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Sustainable Vehicle Routing Problem for Coordinated Solid Waste Management  

 

 

Abstract  

The quick growth of urbanization and population, as well as the transformation of industrial 

and materials, have pushed the management of municipal solid waste into a crisis especially for 

developing markets based on the grand challenge of sustainable development. The compounding 

complexity of the multiple objectives and dynamic problem constraints required to represent 

coordinated solid waste management (CSWM) problem in practice is a hugely significant issue 

for vehicle routing problem studies. The purpose is to introduce a new coordinated framework for 

a practical and efficient vehicle routing problem considering the triple bottom line of sustainability. 

The CSWM multiple objective functions applied in this study incorporate financial, environmental 

and social considerations to develop a sustainable vehicle routing problem considering 

heterogeneous vehicle fleets operating across a multi-echelon logistics network with the 

optimization goals. An entirely novel development and application of the adaptive memory social 

engineering optimizer (AMSEO) is introduced and is shown to perform significantly better than 

the simulated annealing (SA) as well as the social engineering optimizer (SEO) itself. Finally, the 

potential overall waste disposal cost savings achievable through increased recycling (revealed by 

framing the logistics problem across several echelons) is of particular significance. The main 

findings are the practical solutions with the use of sustainability goals for the CSWM and further 

application and development of the AMSEO in the routing optimization. 

 

Keywords: vehicle routing problem; municipal solid waste, coordinated solid waste management; 

triple bottom line concept; social engineering optimizer.  

 

1. Introduction  

This study proposes a logistics network optimization solution to the growing problem of 

municipal solid waste (MSW) disposal. A liberal definition of MSW is taken to include a waste 

stream comprising both domestic and industrial garbage, recyclable and hazardous items [1]; [2]. 

The past decades created a quick growth of urbanization and population as well as the 

transformation of industrial and materials internationally as an explosion in the generation of 

municipal solid waste [3]; [4]. In many jurisdictions, the management of MSW is in crisis, be they 

developing [5] or developed municipalities [6]. 

The logistics of MSW disposal is further complicated by the complex nature of the transport 

network [7]; [8]; increasing sensitivity to the costs of environmental impact [9]; and the practical 

limitations that often govern the location of processing facilities [10], the source of waste streams, 

recycling options, and the complexities of transportation management [11]. The environmental 

challenge of transportation management alone [12], the largest source of pollution and 

environmental concerns in the logistics system, is a significant optimization problem within itself 

[13]; [9]. 
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This compounding complexity of MSW management means that many realistic constraints are 

often omitted when a waste collection and disposal logistics network is modelled [14]; [15]. For 

example, a heterogeneous fleet of waste transportation vehicles is common, but few studies 

accommodate the variable capacity, speed, fuel consumption, cost, emissions, and other features 

across the fleet that this heterogeneity entails [16]. Otherwise, the modelling approach might seek 

to ignore the added complexity of the intermediate transfer or waste processing facilities typically 

present in any MSW logistics network of reasonable scale and found to significantly impact the 

model performance [17]; [18]. 

The novelty of this paper is to introduce a new framework for practical and efficient vehicle 

routing optimization. It is practical because it applies a multi-objective optimization model 

accommodating combinatorial optimization issues such as heterogeneous fleets operating across a 

structured multi-echelon logistics network. It is efficient because it incorporates a novel meta-

heuristic algorithm for combinatorial optimization problems. The optimization here includes three 

critical, though often conflicting, minimization goals: comprehensive transportation cost; total 

environmental emissions; and total deviation from fair load allocation. These objectives address 

the financial, environmental and social factors to address the triple bottom line of sustainability 

for MSW management. The proposed integrated framework based on the triple bottom line 

concept is more likely to be effective in real-world applications because it considers all tactical 

and operational decisions in the reverse logistics network design. 

The key novel feature of the integrated framework seeks to overcome the degraded performance 

and excessive time taken to reach an optimal solution evident when the various exact methods 

(including, branch-and-bound and linear programming techniques) are applied to this type of 

combinatorial optimization with multiple objectives and complex constraints [19]. A mixed-

integer non-linear programming (MINLP) is considered. The methodology applies an efficient 

version of the recently-developed, social engineering optimizer (SEO) algorithm [20]. This is the 

first time SEO has been applied in this way to a realistic vehicle routing problem (VRP), and this 

study develops a new adaptive memory extension of SEO (AMSEO). 

Therefore, the main research questions in this study can be established as follows:  

 How can a sustainable routing optimization based on the triple bottom line concept be 

modeled for the framework of CSWM? 

 How can we solve this model efficiently, and what is one of the best alternatives in this 

regard?  

This paper can be summarized as follows. Section 2 overviews the recent and important 

challenges arising in the vehicle routing problem (VRP) field. Section 3 develops the proposed 

mixed-integer non-linear programming (MINLP) method as an integrated framework to address 

combinatorial optimization problems with multiple objectives and complex constraints that 

include transportation emissions, a heterogeneous fleet and a structured logistics network. Section 

4 introduces an efficient meta-heuristic solution method using SEO which this study extends 

through an entirely novel development of AMSEO. Section 5 presents an extensive evaluation and 

sensitivity analysis of the integrated framework and compares the AMSEO method directly with 
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SEO and simulated annealing (SA) alternatives. Finally, based on the results, the potential 

implications for MSW management are considered, and the conclusion is drawn in Section 6.  

 

2. Literature review  

Research on the optimization of MSW has evolved over several decades now, largely driven by 

the waste collection problems found in practice [21]. Typically characterized as a VRP, the strong 

focus has been on the optimization of waste allocation, waste flows and the routing decisions of 

collection trucks [22]; [23]. Central to this effort has been the development and application of 

mixed-integer linear programming (MILP) approaches [2]. Eiselt [24] contributed to the 

optimization model of a hub location-allocation problem. The goal was the optimal location of 

landfill sites. However, the main limitation of their model is the option of reverse logistics to cover 

intermediate recycling and treatment centers. Erkut et al. [17] proposed an integer programming 

approach to coordinate the main operational activities of the reverse logistics such as recycling, 

transferring, treatment and disposal. In addition, Berman et al. [25] proposed polynomial time and 

branch and price algorithms to efficiently solve the routing problem in a hazardous waste network. 

In another paper, later in 2011, Dai et al. [26] extended the MILP approach further to design a plan 

for capacity expansion of waste treatment and allocation centers more particular to a case study in 

Beijing, China. However, early developments still fell well short of providing an integrated 

framework because they lacked the capacity to handle a more representative subset of the 

operational factors in play. 

The growing crisis in waste management has given added impetus to and interest in MSW 

management research. One key driver has been environmental and green emissions. Increasing 

concern with the management of hazardous waste, such as inherited ash waste from incineration 

[27], requires a framework where particular waste streams can be allocated to particular facilities 

[8]. The added complexity of the problem description has generated considerable interest and 

development in the particular use of operations research techniques [28]; [4]; [3]; [29]. 

Along with having to deal with more complexity regarding the description of this problem, 

many studies only considered a single optimization model as one of the main limitations of this 

research area. Asefi et al. [30] used a MILP approach to model the economic cost and location-

routing structure, and Vidovi´c et al. [12] developed a novel MILP to maximize the profits of a 

two-echelon logistics network as this configuration supports the end-users, transfer stations and 

collection points. Harijani et al. [31] introduced a new bi-objective MILP model for MSW 

optimization. In addition to the profits, they considered some qualitative, non-economic criteria as 

the second objective to minimize the cost of them. Another bi-objective MILP model considering 

the geographic information system (GIS) was proposed by Asefi and Lim [8] to optimize 

transportation costs against time factors. Habibi et al., [32] proposed another bi-objective model 

to solve a case study of Tehran, Iran. They found the optimal sites of facilities and their right 

allocation. Tehran, Iran was also the case study location for a study by Edalatpour et al. [33] 

proposed another bi-objective optimization with economic and environmental impacts for a case 

study of Tehran, Iran with two MSW levels including recyclers and remanufacturers.   
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As the complexity of the problem definition has increased to reflect more realistic MSW 

management considerations and practical limitations, research attention has also turned to more 

efficient optimization techniques. Vidovi´c et al. [12] developed a meta-heuristic approach using 

tabu search (TS) and other well-known meta-heuristics to solve a location-routing model. 

Edalatpour et al. [33] applied a rudimentary genetic algorithm (GA) and Rabbani et al. [34] 

employed both the non-dominated sorting genetic algorithm (NSGA-II) and multi-objective 

particle swarm optimization (MOPSO) to address a multi-objective industrial hazardous waste 

problem. Along with the findings of these recent papers, the review papers of Ghiani et al., [22] 

and Bing et al. [23] all highlight the pressing need for more efficient solution algorithms when 

dealing with the computational complexity, NP-hardness, of realistic MSW management 

problems. 

Recently, Mahmoudsoltani et al., [35] proposed a location-routing model for MSW 

optimization with two objectives, including the total cost and risk. Their supposition was the 

pipelines for MSW as well as road transportation. Due to the high complexity of this model in 

large-scale samples, three multi-objective evolutionary algorithms (EAs) were tackled to address 

the model. Hu et al., [36] for the first time considered the traffic limitations as one part of the 

constraints for a bi-objective model. They also proposed an adaptive weight GA to find the optimal 

routes. Rabbani et al., [37], in another study, offered a stochastic programming approach for a 

multi-period, multi-echelon location-inventory MSW optimization model. Their contribution was 

a hybrid algorithm based on the NSGA-II and Monte Carlo simulation. As a continuation of [8], 

Asefi et al., [38] in another study contributed a three-echelon logistics network for the MSW 

optimization as they solved a case study in Tehran, Iran. For the first time in the literature, a robust 

bi-level optimization was studied by Pouriani et al., [39] to model the MSW optimization. In their 

model, the location decisions were made by the lower-level model and the allocation of different 

wastes was performed by the upper-level model. They also solved a case study in Babol, Iran. 

More recently, Delfani et al., [40] developed a scenario-based robust-possibilistic programming 

approach to model MSW for hazmat materials. The objectives were simultaneously optimized the 

total cost and the risk of logistics and population.   

In order to have a conclusion, the aforementioned papers are classified based on the 

objective functions, constraints and solution algorithms utilized. This classification is given in 

Table 1. The measures are related to the type of the model, the objective functions, and the 

characteristics of the models and the solution algorithms. In this table, there are six common 

objective functions including the total cost, green emissions, customer’s satisfaction, risk, fair load 

allocation, and the time of loading. The model’s characteristics are related to the decisions of the 

models based on the allocation, routing, and inventory decisions. Some other suppositions are the 

use of uncertainty modeling, different types of waste and their methodologies for reverse options, 

traffic restriction, and technology selection for recycling, GIS model, multi-echelon, and time 

windows. Based on these criteria, the following observations are identified: 

 Most of the recent studies contributed to the multi-objective decision making 

models.  



5 
 

 In addition to the total cost, environmental emissions are considered by seven 

studies.  

 Considering the sustainability dimensions including financial, environmental and 

social factors only supposed in four studies like the present paper.  

 There is no study except the present paper to consider the fair load allocation as a 

social factor.  

 The current paper contributed to the allocation, routing and inventory decisions as 

well as the multi-echelon, technology selection and time windows.  

 Most of the solution algorithms were different types of heuristics and meta-

heuristics as a common approach.  

 Among them, the present work is the first attempt to show the application and 

development of a recent meta-heuristic called SEO.  

Generally speaking, the current study took up the challenge of developing an efficient 

optimization method for practical MSW management problems. The practicality of the proposed 

method seeks to step well beyond the current literature. For example, the study proposed by Habibi 

et al. [32] is a rare exception in the literature in so far as that study considers the fleet size of the 

waste transport network to be variable. However, that study failed to consider the routing decisions 

of the vehicles. Rabbani et al. [34] addressed the routing decisions for a heterogeneous fleet but 

ignored the possibility of a structured logistics network comprising intermediate transfer stations. 

That study also assumed fixed routing requirements, when allowing the fleet freedom to return to 

alternative depots offers significant scope for performance improvement and this more flexible 

assignment condition can lead to important financial savings [14]. Furthermore, whilst Harijani et 

al. [31] offered an almost unique to the literature consideration of the environmental emissions in 

their study, an objective function to optimize the impacts of fuel consumption, emissions, etc. was 

not incorporated.  

Overall, many studies employed routing optimization for multi-echelon MSW management 

(e.g., [8]; [32]; [34]; [37]; [38]). This paper follows the same path while adding several extensions 

(e.g., the sustainability dimensions of MSW by considering the total cost, green emissions and fair 

load allocation objectives). Most importantly, the current study seeks to demonstrate a genuinely 

comprehensive solid waste management (CSWM) solution. 

The solution proposed in this study is a novel meta-heuristic approach that builds and extends 

the recently developed SEO using an entirely new adaptive memory approach. The main advantage 

of AMSEO is not only to find a better interaction between the intensification and diversification 

phases, but also to improve the cost-efficiency of a general idea to reach a global optima instead 

of near-optimal solutions [20], and this study is the first to apply and evaluate it to CSWM. 

In conclusion, this study suggests the following highlights as the novelties of this research:  

 Developing a sustainable vehicle routing problem considering different fleet sizes 

for coordinated solid waste management;  

 Implementing the concept of the triple bottom line in the framework of CSWM.  
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 Proposing an adaptive memory social engineering optimizer to better address the 

proposed model;  

 Analyzing the total  costs and green emissions of vehicles and the total deviation 

from fair load allocation to transfer stations;  
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Table 1. Collection of relevant studies in the area of MSW with optimization   

Referenc

e 

Type of 

model* 

Objectives Constraints  

Solution 

method 
Total 
cost 

Green 
emissions 

Customer’s 
satisfaction 

Risk 
Fair load 
allocation 

Time of 
Loading 

Allocation Routing Inventory 

Different 

types of 

waste 

Traffic 
restriction 

Uncertainty  
Technology 

selection 
GIS 

Multi-
echelon  

Time 
windows 

[41] BP                 Exact  

[15] MILP                 Exact  

[42] Simulation                 
Simulat

ion 

[43] MILP                 Exact  

[44] BP                 
Heurist

ic 

[45] IP                 Exact 

[46] MILP                 Exact 

[25] MILP                 Exact  

[17] MILP                 
Heurist

ic 

[26] MILP                 
Simulat

ion 

[47] MINLP                 

Meta-

heuristi

c 

[12] MILP                 

Meta-

heuristi

c 

[31] MILP                 Exact  

[8] MILP                 Exact 

[32] MINLP                 

Meta-

heuristi

c 

[14] MINLP                 

Meta-

heuristi

c 

[33] MILP                 Exact  

[34] MILP                 

Meta-

heuristi

c 



8 

 

[35] MINLP                 

Meta-

heuristi

c 

[48] MINLP                 

Meta-

heuristi

c 

[36] MINLP                 Exact  

[37] MILP                 

Meta-

heuristi

c 

[38] MILP                 Exact  

[39] MILP                 Exact 

[40] MILP                 Exact  

This study MINLP                 

Meta-

heuristi

c 

*BP: Binary Programming; MILP: Mixed Integer Linear Programming; IP: Integer Programming; MINLP: Mixed Integer Non-Linear Programming  
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3. Proposed methodology 

This section presents the proposed methodology. The CSWM framework is described in terms 

of the principal parameters that determine both the rich set of realistic problem constraints along 

with the multiple solution objectives. One key outcome is to incorporate the generated CO2 

emissions as a principal objective for the first time. Then, the proposed multi-objective MINLP 

model is developed and explained. 

 

3.1. Problem framework  

For a realistic CSWM framework, there are several treatment technologies ( t T ), recycling 

( r R ) and disposal ( d D ) possible. A waste transportation heterogeneous fleet will potentially 

vary the class of vehicle, its capacity and associated transportation costs, and environmental 

emissions [34]. The choice of vehicles depends on the type of waste, and the type of waste also 

determines the required and allowable transportation activities. 

Following Chang et al., [49], consider that an infinite number of vehicles of each type/size is 

available. Accordingly, the loading capacity, fuel consumption and waste type compatibility have 

no bounds. However, the choice of vehicle, following Habibi et al. [32] and Rabbani et al. [34], 

is limited to the residue transferring trucks (U), waste transportation semi-trailers (S) and waste 

collection vehicles (V).  

A general overview of the CSWM framework is presented in Figure 1. Individual waste 

generation nodes present volumes of waste (
ogBG ) in multiple types ( o O ), including garbage, 

recyclable and hazardous waste. Waste collection vehicles ( q V ) begin their route from the 

allocated transfer station (depot) and collect appropriate waste (
oqVO ) from the nodes of the waste 

generation. The collected waste is then unloaded back to the transfer station of origin. Each 

vehicle has two important cost factors: transportation cost (
q

ijTC ) and the fixed cost of utilization 

(
qFC ). 

The transfer stations (depots) are then central to the CSWM framework. The function of each 

transfer station is to sort the collected waste into specified sub-types ( w W ), in unspecified 

proportions. Individual transfer stations may use different forms of waste processing technology, 

appropriate to different types of waste, and the balance of processing technology ( wkP ) might vary 

across the logistics network. 

The larger waste transportation semi-trailers ( q S ) also begin their route from the allocated 

transfer station (depot). Before departure, they load the compatible sorted waste (
wqVW ). This 

load is then transported to the relevant recycling ( rhAH ), treatment ( tmAM ) or disposal ( dlAL ) 

center. Waste processing centers then recycle and/or treat the waste, with a proportion of 

recycled/recovered material ( wrLR ) and mass reduced, treated material ( wtLT ) released out of 

the CSWM network. This waste processing creates multiple residue types ( f F ) in different 
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amounts (
fiE ) at the waste processing centers. The residue fleet transferring trucks ( q U ) then 

begin their routes from the origin depot, load the compatible residue (
fqVF ) from the waste 

processing centers and transport it to the compatible disposal centers (
fdLF ). All vehicles (all 3 

types) then back to their original/allocated transfer station/depot. 

 

Figure 1. A general overview of the CSWM framework. 

 

The CSWM system described in Figure 1 represents a realistic logistics network design 

problem and is structured across three principal echelons. Figure 2 provides a more detailed 

graphical rendition of the flows within this logistics network. A conventional VRP would 

typically consider different fleet sizes across 3 fixed segments, comprising (in various terms): the 

base depots, the customers to be visited, and the delivery destinations. As described in the 

overview in Figure 1 and represented in more detail in Figure 2, the CSWM system considered 

in this study allows for variable combinations of the conventional segments across multiple 

echelons. In this instance: Echelon I conflates the roles of depots and destinations into the same 

instance of a network node; Echelon II allows a single form of the node to act as both the depot 

and the customer; and Echelon III offers a distinctive role for each node that (for the waste 

processing centers, for example) can be at odds with how the same nodes are considered by other 

echelons. Such dynamics more realistically reflect the situations faced in practice but increase the 

complexity of the VRP significantly. 
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Figure 2. Three echelons utilized in the proposed logistics network. 

 

3.2. Environmental emissions  

The environmental challenge of transportation management is a significant optimization 

problem [9]; [13], but is of growing concern to CSWM in practice and society more broadly. Of 

the various environmental impacts associated with CSWM, the transportation focus is on CO2 

emissions. 
q

ijGE  is the amount of CO2 emissions when a vehicle of type q travels from node i to 

node j. The level of CO2 emissions ( )q

ij q q ijGE CER FCR DIS    is directly related to the type of 

fuel and the efficiency of fuel consumption for each type of vehicle. The rate of CO2 emission (

qCER ) and fuel consumption rate (
qFCR ) is therefore likely to vary for different vehicle types. 

For this study, following Fathollahi-Fard et al. [9] and Wang et al. [11], the 
qCER is based on the 

type of fuel used by the vehicle. Diesel engines have found broad use in commercial vehicles and 

a standard 
qCER  for diesel fuel is 2.61 kgCO2/litre. To compute the

qFCR , following Edalatpour 

et al. [33], a linear expression between fuel consumption and the weight of the vehicle is used. If 
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qROI and 
qROF are respectively the fuel consumption rates for an empty and a full load for 

vehicle type q, the function of
qFCR  under a load of 

qiW  at the visiting node i is as follows: 

q q

q q qi

q

ROF ROI
FCR ROI W

MXC


   (1) 

It should be noted that the maximum allowable capacity of vehicle q called as
qMXC  is the 

average of 
qoMXO , 

qwMXW  and 
qfMXF  as its maximum capacity based on different waste types. 

By considering Eq. (1), the amount of generated CO2 for vehicle type q travelling between nodes 

i and j (
ijDIS ) is computed by:  

( )
q qq

ij q q qi ij

q

ROF ROI
GE CER ROI W DIS

MXC


     (2) 

 

3.3. Assumptions  

The proposed model aims to reach an optimal assignment of waste/residues within the CSWM 

system framework presented by minimizing the fleet size, transportation cost, CO2 emissions, and 

fair load assignment deviations in the transfer stations. To this end, the following key assumptions 

are made in order to formulate the problem: 

 The proposed model uses a multi-objective MINLP method to minimize the fleet size, 

transportation cost, CO2 emissions, and fair load assignment deviations. 

 The primary decision for the model is to find the optimal number of required vehicles, 

allocated to specific nodes in the logistics network. 

 The total cost of the system, as the first objective, is to cover the fixed cost of used vehicles 

and their variable cost based on the load shipped and distance travelled. 

 The environmental emissions, as the second objective, is computed based on the rate of fuel 

consumption, shipped load and distance travelled by the transport vehicles, to estimate the 

total level of CO2 emissions. 

 The fair load allocation total deviation to transfer stations, as the third objective, is based 

on any lost capacity. 

 The amount and type of waste generated is known and predefined for all generation nodes. 

 The capacity of all components of the system is limited and predefined. 

 At a time, each vehicle is assigned to one depot. 

 There are multiple vehicle types, and each has a specific capacity, fixed usage cost, 

transportation cost, and variable fuel consumption rate and CO2 emission rate for the empty 

and final load. 

 All waste and residue collections are completed, with no permeation of partial collection. 

 Each customer node is served once only by a selected vehicle, as is customary in VRP 

models. 

 The CSWM framework is classified as a multi-depot VRP. Three echelons (I, II and III) are 

assumed, as illustrated in Figure 2. 



13 

 

 Treatment, recycling, and disposal, each require different technologies, and so each center 

performs only one such function. 

 For each waste sorted type at a transfer station, there is only one compatible treatment, 

recycling, or disposal technology. 

 For each residue generated type at waste processing center there is a compatible disposal 

technology. 

 The amount of each type of waste/ and residue does not exceed the fleet capacity. 

 All parameters are deterministic and known. 

 

3.4. Formulation  

Due to page limitation, the notations of developed CSWM framework are provided in 

Appendix A.  

The first objective function, for the total cost, is presented in Eq. (3). Fixed costs are included 

in the first three terms and variable costs in the last three terms. The second objective, for CO2 

emissions, is presented in Eq. (4). The third objective, for the total deviation of fair load 

allocation, is presented in Eq. (5). 

 

1Min ( ) ( ) ( )

( ) ( )

(

q q q

q ij q ij q ij

q V Q i K j G q S Q i K j M H L q U Q i K j M H

q q q q

ij ij qi ij ij ij qi ij

i G j K G q V Q i K j K M H L q S Q

q q

ij ij qi

j M H L q U Q

Z FC X FC X FC X

TC X W DIS TC X W DIS

TC X W

              

           

    

     

       

   

       

     

  )ij

i M H

DIS
 



 (3) 

2Min ( )

( )

( )

q q q

q q qi ij ij

i G j K G q V Q q

q q q

q q qi ij ij

i K j K M H L q S Q q

q q q

q q qi ij ij

i M H j M H L q U Q q

ROF ROI
Z CER ROI W DIS X

MXC

ROF ROI
CER ROI W DIS X

MXC

ROF ROI
CER ROI W DIS X

MXC

    

      

      


    


    


    

  

  

  

 (4) 

3Min / /j i ok og

j K i K o O o O g G

Z CPK CPK YK BG
    

      (5) 

 

Since the proposed model is a variant of the VRP, the problem constraints can be simplified to 

the equation of 1q

ij

i Depots j Customers

X
 

  , which follows most previous studies [50]; [34]; [37]. This 

use of the generalized form of the problem constraint equation to utilize vehicles and to allocate 

the customers forces all vehicles to be employed. Forcing all vehicles to be employed does raise 

issues about the potential to optimization the size of the fleet. This potential limitation is addressed 

in this study through the introduction of further constraints, as presented in Eqs. (6) to (13). These 
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further constraints require vehicles to begin each route from a transfer station in lieu of a dedicated 

depot node. The constraints for vehicles utilization against each of the three echelons are 

formulated in Eqs. (7), (10) and (12), respectively.  

 

1q

kg

k K g G

X
 

  q V Q   (6) 

q

kg q

k K g G

X Z
 

  q V Q   (7) 

0q

ij qX Z   , ;i j G q V Q    (8) 

1q

ij

i K j K M H L

X MXK
    

    q S Q   (9) 

q

ij q

i K j M H L

X Z
   

   q S Q   (10) 

1q

ij

i K j M H

X
  

   q U Q   (11) 

q

ij q

i K j M H

X Z
  

   q U Q   (12) 

0q

ij qX Z   , ;i j M H q U Q     (13) 

 

To avoid the potential for sub-tours, Eqs. (14) to (16) incorporate versions of the traditional 

VRP constraint for each of the three echelons, respectively. These constraints state that when a 

vehicle arrives at an intermediate node, it must depart that node. 

'

'

0q q

ij ji

i K G i G K

X X
   

    ;j G q V Q     (14) 

'

'

0q q

ij ji

i K i K M H L

X X
    

    ;j K q S Q     (15) 

'

'

0q q

ij ji

i K M H i H M L

X X
     

    ;j M H q U Q      (16) 

 

As is common in standard VRP route structuring, the following constraints ensure that each 

customer is visited once per waste type by a compatible vehicle. This requirement is formulated 

for each echelon by Eqs. (17) to (19), respectively.  

 

1q

ij oq

i K G q V Q

X VO
   

    ;j G o O    (17) 

1q

ij wq

j K M H L q S Q

X VW
     

    ;i K w W    (18) 

1q

ij fq

i K M H q U Q

X VF
    

    ∀𝑗 ∈ 𝑀 ∪ 𝐻; 𝑓 ∈ 𝐹 (19) 
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Eqs. (20) to (24) ensure that each vehicle is able to be allocated to only one transfer station. 

These constraints ensure that all vehicles return back to their depot of origin. 

 
q q

kj kq jk

j G j G

X ZK X
 

    ;k K q V Q     (20) 

' ''

'

q q q

ji i j kq i j

j K M H L i K i M H L

X X ZK X
       

      ;j K q S Q     (21) 

'

'

q q

ij ji

i K

X X


  ; ;i K j M H L q S Q        (22) 

'

'

q q

ij kq i j

j M H i L

X ZK X
  

    ;i K q U Q     (23) 

'

'

q q

ij i j

i M H

X X
 

   ; ;i L j K q U Q      (24) 

 

Following Rabbani et al. [34], Eqs. (25) to (35) present the load limitations for vehicles of 

different capacity for all travel across all echelons. 

 

( )q

qi qj oq qo ij oq qo oj

o O o O

W W VO MXO X VO MXO BG
 

        , ;i j G q V Q     (25) 

oq og qi oq qo

o O o O

VO BG W VO MXO
 

      ;i G q V Q     (26) 

q

kg og oq qg

k K o O

X BG VO W
 

    ;g G q V Q     (27) 

( ( ))q

qg oq qo kg og qo

o O k K

W VO MXO X BG MXO
 

      ;g G q V Q     (28) 

( )q

qi qj wq qw ij wq qw wj

w W w W

W W VW MXW X VW MXW P
 

        , ;i j K q S Q     (29) 

wj wq qi wq qw

w W w W

P VW W VW MXW
 

      ;i K q S Q     (30) 

q

kj wj wq qj

k K w W

X P VW W
 

    ;j G q S Q     (31) 

( )q

qi qj fq qf ij fq qf fi

f F f F

W W VF MXF X VF MXF E
 

        , ;i j M H q U Q      (32) 

fi fq qi fq qf

f F f F

E VF W VF MXF
 

      ;i M H q U Q      (33) 

q

ij fq fi qj

k K f F

X VF E W
 

    ;j M H q U Q      (34) 

( ( ))q

qj fq qf ij fi qf

f F i K

W VF MXF X E MXF
 

      ;j M H q U Q      (35) 
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Eqs. (36) to (38) are required to ensure that treatment, recycling and disposal centers 

respectively, only receive compatible types of waste. 

 
q

ij wq wt tj

w W t T

X VW LT AM
 

    , ;i K j M q S Q      (36) 

q

ij wq wr rj

w W r R

X VW LR AH
 

    , ;i K j H q S Q      (37) 

q

ij wq wd dj

w W d D

X VW LD AL
 

    , ;i K j L q S Q      (38) 

 

Eq. (39) ensures that disposal centers receive only compatible residue. 

 
q

ij fq fd dj

f F d D

X VF LF AL
 

    , ;i M H j L q U Q       (39) 

 

Eq. (40) determines the amount of different waste types sorted at a transfer station ready for 

transport to the waste processing and disposal centers. 

 

wk wk ok

o O

P AW YK


   ,k K w W    (40) 

 

The following constraints control the demand at waste processing centers. Eqs. (41) and (42) 

present the residue amounts generated at treatment and recycling centers, respectively. As such, 

Eq. (43) determines the amounts of different residue types generated at both treatment and 

recycling centers ready for transport to disposal centers. 

 

(1 )m wm tm wt

w W t T

XM YM AM CW
 

    m M   (41) 

(1 )h wh rh wr

w W r R

XH YL AH BW
 

    h H   (42) 

fi m tm f h rh f

i M H t T m M r R h H

E XM AM MUM XH AH MUH
     

         f F   (43) 

 

Eqs. (44) to (48) show the amounts of sorted, treated, recycled and disposed waste and residue 

at the corresponding waste processing nodes, respectively. 

 
q

ok gk qg oq

q V Q g G

YK X W VO
  

     ;k K o O    (44) 

q

wm km qm wq

q S Q k K

YM X W VW
  

     ;w W m M    (45) 
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q

wh kh qh wq

q S Q k K

YH X W VW
  

     ;w W h H    (46) 

q

wl kl ql wq

q S Q k K

YL X W VW
  

     ;w W l L    (47) 

q

fl il qi fq

q U Q i M H

YF X W VF
   

     ;f F l L    (48) 

 

A common assumption for logistic network models generally is that demand should always be 

met, or that shortages are to be avoided. For this reason, Eq. (49) ensures that all waste created at 

the generation nodes is transported to the transfer stations. Similarly, Eq. (50) ensures that all 

sorted waste from the transfer stations is transported to waste processing and disposal centers. In 

turn, Eq. (51) ensures that all sorted residue from the treatment and recycling centers is 

transported to disposal centers.  

 

og ok

o O g G o O k K

BG YK
   

   (49) 

wk wh wm wl

w W k K w W h H w W m M w W l L

P YH YM YL
       

        (50) 

fi fl

f F i M H f F l L

E YF
    

    (51) 

 

Eqs. (52) to (55) confirm that all facilities have fixed capacity limitations applied. 

 

ok k

o O

YK CPK


  k K   (52) 

wm m tm

w W t T

YM CPM AM
 

    m M   (53) 

wh h rh

w W r R

YH CPH AH
 

    h H   (54) 

ml hl l dl

mM hH d D

XML XHL CPL AL


      l L   (55) 

Finally, Eqs. (56) and (57) ensure that all variables take positive binary values, and thereby all 

values are feasible.  

 

, , , , , , , , , , , 0wk fi ok wm wh wl fl m h ml hl qiP E YK YM YH YL YF XM XH XML XHL W   (56) 

, , {0,1}q

ij q kqX Z ZK   (57) 

 

It should be noted that when dealing with non-linear terms in the objectives and constraints, as is 

the case in this model, the computational complexity and processing time is massively increased 
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when using the exact method. To alleviate this imposition, the form of certain variables have been 

modified. The details of the linearization are provided in Appendix B.  

 

4. Solution algorithm 

Since VRP is generally NP-hard, the proposed problem with three objectives and many 

constraints is NP-hard as well. Due to the overwhelming complexity produced by the CSWM 

framework being proposed, a meta-heuristic algorithm is required to render the optimization 

process more efficient. This study adopts the novel SEO meta-heuristic algorithm recently 

introduced by Fathollahi-Fard et al., [20]. For the first time, a novel SEO using an adaptive 

memory approach (AMSEO), is proposed. The performance of the AMSEO is first compared 

with that of the original SEO and SA approaches. The results of the meta-heuristics are then 

checked against an exact method, structured using an epsilon-constraint method. 

To begin, the solution representation of the algorithm is illustrated to show how the constraints 

of the model should be handled given the continuous search space. The SEO approach is then 

explained in overview and considered more specifically in the context of the multi-objective 

model proposed in this study. The new AMSEO extension is then developed and introduced for 

the first time. 

 

4.1. Solution presentation  

When a meta-heuristic algorithm is used to solve a mathematical model, it is necessary to 

design an encoding scheme to show how a solution can handle the constraints of the model [51]. 

In this study, a two-stage methodology called random-key (RK) is employed to encode the 

problem [52]. The significant advantage of an RK method in this context is that it avoids non-

feasible solutions, which removes any need for repair and can reduce the time taken to encode 

significantly [53]; [54]. The first stage of RK is to generate random continuous numbers using 

the search engine of the algorithm. The second stage is then a heuristic procedure to transform 

these numbers for use as the decision variables of the model [55]; [56]; [57]. 

There are three primary decision variables in the proposed model: 
qZ , 

kqZK  and 
q

ijX . 

Respectively, these primary decisions relate to which of the vehicles should be employed (refer 

Figure 3), how that vehicle is to be allocated to a transfer station (refer Figure 4), and how the 

routing decisions are to be determined (refer Figure 5). The values for all other variables are 

calculated based on the results of these three primary decisions. 

Figure 3 illustrates the procedure for choosing which of the vehicles are to be employed. Given 

there is, say, five vehicles (from 1P  to 5P ) available for selection, a random distribution between 

zero and one is applied to each candidate vehicle (Step 1). Where the random value assigned to a 

vehicle is less than 0.5, it is included, otherwise, it is excluded (Step 2). Accordingly, for the 

example shown in Figure 3, all vehicles will be employed, other than 4P . 
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1P  2P  3P   4P   5P   

 

 0.44 0.47 0.25 0.68 0.12 
 

  

 1 1 1 0 1 
 

 

Figure 3. Technique for selecting the vehicles  

 

The procedure for then allocating selected vehicles to a specific transfer station (depot) is 

illustrated in Figure 4. Given there is, say, three transfer stations available, random numbers 

distributed by (0,3)U  are generated for each vehicle (Step 1). If the value is between zero and 

one, the vehicle is assigned to transfer station one, and so on (Step 2). Accordingly, for the 

example shown in Figure 4, vehicle 1P  is allocated to transfer station one, vehicles 2P  and 5P are 

allocated to transfer station two, and so on. 

 

 
1P  2P  3P  5P  

 

 0.44 1.87 2.55 1.12 
 

  

 1 2 3 2 
 

 

Figure 4. Technique for the allocation of selected vehicles to transfer stations.   

 

To determine the routing for each selected vehicle from each available transfer station, the 

procedure illustrated in Figure 5, is applied. Whilst the instance of each customer might change 

depending on the echelon of the CSWM framework shown in Figure 2, for each transfer station 

there is a given set of customers. For example, for the case of transfer station two shown in Figure 

4, where there is, say, 12 waste generation centers as customers, random numbers distributed by 

uniform function between zero and one are generated for each customer (Step 1). Those numbers 

are then ordered by value to specify a specific sequence for the routes of each vehicle (Step 2). 

Accordingly, for the example shown in Figure 5, vehicles 2P  and 5P  have been allocated to 

transfer station two and are therefore available for routing from that station. The routing is then 

allocated as follows: 

2 2 1 8 5 11 3{ }P m m m m m m       

5 10 9 7 12 4 6{ }P m m m m m m        

 

1m  2m  3m  4m   5m   6m   7m   8m   9m   10m   11m   12m   

0.24 0.08 0.48 0.89 0.34 0.91 0.76 0.32 0.67 0.51 0.42 0.82 

          

2 1 6 11 4 12 9 3 8 7 5 10 
 

Figure 5. Technique to assign customers to each rout  

 

4.2. Social engineering optimizer and its novel extension  

Step 1 

Step 2 

Step 1 

Step 2 

Step 1: Initialize the random numbers 

Step 2: Transform to a feasible solution 
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The social engineering optimizer (SEO) algorithm is a recently developed meta-heuristic 

algorithm applied successfully to solve combinatorial optimization problems such as single 

machine scheduling, supply chain network design, and VRP [20]. This current study is newly to 

apply SEO to CSWM.  

Due to page limitation, the illustration of SEO and its multi-objective version is transformed 

into Appendix C. Although there are a few modifications and hybridization of SEO recently [54]; 

[58], the proposed idea is unique and for the first time applied to the MSW optimization and our 

CSWM framework. The SEO generally has four steps. First, after initializing an attacker and 

defender randomly, the attacker would like to train and retrain the defender based on some key 

information with regards to the main traits of the defender personally. With four different 

techniques to spot an attack, the attacker determines an attack and each time, tries to find a new 

way to extract all information from the attacker. Finally, the attacker will be stronger than before 

from each iteration and a new defender will be considered randomly.   

Without a doubt, the intensification and diversifications phases are the main properties of 

all meta-heuristics [55]; [56]. The main feature of recent meta-heuristics is to have an intelligence 

plan to do these phases and to find a better balance among them [57]; [58]. Typically, as a local 

search meta-heuristic like SA, the diversification phase is more important to have an 

improvement. From the main idea of SEO, the training and retraining activities are the key to the 

intensification phase. One merit of the developed AMSEO is to have an intelligent exploration 

phase behaviour.  

The step of training and retraining in SEO is to choose the traits of defender randomly with 

a percentage α. Having more details about the SEO, the Electronic Supplementary Materials F3 

is available attached. In our proposed AMSEO, an updated memory for the training and retraining 

phase is contributed [59]. If the new defender can dominate the old one, the selected traits have 

more chance with the use of a roulette wheel selection for the next iteration. 

To compute the probability of each trait in the defender, assume that we have four traits in 

the defender and attacker and the rate of α is 0.25. Hence, one trait would be selected. Now, 

assume that we are in 15th iteration. During four iterations, the new defender cannot dominate the 

old one. The success rate of the traits {3, 4, 2, 2}. With the use of a roulette wheel selection 

procedure, the probability of selection of each trait is {0.27, 0.36, 0.18, 0.18}, respectively. 

Accordingly, the success probability of the second trait is more than others. Generally, this idea 

is the proposed AMSEO.   

5. Experimental results  

In this section, some constrained test problems of varying complexities are generated, and the 

parameters for each meta-heuristic approach are tuned accordingly. The results against 

constrained problems are validated using an epsilon-constraint exact method, and the relative 

performance of each meta-heuristic approach is compared. The high relative efficiency of the 

AMSEO is then tested using sensitivity analysis. Notably, all coding treatments of the meta-

heuristics and the exact method were executed in Windows® 8, using an Intel® Core™ i5, 2.40 

GHz and 4 Gb RAM. 
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5.1. Data generation  

A series of 20 test problems (P1 to P20) are generated to represent small (P1 to P6), medium 

(P7 to P12), and large (P13 to P20) problem search spaces. The search time for each test problem 

is set for all meta-heuristics to ensure a fair comparison. Table 2 presents the characteristics of 

each test problem and its set computational time. For all test problems, the generation of 

parameters is then based on the random functions provided in Table 3. 

 

Table 2. Details of the generated test problems 

Level  Identifier 

Problem size Search 

time 

(seconds) 
(G, K, M, H, L, V, S, U, O, W, F, T, R, D) 

Small  

P1 (2, 3, 2, 2, 2, 3, 3, 3, 2, 2, 2, 2, 2, 2) 10 

P2 (3, 6, 2, 2, 2, 5, 5, 5, 3, 3, 2, 2, 2, 2) 15 

P3 (4, 6, 3, 3, 3, 5, 5, 5, 4, 4, 3, 3, 3, 3) 15 

P4 (4, 6, 4, 4, 4, 7, 7, 7, 5, 5, 3, 3, 3, 3) 20 

P5 (6, 6, 5, 5, 5, 9, 9, 9, 7, 7, 4, 3, 3, 3) 30 

P6 (8, 6, 7, 7, 7, 9, 9, 9, 8, 8, 4, 3, 3, 3) 30 

Medium  

P7 (12, 8, 10, 10, 10, 10, 10, 10, 10, 10, 5, 4, 4, 4) 40 

P8 (14, 8, 12, 12, 12, 10, 10, 10, 12, 12, 5, 4, 4, 4) 40 

P9 (18, 10, 16, 14, 12, 12, 10, 11, 14, 12, 6, 5, 5, 5) 50 

P10 (20, 10, 17, 16, 14, 13, 11, 12, 16, 14, 6, 5, 5, 5) 60 

P11 (23, 12, 18, 18, 16, 14, 14, 12, 20, 16, 6, 5, 5, 5) 70 

P12 (28, 14, 20, 20, 18, 14, 14, 12, 22, 20, 7, 6, 6, 6) 90 

Large 

P13 (34, 14, 24, 24, 20, 14, 14, 14, 26, 24, 8, 6, 6, 6) 120 

P14 (38, 15, 28, 26, 24, 15, 14, 14, 30, 28, 8, 6, 6, 6) 140 

P15 (44, 15, 32, 30, 28, 15, 15, 14, 34, 32, 8, 6, 6, 6) 180 

P16 (48, 16, 34, 32, 28, 15, 15, 15, 34, 34, 8, 6, 6, 6) 180 

P17 (54, 18, 38, 36, 30, 16, 16, 16, 38, 36, 9, 7, 7, 7) 220 

P18 (56, 18, 40, 36, 32, 16, 16, 16, 40, 38, 9, 7, 7, 7) 220 

P19 (64, 21, 48, 44, 38, 18, 18, 16, 52, 46, 9, 8, 8, 8) 240 

P20 (72, 24, 54, 48, 48, 18, 18, 18, 58, 56, 10, 9, 9, 9) 280 

 

 

Table 3. Parameters for the developed model. 

Parameter Surface value 

( , )i ix y   1000 ( (0,1), (0,1))U U  

( , )j jx y   1000 ( (0,1), (0,1))U U  

ijDIS   2 2( ) ( )i j i jx x y y    

qFC  Rand{1, 2, …, 5}×106 Rial 
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, , , , ,oq wq fq tm rh dlVO VW VF AM AH AL  Rand{0, 1} 

q

ijTC  Rand{1, 2, …, 5}×103 Rial 

qCER  

2.61 (i.e., the CO2 emission rate for diesel oil) 

2.17 (i.e., the CO2 emission rate for natural gas) 

2.57 (i.e., the CO2 emission rate for gasoline) 

, ,qo qw qfMXO MXW MXF  Rand{1, 5, …, 20}×102 m3 

ogBG  Rand{1, 2, …, 8}× Kg 

qROI  U(0.1, 0.3) 

qROF  U(0.2, 0.5) 

, , ,wt wr wd fdLT LR LD LF  Rand{0, 1} 

, , ,k m l hCPK CPM CPL CPH  Rand{1, 2,…, 4}× 104 m3 

, , , ,wk wr wt f fAW BW CW MUM MUH  U(0.1, 1)  

 

5.2. Assessment metrics and Calibration  

The proposed CSWM framework has three conflicting objectives. To evaluate this framework 

as it has more than one objective, some multi-objective assessment metrics are usually needed to 

employ the quality of the non-dominated solutions generated by the meta-heuristics [9]; [55]; 

[56]; [57]. This study utilizes the number of Pareto solutions (NPS), the spread of non-dominance 

solutions (SNS), mean ideal distance (MID), and hyper volume (HV). Most recent studies have 

employed these metrics to evaluate their optimization methodology (see, for example, [34]; [9]; 

[55]; [51]). The definition and desirability of the employed metrics are provided in Appendix D.  

The calibration and tuning of meta-heuristics play a key role in performance, and it is needed 

to tune the input parameters of meta-heuristics before solving the simulated test studies. This 

paper utilizes the Response Surface Method (RSM) to do the calibration set [60]. The RSM has 

been shown in a number of recent logistics network design studies to calibrate the parameters of 

meta-heuristics efficiently [9]; [55]; [51]; [58].  

Due to page limitation, the details and implementation of RSM are explained in Appendix E. 

Finally, Table 4 presents the approximate values of the tuned parameters, the R-squared (R2) of 

assessment metrics, and the total desirability (D). For both of them, a higher is favorable for the 

algorithm.  

 

Table 4. Calibrated algorithms, their respective R-squared (R2) and desirability (D) 

Optimizer Tuned parameters 
R2 (%) 

D 
NPS MID SNS HV 

SA Sb-It=32; T0=700; 𝑅∝=0.9396 54 72 60 58 0.6634 

SEO 𝑁𝑎𝑡𝑡=38; α=0.15; β=0.15 58 86 62 66 0.7238 

AMSEO 𝑁𝑎𝑡𝑡=45; α=0.25; β=0.1 52 78 72 78 0.7581 
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5.3. Validation 

To verify the reliability of each meta-heuristic, it is necessary to compare the results with the 

output of the exact method as a benchmark [58]. Here, the epsilon-constraint (EC) method 

implemented by coding in GAMS 24.7.3 software is used to solve the small level and test models. 

To validate the non-dominated solutions of a meta-heuristic, the positive ideal solution (PIS) and 

negative ideal solution (NIS) should be reached [9]; [10]. The use of the PIS and NIS allows 

efficient solutions among all non-dominated solutions generated by meta-heuristics to be updated. 

Generally, the EC method is formulated to optimize one objective and to limit the other objectives 

as allowable bounds [52]; [54]. This algorithm was first developed by Haimes et al. [61] to solve 

multi-objective optimization problems. From the EC method, the Pareto optimal frontier is 

generated by modifying the bounds of the objective function [58]. The formulation of the EC 

method for this study is presented by: 

 

1Min Z   

(58) 

s.t. 

Eqs. (6) – (57) 

      2 1Z   

      23Z    

12 2

min maxZ Z    

23 3

min maxZ Z   

 

To run the EC method for a test problem (e.g., P1) as given in Eq. (58), the main objective 

function ( 1Z ) should be minimized. To reach the PIS and NIS, other objectives (i.e., 
2

minZ  and 

3

maxZ ) can be defined as the core objective to be optimized. To estimate the bounds of the EC (i.e., 

1 and 2 ), the PIS and NIS averages, and their upper quarter are calculated. 

For ease of evaluation, the sorted solutions of the three meta-heuristics and the EC are 

tabulated, as shown for P1 in Table 5. To have a comparison between the solutions of EC and our 

meta-heuristics, we have considered the modified NPS (MNPS) metric [9]. After that we have 

considered the percentage of (
MNPS

NPS
) to measure the validation of the non-dominated solutions. 

It shows that how much percentage of the non-dominated solutions are acceptable in each 

algorithm. For a number of small test studies, this metric is calculated by Table 6.  

The results of this validation exercise, as illustrated in Table 5, show that all three meta-

heuristic algorithms generate high-quality non-dominated solutions and our AMSEO is 

performing the best. The results provided in Table 6, confirm this issue as the average number of 

Pareto non-dominated solutions relative to the EC method is shown to be 0.75, and significantly 

higher than for the results for SA (0.54) and SEO (0.63). 

 



24 

 

Table 5 Non-dominated solutions generated by the EC method and each meta-heuristic  

EC SA SEO AMSEO 

1Z  2Z  3Z  1Z  2Z  3Z  1Z  2Z  3Z  1Z  2Z  3Z  

1.1167E+09 4235 1003 1.1199E+10 4164 1031 1.1188E+09 3750 967 1.1175E+09 4199 1046 

1.1168E+09 4152 1020 1.1208E+10 3625 1036 1.1192E+09 4015 971 1.1181E+09 3753 1047 

1.1173E+09 4070 1038 1.1259E+10 3821 1042 1.1196E+09 3898 978 1.1189E+09 4178 1058 

1.1196E+09 3988 1055 1.1291E+10 3636 1047 1.1219E+09 4352 982 1.1197E+09 3744 1058 

1.1208E+09 3906 1072 1.1296E+10 3647 1054 1.1228E+09 4042 988 1.1203E+09 4266 1084 

1.1235E+09 3823 1090 1.1305E+10 4258 1064 1.1234E+09 4445 996 1.1219E+09 3826 1088 

1.1483E+09 3741 1107 1.1308E+10 4156 1068 1.1242E+09 3832 996 1.1231E+09 3709 1104 

1.1839E+09 3659 1124 1.1322E+10 3853 1070 1.1249E+09 3901 1013 1.1238E+09 3750 1110 

- - - 1.1331E+10 4360 1078 1.1252E+09 3802 1021 1.1249E+09 4028 1126 

- - - - - - 1.1259E+09 3794 1023 1.1255E+09 3919 1132 

- - - - - - 1.1272E+09 4410 1078 - - - 

- - - - - - 1.1301E+09 4166 1094 - - - 

 

Table 6. Validation results for each meta-heuristic 

Test 

problem 

SA SEO AMSEO 

MNPS 
MNPS/ 

NPS 
MNPS 

MNPS/ 

NPS 
MNPS 

MNPS/ 

NPS 

P1 5 0.55 8 0.66 8 0.8 

P2 6 0.75 8 0.66 9 0.69 

P3 4 0.44 6 0.54 10 0.83 

P4 5 0.5 9 0.75 10 0.71 

P5 5 0.45 8 0.57 9 0.75 

P6 6 0.6 6 0.6 10 0.76 

Average   0.54   0.63   0.75 

 

5.4. Comparison 

Based on the evaluation metrics provided in Electronic Supplementary Materials F4, the 

performance of each meta-heuristic is recorded in Table 7. This comparison shows that AMSEO 

outperforms both SA and SEO by having the highest count of best cases in each evaluation metric 

overall by a factor of 51 (AMSEO) to 24 (SEO) to 11 (SA). 

The convergence and diversity of the solution set across all three objectives is a useful 

indication of the meta-heuristic utility. The parallel coordinates plot is recommended to provide 

an effective, immediate visual comparison. However, since the range and units of the three 

objective functions are clearly different, the normalized values of non-dominated solutions are 

calculated based on the amount of PIS and NIS solutions generated by the EC method. For 

example, Figure 6 presents the parallel coordinates plots for each meta-heuristic specific to the 

test problem P4. In this case, SA generated 10 solutions (Figure 6a), SEO generated 12 solutions 

(Figure 6b), and AMSEO generated 14 solutions (Figure 6c). A visual comparison of these three 

plots reveals clearly that AMSEO identifies more solution diversity than the two other meta-

heuristic algorithms. 
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Table 7 Results of the evaluation metrics for each meta-heuristic. 

Test 

problem 

NPS MID SNS HV 

SA SEO AMSEO SA SEO AMSEO SA SEO AMSEO SA SEO AMSEO 

P1 9 12 10 2.7 1.45 1.6567 39053 33613 42156 2.86E+09 1.98E+09 2.17E+09 

P2 8 12 13 1.41 3.18 1.3832 71532 72664 84093 2.91E+09 2.85E+09 3.81E+09 

P3 9 11 12 1.88 3.41 2.5528 103674 105584 104846 3.84E+09 4.81E+09 5.36E+09 

P4 10 12 14 1.7 1.62 1.2058 116854 113207 118923 5.18E+09 3.97E+09 6.48E+09 

P5 11 14 12 3.53 2.19 1.1014 199064 206584 209671 4.82E+09 5.18E+09 8.13E+09 

P6 10 10 13 2.63 2.26 1.1175 298976 225643 268749 6.49E+09 5.92E+09 8.92E+09 

P7 11 13 15 1.41 2.62 1.1044 289074 319065 326843 8.18E+09 7.39E+09 7.49E+09 

P8 10 14 13 4.23 2.66 1.3081 375463 382970 385034 9.22E+09 8.14E+09 9.11E+09 

P9 14 13 13 1.97 3.71 2.8128 519065 563271 573297 8.50E+09 9.60E+09 1.29E+10 

P10 10 15 16 1.59 1.19 2.1869 40937 45748 46743 2.18E+10 1.82E+10 2.85E+10 

P11 12 14 14 1.96 1.17 1.5879 76134 79267 70864 1.03E+10 1.43E+10 1.39E+10 

P12 12 16 15 3.26 2.11 2.51 100689 106429 101948 4.81E+10 2.81E+10 2.64E+11 

P13 15 14 14 1.43 2.25 2.1424 112637 119835 121553 3.02E+10 8.51E+10 8.20E+10 

P14 14 16 16 4.91 3.18 1.8053 209685 213758 216795 6.94E+10 8.30E+10 1.03E+11 

P15 11 14 14 4.81 3.31 3.6272 245361 255738 251678 6.29E+10 8.21E+10 9.14E+10 

P16 14 16 16 3.26 4.24 3.3502 322074 328045 326571 8.02E+10 9.85E+10 8.19E+10 

P17 16 15 14 3.65 5.74 3.5413 392185 410934 398675 1.49E+11 1.09E+11 2.87E+11 

P18 12 13 16 5.66 6.01 4.4601 523416 584304 591057 1.52E+11 1.82E+11 2.54E+11 

P19 13 16 15 5.31 4.19 4.0216 306571 317654 322059 1.83E+11 5.82E+11 6.83E+11 

P20 12 15 15 6.17 5.91 4.1894 398675 406294 412478 2.85E+11 6.19E+11 5.85E+11 

Best 3 11 12 4 4 12 1 6 13 3 3 14 
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(b)  

(c)  

 

Figure 6 Parallel coordinates plots of meta-heuristics (a) SA, (b) SEO, and (c) AMSEO specific to test 

problem P4 

 

To do some statistical tests, the results reported in Table 7 are scaled by the relative deviation 

index (RDI) as follows:  

 

sol sol

sol sol

ID AL
RDI

MAX MIN





 (59) 

This metric is previously defined in several similar studies such as [9, 20, 53-54]. A lower value 

of this metric is favorable of the algorithms.  

To study the efficiency of the meta-heuristics in comparison with each other, interval plots are 

provided in Figure 7. The RDI metric is considered to depict these plots. As given in Figure 7a, 

the performance of SEO and AMSEO are similar for the NPS. However, as given in Figure 7b, 
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the AMSEO performance is highly better than two other algorithms for the MID metric. As given 

in Figure 7c, the SEO and AMSEO performances are also similar in terms of the SNS, with 

AMSEO marginally superior. As given in Figure 7d, finally, the AMSEO performance is once 

again highly superior for the HV metric. All these metrics confirm the efficiency of the AMSEO 

in this field.  
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(b)  
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(d)  
Figure 7 Interval plots of the RDI metric for (a) NPS, (b) MID, (c) SNS, and (d) HV 

 

5.5. Sensitivity analysis 

To assess the potential variability of the proposed model given variations in the key 

parameters, a sensitivity analysis is performed. The key parameters considered are the fixed 

utilization cost of vehicles (
qFC ), the transportation cost ( q

ijTC ), the amount of waste at waste 

generation nodes (
ogBG ), and the total number of vehicles ( Q ). For a range of values in each 

parameter, the average value of each objective function across all non-dominated solutions is 

taken as the indicator of sensitivity. Each parameter is varied individually across four scenarios 

(C1-C4) and the results presented numerically in Tables 8-11, and graphically in Figures 8-11. 

The objective functions considered against each parameter comprise the total cost (Z1), the green 

emissions (Z2), and the total deviation from fair load allocation (Z3). 

Using the resulting figures listed in Table 8, the sensitivity of the fixed utilization cost of 

vehicles (
qFC ) is illustrated in Figure 8. A review of Figure 8 indicates that each objective 

function responds differently to variations in the value of (
qFC ). Broadly, the total cost (Z1) 

increases as the fixed utilization cost increases, whereas green emissions (Z2) and the total 

deviation from fair load allocation (Z3) have more complex relationships. The value of (Z2) first 

falls and then increases as the fixed utilization cost increases. Conversely, the value of (Z3) first 

increases, and then falls as the fixed utilization cost increases. In other words and overall, as the 

fixed utilization cost increases, the financial and environmental impacts tend to increase but the 

social impact is reduced. 

 

Table 8. A sensitivity analysis of the fixed utilization cost of vehicles.  

Num. of cases qFC   Z1 Z2 Z3 

C1 Rand {1,2} 3.28E+11 171895 5562 

C2 Rand {2,3} 3.50E+11 168439 5648 

C3 Rand {3,4,5} 4.59E+11 175094 5650 

C4 Rand {4,5,6} 4.81E+11 176829 5439 
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Figure 8. Behavior of the objective functions relative to changes in the fixed utilization cost. 

 

Using the resulting figures listed in Table 9, the sensitivity of the transportation cost ( q

ijTC ) is 

illustrated in Figure 9. A review of Figure 9 indicates that the objective function responses are 

more consistent to variations in the value of ( q

ijTC ) than they were for variations in the value of (

qFC ). The total cost (Z1) and green emissions (Z2) both increase steadily as the transport cost 

increases. The total deviation from fair load allocation (Z3) is however quite volatile and there is 

no clear trend between it and an increase in transport costs. In other words and overall, as the 

transportation cost increases, the financial and environmental costs also increase, but the social 

impact is highly variable. 

 

Table 9. A sensitivity analysis of the transportation cost. 

Num. of cases q

ijTC  Z1 Z2 Z3 

C1 2 3.99276E+11 174651 5638 

C2 4 5.48676E+11 175539 5639 

C3 6 6.98076E+11 175893 5635 

C4 8 8.47476E+11 176292 5637 
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Figure 9. Behavior of the objective functions relative to changes in the transportation cost. 

 

Using the resulting figures listed in Table 10, the sensitivity to the amount of waste at waste 

generation nodes (
ogBG ) is illustrated in Figure 10. A review of Figure 10 indicates that the 

objective function responses are broadly consistent with variations in the value of (
ogBG ). The 

total cost (Z1) and green emissions (Z2) both increase steadily as the amount of waste at waste 

generation nodes increases. The total deviation from fair load allocation (Z3) reduces steadily as 

amount of waste at waste generation nodes increases. In other words and overall, as the 

transportation cost increases, the financial and environmental costs are steadily increased, and the 

social impact is steadily reduced. 

 

 

Table 10. A sensitivity analysis of the amount of waste at waste generation nodes. 

Num. of cases ogBG  Z1 Z2 Z3 

C1 2 5.3678E+11 162298 5839 

C2 4 5.4638E+11 163839 5759 

C3 6 6.7418E+11 165892 5725 

C4 8 8.6219E+11 172019 5620 

 

 

0

0.2

0.4

0.6

0.8

1

1.2

C1 C2 C3 C4

N
o

rm
al

iz
ed

 v
al

u
es

No. of cases

Z1 Z2 Z3



31 

 

 
Figure 10. Behavior of the objective functions relative to changes in the amount of waste.  

 

Finally, using the resulting figures listed in Table 11, the sensitivity of the total number of 

vehicles ( Q ) is illustrated in Figure 11. The variation in (Q ) might comprise a variation in the 

relative numbers of each vehicle class and/or the total number of vehicles across all vehicle 

classes (V, S, and U). In this case, the relative proportion of each class is kept steady (equal 

proportion in each class), and only the total number of vehicles is increased. A review of Figure 

11 indicates that the objective function responses are entirely consistent with variations in the 

value of ( Q ). The total cost (Z1), green emissions (Z2), and total deviation from fair load allocation 

(Z3) all increase steadily as the total number of vehicles are increased. In other words and overall, 

as the total number of vehicles is increased, the financial, environmental, and social impacts are 

all steadily increased. 

 

Table 11. A sensitivity analysis of the total number of fleet vehicles.  

No. of cases V S U Z1 Z2 Z3 

C1 13 13 13 5.0328E+11 162504 5746 

C2 15 15 15 5.2815E+11 165539 5788 

C3 16 16 16 5.8239E+11 168845 5844 

C4 18 18 18 6.7425E+11 173894 5865 
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Figure 11. Behavior of the objective functions relative to changes in the total number of vehicles. 

 

6. Conclusion, managerial solutions and further research  

In this paper, the viability of a CSWM optimization with multiple objectives and real-life 

constraints using a novel multi-objective MINLP were demonstrated. An adaptive memory of 

SEO (AMSEO) was offered to solve the proposed model especially well given the particular three 

objectives. In this regard, the AMSEO performs significantly better than simulated annealing 

(SA) or SEO itself when all methods are tuned and compared regarding the NPS, SNS, MID, and 

HV. The epsilon-constraint method was employed to validate the model results in a small size, 

and some sensitivity analyses were considered to assess the sustainability dimensions of the 

model based on the changes in the parameters. Finally, some managerial solutions were 

considered by these results and findings.   

Academically, the decision-making models of operational MSW management aim to optimize 

the fleet size of each vehicle class independently, using a simplified objective function. However, 

in many contexts; most importantly, in developing countries where the MSW management is of 

particular concern, such a simplified approach is failing to deliver satisfactory financial, 

environmental and social outcomes. The purpose of the present paper is to introduce a new 

framework for practical and efficient routing optimization. The proposed framework needs a 

multi-objective optimization model accommodating heterogeneous fleets operating for a multi-

echelon logistics network. To solve the proposed model efficiency, a strong algorithm for 

combinatorial optimization problems which are manageable computationally. 

The CSWM optimization viability with multiple objectives and real-life constraints, is 

demonstrated by this study results. The CSWM problem is addressed by a novel MINLP model 

and a new solution is also generated by the adaptive memory extension of SEO (AMSEO). The 

problem characteristics are well solved by the performance of AMSEO. Although the definition 

of the proposed problem is still simple in comparison with all dynamic and potential aspects of 

CSWM problem is a real domain, the developed framework is more complex than the vast 

majority of previous MSW problems. The significant contribution is to cover the sustainability 
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dimensions of CSWM as the objectives of the total cost, green emissions and fair load allocation, 

simultaneously, for the first time. As a complex problem, in this regard, the efficiency of the 

AMSEO lends great attention to the broader application and development of this algorithm for 

other equivalent problem domains compounding complexity. 

The aforementioned contributions technically provide new managerial implications based on 

the results. First of all, the future tractability of CSWM optimization confirms principal highlights 

in practice. With regards to the grand challenge of the sustainable development in the MSW 

management, most especially in developing countries, considering multiple financial, 

environmental and social goals hybridized with dynamic constraints, is characterized by practical 

solutions to the framework of CSWM efficiently. Last but not least, further research on the 

AMSEO development to MSW optimization is warranted. 

Another important managerial insight refers to the shifting from MSW to CSWM management, 

entailing a manageable solution for the reverse and closed-loop logistic network design problems. 

In this regard, the options of the reverse and closed-loop logistic network create the added-value 

for CSWM considering multiple echelons for all activities of the processing, recycling and 

disposal of raw waste and transportation. Most notably, the potential overall waste disposal cost 

savings achievable through increased recycling (revealed by framing the logistics problem across 

several echelons) is of particular significance. Our algorithms also provide a full range of 

conditions and a high diversity based on three conflicting objectives to give this option to 

managers to select the best ideal solution (Figures 6).  

Other managerial solutions are generated by some sensitivity analyses of sustainability 

dimensions with regards to key parameters as given in Figures 8-11. For example, the total 

deviation volatility from fair load allocation (Z3) to variations in the cost of transportation revealed 

in Figure 9, warrants further research on the routing optimization of CSWM. Similarly, the 

contrasting behavior of the total deviation from fair load allocation (Z3) to both the total cost (Z1) 

and green emissions (Z2) in most situations is also noteworthy. Conversely, the consistent 

objective function responses to variations in the total number of vehicles when the relative 

proportion of each class is kept steady (shown in Figure 11) invites more detailed investigation. 

In conclusion, this study is a good point to define a sustainable framework for the CSWM, but 

still faces some limitations. There is no standard real-life case for our framework and it needs 

more research on the optimization of MSW in practice. To achieve sustainable development goals 

more broadly, it is needed to consider more social factors such as consumer risks and job 

opportunities. This study also applied a deterministic model. Hence, the consideration of fuzzy, 

stochastic or robust optimization methods is a good future remark. Without a doubt, several other 

heuristics and meta-heuristics cane be offered to examine the efficiency of AMSEO for this model 

or other optimization models for routing and scheduling problems.     

 

Appendix A. Notations  

The CSWM framework proposed, in line with standard VRP definitions, is considered by a 

graph F=(N, A), where N is the n nodes set and A is the arc set as A=(i, j): 0≤i, j≤n; i≠j. In this 

regard, the notations of the developed formulation are defined below: 
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Indices: 

g Index of waste generation nodes, g∈{1, 2, …, G} 

k Index of transfer station nodes, k∈{1, 2, …, K} 

m Index of treatment center nodes, m∈{1, 2, …, M} 

h Index of recycling center nodes, h∈{1, 2, …, H} 

l Index of disposal center nodes, l∈{1, 2, …, L} 

q Index of the vehicle fleet, q∈{1, 2, …, Q}; Q=V∪ 𝑆 ∪ 𝑈; the technology of vehicles  

v Index of collection vehicles fleet, v∈{1, 2, …, V} 

s Index of semi-trailer transportation vehicles fleet, s∈{1, 2, …, S} 

u Index of semi-trailer residue transferring vehicles fleet, u∈{1, 2, …, U} 

o Index of waste types accumulated at generation nodes, o∈{1, 2, …, O} 

w Index of waste types sorted at transfer station nodes, w∈{1, 2, …, W} 

f Index of residue types generated at treatment and recycling centers, f∈{1, 2, …, F} 

t Index of treatment technologies, t∈{1, 2, …, T} 

r Index of recycling technologies, r∈{1, 2, …, R} 

d Index of disposal technologies, d∈{1, 2, …, D} 

  

Parameters:  

qFC   Fixed cost of using vehicle q 

ogBG  Amount of waste type o accumulated at waste generation node g 

q

ijTC  
Transportation cost per unit between nodes i and j by using vehicle q; this includes all nodes in our 

transportation network (i.e., g, k, m, h, l, o, w) 

oqVO  1, if waste type o is completed with collection vehicle q ∈ V ∈ Q; 0, otherwise 

wqVW  1, if waste type w is completed with transferring vehicle q ∈ S ∈ Q; 0, otherwise 

fqVF  1, if residue type f is completed with residue transferring vehicle q ∈ U ∈ Q; 0, otherwise 

tmAM  1, if the treatment technology t exists at treatment center m; 0, otherwise 

rhAH  1, if the recycling technology r exists at recycling center h; 0, otherwise 

dlAL  1, if the disposal technology d exists at disposal center l; 0, otherwise  

ijDIS  Traveling distance between nodes i and j 

qCER  CO2 emissions rate for vehicle q 

qFCR  Rate of fuel consumption for vehicle q 

q

ijGE  

Amount of CO2 emissions generated by vehicle q for traveling distance between nodes i and j 

( )q

ij q q ijGE CER FCR DIS    

wtLT  1, if waste type w is compatible with treatment technology t; 0, otherwise 

wrLR  1, if waste type w is compatible with recycling technology r; 0, otherwise 

wdLD  1, if waste type w is compatible with recycling technology d; 0, otherwise 

fdLF  1, if residue type f is compatible with recycling technology d; 0, otherwise 
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qoMXO  Maximum allowable load of vehicle q which is compatible with waste type o 

qwMXW  Maximum allowable load of vehicle q which is compatible with waste type w 

qROI  Empty load of fuel consumption rate for vehicle q 

qROF  Final load of fuel consumption rate for vehicle q 

qfMXF  Maximum allowable load of vehicle q which is compatible with residue type f 

qMXC  Maximum allowable load of vehicle q based on the average of qoMXO  qwMXW and qfMXF  

MXK  Maximum number of transfer stations  

wkAW  Ratio of sorting waste type w at transfer station k 

wrBW  Proportion of total recycling of waste type w by recycling technology r  

wtCW  Ratio of mass reduction of waste type w after treatment by treatment technology t 

fMUM  Proportion of generated residues of a treatment center which is type f 

fMUH  Proportion of generated residues of a recycling center which is type f 

kCPK  Capacity of transfer station k 

mCPM  Capacity of treatment center m 

hCPH  Capacity of recycling center h 

lCPL  Capacity of disposal center l 

  

Decision variables:  

q

ijX  1, if node i visited just after node j by vehicle q; 0, otherwise 

wkP  Amount of waste type w sorted at transfer station k 

fiE  Amount of residue type f generated at treatment/recycling center i ∈ M ∪ H 

qZ  1, if vehicle q is used; 0, otherwise 

kqZK  1, if vehicle q is used and allocated to transfer station k; 0, otherwise 

okYK  Amount of waste type o processed at transfer station k; 0, otherwise 

wmYM  Amount of waste type w processed at treatment center m 

whYH  Amount of waste type w recycled at recycling center h 

wlYL  Amount of waste type w disposed at disposal center l 

flYF  Amount of residue type f disposed at disposal center l 

mXM  Total amount of residue produced at treatment center m 

hXH  Total amount of residue produced at recycling center h 

mlXML  Amount of residue of treatment center m to send to disposal center l 

hlXHL  Amount of residues of recycling center h to send to disposal center l 
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qiW  Load of vehicle q after visiting node i 

 

Appendix B. Linearization  

To begin the linearization, from the objective functions and Eq. (44), the notation 
q

ij qiX W is 

converted to 
q

ijXW by adding the following constraints to the proposed model. In this way, from 

Eqs. (45) to (48) in the model given in Section 3, the non-linear terms of two variables are 

converted into only one. 

 

'q q

ij ijXW M X   , ;i G j G K q V Q       (B-1) 

q

ij qiXW W  , ;i G j G K q V Q       (B-2) 

(1 ) 'q q

ij qi ijXW W X M     , ;i G j G K q V Q       (B-3) 

0; 'q

ijXW M   , ;i G j G K q V Q       (B-4) 

Similarly, from Eq. (31), the non-linear term of
q

kj wjX P is converted to
q

kjwXP by adding the 

following constraints.  

 

'q q

kjw kjXP M X   ; ;j G q S Q w W      (B-5) 

q

kjw wjXP P  ; ;j G q S Q w W      (B-6) 

(1 ) 'q q

kjw wj kjXP P X M     ; ;j G q S Q w W      (B-7) 

0; 'q

kjwXP M   ; ;j G q S Q w W      (B-8) 

 

The non-linear term of
q

ij fiX E in Eq. (34) is converted to
q

ijfXE by adding the following 

constraints.  

 

'q q

ijf ijXE M X   , ; ;i K j M H q U Q f F        (B-9) 

q

ijf fiXE E  , ; ;i K j M H q U Q f F        (B-10) 

(1 ) 'q q

ijf fi ijXE E X M     , ; ;i K j M H q U Q f F        (B-11) 

0; 'q

ijfXE M   , ; ;i K j M H q U Q f F        (B-12) 

 

Finally, the non-linear term in the third objective function is redefined by changing the 

variables in line with the following constraints. 

 

/i ok og

o O o O g G

SIA YK BG
  

  : Actual load at transfer station i i K   (B-13) 
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/i j i

i K

SIE CPK CPK


   : Expected load at transfer station i i K   (B-14) 

i i iSID SIA SIE  : Deviation of fair load allocation at transfer station i i K   (B-15) 

 

Appendix C. Multi-objective SEO 

SEO algorithm starts with two random solutions. The better performing solution of the two is 

then nominated as the attacker, and the other solution is considered as a defender. Following 

Fathollahi-Fard et al., [20], and as shown in Figure C.1, the SEO randomly applies four techniques 

as the main search engine of the algorithm. As each technique is applied, and the defender values 

are modified in response to the attack, the fitness for the purpose of the changed defender position 

is compared with previous values. The better position is adopted. Should the fitness of the 

defender now become stronger than the attacker, their roles are exchanged? The process is 

repeated until the attacks end, at which point the current defender is deleted, and a new random 

solution is generated to replace it. 

The proposed CSWM framework represents a multi-objective optimization problem with 

minimizing the fleet size and transportation cost as the financial costs, CO2 emissions and fuel 

consumption of vehicles as the second objective concerning the environmental pollution, and the 

fair load assignment deviations in transfer stations as the third objective contributing to the social 

impacts. A Pareto-based optimization algorithm is required to find the interaction between these 

objective functions [62], and a multi-objective version of SEO is presented below.  

Generally, the solution of any multi-objective model is a set of candidate solutions in the form 

of a Pareto optimal frontier [63-64]. The best set of candidate solutions are those non-dominated 

solutions when compared to other candidates [65]. One solution will dominate another during the 

comparison if it has better fitness in at least one of the objective functions [66-67]. In this manner, 

a non-dominated solution set is generated. Figure C.2 provides a pseudo-code description of this 

process. 
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Figure C.1. Flowchart of the proposed SEO algorithm. 

 

 

T1=clock; 

Initialize attacker and defender. 

Consider the non-dominated Pareto solutions. 

It=1; 

while solving_time < Max_time 

Do training and retraining; 

if the new position of new defender can dominate the defender 

Check and update the non-dominated solution sets. 

end 

Num_attack=1; 

while Num_attack < Max_attack 

Spot an attack; 

Start 

Initialize the attacker and the defender 

Train and retrain 

Spot an attack 

Respond to attack 

Is the number 

of attacks 

ended? 

Select a new person as a defender 

Stopping 

condition 

End 
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Check the boundary; 

Respond to attack; 

Update the Pareto optimal frontier. 

if the new position of defender dominated than the attacker  

Exchange the defender and attacker position; 

endif 

Num_attack= Num_attack+1; 

endwhile 

Create a new solution as a defender; 

Update the non-dominated solutions. 

It=It+1; 

T2=clock; 

Solving_time=T2- T1; 

endwhile 

Return the best non-dominated 
 

Figure C.2. Pseudo code for a multi-objective version of SEO. 

 

Appendix D. Multi-objective evaluation metrics  

This study utilizes four popular evaluation metrics: the number of Pareto solutions (NPS), the 

spread of non-dominance solutions (SNS), mean ideal distance (MID), and hyper volume (HV). 

The definition and desirability of the employed metrics are provided in Table D.1. 

Table D.1. Evaluation metrics of Pareto-optimal set. 

Assessment metric  Definition Desirability A reference application 

Number of Pareto Solutions 

(NPS) 

The number of best non-

dominated solutions 

Larger is more 

favorable 
[9] 

Spread of Non-dominance 

Solutions (SNS) 

Measuring the diversity of 

solutions  

Larger is more 

favorable 
[55] 

Mean Ideal Distance (MID) 
Measuring the distance 

between Pareto solutions  

Smaller is more 

favorable  
[56] 

Hyper Volume (HV) 
Measuring the portion size 

of the objective function 

Larger is more 

favorable 
[57]  

 

Appendix E. Tuning of parameters using RSM 

As mentioned before, tuning of parameters is one of the main challenges for the 

implementation of the algorithms on industrial logistics and supply chains [68-71]. In the RSM, 

specific factors relate to each of the meta-heuristic input parameters. Based on the range of each 

factor, the response value is computed as a measure for the overall desirability of that optimizer. 

Each factor (xi) is measured at two levels, coded as -1 to 1, relative to the low (xl) and high (xh) 

levels given by the selected range. Hence, the independent variables (zi) relating to each factor 

considered is generated by: 

( ) / 2
, {1,2,..., }

( ) / 2

i h l
i

h l

x x x
z i K

x x

 
 


 (E-1) 
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where K is the number of variables. To calculate the response of the set of independent variables, 

a polynomial response surface function (y) is presented by: 

𝑦 = 𝛽0 + ∑ 𝛽𝑗𝑧𝑗

𝑘

𝑗=1

+ ∑ ∑ 𝛽𝑖𝑗

𝑘

𝑖<𝑗

𝑘

𝑗=1

𝑧𝑖𝑧𝑗 + ∑ 𝛽𝑗𝑗𝑧𝑗𝑗
2

𝑘

𝑗=1

+ 𝜀 

(E-2) 

where 𝛽0,  𝛽𝑗, 𝛽𝑖𝑗 and 𝛽𝑗𝑗 are the constant of the linear coefficient, the interaction coefficient (𝛽𝑖𝑗), 

and the quadratic coefficient (𝛽𝑗𝑗), respectively. 

To start the RSM, the employed optimizers are given in Table E.1, along with their factors 

based on their range. As such, the total number of experiments is measured by nf=2k as a fraction 

of normal treatments, nax = 2k is the number of axial points, and ncp is the number of central 

points.  

 

Table E.1. Calibration of the meta-heuristics 

Meta-heuristic  Factors and their surface value 
Total number of 

treatments=(nf, nax, ncp) 

SA   SubIt T0 𝑅∝    

20=(23, 6, 6) 
   

(20, 

50) 

(500, 

1000) 

(0.99, 

0.999) 
   

SEO and 

AMSEO 

  𝑁𝑎𝑡𝑡 α β    

20=(23, 6, 6) 
  

(10, 

70) 

(0.1, 

0.4) 

(0.05, 

0.25) 
   

 

A utility function proposed by Derringer and Suich [72] is applied to assess the metrics of each 

Pareto-optimal set, and optimize the multiple responses of the RSM, as computed by:  

 

𝑑𝑖(𝑦𝑖) = (
ℎ𝑖 − 𝑦𝑖

ℎ𝑖 − 𝑙𝑖
)𝑠, 𝑙𝑖 < 𝑦𝑖 < ℎ𝑖 

(E-3) 

where the multiple response 𝑦𝑖 has been transformed into the measurement of the utility function 

(𝑑𝑖). 𝑙𝑖 and ℎ𝑖 are the lower and upper bounds of response variables, respectively. The emphasis 

on the utility function amount is calculated by 𝑠. Less emphasis of the assessment metrics equates 

with less importance. Accordingly, the amount of s is 1, 1, 2, and 3, to reflect the relative 

importance of the evaluation metrics NPS, SNS, MID and HV, respectively. The desirability of 

the algorithm in terms of the number of utility functions for all applied assessment metrics is 

computed by: 

 

𝐷 = √𝑑1(𝑦1) × 𝑑2(𝑦2) × … × 𝑑𝑚(𝑦𝑚)
𝑚

 (E-4) 

where m is the number of evaluation metrics. As such, D is the total desirability of the algorithm. 

It is evident that the higher value of D the more favorable is the algorithm. 
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