
© 2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other
uses, in any current or future media, including reprinting/republishing this material for advertising or
promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of
any copyrighted component of this work in other works.

Enabling Large-Scale Federated Learning over
Wireless Edge Networks

Thinh Quang Dinh∗, Diep N. Nguyen∗, Dinh Thai Hoang∗, Pham Tran Vu†, and Eryk Dutkiewicz∗
∗University of Technology Sydney

†Ho Chi Minh City University of Technology
Email: {Thinh.Dinh, Diep.Nguyen, Hoang.Dinh, Eryk.Dutkiewicz}@uts.edu.au, {ptvu}@hcmut.edu.vn

Abstract—Major bottlenecks of large-scale Federated Learn-
ing (FL) networks are the high costs for communication and
computation. This is due to the fact that most of current FL
frameworks only consider a star network topology where all
local trained models are aggregated at a single server (e.g.,
a cloud server). This causes significant overhead at the server
when the number of users are huge and local models’ sizes are
large. This paper proposes a novel edge network architecture
which decentralizes the model aggregation process at the server,
thereby significantly reducing the aggregation latency of the
whole network. In this architecture, we propose a highly-effective
in-network computation protocol consisting of two components.
First, an in-network aggregation process is designed so that the
majority of aggregation computations can be offloaded from
cloud server to edge nodes. Second, a joint routing and resource
allocation optimization problem is formulated to minimize the
aggregation latency for the whole system at every learning round.
The problem turns out to be NP-hard, and thus we propose
a polynomial time routing algorithm which can achieve near
optimal performance with a theoretical bound. Numerical results
show that our proposed framework can dramatically reduce the
network latency, up to 4.6 times. Furthermore, this framework
can significantly decrease cloud’s traffic and computing overhead
by a factor of K/M , where K is the number of users and M
is the number of edge nodes, in comparison with conventional
baselines.

Index Terms—Mobile Edge Computing, Federated Learning,
In-network Computation

I. INTRODUCTION

The last decade has witnessed the adoption of machine
learning (ML) and artificial intelligence (AI) as the core
engines of intelligent systems [1]. Under most ML-based
frameworks, raw data are collected and trained at central-
ized cloud servers, raising concerns in user privacy, latency,
and network overhead. Federated Learning (FL) has recently
emerged as a potential distributed learning solution to these
issues [2]. Under FL, mobile users (MUs), instead of sharing
their raw data with the server, can build and learn their local
learning models. After that, they only need to send these local
model parameters to the centralized server [3]. By doing so,
the MUs can iteratively download the new global model from
the server, update their local models using their local training
data, and then upload their new local trained models to the
server for the model aggregation. This process is repeated until
the global model converges or after a predefined number of
learning rounds reaches.

However, given its distributed setting, communication and
computation costs are the two major bottlenecks of FL [2]–
[4]. In addition, due to a huge demands of advanced AI-

based mobile applications, learning tasks are more and more
complicated with very large data sizes. For example, with a
large model like Visual Geometry Group-16 (VGG-16), each
user needs to update about 500 TB of data until the global
model is converged [5]. Since conventional FL models use
star network topologies, during the model aggregation step,
the cloud generally needs to connect with a huge number
of users. In such a case, aggregation operations at the cloud
incur (a) high transmission latency, (b) high traffic overhead
and (c) high computational overhead in term of processing
and memory resources. To overcome these challenges, edge
computing (EC) has recently emerged as a great potential
solution by “moving" computing resources closer to end
users [3]. Since edge nodes possess both computation and
communication capacities, edge networks can decentralize the
model aggregation computations at the cloud server in very
large scale FL networks. To that end, it is critical to develop a
distributed in-network aggregation functionality implemented
at edge networks’ components in order to address current
challenges of FL.

In-network computation (INC) is a process of gathering,
processing data at intermediate nodes then routing the pro-
cessed data through a multi-hop network [6]. INC has been
well-studied for distributed data clusters such as MapReduce
[7], Pregel [8] and DryadLINQ [9]. Three basic components of
an in-network computation solution are: suitable networking
protocols, effective aggregation functions, and efficient meth-
ods for data representation [6]. The early work of Liu et al.
[10] proposed to aggregate/average users’ models at an edge
node that later sends these intermediate model parameters to
the cloud server. However, in this work, users are assumed to
connect directly to a single edge node without any alternative
paths. In practice, due to dense deployment of edge networks
[11], a given MU can associate one or another or even
with multiple nearby edge nodes. As a result, the problems
of network routing and resource allocation for the model
aggregation in FL under EC become more challenging.

Given the above, this paper proposes a novel edge network
architecture aiming at minimizing the aggregation latency of
FL processes. This architecture allows the cloud node to
decentralize its aggregation process to the edge nodes. To ac-
complish that network functionality, we design an in-network
computation protocol which consists of two components:
an in-network aggregation process and a network routing
algorithm. Specifically, the in-network aggregation process
guides on how packets are processed at edge nodes and cloud

���

����
����

����

�	��

�	��
�	��

��
�����������

���
�	�
���	�

����

����

����

����

����

����

���
���������
����

Fig. 1. FL-enabled Edge Computing Network Architecture.

node and how the cloud decentralizes the model aggregation
process of FL. Then, we formulate the joint routing and
resource allocation optimization problem aiming to minimize
the network’s aggregation latency. The problem turns out to
be NP-hard. We thus propose an effective algorithm based
on randomized rounding techniques, which provably achieves
an approximation guarantee. Finally, simulation results show
that our proposed solutions significantly reduce not only the
network’ aggregation latency but also the cloud node’s traffic
and computing overhead.

II. SYSTEM MODEL

As illustrated in Fig. 1, let’s consider a set of K mobile users
MUs, denoted by K = {1, · · · ,K} with local datasets Dk =
{xi ∈ Rd, yi}nk

i=1 with nk data points. Let M = {0, · · · ,M}
denote the set of edge nodes (ENs). They can be co-located
with small cell base stations which have communications and
computing capacities [12]. These ENs are connected with a
macro base stations, equipped with a cloud server, denoted as
EN 0. Each user can be associated with one or more ENs.

(a)

�����

����

	
��

(b)

Fig. 2. The logical view of (a) conventional network model and (b) multi-tier
edge network model.

A. Federated Learning

To construct the shared global model, the goal is to find
the model parameters w ∈ Rd which minimize the following
global loss function in a distributed manner:

min
w∈Rd

{
P (w) =

1

n

n∑
i=1

li(x
T
i w) + ξr(w)

}
, (1)

where n =
∑K

i=1 nk, ξ is the regularizing parameter, r(w)
is a deterministic penalty function and li is the loss function
at data sample i [13]. Here, we also use notation ψ for the
global model.

To solve (1), a Federated Learning framework introduced
in [2] is performed as following. At each iteration t, the cloud
broadcasts the global model ψt to all the MUs. Based on
the latest global model, each MU learns its local parameters
wt

k according to the Stochastic Gradient Descent update rule
aiming at minimizing the objective function P (w) by only
using local information and the parameter value in ψt [2]:

wt
k = ψt − η(∇li(ψt) +∇r(ψt)). (2)

The resulting local model updates are forwarded to the cloud
for computing the new global model as follows:

ψt+1 =
1

n

K∑
k=1

nkw
t
k. (3)

We summarize the procedures of the FL framework as
follows:

1. Global Model Broadcasting: The cloud broadcasts the
latest global model ψt to the MUs.

2. Local Model Updating: Each MU performs local training
following (2).

3. Global Model Aggregation: Local models are then sent
back to the cloud. The new value of global model is
computed following (3).

4. Steps 1-3 are repeated until convergence.

B. Communication Model

We then introduce the communication model for multi-user
access. For each FL iteration, the cloud node will select a set
of users Kt at each iteration t 1. All users consent about their
models’ structure, such as a specific neural network design.
Hence, let D denote the data size of model parameters, which
is fixed and identical for all users, where D is proportional to
the cardinality of w [5].

1) Global Model Broadcasting: Since the downlink com-
munication capacity of the cloud node is much larger than
that of an edge node, all users will listen to the cloud node
at the model broadcasting step. Let W d denote the downlink
communication capacity of the cloud node. The latency for
broadcasting the global model is T d = D

Wd .
2) Global Model Aggregation: Let akm be the aggregation

routing variable, where

akm =

{
1 if MU k’s is associated with EN m,∀m ∈M,

0 otherwise.

Here, we assume that an MU is not allowed to transmit
data directly to the marco base station to reduce the uplink
traffic overhead. However, MUs can listen to the down-
link channel in network broadcast messages. Let am =
[a1m, a2m, · · · , aKm]T denote the uplink association vector
of edge node m. We let A = {akm} ∈ {0, 1}K×M denote
the uplink association matrix, and ã = [aT0 ,a

T
1 , . . . ,a

T
M]T

denote the column vector corresponding to A. Let Kt
m denote

the set of user associated with edge node m, then we have

1The learner selection in FL can be based on the quality or significance
of information or location learners [3]. Here, how to select best MUs at each
learning round is out of the scope of this paper.

⋃
m Kt

m = Kt, and |Kt| =
∑

m |Kt
m|, where | · | denotes the

cardinality of a set.
Let rkm denote the uplink data rate between MU k and

edge node m. Let rm = [r1m, r2m, . . . , rKm]T denote the
uplink bandwidth allocation vector corresponding to edge
node m. We denote R = rkm ∈ RK×M as the uplink
bandwidth allocation matrix. Let Bfr

m, and Bbk
m denote the

uplink fronthaul and backhaul capacity of edge node m. Then,
uplink communication latency between edge node m and its
associated users is the longest latency of a given user:

T u,fr
m = max

k∈Km

{
D
akm
rkm

}
, where rkm ≤ Bfr

m,∀m ∈M \ {0}.

(4)

After edge nodes receive local models, each edge node can
perform its aggregation computation, then send the aggregated
result to the cloud node. Alternatively, edge nodes just forward
received models to the cloud. Let γm denote the transmission
latency between edge node m and the cloud node. Without in-
network aggregation functionality, γm is computed as followed

γm =
D

∑
k∈Km

akm

Bbk
m

. (5)

The uplink aggregation latency of users associated with edge
node m is

T u
m = T u,fr

m + γm. (6)

III. IN-NETWORK AGGREGATION DESIGN

We now introduce the in-network computation protocol
where edge nodes support the cloud node for averaging users’
local models. First, we design the user packet which plays
a role of data representation in a in-network computation
protocol. Let φt

k = {φtk[0],φt
k[1]} denote the local message

of users k at iteration t such that

{φtk[0],φt
k[1]} = {nk,wt

k}. (7)

A. In-Network Aggregation Process

First, consider the following in-network aggregation (INA)
process at edge nodes and the cloud node that helps decentral-
ize the aggregation process at the cloud node. Let χt

m denote
the average local model of edge node m such that

χt
m =

1∑
k∈Km

φtk[0]

∑
k∈Km

φtk[0]φt
k[1]. (8)

Let ϕt
m = {ϕt

m[0],ϕt
m[1]} denote the message edge node m

sends to the cloud node such that

{ϕt
m[0],ϕt

m[1]} =
{ ∑

k∈Km

φtk[0],χt
m

}
. (9)

To conserve the result of (3), the global model is computed
as follows:

ψt+1 =

∑
m ϕt

m[0]ϕt
m[1]∑

m ϕt
m[0]

. (10)

Theorem 1. The edge network architecture as well as the INA
process reduce the traffic and computing overhead at the cloud

node by a factor of K/M in comparison with conventional star
network topologies.

Proof. The proof is omitted here for brevity.

B. Revised Latency Model
With the proposed INA process, let γ′m denote the trans-

mission latency between an edge node m and the cloud node.
If there is no user associate with an edge node m, i.e.,∑

k akm = 0, γ′m is zero. Otherwise, since edge node m only
needs to send its aggregated model, computed in (8), to the
cloud node, γ′m is computed as follows

γ′m = min

{
D

Bbk
m

,
D

∑
k∈Km

akm

Bbk
m

}
. (11)

IV. NETWORK ROUTING AND RESOURCE ALLOCATION
FRAMEWORK FOR FL

In this section, we aim to minimize the total uplink aggrega-
tion latency by jointly optimizing (a) which edge node a user
should send its local model directly to and (b) the optimal
data rates for wireless connections between the users and the
edge nodes. The total uplink aggregation latency is computed
as follows

T u(A,R) = max
m

{
T u,fr
m + γ′m

}
. (12)

The aggregation latency-minimized routing framework is for-
mulated as followed

P1 : min
A,R

T u(A,R),

s.t.

M∑
m=0

akm = 1,∀k ∈ Kt, (13a)∑
k∈Km

rkm ≤ Bfr
m,∀m ∈M \ {0}, (13b)

akm ∈ {0, 1}, (13c)

rkm ∈ [0, Bfr
m],∀m ∈M \ {0}. (13d)

The constraints (13a) guarantee that a user can associate
with only one edge node in one iteration. The constraints
(13b) ensure that total users’ data rates associated with each
edge node must not exceed its bandwidth capacity. P1 is a
mixed-integer nonlinear programming, which is NP-hard.2 We
will propose a highly efficient random rounding solution for
practical implementation in the next section.

V. RANDOMIZED ROUNDING BASED SOLUTION

In this section, we present an approximation algorithm
for the main problem that leverages a randomized rounding
technique [14]. Firstly, P1 is transformed to an equivalent
integer linear program (ILP). Then, by relaxing the integer
constraints, P1 becomes a linear programming which can be
solved by linear solvers. We first observe that:

Lemma 1. Given any uplink association matrix A, with
|Km| =

∑
k∈Km

akm > 0, for problem P1, at each edge

2The proof is omitted here for brevity.

node m, the uplink latency for users associated with edge
node m satisfies

T u
m = max

k∈Km

{
D
akm
rkm

}
+ min

{
D

Bbk
m

,
D

∑
k∈Km

akm

Bbk
m

}

≥ D|Km|
Bfr

m

+ min

{
D

Bbk
m

,
D|Km|
Bbk

m

}
. (14)

The equality happens when r1m = . . . = r|Km|m =
Bfr

m

|Km| .

Proof. The proof is omitted here for brevity.

Following Lemma 1, the network operator hence only needs
to optimize the uplink association matrix while the uplink data
rates for users associated with edge nodes will be allocated in
a fairness manner. If |Km| = 0, we arbitrarily set the values
of rm and T u

m to be 0. As a result, P1 is reduced to

P2 : min
A

max
m

{
D

∑
k∈Km

akm

Bfr
m

+ min

{
D

Bbk
m

,
D

∑
k∈Km

akm

Bbk
m

}}
,

s.t. (13a) and (13c), (15)

where the the optimal solution in P1 can be computed from
optimal solution in P2 as the following lemma:

Lemma 2. Let A∗∗ denote the optimal solution in P2.
Following Lemma 1, the optimal solution in P1, {A∗,R∗} is
computed as follows

A∗ = A∗∗,

r∗1m = . . . = r∗|Km|m =
Bfr

m

|Km|
. (16)

Proof. The proof is omitted here for brevity.

The proposed algorithm is described in detail below and
summarized in Algorithm 1. First, we introduce auxiliary
variables y and γ = {γ1, . . . , γM} into P2 such that

y ≥ max
m

{
D

∑
k∈Km

akm

Bfr
m

+ γm

}
, (17)

γm ≤ min

{
D

Bbk
m

,
D

∑
k∈Km

akm

Bbk
m

}
,∀m (18)

Problem P2 is then equivalently transformed to

P3 : min
y,γ,A

y,

s.t. y ≥ D
∑

k∈Km
akm

Bfr
m

+ γm,∀m, (19a)

γm ≤
D

Bbk
m

,∀m ∈M \ {0}, (19b)

γm ≤
D

∑
k∈Km

akm

Bbk
m

,∀m ∈M \ {0}, (19c)

(13a) and (13c).

Algorithm 1 Randomized Routing Algorithm for Low Latency
Federated Learning
Input: D, Bfr

m, Bbk
m , and Kt.

Output: A(Alg), R(Alg)

1: Solve P4 to achieve A†.
2: if A† is binary then
3: A(Alg) = A†

4: else
5: for k = 1 to k = K do
6: akm

(Alg) = 1 with probability akm
† with exclusive manner

based on constraints (13a)
7: end for
8: end if
9: Then,

r1m
(Alg) = . . . = r|Km|m

(Alg) =
Bfr

m

|Km|
,∀m such that |Km| 6= 0.

The Algorithm 1 starts by solving the Linear Relaxation
(LR) of P3. Specifically, it relaxes the variables akm to be
fractional, rather than integer. The Linear Relaxation of P3

can be expressed as follows:

P4 : min
y,γ,A

y,

s.t. (19a)− (19c), (13a), and akm ∈ [0, 1]. (20)

Let z† = [ã†, y†, γ†1, . . . , γ
†
M] denote the optimal solution of

P4. First, vector ã† should be transformed to an equivalent
fractional matrix A†, whose elements are in [0, 1] by a
“reshape” operation. The term “reshape” means to change the
size of a vector or a matrix while its number of elements is un-
changed. A† is the optimal solution to P2, if all components
of A† are binary. Otherwise, to obtain binary matrix A(Alg),
for each row of A†, we perform a randomization by setting
the element akm to 1 with probability akm†. The decision is
done in an exclusive manner for satisfying constraints (13a). It
means that for each row k, only one element of the row is one,
the rest are zeros. The random decision is made independently
for all k. By doing this procedure, the matrix A(Alg) is
achieved. Then, r1m(Alg) = . . . = r|Km|m

(Alg) =
Bfr

m

|Km| ,∀m.
The complexity of this algorithm is O(ν3.5Ω2), where ν =
KM +M + 1.

Theorem 2. The aggregation latency returned by Algorithm
1 is at most 2 lnK

y† + 3 times higher than that of the optimal
with high probability, where K is the number of MUs and y†

is the lower bound of the aggregation latency which can be
obtained in polynomial time.

Proof. The proof is omitted here for brevity.

VI. NUMERICAL RESULTS

In this section, simulations are conducted to show the
performance of the proposed algorithm. We consider a similar
setup as in [12], depicted in Fig. 3. Here, M = 9 edge nodes
are regularly deployed in a grid network inside a 500×500 m2

area. K = 1000 mobile users are distributed uniformly at
random over the EN coverage regions (each of 150m radius).
In our simulation, without loss of generality, all K users’
models are aggregated in one learning iteration. The cloud

Meters
0 100 200 300 400 500

M
et

er
s

0

50

100

150

200

250

300

350

400

450

500
��������	�
	����

���������	����

�����������

� � �

� � �

�� 	

Fig. 3. The network setup.

Number of Users, K
100 200 300 400 500 600 700 800 900 1000

L
at

en
cy

, [
s]

0

100

200

300

400

500

600

700

800

900

1000
Only Cloud
Non-INC
INC Solution
INC LB

995 1000
180

200

220

Fig. 4. Algorithm comparison with respect to different number of users.

node’s coverage contains all mobile users. For each edge node
m, we set the the uplink fronthaul capacity to Bfr

m = 1Gbps,
the backhaul capacity to Bbk

m = 1Gbps. These settings are
inspired by Wifi IEEE 802.11ac standards [15], and data
centers interconnection using optical fibers [16]. We also set
the cloud downlink capacities W d = 2Gbps. These values may
be changed during the evaluations. For model aggregation, by
default, we investigate our system using ResNet152’s model
size, i.e., D = 232 MB [17]. In later simulations, we also
investigate our system with different model sizes.

A. Algorithm Comparison - Latency Reduction

Fig. 4 compares the aggregation latency of different algo-
rithms versus the number of users K in one learning iteration.
The proposed INC protocol is compared with three other
baseline methods, namely:

1. Only Cloud: K users send their models to the cloud node
via its hypothetical uplink wireless channel with Wu =
2Gbps.

2. INC Solution: K users can associate with the cloud node
and edge nodes with INC protocol. The network routing
problem P3 is solved by using Algorithm 1.

3. Non-INC: In this scenario, without the proposed INA
process, K users are associated with their nearest edge

Models
VGG16 ResNet152 Xception DenseNet121

L
at

en
cy

, [
s]

0

500

1000

1500

2000

2500

Only Cloud
Non-INC
INC Solution
INC LB

Fig. 5. Algorithm comparison with respect to different models.

nodes regardless of their capacities. The latency between
edge node and cloud node is computed by following (5).

4. INC LB: In this scenario, we use Linear Relaxation to
solve P3. This scenario will provide the lower bound
of network latency if the proposed INC protocol is
considered.

As can be observed in Fig. 4, our proposed algorithm can
achieve near optimal performance. When K = 1000, the
latency obtained by the proposed solution is approximately
1.9% higher than that of the INC LB. It implies that our
proposed solution can achieve the performance almost the
same as that of the lower bound solution. Only Cloud has
the worst performance. For example, when K = 1000, the
aggregation latency of Only Cloud is 928.9s which is 133%
higher than that of the second worst one, Non-INC, 695.3s. We
also observe that when K = 1000, Only Cloud and Non-INC
are 459% and 343% higher than that of our proposed solution,
i.e., INC Solution. Last but not least, the gaps between our
proposed algorithm and Only Cloud and Non-INC enlarge as
the number of users K increases. This clearly shows that our
proposed solution is significantly beneficial for very large scale
federated learning networks.

In Fig. 5, consider Only Cloud, Non-INC and our INC
solution, we evaluate the aggregation latency in different
models in one learning iteration. They are VGG16, ResNet152,
Xception and DenseNet121 whose model sizes are 528 MB,
232 MB, 88 MB and 33 MB, respectively [17]. Here, we
choose the default setting with K = 1000. We observe that
with different models, the proposed solution, INC solution, is
significantly lower than those of the Only Cloud and Non-
INC. For example, with VGG16, the aggregation latency of
INC solution is 4.6 times and 2.7 times lower than those of
Only Cloud and Non-INC, respectively.

B. Traffic and Computation Reduction at the Cloud Node
In this part, using ResNet152’s model setting, we investigate

the uplink traffic and the number of models needed to be
aggregated at the cloud node in one learning iteration. We
compare three schemes: Only Cloud, Non-INC and our INC
solution. The number of models needed to be aggregated at

Number of Users, K

500 1000

C
lo

ud
 N

od
e'

s
U

pl
in

k
T

ra
ffi

c,
 [G

B
]

100

101

102

103

Only Cloud
Non INC
INC Solution

Fig. 6. Cloud node’s uplink traffic and computing load.

Number of Users, K
500 1000

N
um

be
r

of
 C

om
pu

ta
tio

ns
 a

t t
he

 C
lo

ud

100

101

102

103
Only Cloud
Non INC
INC Solution

Fig. 7. Cloud node’s uplink traffic and computing load.

the cloud node is proportional to the number of computations
here. In Fig. 6 and Fig. 7, the uplink traffic and the number
of computations of Non-INC at the cloud node are equal to
those of Only Cloud. It is because all models need to be
sent to the cloud before being aggregated and edge nodes
only forward the models from users to the cloud without the
proposed INA process. Meanwhile, with INC solution, the two
metrics are significantly reduced by remaining unchanged at
low value. The reason is that the cloud only collects aggregated
models from edge nodes which are fixed. For example, when
K = 1000, the traffic is 2.32GB for our scheme and 232GB
for the other two. As a result, our scheme can keep the traffic
and computing load at the cloud very low even with a large
number of users.

VII. CONCLUSION

In this paper, we propose a novel edge network architecture
aiming at minimizing the aggregation latency of FL processes.
This architecture is able to decentralize the model aggrega-
tion process of cloud node to edge nodes. To achieve that
network functionality, we design an in-network computation
protocol consisting of in-network aggregation process and
routing protocol. The in-network aggregation process is to
enhance learning processes through leveraging computations

at the edges and cloud. We also formulate a joint routing
and resource allocation optimization problem to minimize the
network’s aggregation latency. As the optimization problem
is NP-Hard, we propose a highly-effective solution based
on random rounding with provable performance guarantee.
Our simulation results show that the proposed algorithm can
achieve near optimal network latency and outperform some
other baseline schemes such as Only Cloud, Non-INC LB.
We also show that the INC protocol can help the cloud node
significantly decrease not only its network latency but also its
traffic load and computing load.

REFERENCES

[1] W. Saad, M. Bennis, and M. Chen, “A vision of 6G wireless systems:
Applications, trends, technologies, and open research problems,” IEEE
Netw., vol. 34, no. 3, pp. 134–142, May 2020.

[2] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas,
“Communication-Efficient Learning of Deep Networks from Decentral-
ized Data,” in Proc. Int. Conf. Artif. Intell. Statist. (AISTATS), vol. 54,
Apr. 2017, pp. 1273–1282.

[3] W. Y. B. Lim, N. C. Luong, D. T. Hoang, Y. Jiao, Y. C. Liang, Q. Yang,
D. Niyato, and C. Miao, “Federated learning in mobile edge networks:
A comprehensive survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3,
pp. 2031–2063, Third Quarter 2020.

[4] N. H. Tran, W. Bao, A. Zomaya, M. N. H. Nguyen, and C. S. Hong,
“Federated learning over wireless networks: Optimization model design
and analysis,” in Proc. IEEE INFOCOM, Paris, France, Jun. 2019, pp.
1387–1395.

[5] Wojciech Samek and Deniz Gunduz, “Distributed deep learning:
Concepts, methods & applications in wireless networks,” 2020, IEEE
GLOBECOM 2020 Tutorial. [Online]. Available: http://www.federated-
ml.org/tutorials/globecom2020/part2.pdf

[6] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi, “In-network aggregation
techniques for wireless sensor networks: a survey,” IEEE Wireless
Commun., vol. 14, no. 2, pp. 70–87, Apr. 2007.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on
large clusters,” Commun. ACM, vol. 51, no. 1, pp. 107–113, Jan. 2008.

[8] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,
and G. Czajkowski, “Pregel: A system for large-scale graph processing,”
in Proc. ACM SIGMOD, Indianapolis, Indiana, USA, 2010, pp. 135–146.

[9] Y. Yu, M. Isard, D. Fetterly, M. Budiu, U. Erlingsson, P. K. Gunda,
and J. Currey, “DryadLINQ: A system for general-purpose distributed
data-parallel computing using a high-level language,” in Proc. USENIX
Conf. Oper. Syst. Des. Implement. (OSDI), Dec. 2008, pp. 1–14.

[10] L. Liu, J. Zhang, S. H. Song, and K. B. Letaief, “Client-edge-cloud
hierarchical federated learning,” in Proc. IEEE ICC, Dublin, Ireland,
Jul. 2020, pp. 1–6.

[11] M. Chen and Y. Hao, “Task offloading for mobile edge computing in
software defined ultra-dense network,” IEEE J. Sel. Areas Commun.,
vol. 36, no. 3, pp. 587–597, Mar. 2018.

[12] K. Poularakis, J. Llorca, A. M. Tulino, I. Taylor, and L. Tassiulas,
“Service placement and request routing in mec networks with storage,
computation, and communication constraints,” IEEE/ACM Trans. Netw.,
vol. 28, no. 3, pp. 1047–1060, Jun. 2020.

[13] C.-H. Zhang, “Nearly unbiased variable selection under minimax con-
cave penalty,” Ann. Statist., vol. 38, no. 2, pp. 894–942, Apr. 2010.

[14] R. Motwani and P. Raghavan, “Randomized algorithms,” ACM Comput.
Surveys, vol. 28, no. 1, pp. 33–37, 1996.

[15] E. Khorov, A. Kiryanov, A. Lyakhov, and G. Bianchi, “A tutorial on
IEEE 802.11ax high efficiency WLANs,” IEEE Commun. Surveys Tuts.,
vol. 21, no. 1, pp. 197–216, Sep. 2019.

[16] Y. Cheng, “Optical interconnects for next generation datacenters,” Ph.D.
dissertation, KTH Royal Institute of Technology, 2019.

[17] Keras. Keras applications. [Online]. Available:
https://keras.io/api/applications/

	Blank Page

