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The impact of the Belt and Road Initiative (BRI) on the environment is an important but
controversial topic. But assessing it faces a significant challenge for separating its policy
impact from the overall effect of economic development that will also have environmental
impacts. This paper attempts to provide an evolutionary and counterfactual baseline to
evaluate the environmental impact of BRI, based on the distribution dynamics approach
and the mobility probability plots (MPPs). Our estimation results suggest that while the
majority of BRI economies will lower their emission levels compared with the world
average, there are significant differences between BRI and non-BRI countrie’s
emission patterns and dynamics. The majority of non-BRI economies will have lower
emission levels than their BRI counterparts in the absence of BRI policy, indicating that the
difference in future emissions between BRI and non-BRI countries should not be
completely attributed to the environmental impact of BRI. Instead, BRI should take
measures to prevent certain countries from moving upwards energy intensity paths
through policy intervention, international cooperation, and an inclusive project
assessment process.
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INTRODUCTION

The impact of BRI on the environment has been a controversial topic. The international community
is concerned that the BRI may worsen the environmental performance of participating countries due
to the relocation of China’s “outdated industries” to these countries (Han et al., 2018), the ecological
impact of infrastructure building, emissions from productive activities, and lock into fossil-fuel
dependency (Ascensão et al., 2018; Magazzino andMele, 2020). China’s experience in environmental
degradation seems to justify concerns (Yang et al., 2021). Such controversy may discourage the
engagement of certain BRI countries which may otherwise benefit from the initiative. Nevertheless,
the negative outlook of BRI could be turned into opportunities (Ascensão et al., 2018), if its
environmental impact is adequately and fairly assessed.

One challenge to evaluate the environmental impact of the BRI is to separate its impact from the
overall impact of development. Economic development will naturally lead to economic growth,
energy consumption, foreign direct investment (FDI), financial development and urbanization,
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which will pollute the environment (Baloch et al., 2019; Udemba
et al., 2020). BRI should not be blamed for the negative impact,
which is a natural consequence of economic development.
However, the estimation of the environmental effect of BRI is
challenged by two factors. For one thing, the BRI is a new
initiative and thus empirical data are not available. For
another, even if BRI has empirical data, it is difficult to
establish a counterfactual baseline without BRI against which
to estimate the impact of BRI.

The prevailing criticism of BRI based on industry relocation
highlights the importance of a counterfactual baseline in the
debates on BRI’s environmental consequences. The international
community often worry that China’s relocation of its “excess
capacity,” considered “outdated” in China and usually energy-
intensive, would pollute the environment in the receiving
countries (Han et al., 2018; Dong, 2017). The relocation of
“outdated” industries, however, is neither new nor unique to
China’s BRI. One perspective suggests that the East AsianMiracle
was created due to the relocation of Japan’s “outdated” to Korea,
Taiwan, Hong Kong and Singapore, and later, further to China
(Lloyd, 1996). The relocation creates win-win outcomes for both
the outsourcing countries and the receiving countries as an
“outdated” industry in Japan was still very advanced in China
by that time (Han et al., 2018). However, such views lack an
evolutionary dynamics perception: what was advanced for China
in the 1980s and into the 1990s was not so by the 2000s. And what
underpins the East Asian Miracle is more profound at the
institutional levels (Haggard, 1999). Without access to the
relocated industries and associated technologies, China will
have to rely on less advanced technologies to engine its
economic development.

The different perceptions of industry relocation depend on the
baseline case. If the baseline is the pre-development stage, the
relocation will generate more pollution. However, if compared
with realistic alternatives during the development stage, the
relocation can be desirable. Since the alternatives in the
development stage are seldom projected, it is very difficult to
validate the argument. Validation of the controversies related to
the environmental impact of BRI will help both China and the
BRI participating countries to understand the potential adverse
impacts to a wider scale and prepare measures to prevent or
mitigate the adverse impacts. For instance, debates are arising
about whether BRI indicates China’s ambition to reassess the
nature of power and influence the contemporary international
system (Beeson, 2018), such as discourses stemming from the
global debt incurred through BRI (Hurley et al., 2019) and the
heterogeneous and contrasting effects of BRI on participating
countries in the global value chains (Wu et al., 2020).

The existing literature on the environmental impact of BRI
mainly focuses on the hypothetical problems that have not been
demonstrated by empirical studies due to the nascent status of
BRI. The impact of ecological systems is justified based on factors
such as infrastructure construction, fossil fuel development,
energy consumption, and material use (Ascensão et al., 2018),
as well as water consumption and embedded water trade (Zhang
et al., 2018). The quantitative studies of the potential
environmental impact of BRI are based on reasonable

assumptions and hypotheses (Han et al., 2018; Qiu et al.,
2018; Dong et al., 2015). Although efforts have been made to
prepare a baseline for evaluating the impact of BRI in the future
(Liu et al., 2018), it is essential to establish a dynamic baseline to
assess BRI’s environmental impact, given the importance of
understanding the environmental impact of BRI.

This paper attempts to provide a counterfactual baseline to
evaluate the environmental impact of BRI. We use CO2 emissions
as the proxy of environmental performance. We then adopt the
distribution dynamics approach to examine the trend of carbon
emission globally using their contour maps of transition
probability kernels, and their ergodic distributions and
mobility probability plots (MPP). By separating the sample
countries into BRI and non-BRI countries, we provide detailed
information on their carbon emission’s current pattern and
future development.

Our contributions to the debates on BRI literature are two
folds. First, this paper is the first quantitative study that can
address the future impact of BRI on the environment. The
observed systematic difference between BRI and non-BRI
countries provides useful information for future policy
decisions and a baseline for evaluating the future impact of
BRI. Second, the findings of this paper will help developing
countries involved in BRI call for development power and
space while setting more objective and realistic goals of
emission reduction so that they can achieve adequate growth
opportunities at lower environmental costs.

The remainder of this paper is structured as follows. Literature
Review reviews the literature on the environmental impact of BRI.
Data and Methodology describes the data source and research
methodology. Results and Discussion reports and discusses the
results with various alternative GDP measurements. Conclusion
concludes the paper with policy implications.

LITERATURE REVIEW

The Belt and Road Initiative aims to “reconfigure China’s external
sector in order to continue its strong growth” (Huang, 2016).
While there is a close and multi-facet relationship between the
SDGs and the five priority areas of the Belt and Road Initiative
(Hong, 2016; Yin, 2019), questions about the potential impacts of
BRI on accelerating energy consumption and increasing the
global carbon emissions are arising (Zhang et al., 2017;
Huang, 2019). For instance, the carbon emissions of BRI
countries significantly increased together with their GDP
growth (Fan et al., 2019; Han et al., 2020). Li et al. (2018)
maintain that BRI countries lack an effective driving
mechanism to promote green energy and low-carbon
development in relation to this grand initiative. Huang and Li
(2020) demonstrate that while BRI has spatial spillover effects on
the green development of participating countries, it cannot break
the spatial club imbalance.

However, some others argue that BRI can contribute to carbon
emission abatement through green technology (Chen et al., 2020).
Moreover, Liu et al. (2020) conclude that Chinese OFDIs tend to
invest in green projects where “the host countries had better
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political environments, natural resource endowments and higher
energy efficiencies.” These OFDIs contributed to increased green
total factor productivity of BRI countries (Wu et al., 2020).
Coenen et al. (2021) further find that China is actively and
rapidly developing an institutional architecture of green BRI.
However, it remains unclear if the claim of green BRI will
eventually lead to green development or greenwashing
(Harlan, 2021). Zhao et al. (2021) find that the productivity
growth effect does not contribute significantly to green growth in
BRI countries, but the potential output change effect does. Rauf
et al. (2018a) demonstrate the existence of EKC approximately in
every region.

Some other studies focus on the environmental impact of
infrastructure building and argue that BRI could adversely affect
the environment through habitat loss, the overexploitation of
resources and the degradation of the surrounding landscape
(Ascensão et al., 2018; Li and Shvarts, 2017) and the
destruction of the traditional way of life, and the fragility and
vulnerability of many ecosystems (Dong et al., 2017). A few
studies suggest that increasing productive activities due to BRI
could cause environmental degradation. For example, the
production of cement that is used for road construction is
expected to add emission to China’s one-third of the GHG
emissions (Ascensão et al., 2018). Intensive human activities
due to BRI is also considered to aggravate the water crisis in
Central Asia, deteriorate the vulnerable environment, and
accelerate energy consumption in this area (Li et al., 2015).
Rauf et al. (2018b; 2020) find that trade, investment and
economic growth have different impacts on BRI countrie’s
environmental performance. In contrast, one study finds that
after the BRI was implemented, China’s net export growth
concentrated in the pollution-intensive and resource-intensive
industries, indicating that China has not shifted environmental
polluting industries to the BRI countries (Tian et al., 2019).

The environmental impact of infrastructure building due to
BRI is a hot topic. Hughes (2019) predicted biodiversity hotspots
in BRI’s proposed road and rail routes on key biodiversity areas
and suggested that BRI may pose a significant risk due to
construction and development along the route and mining.
Teo et al. (2019) shows how the infrastructure’s environmental
impacts interact and aggregate across multiple spatiotemporal
scales and describes how those environmental impacts are
influenced by economic and socio-political drivers. Yao et al.
(2019) discuss how BRI can bring investment and technology to
assist electricity market integration in the Southeast Asian region.
Shi and Yao (2019) investigates the problems of China’s
investment into the ASEAN energy sector and suggests that
building a sense of ownership within host countries is essential
for the success of China’s outward energy infrastructure
investment. Selmier (2018) provides interesting ties into
infrastructure, energy and BRI which could be used to develop
environmental themes and are generally supportive of BRI.

The limited empirical studies cannot test the BRI impact due
to its nascent status. Empirical studies which use the year 2013
and the starting point of BRI, i.e., (Tian et al., 2019), are not
convincing as the BRI action plan was only unveiled in 2015.
While BRI-like development projects may be traced back to the

early 1990s (Selmier, 2018), such project cooperation would not
impact the government-to-government cooperation in BRI. It is
difficult to argue that China’s unilateral policy declaration in 2015
could have a significant impact on other countries in a few years.
Therefore, most quantitative studies of the BRI’s environmental
impacts are based on reasonable assumptions and other
hypothetical scenarios. Han et al. (2018) suggest that BRI can
promote energy efficiency convergence by inferring from the
positive roles of regional cooperation and trade integration
promoted by BRI. While tourism is not energy-intensive, a
study of the environmental impact of tourism in China’s BRI
provinces shows that tourism could also lead to environmental
degradation (Ahmad et al., 2018). Assuming effective liner
shipping vessel sharing is critical to building efficient maritime
transport networks under BRI (2018), BRI can boost liner
shipping companie’s profits and reduce CO2 emissions
dramatically. Dong et al. (2015) propose main modes and
paths to achieve sustainable economic development of BRI.

Various studies have shown positive views on avoiding the
negative environmental impact of BRI. The BRI Ecological and
Environmental Cooperation Plans aspire to achieve sustainable
development. Dong et al. (2018) argue that the BRI is consistent
with other major sustainable development initiatives and
strengthening the linkage between BRI and 2030 sustainable
development goals (SDGs) could enhance international
cooperation and make up other global environmental
governance deficits.

More recent studies find that the environmental impact of BRI
is heterogeneous across various indicators. Using the panel
dataset covering 178 countries for the period of 2002–2018, Y.
Wu et al. (2021) find that the impacts of BRI on energy efficiency
depend on energy efficiency quantiles, resource endowments, and
income levels. Wu et al. (2021) find that more imports from
China will reduce the per capita CO2 emissions of the BRI
countries, but more exports to China will have the opposite
impact.

Some scholars suggest using environment safeguard measures,
such as Strategic Environmental and Social Assessments (SESAs);
or other instruments, such as green finance and stakeholder
consultation, to prevent damage to the natural environment
(Ascensão et al., 2018). International and grassroots
environmental pressures are also found to be effective in
informing broader policy approaches to BRI implementation
(Klinger, 2019). Others generally call for advancing scientific
research, reinforcing international collaboration and enhancing
education to build a sustainable Silk Road economic belt (Li et al.,
2015). In particular, data collection for monitoring and
evaluation is usually advocated. Although China has
experienced environmental degradation during its
development stage, she has successfully initiated many
measures to tackle the environmental problems, such as
improving environmental regulations and adopting new green
technologies and higher environmental standards (Ascensão
et al., 2018).

In the case of methodologies, recently, there have been
increasing trends of revisiting traditional issues with big data
methods, such as LASSO, machine learning and Artificial Neural
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Networks (ANNs). Issues examined include economic growth
and emissions (Magazzino et al., 2021b; Mele and Magazzino,
2020), economic convergence (Magazzino et al., 2021c),
information technology and pollution (Magazzino et al.,
2021a) and drivers of emissions (Hsu, 2015; Shi et al., 2020).
The use of newspaper coverage frequency also generates new
variables, such as China’s provincial economic policy uncertainty
index (Yu et al., 2021b).

There is a lack of a useful baseline to evaluate the
environmental impact of BRI. The limited effort to prepare a
baseline for future comparison is not useful at this moment. For
example, Liu et al. (2018) monitored and analyzed the ecological
environment status of the BRI in 2015 using remote Sensing
technology as the basis for future policy decisions in eco-
environmental evaluation and protection.

To better reveal the difference between BRI and non-BRI
countries in the future environmental dynamics, we will adopt the
distribution dynamics approach and Ergodic distributions and
mobility probability plots. The distribution dynamics analysis
was first proposed by (Quah, 1993a; 1993b) and updated
continuously (Quah, 1996, 2006). The convergence analysis,
mainly used in the economic growth and household
consumption literature (Yu et al., 2021a), was recently
extended to the energy and environmental literature. Examples
include energy intensity convergence (Ezcurra, 2007; Le Pen and
Sévi, 2010), carbon emission convergence (Apergis and Payne,
2017; Wu et al., 2016), and energy (electricity) consumption
convergence (Fallahi and Voia, 2015; Payne et al., 2017; Cheong
et al., 2019; Shi et al., 2021). There are also interactions between
economics and energy issues, such as a recent study on the living
standards and energy consumption convergence (Shi et al., 2021).

Distribution dynamics is a useful tool to analyze the
evolutionary pattern of different sectors through building
counterfactual baselines, such as examining the housing price
of China (Li et al., 2017; Cheong et al., 2021) and the housing
affordability of United States, Canada and Australia (Cheong and
Li, 2018). As far as we know, there is not yet a particular study on
building counterfactual baselines for carbon emissions in non-
BRI countries. This gap makes our research more worthwhile.

We will further use the mobility probability plots (MPPs), a
methodology developed by Cheong and Wu (2013) to improve
the display tools of the stochastic kernel approach. (Cheong and
Wu (2018) improved MPP for analyzing the mobility probability
of the entities within the distribution. The MPP has been
employed to analyze transitional dynamics in various research
areas, such as industrial output (Cheong and Wu, 2018), energy
markets (Wu et al., 2018; Cheong et al., 2019), carbon dioxide
emissions (Cheong et al., 2016;Wu et al., 2016), and foreign direct
investment (Cheong et al., 2019).

DATA AND METHODOLOGY

The data of this study are compiled from theWorld Bank’sWorld
Development Indicators (WDI) database which provides global
data on carbon dioxide emissions. In this research, three different
measurements of carbon dioxide emissions are used so as to

provide a comprehensive analysis on the underlying trend and
future development of carbon emissions in the world, namely, kg
per 2010 US$ of GDP, metric tons per capita, and kg per 2011
purchasing power parity (PPP)$ of GDP. The data cover the
period from 1987 to 2013 for a total of 27 years, and all the
countries in the WDI database have been included (except a few
countries whose data are not available from the World Bank).
Given that the dataset covers a very long period and a large
number of countries, thereby making the distribution dynamics
analysis fairly robust in this study.

Our data cover 178 countries and regions, including 71 BRI
countries. The scope of BRI countries was defined as those that
have signed BRI cooperation by September 2018. A full list is
presented in the Appendix.

For each year, the world average of the three measurements is
also obtained from the WDI database. Carbon emissions for each
country are then divided by this year’s world average to calculate
the relative emissions. Therefore, all the values are transformed
into a ratio, of which a value greater than one means that the
emission is greater than the world average, while a value smaller
than one suggests that the emission of this country is lower than
the world average. However, it is worth noting that the average
world data on kg per 2011 PPP$ of GDP are only available from
1990, so that this data series is a bit shorter than the other series.

The data of relative emission are then used for the distribution
dynamics analysis. Distribution dynamics analysis is an
important tool for studying the changes in distributions across
time. Distribution dynamics analysis may prove better than
traditional time series econometrics as the advantage of the
former lies in providing information on the whole shape of
the distribution instead of discrete forecasted values. By
employing this technique, not only can we fill a gap in the
literature but also complement existing findings derived from
econometrics only.

Distribution dynamics analysis can be broadly divided into two
different categories. One is the traditional Markov transition matrix
analysis and the other is the stochastic kernel approach. Given that
there is an issue of demarcation of the state which is associated with
the selection of grid values for the former approach; and thus the
analytical results are dependent on the selection of grid lines. As a
result, it has received criticism. On the contrary, the latter is deemed
better as it can circumvent the issue of demarcation. Hence the
stochastic kernel approach is used in this study.

The bivariate kernel estimator used in this study is defined as:

f̂(x, y) � 1
nh1h2

∑ n
i�1 K(x −Xi,t

h1
,
y −Xi,t+1

h2
) (1)

where K is the normal density function, n is the number of
observations, x is a variable representing the relative emission
value of one of the three measurements of a country at time t, y is
a variable representing the relative emission value of one of the
three measurements of that country at time t+1, Xi,t is an
observed value of relative emission value at time t, Xi,t+1 is the
observed value of relative emission at time t+1, and h1 and h2 are
the bandwidths which are calculated based on the procedure
proposed by Silverman (2018).
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An adaptive kernel with flexible bandwidth is employed
(Silverman, 2018) to consider the sparseness of the data.
Assuming that the process is first-order and time-invariant,
and the distribution at time t +τ depends on t only and not
on any previous distributions, then the relationship between the
distributions at time t and time t +τ is shown as:

ft+τ(z) � ∫∞

0
gτ(z|x)ft(x)dx (2)

where ft+τ(z) is the τ-period-ahead density function of z
conditional on x, gτ(z|x) is the transition probability kernel
which maps the distribution from time t to t +τ, whilst ft(x) is
the kernel density function of the distribution of the relative
emission at time t.

The ergodic density function can then be calculated by:

f∞(z) � ∫∞

0
gτ(z|x)f∞(x)dx (3)

where f∞(z) is the ergodic density function when τ is infinite.
This is the final distribution in the long run. It is worth noting that
distribution dynamics analysis assumes that the dynamics remain
unchanged when one prepares the forecast by computing ergodic
distribution. This practice is similar to those used in econometrics
when one calculates the beta value based on information derived
from previous data, and these computed beta values may change
in the future. So similarly, as the ergodic distribution is also based
on information derived from previous data, intervention from the
government can alter the distribution and change the final shape
of the distribution by implementing relevant policies in
mitigating carbon emissions.

The shape of the ergodic distribution is dependent on the
distribution dynamics computed from the dataset, therefore, one
can gain comprehensive knowledge on the underlying trend and
evolution by examining the ergodic distribution. Moreover, the
ergodic distribution also provides a forecast into the future and
one can know what would happen to the shape of the distribution
if the effects are persistent in nature.

Themobility probability plot (MPP) is further used to improve
the traditional display tools of the stochastic kernel approach
which are mainly based on the three-dimensional plots and the
contour maps. The MPP can be constructed by computing p(x)
which is the net upward mobility probability. It can be
represented as:

p(x) � ∫∞

x
gτ(z|x)dz − ∫x

0
gτ(z|x)dz (4)

The MPP shows the net upward mobility probability against
the relative emission of the three measurements. It is worth
noting that a positive value implies that the country will have
a net probability of moving upwards in the future; whereas a
negative value of net upward mobility probability implies that the
country has a net probability of moving downwards within the
distribution. Interested readers can refer to Cheong and Wu
(2018), Shi et al. (2021) for more technical details.

The MPP shows the probability of future carbon emissions of
each country within the distribution, therefore, one can know

more about the future trajectory and development path of each
country in carbon emissions. Moreover, a list of priority can be set
up so that attention can be paid to those countries with a high
probability of increasing emissions in the future.

RESULTS AND DISCUSSION

We adopt the distribution dynamics approach to examine the
trend of carbon emission globally. An overview of the carbon
emission patterns is presented first, using their transitional
probability kernels. It is followed by a comparison between
BRI and non-BRI economies, by means of their contour maps
of transition probability kernels. Ergodic distributions and
mobility probability plots are then constructed for BRI and
non-BRI economies to provide detailed information on the
current pattern and future development of their carbon
emissions. Three measures of carbon emissions are used,
namely per GDP, per capita, and per purchasing power parity
(PPP). Emission per GDP is used as the baseline model to capture
the evolution trend of BRI and non-BRI economies; emissions per
capita and per purchase power parity (PPP) are used as
alternative models to check the robustness of our findings. For
the cross-country comparison, emissions per capita is a preferred
metric as it indicates equality across countries. The other two
metrics, however, provide possible alternatives as a
robustness check.

Baseline Model (Emission per GDP)
Stochastic kernel analyses are first performed to calculate the
transitional dynamics of carbon emission per GDP for each
economy. Figure 1A shows the three-dimensional plots of
transitional probability kernels for carbon emission per GDP
in economies which joined the BRI. Figure1B shows the three-
dimensional plots of transitional probability kernels for carbon
emission per GDP in economies that have not joined the BRI. In
the 3D plot, X-axis presents the carbon emission per GDP at
period t. Y-axis presents the carbon emission per GDP at period
t+1. The width of the transition probability kernel for BRI and
non-BRI economies are dispersed with the density mass
concentrated along the 45-degree diagonal line, indicating that
future carbon emission can vary significantly. In other words,
there is inconsiderable persistence in the changes in the
distribution for future carbon emission. There is one peak for
BRI economies located near 0.8, indicating that their carbon
emissions per GDP tend to cluster. BRI economies used to have
high carbon emissions per GDP before joining BRI. In
comparison, there are two peaks for non-BRI economies: one
is located around 0.3; the other is located around 0.6. The
implication is that non-BRI economies used to have lower
carbon emission per GDP even before the introduction of BRI.

To capture more features of the transitional dynamics, Figures
1C,D displays the associated overhead view of their contour maps
in Figures 1A,B. Figure 1C shows the clustering effect of BRI
economie’s emission at one heat point, while Figure 1D shows
the clustering effect of BRI economie’s emission at two heat
points. Whether the heat points of BRI and non-BRI economies
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also represent their convergence clubs of carbon emission trends,
in the long run, will require further investigation into their
ergodic distribution.

As such, Figure 2A shows the ergodic distribution of the
carbon emission per GDP of BRI economies, which is its long-run
steady-state. The convergence club of 0.8 for BRI economies is
more clearly observed in the ergodic distribution. While the
ergodic distribution in Figure 2A has clarified the existence of
one convergence club for BRI economies, the mobility of their
future carbon emission cannot be identified. The new framework
of MPP can effectively tackle the problem and offer a direct
interpretation of the probability mass. In Figure 2B, the MPP on
distributions of the probability mass is above zero when the
carbon emission per GDP is no more than 0.8. However, this
result alone does not suffice to say that BRI economie’s carbon
emission per GDP will always decline, as at round 1.0 and 1.5 the
probability masses are still above zero, indicating that a few BRI
economies may have higher carbon emission probabilities in the
future.

In comparison, Figure 2C displays the ergodic distribution of
the carbon emission per GDP of non-BRI economies. Unlike BRI
economies, the ergodic distribution shows that the convergence
clubs of non-BRI economies are primarily around 0.3 and 0.6.
Figure 2D further reveals that the MPP on distributions of the
probability mass is complicated in non-BRI economies: MPP of

non-BRI economies is above zero for those with carbon emission
levels lower than 0.59. Yet for carbon emission levels from 0.60 to
0.84, the MPP lies below zero which shows a net probability of
moving downward. It displays a net tendency to move downward
again in the coming periods for carbon emission levels ranged
from 0.87 to 1.29. The MPP turns positive for carbon emission
levels from 1.30 to 1.48. Afterwards, the MPP stays below the
horizontal axis, except for carbon emission levels from 3.35 to
3.97. The results suggest that in general non-BRI emissions are
lower and tend to decrease in the future despite that a few
economies may have higher emission levels (those not
clustered in the convergence clubs of 0.3 or 0.6).

To summarize, the baseline model of carbon emission per
GDP has shown distinctive patterns among BRI and non-BRI
economies before BRI was introduced: The average carbon
emission level was higher in BRI economies (convergence club
of 0.8) than in non-BRI economies (convergence clubs of 0.3 and
0.6). Such gap may be narrowed over time as the MPP of BRI
economies almost always stays below zero when the carbon
emission level is larger than 0.8, while the MPP of non-BRI
economies has several intersects with the horizontal axis when the
carbon emission level is larger than 1.0.

Our finding complimentary the empirical literature that
studies the environmental impacts of BRI. Our counterfactual
baseline framework can avoid the endogeneity issues as identified

FIGURE 1 | Three-dimensional plot and Contour map of transitional probability kernel for carbon emission per GDP with yearly transitions, from 1987 to 2014. (A)
Three-dimensional plot (BRI). (B) Three-dimensional plot (non-BRI). (C) Contour map (BRI). (D) Contour map (Non-BRI).
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by Liu et al. (2020), and Wu et al. (2020) who find that the BRI
may preferred curtained countries. This counterfactual baseline
may lead to slight different conclusions of the emission impact of
BRI, such as Zhang et al. (2017), Li et al. (2018), Huang (2019; and
Huang and Li (2020), who find that BRI may have negative
environmental impacts. Our aggregated findings provide
additional support to the findings of Rauf et al. (2018a), Chen
et al. (2020) and Coenen et al. (2021) who find that various factors
have heterogeneous impacts. However, whether such finding is
significant requires further robustness tests as follows.

Alternative Model 1 (Emission per Capita)
We first perform stochastic kernel analyses to compute the
transitional dynamics for carbon emission per capita for all
economies. Figure 3A shows the three-dimensional plots of
carbon emission per capita for BRI economies. Unlike
emission per GDP, the peak for emission per capita of BRI
economies is located around 0.15. The peak for emission per
capita of non-BRI economies is located around 0.10 only (see
Figure 3B). While both BRI and non-BRI economies have
clustered at lower peaks when measured by the emission per
capita, the peak for BRI economies remains higher than the peak
for non-BRI economies. Similar to Figure 1, the width of the
transition probability kernel for BRI and non-BRI economies are
dispersed with the density mass concentrated along the 45-degree
diagonal line.

Figures 3C,D displays the associated overhead view of their
contour maps in Figures 3A,B, with the stochastic transition
probability kernel of emission per capita across the range
0.10–0.15. The implication is that carbon emissions per capita

of most economies are below the world average (among the
clustered group), while some economies (both BRI and non-BRI)
have extremely high levels of carbon emission per capita. It is also
interesting to note that in the contour map of Figure 3A there is
another concentrated point around 0.9 for BRI economies. That is
to say, both peaks of BRI economies are higher than the peak of
non-BRI economies, consistent with the findings for emission per
GDP that BRI economies had higher average carbon emission
levels.

Figures 4A,B further explores the evolution trend of carbon
emission per capita for BRI economies. Figure 4A shows two
convergence clubs, one at 0.14 and another at 0.85. BRI
economies have both lower and higher convergence levels of
carbon emission per capita in the long run. In particular, when
looking into the MPP in Figure 4B, it is obvious that MPP is
below zero for economies with emission per capita ranged from
0.14 to 0.55. Yet for emission per capita from 0.56 to 0.85, the
MPP lies above zero which shows a net probability of moving
upward. Afterwards, it displays a net tendency to move
downward in the coming periods again for emission per
capita greater than 0.86. The distribution suggests that
economies with emission per capita will have a net
probability of downward emission trends if current emission
levels are between 0.14 and 0.55, or above 0.86. Thus the two
convergence clubs of 0.14 and 0.85 are well-identified for BRI
economies.

In contrast, Figure 4C displays one convergence club (0.11)
for non-BRI economie’s emission per capita only, indicating that
the average emission levels will remain low in the future. The
MPP for non-BRI economies in Figure 4D has a straightforward

FIGURE 2 | Ergodic distribution and Mobility probability plot of carbon emission per GDP. (A) Ergodic distribution (BRI). (B) Mobility probability plot (BRI). (C)
Ergodic distribution (non-BRI). (D) Mobility probability plot (non-BRI).
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FIGURE 3 | Three-dimensional plot and Contour map of transitional probability kernel for carbon emission per capita with yearly transitions, from 1987 to 2014. (A)
Three-dimensional plot (BRI). (B) Three-dimensional plot (non-BRI). (C) Contour map (BRI). (D) Contour map (Non-BRI).

FIGURE 4 | Ergodic distribution and Mobility probability plot of carbon emission per capita. (A) Ergodic distribution (BRI). (B) Mobility probability plot (BRI). (C)
Ergodic distribution (non-BRI). (D) Mobility probability plot (non-BRI).
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pattern as well: The probability mass is above zero only when the
carbon emission level is no more than 0.09, or between 0.83 and
1.13. In other ranges, the MPP has a net tendency of moving
downwards.

In brief, while changing the measurement of emission from
per GDP to per capita will have an impact on the number of
convergence clubs for BRI and non-BRI economies, it does not
affect the result that the average emission level is and will be
higher in BRI economies based on the baseline model and
alternative model 1.

Alternative Model 2 (Emission per PPP)
Our baseline model (per GDP) and alternative model 1 (per
capita) have indicated a contrast of carbon emission patterns
and trends between BRI economies and non-BRI economies.
However, purchasing power parity can be more suitable than
GDP or capita to calculate the emission levels of the
individual economy because PPP is closely related with the
international exchange rate parities (Taylor and Taylor,
2004). Therefore, it is essential to explore whether the
measurement of carbon emission per PPP has similar or
different evolution pathways with the measurements of
emission per GDP or per capita.

Figures 5A,B provides the three-dimensional plot of
transitional probability kernels by BRI and non-BRI
economies, measured by emission per PPP. It is worth noting
that the distribution of carbon emission is bimodal in both
Figure 5A and Figure 5B, justifying the importance of
conducting distributional analysis to avoid deceiving results
(Quah, 1997). Figures 5C,D displays their relevant contour
maps. The width of the transition probability kernel for all
economies are dispersed with the density mass concentrated
along the 45° diagonal line, implying scattered future
distribution of carbon emission per PPP. Specifically, the two
peaks for BRI economies are located at around 0.6 and 0.9
respectively, while the two peaks for non-BRI economies are
located at around 0.3 and 1.1 accordingly. Unlike emission per
GDP or emission per capita, the peaks of BRI economies’
emission per PPP are in-between the higher and lower bands
of peaks for non-BRI economies.

Figure 6A shows the long run ergodic distribution of carbon
emission per PPP in BRI economies. Convergence clubs can be
observed at 0.59 and 0.86. Combined with the MPP in Figure 6B,
it is evident that for BRI economies emitting up to 63%; or
80–89% of the world average, they tend to further increase their
carbon emission per PPP in the future. For BRI economies

FIGURE 5 | Three-dimensional plot and Contour map of transitional probability kernel for carbon emission per PPP with yearly transitions from 1990 to 2014. (A)
Three-dimensional plot (BRI). (B) Three-dimensional plot (non-BRI). (A) Three-dimensional plot (BRI) (B) Three-dimensional plot (non-BRI). (C) Contour map (BRI) (D)
Contour map (Non-BRI).
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emitting 64–79% of the world average, they tend to reduce their
future emission per PPP. Similarly, if their current emission per
PPP is higher than 90% of the world average, BRI economies tend
to reduce their carbon emission per PPP in the future. Hence, in
the long run, the emission per PPP of BRI economies will tend to
converge to lower than the world average levels.

Figures 6C,D provides a different picture for non-BRI
economie’s carbon emission per PPP. Convergence clubs can
be observed at 0.34 and 1.12 respectively in Figure 6C. The future
evolution trend is more complicated: MPP in Figure 6D shows
that for non-BRI economies emitting 52–98% of the world
average, they tend to reduce their carbon emission per PPP to
the level of 34% of the world average. For non-BRI economies
emitting 99% to 1.11 times of the world average, they tend to
increase their future emission to 1.12 times of the world average.
If their current emission level is 1.12–1.97 times the world
average, non-BRI economies tend to reduce their levels of
emission to 1.12 times the world average. Yet if non-BRI
economies emit 1.98 times to 2.68 times the world average,
they tend to increase their future carbon emission despite
there is no convergence club. To conclude, although a
majority of economies will reduce their carbon emissions,
several economies will increase their emission and some of
them will even reach an alarming level of two times or above
(those outside the cluster, which is not fully shown in Figure 5).
The overall results of alternative model two concur with the
baseline model in that BRI economies are more likely to lower
their emission levels in the future than non-BRI economies.

It is not surprising that the number of convergence clubs is
different across the three different metrics because the three
variables are different. However, the key hypothesis of this
paper—the emissions dynamics are different between the BRI

and non-BRI countries—is consistent across all three cases. This
suggests that our finding is robust.

CONCLUSION

The impact of the Belt and Road Initiative (BRI) on the
environment is controversial. A major challenge to evaluate
the environmental impact of the BRI is to separate its impact
from the overall impact of development. Validation of the
controversy about the environmental impact of BRI will help
both China and the BRI participating countries to better
understand the potential adverse impacts and prepare
measures to prevent or mitigate the potential adverse effects.
Despite many studies on the BRI’s environmental impacts, there
is an urgent need to create further baseline information to
facilitate comparison and benchmark future evolution of
emission patterns.

This paper attempts to provide an evolutionary and
counterfactual baseline to evaluate the environmental impact
of BRI, based on the distribution dynamics approach and the
mobility probability plots (MPPs). Our estimation results suggest
that the majority of BRI economies will lower their emission
levels compared with the world average, despite that a substantial
proportion of them are developing or emerging economies. This
suggests that most BRI countries will not follow carbon-intensive
development paths as other newly industries economies
have done.

Furthermore, our estimations find that there is a systematic
difference between BRI countries and non-BRI countries. Most
non-BRI economies will have lower emission levels measured by
per GDP or per capita than BRI countries, despite that a few

FIGURE 6 | Ergodic distribution andMobility probability plot of carbon emission per PPP. (A) Ergodic distribution (BRI) (B)Mobility probability plot (BRI). (C) Ergodic
distribution (non-BRI) (D) Mobility probability plot (non-BRI).
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developed economies will have higher emission levels in the
future. Specifically, in terms of emission per GDP the
convergence clubs show that the majority of BRI economies
tend to have emission levels at 80%, while non-BRI economies
tend to have emission levels at 30% or 60%, of the global average
emission level, in the long run. In terms of emission per capita,
BRI economies tend to have emission levels at 14% or 85%, while
non-BRI economies tend to have an emission level at 10% of the
global average as their long-term steady states. In terms of
emission per capita of PPP price, the convergence clubs of
emission levels for BRI economies are 59% or 86% of the
global average. In contrast, the convergence clubs of emission
levels for non-BRI economies become 34% or 112% of the global
average. Both BRI and non-BRI economies have outliers above
the global average emission level, though.

Our findings have rich implications for understanding and
managing the environmental impact of the Belt and Road
Initiative: First, a counterfactual baseline for BRI countries is
needed to assess the environmental impact of BRI. This study
finds that non-BRI countries will have worsened environmental
performances than their BRI counterparts in the absence of BRI.
Therefore, the BRI’s environmental impact should not be assessed
against the current situation of BRI countries or the performance
of non-BRI countries. Second, further policy intentions, such as
environmental regulations and public pressure, are needed to
promote green growth in BRI countries to low their future
emission intensity. Third, international cooperation in
regulations, data collection and technologies is necessary to
mitigate the negative environmental impact across countries.
Effective operation and management of the initiative require
collaboration among a broad range of disciplines comprising

civil engineering, material science, government operations,
economics and finance, social and political science, and
environmental science. Last but not least, an inclusive project
assessment process that involves all stakeholders and the
scientific community is useful to help relevant stakeholders
address large-scale and complex challenges in the lifecycle
management of these projects.
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APPENDIX

Table A1 | Scope of BRI and non-BRI countries

BRI countries

Afghanistan, Albania, Armenia, Azerbaijan, Bahrain, Bangladesh, Belarus, Bhutan, Bosnia and Herzegovina, Brunei Darussalam, Bulgaria, Cambodia, China, Croatia, Czech
Republic, Egypt, Arab Rep., Estonia, Ethiopia, Georgia, Hungary, India, Indonesia, Islamic Rep. of Iran, Iraq, Israel, Jordan, Kazakhstan, Rep. of Korea, Kuwait, Kyrgyz
Republic, Lao PDR, Latvia, Lebanon, Lithuania, Macedonia, Madagascar, Malaysia, Maldives, Moldova, Mongolia, Montenegro, Morocco, Myanmar, Nepal, New Zealand,
Oman, Pakistan, Panama, Philippines, Poland, Qatar, Romania, Russian Federation, Saudi Arabia, Serbia, Singapore, Slovak Republic, Slovenia, South Africa, Sri Lanka,
Syrian Arab Republic, Tajikistan, Thailand, Timor-Leste, Turkey, Turkmenistan, Ukraine, United Arab Emirates, Uzbekistan, Vietnam, Yemen

Non-BRI countries

Algeria, American Samoa, Andorra, Angola, Antigua and Barbuda, Argentina, Aruba, Australia, Austria, Bahamas, Barbados, Belgium, Belize, Benin, Bermuda, Bolivia,
Botswana, Brazil, Burkina Faso, Burundi, Cabo Verde, Cameroon, Canada, Cayman Islands, Central African Republic, Chad, Channel Islands, Chile, Colombia, Comoros,
Congo, Dem. Rep., Congo, Rep., Costa Rica, Cote d’Ivoire, Cuba, Curacao, Cyprus, Denmark, Djibouti, Dominica, Dominican Republic, Ecuador, El Salvador, Equatorial
Guinea, Eritrea, Faroe Islands, Fiji, Finland, France, French Polynesia, Gabon, Gambia, Germany, Ghana, Greece, Greenland, Grenada, Guam, Guatemala, Guinea,
Guinea-Bissau, Guyana, Haiti, Honduras, Hong Kong SAR, Iceland, Ireland, Isle of Man, Italy, Jamaica, Japan, Kenya, Kiribati, Dem. People’s Rep. of Korea, Kosovo, Lesotho,
Liberia, Libya, Liechtenstein, Luxembourg, Macao SAR, Malawi, Mali, Malta, Marshall Islands, Mauritania, Mauritius, Mexico, Fed. Sts. of Micronesia, Monaco, Mozambique,
Namibia, Netherlands, New Caledonia, Nicaragua, Niger, Nigeria, Northern Mariana Islands, Norway, Palau, Papua New Guinea, Paraguay, Peru, Portugal, Puerto Rico,
Rwanda, Samoa, San Marino, Sao Tome and Principe, Senegal, Seychelles, Sierra Leone, Sint Maarten (Dutch part), Solomon Islands, Somalia, South Sudan, Spain, St. Kitts
and Nevis, St. Lucia, St. Martin (French part), St. Vincent and the Grenadines, Sudan, Suriname, Sweden, Switzerland, Tanzania, Togo, Tonga, Trinidad and Tobago, Tunisia,
Turks and Caicos Islands, Tuvalu, Uganda, United Kingdom, United States, Uruguay, Vanuatu, Venezuela, Virgin Islands, West Bank and Gaza, Zambia, Zimbabwe
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