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Abstract. Predicting the readmission risk within 30 days on the Elec-
tronic Health Record (EHR) has been proven crucial for predictive an-
alytics in healthcare domain. Deep-learning-based models are recently
utilized to address this task since those models can relatively improve
prediction performance and work as decision aids, which helps reduce
unnecessary readmission and recurrence risk. However, existing predic-
tion models, limited by fuzzy relevance of patient data, are unable to
get higher prediction accuracy due to data noise generated by patients
with different disease types. To solve this problem, we propose an end-to-
end model called GROM, which integrates knowledge graph to alleviate
the interference of data noise generated in the processing of irregularity
dynamic clinical data with neural ordinary differential equation (ODE).
The experimental results show that our model achieved the highest aver-
age precision and proved that the graph attention mechanism is suitable
to improve performance of predicting the risk of readmission within 30
days.

Keywords: Deep learning · Knowledge Graph · Electronic Health Record
· ICU Readmission Prediction.

1 Introduction

In recent years, with the continuous development and advancement of medical
informatization technology, a large quantity of electronic data, such as Elec-
tronic Health Record (EHR) [17], have been generated. How to effectively uti-
lize the valuable information hidden behind these data to benefit a large number
of patients has raised the attentions from both researchers and practitioners
[10][12][11]. One of the numerous analytical tasks is to predict the future read-
mission [18] based on a patient’s historical EHR data. Readmission prediction
can assist doctors to make clinical decisions, reduce the cost of readmission and
the risk of relapse after discharge. According to previous research [5], about 10%
of the critically ill patients may re-enter ICU, which is a negative indicator to
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Fig. 1. How to use the relationship between patients’ condition to predict the accuracy
of readmission.

therapeutic effect. Therefore, building predictive models with ICU-related data
to provide doctors with auxiliary diagnosis is an important issue of high applica-
tion value. In this paper, we apply deep learning techniques to ICU readmission
prediction.

With the development of deep learning technology, the research on the pre-
diction of ICU readmission continue to develop. As shown on the upper right of
Fig 1, some researches utilized discrete data with irregular time intervals, such
as physiological measurements and procedure codes. The absence of these data
at certain time points made it impossible to directly use them to represent the
complete patient treatment process. To solve this problems, some researchers
represented timestamp codes by adding time-related information(“embedding”)
to digital vectors, and modified the internal workings of recursive cell method
with ordinary differential equations [4]. However, the model was still insufficient
in predicting. When using electronic health records to predict, the interaction
between static variables and the nonlinear correlation between static variables
and predicted risks were not considered [1]. As shown on the left of Fig 1, exist-
ing readmission researches lacked effective treatment of the relationship between
patients with different disease types and could not obtain reliable representation
of the relationship between patients. Given the correlation between nonlinear
static variables, researchers often rely on additional information provided by ex-
perts in the hierarchical information of diagnostic codes to construct knowledge
graphs to strengthen the connections between data. Current researches together
show that when the data quantity is limited, graph attention model uses figure
of the parent-child relationship to learn robust representation [3, 9], connecting
different patients’ health information, enhancing the influence of each other, and
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finally improving the forecasting accuracy under the conditions of using similar
disease information.

Considering that we need to use static data to interact with each other, graph
attention can use ontological information related to data volumes to determine
the specificity of medical concepts. When there were fewer medical concepts ob-
served in the data, their ancestors would gain more weight and thus be able to
understand the data more accurately and to provide general (coarse-grained)
information about their children. It could be seen that this method was suitable
for us to make up the existing defects. Therefore, as shown in Fig 1, in order
to solve the problems existing in previous algorithms, we proposed an end-to-
end approach called GROM (Graph Attention and RNN-based Neural Ordinary
Differential Equations Model), which integrates RNN-based ODE model with
graph-based attention mechanism to improve prediction performance. The pro-
posed model constructs a knowledge graph through the diagnostic code scoring
mechanism, strengthens the relationship between patients, and provides help for
prediction and patient information to readjust similar diagnostic results.

In order to verify whether the effect of our model on ICU readmission meets
our expectations, we used Medical Information Mart for Intensive Care III
(MIMIC-III) data sets [6] in experiments. Through experimental comparison,
our model can solve the lack of data correlation in the original research well,
and achieve better prediction accuracy using the graph attention mechanism.
Our main contributions are summarized as follows:

– We investigate the relationship among patient conditions to predict the ac-
curacy of readmission according to patient’s static and dynamic data.

– We propose GROM, an end-to-end, robust model to accurately predict pa-
tients’ future readmission with mutual integration of medical knowledge
graph and RNN-based ODE.

– We evaluate the proposed model on a real-world data set, while demonstrates
that the GROM is superior to all the comparative methods.

The remainder of this paper is organized as follows. Details about our model
are presented in Section 2. And next, in Section 3, we demonstrate the experi-
mental results conducted on real-world dataset. Lastly, we conclude our work in
Section 4.

2 Method

In our research, GROM, a model we proposed based on graph attention with
RNN-based ODE, is used to predict the risk of readmission within 30 days in
ICU. The RNN-based ODE is the basis model which uses multilayers of the
network to process time series associated with patient information in prediction.
And graph attention mechanism is utilized in this model to learn the knowledge
graph of patient diagnostic code to improve the accuracy of model predictions.
The overall architecture of the proposed model is shown in Fig 2, the left part of
the model is the graph attention module. The knowledge graph obtained from the
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Fig. 2. The graph attention matrix G operates on all entities with diagnostic code and
is fully joined to the ODE&RNN model.

input data according to the Clinical Classifications Software (CCS) classification
standard [15] is embedded into the graph matrix, and then the graph attention
matrix is embedded into the right RNN sequence. In this section, we will describe
each layer of the model in detail and Algorithm 1 describes the overall training
procedure of the proposed GROM.

2.1 RNN-based ODE Layer

There are a large volume of irregular sampling to obtain patient-related time in-
formation, including diagnostic and procedural codes, as well as medication and
vital sign codes, which are mapped to the corresponding “embeddings”. Diag-
noses&procedures and medication&vital signs are processed separately, as they
are measured on different time scales [13]. It is difficult for such information to
be directly applied to the neural network, so we use the Shen Chang differential
equation model proposed by Chen [2], which is very attractive to the process-
ing of time series. In ODEs, the continuously defined dynamic information can
be naturally incorporated into any data arriving at any given time [1]. So, we
calculate the time-aware code embedded in the ODE dynamic simulation, and
neural nodes are used to simulate the dynamic process of embedding.

To make better use of the data’s timestamp information and be able to make
predictions at any point in time, the neural ODE models the time series as
a continuous trajectory of change. Each trajectory is determined by the local
initial state St0 and the potential dynamic global set shared by all time series.
Given observation t0, t1, ..., tn and initial state St0 , an ODE solver produces
St1 , ..., Stn , which describe the latent state at each observation. We define this
generative model formally through a sampling procedure:

st0 ∼ p(st0)

st1 , st2 , ..., stN = ODESlove(st0 , f, θf, t0, ..., tN )

eachxti ∼ p(x|sti , θx) (1)
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Function f is a time-invariant function that takes the value s at the cur-
rent time step and outputs the gradient: ∂s(t)/∂t = f(s(t), θf). This function is
parametrized using a neural network. Because f is time-invariant, given any la-
tent state s(t), the entire latent trajectory is uniquely defined. Extrapolating this
latent trajectory lets us make predictions arbitrarily far forwards or backwards
in time.

In GROM, we, using adjunction sensitivity to calculate gradients, treat the
ODE approximately as a black box layer to process an irregularly sampled time
series in the data. After the ODE layer processes the time information, the
processed information is passed to the RNN layer for further processing. Bidi-
rectional RNN is used to overcome the drawback that the prediction accuracy
decreases with the increase of sequence length, and to deal with the gradient
disappearance.

2.2 Graph Attention Layer

In GROM, we implement a layer based on graph attention mechanism. Graph
attention layer is introduced into GROM as a layer, and the result is splicing
with the result vector generated by the ODE layer to produce the output after
further processing.

To make better use of patients’ limited treatment information, the graph
attention layer was introduced in this study. In robust representation of medical
code, the embedded sequences of the relationship among the medical ontology
encoding, hierarchical clinical constructs and medical concepts are usually of
arbitrary length and need to be integrated into a fixed-size vector for further
processing. Therefore, for the directed acyclic graph with ICD-9 [14] relation
obtained by CCS classification, each medical concept node is assigned a basic
embedding vector EI , and the basic embedding is combined with its ancestor
nodes through graph-based attention mechanism to obtain the final embedding
vector MI of the i-th medical code. Graph attention mechanisms, such as dot
product attention, calculate the weighted average of embedded code, and higher
weights are assigned to the most relevant code. Information can be integrated
for further processing by using the final memory state of the recursive unit or
by applying a graph attention mechanism to the output vector set:

gi =
∑

j∈A(i)

aijej , aij ≥ 0 for j ∈ A(i) (2)

In this work, recursive cells are realized by bidirectional gated recursive unit.
The information related to the graph is embedded into the vectors by applying
the exponential decay dot product to the graph weight matrix. In the equation
above, gi is the final representation of code ci, A(i) is the index of code ci and
its ancestors, ej is the basic embedding of code cj , and when calculating gi, aij
is the weight of concern for embedding ej .

aij =
exp(f(ei, ej))∑

k∈A(i) exp(f(ei, ek))
(3)
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Algorithm 1 The GROM model

Randomly initialize diagnoses and procedures, medications and vital signs, and re-
lated time information embedding matrix DP , CP ;
repeat

for visit vt in X do
Calculate the knowledge graph embedded matrix G (see Section 2.2);
Fusion state information, DP , CP and G;
Make prediction yˆt using Softmax function;

end for
Calculate the prediction loss L;
Update parameters according to the gradient of L;

until convergence

The f(ei, ej) is a scalar value representing the basic embedding compatibility
of ei and ek, and calculation formula of f(ei, ej) is as follows:

f(ei, ej) = uTa tanh(Wa

[
ei
ej

]
+ ba) (4)

In the equation above, Wa is the weight matrix splicing ei and ej , b is the
bias vector, and ua is the weight vector generating scalar values. All the ob-
tained gi are connected to obtain the embedded representation of the required
diagnostic code, and then the embedding matrix G is sent to the graph attention
layer of the model for processing. To help with subsequent interpretation with-
out changing network capacity, the vector of fixed size generated by the graph
attention mechanism is reduced to a fraction of two scalar values (one related
to diagnosis&procedure and the other related to medication&vital signs). Use a
fully connected layer with linear activation functions.

3 Experiment

In this section, we performed several comparison experiments on the large pub-
lic medical electronic medical records MIMIC-III data set1 to evaluate the per-
formance in ICU readmission prediction of the proposed GROM. This section
includes three parts: Data Description, Experiments Setup and Results and Dis-
cuss.

3.1 Data Description

Data set. The algorithm was evaluated on publicly available MIMIC-III data
set (no ethical approval is required). In our experiment, the supervised learning
task consist of predicting whether the patient will be readmitted to the ICU
within 30 days from discharge for a given ICU stay. The final data set comprised
of 45,298 ICU stays for 33,150 patients, labelled as either positive (N=5,495) or

1 https://mimic.physionet.org/
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negative (N=39,803) depending on whether a patient did or did not experience
readmission within 30 days from discharge. To develop and evaluate algorithms,
patients based on patient identification were randomly subdivided into training
and validation (90%) and test sets 10%.

Data Pre-processing. The data of a patient can be represented as a set of sig-
nificant static variables and timestamped codes. In our research, static variables
included the patient’s gender, age, ethnicity, insurance type, marital status, the
previous location of the patient prior to arriving at the hospital, and whether
the patient was admitted for elective surgery. The importance of static data
had a similar characteristic proportion in both positive and negative samples.
Data types of timestamped codes included international classification of diseases
and related health problems (ICD-9) diagnose and procedure codes, prescribed
medications, and patient vital signs. Overall, the models were trained using 23
static variables, 992 unique ICD-9 diagnostic codes, 298 unique ICD-9 program
codes, 586 unique medication therapy codes, and 32 codes related to vital signs.
The record for each patient contained up to 552 ICD-9 diagnose and procedure
codes, as well as 392 medications and vital signs codes related to the current
ICU hospitalization.

3.2 Experiment Setup

Baseline Models. To verify the predictive performance of the proposed GROM,
we compared it with the following four methods:

GROM. Dynamics in the time of embeddings were modelled using graph atten-
tion layer and neural ODEs, embeddings were passed to RNN layers, the final
memory states were used for further processing.

ODE+RNN+Attention. Dynamic time in the patient embedding information
was modelled using the neural ODE, the modeled information was passed through
the RNN layer, the final memory state of the RNN was used for further process-
ing.

ODE+RNN. Dynamics in the time of embeddings were modelled using neural
ODEs, embeddings were passed to RNN the layers, the final memory states were
used for further processing.

SVM. Support Vector machines.

RNN. The embedding information of patient was directly through the RNN
layer, the final memory state was used for further processing.
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Implementation. To compare several neural network architecture’s classifica-
tion accuracy in training, the maximum likelihood estimation of network param-
eters were obtained using log-loss cost function in the training data. The RNN
and graph attention layer were embedded by dropout of 0.5, and the Adam
optimizer with random gradient descent was used (batch size was 128 and the
learning rate was 0.001) [7]. Considering the imbalance between classes, the pro-
portionally increased misclassification overhead was allocated to fewer classes
[16]. The training ended after 80 epochs because with the additional training of
epochs (based on the average accuracy of the validation data), the over-fitting
of the training data became apparent.

Ablation Study Design. In order to obtain the results of data ablation, the
model deals with the detailed structure of different types of data. For dynamic
data of diagnosis, prescription information sequence and event information se-
quence, ordinary differential equation can effectively improve the accuracy of the
model. In addition, for the patient static information represented by the ICD-9
diagnostic code, the graph attention mechanism is used to reduce adjacent noise.
To validate the results of data ablation, our experiment use static data, dynamic
data, and graph attention information constructed using diagnostic code, which
in turn contain sequences of diagnostic information and program code, as well
as sequences of prescription information and event information.

3.3 Results and Discussions

Table 1. Summary statistics for the different algorithms used to predict readmission
within 30 days of discharge from the intensive care unit.

Average
Precision

AUROC F1 Sensitivity Specificity

GROM
0.375

[0.366,0.384]
0.786

[0.366,0.384]
0.422

[0.416,0.427]
0.74

[0.734,0.746]
0.707

[0.7,0.713]

ODE + RNN + Attention
0.314

[0.306,0.321]
0.739

[0.736,0.741]
0.376

[0.371,0.381]
0.685

[0.666,0.704]
0.697

[0.681,0.711]

ODE + RNN
0.331

[0.323,0.339]
0.739

[0.737,0.742]
0.372

[0.367,0.377]
0.672

[0.659,0.686]
0.697

[0.683,0.711]

RNN
0.196

[0.19,0.203]
0.602

[0.599,0.605]
0.251

[0.248,0.254]
0.582

[0.561,0.603]
0.582

[0.561,0.603]

SVM
0.265

[0.256,0.274]
0.655

[0.651,0.658]
0.303

[0.297,0.309]
0.565

[0.552,0.577]
0.679

[0.668,0.691]

Overall Performance. Table 1 reports the average accuracy, AUROC, F1-
SCORE, sensitivity and specificity of deep learning architectures and support
vector machines. GROM obtained the highest average accuracy of 0.375, the
highest average AUROC of 0.786 and the highest average F1 score of 0.422.
In general, the prediction accuracy of neural network was significantly higher
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Fig. 3. We use SVM as a reference model to compare it with RNN, ODE+RNN and
GROM, verifying that ODE module has processed dynamic data and graph attention
mechanism reduces the RNN sensitivity of data noise.

than that of baseline models such as SVM. As shown in Fig 3, it can be seen
that the sensitivity of the RNN was higher than that of SVM, and the effect
of its other indicators was significantly lower than that of SVM. This result
showed that the sensitivity of RNN in missing detection result was better than
that of SVM. However, fitting issues had more false positive examples, causing
data noise interference to prediction and further resulting in that the highest
average accuracy of RNN was significantly lower than that of SVM. And we could
deal with dynamic data through the ODE module and utilize graph attention
mechanism to reduce noise, obtaining a good prediction improving effect.

The results of the ODE&RNN and RNN showed that the deep learning model
RNN performed better in processing sequential data, but it lacked the ability
to process irregular interval information. It is seen that the combination of the
ODE module and the RNN achieved higher precision than the RNN model alone.
Particularly, we noted that the ODE module had a significant increase in the
accuracy of readmission prediction, with an average accuracy increase of 13.5%
and an accuracy increase of nearly 69%. This allows us to believe that the ODE
module is suitable for processing dynamic data in the model, making full use
of valuable information for patient readmission prediction. Therefore, it can be
concluded that the introduction of ODE based on RNN can take advantage of
the modeling capability of irregular interval to better play the role of sequential
data processing.

Secondly, GROM was compared with the ODE&RNN, and we can see that
GROM achieved better precision than ODE&RNN model. Particularly, we noted
that the GROM had the highest accuracy in readmission prediction, which gave
us confidence in using graph knowledge to understand patient relationships in the
absence of sufficient data. In addition, it is clear that the graph attention mech-
anism provided valuable information with embedding of CCA information in the
prediction of patient readmission. Specifically, GROM improved the prediction
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Fig. 4. We gradually add dynamic data and external prior information to static data
to analyze the applicability of each part of the data in the model.

accuracy of readmission by 4.4%, indicating that the robust representation of the
codes had learned significantly improved the prediction accuracy of readmission,
and that the introduction of graphs contributed to data balance. It provided a
more effective attention mechanism on existing information, and made better
use of the value of information.

Finally, we compared GROM with ODE&RNN&Attention baseline model,
the effect of adding an attention layer to the time series was poor, indicating that
the use of knowledge graphs instead of the underlying attention mechanism was
effective. The applicability of the time series attention structure in predicting
reentry risk was poor, and the introduction of this layer in the model may lead
to the performance decline of the model. The goal of this model was to extract
knowledge from a given knowledge graph using attention mechanisms rather than
adding attention mechanisms to past visits. Models with a graph attention layer
(average precision range : 0.366-0.384) were slightly better than models based on
a time attention layer (average precision range : 0.306-0.321). Instead of directly
using the final memory state of RNN, a graph attention layer was applied to
the output of RNN at each time step, increasing the association between records
and improving prediction performance through data balance. This verifies the
validity of the theory that the proposed graph attention mechanism can enhance
the model prediction performance by enhancing the correlation between data.

Data Ablation Study. Fig 4 shows that based on static data, we used the
attention layer building by the diagnostic codes associated by external CCS
prior knowledge, with the prediction precision increased by 4%, and the usage
of dynamic data set could effectively increase the precision by 5.8%. Moreover,
combined with the static data and dynamic data, and introduced to an external
priori knowledge, a complete GROM model could effectively enhance prediction
precision, F1-score and AUROC, increasing the precision by about 86%, com-
pared with a model merely using static data. Analysis of the experimental results
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showed static patient information alone was the worst predictive factor, because
static information is only some of the static attributes of patients entering ICU
and has a poor correlation with readmission. And patients’ dynamic physiologic
measurements had the greatest impact on the readmission prediction because
these dynamic physiologic measurements are recorded in the patient’s hospi-
talization, and changes in the patient’s condition are closely related, which are
valuable readmission prediction information. In addition, the patient’s diagnostic
information had a significant impact on the prediction task, as these diagnostic
codes are given by the physician based on the patient’s current condition and are
highly relevant to the patient’s readmission. Finally, the result shows that the
introduction of external knowledge graph improved the prediction performance
of the model, which makes us have reason to believe that external knowledge
graph does contribute to the prediction of patient readmission.

Discussions. There are three major limitations in this study that could be
addressed in future research. First, since all data in the MIMIC-III data set are
shifted to protect patient confidentiality, it is not possible to ascertain which pa-
tients are admitted after 2001 and have at least 12 months of prior data, possibly
leading to some incorrect values for the number of ICU admissions in the year
preceding discharge. Second, information from clinical notes [8] is not included
and the simplifying assumption is made that various diagnose and procedure-
related codes are available immediately at the time of discharge. Third, the weak
interpretability due to the continuous processing of patients’ dynamic data by
neural ODEs is difficult to analyze the influence of patient characteristics on the
prediction effect.

4 Conclusion

In this paper, we proposed a based graph attention ordinary differential equation
recurrent neural network (GROM) to predict readmission in ICU. The model
framework was comprised of a recurrent neural network used to be the basic
prediction model, adding neural ODE to process the irregular interval sequence
information. Besides, our model also introduced a graph attention mechanism
for using external knowledge to learn robust and reasonable representations of
patient diagnostic codes to reduce noise interference between data. As demon-
strated by experiment results, GROM produced better representations, which
was validated by being used in a large open source MIMIC-III data set, effec-
tively improving the prediction performance of readmission in ICU.
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