

Supporting Information

for Adv. Electron. Mater., DOI: 10.1002/aelm.202100802

Beneficial Effect of Na₂CO₃ Additions on the Thermoelectric Performance of Melt-Route Cu₂Se

Sheik Md Kazi Nazrul-Islam,* Md Rezoanur Rahman, Al Jumlat Ahmed, Frank Fei Yun, David L. Cortie, Xiaolin Wang,* and Michael B. Cortie*

Supporting Information

Beneficial effect of Na_2CO_3 additions on the thermoelectric performance of melt-route Cu_2Se

Sheik Md Kazi Nazrul Islam^{*}, Md Rezoanur Rahman, Al Jumlat Ahmed, Frank Fei Yun, David L. Cortie, Xiaolin Wang^{*}, Michael B. Cortie^{*}

Table S1. Parameters for the refinement of pure Cu₂Se and Na₂CO₃ incorporated Cu₂Se samples at room temperature. R_p and R_{wp} are the profile and weighted profile R-factors, respectively, χ^2 is the goodness-of-fit, and Derived Bragg R-Factor.

	a (Å)	b (Å)	c (Å)	β (°)	V (Å ³)	R _p	R _{wp}	χ^2	DERIVED BRAGG R- FACTOR
Cu ₂ Se	7.13304 ± 0.0009	12.36786 ± 0.0014	27.34226 ± 0.0031	94.34507 ± 0.0099	2405.211 ± 0.5035	4.95	6.46	0.06	2.36
0.09 wt.% Na ₂ CO ₃	7.13457 ± 0.0013	12.36909 ± 0.0025	27.34171 ± 0.0055	94.33521 ± 0.0087	2405.952 ± 0.8150	4.63	6.07	0.05	2.00
0.18 wt.% Na ₂ CO ₃	7.13374 ± 0.0010	12.37004 ± 0.0018	27.34909 ± 0.0040	94.34977 ± 0.0084	2406.46 ± 0.6068	4.46	5.82	0.05	2.06
0.35 wt.% Na ₂ CO ₃	7.13345 ± 0.0015	12.37146 ± 0.0028	27.35002 ± 0.0062	94.35077 ± 0.0087	2406.717 ± 0.9100	4.71	6.12	0.05	2.30
0.70 wt.% Na ₂ CO ₃	7.13683 ± 0.0009	12.37408 ± 0.0014	27.37454 ± 0.0031	94.3719 ± 0.0096	2410.457 ± 0.4916	4.76	6.23	0.06	2.51
1.40 wt.% Na ₂ CO ₃	7.13944 ± 0.0010	12.37765 ± 0.0014	27.38372 ± 0.0034	94.37183 ± 0.0101	2412.842 ± 0.5282	4.9	6.37	0.06	2.93

Table S2. Parameters for the refinement of pure Cu₂Se and Na₂CO₃ incorporated Cu₂Se samples at 398 K, 448 K, 498 K, 548 K, 648 K, and 747 K. R_p and R_{wp} are the profile and weighted profile R-factors, respectively, χ^2 is the goodness-of-fit, and Derived Bragg R-Factor.

Temp (K)	Lattice parameter Sample	a (Å)	R _p	R _{wp}	χ^2	DERIVED BRAGG R- FACTOR
398		5.8126 ±0.0004	8.58	11.2	1.20	0.96
448		5.8202 ±0.0003	8.68	11.24	1.21	0.75
498	1.40 wt% Na ₂ CO ₃	5.8282 ±0.0002	8.95	11.69	1.31	0.54
548		5.8354 ±0.0002	8.52	11.75	1.95	3.44
648		5.8515 ±0.0001	9.9	12.9	1.56	5.34
747		5.8669 ±0.0001	8.88	12	1.98	7.07
397		5.8026 ±0.0003	7.58	10.46	1.69	0.71
447		5.8099 ±0.0003	7.78	10.49	1.663	0.83
497		5.8170 ±0.0002	7.91	10.76	1.713	0.89
548	Cu ₂ Se	5.8258 ±0.0001	7.51	10.34	2.05	2.61
646		5.8408 ±0.0001	9.42	12.61	2.32	2.63
747		5.8594 ±0.0001	9.76	13.34	2.538	3.35

Table S3. Effect0 of heat treatment on the room temperature lattice parameters of the sample aliquots run through the DSC (not physically the same samples as in Table S1). Whereas there is no statistically significant difference in a, b or c before and after the heat treatment, there is a consistent small decrease in γ .

%	before heat-treatment					after thermal cycle				
Na ₂ CO ₃										
	а		b	С	γ	а	b	C	γ	
0.00	7.133	±	12.365 ±	27.336 ±	94.33 ±	7.134 ±	12.368 ±	27.338 ±	94.28 ±	
	0.004		0.005	0.006	0.04	0.001	0.001	0.001	0.01	
0.09	7.132	±	12.365 ±	27.336 ±	94.33 ±	7.130 ±	12.361 ±	27.332 ±	94.30 ±	
	0.004		0.006	0.014	0.04	0.001	0.001	0.001	0.01	
0.18	7.129	±	12.365 ±	27.329 ±	94.32 ±	7.128 ±	12.358 ±	27.309 ±	94.27 ±	
	0.004		0.006	0.012	0.04	0.001	0.001	0.001	0.01	
0.35	7.128	±	12.360 ±	27.317 ±	94.32 ±	7.127 ±	12.356 ±	27.304 ±	94.28 ±	
	0.004		0.006	0.006	0.04	0.001	0.001	0.002	0.01	
0.70	7.134	±	12.371 ±	27.361 ±	94.35 ±	7.128 ±	12.360 ±	27.316 ±	94.28 ±	
	0.004		0.006	0.006	0.04	0.001	0.001	0.001	0.01	
1.40	7.132	±	12.366 ±	27.349 ±	94.35 ±	7.135 ±	12.369 ±	27.366 ±	94.31 ±	
	0.004		0.006	0.005	0.04	0.001	0.001	0.001	0.01	

Figure S1. Temperature dependence of heat capacity (C_p) for different additions of Na₂CO₃ to Cu₂Se.

Figure S2. Unit cell of (a) stoichiometric Cu₂Se; (b) Na O Cu₇ Se₃ (Na Substitution and O Substitution); (c) O Na Cu₇ Se₄ (Na doped and O substitution); (d) O Na Cu₈ Se₄ (Na doped and O doped); (e) O Na Cu₇ Se₄ (Na Substitution and O doped); (f) Na Cu₈ Se₄ (Na doped); (g) O Cu₈ Se₄ (O doped); (h) Na Cu₇ Se₄ (Na substitute); (i) O Cu₈ Se₃ (O substitute); (j) Cu₇ Se₄ (Cu defect); (k) Cu₈ Se₃ (Se defect); (l) Cu₈ Se₄ (Na₂O defect).

Figure S3. Calculated total and partial electronic density of states (DOS) for the stoichiometric Cu₂Se and Cu₂Se with Na and/or O compounds obtained from the Density Functional Theory calculations. (a) total and partial DOS for the Cu₂Se; (b) total and partial DOS for the Na O Cu₇ Se₃ (Na Substitution and O Substitution); (c) total and partial DOS for the O Na Cu₇ Se₄ (Na doped and O substitution); (d) total and partial DOS for the O Na Cu₈ Se₄ (Na doped and O doped); (e) total and partial DOS for the O Na Cu₇ Se₄ (Na Substitution and O doped); (f) total and partial DOS for the Na Cu₈ Se₄ (Na doped); (g) total and partial DOS for the O Cu₈ Se₄ (O doped); (h) total and partial DOS for the Na Cu₇ Se₄ (Na substitute); (i) total and partial DOS for the O Cu₈ Se₃ (O substitute); (j) total and partial DOS for the Cu₇ Se₄ (Na doped); (k) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₇ Se₄ (Cu defect); (k) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₄ (Cu defect); (k) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈ Se₃ (Se defect); (l) total and partial DOS for the Cu₈

partial DOS for the $Cu_8 Se_4$ (Na₂O defect). The vertical lines mark the position of the Fermi level (E_F).

Figure S4. Calculated band structure for the stoichiometric Cu_2Se and Cu_2Se with Na and/or O compounds obtained from the Density Functional Theory calculations. (a) Calculated band structure for the Cu_2Se ; (b) Calculated band structure for the Na O Cu_7 Se₃ (Na Substitution and O Substitution); (c) Calculated band structure for the O Na Cu_7 Se₄ (Na doped and O substitution); (d) Calculated band structure for the O Na Cu_8 Se₄ (Na doped and O doped); (e) Calculated band structure for the O Na Cu_7 Se₄ (Na doped); (f) Calculated band structure for the Na Cu_8 Se₄ (Na doped); (f) Calculated band structure for the Na Cu_7 Se₄ (Na substitution and O doped); (f) Calculated band structure for the Na Cu_8 Se₄ (Na doped); (g) Calculated band structure for the O Cu_8 Se₄ (O doped); (h) Calculated band structure for the Na Cu_7 Se₄ (Na substitute); (i) Calculated band structure for the O Cu_8 Se₃ (O substitute); (j) Calculated band structure for the Cu_7 Se₄ (Cu defect); (k) Calculated band structure for the Cu_8 Se₃ (Se defect); (l) Calculated band structure for the Cu_8 Se₄ (Na 2O defect).

Figure S5. Temperature dependent power factor of the $Cu_2Se-xwt$. % Na_2CO_3 samples (x = 0, 0.09, 0.18, 0.35, 0.70, and 1.40.

Figure S6. Freshly fractured cross sectioned image of (a) pure Cu_2Se ; (b) 0.09 wt.% Na_2CO_3 ; (c) 0.18 wt.% Na_2CO_3 ; (d) 0.35 wt.% Na_2CO_3 ; (e) 0.70 wt.% Na_2CO_3 and (f) 1.40 wt.% Na_2CO_3 samples (g) EDS mapping showing homogenous composition at magnification used here (about 10,000 × on page).

Figure S7. Temperature dependent compatibility factors of the Cu₂Se-*x* wt.% Na₂CO₃ samples (x = 0, 0.09, 0.18, 0.35, 0.70, and 1.40).

Figure S8. The electrical and thermal transport properties with respect to temperature during heating up and cooling down for a 1.40 wt.% Na₂CO₃ incorporated Cu₂Se sample: (a) electrical conductivity (σ); (b) Seebeck coefficient (*S*); (c) thermal diffusivity (*D*).

Figure S9. Room temperature powder x-ray diffraction pattern (a) before thermal cycle (b) after thermal cycle of samples (x = 0, 0.09, 0.18, 0.35, 0.70, and 1.40). See Table S3 for further analysis.

Figure S10. DSC thermogram of Cu₂Se powder with 4 heating–cooling cycles (5 °C/min).

Figure S11. Thermogravimetric scan of a sample of Na-doped Cu₂Se run in an atmosphere of nitrogen. There is a mass loss of ~0.6 %. This indicates that the surface of a Cu₂Se device needs to be protected from evaporation of Se and/or oxidation.