCHart that detects similar stroke-patterns in191

prints and matches them in order to allow visual alignment and automated deviation highlighting192

for comparison purposes. Cutura et al. [33] proposed a visual analysis approach called Compadre193

for comparing distances of high-dimensional data and their low-dimensional projections. The194

key of the visual analysis is a matrix visualization to represent the discrepancy between distance195

matrices which are linked with 2D scatter plot projections of the data. Heimerl et al. [34]196

introduced an interactive visualisation approach of embComp for comparing two embeddings that197

capture the similarity between objects, such as word and document embeddings. The proposed198

approach features overview visualizations that are based on metrics for measuring differences in199

the local structure around objects, and detail views allowing comparison of the local structure200

around selected objects and relating this local information to the global views. However, little201

work is done on the comparison of machine learning with different number of features.202

Bar chart is one of commonly used visualisation methods for comparison in machine learning203

[6]. It works with two variables – one is the length of the bar on one axis and the second is the204

position of this bar on another axis. The variable is compared by denoting it with the length of205

the bars when various bars are plotted together. Radar Chart is another commonly used approach206

to compare multiple quantitative variables. It is useful for seeing which variables have similar207

values or if there are any outliers amongst the values of each variable. It can also help to find208

which variables are high or low. Besides, other methods such as line chart and ring chart are also209

used in comparison. Ondov et al. [9] made evaluations of comparison visualizations of 5 layouts:210

stacked small multiples, adjacent small multiples, overlaid charts, adjacent small multiples that211

are mirror symmetric and animated transitions. The data to be compared are encoded with the212

length of bars in bar charts, slop of lines in line charts, and angle of arcs in donut charts.213

These previous works provide significant guidelines and advances in comparison visualisa-214

tion. This paper proposes a new visualisation method for machine learning model comparison215

with a full consideration of four aspects as categorized in [7]. The new visualisation approach is216

evaluated by comparing it with other three commonly used visualisation methods (bar chart, line217

chart, and radar chart) in machine learning model comparisons.218

3. RadialNet Chart219

This section presents a novel visualisation approach called RadialNet Chart to compare220

machine learning models trained with different feature groups of a data set.221

3.1. Design Goals222

After having a thorough survey with experienced researchers and developers in machine223

learning on their problems meeting in comparing machine learning models, we phrase following224

design goals for the RadialNet:225

• Comparison: To maximise differences among visual elements of models to help users find226

the optimal target easily. The comparison is the core objective in the ML model visualisation.227

This is a challenge when substantial amounts of ML models must be compared.228

• Importance: To easily identify importance of features directly from visualisation. The229

importance of features plays significant roles in the feature selection in the ML pipeline230

and ML explanations [35]. It is a challenge to identify importance of features directly from231

visualisation without complex feature importance calculations.232

• Feature identification: To easily identify relationships between models (and model per-233

formance) and their dependent features. This helps users easily link ML models and their234
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Figure 2. An example of RadialNet chart.

dependent features for understanding both features and models, which is usually challenging235

with commonly used visualisation approaches.236

• Compactness: To represent complex visualisation in a compact form and reduce the visual237

clutters because of substantial amounts of information in a limited space.238

3.2. Definition of RadialNet Chart239

This subsection defines the RadialNet. Fig. 2 shows an example of RadialNet. Based on this240

example, we firstly give following definitions that are used to set up a RadialNet:241

Feature arc Each feature is represented by a concentric arc in RadialNet. The arc is also called242

feature arc. The name of each feature is displayed at one end of the arc as shown in Fig. 2243

(e.g. F1, F2, F3, F4). Each arc also represents the ML model based on that single feature.244

Model line RadialNet uses a line segment to represent an ML model based on multiple features.245

The line is also called model line. For example, in Fig. 2, the line AB, BC, and CD represent246

different ML models respectively. The features used for the model are defined based on the247

feature path of the line (see the definition of feature path below).248

Feature point A feature point refers to an intersection point of a model line with an arc. It is249

represented by a dot point on a feature arc as shown in Fig. 2 (e.g. feature points A, B, C).250

Feature path A feature path defines features used for a model line. A feature path starts from251

the feature point of a model line on its outermost arc and ends at the feature point on252

the innermost arc it can reach through the connected feature point in the RadialNet. For253

example, in Fig. 2, for the model line AB, its feature path starts from the feature point A254

on the arc F4, passes through B and C, and ends at D on the innermost arc F1. This path255

can be represented by a list of features corresponding to arcs of each feature point, i.e. the256

feature path of AB is [F4, F3, F2, F1]. Similarly, the feature path of BC is [F3, F2, F1], the257

feature path of CD is [F2, F1], the feature path of EC is [F4, F2, F1], the feature path of258

MP is [F4, F3, F2], and the feature path of PQ is [F3, F2].259

Furthermore, the model performance is encoded using two methods: the width of the line/arc260

and the colour of the line/arc. The wider the line/arc is, the higher the model performance. A261

colour scale is accompanied with the RadialNet to encode model performance and let users easily262

perceive the difference of performance of different models as shown in Fig. 2.263

Based on these definitions, the visualisation of lines and arcs are spiraling from the centre264

to outside and therefore it is called RadialNet Chart. The RadialNet has different advantages.265

For example, given a data set in machine learning, if most of ML models related to one specific266

feature show high model performance, that feature can be considered as a high important feature,267

and vice versa if most of ML models related to one specific feature show low model performance,268

that feature can be considered as a less important feature. The RadialNet can depict importance269

of features directly through visualisation: if an arc and its connected lines are mostly wider than270
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others and have colours representing high performance values in the colour scale, the feature271

represented by the arc is an important feature, and vice versa it can also depict less important272

features. For example, in Fig. 2, the feature F1 is an important feature because the width and273

colour of the arc as well as its connected lines are mostly wider and red, while the feature F4 is274

an less important feature. The RadialNet also helps users directly identify features used for a275

specific model because of the feature path mechanism in RadialNet.276

Fig. 3 shows the steps used to draw a RadialNet. The definition of different parameters277

is the key during RadialNet drawing. Firstly, key parameters are defined with user interactions278

or predefined approaches. Arc parameters and line parameters are then generated based on key279

parameters. The RadialNet is drawn finally based on generated parameters.280

Figure 3. The steps for drawing RadialNet.

3.3. Key Parameter Initialization281

The key parameters include the overall spanning angle of RadialNet, the overall number of282

models given the number of features, the size of the drawing canvas, as well as others. The overall283

spanning angle defines the space that the RadialNet covers in degrees. It can be interactively284

modulated by users to control the compactness of the visualisation in a limited space. If the285

number of ML models to be visualized is low, a small value can be defined for the spanning angle,286

and vice versa a large value can be defined for the spanning angle in order to help users easily287

control and compare ML models in a limited space.288

Given N features of a data set, F1, F2, ..., FN, a machine learning algorithm uses these289

features to set up ML models. The ML models can be set up based on one or multiple features of290

the data set. Typically, the number of models based on various groups of N features can be got291

from Equ. 1:292

CN =C1
N +C2

N + ...+Ci
N + ...+CN

N = 2N−1 (1)

where CN is the number of models based on groups of N features, Ci
N is the group number293

of selecting i features from N features. It shows that the number of ML models is increased294

exponentially with the increase of number of features.295

Furthermore, because of the circular characteristics of RadialNet, polar coordinates are used296

to represent arcs and lines in RadialNet.297

3.4. Arc Parameter Generations298

Algorithm 1 shows the process for generating arc parameters. The arc is denoted by its start299

point and end point in polar coordinates. In this algorithm, arcSpanning defines the largest angle300

that arcs cover in the space and can be interactively changed by a sliding bar in the user interface.301

N is the number of features. canvasWidth is the width of the drawing canvas. allFeatures is302

a list of all studied features which are sorted in the decreased order based on model performance303

of individual features. Each arc represents the model performance based on an individual feature304

from allFeatures list. The algorithm generates arc parameters aiming to make N arcs evenly305

distributed in the drawing canvas space. This algorithm initialises the spanning angle of each arc306

with the arcSpanning value, and the spanning of each arc (arcAngle) is dynamically updated307

in the drawing algorithm (see Algorithm 3) to allow arcs in a spiral format. arcParasDict is a308

dictionary storing parameters of arcs and the key of the dictionary is the individual features for309

the arc. The parameters include arc’s radius, spanning angle and arc width. Data is read from a310

JSON file and stores different feature groups and their model performance values.311
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Algorithm 1: Algorithm for arc parameter generations
Function ArcParasGen( arcSpanning, N, canvasWidth, allFeatures,
Data):
// Distance between two arcs

1 arcSpacing← canvasWidth /(2*N);
2 prev_radius← 0.0;
3 arcParasDict← { };
4 for f in allFeatures do
5 arcRadius← prev_radius + arcSpacing;
6 prev_radius← arcRadius;

// Encode performance of the model based on f as the arc
width

7 arcWidth← Data[ f ].performance;
8 arcAngle← arcSpanning;
9 arcParasDict[ f ]← [arcRadius, arcAngle, arcWidth];

10 return arcParasDict

3.5. Line Parameter Generations312

Algorithm 2 shows a recursive function used for generating model line parameters. The line313

is denoted by its start point and end point in polar coordinates. In this algorithm, lineParasDict314

is a dictionary and stores parameters of lines, and the key of the dictionary is the feature list315

(feature path) used for the line. The line parameters stored in the dictionary include the start and316

end points of the line in polar coordinates as well as line width of the line. lineFeatures is the317

feature list for the current line and is sorted in the decreased order based on model performance318

of individual features. startAngle is the angle of polar coordinates of the start point of the line.319

angleStep is the step size that angle increases each time.320

In this algorithm, if the key with the current lineFeatures does not exist in lineParasDict,321

a sub-key with the feature list by removing the last feature in lineFeatures is created. If this322

sub-key still does not exit in lineParasDict and the number of features in this sub-key is323

more than 2, the algorithm recursively call this function with the current sub-key features. Oth-324

erwise, the algorithm defines the start point and end point of the line and pushes them into325

lineParasDict.326

The line width is encoded with the model performance based on lineFeatures. The colour327

of the line is also encoded with the model performance using a colour scale.328

3.6. RadialNet Chart Drawing329

Algorithm 3 shows the process of drawing a RadialNet. In Algorithm 3, after getting key330

parameters such as number of points on the outermost arc and arc spanning angle, Algorithm 1 is331

firstly called to generate arc parameters. Then Algorithm 2 is called for each feature to generate332

line parameters related to that feature. These parameters are then used to draw arcs and lines333

by calling functions of DrawArcs() and DrawLines() respectively. DrawArcs() and DrawLines()334

calls Javascript functions to draw arcs and lines.335

4. Implementation336

The proposed approach is implemented in Javascript based on the D3.js library [36]. The337

data input to RadialNet are saved in a JSON file. The RadialNet is also implemented as a338

Javascript library and it is easily to be reused in different visualisation applications. This library339

will be released as an open-source library.340

5. Case Studies341

In this section, RadialNet is used to visualise machine learning models based on different342

data sets and ML algorithms. Two data sets from UCI machine learning data repository [37]343

and PPMI [38] respectively were analyzed, and three machine learning algorithms of K-Nearest344
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Algorithm 2: Algorithm for line parameter generations
Function LineParasGen(allFeatures, lineParasDict, arcParasDict,
lineFeatures, startAngle, angleStep, Data):
// Use lineFeatures as key of lineParasDict

1 ikey← lineFeatures;
2 len_lineFeatures← lineFeatures.length;
3 if ikey is not in lineParasDict then

// Sub-features without the last feature
4 isubkey← ikey[:len_lineFeatures-1];
5 len_isubkey← isubkey.length;
6 if isubkey is not in lineParasDict and len_isubkey> 2 then

// Recursively call the function
7 LineParasGen(allFeatures, lineParasDict, arcParasDict,

isubkey, startAngle, angleStep, Data);
8 else

// Define start and end points
9 if isubkey is in lineParasDict then

// Polar coordinates of start point
10 startAngle←lineParasDict[isubkey].endAngle;
11 startRadius←lineParasDict[isubkey].endRadius;
12 endSubF← isubkey.endFeature;
13 endF← ikey.endFeature;
14 if not neighbour(endSubF, endF) in allFeatures then
15 dist← distance(endF, endSubF) in allFeatures;
16 startAngle←startAngle+angleStep*dist;

17 else
18 if lineFeatures.length == 2 then
19 startAngle←startAngle+angleStep;
20 iFeature← lineFeatures[len_lineFeatures-1];
21 startRadius← arcParasDict[iFeature].radius;

// Polar coordinates of end point
22 lastFeature← lineFeatures[len_lineFeatures];
23 endAngle← startAngle;
24 endRadius← arcParasDict[lastFeature];

// Encode model performance as the line width
25 lineWidth← Data[lineFeatures].performance;

// Push line parameters into dict
26 lineParasDict[ikey]← [startAngle, startRadius, endAngle,

endRadius, lineWidth];

27 return lineParasDict, startAngle

Neighbours (KNN), Naïve Bayes (NB) and Random Forest (RF) were deployed in the experiment.345

Fig. 4 shows the visualisation of different ML models for a data set with 6 features. From this346

visualisation, we can easily locate the model with the highest performance (the widest red line347

AB as shown in Fig. 4) as well as features (two features of “alcohol” and “pH” on the feature348

path of the line) used for the model training. It also helps users easily identify the importance of349

features, the most important feature “alcohol” is represented by the outermost arc (the arc and350

its connected lines are mostly redder and wider than others) and the lest important feature “free351

suffur” is represented by the innermost arc (the arc and its connected lines are mostly bluer and352

narrower than others). Fig. 5 shows the visualisation of different ML models for a data set with 7353

features. Compared with Fig. 4, the model number is increased dramatically when the feature354

number is increased just one. This visualisation also helps users easily locate the model with the355

lowest performance (the narrowest blue line AB as shown in Fig. 5). We can also easily directly356
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Algorithm 3: Algorithm for drawing RadialNet
Input: allFeatures, arcSpanning, N, canvasWidth, Data
Output: SpiralChart

// Number of points on the outmost arc
1 num_points←CN−1; // see Equ. 1;
// Define step size of angles

2 angleStep← 2*arcSpanning / (num_points - 1);
// Initialize parameters

3 startAngle← 0;
4 lineParasDict← { };

// Generate arc parameters
5 arcParasDict← ARCPARASGEN(arcSpanning, N, canvasWidth );

// Generate line parameters
6 for f in allFeatures do

// Number of lines based on feature f
7 num_lines← Data[ f ].length;

8 for j← 1 to num_lines do
// Feature list used for the current line

9 lineFeatures← Data[ f ][ j];
// Number of features for the current line

10 num_features← lineFeatures.length;
11 if num_features != 1 then

// Generate line parameters
12 lineParasDict, startAngle← LINEPARASGEN (allFeatures,

lineParasDict, arcParasDict, lineFeatures, startAngle,
angleStep);

// Update arcAngle
13 if j == num_lines then
14 arcParasDict[ f ].arcAngle← startAngle/2;

// DrawLines and DrawArcs call Javascript functions to draw lines
and arcs of RadialNet Chart

15 DrawArcs (arcParasDict);
16 DrawLines (lineParasDict);

identify the most important feature (the third inner arc represented by the widest red arc) and the357

least important feature (the innermost narrowest yellow arc) as shown in Fig. 5.358

Besides comparison of feature importance of a data in RadialNet, it can also be used to359

compare performance of different ML algorithms for a given data set. Fig. 6 shows the comparison360

of three ML algorithms for the same data set with RadialNet visualisation. From this figure, we361

can easily get that the ML algorithm represented by the left diagram shows the worst performance,362

compared to algorithms represented by the other two diagrams, because its colour is bluer which363

is located on the left side of the colour scale. While the algorithm represented by the middle364

diagram shows the best performance because its colour is redder which is located on the right365

side of the colour scale. Furthermore, the visualisation shows that the feature represented by the366

outermost arc (i.e. the feature of “alcohol”) is the most important feature because this arc is the367

widest and its colour is located on the right side of the colour scale in all three visualizations.368

6. Evaluation369

To understand the effectiveness of RadialNet in the ML model comparison, we compare it370

with three commonly used visualisation approaches of bar chart, line chart and radar chart. 11371

participants were recruited (9 males and 2 females, ages from 20s-40s) to conduct a comparison372
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Figure 6. Comparison of three ML algorithms for the same data set with RadialNet.

Figure 4. RadialNet of ML models based on a data set with 6 features.

user study. All participants are researchers and developers experienced in machine learning373

related areas.374

The following metrics are proposed to evaluate different visualisations:375

• Comparison: How easily that the visualisation helps users to compare performance of376

different models;377

• Feature importance: How easily that the visualisation helps users to identify importance of378

features;379

• Feature identification: How easily that the visualisation helps users to link each model and380

its dependent features;381

• Complexity: How complex the visualisation is to present data.382

Besides, user cognitive responses to visualisation such as mental effort as well as time spent383

on the selection task are also evaluated to compare effectiveness of visualizations:384

• Mental effort: How much mental effort users used for tasks with the visualisation;385

• Time spent: How much time users spent in task decisions with the visualisation.386

To understand the usability of the RadialNet Chart, we also administrate a questionnaire that387

asks participants questions about their experience and feedback in using the charts. Further, eye388
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Figure 5. RadialNet of ML models based on a data set with 7 features.

tracking study is conducted with a separate participant to understand participant’s eye movement389

behaviours with different visualisations.390

6.1. Data and Visualisation391

Two data sets from UCI machine learning data repository [37] and PPMI [38] respectively392

were analysed in this study. Two data sets have 6 features and 7 features respectively, which393

generate 63 ML models and 127 ML models respectively to compare. ML models are visualised394

using bar chart, line chart, radar chart, and RadialNet respectively as shown in Fig. 7 and Fig. 4395

(the data set with 6 features visualised in Fig. 7 and Fig. 4). In bar chart, line chart, radar chart and396

RadialNet, the related features for a model and its performance are popped up when the mouse is397

moved over the relevant visual elements (e.g. bars, dots, lines, or arcs), which allows users to398

inspect more details of each model.399

Besides, for a given data set, three ML algorithms were used generating various ML models400

respectively. The ML models by these three ML algorithms were visualised together in a single401

bar chart, line chart, and radar chart respectively as shown in Fig. 8, which were also visualised402

using RadialNet as shown in Fig. 6. These visualisations were used to compare the effectiveness403

of different ML algorithms. AAA, BBB, and CCC in visualisations (e.g. Fig. 7, Fig. 8) represent404

three ML algorithms used to compare: KNN, NB, and RF. The exact ML algorithms used for ML405

models were not shown to participants during the study to avoid any bias.406

6.2. Procedure and Data Collection407

The study was conducted in a lab environment using a Macbook Pro with 13-inch display of408

resolution 2560×1600. The procedure of the study is described as follows: Tutorial slides on the409

study were firstly presented to participants to let them understand concepts and operations during410

the study. A training task was then conducted to practice interactions. After that, the formal411

tasks were conducted with different visualisations. During the study, different visualisations as412

described in the previous section were displayed to participants one-by-one in random order.413

For each visualisation, participants were firstly required to find which ML model gives the best414

or worst performance by selecting the visual elements in the visualisation (we call it as the415

selection task). This is more akin to what analysts do with real data sets. After the selection416

task, participants were asked to answer different questions as described below on the task and417

visualisation. At the end of the study, participants were asked to give their feedback in using the418

charts and some personal details such as gender, age, working topics.419

After the selection task of each visualisation, the participants were asked to answer questions420

related to comparison, feature importance, feature identification, visual complexity, and mental421

effort on the visualisation using 9-point Likert scales (comparison, feature importance, feature422
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(a) Bar chart. (b) Line chart. (c) Radar chart.
Figure 7. ML models based on the data set of 6 features are visualized using bar chart, line chart and radar chart respectively.

(a) Bar chart. (b) Line chart. (c) Radar chart.
Figure 8. Comparison of three ML algorithms for the same data set with three visualisation approaches.

identification: 1=least easiness, 9=most easiness; visual complexity: 1=least complex, 9=most423

complex; mental effort: 1=least effort, 9=most effort). At the end of all visualisation tasks, the424

participants were also asked to answer in a questionnaire which visualisation helps users more425

easily compare ML performance of different features, and which visualisation helps users more426

easily compare ML performance of different ML algorithms respectively.427

6.3. Results428

In this section, for the evaluation of each metrics, we firstly performed one-way ANOVA429

test and then followed it up with post-hoc analysis using t-tests (with a Bonferroni correction430

under a significance level set at p < .05
4 = .013, based on the fact that we had four visualisation431

types to test) to analyze differences in participant responses of each metrics. Each metric values432

were normalised with respect to each subject to minimise individual differences in rating behavior433

(see Equ. 2):434

T N
i =

Ti−T min
i

T max
i −T min

i
(2)

where Ti and T N
i are the original metric rating and the normalised metric rating respectively from435

the participant i, T min
i and T max

i are the minimum and maximum of metric ratings respectively436

from the participant i in all of his/her tasks. The time spent in the selection tasks is also normalised437

in a similar way as other five metrics.438

Fig. 9 shows mean normalised metric values for different visualisation types.439

Comparison easiness One-way ANOVA test gave significant differences in comparison easiness440

among four visualisation types (F(3,84) = 3.067, p < .03) (see Fig. 9a). However, the441

post-hoc t-tests only found that line chart was significantly easier to compare performance442

of different ML models than radar chart (t = 2.813, p < .007). The result shows that443

RadialNet did not help users increase the easiness in comparing performance of different444

ML models, which is not as we expected, but a trend shows the higher ratings in comparison445

easiness for RadialNet than bar chart and radar chart (see Fig. 9a). This is maybe because446

of the relatively small number of participants used for the study.447

Feature identification One-way ANOVA test found significant differences in easiness of feature448

identification among four visualisation types (F(3,84) = 6.108, p < .001) (see Fig. 9b).449
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(a) Comparison easiness. (b) Feature identification. (c) Feature importance.

(d) Visual complexity. (e) Mental effort. (f) Time spent.
Figure 9. Comparison of mean normalized metrics for different visualisation types.

The post-hoc t-tests found that RadialNet was significantly easier to identify features related450

to models than all of other three visualisation types (line chart: t = 3.296, p < .002; bar451

chart: t = 3.393, p < .002; radar chart: t = 4.089, p = .000). This is because that users452

can get features and performance related to an ML model directly from connected visual453

elements in RadialNet, while users need to move mouses to visual elements of each model454

to inspect related features and performance in other three visualisations.455

Feature importance There were significant differences found in easiness of identifying feature456

importance among four visualisation types by one-way ANOVA test (F(3,84) = 14.481,457

p = .000) (see Fig. 9c). The post-hoc t-tests found that RadialNet was significantly458

easier to identify feature importance than all of other three visualisation types (line chart:459

t = 4.878, p = .000; bar chart: t = 5.320, p = .000; radar chart: t = 7.678, p = .000). The460

results suggest the obvious advantage of RadialNet over other three visualisation types for461

feature importance identifications.462

Visual complexity One-way ANOVA test found significant differences in visual complexity463

among four visualisation types (F(3,84) = 20.254, p = .000) (see Fig. 9d). The post-464

hoc t-tests found that RadialNet was significantly more complex than all of other three465

visualisation types (line chart: t = 7.032, p = .000; bar chart: t = 6.001, p = .000; radar466

chart: t = 3.710, p < .001). It was also found that radar chart was significantly more467

complex than line chart (t = 3.383, p < .002).468

Mental effort There were significant differences found in mental effort among four visualisation469

types by one-way ANOVA test (F(3,84) = 8.757, p = .000) (see Fig. 9e). The post-hoc470

tests found that line chart took significantly less effort than other three visualisation types471

(bar chart: t = 3.722, p < .001; radar chart: t = 4.981, p = .000; RadialNet: t = 5.562, p =472

.000). RadialNet did not show significant differences in mental effort with radar chart and473

bar chart.474

Time spent One-way ANOVA test found significant differences in time spent in the selection of475

the best/worst model task among four visualisation types (F(3,84) = 5.301, p < .002) (see476

Fig. 9f). The post-hoc tests found that users spent significantly more time in RadialNet than477

in both line chart (t = 3.286, p < .002) and bar chart (t = 3.111, p < .003) respectively.478

When four types of visualisation were used to compare performance of different ML479

algorithms for a given data set, it was found that line chart was easier to compare performance480
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of different ML algorithms followed by RadialNet despite no significant differences found481

in the easiness. This could be because of the relatively small number of participants in this482

study. However, RadialNet can reveal importance of features while others not when comparing483

performance of different ML algorithms.484

Figure 11. Heat map of RadialNet.

Figure 12. RadialNet displayed in our large scale visualisation facility.

We also collected participants’ feedback after completing all tasks by each participant.485

Overall, all participants believed that “RadialNet is the most effective visualisation in identifying486

feature importance compared with other three approaches”. Some participants suggested to487

“enlarge the size of RadialNet with the increase of number of features”. Participants agreed that488

“RadialNet is more efficient to help users focus their attention to find visual elements of interest”.489

Fig. 10 and Fig. 11 show heat maps on four visualisations recorded by an SMI eye-tracker from a490

participant during the selection task period respectively. Heat maps reveal the focus of attention491

by colours indicating the amount of time eyes stay focused on a particular area in the visualisation,492

the redder, the more time eyes focused. Fig. 10 and Fig. 11 suggest that the user’s attention in493

RadialNet was more focused on two model lines with high performance (wide red lines), while it494

was much scattered among different points in other three visualisations.495

Overall, we can say that RadialNet shows significant advantages in identifying features496

and performance related to specific models as well as easily revealing importance of features497
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(a) Bar chart (b) Line chart (c) Radar chart
Figure 10. Heat maps of bar chart, line chart, and radar chart.

compared with other three visualisation types. Despite these advantages, the mental effort and498

time spent in RadialNet did not show much differences from others such as radar chart.499

7. Discussion500

This study proposed a novel visualisation approach to compare variables with different501

number of dependents. Data information is encoded with colour, line width, as well as structure502

of visualisation to reveal insights from data. The experimental results showed that RadialNet503

has advantages in identifying features related to specific models as well as directly revealing504

importance of features for ML explanations. Different from conventional feature importance505

evaluations based on complex computing algorithms (such as by simulating lack of knowledge506

about the values of the feature(s) [39], or by mean decrease impurity, which is defined as the507

total decrease in node impurity averaged over all trees of the ensemble in Random Forest[40]),508

RadialNet allows users to estimate feature importance directly from visualisation by checking509

lines connected to the feature arc. The consistent large line width of these lines with colours on510

the right-hand side of the colour scale indicate the high importance of the feature to the modelling.511

RadialNet is more compact to show more information in a limited space compared with other512

three visualisation types. And the compactness of RadialNet can also be controlled by changing its513

spanning angle dynamically (see the attached video with this paper). However, RadialNet will be514

much complex when the number of features is high. This could be compensated with large scale515

visualisation facilities. For example, our visualisation facility provides a 360-degree interactive516

visualisation, which change the way we view and interact with data. This visualisation facility is517

a large cylindrical screen with four metres high and ten metres in diameter. Six 3D-stereo video518

projectors, driven by a high performance computer graphics system, project visualisations on the519

cylindrical screen. Picture clarity is made possible from an image that’s 20,000×1200 pixels.520

Viewers stand in the middle of the cylinder to interact visualisations. This facility can be used to521

present RadialNet with large number of ML models for effective interactions. Fig. 12 shows an522

example of RadialNet displayed with around 60-degree field of view in the facility.523

This paper used the exploration of performance of ML models based on different feature524

groups from a given data set as a case study to demonstrate the powerfulness of RadialNet525

in visualising data with complex relations. The RadialNet can also be generalised to other526

applications where similar relations need to be explored.527

8. Conclusion528

This paper presented RadialNet Chart, a novel visualisation approach to compare ML529

models with different number of features while revealing implicit dependent relations. The530

RadialNet is developed to address the challenges faced in comparing a large amount of ML531

models with each dependent on a dynamic number of features. It is implemented by representing532

ML models and features with lines and arcs respectively, which in turn are generated by a533

recursive function and a feature path concept. We presented our design criteria and described534

the algorithms for generating the chart. Two case studies were also presented with representative535

data sets and an experiment was conducted evaluating the effectiveness of the RadialNet. Our536

case studies showed that the proposed visualisation can help users easily locate target models and537
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important features. Furthermore, the user study revealed that in comparison with other commonly538

used visualisation approaches, RadialNet is more efficient to help users focus their attention to539

find visual elements of interest. It is also more compact to show more information in a limited540

space. Our research provides an effective visualisation approach to represent data with complex541

relations. It is specifically helpful for users to find optimal machine learning model and discern542

feature importance visually and directly, but not through complex algorithmic calculations for543

ML explanations.544
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