
“©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this
work in other works.”

Dynamic Optimal Coding and Scheduling for

Distributed Learning over Wireless Edge Networks

Nguyen Van Huynh, Dinh Thai Hoang, Diep N. Nguyen, and Eryk Dutkiewicz

School of Electrical and Data Engineering, University of Technology Sydney, Australia

Abstract—This paper proposes a novel framework that can
effectively address key challenges for the development of dis-
tributed learning over wireless edge networks. In particular,
we first introduce a highly effective distributed learning model
leveraging the most recent advanced coded distributed computing
algorithm together with collaborative computing resources from
wireless edge nodes to securely and effectively execute learning
tasks. To minimize the average delay of learning tasks, the coding
and scheduling policies must be jointly optimized. However,
determining the optimal coding scheme together with the optimal
edge nodes for different learning tasks is NP-hard due to
the dynamics and uncertainty of the wireless environment and
straggling problems at the computing nodes. Thus, we develop
a highly effective approach utilizing advances of both reinforce-
ment learning algorithms and the dueling network architecture
to quickly find the optimal coding scheme together with the
best edge nodes for different learning tasks without requiring
completed information about the surrounding environment and
straggling parameters in advance. Through extensive simulation
results, we show that our proposed framework can reduce the
average delay for the whole system up to 66% compared with
other conventional learning and optimization approaches.

Index Terms—Coded computing, wireless edge networks, dis-
tributed learning, and deep reinforcement learning.

I. INTRODUCTION

Recently, the coded computing technique has been emerging

as a prominent solution to deal with straggling problems in dis-

tributed learning over wireless edge networks [1], [2]. In par-

ticular, the coded computing technique adds data/computation

redundancy to learning tasks before offloading them to edge

nodes for processing. In this way, this technique does not

require all edge nodes to send back their computed results.

Instead, only computed results from a number of edge nodes

are required to decode the final result. In other words, the com-

putation latency is determined by a best set of edge nodes [1].

As such, the coded computing technique can significantly

mitigate the straggling problem at edge nodes. Moreover,

the communication delay can be also reduced as the coded

computing technique can mitigate straggling problems caused

by unstable wireless links. Finally, with the coded computing

technique, learning tasks are encoded (with data/computation

redundancy) before offloading to edge nodes, thereby greatly

increasing the data privacy of the system.

The coded computing technique has been widely adopted

in distributed learning systems recently [1]–[5]. The authors

in [1] introduce a novel maximum distance separable (MDS)

code for matrix multiplication and data shuffling which are

the most common tasks in machine learning. By adding data

redundancy, the MDS code can mitigate the effect of stragglers

and communication bottlenecks. Similarly, in [3], the authors

propose to encode datasets with built-in data redundancy to

mitigate the straggling problem in linear regression tasks.

However, these works ignore the effects of wireless commu-

nications which can lead to serious degradation in the system

performance [4]. For that, in [5], the authors study both wire-

less and computing impairments when designing coding mech-

anism to jointly minimize the computing and communication

delay. To do that, a group of edge nodes serving a particular

learning task is determined by considering imperfect channel

state information, straggling processors, and interference. Al-

though achieving good performance, these works and others

in the literature require complete environment knowledge in

advance, which may not be feasible in practice. Specifically,

straggling problems at both edge nodes and wireless links

are uncertain due to several unpredictable factors such as

random hardware errors, maintenance activities, interference

from surrounding devices, and random obstacles on wireless

links. Without taking these factors into account, existing

solutions may not be able to obtain good training time for

distributed learning over wireless edge networks. Moreover,

current works usually ignore the heterogeneity of edge nodes

and wireless links when optimizing coding mechanisms, and

thus limiting the performance of the system.

To address the aforementioned problems, this paper pro-

poses a jointly optimal coding and scheduling framework

that can intelligently obtain the optimal code as well as the

best set of edge nodes to process each learning task, given

the current state of the whole system. Specifically, we first

develop a Markov decision process (MDP) framework to

account for the dynamics and uncertainty of the system such as

wireless channel states, straggling problems at different edge

nodes, and diverse learning tasks and computing resources.

To obtain the optimal coding (i.e., optimal value of n and

k) and scheduling (i.e., best edge nodes to serve a particular

learning task) policy under the proposed MDP framework, Q-

learning algorithm can be adopted. Nevertheless, conventional

Q-learning algorithms usually require very long learning time

to obtain the optimal policy, especially with high-dimensional

state and action spaces considered in this paper. To tackle

this, we propose a highly effective deep reinforcement learning

algorithm, called deep dueling, utilizing the advanced deep du-

eling neural network architecture [6] to significantly improve

the learning process of the system. Extensive simulation results

demonstrate that our proposed solution can reduce the average

latency for learning tasks up to 66% by jointly obtaining the

optimal coding and scheduling policy for each learning task.

II. SYSTEM MODEL

In this work, we consider a distributed learning over

wireless edge network that includes a mobile edge com-

puting (MEC) server and N edge nodes denoted by E =
{E1, . . . , Ej , . . . , EN}. Edge node Ej connects with the MEC

server through wireless link Cj as illustrated in Fig. 1. The

MEC server is equipped with a task queue to store learning

tasks arriving at the system. The maximum size of the task

queue is defined by M . Without loss of generality, we assume

that time is slotted. In each time slot, a learning task arrives

at the task queue with probability µ. We denote D(t) as the

learning task arrives at the system at time slot t. The data size

of D(t) is denoted by f(D(t)). We assume that learning tasks

in the task queue are served in a first-come-first-served manner.

In particular, a learning task in the task queue is considered to

serve if the computing resources at edge nodes are available

and this learning task comes earliest in the queue but not yet

served by any edge nodes (e.g., D(2) as illustrated in Fig. 1).

After being served, a learning task still remains in the task

queue until the MEC server successfully decodes computed

results from assigned edge nodes to derive its final result. We

Edge Node 1

Edge Node 2

Edge Node 3

…
..

Learning tasks

Task Queue

Users

MEC server

Downlink Uplink

…
..

Edge Node N

Healthcare

Manufacturing

Automotive

Utilities

𝒟(1)… 𝒟(0)𝒟(2)𝒟(𝑡)
𝒟(𝑡)

Being served at

the edge devices

𝒟(2) = 𝒟1(2), 𝒟2(2) 𝑒𝑛𝑐𝑜𝑑𝑒 𝒟1′(2), 𝒟2′(2), 𝒟3′(2), 𝒟4′(2)𝑛 = 4, 𝑘 = 2 MDS code 𝒟1′(2)𝒟2′(2)
𝒟3′(2)
𝒟4′(2)

ഥ𝒟1′(2)

ഥ𝒟3′(2)
Straggling link

Straggling node
Being considered

by the MEC server

ഥ𝒟(2) 𝑑𝑒𝑐𝑜𝑑𝑒 ഥ𝒟1′(2), ഥ𝒟3′(2)

Fig. 1: System model for coded distributed learning over wire-

less edge network. Here, we illustrate the case when learning

task D(2) is processed with (n = 4, k = 2) MDS code. The

sub-learning tasks are sent to edge nodes 1, 2, 3, and N to

process. Then, when edge node 2 is disconnected and edge

node N is straggling, learning task D(2) still can be completed

by using computed results from edge nodes 1 and 3.

assume that each edge node serves a single learning task at

a time. The reason is that in wireless edge networks, edge

nodes usually have limited resources such as IoT gateways

and mobile phones. As such, they may not be able to process

multiple learning tasks at the same time while ensuring good

computation latency. We denote ej as the status of edge node

Ej . In particular, ej = 1 if there is no learning task executing

at edge node Ej . ej = 0 if edge node Ej is currently serving

a learning task. We then denote Eav
def
= {Ej : ∀Ej ∈ E and

ej = 1} as the set of available edge nodes.

A. Coded Computing for Distributed Learning over Wireless

Edge Networks

In this work, we adopt the maximum distance separable

(MDS) code [1] to encode learning tasks. In particular, with

(n, k) MDS code (1 ≤ k ≤ n), the MEC server first

divides a learning task D(t) into k equal-sized sub-learning

tasks denoted by {D
(t)
1 ,D

(t)
2 , . . . ,D

(t)
k }. After that, these sub-

learning tasks are encoded to n encoded sub-learning tasks

denoted by {D
′(t)
1 ,D

′(t)
2 , . . . ,D

′(t)
n }. The MEC server then

offloads these encoded sub-learning tasks to n edge nodes for

processing. As soon as receiving k computed results from k

edge nodes, the MEC server can decode them to obtain the

final computed result for learning task D(t). Finally, learning

task D(t) is removed from the task queue and the MEC server

notifies all edge nodes to stop processing their assigned sub-

learning tasks for D(t).

B. Communication and Computation Models

Assuming that sub-learning task D
′(t)
i (1 ≤ i ≤ n) is

offloaded to edge node Ej ∈ E to execute, the total serving

time of this sub-learning task can be formulated as follows:

T (t,i)
serve = T (t,i)

se + T (t,i)
cmp + T (t,i)

es , (1)

where T
(t,i)
serve is the total serving time of sub-learning task

D
′(t)
i , T

(t,i)
se is the communication time for sending D

′(t)
i

from the MEC server to edge node Ej through wireless link

Cj . T
(t,i)
es is the communication time for sending computed

result from edge node Ej to the MEC server through wireless

link Cj . T
(t,i)
cmp is the computation time that edge node Ej

needs to finish processing sub-learning task D
′(t)
i . We assume

that each sub-learning task and its computed result can be

transmitted within one time slot as the connection from edge

node to the server is usually a high-speed connection (e.g., via

mmWave). pj is defined as the disconnection probability of

wireless link Cj . Then, we denote p = {p1, . . . , pj , . . . , pN}
as the set of disconnection probabilities of wireless links

{C1, . . . , Cj , . . . , CN}.

At each time slot, if wireless link Cj is disconnected,

transmitted data needs to be resent in the next time slot. Thus,

we can formulate the communication time of the MEC server

and edge node Ej through link Cj as follows:

T (t,i)
se = T (t,i)

es = Hjξ, (2)

where ξ denotes the duration of a time slot and Hj presents

the number of time slots required to successfully transmit

data over link Cj . Hj follows the Geometric distribution

and identically and independently distributed with successful

probability psuccess = 1 − pj . We then can formulate the

probability function of Hj as follows [2]:

Pr(Hj = x) = px−1
j (1− pj), x = 1, 2, 3, . . . (3)

From (3), we can observe that with a high disconnection

probability, the number of time slots required to successfully

transmit data over link Cj (i.e., Hj) is also high.

It is clear that the computation time of sub-learning task

D
′(t)
i (1 ≤ i ≤ n) at edge node Ej is the sum of the

deterministic time for processing data and the stochastic time

that depends on unpredictable factors at the edge node. Denote

T
(t,i)
cmp as the total time that edge node Ej requires to process

sub-learning task D
′(t)
i , we have

T (t,i)
cmp = g(λj)

︸ ︷︷ ︸

stochastic time

+ ηjf(D
′(t)
i)

︸ ︷︷ ︸

deterministic time

, (4)

where ηj is the processing power of edge node Ej . g(λj)
denotes the stochastic time caused by the straggling problem

at the edge node, following an exponential distribution with

rate λj [2], [7], i.e., pg(λj)(x) = λje
−λjx, x ≥ 0. The

set of rate parameters at edge nodes is then denoted as

λ = {λ1, . . . , λj , . . . , λN}.

Substituting (2) and (4) into (1), the total serving time of

D
′(t)
i at an edge node can be written as follows:

T (t,i)
serve =

(

2Hjξ + g(λj) + ηj |D
′(t)
i |
)

ci,j ,

∀i ∈ {1, . . . , n}, ∀j ∈ {1, 2, . . . , N}
(5)

where ci,j is a scheduling binary decision. ci,j = 1 if D
′(t)
i is

served at edge node Ej , and ci,j = 0, otherwise. Recall that

each sub-learning task is only processed at one edge node,

thus we have
∑N

j=1 ci,j = 1, ∀i ∈ {1, . . . , n}.

With (n, k) MDS code, the MEC server needs k computed

results from k edge nodes to decode the final result. As such,

the serving time of learning task D(t) can be determined by

the serving time of k-th completed sub-learning task. Denote

T
(t)
serve as the serving time of learning task D(t), we have

T (t)
serve = min

k−th

(
{

T (t,i)
serve : ∀i ∈ {1, 2, . . . , n}

}
)

, (6)

where min
k−th

(.) returns the k-th minimum value of a set. For

example, min
3−th

(

{1, 5, 10, 4, 6}
)

= 5.

C. Serving Time Minimization Problem

Given the above, the serving time minimization problem for

each learning task can be formulated as follows:

min
n,k,{ci,j}

T (t)
serve, (7)

s.t. 1 ≤ k ≤ n, ∀n ∈ {1, 2, . . . , |Eav|},

ci,j ∈{0, 1}, ∀i ∈ {1, 2, . . . , n}and ∀j ∈ {1, 2, . . . , N},
N∑

j=1

ci,j = 1, ∀i ∈ {1, . . . , n} and ∀j ∈ {1, . . . , N},

ci,j = 1, if ej = 1, ∀j ∈ {1, . . . , N}.

THEOREM 1. The joint coding and scheduling optimization

problem (7) is NP-hard.

Proof. The proof can be found in [9].

In Theorem 1, we show that minimizing the serving time for

each learning task is NP-hard, even if the environment factors

such as pj , λj , and ηj are available in advance. Nevertheless,

these factors may not be available in advance in practice.

The reason is that the straggling problems at both wireless

links and edge nodes as well as arriving learning tasks are

unpredictable. In addition, in this paper, we aim to minimize

the average delay for all learning tasks, which is intractable

for current optimization tools [1], [2]. To address these issues,

we develop a Markov decision process framework to account

for the dynamics and uncertainty of the system. Then, a highly

effective deep reinforcement learning algorithm is proposed to

learn all the environment factors and obtain the jointly optimal

coding and scheduling policy for the system.

III. CODED COMPUTING FOR DISTRIBUTED LEARNING

FORMULATION

To capture the dynamics and uncertainty of the considered

system, we adopt the Markov decision process (MDP) frame-

work to reformulate the system delay minimization problem

in (7). Specifically, the MDP consists of a state space S , an

action space A, and an immediate reward function r.

A. State Space

As discussed, the MEC server serves learning tasks in the

task queue in a first-come-first-served manner. Therefore, the

queue size, the data size of the considered learning task, and

the available edge nodes in the system are critical parameters

that should be taken into account in the system state. For that,

the state space can be defined as follows:

S ,

{

(m, f, {e1, . . . , ej , . . . , eN}) : m ∈ {0, . . . ,M};

f ≥ 0; ej ∈ {0, 1}, ∀j ∈ {1, . . . , N}
}

,
(8)

where m is the queue size (i.e., number of learning tasks

currently waiting in the queue), f presents the data size of

the considered learning task, and ej is the state of edge node

Ej . It is worth noting that f equals 0 if the task queue is

empty or all learning tasks in the queue are being served by

the system.

B. Action Space

In this work, we aim to find not only the optimal code but

also the best set of edge nodes to serve learning tasks based

on the current system state s. Thus, the action space A can

be formulated as follows:

A , {as} ={(0, 0, ∅), (n, k,Eb)}, ∀n ∈ {1, . . . , |Eav|},

∀k ∈ {1, . . . , n}, ∀Eb ∈

(
Eav

n

)

,
(9)

where as is the action taken at state s and Eb presents the

best set of edge nodes to process the considered learning task,

and
(
Eav

n

)
returns all size-n subsets of Eav. Given the above,

as = (n, k,Eb) when the MEC server uses (n, k) MDS code

to encode the considered learning task and edge nodes in Eb

to serve the encoded sub-learning tasks at state s. If the MEC

server stays idle, as = (0, 0, ∅) (i.e., not select any code and

edge nodes to execute the considered task or the task queue

is empty).

C. Immediate Reward

The aim of this research is to minimize the average long-

term delay of learning tasks. As mentioned, after serving by

the MEC server, a learning task still remains in the queue until

all necessary computed results are sent back from assigned

edge nodes to decode the final result for this learning task.

Hence, the average delay of a learning task is determined from

the time it enters the system until the MEC server decodes

its result successfully. However, due to random straggling

problems in both the edge nodes and wireless links, the

computation time and communication time of a learning task

cannot be calculated correctly in advance. Consequently, after

taking action at at state st to serve a learning task, the MEC

server cannot know when this learning task is completed to

obtain immediate reward rt. To address this problem, rt can be

determined by the number of learning tasks currently waiting

in the queue. This is because the size of the task queue can

implicitly capture the delay of all learning tasks according to

the Little theorem. Thus, the immediate reward function is

expressed as follows:

rt(st, at) = −m, (10)

where m ∈ {0, . . . ,M} represents the instantaneous size of

the queue after performing action at at state st.

D. Long-Term Delay Minimization Formulation

We aim to obtain the optimal coding and scheduling policy

which is a mapping from a state st to the optimal action

at to maximize the long-term average reward. In this way,

the average number of learning tasks waiting in the queue

is minimized, resulting in a minimal average delay for the

system. Therefore, the optimization problem can be formulated

as follows:

max
π

R(π) = lim
T→∞

1

T

T∑

t=1

E (rt(st, π(st))) , (11)

where R(π) is the average long-term reward of the system

under policy π and rt(st, π(st)) is the immediate reward after

performing an action given policy π at time step t.

IV. OPTIMAL CODED EDGE COMPUTING WITH DEEP

DUELING ALGORITHM

To obtain the optimal coding and scheduling policy, the

Q-learning algorithm can be used. However, this algorithm

faces a slow-convergence problem, especially with large state

and action spaces in our considered system. To tackle this

issue, we develop a highly effective algorithm, namely deep

dueling, utilizing both the deep reinforcement learning and the

deep dueling neural network architecture [6]. The principle

of this algorithm is to train the deep dueling neural network

instead of using the Q-table as in the conventional Q-learning

algorithm to find the optimal coding and scheduling policy.

Specifically, the algorithm deploys a reply memory D to store

transitions (st, at, rt, st+1) during the training process. Then,

in each training iteration, a number of samples from D are

fed into the deep dueling neural network for training.

∑

|A|

∑

Shared fully-

connected hidden

layer
Value layer

Advantage layer

G(s,a)

-

Q(s,a)

Outputs

The number of

learning tasks

in the queue

Current task’s

size

Edge devices’
states

...

...

Average

Sum

Sum

Input layer

...

Server

System state
...

Edge Node 1

Edge Node 2

Edge Node 3

Edge Node N

Environment

Observe state

Immediate reward

Take

action

...

 𝑛,𝑘,𝑬𝑏

Fig. 2: Deep dueling network architecture for coded computing

over wireless edge networks.

The deep dueling neural network consists of two streams

of layers to separately and simultaneously estimate value and

advantage functions instead of estimating the Q-value function

only as that of conventional deep Q-learning algorithm as

shown in Fig. 2. The reason is that several actions may have

less effects on the system than others. In particular, with policy

π, the value of state-action pair (s, a) is denoted as Qπ(s, a) =
E
[
rt|st = s, at = a, π

]
. Then, we have Qπ(s, a) = Vπ(s) +

Gπ(s, a), in which Vπ(s) = Ea∼π(s)

[
Qπ(s, a)

]
is the value

function that is used to estimate “how good it is” when the

system is at state s and Gπ(s, a) is the advantage function

that represents the importance of action a compared to other

actions. These two functions are separately estimated by two

streams of layers in the deep dueling neural network. These

two streams are then combined at the output layer by using

the following function:

Q(s, a;α,β)=V(s;β)+
(
G(s, a;α)−

1

|A|

∑

a

G(s, a;α)
)
.

(12)

Algorithm 1 Optimal Coding and Scheduling with Deep

Dueling Neural Network Architecture

1: Construct replay memory D with a capacity of D.

2: Construct the Q network consisting of two streams with

random weights α and β.

3: Construct the target network Q̂ with weights α− = α and

β− = β.

4: for iteration=1 to T do

5: Performing action at based on ǫ-greedy policy.

6: Observe immediate reward rt and next state st+1.

7: Add experiences (st, at, rt, st+1) to memory D.

8: Randomly select transitions (sj , aj , rj , sj+1) from D.

9: Minimize the loss function in (13).

10: Reset Q̂ = Q after every C steps.

11: end for

It is worth noting that, the estimated Q-value of each

state-action pair may be changed during the training process.

The reason is that the algorithm constantly updates the deep

neural network with new experiences. This may make the

algorithm unstable as studied in [8]. To tackle this issue, we

use the quasi-static target network method that implements a

target Q-network with network parameters (α−,β−). These

parameters are constantly but slowly updated with the primary

Q-network parameters (α,β). The target Q-network is used to

calculate the target value yj during the training process, i.e.,

yj = rj + γmaxaj+1
Q(sj+1, aj+1;α

−,β−). Then, the loss

function can be expressed as follows:

Lj(α,β)=E(sj ,aj ,rj ,sj+1)∼U(D)

[(
yj −Q(sj , aj ;α,β)

)2]
,

(13)

where γ is the discount factor. By minimizing the loss func-

tion, the parameters of the deep dueling network are updated.

After a number of iterations, the algorithm can converge to

the optimal coding and scheduling policy. The main steps of

our proposed algorithm are provided in Algorithm 1.

V. PERFORMANCE ANALYSIS AND SIMULATION RESULTS

A. Parameter Setting

We consider that the MEC server’s task queue can store up

to 10 learning tasks at a time. There are five edge nodes to ex-

ecute learning tasks. Unless otherwise stated, at each time slot,

a learning task arrives at the system with probability µ = 0.7.

For all the edge nodes, the processing time of one data point

is set at five milliseconds [7]. Each learning task’s size (i.e.,

number of data points) is generated randomly from the set

of {100, 200, 300}. We set p = {0.1, 0.5, 0.2, 0.3, 0.9} and

λ = {0.1, 1, 0.5, 0.2, 2}. These parameters will be varied to

evaluate our proposed solution in different settings. The deep

neural network of the traditional deep Q-learning algorithm

consists of two fully-connected hidden layers. Differently, the

deep dueling neural network has two streams to estimate

the value and advantage functions. These two streams are

connected to a shared fully connected hidden layer as shown

in Fig. 2. The hidden layer’s size is set at 16. The mini-batch

size is 16. The maximum size of D is set at 10, 000 expe-

riences. The target Q-network is updated after every 1, 000
iterations. The ǫ-greedy scheme is used for the exploration

and exploitation processes. ǫ = 1 at the first iteration and is

gradually decayed to 0.01 with a decay factor of 0.9999. For

the deep dueling and deep Q-learning algorithms, the learning

rate is set at 0.0001, and the discount factor is 0.99. For the

Q-learning algorithm, these two values are set at 0.1 and 0.9,

respectively.

In this work, we compare our proposed solution with three

other approaches: (i) Greedy, (ii) OneNode, and (iii) Static

Optimal Code. Under the Greedy policy, the MEC server

uses all available edge nodes to execute a learning task. This

policy is used to investigate the effect of straggling nodes and

unstable wireless links on the system performance. Under the

OneNode policy, an available edge node is randomly selected

to serve a learning task. This scheme is used to evaluate the

conventional uncoded and non-distributed learning methods.

Finally, the Static Optimal Code policy is based on the optimal

MDS code proposed in [1]. We use this policy to show the

performance of static optimal codes that do not take the

heterogeneity of edge nodes and wireless links into account.

B. Simulation Results

1) Convergence of Learning Algorithms: First, we evaluate

the learning processes of the Q-learning, deep Q-learning, and

deep dueling algorithms in Fig. 3. Clearly, the conventional Q-

learning algorithm converges at a much slower rate than the

deep Q-learning and deep dueling algorithms. The reason is

that the Q-learning algorithm usually suffers from the slow-

convergence problem, especially in complex systems like the

considered coded computing over wireless networks. Note

that our proposed deep dueling algorithm can achieve the

fastest convergence rate by using the novel deep dueling neural

network architecture. Specifically, it can obtain the optimal

coding and scheduling policy within 10, 000 iterations, while

the deep Q-learning algorithm requires more than 15, 000 iter-

ations to converge to the optimal policy. In the following, all

simulation results of the deep dueling algorithm are obtained

at 4 × 104 training steps, while the Q-learning algorithm’s

results are obtained at 106 training steps. It is worth noting that

the conventional Q-learning algorithm is a benchmark used to

show the effectiveness of our proposed deep dueling algorithm.

0 5 10 15 20 25 30 35 40

Iterations (x10
3
)

4

5

6

7

8

9

10

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
ta

s
k
s
 w

a
it
in

g
 i
n
 q

u
e
u
e

Proposed w. Q-Learning

Proposed w. Deep Q-learning

Proposed w. Deep Dueling

Fig. 3: Convergence rates of learning algorithms.

2) System Performance: In this section, we perform sim-

ulations to evaluate the proposed solution’s performance in

terms of the number of tasks waiting in the queue and the

average delay of learning tasks in the system in various sce-

narios. First, we vary the disconnection probability of wireless

links as shown in Fig. 4. It can be observed that when the

disconnection probability increases, the system performances

of all approaches significantly decrease. This is due to the

fact that when the wireless links are likely to be unstable,

the MEC server and edge nodes may resend their data more

frequently. As such, the average serving time of learning tasks

increases, resulting in a high average delay for learning tasks.

It is worth noting that when the disconnection probability

increases from 0.1 to 0.6, the performance under the OneNode

policy is superior to that of the Greedy policy. This is because

under the OneNode policy, each learning task is executed by

only one edge node. Therefore, the frequency of resending data

is much lower than that of the Greedy policy. Nevertheless, in

cases with high disconnection probabilities, the performance

gap between these two policies is not significant as all wireless

links are likely to be disconnected. Note that, in all scenarios,

our proposed solution can always achieve the best performance

compared to those of the Greedy and OneNode approaches.

This is stemmed from the fact that our proposed algorithm can

learn from the environment to avoid highly-straggling wireless

links when serving learning tasks. The Static Optimal Code

achieves the worst performance because this approach does

not consider the dynamics and uncertainty of wireless links

when determining the optimal MDS code for each learning

task.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Disconnection probability

0

1

2

3

4

5

6

7

8

9

10

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
ta

s
k
s
 w

a
it
in

g
 i
n
 q

u
e
u
e

Greedy

OneNode

Static Optimal Code

Proposed w. Q-learning

Proposed w. Deep Dueling

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Disconnection probability

0

10

20

30

40

50

60

70

A
v
e
ra

g
e
 d

e
la

y
 (

ti
m

e
 s

lo
ts

)

Greedy

OneNode

Static Optimal Code

Proposed w. Q-learning

Proposed w. Deep Dueling

(b)

Fig. 4: (a) Average number of tasks waiting in the queue

and (b) average delay of learning tasks in the system vs.

disconnection probability of links.

In Fig. 5, we vary the rate parameter λ (in the exponential

distribution determining the stochastic computing time of edge

nodes) and observe the system performance. As mentioned in

Section II-B, a lower value of λ leads to a longer time for

processing learning tasks at edge nodes. Consequently, when

λ increases, the system performance obtained by all policies

will drop. It is worth noting that the performance gap of

all policies is small when λ is small. However, this gap is

bigger when λ increases. This is because with a lower value

of λ, edge nodes may take longer time to process learning

tasks, and thus the system resources are likely to be fully

utilized. Consequently, the MEC server has fewer options

to serve learning tasks, resulting in a small performance

gap between solutions. Again, in all scenarios, our proposed

solution achieves the best performance by avoiding edge nodes

in which straggling problems are likely to happen.

VI. CONCLUSION

In this paper, we have proposed a novel coding framework to

mitigate the straggling problems on both edge nodes and wire-

less links for distributed learning in wireless edge networks. In

particular, we have first developed a Markov decision process

framework to jointly optimize the coding and scheduling

policy under the dynamics and uncertainty of the system.

Then, the conventional Q-learning algorithm is adopted to

obtain the optimal policy for the system. However, the Q-

learning algorithm requires a very long time to converge to

the optimal policy. To address this problem, we have proposed

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
1

2

3

4

5

6

7

8

9

10

A
v
e
ra

g
e
 n

u
m

b
e
r

o
f
ta

s
k
s
 w

a
it
in

g
 i
n
 q

u
e
u
e

Greedy

OneNode

Static Optimal Code

Proposed w. Q-learning

Proposed w. Deep Dueling

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

5

10

15

20

25

30

35

A
v
e
ra

g
e
 d

e
la

y
 (

ti
m

e
 s

lo
ts

)

Greedy

OneNode

Static Optimal Code

Proposed w. Q-learning

Proposed w. Deep Dueling

(b)

Fig. 5: (a) Average number of tasks waiting in the queue and

(b) average delay of learning tasks in the system vs. λ.

a highly effective deep reinforcement learning algorithm,

namely deep dueling, leveraging the recent advance of the deep

dueling neural network architecture. The simulation results

have demonstrated that our proposed solution can greatly

improve the system performance by not only choosing the

optimal MDS code but also finding the best set of edge nodes

to execute each learning task.

REFERENCES

[1] K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran,
“Speeding Up Distributed Machine Learning Using Codes,” IEEE

Transactions on Information Theory, vol. 64, no. 3, pp. 1514-1529,
Mar. 2018.

[2] S. Prakash, S. Dhakal, M. R. Akdeniz, Y. Yona, S. Talwar, S. Aves-
timehr, and N. Himayat, “Coded Computing for Low-Latency Fed-
erated Learning Over Wireless Edge Networks,” IEEE Journal on

Selected Areas in Communications, vol. 39, no. 1, pp. 233-250, Nov.
2020.

[3] C. Karakus, Y. Sun, S. N. Diggavi, and W. Yin, “Redundancy
Techniques for Straggler Mitigation in Distributed Optimization and
Learning,” Journal of Machine Learning Research, vol. 20, no. 72, pp.
1-47, Apr. 2019.

[4] F. Wu and L. Chen, “Latency Optimization for Coded Computation
Straggled by Wireless Transmission,” IEEE Wireless Communications

Letters, vol. 9, no. 7, pp. 1124-1128, Jul. 2020.
[5] S. Ha, J. Zhang, O. Simeone, and J. Kang, “Coded federated computing

in wireless networks with straggling devices and imperfect CSI,” IEEE

International Symposium on Information Theory (ISIT), Paris, France,
7-12 Jul. 2019.

[6] Z. Wang, T. Schaul, M. Hessel, H. V. Hasselt, M. Lanctot, and
N. D. Freitas, “Dueling network architectures for deep reinforcement
learning,” ICML, New York, New York, USA, 20-22 Jun. 2016.

[7] J. Zhang and O. Simeone, “On model coding for distributed inference
and transmission in mobile edge computing systems,” IEEE Commu-

nications Letters, vol. 23, no. 6, pp. 1065-1068, Apr. 2019.
[8] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness,

M. G. Bellemare, A. Graves, et al., “Human-level control through deep
reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533, Feb.
2015.

[9] N. V. Huynh, D. T. Hoang, D. N. Nguyen, and E. Dutkiewicz, “Joint
Coding and Scheduling Optimization for Distributed Learning over
Wireless Edge Networks,” [Online]. Available: arXiv:2103.04303.

	20xx IEEE
	document

