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Abstract—Unlike theoretical analysis of distributed learning
(DL) in the literature, DL over wireless edge networks faces the
inherent dynamics/uncertainty of wireless connections and edge
nodes, making DL less efficient or even inapplicable under the
highly dynamic wireless edge networks (e.g., using mmW inter-
faces). This article addresses these problems by leveraging recent
advances in coded computing and the deep dueling neural net-
work architecture. By introducing coded structures/redundancy,
a distributed learning task can be completed without waiting for
straggling nodes. Unlike conventional coded computing that only
optimizes the code structure, coded distributed learning over the
wireless edge also requires to optimize the selection/scheduling of
wireless edge nodes with heterogeneous connections, computing
capability, and straggling effects. However, even neglecting the
aforementioned dynamics/uncertainty, the resulting joint opti-
mization of coding and scheduling to minimize the distributed
learning time turns out to be NP-hard. To tackle this and to
account for the dynamics and uncertainty of wireless connections
and edge nodes, we reformulate the problem as a Markov
Decision Process and then design a novel deep reinforcement
learning algorithm that employs the deep dueling neural network
architecture to find the jointly optimal coding scheme and the
best set of edge nodes for different learning tasks without
explicit information about the wireless environment and edge
nodes’ straggling parameters. Simulations show that the proposed
framework reduces the average learning delay in wireless edge
computing up to 66% compared with other DL approaches. The
jointly optimal framework in this article is also applicable to any
distributed learning scheme with heterogeneous and uncertain
computing nodes.

Index Terms—Coded computing, wireless edge networks, dis-
tributed learning, reinforcement learning, deep reinforcement
learning, and deep dueling neural network.

I. INTRODUCTION

Recent years have witnessed machine learning as a key
enabler to revolutionize the way we communicate, entertain,
and work [1]. However, most machine learning applications
require a massive volume of data to achieve sufficient training
accuracy. With the exponential growth in both data volume and
data sources, training a given learning model in a centralized
manner often requires a large, if not excessive, amount of com-
putation resources and time, especially for high-dimensional
training data [2]. To overcome this problem, distributed learn-
ing has been introduced recently [3]–[6]. In particular, a
highly-complex learning task can be partitioned into multiple
sub-learning tasks, and then these sub-learning tasks can be
transmitted to several edge nodes for executing. In this way,
the computation load at the centralized server can be offloaded
to multiple edge nodes, and thus improving the training speed.
As a result, distributed learning over wireless edge networks
finds its applications in various emerging machine learning

services that demand low delays such as autonomous vehicles,
augmented reality, and virtual reality [7].

Although distributed learning over wireless edge networks
has many advantages and applications in practice, it has been
facing some technical challenges. First, it is pointed out that
the performance of a distributed system is greatly affected by
the straggling problem at the edge computing devices [8]–
[10]. In particular, this straggling problem can cause unpre-
dictable computing latency due to several factors such as
resource sharing, maintenance activities, power regulations,
and hardware configurations [8]. Consequently, the computing
latency is usually determined by the slowest computing edge
node. In the worst case, if an edge node is highly-straggling,
the learning task will stay in the system for a long time.
Consequently, the computing latency of the whole system will
be significantly increased. Second, the data privacy protection
of the conventional distributed learning is not guaranteed as
the edge nodes can derive information from the assigned sub-
learning tasks. Moreover, transmitting sub-learning tasks over
wireless links may lead to another security concern as an
attacker can eavesdrop the transmitted data over the wireless
links. These security problems are very serious as private
information such as financial data and medical records can
be leaked to a third party. Third, distributed learning over
wireless edge networks suffers from wireless link failures. Re-
transmissions can be performed for failed messages. However,
this may significantly increase the training time for the system.

To overcome the aforementioned challenges, the coded
computing technique [8] is introduced as a highly-effective
solution. Specifically, the principle of the coded computing is
utilizing advanced coding theoretic mechanisms to inject and
leverage data/computation redundancy in order to mitigate the
effects of the straggling problems as well as to protect the
learning tasks’ privacy at the edge nodes and over the wireless
links [8], [10], [11]. With the coded computing technique,
the computation latency is now determined by a group of
the fastest edge computing devices [8], [9]. In other words,
the coded computing technique does not require all assigned
edge nodes to send back their computed results as in the
traditional distributed edge computing. Similarly, the effects
of unstable wireless links can be mitigated as the coded
computing mechanism may ignore computed results from edge
nodes with unstable wireless links if it has received sufficient
computed results from other edge nodes with good wireless
connections. Finally, the sub-learning tasks are encoded before
sending to the assigned edge nodes, resulting in high data
privacy protection. As a result, applications of coded comput-
ing have been widely adopted in distributed learning systems



2

recently [8]–[13]. Nevertheless, existing works usually ignore
the effects of wireless communications which can lead to
serious degradation in the system performance. Moreover, the
dynamics and uncertainty of straggling problems at edge nodes
and wireless links are also not considered in the literature.
In the following, we first discuss current related works using
coded computing and then highlight our main contributions.

A. Related Work

Recently, several works in the literature have been pro-
posed to improve the performance of the coded computing
mechanisms for distributed learning systems [8], [12]–[19].
In [8], the authors propose a new maximum distance separable
(MDS) code design for matrix multiplication which is the
most common operation in machine learning algorithms. In
particular, the MDS code aims to encode 𝑘 learning tasks into
𝑛 coded learning tasks, where 𝑛 ≥ 𝑘 . These encoded tasks
are then distributed to 𝑛 workers to execute. As soon as 𝑘

workers complete their assigned tasks and send the results to
the master node, the master node can decode them to obtain the
expected results. In this way, the effect of straggling workers
can be significantly mitigated. The authors then demonstrate
that with 𝑛 homogeneous workers, the MDS code can speed
up the distributed matrix multiplication by a factor of log 𝑛.
The authors in [12] then extend the MDS code for large-
scale matrix multiplication. Specifically, the key idea is to
partition a large-scale matrix into sub-matrices. Then, the
MDS code is applied for each sub-matrix. Although the matrix
multiplication delay is similar to that of the conventional
MDS code [8], thanks to shorter MDS codes, the proposed
scheme can achieve a lower delay in encoding and decoding
compared to that of the conventional MDS code. Similarly,
the authors in [15] propose a gradient coding method based
on the MDS code [8] for the synchronous gradient descent
method. By using this code, the server can obtain the final
gradient of any loss function even if a number of workers
do not return their gradient results. The experimental results
then demonstrate that the proposed gradient coding mechanism
can significantly mitigate the straggling problems at workers
compared to those of the uncoded schemes. Unlike [15], the
authors in [16] propose to encode the dataset with built-in data
redundancy for linear regression tasks. At every training step,
the missing results from straggling nodes can be compensated
by using the structured computing redundancy added by the
proposed coding mechanism.

It is worth noting that the aforementioned works and
others in the literature mostly focus on optimizing coding
mechanisms only. Their application to wireless edge com-
puting is not straightforward due to the inherent uncertainty
of wireless channel quality. In particular, when the wireless
link between the server and an edge node is disconnected,
transmitted data (i.e., sub-learning tasks sent from the server
and results sent from the edge node) need to be re-transmitted.
This consequently drags out the training time of the whole
system. For that, the authors in [10] introduce an effec-
tive coded computing framework for non-linear distributed
machine learning, namely CodedFedL, that adds structured

coding redundancy to mitigate straggling problems in both
edge nodes and wireless links. In particular, gradient over
the global parity dataset will be used to replace missing
gradient updates from straggling edge nodes. The size of the
local parity datasets is the coding redundancy. The authors
then formulate an optimization problem to find the optimal
amount of coding redundancy based on the conditions of edge
nodes and wireless links. In [20], the authors propose two
coding schemes, namely Aligned Repetition Coding (ARC)
and Aligned Minimum Distance Separable Coding (AMC),
to mitigate the effect of straggling communication links. In
particular, several reliable helper nodes are deployed to help
the server in gradient aggregation operations. Under the ARC
scheme, each node divides its gradient and sends to multiple
helpers. In this way, gradient components from different nodes
are aligned at the helpers, and thus mitigating the effect of
straggling problems on server-to-node links. Differently, the
AMC scheme allows each node to partition its gradient and
encode with an MDS code and with the same generator matrix
for all nodes. In [21], the authors point out that not only
wireless computing nodes, but access points can also become
stragglers, especially when the congestion occurs. As such, the
authors propose a hierarchical code that can jointly mitigate
the straggling problems at edge nodes and access points. The
authors then deploy an “ignoring straggler” scheme in which
the parameter server ignores the straggling access points when
updating the model in each iteration. The simulation results
reveal that the accuracy obtained by the “ignoring straggler”
scheme is not as good as that of the proposed scheme that can
avoid the effects of straggling nodes. Alternatively, the authors
in [22] consider the strangling problems in coded distributed
computing caused by link failures. In particular, the authors
first model the link between the server and nodes as packet
erasure channels. Then an MDS code is designed based on
the packet erasure probability to reduce the system delay.
Furthermore, the authors in [23] propose a new method to
convert encoded data in a resource-efficient manner, namely
convertible code. With this code, the authors can reduce the
overhead in erasure-coded storage systems.

In [24], the authors introduce an extension of the MDS code
considering delay/latency caused by unstable wireless links.
In particular, the authors propose a new coding mechanism
that can incorporate partially-finished computations from edge
nodes into the computation recovery at the server. Similarly,
the authors in [25] aim to minimize the communication and
computing delays by considering both wireless and computing
impairments. To do that, the number of edge nodes for
executing learning tasks is optimized based on the interference,
imperfect channel state information, and straggling processors.
Nevertheless, all the aforementioned solutions and others in
the literature require complete environment information in
advance, which may not be practical to implement. In reality,
environment related parameters like link failures and strag-
gling are dynamic and uncertain, especially wireless channel-
dependent ones. They can randomly occur at both the edge
nodes and wireless links due to unpredictable factors such
as maintenance activities, hardware errors, random obstacles,
and interference. Without considering these factors, existing
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solutions may not be able to achieve a highly reliable, efficient
and robust performance for distributed learning over wireless
edge networks. More importantly, all the current works only
optimize the number of edge nodes to execute learning tasks
(i.e., optimal values of (𝑛, 𝑘) code) and overlook the fact that
different edge nodes may have different computing resources,
wireless connections, and hardware configurations. As such,
selecting the best set of nodes, instead of the number of nodes
to execute learning tasks given the current status of the whole
system is very critical to further improve the performance of
coded distributed learning in wireless edge networks.

B. Main Contributions

Given the above, this work proposes a jointly optimal coding
and scheduling framework for distributed learning over wire-
less edge networks. In particular, we consider a wireless edge
network consisting of a mobile edge server (MEC) connected
to various edge nodes with different hardware configurations
via different wireless links. When a learning task arrives at
the MEC server, it will be encoded into sub-learning tasks by
using an MDS-based code1. However, finding an optimal MDS
code (i.e., a pair of 𝑛 and 𝑘) and the best edge nodes (referred
to as the optimal scheduling) for each learning task under the
dynamic of edge nodes (e.g., available or unavailable) and
wireless environment (e.g., good or bad channel condition) is
a challenging problem. Solving this problem in practice is even
more difficult as one also needs to account for the uncertainty
of wireless links and edge nodes. To the best of our knowledge,
existing works cannot effectively address all these problems.

Therefore, we first develop a Markov decision process
(MDP) framework to capture the aforementioned dynamics
and uncertainty of the system such as diverse learning tasks,
computing resources, straggling issues at different edge nodes,
and wireless channel conditions. To minimize the commu-
nication and computing delays, one can rely on the Q-
learning algorithm to obtain the optimal coding and edge
node scheduling policy. The key idea of this algorithm is
interacting with the environment and gradually learning the
optimal policy. Nevertheless, the Q-learning algorithm usually
takes a long time to converge to the optimal policy, espe-
cially for distributed learning systems which usually involve
with high-dimensional state and action spaces. Moreover, if
the state space is continuous, the conventional Q-learning
algorithm may not be able to effectively address the dy-
namic optimization problem. Therefore, we propose a highly-
effective deep reinforcement learning algorithm based on the
idea of using the deep dueling neural network architecture [30]
to facilitate the learning process of the distributed learning
system. In particular, as the Q-function of each state-action
pair is estimated by the deep dueling neural network instead
of Q-table as in the conventional Q-learning algorithm, our
proposed algorithm can effectively handle the continuous state

1Note that our proposed solution can not only apply for the MDS code
proposed in [8] but also can apply for other codes. In particular, most
of the coded computing techniques aim to optimize the amount of coding
redundancy, e.g., [10], which is similar to 𝑘 in the MDS code. Therefore,
our proposed solution can be straightforwardly extended to other coding
techniques.

space. Moreover, different from conventional deep reinforce-
ment learning approaches, this proposed algorithm separately
estimates the advantage and value functions for each state-
action pair with two streams of hidden layers in the deep
dueling neural network architecture [30]. These two functions
are then combined at the output layer to derive the optimal
action, i.e., coding and scheduling policy. In this way, the
learning process is significantly improved and stable as the
unnecessary relations between the values of states and the
advantages of corresponding actions are mitigated. Extensive
simulation results show that the proposed solution can jointly
obtain the optimal code and the best edge nodes to perform
learning tasks given the uncertainty and dynamics of wireless
channels and straggling computing at edge nodes. Under the
optimal policy, the average latency for learning tasks can be
reduced by 66% compared to those of the conventional coded
distributed learning methods. The major contributions of this
paper are highlighted as follows:

• Propose a highly effective distributed learning framework
leveraging outstanding advantages of coded computing
and computing resources from multiple collaborative edge
nodes to securely and effectively execute learning tasks.

• Propose a jointly optimal coding and scheduling frame-
work for distributed learning over wireless edge networks.
Under this framework, one can simultaneously select the
optimal code as well as the optimal edge nodes for each
learning task given the uncertainty of the edge nodes and
wireless links. To the best of our knowledge, our paper is
the first work that can jointly optimize both coding and
edge node scheduling for coded computing.

• Develop a highly-effective deep reinforcement learning
algorithm for coded computing over wireless edge net-
works by utilizing the advanced deep dueling neural
network architecture [30] to address the slow-convergence
and non-discrete problems of conventional reinforcement
learning algorithms (e.g., Q-learning and deep Q-learning
algorithms). By separately estimating the advantage and
value functions, unnecessary relations between the values
of states and the advantages of corresponding actions are
mitigated, resulting in a high learning rate. This feature is
especially useful as the sever needs not only optimizing
the code, but also selecting the best edge nodes to execute
learning tasks at the same time.

• Perform extensive simulations to show the efficiency of
our proposed solution compared to those of the conven-
tional approaches (e.g., [8]). Moreover, we discuss and
analyze various scenarios to provide insightful designs
for distributed learning over wireless edge networks with
the coded computing mechanism.

The rest of this paper is organized as follows. Section II
presents the system model including computation and com-
munication models. The problem formulation is provided in
Section III. Section IV presents the deep dueling algorithm in
details. Simulation results are discussed in Section V. Finally,
conclusions are highlighted in Section VI.
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Fig. 1: System model for coded distributed learning over wireless edge network. Here, we illustrate the case when learning
task D (2) is processed with (𝑛 = 4, 𝑘 = 2) MDS code. The sub-learning tasks are sent to edge nodes 1, 2, 3, and 𝑁 to process.
Then, when edge node 2 is disconnected, and edge node 𝑁 is straggling, the learning task D (2) still can be completed by
using computed results from edge nodes 1 and 3.

II. SYSTEM MODEL

We consider a distributed edge learning system that consists
of a mobile edge computing (MEC) server and a set of 𝑁

edge nodes denoted by E = {𝐸1, . . . , 𝐸 𝑗 , . . . , 𝐸𝑁 }. The edge
nodes communicate with the MEC server through wireless
links as illustrated in Fig. 1. Let 𝐶 𝑗 denote the wireless link
that connects the MEC server and edge node 𝐸 𝑗 . Practically,
different links may be allocated on different channels, and
thus their properties, e.g., fading conditions, interference, and
disconnection probability, may be different. In this work, we
deploy a task queue at the MEC server to maximize the
utilization of the system. In particular, a new learning task can
be stored in the queue when the system is busy. This learning
task will be served as soon as there are enough resources
available at the edge nodes. Note that, our learning task queue
has a limited capacity of 𝑀 . If the queue is full, the task
waiting longest in the queue will be dropped, and thus the user
(owning this task) can resend the learning task or a new task
to the system to process. In this way, we can not only take the
advantage of employing the task queue but also can enhance
information freshness for the learning tasks. We assume that
time is slotted. In each time slot, a learning task arrives at the
system with probability `. Note that, our proposed solution
still can work well with other packet arrival processes as they
will be learned by the proposed algorithm and are not required
to be available in advance. Different learning tasks, e.g., matrix
multiplication, data shuffling, or gradient descent for linear
regression problems [8], may have different data sizes. We
denote 𝑓 (D (𝑡) ) as the data size of learning task D (𝑡) .

In our system, learning tasks in the queue are served in
a first-come-first-served manner. At each time slot, if the
computing resources at the edge nodes are available, the MEC
server will look at the queue and consider to serve a learning
task which comes earliest in the queue but not yet served
by any edge nodes (e.g., D (2) as illustrated in Fig. 1). By

using the optimal (𝑛, 𝑘) MDS code and the optimal set of
edge nodes obtained by our proposed algorithm, this learning
task is then encoded into 𝑛 sub-learning tasks, and these sub-
learning tasks are offloaded to edge nodes in the optimal set
to execute. These devices then serve the assigned sub-learning
tasks and return the results to the MEC server. Note that the
edge nodes have dissimilar configurations and communication
links that greatly affect the performance of distributed learning
over wireless edge networks. Choosing the best set of edge
nodes for each learning task at different time can have critical
impact on the system’s performance (e.g., the number of tasks
waiting in the queue, the average task dropping probability,
and the average delay of learning tasks in the system). For
example, with the same (𝑛, 𝑘) MDS code, different sets of 𝑛

edge nodes may require different computation time for a given
task. In particular, selecting an edge node with high processing
power and an unstable wireless connection may be worse than
selecting an edge node with average processing power and a
stable wireless connection. As shown in our simulations, by
obtaining the optimal scheduling policy, our proposed solution
achieves better performance compared to other approaches.

In this work, the learning task still remains in the queue
until the MEC server receives 𝑘 results returned from the
edge nodes and successfully decodes them. For example, as
illustrated in Fig. 1, with (𝑛 = 4, 𝑘 = 2) MDS code, the MEC
server does not need to wait for results from edge node 2 and
edge node 𝑁 , which are delayed by the straggling problems.
Instead, the MEC server can decode the final result by using
computed results returned from edge node 1 and edge node 3
which have better wireless connections and computing power.
In contrast, conventional distributed learning models need to
wait for computed results from all the assigned edge nodes
to obtain the final result, and thus dramatically increasing the
computing delay of the whole system. For the ease of notation,
we assume that when an edge node receives a sub-learning
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task, it will use its all computing resource to execute this task.
This is also stemmed from the fact that edge nodes (e.g., IoT
gateways) are usually equipped with limited resources, and
thus they may not be able to serve multiple learning tasks
simultaneously. In addition, if an edge node has to process
multiple sub-learning tasks at the same time, the straggling
problem may be more serious as its computing resources have
to share to execute multiple tasks simultaneously. We denote
𝑒 𝑗 as the state of edge node 𝐸 𝑗 . Specifically, 𝑒 𝑗 = 0 if the
edge node is currently busy, i.e., serving one sub-learning task.
𝑒 𝑗 = 1 if the edge node is available, i.e., there is no learning
task executing at the edge node. Then, the set of available edge
nodes can be denoted as Eav

def
= {𝐸 𝑗 : ∀𝐸 𝑗 ∈ E and 𝑒 𝑗 = 1}.

It is worth noting that our proposed solution can be extended
to the case if one edge node can handle multiple tasks at the
same time by implementing multiple virtual machines (VMs).
Then, each VM can be reserved to execute one learning task.
Thus, the MEC just needs to take the available VMs of each
edge node into account when it assigns learning tasks to them.

A. Coded Computing for Distributed Learning over Wireless
Edge Networks

The key idea of coded computing techniques is to leverage
coding theoretic mechanisms to add structured computing
redundancy into learning tasks to mitigate the effects of strag-
gling edge nodes and wireless communication links [10]. One
of the most effective coding techniques used in coded comput-
ing is the maximum distance separable (MDS) code [8]. The
fundamentals of the MDS code are illustrated in Fig. 1. In
particular, with the (𝑛, 𝑘) MDS code (1 ≤ 𝑘 ≤ 𝑛), a learning
task D (𝑡) can be first divided into 𝑘 equal-sized sub-learning
tasks {D (𝑡)1 ,D (𝑡)2 , . . . ,D (𝑡)

𝑘
}. Then, these sub-learning tasks

are encoded by the (𝑛, 𝑘) MDS code. After encoding, we get
𝑛 encoded sub-learning tasks {D

′ (𝑡)
1 ,D

′ (𝑡)
2 , . . . ,D

′ (𝑡)
𝑛 }. These

sub-learning tasks are then sent to 𝑛 edge nodes to execute.
Upon receiving any 𝑘 results from any 𝑘 edge nodes, the
MEC server can decode them to obtain the result. When a
learning task is completed, it will be removed from the task
queue. After that, the MEC server will inform edge nodes that
are still working on the remaining sub-learning tasks to stop
performing these sub-learning tasks and make them free.

It is worth noting that choosing the values of 𝑛 and 𝑘 to
maximize the system performance in terms of serving time,
delay, and task drop probability is very challenging under
the dynamics and uncertainty of the wireless environment as
well as straggling problems at the edge computing devices.
Currently, an optimal MDS code setting (with optimal values
of 𝑛 and 𝑘) can be determined based on static optimization
methods, e.g., [10], [12], [15], [35]. However, these methods
require prior information about the straggling parameters at
edge nodes and wireless links. In practice, these parameters
usually are not available in advance. Thus, they are not
applicable to wireless edge computing as they do not account
for the inherent dynamics of wireless channels and edge nodes,
leading to uncertainty of straggling problems. Moreover, it is
even more challenging when choosing the best edge nodes to
execute different learning tasks. To the best of our knowledge,

all current existing works cannot address all these problems.
Thus, in this work, we propose an intelligent approach which
allows the MEC server to dynamically select the optimal MDS
code together with the best edge nodes based on the current
status of the whole system. Note that this approach can not
only select the optimal values of 𝑛 and 𝑘 , but also find the
best edge nodes to serve each learning task.

B. Communication and Computation Models

Recall that with (𝑛, 𝑘) MDS code, learning task
D (𝑡) is first divided into 𝑘 equal-sized sub-learning
tasks {D (𝑡)1 ,D (𝑡)2 , . . . ,D (𝑡)

𝑘
}. These sub-learning tasks

are then encoded into 𝑛 encoded sub-learning tasks
{D

′ (𝑡)
1 ,D

′ (𝑡)
2 , . . . ,D

′ (𝑡)
𝑛 }. The encoded sub-learning tasks are

finally sent to 𝑛 edge nodes for processing. In this section,
we formulate the serving time for encoded sub-learning task
D
′ (𝑡)
𝑖

(1 ≤ 𝑖 ≤ 𝑛) at a given edge node 𝐸 𝑗 ∈ E. For the
ease of notation, we denote 𝑇

(𝑡 ,𝑖)
serve as the total serving time of

sub-learning task D
′ (𝑡)
𝑖

. Thus, 𝑇 (𝑡 ,𝑖)serve can be written as:

𝑇
(𝑡 ,𝑖)
serve = 𝑇

(𝑡 ,𝑖)
se + 𝑇 (𝑡 ,𝑖)cmp + 𝑇 (𝑡 ,𝑖)es , (1)

where 𝑇 (𝑡 ,𝑖)se and 𝑇
(𝑡 ,𝑖)
es are the communication time for sending

D
′ (𝑡)
𝑖

from the MEC server to edge node 𝐸 𝑗 and the time
for sending back its computed result from edge node 𝐸 𝑗 to
the MEC server through wireless link 𝐶 𝑗 , respectively. Note
that both the uplink (from edge node 𝐸 𝑗 to the MEC server)
and the downlink (from MEC server to edge node 𝐸 𝑗 ) can
share the same channel as the MEC server and edge node 𝐸 𝑗

do not need to transmit data at the same time. 𝑇 (𝑡 ,𝑖)cmp is the
time that edge node 𝐸 𝑗 requires to complete the sub-learning
task. With the high-speed backhaul connections from the edge
node to the server (e.g., via mmWave), a sub-learning task
or its result can be transmitted over the wireless link within
one time slot. To capture the dynamics of the wireless link
𝐶 𝑗 from the edge node 𝐸 𝑗 to the server, e.g., due to fading or
moving obstacles and/or interfere with surrounding RF signals,
let’s define 𝑝 𝑗 as the disconnection probability of the wireless
link from the MEC server to edge node 𝐸 𝑗 over a given
time slot. We then denote p = {𝑝1, . . . , 𝑝 𝑗 , . . . , 𝑝𝑁 } as the
set of disconnection probabilities corresponding to wireless
channels {𝐶1, . . . , 𝐶 𝑗 , . . . , 𝐶𝑁 }. Using a disconnection proba-
bility to capture the quality of a wireless link is widely used
in many wireless systems in the literature to evaluate their
performance [37], [38]. In particular, if the wireless channel
is likely to be unstable (due to fading, noise, or interference
from surrounding devices), the disconnection probability of
this link will be high. Moreover, it is worth noting that, the
disconnection probability is not the input of our proposed
algorithm. Instead, our algorithm can learn the disconnection
probabilities of wireless links through interacting with the
environment. As such, our proposed solution does not require
this information in advance.

In the case wireless link 𝐶 𝑗 is disconnected, the MEC server
or edge node 𝐸 𝑗 needs to resend its data in the next time slot.
As such, the communication delay increases, especially when
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the disconnection probability is high. We thus can formulate
𝑇
(𝑡 ,𝑖)
se and 𝑇

(𝑡 ,𝑖)
es as follows:

𝑇
(𝑡 ,𝑖)
se = 𝑇

(𝑡 ,𝑖)
es = 𝐻 𝑗b, (2)

where b is the duration of a time slot and 𝐻 𝑗 is the number
of time slots needed to successfully transmit data on wireless
channel 𝐶 𝑗 . 𝐻 𝑗 is i.i.d based on the Geometric distribution
with the successful probability 𝑝success = 1−𝑝 𝑗 as follows [10]:

𝑃𝑟 (𝐻 𝑗 = 𝑥) = 𝑝𝑥−1
𝑗 (1 − 𝑝 𝑗 ), 𝑥 = 1, 2, 3, . . . (3)

According to the Geometric distribution, a higher value of
𝑝 𝑗 , i.e., disconnection probability, results in a higher value of
𝐻 𝑗 . Thus, in many scenarios, the delay caused by unstable
connections is even more serious than that of straggling
devices, especially when the link disconnection probability
is very high [39]. To deal with this issue, in the sequel,
we propose an effective learning solution that can learn the
disconnection probabilities to avoid bad connections when
serving learning tasks (e.g., assigning tasks to edge nodes
with more favorable connections). Hence, the straggling effects
caused by unstable links can be significantly mitigated.

The computing time 𝑇
(𝑡 ,𝑖)
cmp of sub-learning task D

′ (𝑡)
𝑖

(1 ≤
𝑖 ≤ 𝑛) at edge node 𝐸 𝑗 is the sum of the stochastic time
for random memory access during read/write cycles and the
deterministic time for processing data [8], [10], [26]. Thus,
𝑇
(𝑡 ,𝑖)
cmp can be written as follows:

𝑇
(𝑡 ,𝑖)
cmp = 𝑓 (_ 𝑗 )︸︷︷︸

stochastic time

+ [ 𝑗 |D
′ (𝑡)
𝑖
|︸    ︷︷    ︸

deterministic time

, (4)

where 𝑓 (_ 𝑗 ) is a random variable denoting the stochastic com-
ponent of the computing time caused by the straggling problem
at edge node 𝐸 𝑗 . 𝑓 (_ 𝑗 ) follows an exponential distribution
with rate _ 𝑗 [10], [26], i.e., 𝑝 𝑓 (_ 𝑗 ) (𝑥) = _ 𝑗𝑒

−_ 𝑗 𝑥 , 𝑥 ≥ 0. [ 𝑗 is
the deterministic time for edge node 𝐸 𝑗 to process one data
point (e.g., one row in the matrix). |D

′ (𝑡)
𝑖
| is the data size of

sub-learning task D
′ (𝑡)
𝑖

. We denote λ = {_1, . . . , _ 𝑗 , . . . , _𝑁 }
as the set of rate parameters determining the stochastic time
at edge nodes. Specifically, 1

_ 𝑗
is the average stochastic time

that can be considered as straggling parameter of edge node
𝐸 𝑗 . The straggling parameter depends on many factors such
as shared resources, maintenance activities, power limitation,
and random memory access [13], [24]. With high straggling
parameters, edge nodes need more time for processing learning
tasks. Therefore, avoiding straggling edge nodes is crucial in
distributed learning as they can significantly slow down the
learning process. In practice, the straggling problems at edge
nodes may occur randomly and cannot be effectively predicted.
To tackle this problem, our framework below aims to learn
the straggling parameters of edge nodes to find the best edge
nodes for each learning task, and thus remarkably mitigating
the impacts of straggling devices.

C. Learning-Task Delay Minimization Problem

From (1), (2), and (4), the total serving time of a sub-
learning task D

′ (𝑡)
𝑖

can be expressed as:

𝑇
(𝑡 ,𝑖)
serve =

(
2𝐻 𝑗b+ 𝑓 (_ 𝑗 ) + [ 𝑗 |D

′ (𝑡)
𝑖
|
)
𝑐𝑖, 𝑗 ,

∀𝑖 ∈ {1, . . . , 𝑛},∀ 𝑗 ∈ {1, 2, . . . , 𝑁},
(5)

where 𝑐𝑖, 𝑗 is a scheduling binary decision. 𝑐𝑖, 𝑗 = 1 if sub-
learning task D

′ (𝑡)
𝑖

is served by edge node 𝐸 𝑗 , and 𝑐𝑖, 𝑗 = 0,
otherwise. Note that each sub-learning task is only severed by
one edge node, and thus

∑𝑁
𝑗=1 𝑐𝑖, 𝑗 = 1,∀𝑖 ∈ {1, . . . , 𝑛}. With

the (𝑛, 𝑘) MDS code, the MEC server only needs 𝑘 results
from any 𝑘 (out of 𝑛) edge nodes to successfully decode the
result for learning task D (𝑡) . Thus, the total serving time for
a learning task D (𝑡) is the serving time of the 𝑘-th completed
sub-learning task, which can be expressed as follows:

𝑇
(𝑡)
serve = min

𝑘−𝑡ℎ

({
𝑇
(𝑡 ,𝑖)
serve : ∀𝑖 ∈ {1, 2, . . . , 𝑛}

})
, (6)

where min
𝑘−𝑡ℎ
(.) returns the 𝑘-th minimum value of a set. For

example, min
3−𝑡ℎ

(
{1, 5, 10, 4, 6}

)
= 5. We then can formulate the

serving time minimization problem as follows:

min
𝑛,𝑘, {𝑐𝑖, 𝑗 }

𝑇
(𝑡)
serve, (7)

s.t. 1 ≤ 𝑘 ≤ 𝑛,∀𝑛 ∈ {1, 2, . . . , |Eav |},
𝑐𝑖, 𝑗 ∈ {0, 1},∀𝑖 ∈ {1, . . . , 𝑛} and ∀ 𝑗 ∈ {1, . . . , 𝑁},
𝑁∑︁
𝑗=1

𝑐𝑖, 𝑗 = 1,∀𝑖 ∈ {1, . . . , 𝑛} and ∀ 𝑗 ∈ {1, . . . , 𝑁},

𝑐𝑖, 𝑗 = 0, if 𝑒 𝑗 = 0,∀ 𝑗 ∈ {1, . . . , 𝑁}.

In Theorem 1, we show that the delay minimization problem
in (7) is an NP-hard problem.

THEOREM 1. The joint coding and scheduling optimization
problem (7) is NP-hard.

Proof. It can be observed that the optimization problem in (7)
is a form of the Knapsack problem [40]. In particular, (7) aims
to find the optimal MDS code (i.e., optimal values of 𝑛 and 𝑘)
and the optimal scheduling policy (i.e., the best set of {𝑐𝑖, 𝑗 })
to minimize the serving time for each learning task. It is worth
noting that the problem in (7) is much more complicated than
the Knapsack problem as the serving time of each edge node is
a stochastic value and changes over time as shown in (5). As a
result, solving (7) is more difficult than solving the Knapsack
problem. As shown in [40], the Knapsack problem is an NP-
hard problem. As such, the optimization problem in (7) is also
an NP-hard problem. □

It is worth noting that if the environment parameters can
be correctly estimated, we can design a more appropriate
baseline method to compare with our proposed approach.
However, as shown in Theorem 1, even if these parameters are
known and fixed, the delay minimization problem is NP-hard,
hence usually intractable to be solved. Moreover, it is worth
mentioning that under our system model, these parameters are
not fixed due to the dynamics and uncertainty of wireless links
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as well as communications/computing resources at edge nodes.
In practice, it is not trivial to estimate these parameters [41]–
[43]. Even if we would be able to do so, these parameters can
change over time due to the straggling problems at the edge
nodes (caused by random hardware error, maintenance activi-
ties, and power outage) and wireless links (caused by fading,
noise, and interference from nearby devices). In such cases,
the server needs to reestimate and obtain the optimal codes
together with best nodes. This process, as aforementioned,
can be costly in both time, communications overhead, and
computing resources. Moreover, this paper aims to minimizing
the average delay for all learning tasks, which is much more
challenging than that for a single learning task as in (7). This is
stemmed from the fact that learning tasks are sharing the same
computing resources from edge nodes, and thus the optimal
coding and scheduling for a learning task will have significant
impacts on all next arrival learning tasks. Consequently, all
current static optimization techniques (even for suboptimal
solutions) in existing works in the literature [8]–[10] may
not be effective in dealing with these practical issues. To
tackle this and to account for the dynamics and uncertainty
of wireless connections and edge nodes, in the following, we
reformulate the problem as a Markov decision process and
then design a novel deep reinforcement learning algorithm that
employs the deep dueling neural network architecture to find
the jointly optimal coding and scheduling policy for different
learning tasks without explicit information about the wireless
environment and edge nodes’ straggling parameters.

III. CODED COMPUTING FOR DISTRIBUTED LEARNING
FORMULATION

We first adopt the Markov decision process (MDP) frame-
work to formulate the system delay minimization problem for
distributed learning over wireless edge networks. Generally,
the MDP is defined by a tuple < S,A, 𝑟 > where S is the
state space, A is the action space, and 𝑟 is the immediate
reward function of the system. With the MDP framework, the
MEC server can dynamically make optimal actions, i.e., select
optimal MDS codes as well as the best edge nodes for serving
sub-learning tasks, based on its current states, e.g., task queue
and available edge nodes’ resources, to maximize its long-term
average reward. Thus, this framework can significantly reduce
the average delay of learning tasks.

A. State Space

As stated above, a learning task stored in the learning task
queue will be served in a first-come-first-served manner. In
particular, the MEC first selects 𝑛 available edge nodes and
chooses (𝑛, 𝑘) MDS code to encode the learning task. After
that, the encoded sub-learning tasks are transmitted to a set
of optimal edge nodes. The learning task will not be removed
from the queue until the server receives any 𝑘 results from the
edge nodes. As such, the queue size, the available edge nodes,
and the size of the considered learning task are important

factors that should be captured by the system state 𝑠. We then
define the state space S of the system as follows:

S ≜
{
(𝑚, 𝑓 ,{𝑒1, . . . , 𝑒 𝑗 , . . . , 𝑒𝑁 }) : 𝑚 ∈ {0, . . . , 𝑀};

𝑓 ≥ 0; 𝑒 𝑗 ∈ {0, 1},∀ 𝑗 ∈ {1, . . . , 𝑁}
}
,

(8)

where 𝑚 represents the number of learning tasks currently
waiting in the queue, 𝑓 is the size of the current considered
learning task. Note that the current task size equals 0 only
when: (i) the task queue is empty or (ii) all current tasks
in the queue are being served and there is no new task
arriving. The system state is then defined as a composite
variable 𝑠 = (𝑚, 𝑓 , {𝑒1, . . . , 𝑒 𝑗 , . . . , 𝑒𝑁 }) ∈ S. Note that the
environment parameters such as straggling parameters of edge
nodes and wireless links as well as the channel quality cannot
obtain in advance as discussed in the previous sections. Thus,
our system state space does not take these parameters into
account. Instead, these parameters are implicitly captured in
the immediate function defined below and then learned by
our proposed learning algorithm to simultaneously obtain the
optimal coding and scheduling policy.

B. Action Space

As mentioned in Section I, most of existing works only
focus on optimizing the optimal code, i.e., the optimal values
of 𝑛 and 𝑘 [8]. Nevertheless, the straggling problems at
wireless links and edge nodes are randomly and unpredictable.
Consequently, optimizing only the values of 𝑛 and 𝑘 often
leads to sub-optimal solutions in terms of the average delay.
To tackle this issue, this paper aims to find not only the optimal
code but also the best set of edge nodes for each learning task.
As such, we define an action 𝑎 as the combination of of 𝑛, 𝑘 ,
and the set of edge nodes to serve the current learning task.
Denote Eav as the set of all available edge nodes (Eav ⊆ E),
we have the action space of the system as follows:

A ≜ {𝑎} = {(0, 0, ∅),(𝑛, 𝑘,Eb)},∀𝑛 ∈ {1, . . . , |Eav |},

∀𝑘 ∈ {1, . . . , 𝑛},∀Eb ∈
(
Eav
𝑛

)
,

(9)

where Eb is the set of 𝑛-best edge nodes to serve the current
learning task. |Eav | is the total number of available edge nodes.(Eav
𝑛

)
is the combination operation that returns all size-𝑛 subsets

of Eav. For example, if Eav = {𝐸1, 𝐸2, 𝐸3} and 𝑛 = 2, we
have

(Eav
2
)
=

{
{𝐸1, 𝐸2}, {𝐸1, 𝐸3}, {𝐸2, 𝐸3}

}
. From this set, the

MEC server can select any size-2 subset of edge nodes to serve
the learning task, i.e., Eb = {𝐸1, 𝐸2}, Eb = {𝐸1, 𝐸3} or Eb =

{𝐸2, 𝐸3}. In general, 𝑎 = (𝑛, 𝑘,Eb) if the MEC server chooses
(𝑛, 𝑘) MDS code to encode the learning task and the edge
nodes in set Eb to execute the encoded sub-learning tasks.
𝑎 = (0, 0, ∅) if the MEC server chooses to stay idle, i.e., not
select any code nor edge nodes to execute the task.

C. Immediate Reward

In this work, we aim to minimize the average long-term
delay of learning tasks. In general, the delay of a learning
task is determined as the time it stays in the system, including



8

the waiting/queuing time and the serving time. However, in
our system, a learning task will remain in the queue until
the MEC server successfully decodes the results sent back
from the assigned edge nodes. Therefore, the average delay
of a learning task can be calculated from the time it arrives
at the system until the MEC server successfully decodes its
result. It is worth noting that at time slot 𝑡 when the MEC
server performs action 𝑎𝑡 to serve a learning task at state 𝑠𝑡 ,
it may not know exactly when the learning task is completed.
This is stemmed from the fact that the time to complete
this task is determined by the communication time and the
computing time as expressed in (2) and (4), respectively.
However, the communication time and the computing time
are not deterministic due to the random straggling problems
in both the edge nodes and wireless links. As a result, to
determine the immediate reward when an action is made, we
can observe the number of learning tasks in the queue. The
reason is that we can implicitly capture the delay of all learning
tasks through the length/size of the task queue according to the
Little theorem. Thus, we define an immediate reward function
for action 𝑎𝑡 at state 𝑠𝑡 using the instantaneous size of the
queue as follows:

𝑟𝑡 (𝑠𝑡 , 𝑎𝑡 ) = −𝑚, (10)

where 𝑚 ∈ {0, . . . , 𝑀} is the number of learning tasks
waiting in the queue after performing action 𝑎𝑡 at state 𝑠𝑡 . By
maximizing the immediate reward function, we can minimize
the number of learning tasks in the queue, and thus minimizing
the average latency of the whole system.

D. Long-Term Delay Minimization Formulation

This work aims to obtain the optimal coding and scheduling
policy which is a mapping from a given state 𝑠 to an optimal
action to maximize the average long-term reward of the sys-
tem. In other words, we aim to minimize the average number
of learning tasks waiting in the queue. Thus, the optimal
coding and scheduling policy can be denoted by 𝜋∗ : S → A,
which is then expressed as follows:

max
𝜋

R(𝜋) = lim
𝑇→∞

1
𝑇

𝑇∑︁
𝑡=1
E (𝑟𝑡 (𝑠𝑡 , 𝜋(𝑠𝑡 ))) , (11)

where 𝑟𝑡 (𝑠𝑡 , 𝜋(𝑠𝑡 )) is the immediate reward under policy 𝜋 at
time step 𝑡 and R(𝜋) is the average long-term reward of the
system under policy 𝜋. To guarantee that the optimal coding
and scheduling policy exists and can be obtained, we prove
that the average reward R(𝜋) is well defined and does not
depend on the initial state as stated in Theorem 2.

THEOREM 2. The average reward does not depend on the
initial state and is well defined.

The proof of Theorem 2 is provided in Appendix A.

IV. OPTIMAL CODED EDGE COMPUTING WITH
REINFORCEMENT LEARNING ALGORITHMS

A. Q-Learning based Coded Edge Computing

There are several approaches to solve the dynamic op-
timization problem in (11) such as value iteration, policy

iteration, and linear programming [27]. However, most of them
require complete environment information, e.g., wireless link
disconnection probability and straggling parameters of edge
nodes, which may not be always available in advance in
practice. Thus, in this section, we propose a reinforcement
learning algorithm based on the Q-learning algorithm [28] to
deal with the dynamics and uncertainty of the environment
by learning from previous observations. In particular, the
algorithm implements a Q-table to store the Q-values for all
the state-action pairs. At a given state 𝑠𝑡 , the algorithm makes
an action 𝑎𝑡 based on the 𝜖-greedy policy. Specifically, the
algorithm selects an action that maximizes Q-value in the Q-
table at state 𝑠 with probability 1 − 𝜖 and chooses a random
action at state 𝑠 with probability 𝜖 . After that, the algorithm
receives an immediate reward 𝑟𝑡 , and the system then moves
to a next state 𝑠𝑡+1. Then, the algorithm updates the Q-value
for the state-action pair (𝑠𝑡 , 𝑎𝑡 ) as follows [28]:

Q𝑡+1 (𝑠𝑡 , 𝑎𝑡 ) = Q𝑡 (𝑠𝑡 , 𝑎𝑡 ) + 𝜏𝑡
[
𝑟𝑡 (𝑠𝑡 , 𝑎𝑡 )

+ 𝛾 max
𝑎𝑡+1
Q𝑡 (𝑠𝑡+1, 𝑎𝑡+1) − Q𝑡 (𝑠𝑡 , 𝑎𝑡 )

]
,

(12)
where 𝑟𝑡 (𝑠𝑡 , 𝑎𝑡 ) is the immediate reward obtained after exe-
cuting action 𝑎𝑡 at state 𝑠𝑡 , 𝛾 ∈ [0, 1) is the discount factor
that determines the weight of future reward. Typically, with
small value of 𝛾, the algorithm tends to maximize the short-
term reward. In contrast, if 𝛾 approaches 1, the algorithm will
select actions to maximize the long-term reward. To find the
optimal coding and scheduling policy effectively, 𝛾 is usually
set at high values, e.g., 0.9. 𝜏𝑡 is the learning rate that is used
to determine the impact of new information to the existing
value. In practice, 𝜏𝑡 is set close to zero, e.g., 0.1.

It is worth noting that the goal of (12) is finding the
temporal difference between the target Q-value 𝑟𝑡 (𝑠𝑡 , 𝑎𝑡 ) +
𝛾 max𝑎𝑡+1 Q𝑡 (𝑠𝑡+1, 𝑎𝑡+1) and the current estimated Q-value
Q𝑡 (𝑠𝑡 , 𝑎𝑡 ). Through updating the Q-table based on (12), the
Q-learning algorithm can gradually converge to the optimal
coding and scheduling policy. To guarantee the convergence
for the Q-learning algorithm, the learning rate 𝜏𝑡 is determin-
istic, non-negative, and satisfies (13) [28].

𝜏𝑡 ∈ [0, 1),
∞∑︁
𝑡=1

𝜏𝑡 = ∞, and
∞∑︁
𝑡=1
(𝜏𝑡 )2 < ∞. (13)

Under the conditions in (13), we can show that the Q-learning
algorithm will converge to the optimal policy with probability
one in the following theorem.

THEOREM 3. Under (13), Q-learning algorithm is guaran-
teed to converge to the optimal policy.

The proof of Theorem 3 can be found in [28].
Algorithm 1 presents the details of the Q-learning algorithm.

After a finite number of steps, the algorithm can obtain the
optimal coding and scheduling policy for the system [28].
Nevertheless, the Q-learning based algorithms face the slow-
convergence problem, especially with large state and action
spaces in our system. Moreover, as conventional Q-learning
algorithms only can effectively handle discrete state space,
they may not be feasible for our consider problem as the sizes
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Algorithm 1 Optimal Coding and Scheduling Policy with Q-
learning Algorithm

Inputs: For each state-action pair (𝑠, 𝑎), initialize the table
entry Q(𝑠, 𝑎) arbitrarily. Observe the current state 𝑠, initial-
ize values for the learning rate 𝜏 and the discount factor
𝛾.
for t=1 to T do

From the current state-action pair (𝑠𝑡 , 𝑎𝑡 ), execute ac-
tion 𝑎𝑡 based on the 𝜖-greedy method and obtain the
immediate reward 𝑟𝑡 and new state 𝑠𝑡+1.
Update the table entry for Q(𝑠𝑡 , 𝑎𝑡 ) as in (12).
Replace 𝑠𝑡 ← 𝑠𝑡+1.

end for
Outputs: 𝜋∗ (𝑠) = arg max𝑎 Q∗ (𝑠, 𝑎).

of learning tasks are continuous variables. Therefore, in the
following, we propose a highly-effective reinforcement learn-
ing algorithm using recent advances of deep neural network
and deep dueling architecture in order to not only address
the continuous state space problem, but also quickly find the
optimal policy for the MEC server.

B. Coded Computing with Deep Dueling Algorithm

The key idea of the deep dueling algorithm is training
a deep dueling neural network to find the approximated
values of Q∗ (𝑠, 𝑎) instead of implementing the Q-table as
in the conventional Q-learning algorithms. In particular, in
each training iteration, given a current state 𝑠𝑡 , similar to the
Q-learning algorithm, the deep dueling algorithm selects an
action 𝑎𝑡 based on the 𝜖-greedy policy. After performing the
action, the algorithm observes reward 𝑟𝑡 and next state 𝑠𝑡+1.
In this work, we adopt the experience replay mechanism to
improve the efficiency of the training process. Specifically, all
transitions (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) (i.e., experiences) are stored in a
replay memory D. The algorithm then randomly chooses a
number of samples from the replay memory and feeds them
to the deep neural network for training. As such, the previous
experiences can be efficiently learned many times to improve
the stability of the algorithm [29].

1) Deep Dueling Neural Network Architecture: As men-
tioned, in this work, we aim to deal with the unpredictable
straggling problems occurred on the wireless links and the
edge nodes. Thus, conventional deep neural networks may not
be able to learn effectively in this highly-dynamic system.
Moreover, in this paper, we not only find the optimal code
but also select the best edge nodes to serve each learning
task. As a result, the action space is high-dimensional, which
may degrade the learning rate of conventional deep neural
networks. To address these problems, we propose a novel
neural network architecture based on the dueling neural net-
work with two streams of hidden layers [30]. The dueling
neural network has demonstrated its effectiveness in many
applications [31]–[33]. The key idea of this architecture is
that in many states, the choices of corresponding actions have
no effect on the system [30]. For example, the MDS codes
with high values of 𝑛 and 𝑘 only matter when learning task

sizes are large. Moreover, when the available resources of
the system are limited, choosing different MDS codes makes
insignificant differences. As such, instead of estimating the
Q-value function for each pair of state and action, we divide
it into value and advantage functions. The value function is
used to estimate how good it is when the system is at a given
state. The advantage function represents the importance of a
certain action compared to other actions. Thus, we implement
a deep dueling neural network consisting of two streams of
fully connected layers to separately estimate the value and
advantage functions. These two functions are then combined
at the output layer as illustrated in Fig. 2. As a result, the
deep dueling algorithm can achieve more robust estimates of
state values, thereby improving the performance in terms of
convergence rate and stability. In the following, we present
details of how to separate the Q-value function into the
advantage and value functions.

With a given policy 𝜋, the values of each state-action pair
(𝑠, 𝑎) and state 𝑠 are expressed as Q 𝜋 (𝑠, 𝑎) = E

[
𝑟𝑡 |𝑠𝑡 =

𝑠, 𝑎𝑡 = 𝑎, 𝜋
]

and V 𝜋 (𝑠) = E𝑎∼𝜋 (𝑠)
[
Q 𝜋 (𝑠, 𝑎)

]
, respectively.

The advantage function of actions is formulated as G 𝜋 (𝑠, 𝑎) =
Q 𝜋 (𝑠, 𝑎) −V 𝜋 (𝑠). The values of V and G functions are then
estimated by the deep dueling neural network. Specifically,
one stream of fully-connected layers procedures a scalar
V(𝑠;β), while another one estimates an |A|-dimensional
vector G(𝑠, 𝑎;α), where α and β are the parameters of the
deep dueling neural network. Then, these two streams are
combined at the output layer to derive the Q-value function as
follows:

Q(𝑠, 𝑎;α,β) = V(𝑠;β) + G(𝑠, 𝑎;α). (14)

Note that Q(𝑠, 𝑎;α,β) is a parameterized estimate of the true
Q-function. Given Q, it is impossible to derive V and G
uniquely. This is due to the fact that the Q-value is not changed
when subtracting a constant from G(𝑠, 𝑎;α) and adding the
same constant to V(𝑠;β). This leads to a poor performance
as (14) is unidentifiable. To deal with this issue, the Q-value
function can be obtained by the following mapping:

Q(𝑠, 𝑎;α,β) = V(𝑠;β)+
(
G(𝑠, 𝑎;α)−max

𝑎∈A
G(𝑠, 𝑎;α)

)
. (15)

As such, the advantage function estimator has no ad-
vantage when choosing actions. Intuitively, given 𝑎∗ =

argmax𝑎∈A Q(𝑠, 𝑎;α,β) = argmax𝑎∈A G(𝑠, 𝑎;α), we have
Q(𝑠, 𝑎∗;α,β) = V(𝑠;β). Thus, we can convert (15) to a
simple form as follows:

Q(𝑠, 𝑎;α,β)=V(𝑠;β)+
(
G(𝑠, 𝑎;α)− 1

|A|
∑︁
𝑎

G(𝑠, 𝑎;α)
)
.

(16)
Next, random samples of transitions from the replay memory

are fed into the deep dueling neural network for training,
and then the Q-value function is obtained by using (16). It
is worth mentioning that different problems have different
properties, and thus deep reinforcement learning approaches
cannot be straightforwardly used to address all the problems.
Each problem must be comprehensively formulated by using
the MDP framework with a specific state space, action space,
and immediate function. In this work, we define the features
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Fig. 2: Deep dueling network architecture for coded computing over wireless edge networks.

Algorithm 2 Optimal Coding and Scheduling with Deep
Dueling Neural Network Architecture

1: Initialize replay memory D to capacity D.
2: Build the Q network with two fully-connected layers with

random weights α and β.
3: Build the target Q̂ network with random weights α− = α

and β− = β.
4: for iteration=1 to I do
5: Select action 𝑎𝑡 based on the 𝜖-greedy policy.
6: Execute action 𝑎𝑡 and observe immediate reward 𝑟𝑡

and next state 𝑠𝑡+1.
7: Store experiences (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) in D.
8: Sample random mini-batch of transitions
(𝑠 𝑗 , 𝑎 𝑗 , 𝑟 𝑗 , 𝑠 𝑗+1) from D.

9: Run a gradient descent step on (𝑦 𝑗−Q(𝑠 𝑗 , 𝑎 𝑗 ;α,β))2.
10: Every 𝐶 steps reset Q̂ = Q.
11: end for

of the input layer as the states of the queue, the available edge
nodes, and the size of the considered learning task, as in the
state space. As such, all aspects of each system state are trained
to improve the performance of the algorithm. The action space
is taken into account as the outputs of the output layer to allow
the server to determine the optimal action, i.e., the optimal 𝑛,
𝑘 , and the best set of edge nodes, for each state. Nevertheless,
as proved in [29], during the training process, the Q-values
for each pair of state and action will be changed. Thus, the
algorithm may not be stable if a constantly shifting set of
values is used to update the Q-network. To solve this problem,
we use the quasi-static target network method to improve the
stability of the algorithm. In particular, we implement a target
Q-network and update its network parameters (α−,β−) with
the Q-network parameters (α,β) after every 𝐶 steps. The
target network parameters remain unchanged between indi-
vidual updates. For each transition 𝑗 in the random samples,
we denote 𝑦 𝑗 = 𝑟 𝑗 + 𝛾 max𝑎 𝑗+1 Q(𝑠 𝑗+1, 𝑎 𝑗+1;α−,β−) as the
target value in the training process. Then, the loss function

can be expressed as follows:

𝐿 𝑗 (α,β)=E(𝑠 𝑗 ,𝑎 𝑗 ,𝑟 𝑗 ,𝑠 𝑗+1)∼𝑈 (D)
[ (
𝑦 𝑗 − Q(𝑠 𝑗 , 𝑎 𝑗 ;α,β)

)2]
, (17)

where 𝛾 is the discount factor. Differentiating the loss function
in (17) with respect to the neural network’s parameters, we
have the following gradient:

∇α,β𝐿 (α,β) =E(𝑠 𝑗 ,𝑎 𝑗 ,𝑟 𝑗 ,𝑠 𝑗+1)
[ (
𝑦 𝑗

− Q(𝑠 𝑗 , 𝑎 𝑗 ;α,β)∇𝛼,𝛽Q(𝑠 𝑗 , 𝑎 𝑗 ;α,β)
) ]
.
(18)

By using (18), the loss function is minimized to update the
parameters of the deep dueling network. After a number of
iterations, the algorithm can obtain the optimal coding and
scheduling policy for the system. Algorithm 2 provides details
of the deep dueling algorithm.

2) Complexity Analysis: In this work, the deep dueling
neural network consists of input layer 𝐿0, hidden layer 𝐿1,
and two streams to estimate the value and the advantage
function. The value stream consists of layer 𝐿value which is
used to estimate the value function. The advantage stream
consists of layer 𝐿advantage which is used to estimate the
advantage function. Let |𝐿i | denote the size (i.e., the number
of neurons) of layer 𝐿i. We then can formulate the complexity
of the deep dueling neural network as |𝐿0 | |𝐿1 | + |𝐿1 | |𝐿value | +
|𝐿1 | |𝐿advantage |. At each training step, a number of training
samples, i.e., transitions, are randomly taken from the mem-
ory pool and fed to the deep dueling neural network for
training. Thus, the total complexity of the training process
is O

(
𝐼𝑁b

(
|𝐿0 | |𝐿1 | + |𝐿1 | |𝐿value | + |𝐿1 | |𝐿advantage |

))
, where 𝑁b

is the size of the training batch and 𝐼 is the total number of
training iterations. In our paper, the size of 𝐿0 is the number of
state features including the number of learning task currently
waiting in the queue, the current task size, and the states of
edge nodes, therefore |𝐿0 | = 2 + 𝑁 . Hidden layer 𝐿1 has 16
neurons. |𝐿value | = 1 as this layer is used to estimate the value
of the current state only. The size of 𝐿advantage is the number of
actions that the MEC can choose as the advantage layer is used
to estimate the advantage function of all feasible actions in
the current state. Clearly, the architecture of our deep dueling
neural network is simple. Thus, it can be easily deployed at
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the MEC server which is usually equipped with sufficient
computing resources. In the simulations, we show that with
only 16 neurons in the hidden layers and the batch size is
16, our proposed deep dueling can converge to the optimal
coding and scheduling policy much faster than those of the
conventional Q-learning and deep Q-learning algorithms.

V. PERFORMANCE ANALYSIS AND SIMULATION RESULTS

A. Parameter Setting

In this work, we consider that the task queue at the MEC
server can store up to 10 learning tasks. There are five edge
nodes in the system to serve learning tasks. Unless otherwise
stated, the task arrival probability is set at 0.7. The time for
serving one data point is set at 5 milliseconds for all edge
nodes [26]. The size (i.e., number of data points) of each learn-
ing task is randomly taken from the set of {100, 200, 300}. We
set p = {0.1, 0.5, 0.2, 0.3, 0.9} and λ = {0.1, 1, 0.5, 0.2, 2}.
All the above parameters are then varied in the next section
to evaluate the performance of our proposed algorithm in
various scenarios. It is worth noting that our proposed deep
dueling algorithm does not require to know these parameters in
advance. Instead, it can interact with the environment, observe
results, and then learn these parameters to obtain the optimal
coding and scheduling policy in a real-time manner.

The architecture of the deep neural network plays an
important role in the learning process, and thus it needs to
be carefully designed [34]. In particular, with more hidden
layers, the algorithm can learn the problem better. However,
the complexity of the algorithm will increase, resulting in
a long training period. Moreover, a high number of hidden
layers does not always guarantee a good learning performance
due to the overestimation problems of optimizers. Similarly,
the number of neutrons in each layer as well as the mini-
batch size are also required a thoughtful design. For the
deep Q-learning, we deploy two fully-connected hidden layers
connected to the input layer and the output layer. For the deep
dueling algorithm, the neural network consists of two streams
to separately estimate the value function and the advantage
function. These two streams are connected to a shared hidden
layer (after the input layer) as illustrated in Fig. 2. The sizes
of all hidden layers are set at 16. The mini-batch size is set
at 16. The maximum size of the experience replay buffer is
10, 000. The target Q-network is updated after every 1, 000
learning steps. We use the 𝜖-greedy scheme with the initial
value of 𝜖 is 1, and its final value is 0.01. The decay factor
is set at 0.9999. The learning rate and the discount factor of
the deep dueling and the deep Q-learning algorithms are set at
0.0001 and 0.99, respectively. For the Q-learning, the learning
rate and the discount factor are set at 0.1 and 0.9, respectively.

To evaluate the proposed solution, we compare its perfor-
mance with three other approaches: (i) Greedy, (ii) OneNode,
and (iii) StaticOptimalCode.
• Greedy: For this policy, the MEC server selects all

available edge nodes Eav to serve a learning task. The
task is then coded with (𝑛 = |Eav |, 𝑘 = |Eav |) MDS code
and equally distributed to all the available edge nodes.
The MEC server then requires results from all assigned

edge nodes to successfully decode the final result. This
policy is used to evaluate the straggling impact of edge
nodes and wireless links.

• OneNode: In this policy, the MEC server randomly selects
one available edge node to serve a learning task. This
policy is used to evaluate the typical uncoded and non-
distributed learning approaches.

• StaticOptimalCode: This policy is based on the optimal
MDS code proposed in [8]. In particular, given Eav edge
nodes, the optimal value of 𝑘 is derived as follows:

𝑘† =

[
1 + 1

𝑊−1 (−𝑒−_̂−1)

]
|Eav |, (19)

where 𝑊−1 (.) is the lower branch of Lambert 𝑊 function
and _̂ presents the average straggling parameter of all
edge nodes. By using this equation, the MEC server can
select (𝑛 = |Eav |, 𝑘 = 𝑘†) MDS code for each learning
task. It is worth noting that in [8], the authors consider
that all edge nodes are identical, i.e., all edge nodes
have the same straggling parameter. Moreover, the authors
obtain the optimal value of 𝑘 in the case all edge nodes
are used to process a learning task. However, in our paper,
we consider that all edge nodes are heterogeneous with
different straggling parameters. As a result, in (19), we
define _̂ as the average of the straggling parameters of
all edge nodes. The StaticOptimalCode policy is used
to show the performance of a static optimal code that
does not consider the heterogeneity of both edge nodes
and wireless links, e.g., in channel/backhaul link quality
to/from the MEC server, straggling effects and computing
capabilities of edge nodes. Moreover, this policy cannot
deal with the dynamics and uncertainty of the environ-
ment, resulting in poor performance in our considered
system as shown in Section V-B.

We also obtain the policy of the proposed solution by
running the conventional Q-learning algorithm [28] to compare
the effectiveness of the proposed deep dueling algorithm. In
this work, we aim to obtain the joint optimal coding and
scheduling policy to minimize the average delay for the whole
system. Thus, the performance metrics for evaluating the
proposed approach are the average number of learning tasks in
the queue per time slot, the average task dropping probability,
and the average delay in the system of a learning task. The
average task dropping probability corresponds to the average
number of dropped learning tasks in each time slot when the
task queue is full. The average delay of a learning task in the
system is calculated from the time a learning task arrives at the
system until the task leaves the system (i.e., the MEC server
finishes serving the task). The metrics can reveal different
aspects of the system which are very useful to help the service
provider control Quality-of-Service to the users.

B. Simulation Results

1) Convergence of Learning Algorithms: In Fig. 3, we show
the learning processes of the Q-learning, deep Q-learning, and
deep dueling algorithms. As can be observed, the convergence
rate of the Q-learning algorithm is much slower than those
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Fig. 3: Convergence rates of learning algorithms.

of the deep Q-learning and deep dueling algorithms. This is
stemmed from the fact that the Q-learning algorithm has a very
slow-convergence due to the curse-of-dimensionality problem,
especially in complicated systems as considered in our work.
By using the novel deep dueling neural network architecture,
our deep dueling algorithm achieves the best convergence
rate. In particular, the deep dueling algorithm can converge
to the optimal coding and scheduling policy within 10, 000
iterations, while the deep Q-learning algorithm needs more
than 15, 000 iterations to converge to the optimal coding and
scheduling policy. In the next section, all results of the deep
dueling algorithm are obtained at 4×104 iterations, while those
of the Q-learning algorithm are obtained at 106 iterations.
Note that the Q-learning algorithm is used as a benchmark
to demonstrate the effectiveness of the proposed algorithm.

2) System Performance: In this section, we perform simu-
lations to evaluate the performance of the proposed solution
in terms of the number of tasks waiting in the queue, the
average task dropping probability, and the average delay of
learning tasks in the system in various scenarios. First, we
vary the arrival probability of learning tasks and compare the
performance of the proposed solution with those of Greedy,
OneNode, and StaticOptimalCode policies as shown in Fig. 4.
Clearly, when the task arrival probability increases, the average
number of learning tasks in the queue increases as there
are more learning tasks arriving at the system as shown in
Fig. 4(a). With the proposed deep dueling algorithm, our
solution can reduce the number of tasks in the queue by up
to 71%, 50%, and 54% compared to the Greedy, OneNode,
and StaticOptimalCode, respectively. The reason is that the
deep dueling algorithm can learn and maximize the number
of learning tasks served by the edge nodes by determining the
optimal MDS code as well as the best edge nodes with stable
wireless links. Fig. 4(b) also confirms the outperformance of
our proposed solution in terms of task dropping probability.
Interestingly, in Fig. 4(c), when the task arrival probability
increases from 0.1 to 0.3, the average delay of learning tasks in
the system under the Greedy and OneNode schemes decrease
by nearly 20% and 3%, respectively. The reason is that under
these policies, the MEC server randomly chooses edge nodes
to serve learning tasks. As such, there are cases in which
learning tasks are severed by highly-straggling edge nodes

and/or unstable wireless links. However, when there are more
learning tasks arriving at the system, these learning tasks are
likely severed by good edge nodes and stable links as the
straggling devices may take longer time to serve other learning
tasks, and thus they may not be often available. As a result, the
average waiting time in the system of a learning task reduces
when the arrival probability increases from 0.1 to 0.3. The
StaticOptimalCode does not encounter this trend and achieves
a better performance compared to the Greedy and OneNode
policies, thanks to the use of MDS code. However, when the
task arrival probability is higher than 0.3, the performance of
the StaticOptimalCode is similar to that of the Greedy policy
and lower than that of the OneNode policy. The reason is that
when there are many learning tasks arriving at the system,
the computing resources of edge nodes are mostly utilized.
Thus, at each time slot, the available edge nodes are likely
the nodes with good computing power (as they can finish
their assigned task quickly and become available for new
tasks). Thus, sending a task to a single edge node with high
computing power for processing is better than distributing it to
several edge nodes with different wireless connections. Note
that the StaticOptimalCode policy does not account for the
effects of unstable wireless links. Nevertheless, by learning
and avoiding choosing the slow edge nodes and unstable
wireless links, our proposed solution always achieves the best
performance. In particular, the average delay of learning tasks
obtained by our solution is much lower than those of the
Greedy, OneNode, and StaticOptimalCode policies, reduced
by up to 66% as shown in Fig. 4(c).

Next, we vary the time for serving one data point (e.g., one
matrix row) 𝑡𝑝 and evaluate the system performance as shown
in Fig. 5. It can be observed that when the processing time
increases, the system performances obtained by all methods
significantly decrease. The reason is that, with higher pro-
cessing time, the edge nodes need more time to serve learning
tasks, and thus increasing the serving time of learning tasks.
Consequently, learning tasks need to wait longer in the queue.
Nevertheless, in all scenarios, the proposed solution always
achieves the best performance and can reduce the average
delay of learning tasks by 63%, 47%, and 63% compared
to the Greedy, OneNode, and StaticOptimalCode, as shown
in Fig. 5(c) respectively. The reason is that the deep dueling
algorithm can learn and adapt with the environment parameters
in order to select the optimal MDS code for each learning task
as well as avoid unstable wireless links. It is worth mentioning
that the performance achieved by the OneNode policy is better
than those of the Greedy and StaticOptimalCode policies. The
reason is that we set the disconnection probability of wireless
links from the server to edge nodes 2 and 5 at high values (i.e.,
0.5 and 0.9, respectively) to clearly see the effect of unstable
wireless links. Under the OneNode policy, each learning task
is served by a single edge node. As such, it can reduce
the effect of the unstable wireless links. Among all policies,
the StaticOptimalCode possesses the worst performance as
this policy obtains the optimal MDS code (see (19)) without
considering the heterogeneity of edge nodes and wireless links.
This also confirms our analyses on the drawback of existing
static coding mechanisms, i.e., they are only effective under
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Fig. 4: (a) Average number of tasks waiting in the queue, (b) task dropping probability, and (c) average delay of learning tasks
in the system vs. task arrival probability.
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Fig. 5: (a) Average number of tasks waiting in the queue, (b) task dropping probability, and (c) average delay of learning tasks
in the system vs. processing time.

specific scenarios and assumptions. Our proposed solution,
otherwise, can learn all the unpredictable parameters of the
edge nodes and wireless links to jointly optimize coding and
scheduling policies for learning tasks. It is worth noting that
the Q-learning algorithm cannot obtain the optimal coding and
scheduling policy at 106 iterations as discussed above. Thus,
the results obtained by the Q-learning algorithm are not as
good as those of the proposed deep dueling algorithm.

In Fig. 6, we vary the disconnection probability of wireless
links and observe the system performance in terms of the
number of tasks waiting in the queue, task dropping proba-
bility, and the average delay of learning tasks in the system.
Clearly, when the disconnection probability increases, system
performances obtained by all the policies drop dramatically.
This is stemmed from the fact that when the wireless links are
more unstable, the MEC server and the edge results need more
time to resend the sub-learning task and results, respectively.
Consequently, the serving time of learning tasks increases,
resulting in a higher delay for learning tasks. It is worth noting
that when the disconnection probability increases from 0.1
to 0.6, the performance obtained by the OneNode policy is
much better than that of the Greedy policy. The reason is
that under the Greedy policy, the MEC server and edge nodes
need to resend data when the wireless links are disconnected.
Differently, with the OneNode policy, the MEC server assigns
only one edge node for each learning task, and thus the fre-
quency of resending data is lower than those of the Greedy and

StaticOptimalCode policies, resulting in a better performance.
However, the performance gaps between these policies are
very small when the disconnection probability is high, i.e.,
higher 0.7, as all links are likely disconnected. Nevertheless,
our proposed solution always achieves the best performance
in all cases compared to those of the Greedy and OneNode
policies. The reason is that the proposed deep dueling can learn
from the environment and avoid choosing highly-straggling
edge nodes as well as adapt its optimal coding and scheduling
policy when the disconnection probability changes. Again,
the StaticOptimalCode achieves the worst performance as this
policy does not account for the effects of unstable wireless
links when obtaining the optimal MDS code for each learning
task as expressed in (19).

Next, we vary the rate parameter _ (in the exponential
distribution) of the stochastic computing time of edge nodes
and observe the system performance in Fig. 7. Recall that,
a lower value of _ results in a longer time for stochastic
computing. As such, when _ increases, system performances
obtained by all the policies will be decreased. Moreover, when
_ is small, the gap between solutions is small. Nevertheless,
when _ is increased, the gap will be enlarged. The reason is
that, with lower values of _, the edge nodes require more time
to execute learning tasks. As such, the resources of the system
are likely to be fully utilized. In these cases, there are not many
options for the MEC server to serve learning tasks, resulting
in a small performance gap between solutions. However, in



14

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Disconnection probability

0

1

2

3

4

5

6

7

8

9

10

A
ve

ra
ge

 n
um

be
r 

of
 ta

sk
s 

w
ai

tin
g 

in
 q

ue
ue

Greedy
OneNode
StaticOptimalCode 
Proposed w. Q-learning 
Proposed w. Deep Dueling

(a)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Disconnection probability

0

0.1

0.2

0.3

0.4

0.5

0.6

A
ve

ra
ge

 d
ro

pp
in

g 
pr

ob
ab

ili
ty

Greedy 
OneNode 
StaticOptimalCode
Proposed w. Q-learning
Proposed w. Deep Dueling

(b)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Disconnection probability

0

10

20

30

40

50

60

70

A
ve

ra
ge

 d
el

ay
 (

tim
e 

sl
ot

s) Greedy
OneNode
StaticOptimalCode 
Proposed w. Q-learning 
Proposed w. Deep Dueling

(c)

Fig. 6: (a) Average number of tasks waiting in the queue, (b) task dropping probability, and (c) average delay of learning tasks
in the system vs. disconnection probability of links.
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Fig. 7: (a) Average number of tasks waiting in the queue, (b) task dropping probability, and (c) average delay of learning tasks
in the system vs. the rate parameter _ (in the exponential distribution) of the stochastic computing time of edge nodes.

all the scenarios, our proposed solution can achieve the best
performance as the optimal policy can avoid unstable wireless
links and select the optimal MDS code for each learning task.

Finally, we vary the data size of learning tasks and observe
the system performances under different policies as shown
in Fig. 8. Clearly, when the task size increases, the system
performances obtained by all the policies will be dropped. It
is stemmed from the fact that with a larger task size, the edge
nodes need more time to serve learning tasks. However, our
proposed solution can always achieve the best performance
compared to other policies because it can learn and select
the best MDS code as well as the best edge nodes for each
learning task. For example, when the task size is small, the
deep dueling algorithm can select a small number of devices
with more stable wireless links to serve a learning task. In
contrast, when the task size is large, more edge nodes will be
selected to reduce the average serving time of learning tasks.
It can be observed that our proposed solution can reduce the
average number of tasks waiting in the queue by 60%, 46%,
and 61% compared to those of the Greedy, OneNode, and
StaticOptimalCode policies, respectively. Again, the StaticOp-
timalCode achieves the worst performance as this policy does
not consider the learning task size and the effects of unstable
wireless links.

VI. CONCLUSION

In this paper, we have proposed a novel framework that
can effectively address key challenges for the development of
distributed learning in wireless edge networks. Specifically, we
have first introduced a distributed learning model utilizing the
recent advances in coded computing to mitigate the straggling
problems on both the wireless links and the edge nodes. With
the proposed distributed learning model, a learning task is first
encoded into sub-learning tasks, and the sub-learning tasks are
then transmitted to edge nodes for executing. This solution
allows to significantly mitigate straggling problems caused
by straggling edge nodes as well as unstable links between
the MEC server and edge nodes. Furthermore, to deal with
the dynamics and uncertainty of wireless links and straggling
edge nodes, we have proposed a novel deep reinforcement
learning, called deep dueling, to obtain the optimal code and
scheduling policy for each learning task. Extensive simulation
results have then demonstrated that our proposed solution can
significantly improve the system performance by not only
obtaining the optimal MDS code but also finding the best
edge nodes to serve each learning task. One of the potential
research directions from this work is to deploy multiple virtual
machines at each edge node to serve various learning tasks
simultaneously.
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Fig. 8: (a) Average number of tasks waiting in the queue, (b) task dropping probability, and (c) average delay of learning tasks
in the system vs. task size.

APPENDIX A
THE PROOF OF THEOREM 2

We first prove that the underlying Markov chain in this
paper is irreducible. In other words, from any state, the process
can always move to any other states after a finite number
of steps. Recall that the system state is defined as the state
of the queue 𝑚, the task size 𝑓 , and the state of all edge
nodes in the system {𝑒1, . . . , 𝑒 𝑗 , . . . , 𝑒𝑁 }. At each time slot,
a learning task arrives at the system with probability `. Thus,
there always exists a probability that the queue state moves
from 𝑚 to 𝑚′ = 𝑚 + 1. Moreover, a learning task will be
removed from the queue if it is successfully served. In this
case, the queue state moves from 𝑚 to 𝑚′ = 𝑚 − 1. The task
size is a random value. As such, it can take any positive values.
Alternatively, edge node 𝐸 𝑗 is available (i.e., 𝑒 𝑗 = 1) when it
does not serve any learning task. In contrast, edge node is
unavailable (i.e., 𝑒 𝑗 = 0) if it is serving another learning task.
As a result, edge nodes can always move from the available
state to the unavailable state. Thus, the underlying Markov
chain can move from a given state to any other states after a
finite number of steps. As such, the average long-term reward
R(𝜋) is well defined and does not depend on the initial state
for every 𝜋 [27].
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