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The streams where multiple transactions are associated with the same key are prevalent in practice, e.g., a cus-

tomer has multiple shopping records arriving at different time. Itemset frequency estimation on such streams

is very challenging since sampling based methods, such as the popularly used reservoir sampling, cannot be

used. In this article, we propose a novel k-Minimum Value (KMV) synopsis based method to estimate the

frequency of itemsets over multi-transaction streams. First, we extract the KMV synopses for each item from

the stream. Then, we propose a novel estimator to estimate the frequency of an itemset over the KMV syn-

opses. Comparing to the existing estimator, our method is not only more accurate and efficient to calculate

but also follows the downward-closure property. These properties enable the incorporation of our new es-

timator with existing frequent itemset mining (FIM) algorithm (e.g., FP-Growth) to mine frequent itemsets

over multi-transaction streams. To demonstrate this, we implement a KMV synopsis based FIM algorithm

by integrating our estimator into existing FIM algorithms, and we prove it is capable of guaranteeing the

accuracy of FIM with a bounded size of KMV synopsis. Experimental results on massive streams show our

estimator can significantly improve on the accuracy for both estimating itemset frequency and FIM compared

to the existing estimators.
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1 INTRODUCTION

The task of exploring the frequency of itemsets over massive stream is a fundamental problem
and arises in a variety of applications, such as frequent itemset mining on stream [26, 34, 42, 43], e-
business [49], market-basket analysis [8, 23], attack/fake review dection [6, 50], and so on. As it is
too expensive to compute the accurate frequencies of itemsets over such massive streams, various
frequency estimation methods have been proposed for estimating the frequencies of individual
items [12, 16–18, 20, 31, 36, 40, 43, 54, 63] and the frequency of itemsets [22, 38, 53, 55, 59, 60]
over streams. These methods assume all the items related to a key arrive together. However, in
reality, a key may correspond to multiple transactions, each of which contains a set of items and
arrives at different time. For example, (1) Streaming check-in data. Each key corresponds to a
user and each transaction records a place visited by the user. Other examples of similar types of
data include phone record data, chat log data, and so on. (2) E-business stream. Each customer of
online shopping sites, e.g., Amazon, has an ID and may have multiple transactions, which arrive at
different time and interleave with the transactions of other users. Similar streams are encountered
in many services, such as interactions of users with Web services, search logs, film/music/App
downloading stream, twitter stream, and so on. (3) Multi-part uploading stream. Each large record
is divided into multiple transactions, and each transaction is uploaded separately.

The common characteristic of these streams is that multiple transactions are associated with
the same key and arrive in different time. We call such streams as “multi-transaction stream”. In
this article, we focus on the problem of itemset frequency estimation over such stream. In a multi-
transaction stream, the frequency of an itemset is incremented if its items appear in the union of
all transactions with the same key. However, in previous work on frequency estimation, as each
transaction has a unique key, the frequency of an itemset is the number of transactions containing
the itemset.

There are many types of multi-transaction data stream, application range of itemset mining on
them is very wide also. If we view the key of each transaction as user-id, frequent itemset mining
over multi-transaction stream generates itemsets at the user level. These user-level itemsets reveal
the users’ behavior directly, and will benefit personalized recommendation, sub-group discovery,
and any downstream data mining task (such as classification, clustering, association rule mining,
etc.) at the user level rather than single transaction level. Moreover, the user-level itemset mining
will be robust to the bots or, increasingly, hack users accounts and place fake orders on website.
Such as, deliberately generating abundant shopping transactions in short time (with same user
id/ip address) to create false popular products in e-business, or producing abundant comments
on social networks to create false hot events. In these situations, the multi-transaction based
itmeset mining, i.e., user-level itemset frequency is able to naturally filter the impact of such fake
transactions. This is very useful in security attack analysis, fake review/comment/event detection,
and so on.1

Unfortunately, the difference in itemset frequency definition makes the existing methods [3, 19,
38, 45, 56, 58, 61] of frequency estimation inapplicable to the multi-transaction stream. The existing
approaches, such as reservoir sampling based synopsis [45, 58, 61], AMS sketch [3], and count-min
sketch [19], usually make a single pass of the stream and get a synopsis of the original stream to
estimate the frequency of itemsets using a bounded amount of memory, and they have been widely

1Taking fake review detection as an example, we can first mine the user-level frequent word patterns (using our proposed

method) and transation-level ones (using the existing methods) from the data stream, respectively; and then find out the

pattern differernce for fake review detection. Generally speaking, the transaction-level patterns not appearing in user-level

are more likely to be “irregular patterns”.
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used for item frequency estimation. We will illustrate with reservoir sampling as an example why
these synopsis based methods are not applicable on multi-transaction stream in Section 3.

In this article, we demonstrate that, estimating the frequency of an itemset over multi-
transaction streams can be done by counting the number of distinct keys appearing in a set of
transactions containing the itemset (See details in Section 3.1). This motivates us to employ k
Minimum Value (KMV) synopsis for estimating itemset frequency, which is a well-known tech-
nique to estimate the number of distinct values in massive data [7] and is also used for stream
sampling [16] and estimating word frequencies in twitter stream [59, 60].

However, the estimator in [7, 59] suffers from the following issues which affect the effectiveness
of frequency estimation for l-itemsets (l > 1). (i) The accuracy of the estimator drops as the length
of itemsets (i.e., l ) increases. (ii) It does not follow the well-known downward-closure property
of frequency, and the frequency estimation will be counter-intuitive. For example, an itemset A
might get a greater estimation than its subset B ⊂ A. Furthermore, an important application of
frequency estimation is to mine frequent itemsets from streams. The downward-closure property
plays the foundation of classic frequent itemset mining algorithms [2, 29], which cannot be used
without this property. We find out that the root of these issues of the estimator is how the KMV
synopsis is constructed for a union set (see details in Section 4.1).

To address these issues, we propose a new method to construct KMV synopsis for union sets,
and further present a novel frequency estimator. The new estimator not only has a smaller es-
timation error but also follows the downward-closure property. We also prove that the error of
the estimated frequency can be bounded theoretically. These theoretical results will greatly ben-
efit the generalization of KMV synopsis based itemset frequency estimation to other applications
over multi-transaction streams. For example, with the downward-closure property, we can incor-
porate the proposed estimator into any existing frequent itemset mining (FIM) method to mine
frequent itemsets over multi-transaction streams, which is also a significant research problem in
stream analysis. According to theoretical analysis and our experiments, we can achieve very high
accuracy of FIM by setting a small size of KMV synopsis. Our contributions are as follows:

(1) We define an important research problem of itemset frequency estimation on massive multi-
transaction stream.

(2) We propose a new KMV synopsis based estimator for frequency estimation on l-itemsets (l >
1), which is able to significantly improve the estimation accuracy comparing to the previous KMV
based estimator [7, 59, 60]. We show that the new estimator follows downward-closure property
and thus can be used in conjunction with any itemset mining algorithm over KMV synopsis.

(3) We integrate the proposed estimator into existing frequent itemset mining algorithms to
solve ϵ-close FIM problem over multi-transaction streams, and theoretically establish the connec-
tion between the size of KMV synopsis and the accuracy of FIM. This enables us to support the
mechanism of setting the size of synopsis to achieve a certain level of accuracy. However, the
previous KMV synopsis based method [59, 60] fails to support this.

The rest of the article is organized as follows. Section 2 introduces the related work. Section 3
gives the problem definition and preliminary. Section 4 presents our proposed KMV synopsis based
frequency estimator and its application in mining frequent itesmets. Section 5 presents the exper-
imental results. Finally, Section 6 concludes our work.

2 RELATED WORK

Itemset Fequency estimation over stream data. Frequency estimation for itemsets in massive
stream is a fundamental task and has a wide variety of applications. To handle massive streams,
the synopsis, which can be viewed as a sample or summary of the entire stream, has been widely
used for stream data analysis [1, 21, 38, 39, 45, 54, 61, 62]. Particularly, many synopsis-based
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estimation methods have been proposed [5, 12, 16–18, 20–22, 30, 31, 38, 40, 43, 58, 63], which
maintain a random sample of the stream (e.g., [45, 61]) or the hashing based sketch (e.g., Count-
min sketch [19] and AMS sketch [3]). However, these techniques are proposed for traditional
streams where each transaction is associated with a unique key, and they are not applicable to
multi-transaction stream data, such as reservoir sampling based approach [58], cannot be used for
multi-transaction stream data.

To estimate the frequency of an itemset over a multi-transaction stream, we need to estimate
the number of distinct keys which correspond to the set of transactions containing the itemset.
KMV synopsis [16, 17], is a well-known technique for estimating the number of distinct values in
massive data, and also has been studied for set intersection size estimation [7, 59, 60]. However, a
straightforward extension for KMV-based estimator will lead to high estimation error especially
when the length of itemsets increases [59, 60].

Frequent itemset mining over stream data. Frequent itemset mining has been an important
research problem for stream data analysis. However, stream data challenge traditional FIMs. First,
the streaming data comes continuously and is unbounded, it is impossible to keep all transac-
tions in the main memory for analysis. Secondly, the streaming data are passed only once as thus
traditional FIM method scanning data multiple passes is infeasible. For example, the well-known
FP-growth [28] needs two-pass scan over the data for FIM. Thirdly, stream data analysis usually re-
quires real-time response, and the combinational explosion of itemsets challenges mining frequent
itemsets on stream in terms of both time and space (memory) efficiency.

Due to these challenges, the research studies on FIM have focused on approximating mining
methods, which generate frequent itemsets within the stream’s constrained environment of lim-
ited time and memory. And there have been different window based models proposed in the litera-
ture [23, 24, 35, 41, 53]. A window model usually extracts a set of transactions from the data stream
for FIM. The difference among these models is that the development of the window size and how
to assign a weight to each transaction extracted from the stream [53]. These window models are
generally catergorized as three groups:

(i) The landmark window model [64], which collects transactions of the stream from some fixed
landmark start time up to current transaction, and assigns same weight to each transaction. The
representative algorithms include: Lossy Counting Algorithm [42] first buffers the transactions in
as many blocks as memory available, then all buffered blocks together as a single batch, and gener-
ates the itemsets that are supported by the transactions in the current batch. In order to avoid the
combinatorial explosion of the itemsets, it applies an Apriori-like pruning rule. FDPM [62] is de-
rived from the Chernoff bound to guarantee the estimation error being bounded. And SApriori [51]
divides stream into multiple blocks, and mines frequent itemset with some particular length on
each block with an Apriori algorithm [2].

(ii) The sliding window [10, 13, 14, 33, 37, 52, 57], which extracts the most recent transactions
for analysis, the window usually has a fixed size, and the new arriving transaction results in that
the oldest transaction is deleted from the window, where each transaction in the filled window
has a constant weight. The representative algorithms include: Moment [15] designs an in-memory
prefix-tree-based structure, called the Closed Enumeration Tree (CET), to maintain a dynami-
cally selected set of itemsets over the sliding-window. SWIM [44], which divides a window into
several panes of identical size. A delay parameter controls the maximal number of panes processed
before reporting a frequent itemset. CPS-TreeSW [52] designs a dynamic reorganizing tree struc-
ture over the sliding window that is mined with the FP-growth algorithm [28].

(iii) Time fading/damped window [25, 26, 64] where the transactions are associated with dif-
ferernt weights, and the more rencent transactions have a higher weight than older ones. With
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Table 1. Summary of Notations

Notation Meaning

D a multi-transaction stream

X an l-itemset X = {xi |1 ≤ i ≤ l }
L the KMV synopsis of D
K the size of KMV synopsis L extracted from D
D the set of transactions extracted by L

Dxi

the set of transactions that contain xi and the other transactions with the

same keys as those containing xi

Lxi the KMV synopsis of Dxi

Φ(D) the function Φ that returns distinct keys in D
kxi the size of Lxi

U(kxi ) the kxi th smallest value of Lxi

K∩ size of intersection set of l KMV synopses | ∩l
i=1 Lxi |

D∪ the set of distinct keys in ∪l
i=1Dxi , i.e., Φ(∪l

i=1Dxi )

D∩ the set of distinct keys in ∩l
i=1Dxi , i.e., Φ(∩l

i=1Dxi )
Δ the maximum number of items in the union of all transactions with same key

each new coming transaction, the weight of all transactions decays by a factor and thus the long
ago transactions will eventually be removed from consideration. One representative algorithm is
EstDec [11], which finds recent frequent itemsets adaptively over an online data stream. The ef-
fect of old transactions on the mining result of the data stream is diminished by decaying the old
occurrences of each itemset as time goes by.

All these window based models are desinged for approximation FIM over single-transaction
data stream [53]. However, these algorithms cannot be directly applied for multi-transaction data
streams as the frequency definition is different over multi-transaction stream (see Example 1 in
Section 3.1 for details). The algorithm for mining co-occurrence words in streaming tweets [59, 60],
which uses the existing KMV synopsis based estimator in [7], can be used for frequency estimation
over multi-transaction stream. But it suffers from low accuracy as shown in our experiments and
has no terminating condition in theory since the estimator does not satisfy the downward closure
property. In this article, we first give the theoretical analysis of the root these issues of existing
KMV synopsis based estimators, then propose a new accurate and down-closure itemset frequency
estimator, and finally give the approximate FIM algorithms over multi-transaction stream data with
the proposed estimator.

3 PROBLEM DEFINITION AND PRELIMINARIES

We first introduce the concept of multi-transaction streams, and give the problem definition of
itemset frequency estimator on such streams. Afterwards, we present existing KMV synopsis based
itemset frequency estimators [7, 59, 60]. For clarity, Table 1 summarizes the notations used in this
article.

3.1 Problem Definition.

Given a data stream D = {T1,T2, . . . ,TN } comprising a sequence of N transactions observed so far,
where each transaction Ti , denoted by <tidi , Yi> (1 ≤ i ≤ N ), contains a set of items (denoted by
Yi ) and is associated with a key tidi . In traditional streams, each transaction has a unique key, i.e.,
∀i � j, tidi � tid j . The stream D is called a multi-transaction stream if multiple transactions are
associated with the same key.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 2, Article 29. Publication date: July 2021.
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Let Φ(D) denote the set of distinct keys in D, and I = {i1, i2, . . ., in } be the set of items in D. We
assume that N 	 n. An itemset X = {x1, x2, . . ., xl } (l ≥ 1) is called an l-itemset, where xi ∈ I
(1 ≤ i ≤ l ). In a multi-transaction stream, the frequency of itemset X is incremented when X
appears in the union set of items in all transactions with the same key. Let Bt id = {Ti | Ti .tidi = tid
∧Ti ∈ D} be a bag of all transactions whose key is tid , and X is counted once if X ⊆ ∪Ti ∈Bt id

Ti .Yi ,
where Ti = <tidi , Yi>.

For a single item x , let Tx = {Ti .tidi |x ∈ Ti .Yi } be a set of keys of transactions containing x , and
Dx = {Ti | Ti .tidi ∈ Tx ∧ Ti ∈ D}. It is noted that Dx not only includes transactions containing x
but also consists of the other transactions which have the same key as the included transactions.
The frequency of item x is |Φ(Dx ) |, where Φ(Dx ) is the set of distinct keys in Dx .

For an l-itemset X (l > 1), let Dxi
be a set of transactions for each xi ∈ X and D∩ = Φ(∩l

i=1Dxi
).

Then, frequency ofX (denoted as f req(X ) in Equation (1)) is the number of distinct keys in∩l
i=1Dxi

.

f req(X ) = |D∩| = |Φ(∩l
i=1Dxi

) |. (1)

Example 1. Suppose there is a multi-transaction stream D consisting of five transactions {< 1,
{a} >, < 2, {b} >, < 1, {b, c} >, < 2, {a, c} >, < 3, {b} >}. To estimate the frequency of a given

itemset {a,b}, we first construct Da = {< 1, {a} >, < 2, {b} >, < 1, {b, c} >, < 2, {a, c} >} and Db =

{< 1, {a} >, < 2, {b} >, < 1, {b, c} >, < 2, {a, c} >, < 3, {b} >}. Then Da ∩Db = {< 1, {a} >, < 2, {b} >,

< 1, {b, c} >, < 2, {a, c} >}. The itemset {a,b} appears twice in the union of transactions with same

keys. Thus, the estimated frequency of {a,b} is two, which is just the size of D∩ = Φ(Da ∩ Db ) = {1,

2}. Note that Da also contains < 2, {b} > and < 1, {b, c} > although they do not contain a. This is

critical. In contrast, if we construct Da = {< 1, {a} >, < 2, {a, c} >} and Db = {< 1, {b} >, < 2, {b, c} >,

< 3, {b} >}, which only include the single items a and b, respectively, we will get Da ∩ Db = ϕ, and

further calculate the frequency of {a,b} as Φ(ϕ) = 0, which is wrong.

Problem Definition. We investigate the problem of estimating the frequency of an l-itemset over
massive multi-transaction stream data.

For massive stream data, it is usually impractical to compute the exact frequency of itemsets. In
contrast, researchers usually leverage a synopsis sampled from the stream to get an approximate
solution. However, the existing synopsis based techniques (e.g., reservoirs sampling) assume each
transaction has a unique key and cannot handle the multi-transaction stream. Taking the popu-
larly used reservoir sampling as an example, which needs to decide whether to keep a new key,
and discard an old key so that the set of selected keys are a random sample of the stream. In a
multi-transaction stream, the transactions with same key might arrive at different time. For a new
transaction, we have to check whether its key has been scanned before we can decide if it will
be kept or discarded (if it has been scanned. the decision depends on the existing decision). How-
ever, this requires us to store all the scanned keys and record whether they are selected, which
is unfortunately memory-consuming. It is not practical to store all the scanned keys in memory
on massive streams. Let M be the number of distinct keys in the stream, and Δ be the maximum
number of items in the union of all transactions with same key, the worst space comlexity of reser-
voir sampling over multi-transaction stream is O (M · Δ). In practice, M is usually quite large and
results in large memory consumption.

In this article, we propose a new KMV synopsis to address the problem. Our proposed solution
is based on the entire data streams. However, it is easy to extend our estimator to estimate the
frequency of an itemset based on sliding window model.

3.2 Preliminaries

The frequency of a single item x is the number of distinct keys in Dx , i.e., Φ(Dx ). Based on the
work [7, 16], the frequency of x can be quickly estimated by a KMV synopsis ofDx . Next, we briefly
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introduce the concepts of KMV synopsis [7, 16] and Inverted KMV Sketch for an item [59, 60], and
then present the estimator [7, 59, 60] for estimating frequencies of itemsets.

Let h be a pairwise independent hash function which randomly and uniformly maps each trans-
action key into a value in the range of [0, 1], i.e., h : Φ(D) → [0, 1]. KMV synopsis of a stream data
is defined as follows.

Definition 1. k Minimum Value Synopsis. After hashing each transaction keys of a stream data
D by h, the k smallest hash values form a KMV synopsis of D, which is denoted as L. The set of
all transactions corresponding to the k minimum hash values is denoted as D.

KMV synopsisL consists of k smallest hash values. LetU(k ) be the kth smallest hash value. Then
the number of distinct transaction keys in D can be estimated by Equation (2) [7, 59, 60].

ˆ|Φ(D) | = k − 1

U(k )
. (2)

The Inverted KMV Sketch [59, 60] of an item x appearing in D is defined as follows.

Definition 2. Inverted KMV Sketch. The inverted KMV sketch of x is defined by Lx = {h(tid ) |
T = <tid,Y> ∈ D ∧ x ∈ Y }.

As the hash values generated by h follow the uniform probability distribution [7], the inverted
KMV sketch Lx is a KMV synopsis of sub stream data Dx ⊆ D [59, 60]. Thus, with Equation (2),

we estimate the frequency of item x (i.e., 1-itemset) by f req(x ) = ˆ|Φ(Dx ) | = kx−1
U(kx )

, where kx is the

size of Lx , and U(kx ) is the kx th smallest value in Lx .

Frequency Estimator for an l-itemset. For a given l-itemsetX = {xi |1 ≤ i ≤ l } (l > 1), according
to Equation (1), its frequency f req(X ) can be computed as the number of distinct keys in the
intersection of l sub stream data, i.e., D∩ = Φ(∩l

i=1Dxi
).

To estimate f req(X ) (i.e., |D∩|), letD∪ = Φ(∪l
i=1Dxi

). If we can get the KMV synopsis of∪l
i=1Dxi

,

we can estimate the number of distinct keys of ∪l
i=1Dxi

by Equation (2), and then estimate f req(X )

by ρ × |D∪| based on the Jaccard similarity ρ = |D∩ ||D∪ | .
Next, we introduce a theorem [7] to construct KMV synopsis for a union set. Consider sub-

streams Dx1 and Dx2 with respect to items x1 and x2, along with their KMV synopses Lx1 and Lx2

of sizes kx1 and kx2 , respectively. Let Lx1 ⊕ Lx2 be the set of the k smallest values in Lx1 ∪ Lx2 ,
where k = min(kx1 ,kx2 ). Then, we can get a KMV synopsis ofDx1∪Dx2 according to Theorem 1 [7].

Theorem 1. The set L∪ = Lx1 ⊕ Lx2 is a size-k KMV synopsis of Dx1 ∪ Dx2 , where k =
min(kx1 ,kx2 ).

Theorem 1 can be extended to multiple data sets [7]. That is, the size of D∪ = Φ(∪l
i=1Dxi

) (l ≥ 2)
can be estimated via the KMV synopsisL∪ = Lx1⊕Lx2⊕· · ·⊕Lxl

of sizek = min(kx1 ,kx2 , · · · ,kxl
).

LetU(k ) be the kth smallest value in L∪, and K∩ = |Lx1 ∩Lx2 ∩ · · · ∩Lxl
|. Since K∩

k
is an unbiased

estimator of ρ [7], the frequency of l-itemset X can be estimated by

ˆf req(X ) = ˆ|D∩| =
K∩
k
× k − 1

U(k )
. (3)

Algorithm 1 illustrates the details of maintaining the KMV synopsis L of a multi-transaction
stream D and Inverted KMV sketch Lx for each item x by a single scan of D. For each coming
transactionT , if |L| is smaller than the given size K , we insert the hash value of h(T ) into both L
and Inverted KMV sketchLx for each item x inT (lines 2–7). Otherwise, if h(T ) is smaller than the
Kth smallest hash value of L, we update L by removing its current Kth smallest value and then
inserting h(T ) into L; and we update Lx by removing h(T ′) (T ′ corresponds to the transaction
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ALGORITHM 1: KMV_Synopsis_Extraction()

Inputs :D: a multi-transaction stream data, h: the hash function;
Output :L: KMV synopsis of D with size K , Lx : inverted KMV sketch of item x or KMV synopsis of Dx ;

1 L ← ϕ, Lx ← ϕ;
2 foreach coming transaction (T=<tid,Y>) ∈ D do
3 v = h(tid )//h is a hash function
4 if |L| ≤ K then
5 L ← L ∪ {h(tid )};
6 foreach item x ∈ Y do
7 Lx ← Lx∪ {h(tid )};

8 else
9 if v < KSmall(L) then

//KSmall(L) gets the K-th smallest value in L
10 T ′ ← transaction with h(tid ′) == KSmall(L)//T ′=<tid ′,Y ′>
11 L ← L − {h(tid ′)};
12 foreach item x ′ ∈ Y ′ do
13 Lx ′ ← Lx ′− {h(tid ′)};

14 L ← L ∪ {h(tid )};
15 foreach item x ∈ Y do
16 Lx ← Lx∪ {h(tid )};

whose hash value is equal to the Kth smallest value of L) and then inserting the value of h(T )
(lines 9–16).

Space complexity. Let Δ be the maximum number of items in the union of transactions with
same key (Δ 	 1). The K hash values maintained by Algorithm 1 correspond to K distinct keys.
By using the orthogonal list storage, the worst space complexity of Algorithm 1 is O (K · Δ).

Time complexity. The time complexity of Algorithm 1 is O ( |D | + K ·m · logK · log |D |), where
m denotes the average number of items in each transaction[7].

4 KMV SYNOPSIS BASED ITEMSET FREQUENCY ESTIMATOR

In this section, we first discuss the drawbacks of existing KMV synopsis based frequency estima-
tor (Section 4.1). To overcome these drawbacks, we propose a new frequency estimator based on
KMV synopsis (Section 4.2). We demonstrate how the proposed estimator can be integrated into
existing frequent itemset mining algorithms to mine frequent itemsets with guaranteed accuracy
over multi-transaction streams (Section 4.3).

4.1 Drawbacks of the Existing Frequency Estimator

The estimators (Equation (2) and Equation (3)) have been employed to estimate the frequency of
word co-occurrence patterns in Twitter stream [59, 60]. However, the following two drawbacks of
the estimator in Equation (3) limits the use of KMV synopsis technique for frequency estimation
on stream data in practice.

(i) The frequency estimator for an l-itemset (l > 1) in Equation (3) has a high estimation error.
The error increases with l , the length of itemset.

(ii) The frequency estimator in Equation (3) does not satisfy the downward-closure (also called
anti-monotonicity) property. This will lead to unreasonable results, e.g., the frequency of an
itemset may be greater than that of its subset.

We proceed to give detailed analysis of the two drawbacks in the following subsections.
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4.1.1 Estimation Error Analysis. Let X = {xi |1 ≤ i ≤ l } (l > 1) be an l-itemset, ˆf req(X ) be the
frequency of X estimated by the estimator in Equation (3). According to [7], the mean squared

error (MSE) of ˆf req(X ) is

MSE[ ˆf req(X )] =
|D∩|(k |D∪| − k2 − |D∪| + k + |D∩|)

k (k − 2)
, (4)

where k is the size of KMV synopsis constructed under Theorem 1 for union set ∪l
i=1Dxi

. |D∩| and
|D∪| denote the number of distinct keys in the intersection and union sets of l sub stream data
{Dxi
|1 ≤ i ≤ l }, respectively, and their quantities are independent of estimator and thus can be

viewed as constant values. Then, the value of MSE[ ˆf req(X )] only depends on k , i.e., size of KMV

synopsis for ∪l
i=1Dxi

. Next, we introduce a corollary about MSE[ ˆf req(X )] as follows.

Corollary 1. MSE[ ˆf req(X )] is monotonically decreasing with k .

Proof. Let C1 = |D∩| and C2 = |D∪| denote constant values. We can view MSE[ ˆf req(X )] as a

function f (k ) of k (k > 2), i.e., f (k ) = C1 (C2k−k2−C2+k+C1 )
k (k−2) . By extending the function on continuous

real domain y (y ∈ R+), we can get f ′(y) < 0 (∀y, 2 < y ≤ C1 ≤ C2). This indicates that function
f (k ) decreases monotonically with k . �

In addition, based on Theorem 1, we have k = min(kx1 , kx2 , . . ., kxl
). Thus, the value of k would

decrease with the increase of l (the length of X ) [48]. According to Corollary 1, the frequency
f req(X ) estimated by Equation (3) has a high MSE for l-itemsets when l is large. This will reduce
the reliability of estimated frequency. In other words, the estimator in Equation (3) is not suitable
for estimating frequency of l-itemsets (l > 1).

4.1.2 Downward-Closure Analysis. We first introduce the definition of downward-closure prop-
erty [27].

Definition 3. Downward-closure Property. The downward-closure property is satisfied if the
following equation is true.

∀X ′ ⊆ X , f req(X ′) ≥ f req(X ) and

∀X ′′ ⊇ X , f req(X ′′) ≤ f req(X ).

This property is very important and is adopted by almost all frequent itemset mining (FIM)
algorithms. Unfortunately, the following corollary shows that the existing estimator violates this
property.

Corollary 2. The estimator in Equation (3) is not downward-closure.

Proof. The proof is by contradiction.
Assumption: Consider two sub multi-transaction streams Dx1 and Dx2 for items x1 and x2, along
with their KMV synopsesLx1 andLx2 of sizes kx1 and kx2 , respectively. Suppose (1) kx1 = kx2 = k

∗;
(2) the first (k∗ − 1) smallest hash values of Lx1 and Lx2 are identical; (3) the k∗th smallest value
of Lx1 (resp. Lx2 ) is U x1

(k∗ )
(resp. U x2

(k∗ )
) and U x1

(k∗ )
< U x2

(k∗ )
.

First, according to Theorem 1, the KMV synopsisL∪ = Lx1 ⊕Lx2 of union set Dx1 ∪Dx2 has size
min{kx1 ,kx2 } = k∗. The k∗th smallest value of L∪ isU x1

(k∗ )
, and the size of intersection set Lx1 ∩Lx2

is K∩ = (k∗ − 1) under the assumption. Thus, according to Equation (3), the estimated frequency

of the itemset X = {x1,x2} is ˆf req(X ) = k∗−1
k∗ ×

k∗−1
U

x1
(k∗ )

.
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Second, according to Equation (2), the estimated frequencies of x1 and x2 are ˆf req(x1) = k∗−1
U

x1
(k∗ )

and ˆf req(x2) = k∗−1
U

x2
(k∗ )

, respectively.

In order to ensure the estimator is downward-closure, both of ˆf req(X ) ≤ ˆf req(x1) and
ˆf req(X ) ≤ ˆf req(x2) should be always satisfied according to Definition 3. It is easy to get that
ˆf req(X ) < ˆf req(x1). Thus, ˆf req(X ) ≤ ˆf req(x2) should be always true, i.e., U x2

(k∗ )
≤ U x1

(k∗ )
× k∗

k∗−1 .

Considering thatU x2

(k∗ )
> U x1

(k∗ )
in our assumption,U x2

(k∗ )
should fall into a tight interval (U x1

(k∗ )
,U x1

(k∗ )
×

k∗

k∗−1 ] to guarantee the downward-closure property.
However, according to Definition 1, the hash values in the KMV synopsis follow a uniform distri-

bution over [0, 1]. SinceU x2

(k∗ )
is derived from these hash values, it should randomly and uniformly

fall into the interval (U x1

(k∗ )
, 1] rather than the tight interval (U x1

(k∗ )
,U x1

(k∗ )
× k∗

k∗−1 ].

This is a contradiction. Thus, ˆf req(X ) ≤ ˆf req(x2) is not always true. According to Definition 3,
the frequency estimated by Equation (3) is not downward-closure. �

In summary, the existing frequency estimator of Equation (3) suffers from high estimation error
and is not downward-closure.

4.2 New Itemset Frequency Estimator

To overcome these drawbacks, one of the core challenges is how to construct KMV synopsis for
union set. We propose a new method for constructing KMV synopsis of union set to reduce the
estimation error in Section 4.2.1. We present a new frequency estimator based on the new KMV
synopsis in Section 4.2.2, demonstrate that the new estimator is downward-closure in Section 4.2.3,
and prove its error bound in Section 4.2.4.

4.2.1 New KMV Synopsis for Union Set. According to Corollary 1, to reduce the MSE, an intu-
itive idea is to increase k , i.e., the size of KMV synopsis of union set. Therefore, we next present a
theorem which ensure that we can construct a larger KMV synopsis for union set compared with
that by Theorem 1 [7].

Let Lx1 and Lx2 be the KMV synopses of two sub stream data Dx1 and Dx2 , kx1 and kx2 be their
sizes, respectively, and Umax = max(U(kx1 ),U(kx2 ) ).

Theorem 2. The set L∪ = {h(tid ) |(T =< tid,Y >∈ Dx1 ∪ Dx2 ) ∧ (h(tid ) ≤ Umax )} is a size k
KMV synopsis of Dx1 ∪ Dx2 , and the kth minimum value of L∪ is U(k ) = Umax, where k = |L∪|.

Proof. The proof is straightforward based on the definition of KMV synopsis. Let S =
{h(tid ) |T =< tid,Y >∈ D∪} consists of all the hash values of transaction identities appearing
in D∪. As D∪ = Dx1 ∪ Dx2 , U(kx1 ) ∈ S and U(kx2 ) ∈ S . Therefore, U(k ) = Umax ∈ S as well, and

L∪ ⊆ S . According to the Definition 1 of KMV synopsis, L∪ is precisely the size k KMV synopsis
of D∪, and its kth minimum is just Umax. �

Theorem 2 can be extended to union of multiple data sets. The number of distinct keys in union
set Dx1 ∪ Dx2 ∪ . . . ∪ Dxl

can be estimated with its KMV synopsis L∪ of size k = |L∪|. It is
easy to find that k is generally larger than min(kx1 ,kx2 , . . . ,kxl

) in Theorem 1 since k = |L∪| ≥
| ∪l

i=1 Lxi
| ≥ min(kx1 ,kx2 , . . . ,kxl

).
With Theorem 2, we can further estimate the frequency of an l-itemset X = {xi |1 ≤ i ≤ l } by
ˆf req(x ) = ˆ|D∩| = K∩

k
×|D̂∪|. Different from the existing estimator, the size of new KMV synopsis for

union set is k = |L∪|, which is generally much larger than min(kx1 ,kx2 , . . . ,kxl
) in Theorem 1 for

the existing estimator [7]. Moreover, with the increase of l , the size of KMV synopsis constructed
by Theorem 2 increases. This will significantly reduce the estimation error for long itemsets.
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Note that constructing the KMV synopsis of union set by Theorem 2 is very expensive in practice.
Fortunately, in the context of itemset frequency estimation, we do not need to maintain the KMV
synopsis for an l-itemset (l > 1). This greatly simplifies the estimation process. See details in the
next section.

4.2.2 New Estimator. For a given l-itemsetX = {xi |1 ≤ i ≤ l }, with Theorem 2, we can construct
a KMV synopsis L∪ for union set ∪l

i=1Dxi
, which has a large size (i.e., k). Then, we can safely

employ the Maximum Likelihood Estimator (Eq.5) to estimate the size of D∪ instead of Equation (2)
since these two estimators become indistinguishable when k is large (i.e., (k − 1) ≈ k) [7].

ˆ|D∪|
MLE
=

k

U(k )
, (5)

where U(k ) is the kth minimum hash value of L∪ constructed under Theorem 2. k = |L∪|, the
computation of U(k ) is straightforward, i.e., U(k ) = max(U(kx1 ) , U(kx2 ) , . . ., U(kxl

) ). In our article,

this maximum likelihood estimator is used for single item frequency estimation.

Moreover, with the maximum likelihood estimator k
U(k )

, we can further simplify the frequency

estimation for l-itemset (l > 1) X as Equation (6).

ˆ| f req(X ) | = K∩
k
× k

U(k )
=

K∩
U(k )
, (6)

where K∩ = ∩l
i=1Lxi

is the same as that used in Equation (3), and U(k ) = max(U(kx1 ) , U(kx2 ) , . . .,

U(kxl
) ). Note that, to estimate the frequency of l-itemset l > 1, the new estimator does not need to

compute the size of KMV synopsis of the union set. This greatly simplifies the process of frequency
estimation.

Space Complex. The space complexity of our new estimator and the existing estimator [7] for
a given l-itemset X (l > 1) is dominated by the space complexity of Algorithm 1. Let Lxi

be the
inverted KMV synopsis for each single item xi ∈ X maintained in memory by Algorithm 1. (1) For
the new estimator, its space cost of KMV synopsis forX is | ∪l

i=1Lxi
| ≤ K (See Theorem 2). (2) The

space cost to construct the KMV synopsis ofX by the existing estimator is min(kx1 ,kx2 , . . . ,kxl
) ≤

K (See Theorem 1 [7]). Therefore, the space cost of both estimators is negligible comparing to the
space complexity O (K · Δ) of Algorithm 1 since Δ 	 1 in practice.

Time complexity. Comparing to Equation (3) [59, 60], the new estimator in Equation (6) is more
efficient to compute, since it only makesO (l ) comparisons to calculateU(k ) . But existing estimator
needs to not only estimate the size of union set by O (l ) comparisons but also calculate the union
set of l inverted KMV sketches of the items in X with complexity O (l · q), where q represents the
average size of inverted KMV sketch for each item of X .

4.2.3 Downward-Closure Property Analysis.

Corollary 3. The estimator of Equation (6) is downward-closure under Theorem 2.

Proof. Let X = {xi |1 ≤ i ≤ l } be an l-itemset (l > 1), and Lxi
be the KMV synopsis of Dxi

(1 ≤ i ≤ l ), X ′ = {x ′i |1 ≤ i ≤ l ′} ⊆ X , l ′ ≤ l , K∩ and K ′∩ be the sizes of ∩l
i=1Lxi

and ∩l ′
i=1Lx ′i

,

respectively. As X ′ ⊆ X , K∩ ≤ K ′∩.
According to Theorem 2,U(k ) = max(U(kx1 ) ,U(kx2 ) , . . .,U(kxl

) ) andU(k ′) = max(U(kx ′
1

) ,U(kx ′
2

) , . . .,

U(kx ′
l

) ). As X ′ ⊆ X , we can get that U(k ) ≥ U(k ′) , and so 1
U(k )
≤ 1

U(k′)
.

Considering K∩ ≤ K ′∩ and 1
U(k )
≤ 1

U(k′)
, K∩

U(k )
≤ K ′∩

U(k′)
, i.e., ˆf req(X ) ≤ ˆf req(X ′).
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Analogously, let X ′′ ⊇ X . It is easy to get that ˆf req(X ′′) ≤ ˆf req(X ) by estimator K∩
U(k )

. In

summary, according to Definition 3, we can get that the new proposed estimator in Equation (6)
is downward-closure. �

Corollary 3 enables us to incorporate the new estimator into any itemset mining algorithm
utilizing the downward-closure property over KMV synopsis.

4.2.4 Error Bound Analysis of Estimated Frequency. Theorem 2 ensures a large-size KMV syn-

opsis of union set is constructed for frequency estimation in Equation (6). K∩
U(k )

of Equation (6)

becomes indistinguishable from K∩
k
× k−1

U(k )
as k is large (i.e., k ≈ (k − 1)).

Lemma 1 shows that K∩
k
× k−1

U(k )
can be viewed as sum of a set of i.i.d. random variables. This

allows us to bound the error of K∩
k
× k−1

U(k )
by Chernoff inequality and further give an approximate

error bound of the proposed estimator in Equation (6).

Lemma 1. K∩
k
× k−1

U(k )
is distributed as sum of a set of i.i.d. weighted Bernoulli random variables.

Proof. (i) Let Dx1 and Dx2 be two sub streams with respect to items x1 and x2, along with their
KMV synopses Lx1 Lx2 , K∩ = |Lx1 ∩ Lx2 | be the size of intersection set of their KMV synopses,
L∪ be a size-k KMV synopsis of union set Dx1 ∪ Dx2 , and U(k ) be the kth minimum hash value of
L∪, D∪ = Φ(Dx1 ∪ Dx2 ) and D∩ = Φ(Dx1 ∩ Dx2 ). Then, for each transaction T ∈ Dx1 ∩ Dx2 , we can
define an adjusted weight ω of T as follows:

ω (T ) =
⎧⎪⎨
⎪
⎩

k−1
k

1
U(k )
, if T is extracted by KMV synopsis L∪

0, otherwise

(ii) According to Definition 1, KMV synopsis consists of a set of hash values following uniform
distribution [7]. This means that, ∀T ∈ Dx1 ∩ Dx2 , the probability of T being extracted by L∪ is

p (T ) = K∩
|D∩ | . With the probability p (T ), the expected value of ω (T ) is

E (ω (T )) = E (p (T ) × k−1
k

1
U(k )

) + E ((1 − p (T )) × 0)

= E ( K∩
|D∩ | ×

k−1
k

1
U(k )

) + E ((1 − K∩
|D∩ | ) × 0)

= 1
|D∩ |E ( K∩

k
× k−1

U(k )
)

E ( K∩
k
× k−1

U(k )
) = |D∩| as E ( K∩

k
× k−1

U(k )
is an unbiased estimator of |D∩|[7]. Thus, E (ω (T )) = 1.

Therefore, ω (T ) is a Bernoulli random variable with probability K∩
|D∩ | , and ω (T ) = 1 is associated

with a weight k−1
k

1
U(k )

.

(iii) As an estimation of |D∩|, K∩
k
× k−1

U(k )
can also be represented as

∑
T ∈D∩ ω (T )p (T ). There-

fore, K∩
k
× k−1

U(k )
can be viewed as sum of |D∩| i.i.d. random variables following weighted Bernoulli

distribution. �

Given an l-itemset (l > 1) X , let f req(X ) be the true frequency of X , and ˜f req(X ) be an estima-

tion of f req(X ) estimated by K∩
k
× k−1

U(k )
. According to Lemma 1, ˜f req(X ) is viewed as sum of a set

of i.i.d. random variables. This enables us to bound the error of ˜f req(X ) by Chernoff bounds.

(i) Lower tail: ∀δ ∈ (0, 1)

Pr ( ˜f req(X ) ≤ (1 − δ ) f req(X )) ≤ exp−
δ 2f r eq (X )

2 . (7)
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(ii) Upper tail: ∀δ > 0,

Pr ( ˜f req(X ) ≥ (1 + δ ) f req(X )) ≤ exp−
δ 2f r eq (X )

3 . (8)

The lower tail is to establish a lower bound of an estimated frequency, i.e., the probability of

the estimated frequency ˜f req(X ) being smaller than (1 − δ ) f req(X )) (0 < δ < 1) is less than

exp−
δ 2f r eq (X )

2 .
The upper tail is to establish an upper bound of an estimated frequency, i.e., the probability of the

estimated frequency ˜f req(X ) being greater than (1+δ ) f req(X )) (δ > 0) is less than exp−
δ 2f r eq (X )

3 .

Let ˆf req(X ) be an estimation of f req(X ) via Equation (6). As ˆf req(X ) ≈ ˜f req(X ) under The-
orem 2, we can use the error bounds in Equation (7) and Equation (8) as the approximate error

bounds of ˆf req(X ). The following section shows that these bounds are very effective for accuracy
analysis of FIM over multi-transaction stream.

4.3 Application for ϵ-Close Frequent Itemset Mining on Multi-Transaction Stream

In this subsection, we first introduce the problem of ϵ-close FIM [7, 9, 12, 46, 47], which is one of
the most popular definitions of FIM on streams. Then, we present how to integrate the proposed es-
timator into a FIM algorithm [28] to solve the ϵ-close FIM problem over multi-transaction streams.
Finally, we establish the relationship between the accuracy of FIM and the size of KMV synopsis,
and further give the guideline to set the size KMV synopsis to achieve a guaranteed accuracy of
FIM.

Problem Definition. The problem of ϵ-close frequent itemset mining [7, 9, 12, 46, 47] over multi-
transaction streams is defined as follows.

Definition 4. ϵ-close Frequent Itemset Mining. For a given multi-transaction stream data D, a
support threshold θ and a close parameter ϵ (0 < ϵ < 1), ϵ-close FIM is to find a collection of
itemsets that includes all θ -frequent itemsets and does not include any itemset whose frequency
is less than θ (1 − ϵ ) |Φ(D) |, while |Φ(D) | is the number of distinct transaction keys in D.

According to Definition 4, ϵ-close FIM loosens the restriction of support threshold θ and may
report some itemsets whose frequency falls into the interval [θ (1 − ϵ ) |Φ(D) |, θ |Φ(D) |) as results.

4.3.1 KMV Synopsis Based FP-Growth. We first compute the KMV synopsis of a multi-
transaction stream. We integrate the estimator of Equation (5) for a singleton item for constructing
FP-Tree and integrate the estimator of Equation (6) into the process of FIM. Note that the FP-Tree
over a multi-transaction stream is constructed on a new set of transactions where each transac-
tion is obtained by merging all multiple transactions with the same key. And the merging is done
during the process of KMV synopsis extraction.

The algorithm consists of three parts: (i) KMV synopsis extraction over entire stream, (ii) FP-
Tree construction over KMV synopsis, and (iii) FIM by frequent itemset growth over FP-Tree. The
algorithm takes a stream data D, size of KMV synopsis K , support threshold θ , and closeness
parameter ϵ as inputs. For the first part (line 1), we invoke function KMV_Synopsis_Extraction()
on D to maintain a KMV synopsis with size K along with Inverted KMV Sketch Lx for each item
x . For the second part (lines 2–8), we first estimate the frequency by Equation (5) for each item x

appearing in D̂, and filter the items whose estimated frequency is less than (1−ϵ/2)θ |Φ(D) |. Noted
that we use (1 − ϵ/2)θ |Φ(D) | to filter items rather than (1 − ϵ )θ |Φ(D) | in definition of ϵ-close FIM.
The reason of this trick is that it is convenient for us to establish an accuracy analysis for FIM
w.r.t. K in Corollary 4. Then, we sort the frequent items in a decreasing order of their estimated
frequencies, and construct a header table (HT ) to store these sorted frequent items. Finally, we
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invoke function KMVFPtree_Build() to construct KMVFP-Tree over D̂ based on HT . For the third
part (lines 9–10), we report the ϵ-close frequent itemsets F I on KMVFP-Tree by invoking function
KMV_FP_Growth(), in which the itemsets are generated by executing KMV_FP_Growth() recursively.
Once an itemset is generated (lines 3 – 8), we estimate its frequency by Equation (6) and report
the itemset as a result if the estimated frequency is greater than (1 − ϵ/2)θ |Φ(D) | (lines 4–5 and
9–10).

ALGORITHM 2: KMV Synopsis-Based FP-Growth

Inputs : A multi-transaction stream data D, size of KMV synopsis K , support threshold θ , closeness
parameter ϵ ;

Output : Reported frequent itemsets F I;
//Part 1: KMV synopsis extraction

1 [L,Lx , D̂]← KMV_Synopsis_Extraction (D, K )//See Algorithm 1, D̂← merging the

transactions with same key in D, and |D̂| = K
//Part 2: FP-Tree construction

2 foreach item x appearing in L do

3 ˆf req(x ) is estimated over Lx by Equation (5);

4 if ˆf req(x ) < (1 − ϵ/2)θ |Φ(D) | then
5 S ← S − {< x ,kx ,U(kx ) >}

6 Sort items of S in a decreasing order by their estimated frequencies;
7 Create a header table HT according to the sorted items, add U(kxi ) into the entry corresponding to xi of

HT ;

8 KFP_Tree← KMVFPtree_Build (D̂, HT );
//Part 3: ϵ-close FIM by FP-Growth

9 F I ← KMV_FP_Growth(KFP_Tree, ϕ, θ , ϵ);
10 return F I;

Function: KMV_FP_Growth(Tree , X , θ , ϵ)
1 if Tree contains single path P then
2 foreach Combination (denoted as β) of items in P do
3 X ′′ ← β ∪ X whose f req(X ′′) is estimated by Equation (6);

4 if ˆf req(X ′′) ≥ (1 − ϵ/2)θ |Φ(D) | then
5 Report X ′′ as a frequent itemst;

6 else
7 foreach xi in header table of Tree do
8 X ′′ ← X ∪ {xi } whose f req(X ′′) is estimated by Equation (6);

9 if ˆf req(X ′′) ≥ (1 − ϵ/2)θ |Φ(D) | then
10 Report X ′′ as a frequent itemst;

11 Construct X ′′’s conditional FP-Tree TreeX ′′ ;
12 if TreeX ′′ � ϕ then
13 KMV_FP_Growth(TreeX ′′ , X ′′, θ , ϵ);

Time complexity. The time complexity of the first part of KMV synopsis extraction isO ( |D |+K ·
m ·logK ·log |D |), wherem is the average number of items in each transaction. The time complexity

of the second part of FP-Tree construction is O ( |D̂| · Δ) = O (K · Δ). The time complexity of the
third part of ϵ-close FIM is O (F(KMVFP-Tree,θ , ϵ )), where F(KMVFP-Tree,θ , ϵ ) denotes a function
of frequent pattern tree KMVFP-Tree, support threshold θ and close parameter ϵ . It increases with
(1) the increase of the size (i.e., height and width) of KMVFP-Tree, (2) the decrease of θ , and (3)
increases of ϵ . In summary, the time complexity of Algorithm 2 is O ( |D | +K ·m · logK · log |D |) +
O (K · Δ) + O (F(KMVFP-Tree,θ , ϵ )).
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4.3.2 Accuracy Analysis of FIM. The accuracy of KMV synopsis based ϵ-FIM depends on the
size of KMV synopsis (i.e., K ). Generally, the larger the KMV synopsis is, the more accurate but
less efficient it is. We establish the quantitative relationship between the size of KMV synopsis and
the accuracy for solving ϵ-close FIM in the proposed algorithm as follows.

Corollary 4. Let θ , ϵ , and η be the given support threshold, closeness, and failure parameters,

respectively. If the size of KMV synopsis K is set as

K ≥ 24

ϵ2

(
Δ + log

5η

(1 − ϵ )θ
+ 5

)
+ 1, (9)

then the probability for the algorithm proposed in Section 4.3.1 to successfully solve the ϵ-close FIM

problem over multi-transaction stream is at least (1 - 4
5η

).

Where Δ is the maximum number of distinct items in the set of transactions with the same key
in D.

Proof. According to Definition 4, there are two situations in Algorithm 2 where ϵ-close FIM
makes an error on an itemset: (i) a θ -frequent itemset X is not reported when its estimated

frequency ˆf req(X ) < (1 − ϵ/2)θ |Φ(D) |; (ii) an infrequent itemset X with frequency smaller

than (1 − ϵ )θ |Φ(D) | is falsely reported as a result when its estimated frequency ˆf req(X ) ≥
(1 − ϵ/2)θ |Φ(D) |. Next, we attempt to bound the size of KMV synopsis (i.e., K ) such that both
the two situations occur in a very low probability.

(1) Size of KMV Synopsis for Reporting All Frequent Itemsets. Let B0 represent the event
{Not reporting all θ -frequent itemsets}. We call an itemset X θ -frequent if f req(X ) ≥ θ |Φ(D) |. The
probability that event B0 occurs can be bounded by Lemma 2 (See Proof in Appendix A).

Lemma 2. Pr (B0) ≤ 1
5η

when K ≥ 8
ϵ 2θ

(Δ + log
5η

θ
) + 1.

Where Δ is the maximum number of distinct items in the set of transactions with the same key
in D.

(2) Size of KMV Synopsis for Rejecting Infrequent Itemsets. To reject all the itemsets whose
frequencies fall into the interval [1, (1− ϵ )θ |Φ(D) |] with a high probability, we divide the interval
R = [1, (1 − ϵ )θ |Φ(D) |] into several mutual exclusive sub-intervals and bound the size of KMV
synopsis for ϵ-close FIM on each sub-interval [9].

Let ρ = (1−ϵ )θ andR = [1, ρ |Φ(D) |]. We construct a set of L sub-intervals {R1,R2, . . . ,RL}, where
Ri = (ρ |Φ(D) |/2i , ρ |Φ(D) |/2i−1] (1 ≤ i ≤ L−1),RL = (1, ρ |Φ(D) |/2L−1] and L = �log ( |Φ(D) |ρ)�. That
is, ∪L

i=1Ri = R and Ri ∩ R j = ϕ (1 ≤ i � j ≤ L). Then, the event A = {Reporting infrequent itemsets
in R} can be further divided into L events Ai = {Reporting infrequent itemsets in Ri } (1 ≤ i ≤ L)
which are independent of each other.

Next, we divide these L events into three groups. (i) B1 = {Ai |3 < i ≤ L}; (ii) B2 = {A2, A3};
and (iii) B3 = {A1}. Then, the probability that each of B1, B2, and B3 happens can be bounded by
Lemma 3 (See Proof in Appendix B), Lemma 4 (See Proof in Appendix C) and Lemma 5 (See Proof
in Appendix D), respectively.

Lemma 3. Pr (B1) ≤ 1
5η

when K ≥ ( 2
(1−ϵ )θ (Δ + log

5η

(1−ϵ )θ + 5) + 1).

Lemma 4. Pr (B2) ≤ 1
5η

when K ≥ ( 24
(1−ϵ )θ (Δ + log

5η

(1−ϵ )θ + 3) + 1).

Lemma 5. Pr (B3) ≤ 1
5η

when K ≥ ( 24
ϵ 2 (1−ϵ )θ

(Δ + log
5η

(1−ϵ )θ + 1) + 1).
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Table 2. Statistics of Multi-Transaction Stream Data

Data # transactions # items Max

T10I4D10000K 32,153,865 2,939 32

T15I6D20000K 62,747,246 3,833 41

Tweets [32] 64,268,838 54,835 38

In summary, let B represent the event “Algorithm 2 fails in solving the ϵ-close FIM problem”. B
= {B0, B1, B2, B3}. The size of KMV synopsis in Equation (9) is greater than the value of K bounded
by Lemmas 2–5 with respect to each event Bi (0 ≤ i ≤ 3). Applying union bound, we can get the
probability of event B happening as follows.

Pr (KMV based FIM fails) ≤ ∑3
i=0 Pr (Bi )

≤ 1
5η
+ 1

5η
+ 1

5η
+ 1

5η
= 4

5η

Therefore, the probability that KMV synopsis based FIM (Algorithm 2) successfully solves an ϵ-
close FIM problem is 1 − 4

5η
. �

According to Corollary 4, the bounded size of KMV synopsis is independent of either the number
of transactions inD or the number of distinct keys inD, and only depends on the maximum number
of distinct items in the set of transactions with same key in D. This is a very useful characteristic
for handling FIM problem on multi-transaction stream data since the number of transactions of
the stream data is usually quite large and even infinite.

5 EXPERIMENTAL STUDY

We introduce the experimental setting in Section 5.1. We report the comparison between differ-
ent itemset frequency estimators in Section 5.2, and present the experimental results of FIM in
Section 5.3.

5.1 Experimental Setup

Data Sets. We conduct experiments on three stream data. Two synthetic retail multi-transaction
streams named “T10I4D10000K” and “T15I6D20000K”2 are generated by the IBM data generator3

where each customer might generate multiple transactions. The third stream data is the real world
massive multi-transaction tweet sentence stream with 64M transactions from 13.4M users. Table 2
shows the number of transactions, number of distinct items, and the maximum number of distinct
items in the union of transactions with the same key.

Frequency Estimators. For l-itemset (l > 1), the estimator of Equation (3) is employed as a
baseline to compare with our proposed estimator in Equation (6). We use KMVEl (KMV synopsis
based Estimator) to denote the existing estimators for l-itemset (l > 1), and eKMVEl (enhanced
KMV synopsis based Estimator) to denote the proposed estimators. Note that the existing sampling
approaches such as reservoir sampling cannot be used on our datasets as discussed in Section 3.1.

FIM Algorithms. We compare the following four KMV synopsis based algorithms. (1) The KMV
synopsis based FIM algorithm proposed in [59, 60] which integrates the existing estimator [7] into
the Apriori [2] algorithm, which is denoted as FIMKA. (2) We integrate the existing estimators

2The numbers following “T”, “I” ,and “D” denote the average transaction size, the average large itemset size, and the number

of customers, respectively. The maximum number of transactions for each customer is 5. And the key of each transaction

is defined as the customer id.
3Available at http://www.philippe-fournier-viger.com/spmf/.
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Table 3. Parameter Setting for FIM

Parameter (notation) Settings Default

Support threshold (θ ) 0.1% to 1% 0.5%

Closeness parameter (ϵ) 0.05 to 0.1 0.1

Failure parameter (η) 8 to 40 8

[7, 59, 60] into FP-Growth algorithm [28], which is denoted by FIMKFP. (3) We integrate the pro-
posed estimators with Apriori algorithm [2], which is denoted by FIMeKA. 4) The proposed estima-
tors are integrated with FP-Growth algorithm [28], which is denoted by FIMeKFP.

Note that as the existing estimator [7, 59, 60] is not downward closure, algorithms FIMKAand
FIMKFP do not have a stop condition. To avoid this, we assume that the downward closure property
holds for them too.

Evaluation Metrics. To evaluate the effectiveness of our proposed estimator, we employ the met-

ric Absolute Ratio Error (ARE) [7] defined as
| ˆf r eq (X )−f r eq (X ) |

f r eq (X ) . To evaluate the effectiveness

of FIM algorithms, the commonly used metrics Precision and Recall [27, 59, 60, 62] and F1 = 2
Pr ecision×Recall
Pr ecision+Recall

are employed. For efficiency, we report the runtime.

Parameter Settings. There are three important parameters for ϵ-close FIM: support threshold
θ , closeness parameter ϵ , and failure parameter η. We analyze the effect of these parameters on
performance of different FIM algorithms by varying one while fixing the others as default values.
The setting of each parameter is shown in Table 3. For a given setting for the three parameters,
we bound the size of KMV synopsis K by Corollary 4. To make a fair comparison, we set the same
size of synopsis for all FIM algorithms.

Objectives. We aim to empirically evaluate the following aspects: (i) The accuracy of the proposed
estimator eKMVEl by comparing with KMVEl (l > 1); (ii) The accuracy and efficiency of the
four FIM algorithms over streams; (iii) The effect of the lengths of streams on the performance
of the four FIM algorithms over streams; and (iv) The effect of the size of KMV synopsis on the
performance of our proposed algorithm FIMeKFP.

All algorithms are implemented in Java on a workstation with Intel(R) Xenon(R) CPU E5-1620
v2 @3.7GHZ and 16G RAM. We use the SIMD-oriented Fast Mersenne Twister (SFMT) by fol-
lowing the work [59, 60] to simulate the hash function in Algorithm 1 for KMV synopsis extraction
from a stream.

5.2 Evaluation on Estimators

For each stream, we first generate l-itemsets (l = 2, 3, 4, and 5) whose frequency is greater than
0.1%, and record the true frequency of each itemset. Afterwards, we estimate their frequency by
using different estimators under different size of KMV synopsis extracted from the whole stream
by Algorithm 1. We vary the size of KMV synopsis of the whole stream from 10,000 to 1,000,000.
Figure 1 shows the comparison of different estimators in terms of ARE on three streams.

Estimation Error Comparison. Our proposed estimators (i.e., eKMVEl , l = 2, 3, 4, and 5) outper-
form the respective existing ones ( i.e., KMVEl , l = 2, 3, 4, and 5) at least by an order of magnitude
in terms of ARE on all the three streams. This is because, to estimate the frequency of an l-itemset
X (l > 1), as discussed in Section 4.2, by using the same KMV synopsis extracted by Algorithm 1
on the original stream, our estimator can construct a much larger KMV synopsis of X comparing
to the existing estimator. Furthermore, according to Section 4.1.1, a larger synopsis of X results in

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 2, Article 29. Publication date: July 2021.



29:18 G. T. Wang et al.

Fig. 1. Comparisons of different estimators in terms of ARE on three streams.

Fig. 2. Space cost comparisons over twitter stream.

a lower estimation error. Therefore, the estimation error of our proposed estimators is much lower
than that of the existing ones.

Note that, according to the space complexity analysis in Section 4.2.2, the space cost of both
estimators is dominated by Algorithm 1. The cost of the KMV synopsis for an l-itemset constructed
by both estimators is negligible comparing to the space cost of Algorithm 1. Figure 2 shows the
space cost of (1) the new eKMV estimator (the black line with ×), (2) the existing KMV estimator
(the blue line with ◦ ), (3) Algorithm 1 (the dotted red line), and (4) the inverted KMV synopsis
of a single item (the red line with �) on Twitter stream. The results on the other two streams are
qualitatively similar and thus omitted. We can observe that, the average space cost of the inverted
KMV synopsis for a single item (the red line with �) is much smaller than that of Algorithm 1.
Both estimators construct the KMV synopsis for an l-itemset X (1 < l � Δ) on l inverted KMV
synopses of l single items in X . Therefore, the space cost of the KMV synopsis for X constructed
by both estimators is also much smaller than the cost of Algorithm 1. That’s why the lines w.r.t.
both estimators overlap with the line w.r.t. Algorithm 1 in Figure 2. i.e., the dominant space cost
of both estimators comes from Algorithm 1. This is consistent with space complexity analysis in
Section 4.2.2.

Varying the Size of KMV Synopsis. With increasing the size of KMV synopsis of the whole
stream, the estimation error ARE of our proposed estimators (i.e., eKMVEl , l = 2, 3, 4, and 5)
shows a declined tendency on all the three streams. This is because, the size of KMV synopsis con-
structed by our estimator for an l-itemsetX increases when the size of KMV synopsis of the whole
stream increases. And a larger KMV synopsis forX results in a lower estimation error according to
Section 4.1.1. In contrast, the estimation error of the existing estimators (i.e., KMVEl , l = 2, 3, 4, and
5) is not sensitive to the size of KMV synopsis K of the whole stream. That is, a larger KMV syn-
opsis K does not mean a lower ARE for the existing estimators. This phenomenon seems counter-
intuitive at first glance. In fact, to estimate the frequency of an l-itmeset X , both estimators need
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Fig. 3. Runtime of FIM w.r.t. support threshold θ .

to construct the KMV synopsis for X based on l invert KMV synopses w.r.t. each single item of
X . However, the KMV synopsis of X constructed by the existing estimator is much smaller than
that constructed by ours according to Section 4.2.1. In this case, we can get that, the estimation

error ARE of the existing estimator is dominated by the ratio between the sizes of KMV synopsis of

X constructed by our estimator and the existing estimator. And this ratio is independent of the size

of KMV synopsis K of the original stream. The detailed analysis of this phenomenon is given in
Appendix E.

Varying Length of Itemset. For the l-itemsets (l > 1), with the increase of l (from 2 to 5), the
estimation error ARE of our estimators generally decreases. For example, the ARE of eKMVE3,
eKMVE4, and eKMVE5 is generally smaller than that of eKMVE2 over all the three streams. In
contrast, the ARE of the existing estimators increases with l on the streams “T10I4D10000K” and
“T15I6D20000K”. This is because that, based on the same KMV synopsis extracted from the original
stream by Algorithm 1, the size of KMV synopsis constructed by our estimator for the l-itemsets
would increase with l . By comparison, the size of KMV synopsis constructed by the existing es-
timator for the same l-itemsets would decrease as l increases (according to Section 4.2.1). The
estimation error of an l-itemset relies on the size of KMV synopsis constructed for the itemset.
A larger synopsis results in a lower estimation error. Therefore, the estimation error ARE of our
estimators generally decreases as l increases. Note that our estimator can construct a larger KMV
synopsis for an l-itemset comparing to the existing estimator. However, their space complexities
are the same since the space cost of both estimators is dominated by Algorithm 1 (See Figure 2 and
the space complexity analysis in Section 4.2.2).

5.3 Results of Frequent Itemset Mining

5.3.1 Evaluation on Different Parameters. Varying Support Threshold θ We fix ϵ = 0.1, η =
8, and vary θ from 0.1% to 1%. Figure 3 shows the runtime of different FIM algorithms over three
streams. Tables 4, 5, and 6 shows the comparisons of different FIM algorithms in terms of Precision,
Recall, and F1.

As shown in Figure 3, (i) with the decrease of θ , the runtime of all algorithms increases. (ii)
FP-Growth based FIM algorithms are faster than Apriori based ones (i.e., FIMKFP > FIMKA and
FIMeKFP > FIMeKA) especially when the support threshold is small. (iii) Our proposed algorithms
FIMeKFP is significantly faster than FIMKFP in the worst case of θ = 0.1%. This is because, many
longer itemsets should be reported as results under such a lower support threshold. However, the
previous estimator [7, 59, 60] usually makes an over-estimation for l-itemsets (l > 1), this results
in that FIMKFP generates more false frequent itemsets and thus takes more time.

As shown in Tables 4 and 5, our proposed algorithms FIMeKFP and FIMeKA are slightly influenced
by θ and usually achieve both high Precision and Recall comparing to FIMKFP and FIMKA. With
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Table 4. Varying θ over T10I4D10000K

θ (%)
FIMeKFP FIMKFP FIMeKA FIMKA

P R F1 P R F1 P R F1 P R F1

1 0.99 0.97 0.98 0.87 1 0.93 0.98 0.93 0.95 0.97 0.93 0.95

0.9 0.96 0.97 0.96 0.86 1 0.92 0.99 0.95 0.97 0.98 0.95 0.96

0.8 0.99 0.97 0.98 0.89 1 0.94 0.99 0.96 0.97 0.97 0.96 0.96

0.7 0.96 0.98 0.97 0.86 1 0.92 0.97 0.98 0.97 0.92 0.98 0.95

0.6 0.97 0.99 0.98 0.83 1 0.91 0.97 0.98 0.97 0.9 0.98 0.94

0.5 0.97 0.97 0.97 0.83 0.99 0.90 0.96 0.96 0.96 0.86 0.97 0.91

0.4 0.98 0.99 0.98 0.82 1 0.90 0.98 0.97 0.97 0.83 0.97 0.89

0.3 0.98 0.98 0.98 0.78 1 0.88 0.97 0.98 0.97 0.79 0.98 0.87

0.2 0.98 0.98 0.98 0.81 1 0.90 0.96 0.98 0.97 0.79 0.99 0.88

0.1 0.98 0.99 0.98 0.84 0.99 0.91 0.97 0.96 0.96 0.86 0.96 0.91

� “R”: Recall, “P”: Precision.

Table 5. Varying θ over T15I6D20000K

θ (%)
FIMeKFP FIMKFP FIMeKA FIMKA

P R F1 P R F1 P R F1 P R F1

1 1 0.97 0.98 0.9 1 0.95 1 0.97 0.98 1 0.97 0.98

0.9 0.98 1 0.99 0.85 1 0.92 0.95 0.97 0.96 0.95 0.97 0.96

0.8 0.97 0.99 0.98 0.86 1 0.92 0.96 0.98 0.97 0.96 0.98 0.97

0.7 0.96 0.96 0.96 0.84 0.99 0.91 0.94 0.97 0.95 0.91 0.97 0.94

0.6 0.98 0.97 0.97 0.89 1 0.94 0.98 0.97 0.97 0.91 0.97 0.94

0.5 0.97 0.99 0.98 0.87 1 0.93 0.97 0.96 0.96 0.88 0.96 0.92

0.4 0.97 0.98 0.97 0.83 0.99 0.90 0.97 0.98 0.97 0.83 0.98 0.90

0.3 0.97 0.98 0.97 0.79 0.99 0.88 0.97 0.97 0.97 0.77 0.97 0.86

0.2 0.97 0.98 0.97 0.75 1 0.86 0.96 0.98 0.97 0.73 0.99 0.84

0.1 0.97 0.98 0.97 0.86 1 0.92 0.97 0.97 0.97 0.88 0.97 0.92

Table 6. Varying θ over Twitter Stream

θ (%)
FIMeKFP FIMKFP FIMeKA FIMKA

P R F1 P R F1 P R F1 P R F1

1 0.98 0.99 0.98 0.43 1 0.60 0.97 0.99 0.98 0.22 1 0.36

0.9 0.98 1 0.99 0.45 1 0.62 0.98 1.00 0.99 0.21 1 0.35

0.8 0.99 1 0.99 0.45 1 0.62 0.99 1.00 0.99 0.25 1 0.40

0.7 0.99 0.99 0.99 0.44 1 0.61 0.97 0.99 0.98 0.22 1 0.36

0.6 1 0.99 0.99 0.45 1 0.62 0.98 0.99 0.98 0.22 1 0.36

0.5 0.99 0.99 0.99 0.60 0.99 0.75 0.99 0.99 0.99 0.3 0.99 0.46

0.4 0.99 0.99 0.99 0.54 0.995 0.70 0.98 0.99 0.98 0.28 0.99 0.44

0.3 0.98 0.99 0.98 0.43 1 0.60 0.98 0.99 0.98 0.23 0.99 0.37

0.2 0.98 0.96 0.97 0.41 1 0.58 0.84 0.98 0.90 0.23 0.99 0.37

0.1 0.94 0.97 0.95 0.60 0.99 0.75 0.98 0.99 0.98 0.29 0.99 0.45

the decease of θ , the performance of FIMKFP and FIMKA drops in general. This is because, more l-
itemsets (l > 1) becomes frequent as θ decreases, and the existing estimator shows high estimation
error and usually get a too great estimation for these itemsets. This leads to FIMKFP and FIMKA

report more infrequent itemsets as results and thus have low Precision. For Table 6, there are many
longer itemsets in Twitter stream even θ is large. FIMKFP and FIMKA usually report too many
false frequent itemsets. This results in quite poor Precision and F1 comparing to our proposed
algorithms FIMeKFP and FIMeKA.

Varying Close Parameter. ϵ We vary ϵ from 0.05 to 0.1 while fixing θ = 0.5%, andη = 8. The
Precision, Recall, and F1 of different FIM algorithms are shown in Tables 7, 8, and 9. We observe
that the accuracy of different FIM algorithms usually increases with the decrease of ϵ . This can be
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Table 7. Varying ϵ over T10I4D10000K

ϵ
FIMeKFP FIMKFP FIMeKA FIMKA

P R F1 P R F1 P R F1 P R F1

0.1 0.97 0.97 0.97 0.83 0.99 0.90 0.96 0.96 0.96 0.86 0.97 0.91

0.09 0.97 0.97 0.97 0.84 0.99 0.91 0.97 0.96 0.96 0.87 0.97 0.92

0.08 0.99 0.97 0.98 0.85 1.00 0.92 0.98 0.97 0.97 0.88 0.97 0.92

0.07 0.98 0.98 0.98 0.86 1.00 0.92 0.98 0.97 0.97 0.88 0.97 0.92

0.06 0.99 0.98 0.98 0.87 1.00 0.93 0.99 0.97 0.98 0.89 0.97 0.93

0.05 0.99 0.99 0.99 0.88 1.00 0.94 0.99 0.97 0.98 0.89 0.97 0.93

Table 8. Varying ϵ over T15I6D20000K

ϵ
FIMeKFP FIMKFP FIMeKA FIMKA

P R F1 P R F1 P R F1 P R F1
0.1 0.97 0.99 0.98 0.87 1 0.93 0.97 0.96 0.96 0.88 0.96 0.92
0.09 0.97 0.98 0.97 0.88 1 0.94 0.97 0.97 0.97 0.89 0.97 0.93
0.08 0.99 0.98 0.98 0.87 1 0.93 0.97 0.98 0.97 0.88 0.98 0.93
0.07 0.99 0.99 0.99 0.88 1 0.94 0.98 0.98 0.98 0.89 0.98 0.93
0.06 0.99 0.99 0.99 0.90 1 0.95 0.98 0.99 0.98 0.89 0.99 0.94
0.05 0.99 1 0.99 0.90 1 0.95 0.98 0.99 0.98 0.89 0.99 0.94

Table 9. Varying ϵ over Twitter Stream

ϵ
FIMeKFP FIMKFP FIMeKA FIMKA

P R F1 P R F1 P R F1 P R F1

0.1 0.99 0.99 0.99 0.60 0.99 0.75 0.99 0.99 0.99 0.30 0.99 0.46

0.09 0.99 0.99 0.99 0.60 0.99 0.75 0.98 0.99 0.98 0.29 0.99 0.45

0.08 0.99 0.99 0.99 0.60 0.99 0.75 0.99 0.99 0.99 0.30 0.99 0.46

0.07 0.99 0.99 0.99 0.61 0.99 0.75 0.99 0.99 0.99 0.30 0.99 0.46

0.06 0.99 0.99 0.99 0.61 0.99 0.75 0.99 0.99 0.99 0.30 0.99 0.46

0.05 0.99 0.99 0.99 0.61 0.99 0.75 0.99 0.99 0.99 0.30 0.99 0.46

Fig. 4. Runtime of FIM w.r.t. closeness parameter ϵ .

attributed to two reasons: First, a smaller ϵ results in a larger synopsis (according to Equation (9)),
and a larger synopsis generally yields better accuracy for FIM. Second, a smaller ϵ means that the
probability of reporting infrequent itemsets as results is low (according to Definition 4).

Tables 7–9 also show that our FIM algorithms FIMeKFP and FIMeKA achieve both high Recall and
Precision, and is significant superior to FIMKFP and FIMKA in terms of F1. In contrast, algorithms
FIMKFP and FIMKA that employ previous estimators [7, 59, 60] have low precision and F1 although
they usually achieve high Recall. The precision of FIMKFP and FIMKA is particularly low on Twitter
stream as shown in Table 9. This is due to the fact that many l-itemsets (l > 1) are discovered in
Twitter stream and the estimators [7, 59, 60] tend to over-estimate the frequencies of long itemsets,
and thus many infrequent itemsets are reported as results wrongly.

ACM Transactions on Knowledge Discovery from Data, Vol. 16, No. 2, Article 29. Publication date: July 2021.



29:22 G. T. Wang et al.

Table 10. Varying η over T10I4D10000K

η
FIMeKFP FIMKFP FIMeKA FIMKA

P R F1 P R F1 P R F1 P R F1

8 0.97 0.97 0.97 0.83 0.99 0.90 0.96 0.96 0.96 0.86 0.97 0.91

16 0.97 0.97 0.97 0.84 0.99 0.91 0.96 0.97 0.96 0.86 0.97 0.91

24 0.97 0.97 0.97 0.84 0.99 0.91 0.97 0.96 0.96 0.86 0.96 0.91

32 0.97 0.97 0.97 0.83 0.99 0.90 0.97 0.96 0.96 0.86 0.96 0.91

40 0.97 0.97 0.97 0.86 1.00 0.92 0.99 0.98 0.98 0.57 0.99 0.72

Table 11. Varying η over T15I6D20000K

η
FIMeKFP FIMKFP FIMeKA FIMKA

P R F1 P R F1 P R F1 P R F1

8 0.97 0.99 0.98 0.87 1 0.93 0.97 0.96 0.96 0.88 0.96 0.92

16 0.97 0.99 0.98 0.86 1 0.92 0.97 0.97 0.97 0.88 0.97 0.92

24 0.97 0.99 0.98 0.86 1 0.92 0.97 0.97 0.97 0.88 0.97 0.92

32 0.97 0.99 0.98 0.86 1 0.92 0.97 0.97 0.97 0.88 0.97 0.92

40 0.97 0.99 0.98 0.81 1 0.90 0.98 0.98 0.98 0.62 0.99 0.76

Table 12. Varying η over Twitter Stream

η
FIMeKFP FIMKFP FIMeKA FIMKA

P R F1 P R F1 P R F1 P R F1

8 0.99 0.99 0.99 0.60 0.99 0.75 0.99 0.99 0.99 0.30 0.99 0.46

16 0.99 0.99 0.99 0.60 0.99 0.75 0.98 0.99 0.98 0.29 0.99 0.45

24 0.99 0.99 0.99 0.60 0.99 0.75 0.98 0.99 0.98 0.29 0.99 0.45

32 0.99 0.99 0.99 0.60 0.99 0.75 0.98 0.99 0.98 0.29 0.99 0.45

40 0.99 0.99 0.99 0.40 1 0.57 0.91 0.97 0.94 0.22 0.99 0.36

Figure 4 shows the runtime of all FIM algorithms increases with the decrease of ϵ . This is because
smaller ϵ results in a larger synopsis for FIM, which need more time to process. As we observed
in the last set of experiments, the FIM algorithms powered by our estimator outperform their
counterparts using the previous estimator, i.e., FIMeKFP > FIMKFP and FIMeKA > FIMKA. This is
because on comparison to existing estimators, downward-closure property helps to stop itemset
growth in advance and reduce the search space of itemsets, which is why this property can help
us speedup both Apriori and FP-growth.

Additionally, we observe that the FP-Growth algorithm always runs faster than the Apriori
based algorithms, irrespective of the estimators employed.

Varying Failure Parameter. η We vary η from 8 to 40 while fixing θ = 1%, ϵ = 0.1. Tables 10,
11, and 12 report the Precision, Recall, and F1 of different FIM algorithms. We observe that the
algorithms based on our estimator has both high precision and recall on all the three streams. For
example, the Recall of FIMeKFP is at least 97% on T10I4D10000K and at least 99% on the other two
streams and its precision is at least 97%. Although algorithms FIMKFP and FIMKA achieve high
Recall as well, their Precision is much lower comparing to FIMeKFP and FIMeKA. For example, the
highest Precision of FIMKFP is 87% on T10I4D10000K, 88% of FIMKA on T15I6D20000K, and 60% on
Twitter. This results in signifiant better F1 comparing to FIMeKFP and FIMeKA.

Figure 5 compares the runtime of different FIM algorithms over three streams. As shown in
Figure 5, the runtime of algorithms FIMeKFP and FIMeKA, which use our proposed estimator, is
almost not affected by θ over all the three streams. We can make similar observation for algorithms
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Fig. 5. Runtime of FIM w.r.t. failure parameter η.

Fig. 6. Runtime of FIM w.r.t. stream length over twitter.

Table 13. Varying Stream Length over Twitter

|D | FIMeKFP FIMKFP FIMeKA FIMKA

10k P R F1 P R F1 P R F1 P R F1

100 1 0.99 0.99 0.6 0.99 0.75 0.99 0.99 0.99 0.31 0.99 0.47

200 0.99 0.99 0.99 0.69 1 0.82 1 0.97 0.98 0.54 0.98 0.70

300 0.99 1 0.99 0.53 1 0.69 0.99 0.99 0.99 0.41 1.00 0.58

400 0.99 0.99 0.99 0.55 1 0.71 0.99 0.99 0.99 0.33 1.00 0.50

500 0.99 0.99 0.99 0.55 1 0.71 0.99 0.99 0.99 0.33 1.00 0.50

600 0.99 0.99 0.99 0.55 1 0.71 0.99 0.99 0.99 0.32 1.00 0.48

700 0.99 1 0.99 0.58 1 0.73 0.99 0.99 0.99 0.31 0.99 0.47

800 0.99 0.99 0.99 0.6 1 0.75 0.99 0.99 0.99 0.31 0.99 0.47

900 0.99 1 0.99 0.6 1 0.75 0.99 0.99 0.99 0.31 0.99 0.47

1000 0.99 0.99 0.99 0.56 1 0.72 0.99 0.99 0.99 0.31 1.00 0.47

FIMKFP and FIMeKA. This is because the efficiency of these algorithms mainly depends on the size
of KMV synopsis, and the failure parameter η has very little effect on the synopsis size.

Varying Length of Stream. This set of experiments is to evaluate the effect of the length of
stream on different FIM algorithms. We vary the stream length from 100K to 1,000K while setting
θ = 0.5%, ϵ = 0.1, η = 8. The experimental results on the three streams are qualitatively similar and
we only report the result on the Twitter stream due to the space limitation. Table 13 shows that
FIMeKFP and FIMeKA achieve both high Recall and Precision (99% at least) for different length of
streams, and the results are consistent over the different lengths. In contrast, the highest Precision
of FIMKFP (resp. FIMKA) is only 69% (resp. 54%), this causes their F1 values drops significantly. The
runtime is shown in Figure 6. Similar to the results in previous experiments, the FIM algorithms
using our new estimators always run faster than the counterparts using the previous estimators.
The observation holds for different lengths of streams.
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Table 14. Varying Number of Distinct Items over T10I4D10000K

# items
FIMeKFP FIMKFP FIMeKA FIMKA

P R F1 P R F1 P R F1 P R F1

500 1 0.99 0.99 0.91 1 0.95 0.99 0.99 0.99 0.93 0.97 0.95

1,000 1 0.99 0.99 0.91 1 0.95 1 0.99 0.99 0.92 0.97 0.94

1,500 1 0.99 0.99 0.90 1 0.95 0.99 0.99 0.99 0.9 0.97 0.93

2,000 0.99 0.99 0.99 0.90 1 0.95 0.99 0.97 0.98 0.9 0.97 0.93

Fig. 7. Impact of size of KMV synopsis on proposed FIM algorithm FIMeKFP over three stream data.

Varying Number of Distinct Items. This set of experiments is to evaluate the effect of number
of distinct items appearing in stream on different FIM algorithms. We vary the number of distinct
items from 500 to 2,000 based on “T10I4D10000K”4, while setting θ = 0.5%, ϵ = 0.1, η = 8. Table 14
shows that the algorithms FIMeKFP and FIMeKA based on our estimator have both high precision
and recall. The results are consistent over the different distinct item numbers. In comparison, al-
though algorithms FIMKFP and FIMKA achieve high recall, their precision and F1 are signifiant
lower and further drop when then number of distinct items increases.

5.3.2 Evaluation of Size of KMV Synopsis for FIM. Recall we establish the relationship between
the size of KMV synopsis and the accuracy of the FIM algorithms using our new estimators in
Section 4.3.2, and Corollary 4 is proposed to guide the setting for the size of KMV synopsis with
a theoretical bound on accuracy. We vary the size of KMV synopsis from 10K to 1,000K, and run
FIMeKFP under the default settings of θ = 0.5% and ϵ = 0.1. Note that the similar results are from
FIMeKA. Recall we establish the relationship between the size of KMV synopsis and the accuracy
of the FIM algorithms using our new estimators in Section 4.3.2, and Corollary 4 is proposed to
guide the setting for the size of KMV synopsis with a theoretical bound on accuracy. We vary the
size of KMV synopsis from 10K to 1,000K, and run FIMeKFP under the default settings of θ = 0.5%
and ϵ = 0.1. Note that the similar results are from FIMeKA.

Figure 7 shows the Recall and Precision of FIMeKFP over the three streams under different sizes
of KMV synopsis. The vertical dotted line in Figure 7 indicates the size of KMV synopsis by follow-
ing the bound established by Corollary 4 under default parameter setting for FIM. We make the
following observation: (i) As the size of KMV synopsis increases, the performance of FIMeKFP first
increases rapidly and then grows slowly in terms of both Precision and Recall over all the three
streams. (ii) The size of KMV synopsis by following the bound in Corollary 4 results in at least
96% Precision and Recall. This indicates that Corollary 4 is effective in bounding the size of KMV

4For example, to generate data stream with 500 distinct items, we first sampled 500 distinct items from “T10I4D10000K”, and

then replaced the items beyond these sampled 500 ones in each transaction by randomly selected items from 500 distinct

items.
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synopsis for FIM. (iii) Although the length of these stream data varies significantly, the size of KMV
synopsis bounded by Corollary 4 is only hundreds of thousands, which is a very small fraction of
the original stream. Specifically, the fraction of the KMV synopsis to the original stream is only
0.34% for “T10I4D10000K”, 0.21% for “T15I620000K”, and 0.19% for Twitter stream, respectively.
The bounded size of KMV synopsis by Corollary 4 is independent of the length of the original
stream, whose size may be infinite. This is very useful in practice.

6 CONCLUSIONS

In this article, we focus on a new format of streaming data (i.e., multi-transaction stream) where
multi-transactions are associated with the same key and attempt to estimate the frequency of
itemsets over massive such stream. We propose a new KMV-based method for itemset frequency
estimation and apply it to the problem of FIM over multi-transaction stream. We first theoretically
showed that the existing KMV-based estimator has low accuracy even for the short itemsets and
does not satisfy the important downward-closure property. Then we put forward an enhanced
KMV-based frequency estimator to address the above two issues. Afterwards, we integrated the
new estimator into the FP-Growth algorithm to solve the well-known problem of ϵ-close frequent
itemset mining in stream analysis. We also provided a comprehensive theoretical analysis on the
estimator size required for a given the accuracy guarantee. Finally, we thoroughly evaluated the
proposed new estimator and FIM algorithm over three popular stream datasets. The comprehen-
sive experiments clearly showed the new estimator outperforms the existing work by a big margin,
especially for long itemset. The new FIM algorithm is more efficient and meanwhile can signifi-
cantly improve the precision of the results while keeping a competitive recall.

APPENDICES

A PROOF OF LEMMA 2

Proof. Let X be a θ -frequent itemset, and ˆf req(X ) be the frequency of X estimated by the
proposed estimator. According to the lower tail of Equation (7), if we set δ = ϵ/2, the probability
that X is not reported by Algorithm 2 is

Pr (X is not reported) = Pr ( ˆf req(X ) < (1 − ϵ/2)θ |Φ(D) |)
≤ Pr ( ˆf req(X ) < (1 − ϵ/2) f req(X ))

≤ exp−
ϵ 2 |Φ(D ) |θ

8 .

Meanwhile, ∀θ ∈ (0, 1), the number of θ -frequent itemsets is at most 2Δ

θ
according to [9], where

Δ is the maximum number of distinct items in the set of transactions with same identity inD. Then,
by applying the union bound, we get,

Pr (B0) ≤ 2Δ

θ
exp−

−ϵ 2 |Φ(D ) |θ
8 .

Let 2Δ

θ
exp−

−ϵ 2 |Φ(D ) |θ
8 ≤ 1

5η
. Replacing |Φ(D) | by K−1

U(K )
estimated based on the KMV synopsis of D

with size K , we get

U(K ) ≤
(K − 1)ϵ2θ

8(log (5η/θ ) + Δ)
.

To ensure this equation is true, i.e., Pr (B0) ≤ 1
5η

. As U(K ) ∈ (0, 1), we can set
(K−1)ϵ 2θ

8(log (5η/θ )+Δ) ≥ 1.

By solving this inequality, we get K ≥ 8
ϵ 2θ

(Δ + log
5η

θ
) + 1. �
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B PROOF OF LEMMA 3

Proof. B1 = {Ai |3 < i ≤ L}. We first give the probability that each even Ai happens. Ai is an event
that the itemsets whose frequency falls into the region Ri (i > 3) are falsely reported as results
by Algorithm 2. Let X be an itemset with frequency falling into the interval Ri , that is, f req(X ) ∈
(ρ |Φ(D) |/2i , ρ |Φ(D) |/2i−1]. According to Algorithm 2, X is falsely reported if ˆf req(X ) ≥ (1 −
ϵ/2)θ |Φ(D) |.

As 1−ϵ/2
1−ϵ

≥ (1+ ϵ/2), considering ρ = (1− ϵ )θ , we get that (1− ϵ/2)θ |Φ(D) | ≥ (1+ ϵ/2)ρ |Φ(D) |.
Meanwhile, as f req(X ) ≤ ρ |Φ(D) |/2i−1, the probability of X being falsely reported is

Pr (X is reported) = Pr ( ˆf req(X ) ≥ (1 − ϵ/2)θ |Φ(D) |)
≤ Pr ( ˆf req(X ) ≥ (1 + ϵ/2)ρ |Φ(D) |)
≤ Pr ( ˆf req(X ) ≥ 2i−1 (1 + ϵ/2) f req(X )).

Let δ = 2i−1 (1 + ϵ/2) − 1. By applying the general form of upper tail of Chernoff bound [4], i.e.,

Pr ( ˆf req(X ) ≥ (1 + δ ) f req(X )) ≤ (
expδ

(1+δ )(1+δ ) )f r eq (X ) , we get

Pr (X is reported) ≤ (
expδ

(1+δ )(1+δ ) )f r eq (X )

≤ (
expδ

(1+δ )(1+δ ) ) |Φ(D ) |ρ2−i
Since

expδ

(1+δ )(1+δ ) < 1

≤ (
exp1

(1+δ ) ) (1+δ ) |Φ(D ) |ρ2−i

= (
exp1

2i−1 (1+ϵ/2)
) (1+ϵ/2) |Φ(D ) |ρ/2

≤ ( 1
2i−2 (1+ϵ/2)

) (1+ϵ/2) |Φ(D ) |ρ/2

≤ ( 1
2i−3 ) (1+ϵ/2) |Φ(D ) |ρ/2

≤ 2−(i−3) |Φ(D ) |ρ/2.

By replacing |Φ(D) | as K−1
U(K )

and recalling U(K ) ≤ 1, then

Pr (X is reported) ≤ 2−(j−3)(K−1)ρ/2

If we take the size of KMV synopsis as K ≥ 2
ρ

(Δ + log
5η

ρ
+ 5) + 1, we get

Pr (X is reported) ≤ 2
−(j−3)(Δ+log

5η
ρ +5)
.

Once we get the probability of making an erroneous report for a single itemset, as the number of

itemsets in sub-interval Ri = (ρ |Φ(D) |/2i , ρ |Φ(D) |/2i−1] is at most 2Δ

ρ/2i = 2Δ+i

ρ
[9]. Then, applying

the union bound, the probability of event Ai happening is

Pr (Ai ) ≤ 2Δ+i

ρ
· 2−(i−3)(Δ+log

5η
ρ +5)

= 1
5η

2
−(i−4)(Δ+log

5η
ρ +5)+i−5

≤ 1
5η

2−7(i−4)+i−5As Δ and log 5h
ρ
≥ 1

= 1
5η

2−6i+23 = 1
5η

2(−5i+20)−i+3

≤ 1
5η

2−(i−3) since i ≥ 4.

Now, we can get that if we set the size of KMV synopsis as K ≥ ( 2
ρ

(Δ + log
5η

ρ
+ 5) + 1), the

probability of event Ai is bounded by 1
5η

2−(i−3) when i > 3, where ρ = (1− ϵ )θ . Since event B1 is a

union of a set of independent events {Ai |4 ≤ i ≤ L}, by applying the union bound, we can get that

Pr (B1) =
L∑

i=4

Pr (Ai ) ≤ 1

5η

L∑
i=4

2−(i−3) ≤ 1

5η
. �
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C PROOF OF LEMMA 4

Proof. B2 = {A2,A3} corresponds to the itemsets whose frequency falls into the interval
(ρ |Φ(D) |/8, ρ |Φ(D) |/2]. Let X be an itemset with frequency ρ |Φ(D) |/8 < f req(X ) ≤ ρ |Φ(D) |/2.

According to Algorithm 2, X is error reported if ˆf req(X ) ≥ (1 − ϵ/2)θ |Φ(D) |. We can get that
ˆf r eq (X )

f r eq (X ) ≥
2(1−ϵ/2)θ

ρ
= 2 + ϵ

1−ϵ
. Let δ = 1 + ϵ

1−ϵ
, according to the upper tail of Equation (8), we get

that

Pr (X is reported) ≤ exp−
δ 2f r eq (X )

3

≤ exp−
|Φ(D ) |ρ

24 As δ > 1 ∧ f req(X ) > ρ/8.

As the number of itemsets with frequency falling in the interval (ρ |Φ(D) |/8, ρ |Φ(D) |/2] is at

most 2Δ

ρ/8 [9]. By applying the union bound, the probability of event B2 occurring is

Pr (B2) ≤ 2Δ+3

ρ
exp−

|Φ(D ) |ρ
24 .

By replacing |Φ(D) | as K−1
U(K )

and considering U(K ) ≤ 1, we have

Pr (B2) ≤ 2Δ+3

ρ
exp−

(K−1)ρ
24 .

To ensure Pr (B2) ≤ 1
5η

, we get K ≥ 24
ρ

(Δ + log
5η

ρ
+ 3) + 1, where ρ = (1 − ϵ )θ . �

D PROOF OF LEMMA 5

Proof. For event B3 = {A1} corresponds to the itemsets whose frequency falls into the inter-
val (ρ |Φ(D) |/2, ρ |Φ(D) |], let X be an itemset whose frequency ρ |Φ(D) |/2 < f req(X ) ≤ ρ |Φ(D) |.
According to Algorithm 2, X is error reported if ˆf req(X ) ≥ (1 − ϵ/2)θ |Φ(D) |. Then, we can get

ˆf r eq (X )
f r eq (X ) ≥ (1 + ϵ

2(1−ϵ ) ). Let δ = ϵ
2(1−ϵ ) , according to the upper tail of Equation (8), we get that

Pr (X is reported) ≤ exp−
δ 2f r eq (X )

3

≤ exp−
ϵ 2 |Φ(D ) |ρ

24 As δ > ϵ/2 ∧ f req(X ) >
ρ |Φ(D ) |

2 .

As the number of itemsets with frequency falling in the interval (ρ |Φ(D) |/2, ρ |Φ(D) |] is at most
2Δ

ρ/2 [9]. By applying the union bound, we get the probability of event B3 happening as follows:

Pr (B3) ≤ 2Δ+1

ρ
exp−

ϵ 2 |Φ(D ) |ρ
24 .

By replacing |Φ(D) | as its unbiased estimation K−1
U(K )

and considering that U(K ) ≤ 1, then

Pr (B3) ≤ 2Δ+1

ρ
exp−

(K−1)ϵ 2 ρ
24 .

To ensure Pr (B3) ≤ 1
5η

, we get the size of KMV synopsis should be K ≥ 24
ϵ 2ρ

(Δ + log
5η

ρ
+ 1) + 1,

where ρ = (1 − ϵ )θ . �

E DEMONSTRATION FOR FIGURE 1

Firstly, letX = {xi |1 ≤ i ≤ l } be an l-itemset (l > 1). We can estimate its frequency as ˆf req(X )ex =
K∩
kex
× kex−1

U(kex )
by the existing estimator in Equation (3) and as ˆf req(X )our =

K∩
U(kour )

by our proposed

estimator in Equation (6), where kex and kour are the sizes of KMV synopses L∪ex and L∪our

constructed for the union set ∪l
i=1Dxi

under Theorems 1 and 2, respectively. kour = |L∪our | and
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kex = min{|Lx1 |, |Lx1 |, . . ., |Lxl
|}. U(kex ) (resp. U(kour )) is the kex th (resp. kour th) smallest hash

value of L∪ex (resp. L∪our ), respectively.
Secondly, Theorem 1 shows thatU(kex ) is the kex th smallest value of ∪l

i=1Lxi
. Theorem 2 tells us

that U(kour ) is the maximum value of ∪l
i=1Lxi

. Then, considering the hash values follow uniform

distribution, we can get U(kex ) ≈ kex

kour
× U(kour ) . Taking this approximation into ˆf req(X )ex , we

get ˆf req(X )ex ≈ kour

kex
× kex−1

kex
× K∩

U(kour )
. i.e., ˆf req(X )ex ≈ kour

kex
× kex−1

kex
× ˆf req(X )our . When the

size of KMV synopsis L is large, it is safe for us to assume (kex − 1) ≈ kex . Then, ˆf req(X )ex ≈
kour

kex
× ˆf req(X )our . As kour is generally much larger than kex on the three streams when l > 1, let

α = kour

kex
and so α 	 1. According to the definition of ARE, ARE of ˆf req(X )ex is

| ˆf r eq (X )ex−f r eq (X ) |
f r eq (X )

≈ |α
ˆf r eq (X )our−f r eq (X ) |
f r eq (X ) =

|(α−1) ˆf r eq (X )our+ ˆf r eq (X )our−f r eq (X ) |
f r eq (X ) .

Thirdly, as α 	 1, (α − 1) plays a dominant role in ARE calculation for ˆf req(X )ex . Meanwhile,

both of kour and kex increase proportionately with the size of KMV synopsis. So α = kour

kex
re-

mains almost flat when the size of KMV synopsis varies. Therefore, the estimation error ARE of
ˆf req(X )ex , which is dominated by α , does not decrease when the size of KMV synopsis increases.
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