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Abstract: Subgroup label ranking aims to rank groups of labels using a single ranking model, is a
new problem faced in preference learning. This paper introduces the Subgroup Preference Neural
Network (SGPNN) that combines multiple networks have different activation function, learning rate,
and output layer into one artificial neural network (ANN) to discover the hidden relation between
the subgroups’ multi-labels. The SGPNN is a feedforward (FF), partially connected network that
has a single middle layer and uses stairstep (SS) multi-valued activation function to enhance the
prediction’s probability and accelerate the ranking convergence. The novel structure of the proposed
SGPNN consists of a multi-activation function neuron (MAFN) in the middle layer to rank each
subgroup independently. The SGPNN uses gradient ascent to maximize the Spearman ranking
correlation between the groups of labels. Each label is represented by an output neuron that has a
single SS function. The proposed SGPNN using conjoint dataset outperforms the other label ranking
methods which uses each dataset individually. The proposed SGPNN achieves an average accuracy
of 91.4% using the conjoint dataset compared to supervised clustering, decision tree, multilayer
perceptron label ranking and label ranking forests that achieve an average accuracy of 60%, 84.8%,
69.2% and 73%, respectively, using the individual dataset.

Keywords: preference learning; neural network; label ranking; stairstep; spearman rank correlation

1. Introduction

Preference learning (PL) is an extended paradigm in machine learning that induces
predictive ranking models from experimental data [1–3]. PL is applied to many different
research areas such as knowledge discovery and recommender systems for learning the
ranking [4]. Objects, instances, and label ranking are the three main categories of PL. Label
ranking (LR) is a challenging problem that has gained importance in information retrieval
by search engines [5,6]. Unlike the common problems of regression and classification, label
ranking involves predicting the relationship between multiple label orders. Multi-label
ranking problems are based on preference relations over a permutation space ω where
each member of a group of k labels has a preference λ value, L = {λ1, λ2, ..., λk}, where the
differences of λ value represent preference relations (�,�,�,�,∼,≺,�) [1,7]. However,
real-world data can be ambiguous and often lack preference relations between two or more
labels, and the missing relations can be mapped to an indifference ∼, or incomparability
⊥, relation [8,9]. These two relations create a partial order on the ω space where λa⊥λb
or λa ∼ λb. The partial relations are solved in terms of the relation between labels in one
ω space in [10,11]. For example, π = (λa � λb ∼ λc � λd) is mapped to π = (1, 2, 2, 3)
and π = (λa � λb � λc⊥λd) is mapped to π = (1, 2, 3, 0). However, sometimes the
data collected from the likes of recommender systems, elections, and surveys deviate
from the population and in such cases label ranking cannot be predicted using the same
learning model. Such a deviation is addressed by extracting patterns to identify the sub-
group of data for the interesting targets using subgroup discovery (SD) approaches [12].
Subgroup discovery (SD) is descriptive induction data mining technique that discovers
interesting associations among different variables with respect to a property of interest
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in many fields [13,14]. i.e., the relation of incidence of acute kidney injury (AKI) in pa-
tients with COVID-19 [15]. Existing SD utilises different methodologies for searching,
pruning, and ranking subgroups [16]. Leeper, T. introduced conjoint analysis on subgroup
preferences in the study of political preferences to give better interpretations and average
marginal component effects [17]. In decision making, combining the weights using differ-
ent weight calculation methods into a single set of weights is introduced by Deepa, N. [18].
The weights express the criteria and play an essential role in making correct decisions.
Cheng, C. [19] used SD to validate the restricted classification culture value schemes of
prevalence social media addictions. The approach of collecting the data from multiple
sources processed by an expert system to be classified by MLP is proposed by Vincent,
D. [20] to evaluate agricultural lands suitability.

Preference mining (PM) is an extended domain of PL and SD, which aims to discover
the local patterns and deviations of subsets of data [21,22]. Using conjoint model based on
the fusion of a different group of data’s sensors has been introduced in emotion recognition
by Pandeya, Y. [23]. It uses the deep learning to classify the emotions [23] from audio
and video information. Rueping, S. proposed subgroup ranking using the support vector
machine (SVM) to rank subgroups with respect to the user’s concept of interestingness [24].

The Label ranking takes one of the following two form of restrictions.

• Restricted label order π = (λa � λb � λc � λd) can be represented as π = (1, 2, 3, 4).
• Non-restricted total order π = (λa � λb ' λc � λd) can be represented as π =

(1, 2, 2, 3), where a, b, c and d are the label indexes and λa, λb, λc and λd are the
ranking values of these labels respectively.

The pairwise approach was first introduced by Hüllermeier, E. [25] to divide the label
ranking problem into several binary classification problems in order to predict the pairs of
labels, i.e., λi � λj or λj ≺ λi for an input x. Cheng, W. and Hühn, J. proposed the instance-
based decision tree to rank the labels based on predictive probability models of a decision
tree [26]. Grbovic, M. combined both a decision tree and supervised clustering in two
approaches for label ranking by mapping between instances and label ranking space [27].
The artificial neural network (ANN) for label ranking was first introduced as (RankNet) by
Burges, C. to solve the problem of object ranking for sorting web documents from a search
engine [28]. RankNet uses the Gradient descent and probabilistic ranking cost function
for each object pair. The multilayer perceptron for label ranking (MLP-LR) [29] employs
a network architecture using a sigmoid activation function to calculate the error between
the actual and expected values of the output labels. However, it uses a local approach to
minimize the individual error per output neuron by subtracting the actual predicted value
and using Kendall error as a global approach. However, ranking error function was not
used before in backpropagation (BP) and learning steps. The ranking methods mentioned
above and their variants have some issues that can be broadly categorized into two types:

• The ranking methods are based on probability and classification; thus, They do not
learn the preference relation between labels divided into groups.

• The ranking methods learn both unrestricted and restricted ranking labels using the
same learning approach.

This paper proposes SGPNN as a tool to support the SD analysis to rank the dis-
covered subgroup. In addition, SGPNN converts unrestricted label ranking to group of
restricted labels and learn the groups of labels simultaneously using one model. The SG-
PNN built upon preference neural network (PNN) to rank subgroup label data D ∈
{〈xn, (πn1⊥πn2...⊥πnm)〉} where πn is a group of labels and m = number of subgroups.
The primary motivation of this work is to build a unified predictive ranking model instead
of having different models for different labels group.

The labels groups are employed in the following scenarios:

1. Real customer data often explicitly rate different categories of products and services
as multi-label subgroups, e.g., restaurant rating based on food quality and customer
services [30].
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2. Multi-label ranking of related datasets collected in different time periods, e.g., German
elections in 2005 and 2009 [31,32].

3. Multi-label data that have unrestricted preference relations between labels are con-
verted into connected subgroups that have restricted relations. This can be seen in
the sushi dataset [33,34] where λa � (λb, λc) is solved by 2 subgroups using the
indifference ∼ or incomparable ⊥ relations as (λa � λb � λc) ∼ (λa � λc � λb)
or (λa � λb � λc)⊥(λa � λc � λb). Another example of no ground-truth data
where one data record has two labels πx = (λa � λb) and πx = (λb � λa) which are
mapped to πx = (λa � λb)⊥(λb � λa).

The current challenge of the proposed SGPNN is the lack of datasets that represents
the labels in a subgroup. Therefore, the datasets are synthesized from real data from single
or multiple domains.

To sum up, the key contributions in this paper are:

• Introducing a novel multi activation function neuron (MAFN) which uses multiple
activation function where each function serve a group of output labels.

• Ranking groups of label has incomparable/indifference relation simultaneously.
• Discovering the hidden relation between different datasets by learning them together

in one model is a novel approach to build an accumulative learning approach.
• Solving the data ambiguity by removing the duplicated record which have different

labels and marking the class overlap data with subgroup labels.

2. The Proposed SGPNN

This section gives an overview of the activation function, error functions, PNN and
SGPNN architecture and its functionality.

2.1. StairStep (SS) Activation Function

The classical ANN activation functions have a binary output or range of values
based on a threshold. However, these functions do not produce multiple values for
different segments of the x-axis. The stairstep (SS) function is introduced to slow the
effective learning rate around different rank values on the y-axis to solve the problem of
ranking instability. The SS function is designed to be non-linear, monotonic, continuous,
and differentiable by using a polynomial of tanh(x) function. The step width keeps the
ranking during the forward and backward process stable.

Aizenberg, I. [35] proposed a generalized multiple valued neuron using convex shape
to support complex numbers neural network and multi-values numbers. In addition, Mor-
aga, C., and Heider, R. [36] introduced a similar function to design networks for realizing
any multivalued function; however, Moraga, C. used exponential function derivative did
not give promising results in the PNN implementation using the ranking objective func-
tion in FF and backpropagation (BP) steps. Each neuron has a multivalued SS activation
function used to calculate the ranking between labels, s = n + 1 where s is the number
of steps and n is the number of ranked labels. The SS has a fixed sharp stair-like edge to
accelerate the convergence rate and provide multivalued output from −∞ to ∞ as shown
in Figure 1. In order to be able to rank a large number of labels, the SS function effectively
has a dynamic domain (on the x-axis), depending on a parameter b, to achieve adequate
step width on the x-axis. Therefore, the input data are normalized from−b to b. We assume
a heuristic rule of boundary value to capture the data range as b = 2n, where b is the
geometric x-axis boundary.
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Figure 1. SS activation function (a) number of steps n = 6 and boundary value b = 1. (b) number of
steps n = 9 and boundary value b = 10.

The SS activation function is given in Equation (1).

f (x) = −1
2

( n

∑
i=0

tanh(
−100

b
x + c(1− 2i

n− 1
))
)
+

n
2 (1)

where c = 100 is a constant value chosen to create the sharp step edge, n is the number of
ranked labels and SS is located between the geometry boundary −b and b on the x-axis.
Each step represents a preference value on the y-axis from 1 to ∞. The incomparable
relation between labels ⊥ is mapped to 0. As shown in Figure 2, the SS step horizontal
segments are not an absolutely horizontal line but slope slightly to slow the changing rate
around preference values. SS has been tested against other activation functions and it
shows a ranking performance stability for complete and missing 60% of labels as shown in
Figure 2a,b respectively. Figure 3 illustrates the graphical comparison between of Sigmoid
and SS functions to rank stock dataset by summation the output weights for each neuron
of middle layer. Sigmoid reaches from ρ = 0.3579 in 200 epochs to ρ = 0.7876 in 1600
epochs as shown in Figure 3a,b for ranking 5 labels. However, the SS function reaches from
ρ = 0.4975 in 30 epochs to ρ = 0.8147 in 700 epochs as showing in Figure 3c,d using the
same hyperparameters for ranking 5 labels.
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Figure 2. Comparison of activation functions ranking of iris dataset. (a) has a complete labels. (b) has
60% missing labels.
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Figure 3. The graphical comparison between convergence of Sigmoid and SS functions to rank stock dataset, (a) Sigmoid has
τ = 0.3597 and epoch = 200. (b) Sigmoid has τ = 0.7876 and epoch = 1600. (c) SS has τ = 0.4975 and epoch = 30. (d) SS has
τ = 0.8147 and epoch = 700.

2.2. Error Function

Two main error functions have been used to measure the quality of ranking, Kendall’s
τ [37], and Spearsman’s ρ [38]. This paper uses Spearman’s ρ to train the PNN because
Kendall’s τ lacks continuity and differentiability. Spearman’s ρ measures the relative
ranking correlation between actual and target ranks, which is also more appropriate than
the total square error because a low squared error does not necessarily mean a high
ranking correlation between labels. We do not use the absolute difference of the root means
square errors (RMSs) because the gradient descent may not decrease the ranking error. i.e.,
π1 = (1, 2.1, 2.2) and π2 = (1, 2.2, 2.1) have a low rms of 0.081 but a low ranking correlation
ρ = 0.5 and τ = 0.3. We use the BP algorithm to train the PNN thus maximizing The
Spearsman’s ρ in Equation (2), and its derivative is used as the stopping criteria for the
learning process.

ρ = 1− 6 ∑n
i=1 (yi − yti)

2

n(n2 − 1)
(2)

where yi, yti, i and n represent rank output value, expected rank value, label index,
and number of instances, respectively.

2.3. Preference Neural Network (PNN)
2.3.1. One Middle Layer

The preference neural network (PNN) is a simple fully connected network with a
single hidden layer which provides desirable ranking performance due to the SS activation
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function [39]. We performed experiments on 12 benchmark label ranking datasets [26]
which show that increasing the number of hidden layers does not improve the performance,
but rather it has adverse effects. This performance declined due to The SS’s limited out-
put variation that reduces the degrees of freedom when solving more complex problems.
As mention by Lippmann, R. that three layers are sufficient to form arbitrarily complex de-
cisions. [40], However, this is based on the current activation functions that have variations
of output comparing to SS function.

PNN experimented using multi-hidden layers using benchmark data at KEBI reposi-
tory [26]. The result showed decreasing ranking correlation by increasing the number of
hidden layers, as shown in Figure 4.

0 50 100 150 200 250

0.2

0.4

0.6

0.8

1

iterations
ρ

Hidden layers evaluation of PNN

One l. Two l.
Three l. Four l.
Five l.

(a) (b)

Figure 4. The Number of hidden layers comparison using PNN and SS. (a) Ranking using benchmark
datasets [26]. (b) Convergence of Average ranking ρ of iris and wine in 200 epochs.

2.3.2. Preference Neuron (PN)

A preference neuron (PN) is a neuron that has an SS activation function. The PN in
the middle layer connects to only n output neurons (s = n + 1) where s is the number of
steps and n is the number of output ranked labels. The middle and output PNs produce
a preference value from 0 to ∞ as shown in Figure 5b where PN has n = 4. The number
of output neurons is equal to the number of stair steps, as illustrated in the network
architecture Figure 5b. However, the neuron has one output value per epoch, The Figure 5b
shows n outputs connected to n neurons because SS has n stair steps values as presented
in network architecture in Figure 5a.
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d �

λ
b �

λ
c �

λ
a

4

2

3

1

d

c

b

a

F4

F3

F2

F1

Instance / Object

H
1

H
2

H
3

H
4

H
5

Middle
layer

ϕ
n=4

-
2

-
1

1

2

x

1

2

3

Input layer

Preference Neuron (PN)

λn = ϕ4

(
∑k

i=1 ai .wi

)

a1

w1.

.

ai
wi

.

.

ak

wk

λa

λb

λc

λd

oj∑k
i=1 ai .wi ϕ

-2 -1 1 2
x

1

2

3

(b)

Figure 5. Architecture of Preference Neural Network and Neuron (a) Preference Neural Network
(b) Preference Neuron (PN) where ϕn=4, fin = 4.

The PNN ranks multi-labels by predicting the preference value for each output neuron
by mapping the order to relative ranking around integer values from 1 to ∞ and 0 is
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mapped to incomparable ⊥ or undifferentiated ∼ relations. Each output neuron represents
a label index as shown in Figure 5. i.e., when L = {λa, λb, λc, λd} and π = (d � b � c � a),
the output neurons will be π = (4, 2, 3, 1) or approximation values that make ρ '1,
i.e., π = (3.9, 1.8, 3.1, 0.9) due to SS sharp edges. We use gradient ascent to maximize the
Spearman ρ. a comparison with conventional FF-ANN is shown in Table 1. The architecture
simplifies the learning process by eliminating the looping of the hidden layers. The FF,
BP, and updating of weights (UW) are executed in two steps. Therefore, the batch weight
updating technique does not apply to the PNN architecture, and pattern update is used in
one step [41]. The network bias is low due to the limited neuron output variation. PNN is
proposed for one group of label ranking. However, the architecture is not suited to rank
different lengths of outputs. To rank different group sizes, a different SS function per group
is required, which is not provided by the PNN.

Table 1. Comparison between classical FF-ANN and PNN.

Type FF-ANN PNN

Input layer one feature/instance one instance
Hidden layer one/multilayer single layer
Activation function conventional functions * SS
Gradient descent ascent
Objective function rms spearman ρ

* relu,logistic, sigmoid, tanh, gaussian, softmax, maxout.

2.4. SGPNN Architecture

This section describes the architecture of SGPNN and its functionality.

Multi Activation Function Neuron (MAFN)

The SGPNN introduces the multi activation function Neuron (MAFN) to address the
architecture limitation of the PNN to rank different lengths of output layers. The MAFN
contains the same number of inputs because they share the same wm weights with input
neurons where wm is the weight of middle layer, yin = ∑ ai · wi. MAFN contains k number
of ϕ activation function and lr learning rate, k = n, where n is the number of output layer.
For example, Figure 6 shows a MAFN which has two ϕ, where each function has a single
output; It is graphically represented by multiple #n output links because PN connects only
to n number of output neurons where S = n + 1 and s is ϕ step number.

Multiactivation Function Neuron (MAFN)
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(
∑k

i=1 ai .wi

)
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Figure 6. The structure of the MAFN where ϕ1|n=4 and ϕ2|n=3.

As shown in Figure 6, ϕ1|n=4 and ϕ2|n=3 of the MAFN are connected to 2 output
groups of 4 and 3 neurons, respectively.

In a conventional ANN, the sufficient number of hidden neurons to achieve conver-
gence is determined by the Cao and Mirchandani theorem [42]. In an n dimensional space,
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the maximum number of regions that are linearly separable into M regions using h hidden
nodes is

M(h, n) =
n

∑
k=0

[
h
k

]
where

[
h
k

]
= 0 when h < k (3)

However, the SGPNN has multiple Euclidean n-spaces for each output layer. Therefore,
m · n<kma f n, where n is the n-dimensional Euclidean space and m is the number of spaces
per each output layer.

2.5. SGPNN Functionality

The SGPNN is designed to address the architectural shortcoming of PNNs not being
extendable by ranking label’s groups separately. The SGPNN ranks different sizes of output
layers while maintaining the single middle layer design. It has two types of neurons, PN
and MAFN, which are used in the output and middle layers, respectively. The input layer
represents one instance of data features. The middle layer has multiple MAFNs that use
a separate learning rate and ϕ activation function for each output layer. The SGPNN is
geometrically fully connected; however, FF, BP, and UW are functionally separated for each
wo output layers’ weights as illustrated in Figure 7. The weights of the MAFN are updated
by the summation of all the δm errors learning rate, ∑k

i=1 (lri · δmi). Each output layer is
a group of PNs that represent the ranked labels. The SGPNN scales up by increasing the
number of MAFNs. Figure 8 illustrates examples of three subgroups architecture used for
ranking emotions dataset where the first, second, and third group has 3, 1, and 4 labels
respectively, to solve the problem π =(h�p�q)⊥(e)⊥(a�b�c�d). The second subgroup
has one label e that has three ranking values (1, 2, 3), which represent the preference values
(�,⊥,≺) between the two subgroups. The learning of the ranking process is executed
in three steps; FF, BP, and UW. The learning stops after 20,000 epochs or Spearman’s ρ
reaches 1. A video demo that shows the ranking learning process using simple toy data are
available at [43].
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Figure 7. An example of Two subgroups architecture of SGPNN to rank conjoint data from two subgroups data, each group
has 4 and 3 labels respectively, where ϕ1n=4, ϕ2n=1, fin = 4. A video demo of 2-subgroup architecture is available in [43].
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Figure 8. Three subgroups architecture SGPNN used in ranking emotions dataset where ϕ1n=4, ϕ2n=3, ϕ3n=3, and fin = 4.
the second subgroup is represented by one node that has 3 values (1, 2, and 3) mapped to preference relations λe =�,∼,≺.

3. Data Preparation and Learning Algorithm

This section describes data combination, the ranking unification preprocessing and
SGPNN learning steps (FF, BP and UW).

3.1. Conjoint Data

The Dataset is synthesized by concatenating the features and multiply the data point
for each subgroup as shown in Equation (4).

Fsum =
ns

∑
i=1

Fi , Dsum =
ns

∏
i=1

Di (4)

where Fi number of features per dataset i, ns is number of dataset and Di is number of data
instance per dataset i.

3.2. Ranking Unification

We introduce a new method for creating label ranking ground truth by converting
the unrestricted ranking to restricted ranking by unifying the data instances and adding
subgroups to the labels. The percentage of a unique ranking is measured using Equation (5).

Uπ =
numbero f distinct rankings

n
(5)

The number of subgroups is determined by the maximum number of repeated records
using Equation (6)

sg = Max(xr) (6)

where sg is the number of subgroups and xr is the number of duplicated data records.
This paper applies Algorithm 1 to convert the data from non-restricted rankings with no
ground truth to unique groups of label ranking by removing duplicated data instances
and accumulating the corresponding labels in a subgroup. The algorithm removes the
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duplication and assigns the corresponding labels as a subgroup to one unique data record.
For non-repeated records, the additional subgroup has values of zero.

Algorithm 1 Ranking Unification
Data: D ∈ {〈xn, πn〉}
while xi do

if xi /∈ D[i] then
Dist← xi

else
while j ∈ D do

if xi in D[j] then
m++ # of subgroups D← (j, πi)

end
end

end
Result: D ∈ {〈xn, (πn1⊥πn2⊥πn3...⊥πnm)〉}

3.3. SGPNN Learning Steps

This section shows the FF, BP and UW processes in the middle and output layer of
the SGPNN.

3.3.1. Middle Layer FF

The output of single MAFN connected to subgroup j is shown in Equation (7)

Yj = ϕj

d

∑
i=1

xi · wmi

∣∣∣∣∣
g

j=0

(7)

where g is the number of subgroups, wmi is the weight of the middle layer of MAFN index
i, x is the input value of MAFN, d is the number of input features, and ϕj is the activation
function per subgroup.

3.3.2. Output Layer FF

The output of single neuron in subgroup j is shown in Equation (8)

Yj = ϕj

m

∑
i=1

xij · woij

∣∣∣∣∣
g

j=0

(8)

where m is the number of MAFNs connected to subgroup j and woij is the weight of output
layer of subgroup j and MAFN index i.

3.3.3. Output Layer BP

The output error δoj of a single output neuron per subgroup j is given in Equation (9)
where Error is the differentiation of Spearman correlation and activation function.

Errj = ρj′ =
−6 ·∑o

k=1(2ytk − yk)

n(n2 − 1)
, δoj = ρj′ · ϕi′ (9)

ϕj is SS function per subgroup from Equation (1).

ϕj = −
1
2
·
( n

∑
s=0

tanh(
−100

b
· yo + c(1− 2s

n− 1
))
)
+

n
2

(10)

where δoj is the error of output neuron and n is number of labels in subgroup j.
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The δoj in Equation (11) is obtained by differentiating of Equation (10) and substituting
the result into Equation (9)

δoj =
(−6 ·∑o

j=1(2ytj − yi)

n(n2 − 1)
)
· ϕj′

∣∣∣∣∣
g

j=0

(11)

ϕj′ =
(
− 1

2
·
( n

∑
s=0

1− tanh(
−100

b
· yo + c(1− 2s

n− 1
))2 · −100

b
· yo

+ (
−100

b
· tanh(

−100
b
· yo + c(1− 2s

n− 1
)))

)) (12)

3.3.4. Middle Layer BP

The output error δm is calculated in Equation (13).

Errj =
o

∑
i=0

woij · δoij

∣∣∣∣∣
g

j=0

, δmj = Errj · ϕj′
∣∣g

j=0 (13)

Then after substitution of ϕj′, δm MAFN’s error in Equation (14).

δmj = Errij · −
1
2
·
( n

∑
i=0

1− tanh(
−100

b
· x + c(1− 2i

n− 1
))2

· −100
b
· x + (

−100
b
· tanh(

−100
b
· x + c(1− 2i

n− 1
)))

) (14)

3.3.5. Output Layer UW

The process to update the weights using gradient ascent with sums of δo is shown in
Equation (15)

m

∑
i=1

woij|new = woij|old + (lrj · δoij · yij)

∣∣∣∣∣
g

j=0

(15)

where lrj is the learning rate for subgroup j and yij is the input multiply by wo from middle
layer of index i of MAFN to the subgroup j.

3.3.6. Middle Layer UW

Updating the weights of the middle layer is shown in Equation (16)

d

∑
i=1

(wmij|new = wmij|old + lrj · δmij · yi)

∣∣∣∣∣
g

j=0

(16)

where yi is the input multiply by wm from input layer of index i of input neuron.

3.4. Dropout Regularization

We apply dropout as a regularization approach to enhance the SGPNN validation
performance to reduce over-fitting using 50% probability. The process assigns a random
number from −0.9 to 0.9 and stop using the weights with less than 0.5 of the random value
per iteration for wo and wm.

4. Experiments
4.1. Datasets

The SGPNN is experimented on both real-world and semi-synthesized (s-s)/conjoint
datasets. The real data have multi-label subgroups for one set of features, e.g., restaurant-
food-services. The s-s data are collected from different domains. The features from the
same domain have small variations, e.g., the German elections dataset has examples of a
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relevant subgroup where features are collected from the same context. We examined the
data uncertainty by measuring the percentage of Uπ unique multi-label ranking. Given
that d is the amount of the data, The description is presented in Table 2.

Table 2. Datasets description used for SGPNN evaluation.

Dataset Category Domain Type Sub. Rel. Inst. Attr. Sub. Labels Uπ

92 13 2 5, 5 87.7%
rest-food-services user rating single real ∼ 100 13 2 10, 10 76.9%

176 13 2 20, 20 57.7%

german-2005/9 election ∼ 412 31 2 5, 5 100%
emotions music single s-s �,∼,≺ 392 72 3 4, 2 100%
sushi user rating ⊥ 4,825 10 3 10, 10, 10 95%

iris-wine bio.-chem.

multi. s-s ⊥

26,700 17 2 3, 3 99.7%
iris-stock bio.-trades 142,500 9 2 3, 5 99.8%
wine-stock chem.-trades 169,100 18 2 3, 5 100%
iris-wine-stock bio.-chem.-trades 25,365,000 22 3 3, 3, 5 99.9%

4.1.1. Restaurants Rating

The restaurant-food-services dataset is built using actual food quality and customer
service reviews from the recommender systems domain [30] and contains multi-label
subgroups. The features of this dataset are customer profiles and geographical location.
The two subgroups are food quality and customer service, and each subgroup has 130
multi-label, representing the number of restaurants. To simplify the calculation, we use part
of the data containing 5, 10, and 20 restaurants for the two groups in three small datasets
and select the corresponding features records of users’ profiles who rated these restaurants.

4.1.2. German Election in 2005 and 2009

The german-2005/9 is an s-s conjoint dataset from two real datasets based on German
election in 2005 and 2009 [31,32]. The multi-label of the two datasets is grouped into two
label subgroups. However, the 2009 data used features to rank both 2005/9 labels because
2009 features have historical data and user profiles for the 2005 election.

4.1.3. Emotions

The emotions dataset is used for subgroup preference relations(�,∼,≺). The original
Emotion dataset is used to detect six types of emotions based on listing to different type of
music where the music belongs to many to one or many emotion types. The original dataset
has six classes (amazed/surprised, happy/pleased, relaxing/calm, quiet/still, sad/lonely,
angry/fearful). The data are modified by creating two subgroups. Music reflects both
Positive feelings for (amazed-surprised, happy-pleased, relaxing-calm, quiet-still) and the
Negative feelings for (sad-lonely, angry-fearful) [44]. Table 3 shows the heuristic rules
applied for the preference relation between positive and negative feeling subgroups based
on the subgroup labels’ ranking. The ranking of sub-labels starts from 1 to 3. 1–3 represents
the ranked value from 1 to 3.
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Table 3. The relation between positive and negative emotional subgroups.

Sub1. Sub2. Sub3.

Positive Feeling Sub. Rel. Negative Feeling Sub.

Amazed Happy Relaxing Sad Angry
Surprised Pleased Calm Lonely Aggressive

1 1–3 1–3 � 1–3 1–3
1 1–3 1–3 ∼ 1–3 1

2 or 3 1–3 1–3 ≺ 1–3 1
2 or 3 1–3 1–3 ∼ 1–3 1–3
2 or 3 1 1–3 ≺ 1 1–3
2 or 3 2 or 3 1–3 � 1 1

4.1.4. Irrelevant Subgroups Data

We create a new hypothetical conjoint dataset from three different domains (biology,
chemistry, and trades) for preference mining analysis to study data similarity and measure
the SGPNN performance against other ranking approach. The conjoint data are collected
from the benchmark and well-known multi-label ranking datasets from different domains
specifically; iris, wine, and stock [26] to compare the performance of these data as subgroups
with previous approaches that experimented with those datasets as a single problem.

4.1.5. Label Ranking Benchmark Dataset

The sushi [33,34] is a multi-label the dataset that has an unrestricted multi-label
ranking as some identical data features have different multi-label rankings. The unrestricted
ranking is converted into a restricted subgroup of multi-label for each instance of the data
by removing the duplicated features and assign the labels for each repeated instance as a
subgroup to a unique feature. Creating unique instances reduces the number of instances
from 5000 to 4825 instances. Therefore, the maximum number of repeated instances is
three, which means that the dataset has three subgroups. The instances that have unique
second or third subgroups have zeros values.

4.2. Results

For the experiments, the datasets are divided randomly into the ratio of 80:20, 80% for
training and validation and rest 20% for testing. Further 5-fold cross validation is adopted
for 80% of training and validation to reduce the variance due to creation of data from
different sources. We use sequential search by saving the best results’ hyperparameters
after five-fold cross-validation. The hyperparameters are the scale factor from −b to b,
where b is the SS boundary value, learning rate, and the number of iterations is 1000 epochs
and learning rate. the validation is reduced to two-fold cross validation for unrelated data
to reduce the variance, i.e., wine-iris-stock. This configuration is used for evaluating both
the PNN and the SGPNN. The results are presented in Table 4. The ranking convergence of
training data of the 2005 and 2009 German elections are illustrated in Figure 9a. The figure
shows the ranking performance of conjoint data using SGPNN outperforms the ranking of
2005 and 2009 datasets separately using PNN. Table 4 shows the testing results of the models
after 5000 epochs. We compare the single ranking PNN, and SGPNN with other multi-label
ranking for iris-wine-stock dataset in terms of Kendall’s τ in Table 5. The SGPNN results
are the ranking of each dataset as a subgroup with the other two datasets.
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Figure 9. Training convergence of PNN and SGPNN using (a) german election 2005 and 2009 dataset.
(b) iris,wine and stock dataset.

Table 4. Performance comparison of SGPNN and PNN on conjoint and other dataset.

Dataset S. Group Scale #MAFN L.r. PNN SGPNN

rest-food-serv. food quality −1:1 100 0.06 0.814 0.912
customer service 0.07 0.898 0.902

german election year 2005 −20:20 100 0.05 0.8125 0.897
year 2007 0.06 0.762 0.821

emotions positive feeling −10:10 100 0.05 0.616 0.87
negative feeling 0.56 0.82

sushi
unique user pref. 1

−20:20 100 0.741
0.851

unique user pref. 2 0.05 0.813
unique user pref. 3 0.92

iris-wine biology (iris) −10:10 200 0.0007 0.917 0.933
chemistry (wine) 0.901 0.804

iris-stock biology (iris) −10:10 200 0.0007 0.917 0.91
trades (stock) 0.834 0.75

wine-stock chemistry (wine) −10:10 200 0.0007 0.901 0.911
trades (stock) 0.834 0.732

iris-wine-stock
biology (iris)

−10:10 200
0.917 0.912

chemistry (wine) 0.0007 0.901 0.856
trades (stock) 0.834 0.956

Average 0.82 0.865

Table 5. Performance comparison of SGPNN, PNN and state-of-the-art label ranking approaches.

Multi Label Ranking Methods

Dataset S. Clust. DT MLP-LR LRF PNN SGPNN (Iris-Wine-Stock)

iris 0.814 0.966 (IBLR) 0.925 (LA) 0.947 0.917 0.921

wine 0.898 0.949 (IBLR) 0.931 (LA) 0.882 0.901 0.865

stock 0.566 0.927 (IBLR) 0.745 (CA) 0.895 0.834 0.956

Average 0.6 0.848 0.692 0.730 0.884 0.914
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4.2.1. Relevant Subgroup Data

The convergence of training data of the 2005 and 2009 German elections are illus-
trated in Figure 9a by subgroup and separate datasets, where the training model ranks
convergence in terms of Spearman’s ρ and the number of iterations. It is noticed that
SGPNN outperforms both different ranks of the 2005 and 2009 datasets using the PNN.
The validated models’ testing results of the best epoch’s hyper-parameters are displayed in
Table 4.

4.2.2. Non-Relevant Subgroup Data

The results of the training data of conjoint iris, wine, and stock are illustrated in
Figure 9b by SGPNN comparing to ranking them separately using PNN, in additional to
the state-of-the-art methods of testing data as shown in Table 5. It is noticed that SGPNN
outperforms the other label ranking methods; supervised clustering [27], supervised
decision tree [26], multilayer perceptron label ranking [29], and label ranking tree forest
(LRF) [45] that rank iris, wine, and stock, respectively. Ranking the three datasets (wine-
iris-stock) together gives a higher ranking than even ranking every two datasets (wine-iris),
(iris-stock), or (wine-stock) using the same hyperparameters as shown in Table 4.

5. Discussion
5.1. Ranking Enhancement

The results show that learning the labels as a subgroup from a relevant domain
enhances each group’s ranking compared to ranking them separately. This enhancement in
ranking is almost due to sharing the network weights of two or more problems. The sharing
weights accelerate the convergence, similar to reinforcement learning. This paper proposes
a novel learning method to rank multi-label subgroups to support the analysis of SD.
This approach is a part of the broader sphere of reinforcement learning to learn from
multiple data sources and build a conjoint unified learning model. The computation
time may increase by increasing the number of subgroups and higher rank accuracy;
however, SGPNN deliver a unified ranking model with a higher convergence rate and high
testing accuracy.

5.2. Convergence Fluctuation

The dataset wine-stock and iris-stock take a longer time for convergence due to data
separability and complexity; thus, convergence for each group of labels is not linear. This
non-linearity creates fluctuations more than the ranking of a single label group. These
fluctuations are not related to the gradient error in ranking, but it is the average ranking
between two subgroups as each subgroup tends to increase the ranking, it updates its
weights which reflect on the shared weights, which may reduce the convergence of the
second group. The fluctuation is shown in the video link of convergence of two groups
using toy dataset [43]. The convergence fluctuations are not noticed when we use three
subgroups together, i.e., the iris-wine-stock dataset using the same hyper-parameters of
two subgroups SGPNN.

5.3. Potential Applications

SGPNN could be used in many potential applications, i.e., brain-computer interface
(BCI) applications where EEG data may have ambiguity, complicated, and unbalanced.
Another medical application is where data fusion is collected from different sensors, i.e., the
study of human emotions recognition. SGPNN could be part of an expert system to build
accumulated learning model for judgment, elections, medical diagnosing from different
conjoint historical data.

6. Conclusions and Future Works

The SGPNN is a new step in preference learning to predict the subgroups from conjoint
data by proposing a simple three layers FF network that has different outputs to build the
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conjoint model from a different group of data. This paper introduces a simple network
with one middle layer and a new activation function to speed up the learning to rank
using the new Spearman objective function. This paper introduces the novel MAFN to
serve more than one group of labels. In addition, creating conjoint data from multiple
datasets reinforce the learning to rank and enhance accuracy. The proposed network with
one middle layer simplifies the process of FF, BB and UW in three steps for middle and
output layer comparing to the conventional ANN.

The future work of SGPNN is to coupling the relation with different SD methodologies
to rank the subgroup. The data used in the experiment are relatively tiny; thus SGPNN
opens a road to develop a deep learning network based on MAFN, PNN, Spearman error
function, and SS function to accelerate the learning to build a more complicated conjoint
model. The SGPNN integrates with SD to study the relations, similarity, and separability
from different domains to have a shared learning model.
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