© <2021>. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/ The definitive publisher version is available online at https://doi.org/ <u>10.1016/j.biortech.2021.125930</u>

1 2	Journal Pre-proofs A breakthrough dynamic-osmotic membrane bioreactor/nanofiltration hybrid system for real municipal wastewater treatment and reuse
3 4	Nguyen Cong Nguyen ^a , Hau Thi Nguyen ^a , Hung Cong Duong ^b , Shiao-Shing Chen ^c , Huy
5	Quang Le ^{a,c} , Chinh Cong Duong ^d , Le Thuy Trang ^e , Chih-Kuei Chen ^f , Phuoc Dan Nguyen ^g ,
6	Xuan Thanh Bui ^{h,i} , Wenshan Guo ^j , Huu Hao Ngo ^{j*}
7	
8	^a Faculty of Chemistry and Environment Dalat University Dalat Vietnam
9	^b Le Ouv Don Technical University. Hanoi. Vietnam
10	^c Institute of Environmental Engineering and Management. National Taipei University of Technology.
11	No.1, Sec. 3, Chung –Hsiao E. Rd, Taipei 106, Taiwan, Republic of China
12	^d Southern Institute of Water Resources Research, Ho Chi Ming City, Viet Nam
13	eFaculty of Environmental and Natural Sciences, Duy Tan University, Viet Nam
14	^f Department of Environmental Engineering, National I-Lan University, I-Lan 26047, Taiwan
15	^g Centre de Asiatique de Recherche sur l'Eau, Ho Chi Minh City University- National University-HCM
16	^h Vietnam National University, Ho Chi Minh City, Vietnam
17	ⁱ Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology
18	(HCMUT), Ho Chi Minh City 700000, Vietnam.
19	^j Centre for Technology in Water and Wastewater, School of Civil and Environmental
20	Engineering, University of Technology, Sydney, Broadway, NSW 2007, Australia
21	
22	
23	
24	
25	
26	
27	
28	
29	
20	
21	
27	
32	
33	
34	
35	*Corresponding author: E-mail address: ngohuuhao121@gmail.com

Journal Pre-proofs

36 ADSTRACT

This study designed a Dynamic-Osmotic membrane bioreactor/nanofiltration (OsMBR/NF) 37 system for municipal wastewater treatment and reuse. Results indicated that a continuously 38 39 rotating FO module with 60 RPM in Dynamic-OsMBR system could enhance shear stress and reduce cake layer of foulants, leading to higher flux (50%) compared to Traditional-OsMBR 40 during a 40-operation day. A negligible specific reverse salt flux (0.059 G/L) and a water flux 41 of 2.86 LMH were recorded when a mixture of 0.1 M EDTA-2Na/0.1 M Na₂CO₃/0.9 mM 42 Triton114 functioned as draw solution (DS). It was found that the Dynamic-OsMBR/NF 43 hybrid system could effectively remove pollutants (~98% COD, ~99% PO₄³-P, ~93% NH₄⁺-44 $N_{s} > 99\%$ suspended solids) from wastewater. In short, this developed system can be 45 considered a breakthrough technology as it successfully minimizes membrane fouling by 46 47 shear force, and achieves high water quality for reuse by two membrane- barriers. Keyword: Dynamic OsMBR, rotating FO module, draw solution, membrane fouling, 48 surfactant 49

50

51 **1. Introduction**

Recently, Osmotic membrane bioreactor (OsMBR) has increased for wastewater 52 treatment, especially green and sustainable water treatment (Wang et al., 2020; Xu et al., 53 2021; Yao et al., 2020). Compared to traditional membrane bioreactor (MBR), OsMBR has 54 several obvious advantages including less fouling tendency, high contaminant removal, and 55 low energy consumption (Morrow et al., 2018). Furthermore the treatability of concentrate 56 sludge facilitates recovery of minerals and resources from wastewater (Viet et al., 2021; 57 58 Wang et al., 2020; Xu et al., 2021). Indeed, OsMBRs combine a biological treatment with a forward osmosis (FO) process in which water is extracted by osmosis pressure gradient 59 (Cornelissen et al., 2011; Qiu & Ting, 2014). The FO process provides an additional barrier 60

Journal Pre-proofs against a wide range of pollutants, nence increasing the overall contaminant removal of 61 OsMBR (Gwak et al., 2015; Tan et al., 2015). 62 Unlike in MBR, the water is extracted by FO process without requiring a high 63 64 hydraulic pressure; therefore, the specific energy consumption of wastewater treatment by OsMBRs (0.12 Kwh/m³) can be much lower than that of MBR (0.37 Kwh/m³) (Miyoshi et 65 al., 2018) when the energy needed for the regeneration of the diluted DS is waived. For 66 example, seawater or liquid fertilizer can be used as the DS for the OsMBR treatment of 67 wastewater so that the diluted DS can be beneficially used without the requirement for 68 recovering DS (Kim et al., 2016). In addition, the FO membrane in OsMBRs is much less 69 subjected to membrane fouling than the MF membrane in MBRs. As a result, OsMBRs are 70 compatible with concentrated high nutrients in wastewater and minerals-containing sludge, 71 and these nutrients and minerals can be reused. One notable example is OsMBR treatment of 72 nutrient-rich centrate to extract fresh water and struvite (i.e. MgNH₄PO₄.6H₂O) as fertilizer 73 for agriculture to achieve green and sustainable wastewater treatment (Cong Nguyen et al., 74 2020; Yang et al., 2021). 75

Although membrane fouling affects OsMBRs to a much lower extent compared to 76 traditional MBRs, it is still a major challenge for OsMBRs operation, particularly in the 77 treatment of concentrated sludge and wastewater with complex compositions (Cong Nguyen 78 et al., 2020; Gu et al., 2015; Hosseinzadeh et al., 2021). Concentrated sludge and complex 79 wastewaters often contain large amounts of inorganic and organic colloids together with 80 soluble compounds (Wang et al., 2020). These foulants have high affinity to the FO 81 membrane; hence, they are likely to adsorb into the membrane pores or onto the membrane 82 83 surface, thus raising the internal concentration polarization (ICP) as well as resistance to the transfer of water through the membrane (Nguyen et al., 2020). This inevitably leads to decline 84 in the OsMBRs' water flux. Gu et al (2015) showed that water flux dropped to 74% after 16 85 days operation despite continuous biogas bubbling during an anaerobic OsMBR treatment of 86

Journal Pre-proofs a low-strength wastewater. Foulant layers were also attributed to 45% water flux reduction in the OsMBR system (Nguyen et al., 2016b; Zhang et al., 2012).

Several techniques have been explored on how to resolve membrane fouling in 89 90 OsMBRs (Kastl et al., 2021; Li et al., 2020; Nguyen et al., 2016a). For example, in our previous study, combining an OsMBR and a sponge-based moving bed (SMB) was assessed 91 (Nguyen et al., 2016a), and it emerged that the hybrid SMB-OsMBR system could mitigate 92 the cake layer of fouling in the membrane's active layer. Clearly, a sponge moving around the 93 FO tube module in the bioreactor based on intensive aeration constitutes the main mechanism 94 for cleaning the FO membrane during 90-day AnOsMBR operation. However, serious ICP 95 occurred in the support layer due to the immobile FO module, leading to reduced osmotic 96 pressure gradient, and consequently, water flux declined from 11.30 to 9.83 LMH (Nguyen et 97 al., 2016a). Innovative designs of FO modules for OsMBR plays a critical role in reducing 98 fouling and extending the membrane's usable life. 99

To date, several FO membrane module configurations have been devised and trialed 100 for OsMBR, such as spiral wound, plate, tubular, and hollow fiber membrane modules (Ali et 101 al., 2021). These membrane modules offer a high packing density that allows for a large 102 active membrane surface area to be packed into a small volume of membrane module. This 103 serves to increase the treatment capacity of OsMBRs. However, one common feature of these 104 FO membrane modules is that they are static and subsequently prone to fouling and ICP 105 (Chang et al., 2019; Nguyen et al., 2013). Intensive aeration, air bubbling, or fierce stirring of 106 the sludge is required to reduce this fouling. These methods are energy-intensive and 107 inevitably elevate the energy footprint of OsMBRs' treatment of wastewater. 108

In this study, a submerged Dynamic-OsMBR with an innovative rotating FO
membrane module was devised for treating real municipal wastewater. Instead of using a
static traditional FO membrane module, the OsMBR system in this study deployed a rotating
FO membrane module for enhanced membrane fouling mitigation and reduced energy

112	Journal Pre-proofs
113	consumption. The FO memorane is fixed on central nonow axes and rotated by an electric
114	motor to increase shear stress force to minimize the membrane fouling. The aim is to curtail
115	membrane fouling without the need for air bubbling or fierce sludge stirring.
116	Another innovative feature of this work is a new DS for the FO process to reduce salt
117	accumulating in the OsMBR system. The new DS consisted of polyethylene glycol tert-
118	octylphenyl ether (Triton114), high charge ethylenediaminetetraacetic acid disodium salt
119	(EDTA-2Na), and Na ₂ CO ₃ . EDTA-2Na presents a highly negatively charged component (i.e.
120	HEDTA ³⁻) and NaEDTA ³⁻ complexion at high pH value, which can reduce reverse salt flux.
121	Moreover, the ideal Van't Hoff index is high $(i = 4)$ when dissolving EDTA-2Na in alkalinity
122	solution, leading to high water flux. Triton114 is a surfactant with a low concentration of
123	critical micelle (i.e. 0.2 mM) and a large structure. Given this structure, Triton114 forms a
124	layer on the membrane surface, constricts the membrane pores, and hence minimizes reverse
125	EDTA-2Na. Triton114 also enlarges the size of EDTA-2Na, which promotes its effective
126	recovery during a nanofiltration (NF) regeneration of the diluted DS. On the other hand,
127	Na ₂ CO ₃ offers the new DS the ability to maintain its high pH so that EDTA-2Na exists at
128	high charge components (i.e., HEDTA ³⁻ and NaEDTA ³⁻); thus, together with Triton114, it
129	helps prevent the reverse diffusion of EDTA-2Na. To the best of our knowledge, the mixture
130	of EDTA-2Na/Triton114/Na ₂ CO ₃ has not yet been used as the DS of a Dynamic-OsMBR/NF
131	system to simultaneously attain low salt accumulating, minimal membrane fouling, and a
132	stable flux.

- **2. Materials and methods**
- 136 2.1. The Dynamic-OsMBR/NF hybrid system

A lab-scale Dynamic-OsMBR/NF hybrid system was employed in this work (Figure
1). The Dynamic-OsMBR/NF system included a bioreactor, a plate-and-frame NF module,

Journal Pre-proofs and a rotating tubular FO module. The FO membrane was immersed in the bioreactor, 139 whereas the module of NF membrane was put outside the bioreactor for simultaneous 140 freshwater extraction and regeneration of the diluted DS. The active volume of reactor was 141 9.0 L (with length×wight×height of 30×20×15 cm) and air diffusers installed at its bottom to 142 maintain the dissolved oxygen content of 3 mg/L. The polyvinylidene fluoride hollow fiber 143 microfiltration (MF) membrane module (Figure 1) with effective membrane area of 0.2 m^2 144 and pore size of 0.45 µm for periodic extraction of dissolved salts from the sludge to prevent 145 the effects of salt accumulation on microbial activity [15]. Prior to the Dynamic-OsMBR/NF 146 hybrid process, the acclimation of activated sludge was conducted with Dalat municipal 147 wastewater (located in Vietnam) for 10 days until a mixed liquor suspended solids (MLSS) in 148 the bioreactor was retained at 12 g/L. 149

150

Figure 1

The most notable component of the hybrid Dynamic-OsMBR/NF system was the 151 rotating FO membrane module (Figure 1). The rotating FO module was made-up by a tube 152 configuration and enfolded in FO flat sheet membranes from HTI, Albany, OR in USA. The 153 rotating FO membrane module with membrane area of 251 cm² had a central tube placed 154 155 inside a membrane tube, and the center tube was used to keep FO tubular module balance and rotate around its axis. Two rotary sealing bearings were set up at two heads of the FO tube 156 157 and the rotation of the FO module around its axis was driven by an electromotor. The center tube was fixed and connected with a union at two heads. One head of the center tube was 158 connected to the influent flow of DS and the other head was connected to the effluent flow of 159 diluted DS. At the middle location, the center tube was carved out of small holes (diameter of 160 0.25 cm) so that DS could flow out and contact the FO membrane. Lab-scale NF membrane 161 modules (Delrin Acetal Crossflow Cell, USA) were operated under cross-flow mode to 162 recover diluted DS. The NF membrane (manufactured by Trisep) was made of polyamide 163 with a molecular weight cut-off of 150 Da. The polyvinylidene fluoride hollow fiber MF 164

Journal Pre-proofs 165 memorane module was conducted in this study and supplied by Kay-E Creative Co.,

166 Ltd., Taiwan.

167	During the Dynamic-OsMBR/NF hybrid process, municipal wastewater was fed into
168	the reactor and the water level remained constant using a float-controller in the reactor.
169	Hydraulic retention time (HRT) was in the range of 35-55 h, which was calculated by the
170	water fluxes of Dynamic-OsMBR/NF and permeate fluxes of MF. The sludge retention time
171	in Dynamic-OsMBR/NF was fixed of 20 days. OsMBR process were employed with the
172	membrane orientation of active layer facing feed solution and rotation speed of tubular FO
173	module was 60 RPM. The peristaltic pump was used to pump a mixed DS of 0.1 M EDTA-
174	2Na/0.1 M Na ₂ CO ₃ /0.9 mM Triton114 into the rotating FO membrane module with flow rate
175	of 1500 mL/min. Because of different osmotic pressure through the FO module, water
176	extracted from the bioreactor and diluted the DS. The NF-TS80 membrane module was
177	employed to regenerate diluted DS under a hydraulic pressure of 8 bar for its recovery and
178	freshwater extraction in tandem.
179	During the Dynamic-OsMBR/NF hybrid process, the submerged MF module was
180	introduced for periodically extracting the accumulated nutrients as well as phosphorus from
181	the sludge. In Dynamic-OsMBR/NF system, features (e.g. total dissolved solids (TDS), PO_4^{3-}
182	P, NH4 ⁺ -N, ,and chemical oxygen demand (COD)) of the waters in the bioreactor and the final
183	permeate tank were analyzed every day to calculate the efficiency of the treatment process.
184	The digital balances were used for recording the variable weight of the permeate NF tank
185	and wastewater feed tank to determine the permeate fluxes of the Dynamic-OsMBR and the
186	NF process.
187	

188 **2.2.** The property draw solution and wastewater feed

Dalat municipal wastewater in Vietnam was used as the feed water to the hybrid
Dynamic-OsMBR/NF system. Properties of the real wastewater are listed in Table 1. The DS

191	Journal Pre-proofs was made by mixing 0.1 M EDTA-2Na/0.1 M Na ₂ CO ₃ /0.9 mixi Triton114 in DI water, and
192	then stirred for 1 day prior to the Dynamic-OsMBR experiments. Lab-grade EDTA-
193	2Na.2H ₂ O and Na ₂ CO ₃ .H ₂ O were supplied from Sigma-Aldrich Co., Ltd., Germany, while
194	Triton114 was purchased by Scharlau Chemie, Spain.
195	Table 1
196	2.3. Methods of calculation
197	The reverse salt flux J_s (GMH), specific reverse salt flux J_s/J_w (G/L), and permeate
198	water flux J_w (LMH) were determined based on previous researches (Nguyen et al., 2015b;
199	Nguyen et al., 2016a; Nguyen et al., 2020).
200	The NH ₄ ⁺ -N, PO ₄ ³⁻ -P, COD and TDS rejection in Dynamic-OsMBR/NF hybrid
201	system was calculated by the equation as follows:
202	$R = (1 - \frac{C_{eff}}{C_{inf}}) \cdot 100\% $ (1)
203	where: R was the removal efficiency; C_{inf} and C_{eff} were the concentrations of TDS, NH ₄ ⁺ -N,
204	PO ₄ ^{3–} -P, COD, and SS at the influent and the effluent, respectively.
205	2.4. Analysis methods
206	The TDS and pH was measured daily by conductivity meter (Sension156, Hach,
207	China) and pH meter (HI 9025, Hanna Instruments), respectively. The concentration of
208	MLSS as well as COD was analyzed by Standard Methods (Eaton et al., 2005). The
209	concentration of NH ₄ ⁺ -N and PO ₄ ³⁻ -P was measured by an ultraviolet–visible
210	spectrophotometer (DR-4000, Hach, Japan). The osmometric model (Advanced Instruments,
211	Inc., USA) measured the osmolality of DS. Vibro Viscometer (AD Company, Japan) was
212	used to determine the viscosity of solutions. Energy dispersive X-ray spectroscopy (EDS)
213	and scanning electron microscopy (SEM) supplied by JSM-5600, JEOL, Tokyo, Japan was
214	used to observe membrane fouling. MINEQL+V.4.6 software (Sawyer et al., 2003) was used
215	to predict the charge species of the multi-ion solutions as a function of pH.
216	

217 **J. Kesuits and discussion**

3.1 Effect of the different DSs on specific reverse salt and flux water flux in rotating FO process

220 Figure 2a illustrates the specific reverse salt fluxes (J_s/J_w) and water fluxes of five DSs with various Triton114 concentrations and a fixed EDTA-2Na and Na₂CO₃ concentration of 221 0.1 M. This outcome showed that water flux fell slightly from 3.12 LMH to 2.62 LMH when 222 increasing the Triton concentration in the mixed DS from 0.1 mM to 1.2 mM. This was due to 223 increased viscosity from 1.08 Cp to 2.21 Cp (Table 2), which altered the water diffusivity 224 through the FO membrane. However, the J_s/J_w reduced significantly (from 0.330 G/L to 0.059 225 G/L) when raising Triton114 from 0.1 mM to 0.9 mM due to the second layer on the 226 membrane surface. The explanation may be that hydrophobic interaction force between 227 Triton114 tails and membrane surface likely constricted the pore of FO membrane, leading to 228 raising retention of ions such as CO₃²⁻, NaEDTA³⁻ when the surfactant was coupled to mixed 229 EDTA-2Na/Na₂CO₃ DS. This observations agrees with Chekli et al., 2018) and 230 Hau et al. (Nguyen et al., 2015a), that decrease in the reverse salt diffusion is due to 231 constricted membrane pores based on hydrophobic interactions between FO membrane 232 surface and the surfactant tails. 233 234

- 204
- 235

Figure 2

Nevertheless, the Js/Jw rose from 0.059 G/L to 0.061 G/L when raising concentration
of Triton114 in mixed DS from 0.9 mM to 1.2 mM. A huge gel layer of micelle forming in
DS at 1.2 mM Triton114 caused a significant increase in viscosity (2.21 Cp). This prevented
water diffusion and reduced water flux (average of 8.4% decrease). Hence, adding 0.9 mM
Triton114 to mixed 0.1 M EDTA-2Na/0.1 M Na₂CO₃ DS was the best possible scenario to
achieve lowest Js/Jw and high water flux.

242	Journal Pre-proofs Moreover, Figure 20 compared between 0.1 M pure NaCi; 0.1 M pure ED1A-2Na and
243	mixed 0.1 M EDTA-2Na/0.1 M Na ₂ CO ₃ /0.9 mM Triton114 as DS. The result showed that 0.1
244	M EDTA-2Na with osmolarity of 225 \pm 5 mOsm/Kg and viscosity of 1.19 \pm 0.11 Cp achieved
245	the highest water flux (Jw= 2.98 LMH), following by mixed 0.1 M EDTA-2Na/0.1 M
246	$Na_2CO_3/0.9$ mM Triton114 with osmolarity of 237 ± 4 mOsm/Kg and viscosity of 1.89 ± 1.23
247	Cp (Jw= 2.86 LMH) and the lowest water flux of 0.1 M NaCl with osmolarity of 170 ± 3
248	mOsm/Kg and viscosity of 1.08 ± 0.07 Cp (Jw=2.63 LMH). However mixed DS achieved the
249	lowest Js/Jw (Js/Jw = 0.059 G/L) due to pH 8 (Figure. 3): (i) Mixed DS presented high
250	charged HEDTA ³⁻ (79.5%) and macromolecular NaEDTA ³⁻ -complexes (20.5%), which
251	reduced reverse salt flux; (ii) Adding 0.9 mM surfactant to the mixed DS formed micelle led
252	to reduced mobility of ions (Na ⁺ , EDTA ³⁻); (iii) Adding 0.1 M Na ₂ CO ₃ in mixed DS created a
253	buffer in DS and maintained pH at 8, leading to low Js/Jw. Moreover, since the higher
254	negatively charged NF-TS80 membrane was recorded at higher pH value (Verliefde, 2008),
255	this increased electrostatic repulsion between ions (HEDTA ³⁻ , NaEDTA ³⁻) in diluted DS. It
256	negatively charged the NF-TS80 membrane and subsequently enhanced the efficiency of the
257	NF recovery process.
258	Figure 3
259	Hence, among draw solutes, mixed 0.1 M EDTA-2Na/0.1 M Na ₂ CO ₃ /0.9 mM
260	Triton114 is selected to perform the best for the Dynamic-OsMBR system. Furthemore,
261	diluted mixed DS was effectively recovered by using NF technology under an 8-bar pressure
262	with the high TDS rejection of 96%. The water flux of the NF-TS80 membrane was reported
263	as 3.32 ± 0.45 LMH with TDS of permeate stream less than 500 mg/L.
264	3.2. Comparing the Dynamic and Traditional OsMBR systems
265	The above exploration of novel DS comprising mixed 0.1 M EDTA-2Na/0.1 M
266	$Na_2CO_3/0.9$ mM Triton114 in the OsMBR system could reduce salt accumulation in the
267	bioreactor significantly. However, for an OsMBR system in a real scenario application, a new

Journal Pre-proots Dynamic – OSIVIBK module for minimizing memorane fouling is necessary for long-term 268 viability. Figure 4a shows both Dynamic and Traditional - OsMBR water flux declined with 269 time because of membrane fouling and salt accumulation inside the bioreactor in long-term 270 271 operation. This phenomena approved by Ricci et al (2021), who demonstrated that external polarization concentration (ECP) and foulants contributed key mechanisms for declined water 272 flux in long-term OsMBR operation. It caused an increasing filtration resistance and reduced 273 the coefficient of mass transfer (Wang et al., 2016). However, the water flux of the Dynamic-274 OsMBR system dropped slightly while the Traditional-OsMBR system reduced quickly with 275 time. The reason may be that continuous rotation of the FO tube module in a Dynamic-276 OsMBR system could prevent solids/foulants attaching to both sides of surfaces, thus 277 minimizing membrane fouling and maintaining water flux (Figure.4b). Consequently, the 278 Dynamic-OsMBR system retained stable water flux and achieved an average water flux 279 higher in the Traditional-OsMBR system of approximately 50%. This was an interesting 280 outcome of the Dynamic-OsMBR system. 281

282

Figure 4

In 40 days of operation, the OsMBR water flux changed and this followed 3 stages. In the 283 first 5 days, both modules had water fluxes diminished quickly due to macromolecule 284 adsorption. The water flux of Traditional-OsMBR fell from 2.59 to 1.96 LMH while 285 Dynamic-OsMBR declined from 2.67 to 2.55 LMH. At the second stage (from day 5 to day 286 30), the decrease in water flux was because of a formed cake layer of biomass on the active 287 layer surface of FO membrane. Figure. 4d shows that a thick cake layer of fouling formed on 288 the active layer of FO tube membrane in the Traditional-OsMBR system, leading to 289 290 significantly reduced water flux (Jw reduced from 1.96 to 0.98 LMH). This was due to fouling/activated sludge being easily attached to the immobile FO tube. Meanwhile, the 291 continuously rotating FO module (60 RPM) in the Dynamic-OsMBR system created the high 292 shear cross-flow and prevented the foulant layer forming on the membrane surface (Figure. 293

294	Journal Pre-proofs 401. This issue is explained that the average snear stress τ_{α} (Pa) depends on rotational speed ω
295	(RPM) as follows (Limjeerajarus et al., 2018):
296	τ_a = -1.9902 x 10^-9 ω^3 + 4.3457 x 10^-6 ω^2 + 0.00059221 ω - 0.017086
297	(2)

298 Clearly, the higher rotational speed was applied in Dynamic-OsMBR system the higher shear stress was achieved for reducing membrane fouling. Hence, water flux of the 299 Dynamic-OsMBR system reduced slightly (Jw reduced from 2.55 to 2.29 LMH), which was a 300 good contribution of this study. In the third stage (from day 35 to day 40), the permeate flux 301 302 of both OsMBR systems increased slightly at day 35 (average of 5% increase) due to using MF extraction of rich nutrient stream in the bioreactor. This in turn reduced the salt 303 accumulation in the reactor from 2116 to 1671 mg/L. The rotating FO module in the Dynamic-304 305 OsMBR system could reduce the cake layer of fouling significantly during 40 days of operation, sop this represented a clear advantage compared to the Traditional-OsMBR system. 306 Indeed, the water flux of the Dynamic-OsMBR system decreased by 13.5% only due to better 307 membrane associated transport phenomena, while the water flux in the Traditional-OsMBR 308 system decreased by 60.6% after 40 days of operation. 309

The surface SEM photos of the used membrane in Dynamic-OsMBR system, and Traditional-OsMBR system are depicted in Figure. 4c and 4d. For the used membrane in the former system, a thin cake layer of contaminants was observed on the surface as seen in Figure. 4c. However, a thick cake layer of foulants was observed on the membrane surface in the latter system (Figure. 4d). This observation could be explained by the rotating FO module creating a large shear force on the surface of the FO membrane. Consequently, any cake layer of fouling was significantly eliminated.

Moreover, EDS analysis results showed that as compared to the Dynamic-OsMBR system, an additional peak of Na appeared on the structural support layer of used membrane in the Traditional-OsMBR system, which caused concentration polarization phenomenon and

220	Journal Fre-proois
320	led to rapid water flux decline. The reason is because free Na ⁺ fons in mixed draw solution
321	(EDTA-2Na and Na ₂ CO ₃) faced the support side and attached to the used membrane in
322	Traditional-OsMBR system due to attractive electrostatic force between negatively charged
323	FO membrane and positively charged Na ⁺ . Meanwhile, there is no peak of Na on the used
324	membrane in the Dynamic-OsMBR system. The reason may be because the shear stress force
325	based on the rotating FO module in the Dynamic-OsMBR system is larger than electrostatic
326	attraction force between negative charge of FO membrane and positive charge of Na ⁺ .
327	Clearly, the continuously rotating FO module in Dynamic-OsMBR system could
328	simultaneously reduce the ICP on the support layer and foulants on the active layer. This is a
329	good exploration to maintain water flux during Dynamic-OsMBR operation process.
330	3.3 Dynamic-OsMBR/NF hybrid system's performance
331	Figure 5 illustrates that the Dynamic-OsMBR/NF rejected nearly 98.6% of $PO_4^{3-}P$,

that is better than what the MBR can do (typically 93%) (Guo et al., 2011). The high PO₄³⁻-P 332 rejection in the Dynamic-OsMBR/NF can be explained by 3 main reasons: (i) phosphorus 333 accumulation in organisms; (ii) steric effect; and (iii) electrostatic repulsion. Firstly, since 334 high biomass concentration (MLSS =12g/L) was used in the Dynamic-OsMBR/NF system 335 without forming a cake layer of foulants, according to Guo et al. (Guo et al., 2011) the higher 336 microorganism biomass accumulated more phosphorus, leading to superior phosphorus 337 removal. Secondly, Kiriukhin & Collins (2002) recorded the large hydrated radius of PO₄³⁻ 338 (0.34 nm) while the CTA-ES FO membrane had a small pore radius (average of 0.37 nm)), 339 which resulted in reducing PO₄³⁻ through FO membrane due to the steric effect. Finally, pH of 340 Dalat municipal wastewater was about 7.3, and Cartinella et al (2006) observed a negatively 341 342 charged FO membrane at pH > 7, and the negatively charged PO_4^{3-} repulsed negatively charged FO membrane. In addition, the rejection of PO₄³⁻-P tended to fall from day 1 to day 343 32 (dropped off from 99.81% to 99.62%) because of the high $PO_4^{3-}P$ accumulation causing 344 high diffusion of PO₄³⁻-P through the FO membrane and then to NF membrane. However, at 345

Journal Pre-proofs aay 55, the removal efficiency of $PO_{4^\circ}^\circ$ -P improved slightly due to using MIF extraction of a nutrient-rich solution derived from the bioreactor.

348

Figure 5

349	Figure 5 indicates that high NH_4^+ -N rejection (92.87%) was attained in the Dynamic-
350	OsMBR/NF system; the average effluent concentration of NH_4^+ -N was 3.57 mg/L. This result
351	agreed with previous studies that the OsMBR process could retain high NH_4^+ efficiency
352	(Achilli et al., 2009). As can be observed in Figure. 5, the Dynamic-OsMBR/NF hybrid
353	system achieved a stable COD and SS removal during 40- operational days. The average
354	removal of COD amounted to 98.35% when the effluent concentration of COD was 16.2
355	mg/L. The Dynamic-OsMBR/NF hybrid system achieved high SS removal of 99.68% due to
356	two-barrier membranes (FO and NF membranes) with the SS effluent concentration of 0.9
357	mg/L. This corresponded to the SS concentration in influent DaLat municipal wastewater
358	being 288.3 mg/L.
359	Figure 6 displays various salts accumulating in the reactor of the Dynamic-
360	OsMBR/NF system with time. After 32 operational days of Dynamic-OsMBR/NF, the
361	salinity in the reactor raised from 972 to 2116 mg/L. The reasons for increasing TDS were
362	due to (i) the accumulation of salts (NH_4^+ , PO_4^{3-} , Ca^{2+}) from the influent Dalat municipal
363	wastewater; (ii) the salt leakage the DS into the bioreactor. Nevertheless, the salt
364	accumulating in the reactor was low, which encouraged the normal development of
365	microorganism communities because of the low Js/Jw ratio (<0.059 G/L). As shown in
366	Figure.6, mixed 0.1 M EDTA-2Na/0.1 M Na ₂ CO ₃ /0.9 mM Triton114 as the novel DS in the
367	Dynamic-OsMBR/NF achieved lower salt accumulating (<2200 mg/L) than that of using
368	NaCl DS (>8000 mg/L) (Holloway et al., 2014). Indicated here is favorable DS for Dynamic-
369	OsMBR/NF application to reduce the effects of salt accumulation on microbial communities.

370 Moreover, novel Dynamic-OsMBR/NF was employed to not only minimize fouling but also

371 generate high water quality for reuse. The concentration of TDS in the effluent stream

372	Journal Pre-proofs cnanged within the 403-445 mg/L range during 40 operational days (Figure. 0). Overall, the
373	Dynamic-OsMBR/NF hybrid system achieved a high level of contaminant removals from
374	Dalat municipal wastewater. Clearly, the average concentrations of COD, NH_4^+ -N, PO_4^{3-} -P,
375	and TDS in the final permeate during the Dynamic-OsMBR/NF system were as low as
376	16.21 ± 0.58 mg/L, 3.57 ± 0.28 mg/L, 0.25 ± 0.03 mg/L, and 429 ± 6 mg/L, respectively,
377	which was suitable for water reuse as compared to WHO standard (Agriculture et al., 1989).
378	Figure 6
379	4. Conclusion
380	In this work, a novel Dynamic-OsMBR/NF system was successfully devised to treat
381	wastewater using a mixed 0.1 M EDTA-2Na/0.1 M Na ₂ CO ₃ /0.9 mM Triton114 as the suitable
382	DS. Doing so helped to obtain a high water flux and a negligible Js/Jw (0.059 G/L).The
383	Dynamic-OsMBR hybrid system could mitigate cake layer fouling significantly due to
384	continuously rotating FO module leading to enhanced shear stress. Finally, the proposed
385	system exhibited not only an excellent ability to reject PO ₄ ³⁻ -P, COD and SS (>98%), and
386	confirm good reuse of water. It also greatly diminished membrane fouling in sustained
387	OsMBR operations.
388	
389	Acknowledgements
390	This research is funded by Vietnam National Foundation for Science and Technology
391	Development (NAFOSTED) under grant number 105.08-2017.311.
392	
393	E-supplementary data for this work can be found in e-version of this paper online.
394	As Huu Hao Ngo, a co-author on this paper, is Editor of Bioresource Technology, he was
395	blinded to this paper during review, and the paper was independently handled by Christian
396	Larroche as editor.
397	

398	Keier	Journal Pre-proofs
399	1.	Achilli, A., Cath, T.Y., Marchand, E.A., Childress, A.E. 2009. The forward osmosis
400		membrane bioreactor: A low fouling alternative to MBR processes.
401		Desalination.239(1-3), 10-21.
402	2.	Agriculture, W.H.O.S.G.o.H.A.o.U.o.T.W.f., Aquaculture, World Health, O. 1989.
403		Health guidelines for the use of wastewater in agriculture and aquaculture : report of a
404		WHO scientific group [meeting held in Geneva from 18 to 23 November 1987],
405		World Health Organization. Geneva.
406	3.	Ali, S.M., Im, SJ., Jang, A., Phuntsho, S., Shon, H.K. 2021. Forward osmosis system
407		design and optimization using a commercial cellulose triacetate hollow fibre
408		membrane module for energy efficient desalination. Desalination.510, 115075.
409	4.	Caroline Ricci, B., Santos Arcanjo, G., Rezende Moreira, V., Abner Rocha Lebron,
410		Y., Koch, K., Cristina Rodrigues Costa, F., Paulinelli Ferreira, B., Luiza Costa Lisboa,
411		F., Diniz Miranda, L., Vieira de Faria, C., Celina Lange, L., Cristina Santos Amaral,
412		M. 2021. A novel submerged anaerobic osmotic membrane bioreactor coupled to
413		membrane distillation for water reclamation from municipal wastewater. Chem. Eng
414		.J.414, 128645.
415	5.	Cartinella, J.L., Cath, T.Y., Flynn, M.T., Miller, G.C., Hunter, K.W., Childress, A.E.
416		2006. Removal of Natural Steroid Hormones from Wastewater Using Membrane
417		Contactor Processes. Environ, Sci. Technol.40(23), 7381-7386.
418	6.	Chang, HM., Sun, YC., Chien, I.C., Chang, WS., Ray, S.S., Cao, D.T.N., Cong
419		Duong, C., Chen, SS. 2019. Innovative upflow anaerobic sludge osmotic membrane
420		bioreactor for wastewater treatment. Bioresour. Technol.287, 121466.
421	7.	Chekli, L., Pathak, N., Kim, Y., Phuntsho, S., Li, S., Ghaffour, N., Leiknes, T., Shon,
422		H.K. 2018. Combining high performance fertiliser with surfactants to reduce the

423 reverse solute flux in the fertiliser drawn forward osmosis process. J. Environ. Manag.

424 226, 217-225.

- 425 8. Cong Nguyen, N., Cong Duong, H., Chen, S.-S., Thi Nguyen, H., Hao Ngo, H., Guo,
- 426 W., Quang Le, H., Cong Duong, C., Thuy Trang, L., Hoang Le, A., Thanh Bui, X.,
- 427 Dan Nguyen, P. 2020. Water and nutrient recovery by a novel moving sponge –
- 428 Anaerobic osmotic membrane bioreactor Membrane distillation (AnOMBR-MD)
- 429 closed-loop system. Bioresour. Technol.312, 123573.
- 430 9. Cornelissen, E.R., Harmsen, D., Beerendonk, E.F., Qin, J.J., de Korte, K.F.,
- Kappelhof, J.W.M.N. 2011. The innovative Osmotic Membrane Bioreactor (OMBR)
 for reuse of wastewater. Water Sci.Technol. 63(8), 1557-1565.
- 433 10. Eaton, A.D., Clesceri, L.S., Franson, M.A.H., Association, A.P.H., Rice, E.W.,
- Greenberg, A.E., Association, A.W.W., Federation, W.E. 2005. Standard Methods for
 the Examination of Water & Wastewater. American Public Health Association.
- 436 11. Gu, Y., Chen, L., Ng, J.-W., Lee, C., Chang, V.W.C., Tang, C.Y. 2015. Development
- 437 of anaerobic osmotic membrane bioreactor for low-strength wastewater treatment at
 438 mesophilic condition. J. Membr. Sci.490, 197-208.
- 439 12. Guo, W., Ngo, H.H., Wu, Z., Hu, A.Y.J., Listowski, A. 2011. Application of
- 440 bioflocculant and nonwoven supporting media for better biological nutrient removal441 and fouling control in a submerged MBR. Sustain. Environ. Res.21, 53-58.
- 442 13. Gwak, G., Jung, B., Han, S., Hong, S. 2015. Evaluation of poly (aspartic acid sodium
 443 salt) as a draw solute for forward osmosis. Water Res.80, 294-305.
- 444 14. Holloway, R.W., Wait, A.S., Fernandes da Silva, A., Herron, J., Schutter, M.D.,
- 445 Lampi, K., Cath, T.Y. 2014. Long-term pilot scale investigation of novel hybrid
- 446 ultrafiltration-osmotic membrane bioreactors. Desalination.363, 64-74.

447	Journal Pre-proofs 15. Hosseinzaden, A., Znou, J.L., Navidpour, A.H., Aitaee, A. 2021. Progress in osmotic
448	membrane bioreactors research: Contaminant removal, microbial community and
449	bioenergy production in wastewater. Bioresour. Technol.330, 124998.
450	16. Kastl, A., Bar-Zeev, E., Spinnler, M., Sattelmayer, T. 2021. Impact of pulsating flows
451	on particle deposition in forward osmosis with spacers. J. Membr. Sci.635, 119444.
452	17. Kim, Y., Chekli, L., Shim, WG., Phuntsho, S., Li, S., Ghaffour, N., Leiknes, T.,
453	Shon, H.K. 2016. Selection of suitable fertilizer draw solute for a novel fertilizer-
155	drawn forward osmosis_anaerobic membrane bioreactor hybrid system Bioresour
454	Technol 210, 26.34
455	
456	18. Kiriukhin, M.Y., Collins, K.D. 2002. Dynamic hydration numbers for biologically
457	important ions. Biophys. Chem.99(2), 155-168.
458	19. Li, Y., Yang, Y., Wang, H., Zhang, M., Pu, J., Hou, La. 2020. Anti-biofouling
459	behavior of quorum quenching for removal of pharmaceuticals by forward osmosis
460	membrane based on pseudomonas quinolone signals. J. Membr. Sci. 612, 118475.
461	20. Limjeerajarus, N., Keawprachum, B., Pliankum, M., Pavasant, P., Limjeerajarus, C.N.
462	2018. Numerical data on the shear stress distribution generated by a rotating rod
463	within a stationary ring over a 35-mm cell culture dish. Data Brief. 21, 2253-2258.
464	21. Miyoshi, T., Nguyen, T.P., Tsumuraya, T., Tanaka, H., Morita, T., Itokawa, H.,
465	Hashimoto, T. 2018. Energy reduction of a submerged membrane bioreactor using a
466	polytetrafluoroethylene (PTFE) hollow-fiber membrane. Front Environ Sci Eng.
467	12(3), 1.
468	22. Morrow, C.P., McGaughey, A.L., Hiibel, S.R., Childress, A.E. 2018. Submerged or
469	sidestream? The influence of module configuration on fouling and salinity in osmotic
470	membrane bioreactors. J. Membr. Sci.548, 583-592.

171	Journal Pre-proofs
4/1	25. Nguyen, 11.1., Chen, 55., Nguyen, N.C., Ngo, 11.11., Guo, W., El, CW. 2013a.
472	Exploring an innovative surfactant and phosphate-based draw solution for forward
473	osmosis desalination. J. Membr. Sci.489, 212-219.
474	24. Nguyen, N.C., Chen, SS., Nguyen, H.T., Ngo, H.H., Guo, W., Hao, C.W., Lin, PH.
475	2015b. Applicability of a novel osmotic membrane bioreactor using a specific draw
476	solution in wastewater treatment. Sci. Total Environ.518-519, 586-594.
477	25. Nguyen, N.C., Chen, SS., Nguyen, H.T., Ray, S.S., Ngo, H.H., Guo, W., Lin, PH.
478	2016a. Innovative sponge-based moving bed-osmotic membrane bioreactor hybrid
479	system using a new class of draw solution for municipal wastewater treatment. Water
480	Res.91, 305-313.
481	26. Nguyen, N.C., Chen, SS., Weng, YT., Thi Nguyen, H., Ray, S.S., Li, CW., Yan,
482	B., Wang, J. 2016b. Iodide recovery from thin film transistor liquid crystal display
483	plants by using potassium hydroxide - driven forward osmosis. J. Membr. Sci. 520,
484	214-220.
485	27. Nguyen, N.C., Chen, S.S., Yang, H.Y., Hau, N.T. 2013. Application of forward
486	osmosis on dewatering of high nutrient sludge. Bioresour. Technol.132, 224-9.
487	28. Nguyen, N.C., Duong, H.C., Nguyen, H.T., Chen, SS., Le, H.Q., Ngo, H.H., Guo,
488	W., Duong, C.C., Le, N.C., Bui, X.T. 2020. Forward osmosis-membrane distillation
489	hybrid system for desalination using mixed trivalent draw solution. J. Membr. Sci.
490	603, 118029.
491	29. Qiu, G., Ting, Y.P. 2014. Direct phosphorus recovery from municipal wastewater via
492	osmotic membrane bioreactor (OMBR) for wastewater treatment. Bioresour. Technol.
493	170, 221-229.
494	30. Sawyer, C.N., McCarty, P.L., Parkin, G.F. 2003. Chemistry for environmental
495	engineering and science. McGraw-Hill New York.

400	Journal Pre-proofs
496	31. Ian, JM., Qiu, G., Iing, YP. 2015. Osmotic memorane bioreactor for municipal
497	wastewater treatment and the effects of silver nanoparticles on system performance. J.
498	Clean. Prod.88(0), 146-151.
499	32. Verliefde, A. 2008. Rejection of organic micropollutants by high pressure membranes
500	(NF/RO).
501	33. Viet, N.D., Im, SJ., Kim, CM., Jang, A. 2021. An osmotic membrane bioreactor-
502	clarifier system with a deep learning model for simultaneous reduction of salt
503	accumulation and membrane fouling. Chemosphere. 272, 129872.
504	34. Wang, X., Chang, V.W.C., Tang, C.Y. 2016. Osmotic membrane bioreactor (OMBR)
505	technology for wastewater treatment and reclamation: Advances, challenges, and
506	prospects for the future. J. Membr. Sci.504, 113-132.
507	35. Wang, X., Wang, H., Xie, M. 2020. Secret underneath: Fouling of membrane support
508	layer in anaerobic osmotic membrane bioreactor (AnOMBR). J. Membr. Sci.614,
509	118530.
510	36. Xu, Z., Song, X., Xie, M., Wang, Y., Huda, N., Li, G., Luo, W. 2021. Effects of
511	surfactant addition to draw solution on the performance of osmotic membrane
512	bioreactor. J. Membr. Sci.618, 118634.
513	37. Yang, YL., Wu, Y., Lu, YX., Cai, Y., He, Z., Yang, XL., Song, HL. 2021. A
514	comprehensive review of nutrient-energy-water-solute recovery by hybrid osmotic
515	membrane bioreactors. Bioresour. Technol.320, 124300.
516	38. Yao, M., Duan, L., Wei, J., Qian, F., Hermanowicz, S.W. 2020. Carbamazepine
517	removal from wastewater and the degradation mechanism in a submerged forward
518	osmotic membrane bioreactor. Bioresour. Technol.314, 123732.
519	39. Zhang, J., Loong, W.L.C., Chou, S., Tang, C., Wang, R., Fane, A.G. 2012. Membrane
520	biofouling and scaling in forward osmosis membrane bioreactor. J. Membr. Sci.403-
521	404(0), 8-14.

53/	Journal Pre-proofs			
535				
536	41			
537	Highlights			
538	A new Dynamic-OsMBR/NF system was designed for wastewater treatment and			
539	reuse.			
540	Continuously rotating FO module in Dynamic-OsMBR removed cake layer of			
541	foulants.			
542	> 50% more water flux was observed in Dynamic-OsMBR compared to Traditional-			
543	OsMBR.			
544	Specific reverse flux of mixed DS was 8-fold lower than when using NaCl only.			
545	Dynamic-OsMBR/NF hybrid system achieved high contaminant removal (almost >			
546	98%).			
547				
548	42.			
549	Figure Captions			
550				
551	Figure. 1. A 3D illustration of the lab scale Dynamic-OsMBR/NF hybrid system.			
552	Figure. 2 (a). Various water flux, reverse salt flux and specific reverse salt flux of different			
553	DSs; (b). Comparison water flux and specific water flux of 3 kinds of DSs [Rotating tubular			
554	FO module: 60 RPM, FO membrane: CTA-ES, Membrane orientation: active layer facing			
555	feed solution, Feed solution: DI water; All experiments were run in 2 h and error bars were			
556	based on the standard deviation of three replicate tests after 2h].			
557	Figure. 3. Multifunctional DS reduced specific reverse salt flux in FO process.			
558	Figure. 4. (a). Comparison of permeate flux of Dynamic and Traditional OsMBR systems			
559	[Membrane orientation: active layer facing feed solution; MLSS: 12 g/L; Draw solution:			
560	Mixed 0.1 M EDTA-2Na/0.1 M Na ₂ CO ₃ /0.9 mM Triton114; Feed solution: Dalat municipal			

561	Journal Pre-proofs wastewater; Dynamic-Osmibk: оо крм; Traditional-Osmibk: о крмј; (р). кеduced саке
562	layer of foulants based on rotating FO module in Dynamic-OsMBR system; (c).SEM photos
563	of active layers of used FO membrane in Dynamic-OsMBR system; (d) used FO membrane
564	in Traditional-OsMBR system.
565	Figure. 5 Variations of organic and nutrient removal during Dynamic-OsMBR/NF system
566	operation for wastewater treatment (Draw solution: Mixed 0.1 M EDTA-2Na/0.1 M
567	Na ₂ CO ₃ /0.9 mM Triton114, Feed solution: Dalat municipal wastewater, Membrane
568	orientation: active layer facing feed solution, MLSS: 12 g/L; rotating tubular FO module: 60
569	RPM).
570	Figure. 6. Variations in salt accumulation and TDS of effluent during Dynamic-OsMBR/NF
571	system wastewater treatment (Draw solution: Mixed 0.1 M EDTA-2Na/0.1 M Na ₂ CO ₃ /0.9
572	mM Triton114; Feed solution: Dalat municipal wastewater, Membrane orientation: active
573	layer facing feed solution, MLSS: 12 g/L; rotating FO module: 60 rpm).
574	
575	

577 Figure. 1. A 3D illustration of the lab scale Dynamic-OsMBR/NF hybrid system.

Figure. 2 (a). Various water flux, reverse salt flux and specific reverse salt flux of different
DSs; (b). Comparison water flux and specific water flux of 3 kinds of DSs [Rotating tubular
FO module: 60 RPM, FO membrane: CTA-ES, Membrane orientation: active layer facing
feed solution, Feed solution: DI water; All experiments were run in 2 h and error bars were
based on the standard deviation of three replicate tests after 2h].

Figure. 5 Variations of organic and nutrient removal during Dynamic-OsMBR/NF system

602 Na₂CO₃/0.9 mM Triton114, Feed solution: Dalat municipal wastewater, Membrane

orientation: active layer facing feed solution, MLSS: 12 g/L; rotating tubular FO module: 60

- 604 RPM).
- 605
- 606
- 607

609	Journal Pre-proofs rigure. o. variations in sait accumulation and TDS of effluent during Dynamic-OsiviBK/NF
610	system wastewater treatment (Draw solution: Mixed 0.1 M EDTA-2Na/0.1 M Na ₂ CO ₃ /0.9
611	mM Triton114; Feed solution: Dalat municipal wastewater, Membrane orientation: active
612	layer facing feed solution, MLSS: 12 g/L; rotating FO module: 60 rpm).
613	43.
614	Table captions
615 616	Table 1. Key characterictics of the municipal wastewater used as the feed to the Dynamic-OsMBR system
617	Table 2. Osmolarity, viscosity and pH of different DSs
618	
619	
620	
621	
622	
623	
624	
625	
626	
628	
629	
630	
631	
632	
633	
634	
635	

		Journa

- **Table 1.** Key characterictics of the municipal wastewater used as the feed to the Dynamic-
- 639 OsMBR system

Parameter	Unit	Value
COD	mg/L	880 ± 2
NH_4^+-N	mg/L	47.25 ± 0.75
PO ₄ ³⁻ -P	mg/L	16.32 ± 0.18
SS	mg/L	280 ± 5
TDS	mg/L	825 ± 3
Mg^{2+}	mg/L	25.4 ± 0.3
рН	-	7.3 ± 0.5

Journal Pre-proofs 1 able 2. Osmolarity, viscosity and pH of different DSs

		Osmolarity,		pН
Draw solution		mOsm/Kg	Viscosity, Cp	
0.1 M pure NaCl		170 ± 3	1.08 ± 0.07	6.3±0.2
0.1 M pure EDTA-2Na		225± 5	1.19± 0.11	4.7 ± 0.1
	0.1 mM Triton114	238±3	1.25 ± 0.14	8.0 ± 0.2
	0.3 mM Triton114	242± 7	$1.37{\pm}~0.09$	8.0 ± 0.2
	0.6 mM Triton114	239± 2	1.67± 1.12	8.0± 0.3
0.1 M EDTA-	0.9 mM Triton			8.0 ± 0.2
2Na/0.1 M Na ₂ CO ₃	114	237±4	1.89±1.23	
mixed with	1.2 mM Triton114	231±5	2.21±1.25	8.0 ± 0.2

643

644

645 44.

