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Abstract

We propose a new solution concept in the roommate problem, based on the
“robustness” of deviations (i.e., blocking coalitions). We call a deviation from a
matching robust up to depth k, if none of the deviators gets worse off than at the
original matching after any sequence of at most k subsequent deviations. We say
that a matching is stable against robust deviations (for short, SaRD) up to depth k, if
no deviation from it is robust up to depth k. As a smaller k imposes a stronger
requirement for a matching to be SaRD, we investigate the existence of a matching
that is SaRD with a minimal depth k. We constructively demonstrate that a SaRD
matching always exists for k = 3 and establish sufficient conditions for k = 1 and
2.
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1 Introduction

In matching models, a matching (or an outcome) is called stable if no group of agents

can profitably deviate from it by rematching among themselves. Stability has been

a central concept in various strands of the literature: It is not just the most popular

desideratum in the design of two-sided problems such as school choice (Abdulka-

diroǧlu and Sönmez, 2003), but also a primary solution concept in one-sided models

such as hedonic coalition formation (Bogomolnaia and Jackson, 2002) and network

formation (Jackson, 2008).1 However, it is also well known that a stable matching may

not exist in one-sided models. This is true even in the simplest class called the room-

mate problem (Gale and Shapley, 1962), which is a problem to partition finite agents into

pairs (roommates) and singletons.2 Since it is a special case both of coalition forma-

tion and of network formation, studying the roommate problem is a natural first step

to understand stability in one-sided matching problems.3

The purpose of this paper is to propose a new solution concept that weakens sta-

bility in the roommate problem. When no matching is stable (i.e., when any matching

admits some profitable deviations), a natural solution concept would “minimize” re-

maining deviations in some sense. The simplest way to do so is to treat all possible

deviations equally and minimize the number of them (Abraham et al., 2006). Alterna-

tively, one could argue that deviations differ in their “seriousness” and that a matching

is “more instable” when it admits “more serious” deviations. From such a perspective,

a solution should minimize the “seriousness” of, instead of the number of, the devia-

tions. We take this alternative approach and differentiate deviations from a matching

based on their robustness as defined below, although there might be other plausible

criteria of “seriousness.”
1By “one-sided” models, we refer to those where any agent can be matched with any other. This is in

contrast to “two-sided” models, where agents are partitioned into two sides and any match is between
the two sides.

2Moreover, the proportion of preference profiles with no stable matching increases steeply as the
number of agents increases (Gusfield and Irving, 1989; Pittel and Irving, 1994).

3Indeed, Klaus et al. (2010, p. 2219) write “roommate markets can be considered as an important
benchmark for the development of solution concepts for matching, network and coalition formation
models.”
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Specifically, we call a deviation from a matching robust up to depth k, if none of the

deviators gets worse off than at the original matching they deviate from, after any se-

quence of at most k subsequent deviations. Suppose that a group D of agents deviates

from a matching µ and leads to another matching ν. The robustness of this deviation

depends on what can happen after ν is once formed. Suppose, for instance, that ν has

three possible deviations that lead to ν1, . . . , ν3, respectively, and each of these νi’s also

has three deviations to νi,1, . . . , νi,3. Starting from ν, then, each of ν1, . . . , ν3 is reachable

by a single deviation, while ν1,1, . . . , ν3,3 are by a sequence of two. In this example,

thus, the original deviation by D from µ to ν is robust up to depth 1 (resp. depth 2) if

none of D is worse off at any of ν1, . . . , ν3 (resp. any of ν1, . . . , ν3, ν1,1, . . . , ν3,3) than at

µ.

We have two possible interpretations of the robustness defined above. The first

is to assume the agents have max-min preferences and bounded rationality. Upon the

decision to form a deviation or not, such agents would search for the worst-case conse-

quence of the deviation subject to a finite depth k of reasoning. In this interpretation,

the more sophisticated the agents are, the harder it is for them to agree on a possi-

ble deviation. When a deviation is robust up to a large depth k, however, it would

be reachable even among extremely risk-averse and highly sophisticated agents. Sec-

ondly, but not less importantly, we can interpret the depth k as the length of time.

In reality, forming a deviation should take a certain period of time. In the context of

business alliances, for example, it should take time to reach an agreement with a new

partner or to dissolve an old partnership. Assuming only one deviation can realize per

time period, the gain from a deviation lasts for at least k periods, whatever reactions it

triggers in the future, if it is robust up to depth k; otherwise, the deviators must accept

the risk of potential losses within a shorter time window. With this interpretation, too,

it would be natural to argue that a deviation is more-easily agreeable when it is robust

up to a larger depth k.

By measuring the robustness of a deviation with its depth k, we seek matchings

that only admit minimally robust deviations. We say that a matching is stable against
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robust deviations (for short, SaRD) up to depth k, if no deviation from it is robust up to

depth k (or larger).4 By definition, if a deviation is robust up to some depth k, then it

is so up to any smaller depth k′. Therefore, if a matching is SaRD up to some depth k′,

then it is so up to any larger depth k. That is, the smaller the depth k is, the stronger

requirement SaRD up to depth k becomes.

Our main results are on the existence of SaRD matchings up to depth k = 1, 2, and

3. Our first two results (Theorems 1–2) identify sufficient conditions for the existence

of a matching that is SaRD up to depth 1 and 2. It should be noted that such matchings

do not always exist, as we will see later in this introduction. In contrast, our last main

result (Theorem 3) establishes the general existence of a SaRD matching up to depth

3. Namely, we can construct a matching that is SaRD up to depth 3 for any roommate

problem, i.e., for any set of agents and any preference profile.

For the rest of this introduction, we sketch the key ideas underlying our main re-

sults in a simple class of examples: Suppose that there are an odd number n > 1 of

agents, a1, . . . , an. Each ai’s preference is such that only ai+1 and ai−1 are acceptable

(i.e., better than being single) and the former is preferred to the latter, where the sub-

scripts are in modulo n. Notice that this is a typical case where no stable matching

exists. Below, we see how the existence of SaRD matchings depends on and varies

with the parameter n. We then briefly explain how the ideas in those simple examples

extend to the general case.

In this class of problems, any SaRD matching should satisfy two principles: First,

at a SaRD matching, each ai should be either single or matched to one of ai+1 and

ai−1; otherwise (i.e., if ai is matched to an unacceptable agent), she can unilaterally

deviate to be single and will never be worse off after any array of voluntary deviations.

Second, if ai is single at a SaRD matching, then ai+1 cannot be single; otherwise, they

can deviate to be matched to each other and will never be worse off than at the initial

situation of being single.

When n ≤ 7, the above two principles pin down the SaRD matchings for each

4In what follows, we use the acronym “SaRD” both as an adjective (“S” for stable) and as a noun
(“S” for stability).
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fixed n, but their depths vary with n. When n = 3, 5, and 7, the principles require to

match one, two, and three mutually-acceptable pairs, respectively. Note that all such

matchings are symmetric up to rotation for each n ≤ 7. When n = 3, they are SaRD up

to depth 1. For instance, consider the matching µ(3) = {{a1, a2}, {a3}}, which means

that a1 and a2 are matched to each other and a3 is single. From this µ(3), the unique

possible deviation is by {a2, a3}. After they deviate and are matched to each other,

there is another deviation by {a3, a1}. If this subsequent deviation realizes, one of the

original deviator, a2, becomes single and worse off than at µ(3). That is, the unique

deviation from µ(3) is not robust up to depth 1, and hence, µ(3) is SaRD up to depth 1.

When n = 5, the candidate matchings are all SaRD up to depth 2, but none is SaRD

up to depth 1. Let us consider µ(5) = {{a1, a2}, {a3, a4}, {a5}}, where only a5 is single.

Starting from this µ(5), the unique deviation is by D = {a4, a5}, and thereafter, there is

a unique chain of subsequent deviations, first by D1 = {a2, a3}, then by D2 = {a5, a1},

and so on. Notice that the initial deviators, a4 and a5, remain matched even after D1

follows. Therefore, the deviation by D from µ(5) is robust up to depth 1, and µ(5) is not

SaRD up to depth 1. Yet, if D2 further deviates following D and D1, then a4 becomes

single while she was originally matched to a3. Thus, the original deviation by D is not

robust up to depth 2, and µ(5) is SaRD up to depth 2. The case of n = 7 is similar: The

matchings that match three (mutually-acceptable) pairs are SaRD up to depth 3 but no

matching is SaRD up to depth 2.

When n ≥ 9, the two principles no longer pin down the number of matched pairs

for a matching to be SaRD, and there are SaRD matchings up to different depths even

for a fixed n. In particular, matching as many pairs as possible may undermine the

degree of stability measured by depth k. To see the point, suppose n = 9 and consider

two matchings,

µ(9) = {{a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9}} , and

µ′(9) = {{a1, a2}, {a3}, {a4, a5}, {a6}, {a7, a8}, {a9}} .
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Note that they differ in the number of matched pairs, although both satisfy the two

principles. Moreover, they are both SaRD but up to different depths. By similar argu-

ments as above, one can check µ(9) is SaRD up to depth 4 but not up to depth 3. On

the other hand, µ′(9) is SaRD up to depth 2. Suppose, for example, that D = {a2, a3}

deviates from µ′(9). Then, a2 ∈ D can be single after two subsequent deviations, first

by D1 = {a5, a6} and then by D2 = {a3, a4}. One can check in a similar manner that all

the other deviations are not robust up to depth 2, and hence, µ′(9) is SaRD up to depth

2.

The case of n = 9 is still special in that any matching with three matched pairs

is symmetric to µ′(9); in general, what is critical in our construction is the number

of “consecutive” matched pairs, rather than the total number of matched pairs. For

example, suppose n = 13 and consider two matchings,

µ(13) = {{a1, a2}, {a3}, {a4, a5}, {a6, a7}, {a8, a9}, {a10}, {a11, a12}, {a13}}} , and

µ′(13) = {{a1, a2}, {a3, a4}, {a5}, {a6, a7}, {a8, a9}, {a10}, {a11, a12}, {a13}} ,

both of which match five pairs. Note that µ(13) matches three “consecutive” pairs,

from {a4, a5} to {a8, a9}. It should be easy by now to see that as a consequence, the

deviation by {a2, a3} from it is robust up to depth 3; i.e., µ(13) is not SaRD up to depth

3. In contrast, µ′(13) matches at most two pairs “consecutively,” such as {a1, a2} and

{a3, a4}. As a result, µ′(13) is SaRD up to depth 3, even though it matches the same

number of pairs as µ(13) does.

While we have focused on the simple cases, they actually capture the essence of the

general case. This is because for any set of agents and any preference profile, we can

always partition the agents so that within each subset, their preferences form a cycle as

in the above examples (Tan, 1991). First, this allows us to parametrize problems with

the lengths of preference cycles, as we did above with n. In particular, our Theorems

1–2 state that there is a matching that is SaRD up to depth k = 1 and 2, if all cycles

consisting of an odd number of agents are sufficiently short. Thus, these theorems
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generalize the cases of n = 3 and 5 in the above examples. Second, the cycle structure

determines (i) whether a pair of agents are “adjacent” to each other, as ai and ai+1

above, and (ii) whether two “adjacent” pairs of agents are “consecutive.” Unlike the

above examples, “non-adjacent” pairs may be mutually acceptable in the general case,

and we do match such pairs in our construction of a SaRD matching up to depth 3

(Theorem 3). Yet, how to match adjacent pairs remains to be the key in certain senses.

In particular, we need to carefully control the number of “consecutively-matched”

adjacent pairs, as we will elaborate in Section 4.

The rest of the paper is organized as follows: Section 1.1 briefly overviews the re-

lated literature. Section 2 introduces our model and key definitions. Section 3 presents

the main results, and Section 4 illustrates the key ideas behind them. Section 5 dis-

cusses the relationships between our SaRD and other solutions concepts. Appendices

A–C provide the proofs. Appendix D discusses the conditions for Tan’s (1991) results,

which we heavily exploit in our analysis.

1.1 Related Literature

In the literature, a number of studies have defined stability concepts based on chains

of deviations and their final outcomes, in a similar spirit with ours. Among others, the

most closely related is Barberà and Gerber (2003). They study the hedonic coalition

formation, which generalizes the roommate problem, and propose a solution concept

called durability. We share the spirit with them in distinguishing what we call robust

deviations, and actually, in the roommate problem their durability coincides with our

SaRD up to a sufficiently large depth k. However, we further differentiate robust de-

viations across different depths and look for a SaRD matching up to a minimal depth,

whereas Barberà and Gerber (2003) treat all deviation chains of any length as equally

serious. The set of SaRD matchings up to depth 3 is generally smaller than that of

durable matchings, and hence, our concept can be seen as a refinement of durability.

Relatedly, Troyan et al. (2020) propose in the school choice problem a solution concept

called essential stability, which also corresponds to our SaRD with a sufficiently large k.
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It should be noted, however, that a stable matching always exists in the school choice

problem and their motivation differs from ours.

While we investigate a static model with dynamic arguments as a possible inter-

pretation and motivation, Kadam and Kotowski (2018) and Kotowski (2015) explicitly

study a dynamic marriage market, where agents have their preferences over the histo-

ries (i.e., sequences) of matched partners. They also define stability concepts for their

dynamic setting, but it should be noted that their concepts reduce to the standard sta-

bility in the static setting. Also in a dynamic marriage market, Kurino (2019) proposes

credible stability, which reduces in the static setting to a weaker version of our SaRD up

to depth k = 1.5

Unsolvable roommate problems have long been studied in economics and other

related fields, and several more solution concepts have been proposed. These include

the maximum stable matchings (Tan, 1990), almost stable matchings (Abraham et al.,

2006), P-stable matchings (Inarra et al., 2008), absorbing sets (Iñarra et al., 2013), and

Q-stable matchings (Biró et al., 2016). Each of them partially extends the properties

of stability to unsolvable problems in a certain direction. In addition, several studies

apply other general concepts than stability, such as stochastic stability (Klaus et al.,

2010) and farsighted stable sets (Klaus et al., 2011), to the roommate problem. The re-

lation between our SaRD and other solution concepts will be discussed in more detail

in Section 5.

2 Preliminaries

A roommate problem (N,�) consists of a finite set N of agents and a profile

� = (�a)a∈N of strict preference relations over N. Given agent a’s strict preference

�a, we write b �a c to denote [b �a c or b = c]. We say that an agent a is acceptable to

another agent b if a �b b. A matching is a bijection µ : N → N satisfying µ2(a) = a

for all a ∈ N. We also identify a matching with the partition it induces; e.g., when

5In Appendix F of the working paper version (Hirata et al., 2020), we formally define this weaker
concept and establish its existence.
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we write µ = {{a, b}, {c}}, it refers to the matching defined by µ(a) = b, µ(b) = a,

and µ(c) = c. Given a subset D ⊆ N of agents and two matchings µ and ν, we write

ν �D µ if ν(a) �a µ(a) holds for all a ∈ D, and similarly, ν �D µ if ν(a) �a µ(a) holds

for all a ∈ D. A matching µ is called individually rational if µ �N id, where id denotes

the identity mapping over N. A matching µ is said to leave no mutually-acceptable pairs

of singles if

[a �b b and b �a a] =⇒ [µ(a) 6= a or µ(b) 6= b] ,

holds for all a, b ∈ N. This can be seen as a mild efficiency property, as a mutually-

acceptable pair of singles implies Pareto inefficiency. Let us call a matching regular if

it is individually rational and leaves no mutually-acceptable pairs of singles.

A non-empty subset D of agents, associated with a matching ν, is said to form a

deviation from another matching µ if they prefer ν to µ and can enforce the change from

µ to ν in the sense that their new partners are also in D. More precisely, we call (D, ν) a

deviation from µ and write ν BD µ, if (1) ν �D µ, (2) ν(a) ∈ D for any a ∈ D, (3) µ(i) ∈

D ⇒ ν(i) = i for any i ∈ N − D, and (4) µ(j) 6∈ D ⇒ ν(j) = µ(j) for any j ∈ N − D.6

When µ is individually rational and |D| = 2, the identity of D pins down the unique

matching ν such that (D, ν) can be a deviation from µ. More specifically, for ν B{a,b} µ

to hold given µ is individually rational, ν needs to be such that ν(a) = b, ν(b) = a,

ν(i) = i for all i ∈ {µ(a), µ(b)} − {a, b}, and ν(j) = µ(j) for all j 6∈ {a, b, µ(a), µ(b)}.

Although we will not fully specify the associated ν when |D| = 2, it should thus cause

no confusion. A matching µ is stable if there is no deviation (D, ν) from it.

Now we introduce our key concepts. A deviation (D, ν) from µ is called robust up

to depth k ∈ N, if νκ �D µ holds for any sequence of deviations (D1, ν1), . . . , (Dκ, νκ)

with κ ≤ k such that

νκ BDκ νκ−1 BDκ−1 . . . BD2 ν1 BD1 ν. (∗)

6Part (3) of this definition implicitly assumes that the partners of the members of D at µ are left single
after the deviation. In Section 2.1.2, we discuss an alternative definition of a deviation that allows for
instantaneous rematch among the agents who are left behind by D.
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When no deviation from it is robust up to depth k, a matching µ is said to be stable

against robust deviations (henceforce, SaRD) up to depth k. By definition, if a deviation

is robust up to depth k, then so is it up to any depth k′ < k. Consequently, if a matching

is SaRD up to depth k, then so is it up to any depth k′′ > k. As we argued for the simple

examples in the introduction, any SaRD matching must be individually rational and

leave no mutually-acceptable pairs of singles:

Proposition 1. For any k ≥ 1, if a matching µ is SaRD up to depth k, then it is regular.

Proof. The proof is straightforward and is thus omitted. �

Before we present our results in Section 3, the rest of this section is organized as

follows: In Section 2.1, we further discuss our definition of SaRD, addressing possi-

ble conceptual concerns. In Section 2.2, we introduce the concepts and results of Tan

(1991), which we will heavily rely on in our analysis.

2.1 Discussions of our Concepts and Definitions

2.1.1 Consistency of the Definition of SaRD Matchings

One might argue that our concept of SaRD is inconsistent in that we try to exclude

robust deviations while we allow non-robust subsequent deviations in defining ro-

bust deviations per se. In response to such a concern, we make two remarks. First,

requiring consistency could lead to some subtlety, making it difficult for the solution

to be a matching-wise concept. A natural way to require consistency would be to

call a deviation “consistently robust” if the original deviators will never be worse-off

after any subsequent deviations as long as those subsequent deviations are also “con-

sistently robust.” Since this definition is self-referential, the set of all “consistently

robust” deviations should be a fixed point of an equation with the variable being a

set of deviations; once we solve for it, we can further identify “consistently SaRD”

matchings using it. However, such an equation might have multiple fixed points,

each corresponding to a different set of all “consistently robust” deviations. As a result,

9



a matching may be “consistently SaRD” according to one well-defined set of “consis-

tently robust” deviations but not according to another. Such multiplicity would be

unappealing because, for instance, it makes it difficult to directly compare the degree

of stability between two matchings. Comparing matchings would reduce to compar-

ing the sets of “consistently robust” deviations supporting them, but the latter would

in turn require something outside our model, such as beliefs of the agents.

Secondly, but not less importantly, we do not claim that a SaRD matching is fully

immune to deviations or, in other words, that non-robust deviations would never

realize. Instead we would argue, as we did in the introduction, that robust devia-

tions would be more likely to realize than the others and hence, that SaRD matchings

would be “less unstable” than the others. And our argument could still apply even

if we define “consistently robust” deviations as above: The benefit from such a devi-

ation is guaranteed under the hypothesis that only “consistently robust” deviations

can follow. This hypothesis might be true if every agent is sophisticated enough to tell

whether a deviation is “consistently robust” or not based on a shared criterion. How-

ever, even if an agent herself is sophisticated, she could be unsure if the others are also

sophisticated. Further, even if she believes the others to be sophisticated as well, she

could be still unsure what criteria of “consistent robustness” they adopt, since there

could be multiple of them as argued above. For an agent facing such ambiguities, a

deviation would be less secure when it is “consistently robust” than when it is robust

in our sense. Our strategy in this study is to eliminate deviations that would be the

most secure and likely to realize.

2.1.2 Definition of Deviations

Our definition requires a deviation (D, ν) from µ to satisfy ν(i) = i if i 6∈ D and

µ(i) ∈ D. That is, we implicitly assume that the agents who are left behind by D

remain single at ν, while one might argue that those agents could instantaneously

rematch among themselves. To be concrete, let us call (D, ξ) a deviation with possible

(instantaneous) rematch from µ and write ξ B∗D µ if (1) ξ �D µ, (2) ξ(a) ∈ D for any
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a ∈ D, (3’) µ(i) ∈ D ⇒ ξ(i) �i i for any i ∈ N−D, and (4) µ(j) 6∈ D ⇒ ξ(j) = µ(j) for

any j ∈ N − D. We can also define the robustness of a deviation (with rematch) and

the SaRD property using B∗ instead of B.

We make two remarks on such alternative definitions. First, once we fix an initial

deviation (with or without rematch) from an original matching, its robustness mea-

sured by depth k is independent of whether we allow rematch or not in subsequent

deviations, i.e., whether we use B or B∗. On the one hand, rematch in subsequent

deviations must not increase the depth k. This is because part (3’) in the definition

of B∗ allows ξ(i) = i and hence, the deviations with rematch include those without

rematch as a subset. On the other hand, allowing rematch cannot decrease the depth,

either. Suppose that an original deviator is worse off after a subsequent deviation and

rematch. Then before the rematch, she should have been even worse off if she is a

part of the rematch and been equally worse off otherwise. Therefore, the rematch in

subsequent deviations is irrelevant to our purpose.

Second, allowing rematch for an initial deviation can increase its robustness, but it

is tantamount to making a hidden assumption against our spirit. To be more concrete,

suppose that ν BD µ, ξB∗D µ, and ν(i) = ξ(i) for all i ∈ D. That is, ν and ξ differ only in

that the agents in µ(D) are left single at ν while they are rematched among themselves

at ξ. Since ξ(j) �j ν(j) for j ∈ µ(D), there may exist ξ1 such that ξ1 BD1 ν for some

D1 but not ξ1 BD′1
ξ for any D′1. This is why (D, ξ) may be more robust than (D, ν).

However, this merely means that a deviation may become more robust if the deviators

can enforce a particular way of rematch among those who they leave behind. Unless

we presume such enforcement powers, thus, the alternative definitions based on B∗

is against our spirit in this study, which is to measure the robustness of a deviation

based on worst-case scenarios for the deviators.

2.2 Party Permutation and Stable Partition

In this subsection, we introduce the concepts of a party permutation and of a stable

partition (Tan, 1991), which will be the basis of our analysis. A permutation is a bijection
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from N to itself. A permutation σ divides N into a finite number of cycles and hence,

induces a partition P(σ) of N. Namely, {a1, . . . , an} ⊆ N is a member of P(σ) if

σm(a1) = am+1 for all m = 1, 2, . . . , n− 1 and σn(a1) = a1. Throughout the rest of the

paper, given a permutation σ over N, we let π denote its inverse σ−1 and call a pair

(a, b) of agents adjacent if σ(a) = b or σ(b) = a. Taking σ and its inverse π as given,

we sometimes refer to σ(a) and π(a) as, respectively, the successor and predecessor of

agent a. It should be noted, however, that a, σ(a), π(a) need not be distinct.7

We will focus on the following special class of permutations, which requires each

P ∈P(σ) to form a preference cycle:

Definition 1. A permutation σ : N → N is called a semi-party permutation if for each

P ∈P(σ), one of the following holds:

• |P| = 1,

• |P| = 2 and σ(a) �a a for each a ∈ P, or

• |P| ≥ 3 and σ(a) �a π(a) �a a for each a ∈ P. �

Given a semi-party permutation σ and hence its inverse π, an agent a ∈ N is said

to be superior for another agent b ∈ N when a �b π(b). When a is not superior for b

(i.e., when π(b) �b a), then a is said to be inferior for b.8 With this terminology, we can

define an even more special subclass of semi-party permutations as follows:

Definition 2. A semi-party permutation σ is called a party permutation if the following

holds: for any a, b ∈ N, if a is superior for b, then b is inferior for a. �

When σ is a party permutation, P(σ) is called a stable partition, and each of its

elements a party. Given a party permutation σ, for each a ∈ N, let P(a) denote the

party a belongs to; i.e., a ∈ P(a) ∈ P(σ). A party in a stable partition P(σ) is called

odd (resp. even) if its cardinality is odd (resp. even). When it is a singleton, we call a

party solitary. Note that when {a} ∈ P(σ) is a solitary party, b 6= a is acceptable to a

if and only if b is superior for a.
7If {a} ∈P(σ), then a = σ(a) = π(a). If a 6= σ(a) but {a, σ(a)} ∈P(σ), then σ(a) = π(a).
8Here we slightly modify Tan’s (1991) original definition: when {a, b} ∈ P(σ), a and b are inferior

for each other according to our definition, whereas they are neither superior nor inferior for each other
according to Tan’s. As this does not alter the definition of party permutations below at all, Tan’s (1991)
results continue to hold with our definition.
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Taking a party permutation σ and a regular matching µ as arbitrarily given, we

define two symbols to denote subsets of the agents as functions of µ:

I◦µ := {i ∈ N : π(i) �i µ(i)}, and

Aµ := {i ∈ N : i 6= µ(i) ∈ {π(i), σ(i)}} .

Strictly speaking, they depend on σ as well as µ, but it should cause no confusion

because we will never consider multiple party permutations for a given problem. The

former, I◦µ, denotes the set of those who are matched to a “strictly” inferior partner (or

are single when i 6= π(i)) at µ. The latter, Aµ, is the set of those who are (not single

and) matched to an adjacent partner at µ. Note that i ∈ I◦µ is necessary for an agent

i to prefer some inferior agent, including π(i), to µ(i). Thus, I◦µ can be rephrased to

be the set of those who may potentially deviate with an inferior agent. Note also that

no solitary party intersects with I◦µ as long as µ is regular.9 Since σ(i) �i π(i) always

holds for any i by the definition of a (semi-)party permutation, Aµ is disjoint from I◦µ

for any matching µ. We will recurrently use these observations in our analysis.

While the definition of a party permutation might look complicated, Tan (1991)

shows that at least one exists for any problem and that odd parties are uniquely iden-

tified across all party permutations even when multiple exist:10

Theorem (Tan, 1991). For any roommate problem (N,�), at least one party permutation

exists. If σ and σ′ are both party permutations, then for any P ⊆ N with |P| being odd,

P ∈P(σ)⇐⇒ P ∈P(σ′).

For a problem (N,�) with a party permutation σ, define #(N,�) ∈N by

#(N,�) := max
[
{|P| : P ∈P(σ) and |P| is odd } ∪ {0}

]
,

which is independent of the choice of σ thanks to the above theorem. Namely,

9By definition, π(i) = i when {i} ∈P(σ). In such a case, π(i) �i µ(i) means µ(i) is unacceptable.
10Tan’s (1991) original paper assumes preferences are symmetric in a certain sense, whereas we do

not in this study. However, his results continue to hold true without the symmetry assumption. See
Appendix D for details.
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#(N,�) denotes the maximal size of odd parties in (N,�) if there exists any, and it

is set to zero otherwise. Roughly speaking, #(N,�) is the length of the longest pref-

erence cycle among those involving an odd number of agents, since each party is a

preference cycle by definition. With this notation, the existence of a stable matching

can be characterized as follows:11

Theorem (Tan, 1991). A stable matching exists in a roommate problem (N,�) if and only if

#(N,�) ≤ 1.

Before closing this section, let us briefly explain why #(N,�) is critical for the exis-

tence of a stable matching, as it would also be helpful in understanding our results. To

this end, fix a party permutation σ and suppose #(N,�) ≤ 1, which means that every

party is either even or solitary. Then we can construct a stable matching µ as follows:

For each a in an even party, match a to an agent “adjacent” to her with respect to σ,

i.e., µ(a) ∈ {π(a), σ(a)}; for each b in a solitary party, leave b single, i.e., µ(b) = b. The

following example illustrates the construction in a simple case.

Example 1. Let N = {a1, . . . , a4, b1} and suppose that a party permutation is given by

σ =

 a1 a2 a3 a4 b1

a2 a3 a4 a1 b1

 ,

where the right-hand side denotes σ(a1) = a2, σ(a2) = a3, and so on. Note that

P(σ) = {{a1, . . . , a4}, {b1}}. Then, the above construction leads to either

µ1 = {{a1, a2}, {a3, a4}, {b1}} or µ2 = {{a2, a3}, {a4, a1}, {b1}}. �

When #(N,�) ≤ 1, any matching µ constructed as above is stable. The point

here is that I◦µ = {i ∈ N : π(i) �i µ(i)} is empty. Recall that an agent can potentially

deviate from µ with an inferior partner only if she belongs to I◦µ. For a pair of agents

to form a deviation from µ when I◦µ is empty, therefore, each must be superior for the

other. Since such a pair does not exist by the definition of a party permutation, thus,

11As we noted in footnote 10, the following theorem, as well as the previous one, holds without the
symmetry of preferences. See Appendix D for details.
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µ is stable if I◦µ is empty. Conversely, the main problem when #(N,�) > 1 is that I◦µ′

cannot be empty for any matching µ′, and this is essentially why a stable matching

fails to exist.

3 Main Results

In this section, we present our main results. The first two results are on the existence

of a SaRD matching up to depth k = 1 and 2:

Theorem 1. For any roommate problem (N,�) such that #(N,�) ≤ 3, there exists a match-

ing that is SaRD up to depth 1.

Proof. See Proposition 3 in Appendix A and Proposition 5 in Appendix B. �

Theorem 2. For any roommate problem (N,�) such that #(N,�) ≤ 5, there exists a match-

ing that is SaRD up to depth 2.

Proof. See Proposition 3 in Appendix A and Proposition 5 in Appendix B. �

We should make a couple of remarks on the conditions in the above two theorems.

First, it is computationally feasible to directly check the conditions with respect to

#(N,�): For any (N,�), one can compute a party permutation in O(|N|2) time (Tan,

1991; Tan and Hsueh, 1995), and then, it is immediate to check #(N,�). Second, while

they are stated based on #(N,�), we can interpret the conditions in terms of the primi-

tives of the model. To do so, remember that by definition, a party is a preference cycle;

i.e., if {a, σ(a), . . . , σ2m(a)} is an odd party in (N,�), they form a preference cycle in

the sense that σi+1(a) �σi(a) σi−1(a) for all i ∈ N. Therefore, the limit on the size of

such preference cycles is a simple sufficient condition in terms of � for its counterpart

stated in terms of #(N,�), although it is not necessary.12

12A preference cycle is not necessarily a party, even though the converse is true. To see this, sup-
pose that N = {a1, . . . , a2m+1, b1, . . . , b2m+1}. Assume that {a1, . . . , a2m+1} and {b1, . . . , b2m+1} form
a preference cycle and that for each i ∈ {1, . . . , 2m + 1}, ai and bi are the best partner to each other.
Then, the unique stable partition is {{a1, b1}, . . . , {a2m+1, b2m+1}} containing no odd party, in spite of
the existence of the odd preference cycles.
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It should also be noted that the conditions in Theorems 1–2 are tight among those

which depend only on #(N,�).13 That is, for each odd n > 3 (resp. odd n > 5),

we can easily construct a problem (N,�) such that #(N,�) = n and no matching is

SaRD up to depth 1 (resp. depth 2) as follows. Recall that in the introduction, we have

illustrated a problem with 5 agents and the simplest cyclic preferences such that no

matching is SaRD up to depth 1. Combining this example with another odd cycle of n

agents, we obtain a problem with #(N,�) = n and no SaRD matching up to depth 1.

The case for depth 2 is analogous.

The above observation, along with Tan’s theorem, might suggest that it becomes

harder to guarantee the existence of a SaRD matching up to a fixed depth k as #(N,�)

grows larger. In fact, perhaps surprisingly, this is not the case. We can establish a

uniform bound for the robustness of possible deviations, which applies to any problem

(N,�), as follows:

Theorem 3. For any roommate problem (N,�), there exists a matching that is SaRD up to

depth 3.

Proof. See Proposition 4 in Appendix A and Proposition 5 in Appendix B. �

To conclude this section, let us make a remark on the relation among the three

theorems from a technical perspective. As we will see in the following section, the

construction of a SaRD matching for Theorems 1–2 is substantially simpler than that

for Theorem 3. Indeed, the algorithm we provide for Theorem 3 also produces a SaRD

matching up to depth 1 (resp. depth 2) when #(N,�) ≤ 3 (resp. when #(N,�) ≤ 5).

In this respect, thus, Theorems 1–2 could be seen a corollary of (the proof of) Theorem

3. The main message we can draw from Theorems 1–2 would rather be that the main

difficulty for the existence of a SaRD matching lies in the cases of #(N,�) > 5, which

we address in Theorem 3.
13In Appendix D of the working paper version (Hirata et al., 2020), we further show that they are

almost tight, in a certain sense, among those depending only on σ.
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4 Proof Ideas

The full proofs of Theorems 1–3 are two-fold: First, we identify in Appendix A a set

of sufficient conditions for a regular matching to be SaRD up to depth k = 3. When

#(N,�) ≤ 3 and 5, respectively, the same set of conditions further ensures k = 1

and 2. Second, in Appendix B, we provide an algorithm to compute for any problem

(N,�) a regular matching satisfying all the conditions. As the full proofs are rather

complicated, we relegate them to the appendices.

Through the rest of this section, we instead provide a sketch of the sufficiency part,

abstracting away from the construction. We introduce our key conditions (Properties

1–5) one by one, explaining what roles they play in bounding the robustness of a pos-

sible deviation. To simplify our arguments, we assume for the rest of this section that

the deviation is by a pair of agents, while we allow for deviations by more than two

agents in the full proofs. More specifically, the rest of this section is organized as fol-

lows: Section 4.1 explains our basic strategy and introduces a critical condition that

makes it work. The next two subsections describe what conditions will be useful and

why, depending on if the deviating pair is non-adjacent (Section 4.2) or adjacent (Sec-

tion 4.3). Section 4.4 briefly discusses what further complicates our full proofs, where

the deviation is not restricted to be pairwise. Lastly, Section 4.5 describes the tensions

among our conditions, which we need to take care of in the construction part of our

full proofs.

Each of our conditions, Properties 1–5, refers to a party permutation σ, either di-

rectly or indirectly. It should be noted that the choice of the party permutation can

be arbitrary, whereas it should be fixed across those conditions. For the rest of this

section, thus, we arbitrarily fix a party permutation σ for a given problem (N,�), and

all of the properties should be read as referring to this fixed σ.
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4.1 Basic Strategy

In establishing that a matching µ is SaRD up to depth k, our basic strategy is as follows.

When ({a, b}, ν) is a deviation from a regular matching µ, the pair of the deviators

should be matched at ν and at least one of them is not single at µ.14 Thus, it is with-

out loss of generality to assume µ(a) 6= a. To bound the robustness of the deviation

by {a, b}, we identify a (shortest) chain of subsequent deviations (D1, ν1), . . . , (Dk, νk)

such that a 6∈ D1, . . . , Dk and b ∈ Dk. Such a chain implies that a ends up being single

at νk while she was matched to an acceptable partner at µ; thus, ({a, b}, ν) is not robust

up to depth k.

Note that the above task becomes easier if b chooses a wider range of agents over

a. In particular, it becomes much simpler when a is inferior for b than otherwise.

In general, however, it is not without loss of generality to assume a is inferior for b,

even though no pair of agents are mutually superior. This is because we have already

assumed µ(a) 6= a and hence, we cannot freely swap their roles in the case of µ(b) = b.

In what follows, we thus restrict our attention to µ satisfying the following property,

so as to make it without loss of generality to assume both µ(a) 6= a and that a is inferior

for b, as stated in Lemma 1 below.

Property 1. For any a, b ∈ N, if a is superior for b and µ(b) = b, then µ(a) �a b. �

Lemma 1. Let µ be a regular matching satisfying Property 1, and suppose that ν �E µ where

E = {a, b} and ν(a) = b. Then, at least one of the following holds: (i) a is an inferior agent

for b, µ(a) 6= a, and b ∈ I◦µ; and (ii) b is an inferior agent for a, µ(b) 6= b, and a ∈ I◦µ, where

I◦µ = {i ∈ N : π(i) �i µ(i)}.

Proof. We first show at least one of the following holds: [i] a is inferior for b and

µ(a) 6= a, and [ii] b is inferior for a and µ(b) 6= b. Note that we cannot have both

a being superior for b and µ(b) = b, by Property 1 and the assumption of b �a µ(a).

Symmetrically, we cannot have both b being superior for a and µ(a) = a. Therefore,

[i] and [ii] simultaneously fail only if a and b are mutually superior to each other or

14If a and b get better off by being single, µ is not individually rational. If both a and b are single at µ
but are matched to each other at ν, then µ leaves a mutually-acceptable pair of singles.
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if they are both single at µ. However, the former contradicts the definition of a party

permutation, and the latter is incompatible with µ’s regularity.

If a is inferior for b (i.e., π(b) �b a), then the assumption of a = ν(b) �b µ(b)

implies π(b) �b µ(b). That is, b ∈ I◦µ if a is inferior for b. Symmetrically, a ∈ I◦µ

if b is inferior for a. Combined with the conclusion of the previous paragraph, these

complete the proof. �

4.2 Deviation by a Non-Adjacent Pair

Suppose that µ is a regular matching satisfying Property 1 and a pair {a, b} deviates

from it, resulting in a new matching ν. Also assume, without loss of generality by

Lemma 1, µ(a) 6= a and that a is inferior for b. Recall that P(b) should be non-solitary

for the acceptable agent a to be inferior for b, and hence, π(b) 6= b. In this subsection,

suppose further that a and b are not adjacent to each other. Since a is inferior for b (i.e.,

π(b) �b a), the non-adjacency implies that b strictly prefers π(b) 6= a to a. This is

helpful in bounding the robustness of ({a, b}, ν).

Specifically, if b and π(b) agree to deviate with each other from ν, their deviation

makes a single and thereby makes the original ({a, b}, ν) not robust up to depth 1.

Although b should prefer π(b) to a = ν(b) as seen above, the assumptions we made

so far on µ are not enough to ensure π(b) also prefers b to ν(π(b)). Thus, we now

require an additional property of the original matching µ:

Property 2. For any b ∈ I◦µ, µ(π(b)) is inferior for π(b). �

While it is a restriction for µ rather than ν, Property 2 ensures that π(b) prefers b to

ν(π(b)), under our assumption that the original deviation is pairwise: Since the deviation

is by {a, b} and π(b) 6∈ {a, b}, we can conclude that π(b) is not a part of the deviation

from µ. Then, ν(π(b)) should be equal to π(b) if µ(π(b)) = a and to µ(π(b)) other-

wise. (Note that µ(π(b)) = b is impossible, because it is equivalent to π(b) = µ(b);

if it holds, b should not have deviated with a, who is inferior for b.) In either case,

Property 2 entails that π(b) prefers b to ν(π(b)), because b is by definition superior
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for π(b). That is, we can construct a deviation ({b, π(b)}, ν1) from ν so that ν1(a) = a,

whenever µ meets Property 2 in addition to regularity and Property 1. We summarize

our conclusion in this subsection as follows:

Claim 1. Let {a, b} be a non-adjacent pair of agents and suppose that ({a, b}, ν) is a deviation

from a regular matching µ satisfying Properties 1–2. Then, the deviation ({a, b}, ν) is not

robust up to depth 1.

4.3 Deviation by an Adjacent Pair

When the deviators are an adjacent pair {a, b} with a = π(b) = ν(b), it is impossible

to make a worse off by matching b with her predecessor π(b). In this case, thus, we

alternatively bound the robustness of the deviation from the other direction. Namely,

we seek a (shortest) sequence of subsequent deviations that eventually matches b with

her successor σ(b), thereby bounding the robustness of the deviation by {a, b}. And it

is here that how to match consecutive adjacent pairs is critical. The following example

recaps the points we have illustrated in the introduction:

Example 2. Consider the following class of problems: N := {a1, . . . , an} and each

ai’s preference is such that ai+1 �ai ai−1 �ai ai and all the others are unacceptable,

where the subscripts are in modulo n. Note that the party permutation is given by

σ(ai) := ai+1 for all ai ∈ N. First, suppose n = 7 and consider a matching

µ(7) :=
{
{a1}, {a2, a3}, {a4, a5}, {a6, a7}

}
,

which is regular and meets Properties 1–2. Note that µ(7) has a (unique) deviation

({a7, a1}, ν), which is by an adjacent pair. Starting from ν, where only a6 is single, we

can construct ν1, ν2, and ν3, by sequentially matching {a5, a6}, {a3, a4}, and {a1, a2} in

this order. We then have ν3 B{a1,a2} ν2 B{a3,a4} ν1 B{a5,a6} ν, where a7 is single at ν3.

That is to say, the original deviation from µ(7) by {a7, a1} is not robust up to depth 3.
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Next, suppose n = 11 and consider

µ(11) :=
{
{a1}, {a2, a3}, {a4}, {a5, a6}, {a7}, {a8, a9}, {a10, a11}

}
,

which is regular and meets Properties 1–2. Note that it possesses three deviations by

an adjacent pair: those by {a11, a1}, {a3, a4}, and {a6, a7}. Among them, the one by

{a11, a1} is not robust up to depth 2, because after they deviate, there are two sub-

sequent deviations, first by {a3, a4} and then by {a1, a2} that leaves a11 single. For a

similar reason, the deviation by {a3, a4} is not robust up to depth 2, either. In contrast,

the deviation by {a6, a7} is robust up to depth 2, while not up to depth 3. This is be-

cause we need three subsequent deviations, by {a11, a1}, {a9, a10}, and {a7, a8}, so as

to match a7 to her successor a8 leaving a6 single. �

The key lesson we can extract from the above example is the following:

Observation. Let µ be a regular matching satisfying Properties 1–2 and ({a, b}, ν) a

deviation from µ such that a = π(b). These imply µ(a) 6= a by Lemma 1. Suppose

further that there exists k ∈N such that

• σ2κ−1(b) is matched to σ2κ(b) at ν for each κ with 1 ≤ κ < k, and

• σ2k−1(b) is either single or matched to an inferior partner at ν.

Then, there are k subsequent deviations by
{

σ2k−1(b), σ2k−2(b)
}

, . . . , {σ(b), b}, which

eventually leave a single. Thus, the deviation ({a, b}, ν) is not robust up to depth k if

k satisfies the two conditions above. �

In order to bound the robustness of a deviation by adjacent {a, b}, thus, the key

is to ensure that a sufficiently small k satisfies the two conditions in the above Obser-

vation. Before we proceed, we introduce the following property, which necessitates

that all adjacent deviating pairs should belong to an odd party and thereby simplifies

the subsequent arguments. Note that whenever a stable matching exists, a regular

matching is stable if it satisfies this property, as we explained at the end of Section 2.2.

Property 3. For each even party P ∈ P(σ), we have P ⊆ Aµ, where Aµ = {i ∈ N : i 6=

µ(i) ∈ {σ(i), π(i)}} is the union of all adjacent pairs matched at µ. �
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The virtue of this property is in ensuring that no adjacent pair in an even party

agrees to deviate from µ. It simply says that µ matches every even party P into |P|/2

adjacent pairs. Then, for any adjacent pair {a, b} with a = π(b) within an even party,

either they are matched at µ or b is matched to σ(b). Since b prefers σ(b) to a ≡ π(b)

by the definition of a party permutation, no such {a, b} can form a deviation.

Throughout the rest of this section, we assume that µ satisfies Properties 1–3 and

consider the case of an adjacent pair (from an odd party) deviating from ν. And it is

here that the sizes of odd parties become relevant. Specifically, we divide odd parties

into the “large” and “small,” depending on whether they contain more than seven

agents. In each case, we will introduce an additional property to control the robustness

of deviations by adjacent pairs.

4.3.1 “Small” Odd Parties

When the deviators are from a “small” odd party, it is easy to guarantee the existence

of k ≤ 3 in the above Observation. More specifically, the following simple property

will turn out to be sufficient for our purpose:

Property 4. For each odd party P ∈ P(σ) such that |P| ≤ 7, we have |P− Aµ| = 1, where

Aµ = {i ∈ N : i 6= µ(i) ∈ {σ(i), π(i)}} is the union of all adjacent pairs matched at µ. �

This property requires µ to match as many adjacent pairs as possible within each

odd party P with |P| ≤ 7. Unlike Property 3 for even parties, however, there has to

be a “residual” agent b ∈ P who is matched to neither π(b) nor σ(b). Although µ

may match b to an agent outside P, we cannot guarantee that µ(b) is preferred to π(b);

i.e., we cannot preclude the possibility of the deviation by a := π(b) and b, who are

adjacent to each other.

In light of the above Observation, however, it is not a big problem when |P| ≤ 7. To

see the point, suppose that µ is a regular matching satisfying Property 1–4, ({a, b}, ν)

is a deviation from µ such that a = π(b), and that P ) {a, b} is an odd party of seven

agents. Note that by the definition of a party permutation, b would not deviate with

a ≡ π(b) if she is matched to σ(b) at µ. Property 4 thus requires P − Aµ = {b},
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and hence, µ must match the other six agents into three adjacent pairs,
{

σ(b), σ2(b)
}

,{
σ3(b), σ4(b)

}
, and

{
σ5(b), σ6(b)

}
. Among these three, the first two adjacent pairs

remain matched after the deviation by {a, b}, whereas σ5(b) is left single because

σ6(b) = a by the assumption of |P| = 7. Therefore, we can apply the Observation

with k = 3 and thereby conclude that the deviation by {a, b} is not robust up to depth

k = 3.

When |P| = 3 and 5, we can confirm that a deviation by an adjacent pair {a, b} ( P

is not robust up to depth 1 and 2, respectively, following almost the same arguments

as in the previous paragraph. This is essentially why we have a smaller k in Theorems

1–2 for the cases of #(N,�) = 3 and 5. We can then summarize our arguments in this

subsection as follows:

Claim 2. Let {a, b} be an adjacent pair of agents in an odd party P with |P| ≤ 7 and suppose

that ({a, b}, ν) is a deviation from a regular matching µ safisfying Properties 1–4. Then, the

deviation ({a, b}, ν) is not robust up to depth 3. If |P| = 3 and 5, respectively, it is not robust

up to depth 1 and 2.

4.3.2 “Large” Odd Parties

What remains to be considered is a deviation ({a, b}, ν) when {a, b} is an adjacent

pair from an odd party of nine or more agents. To cap its robustness by k = 3, our

Observation above would suggest that we should avoid the case where both

• two adjacent pairs
{

σ(b), σ2(b)
}

and
{

σ3(b), σ4(b)
}

are matched at ν, and

• σ5(b) is matched to some superior partner at ν.

Furthermore, since we are restricting our attention to a pairwise deviation, it is without

loss of generality to replace ν in the previous sentence with µ: As {a, b} is the only

pair that is matched at ν but not at µ, the three pairs,
{

σ(b), σ2(b)
}

,
{

σ3(b), σ4(b)
}

,

and
{

σ5(b), ν
(
σ5(b)

)}
are matched at ν only if they are so at µ. Thus, what we need µ

to satisfy, in addition to the other properties, is the following:

Property 5. For each odd party P ∈ P(σ) such that |P| > 7, µ satisfies the following: If

b ∈ P ∩ I◦µ, µ (σ(b)) = σ2(b), and µ
(
σ3(b)

)
= σ4(b), then we have both σ5(b) ∈ I◦µ and
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σ6(b) 6∈ I◦µ, where I◦µ = {i ∈ N : π(i) �i µ(i)} is the set of those who potentially deviate

with an inferior agent. �

The aim of Property 5 is simply to circumvent the difficulty we specified above. If

we have all µ (σ(b)) = σ2(b), µ
(
σ3(b)

)
= σ4(b), and σ5(b) ∈ I◦µ, then we can conclude

through the Observation that the deviation by a = π(b) and b is not robust up to depth

3. The second conclusion, σ6(b) 6∈ I◦µ, is not necessary as long as we focus on pairwise

deviations. In the general case, however, we need to preclude the possibility that

σ5(b) and σ6(b) also deviate and are newly matched to each other at ν. The purpose

of σ6(b) 6∈ I◦µ is to guarantee she prefers her partner at µ to σ5(b).

Now let us turn to why Property 5 is enough, even though it imposes no restric-

tion unless two adjacent pairs,
{

σ(b), σ2(b)
}

and
{

σ3(b), σ4(b)
}

, are matched at µ. To

fix the idea, let {a, b} with a = π(b) be an adjacent pair in a large odd party, and

suppose that they deviate from a regular matching µ satisfying Properties 1–5. Also

assume µ (σ(b)) = σ2(b) and µ
(
σ3(b)

)
6= σ4(b). Then, σ(b) and σ2(b) should remain

matched to each other at ν, because the largeness implies they are disjoint from {a, b}.

If ν(σ3(b)) is inferior for σ3(b), the argument is simple. We can form subsequent devia-

tions by
{

σ2(b), σ3(b)
}

and {b, σ(b)} as in the Observation; thus, the original deviation

by {a, b} is not robust up to depth 2. When ν(σ3(b)) is superior for σ3(b), our Obser-

vation is not directly applicable as σ3(b) does not agree to deviate with σ2(b) from ν.

Nonetheless, we can still apply it indirectly, with the help of our technique in Section

4.2. The following example illustrates this point:

Example 3. Let N := {a1, a2, . . . , a9} and σ : N → N be such that σ(ai) := ai+1 for all

ai ∈ N, where the subscripts are in modulo 9. Also define � as follows:

• For each i 6∈ {6, 9}, �ai is given by ai+1 �ai ai−1 �ai ai, and

• �a6 and �a9 are given by a9 �a6 a7 �a6 a5 �a6 a6 and a1 �a9 a8 �a9 a6 �a9 a9,

where all the unlisted agents are unacceptable. Compared to Example 2, this problem

differs only in that a6 and a9 are mutually acceptable. Yet, σ remains to be the unique
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party permutation for (N,�). Now consider two matchings,

µ :=
{
{a1, a2}, {a3}, {a4, a5}, {a6, a9}, {a7, a8}

}
, and

ν :=
{
{a1}, {a2, a3}, {a4, a5}, {a6, a9}, {a7, a8}

}
.

Note that µ is a regular matching satisfying all the properties above and that

({a2, a3}, ν) is a deviation from µ. Since a6 ≡ σ3(a3) is matched to a9, who is superior

for a6, {a5, a6} does not constitute a deviation directly from ν. However, a6 becomes

single and agrees to deviate with a5 once {a8, a9} deviates from ν. Therefore, we can

make a2 single after three subsequent deviations, respectively by {a8, a9}, {a5, a6}, and

{a3, a4} in this order. That is, the deviation ({a2, a3}, ν) from µ is not robust up to depth

3. �

The key in Example 3 is that we can form a deviation from ν by matching a9 with

her predecessor a8 and thereby make a6 ≡ σ3(a3) single. In fact, this is not a mere

coincidence but a consequence of our properties. Let us return to the general case and

suppose again that ({a, b}, ν) with a = π(b) is a deviation from a regular µ satisfying

Properties 1–5. Also assume µ (σ(b)) = σ2(b), µ
(
σ3(b)

)
6= σ4(b), and that ν

(
σ3(b)

)
is superior for σ3(b). Since σ3(b) does not belong to the set of the deviators, {a, b},

these assumptions are compatible only if σ3(b) is matched to the same partner, say

c, at µ and ν. Notice that σ3(b) should be inferior for c, as c is superior for σ3(b) by

assumption and no pair of agents are mutually superior by definition. It then follows

that c ∈ I◦µ, since σ3(b) 6= π(c) by the assumption of µ
(
σ3(b)

)
6= σ4(b). This in turn

implies via Property 2 that π(c) is not matched to a superior partner at µ. Actually,

the same should be true also at ν, since π(c) cannot be either a or b.15 Therefore, c and

π(c) should necessarily agree to form a deviation from ν, after which σ3(b) becomes

single and we can apply the logic of the above Observation.

15Formally, we can confirm π(c) 6∈ {a, b} as follows: If she were a, her successor c ≡ µ
(
σ3(b)

)
should

be b. If so, however, σ3(b) must be single at ν, which would be a contradiction. If π(c) were equal to b,
σ(b) = c ∈ I◦µ should follow, but this would contradict the assumption of µ (σ(b)) = σ2(b).
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What we have seen so far is that the deviation by adjacent {a, b} with a = π(b)

is not robust up to (at most) depth 3 when µ (σ(b)) = σ2(b) and µ
(
σ3(b)

)
6= σ4(b).

Following the same line of arguments, we can also confirm that it is not robust up to

(at most) depth 2 when we instead have µ(σ(b)) 6= σ2(b): If µ (σ(b)) is inferior for

σ(b), we match {b, σ(b)} so as to make a single. If µ (σ(b)) = ν (σ(b)) is superior,

we first make σ(b) single by matching µ (σ(b)) with her predecessor, and then, we

match {b, σ(b)} to leave a single. To summarize this subsection, we have confirmed

the following:

Claim 3. Let {a, b} be an adjacent pair of agents in an odd party P with |P| > 7 and suppose

that ({a, b}, ν) is a deviation from a regular matching µ safisfying Properties 1–5. Then, the

deviation ({a, b}, ν) is not robust up to depth 3.

4.4 Complications with Non-Pairwise Deviations

In the full proofs of Theorems 1–3, we allow for coalitional deviations (i.e., (D, ν) with

|D| > 2), yet our basic strategy remains the same as in the case of pairwise deviations:

We pick a pair {a, b} ⊆ D such that ν(a) = b, µ(a) 6= a, and a is inferior for b; and

we find a shortest sequence of subsequent deviations at the end of which a becomes

single. More specifically, we divide the possible deviations into two classes based on

a criterion that reduces to whether D = {a, b} is adjacent or not when the deviation is

pairwise. In one of the two cases, {b, π(b)} forms a deviation directly from ν, while in

the other, we identify a sequence of three or less subsequent deviations that eventually

involve {b, σ(b)}. In those respects, the full proofs for the sufficient conditions are

parallel to our arguments above for pairwise deviations.

The difficulty in such generalizations largely lies in the gap between µ and ν. For

instance, suppose that (D, ν) is a deviation from a regular µ satisfying all the properties

and that {a, b} ⊆ D is a non-adjacent pair satisfying the suppositions in the previous

paragraph. If the deviation is pairwise, i.e., if D = {a, b}, it ensures that π(b) is not a

deviator and hence, ν(π(b)) is no better than µ(π(b)) for π(b).16 This helps to connect

16Note that π(b) = b is impossible; if so, a should be unacceptable for b since the former is inferior
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the restriction imposed by Property 2 on µ to our arguments of ν, as we did in Section

4.2. When D ) {a, b}, in contrast, we need to take into account the possibility of

π(b) ∈ D. In particular, it is possible that π(b) is matched to a superior partner at

ν, even though Property 2 guarantees that µ(π(b)) is inferior. Generally speaking,

allowing coalitional deviations broadens the possible gap between µ and ν, and as a

consequence, we have to scrutinize a larger number of subcases. To partially fill in the

broader gap, we will introduce another condition, which is unnecessary in the case of

pairwise deviations, in addition to Properties 1–5.

4.5 Tensions among the Sufficient Conditions

Before concluding this section, we briefly explain the difficulty in the construction

part of our proofs of Theorems 1–3, from which we have hitherto abstracted away.

As we emphasized in the introduction, one of the keys in our construction is how to

match (consecutive) adjacent pairs, and more formally, it is embodied in Properties

3–5. Then, one might expect a two-step procedure that (i) fixes all the adjacent pairs to

be matched first and (ii) matches non-adjacent pairs among the remaining afterwards.

In fact, however, our algorithm in Appendix B needs to be more complicated so as to

circumvent the difficulty illustrated in the following example.

Example 4. Let N := {a1, a2, . . . , a11} and σ : N → N be such that σ(ai) := ai+1 for all

ai ∈ N, where the subscripts are in modulo 11. Also define � as follows:

• For each i 6∈ {3, 6, 11}, �ai is given by ai+1 �ai ai−1 �ai ai, and

• the preferences for the other three agents are given by

�a3 : a4 �a3 a2 �a3 a11 �a3 a6 �a3 a3,

�a6 : a7 �a6 a5 �a6 a3 �a6 a6, and

�a11 : a3 �a11 a1 �a11 a10 �a11 a11,

where all the unlisted agents are unacceptable. Note that σ is the unique party permu-

for the latter.
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tation for (N,�). In this problem, no regular matching µ both satisfies Properties 1–5

and matches the following four adjacent pairs: {a1, a2}, {a4, a5}, {a7, a8}, and {a9, a10}.

By regularity, such µ would need to match either {a3, a6} or {a3, a11} among the re-

maining three agents. On the one hand, if µ matches {a3, a6} leaving a11 single, then

it violates Property 1, since a3 is superior for a11 and prefers a11 to a6. On the other

hand, if µ matches {a3, a11} leaving a6 single, then a6 ∈ I◦µ but σ5(a6) ≡ a11 6∈ I◦µ; i.e.,

Property 5 fails. Nevertheless, there is a regular matching that satisfies all the proper-

ties. An example is µ∗ := {{a1}{a2, a3}, {a4}, {a5, a6}, {a7}, {a8, a9}, {a10, a11}}, which

matches different four adjacent pairs from above. �

In matching adjacent pairs, we need to carefully keep the compatibility of our

sufficient conditions. In the above example, the two patterns of four adjacent pairs,

{{a1, a2}, {a4, a5}, {a7, a8}, {a9, a10}} and {{a2, a3}, {a5, a6}, {a8, a9}, {a10, a11}}, are

symmetric up to rotation.17 Namely, we cannot differentiate them from the informa-

tion contained in the party permutation σ, while only one of them makes Properties

1 and 5 compatible. In other words, the information contained in σ is insufficient to

match adjacent pairs avoiding the tension among the desired conditions. In our con-

struction presented in Appendix B, thus, we carefully match non-adjacent pairs based

on more detailed information of preferences, prior to fixing all the adjacent pairs to be

matched.

5 Relation to Other Solution Concepts

5.1 Bargaining Set

Particularly with depth k = 1, our definition of SaRD matchings might remind readers

of the bargaining set in cooperative game theory. In our definition, a deviation is

robust if there is no further deviation that makes an original deviator worse off, and a

matching is SaRD if there is no robust deviation. In cooperative games, an objection

17More specifically, σ maps {a1, a2} , {a4, a5}, {a7, a8}, and {a9, a10} to {a2, a3}, {a5, a6},{a8, a9}, and
{a10, a11}, respectively.
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is justified if it has no counterobjection, and an imputation is in the bargaining set

if it has no justified objection. By definitions, our SaRD is a weakening of stability,

whereas the bargaining set is a superset of the core, which is equivalent to the set of

stable matchings in matching models. Given those similarities, it would be natural to

ask how the SaRD matchings relate to the bargaining set.

To closely compare the two concepts, let us formally define Zhou’s (1994) bargain-

ing set in our setup.18 An objection against a matching µ is a deviation (D, ν) from µ.

A counterobjection against an objection (D, ν) is a pair (D′, ν′) such that

• D′ − D, D− D′, D ∩ D′ are all non-empty,

• for all i ∈ D′, ν′(i) 6= µ(i) implies ν′(i) ∈ D′, and

• ν′(a) �a µ(a) for all a ∈ D′ − D and ν′(b) �b ν(b) for all b ∈ D ∩ D′.

The similarity between our SaRD matchings and the bargaining set lies in that both

require the existence of some (D′, ν′) that precludes a deviation (D, ν) from (or, an

objection against) µ.

The key distinction, however, exists in the reference points with which (D′, ν′) is

compared. On the one hand, in our definition of SaRD matchings, (D′, ν′) is a devi-

ation from ν and hence, all the agents in D′ compare ν and ν′. On the other hand, in

the definition of the bargaining set, the agents in D′ − D compare µ and ν′.19 Conse-

quently, the (set of) SaRD matchings and bargaining set are logically independent as

we show by examples below:

Example 5 (The SaRD matchings are not included in the Bargaining Set). Let N :=

{a1, a2, a3} and �ai be such that ai+1 �ai ai−1 �ai ai for each ai ∈ N, where the sub-

scripts are in modulo 3. In this problem, it is easy to check that µ = {{a1, a2}, {a3}} is

SaRD up to depth 1: (D, ν) = ({a2, a3}, {{a1}, {a2, a3}}) is the only deviation from µ,

and this is not robust up to depth 1 as ν′ B{a1,a3} ν and agent a2 ∈ D gets strictly worse

off at ν′ than at µ, where ν′ = {{a1, a3}, {a2}}. However, this µ is not in the bargaining
18For a more standard definition and characterization of Zhou’s bargaining set in matching problems,

see Klijn and Massó (2003) and Atay et al. (2019). Our definition below is equivalent to theirs.
19While there exist a number of different definitions of a bargaining set (e.g., Aumann and Maschler,

1964; Mas-Colell, 1989) all of those we are aware of commonly require that a counterobjecction to be an
objection against the original allocation (i.e., contain some comparison between ν′ and µ). Hence, our
point here should apply to the general concept of bargaining sets, not only to the one by Zhou (1994).
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set, because ν′(a1) = a3 6�a1 a2 = µ(a1) and hence, ({a1, a3}, ν′) is not qualified to be a

counterobjection against ({a2, a3}, ν). �

Example 6 (The SaRD matchings do not include the Bargaining Set). Let

N := {m1, m2, w1, w2, w3} and � be such that

w1 �m1 w2 �m1 w3 �m1 m1 �m1 m2, w2 �m2 w1 �m2 w3 �m2 m2 �m2 m1,

m2 �w1 m1 �w1 w1 �w1 w2 �w1 w3, m1 �w2 m2 �w2 w2 �w2 w1 �w2 w3, and

w3 �w3 m1 �w3 m2 �w3 w1 �w3 w2.

This problem is a marriage problem with M = {m1, m2} and W = {w1, w2, w3} being

the sets of men and women. It is easy to verify that µ = {{m1}, {m2}, {w1}, {w2}, {w3}}

is in Zhou’s (1994) bargaining set.20 However, Proposition 1 implies that this µ is not

SaRD up to any depth k, as it leaves mutually-acceptable pairs of singles. �

5.2 Farsightedly Stable Set

Our concept of SaRD might also remind readers of the farsighted stable set à la

Harsanyi (1974), as condition (∗) in the definition of robust deviations on page 8 might

appear to resemble indirect dominance in the definition of stable sets.21 In relation to

the farsighted stable set, we make three remarks here: First, the stable set is a set solu-

tion whereas ours is a pointwise (i.e., matching-wise) concept. Moreover, Klaus et al.

(2011) establish in the roommate problem that a singleton is a farsighted stable set if

and only if its unique element is a stable matching.22 Therefore, although focusing on

singletons can be a possible way to compare a set solution with a point solution, such

an approach is not helpful to overcome the general non-existence of a stable matching

in our setup.

20In this environment, Zhou’s bargaining set is the set of all matchings that are both weakly stable
and weakly Pareto efficient (Klijn and Massó, 2003; Atay et al., 2019). A matching µ is weakly stable if for
any pairwise deviation ({a, b}, ν) from it, there exists either (i) a′ such that a′ �b a and b �a′ µ(a′) or
(ii) b′ such that b′ �a b and a �b′ µ(b′).

21For the formal definitions of farsighted stable sets, see also Chwe (1994) and Ray and Vohra (2015).
22See also Ehlers (2007) and Mauleon et al. (2011) for related results in the marriage problem.
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Second, it should be noted that we can obtain exactly the same set of results even

if we introduce “farsightedness” into our definitions. Specifically, let us say that a de-

viation (D, ν) from a matching µ is farsightedly-robust up to depth k, if νκ �D µ for any

sequence of deviations (D1, ν1), . . . , (Dκ, νκ) with κ ≤ k that satisfies νκ �Dλ
νλ−1 for

all λ ∈ {1, . . . , κ} (with ν0 := ν) in addition to the original requirement (∗). Such

a definition could be seen “farsighted” as the agents in Dλ also compare the final

outcome νκ with the situation before they deviate, νλ−1, while they only compare νλ

and νλ−1 in our original definitions. We can also define farsightedly-SaRD matchings

up to depth k based on this farsighted-robustness. Notice that taking a depth k as

fixed, farsighted-robustness is implied by and thus weaker than the original robust-

ness, since the former considers only a subset of subsequent deviations that the latter

does. Consequently, the farsighted-SaRD is stronger than the original SaRD. How-

ever, our existence results continue to hold with those alternative definitions: This is

because whenever we consider a sequence of deviations, no agent deviates more than

once along the sequence; that is, when we conclude that an original deviation is not

robust up to depth k, it is also shown to be not farsightedly-robust up to depth k.

Lastly, several recent studies (Ray and Vohra, 2019; Dutta and Vohra, 2017; Dutta

and Vartiainen, 2020) propose new concepts of farsighted stable sets that incorporate

dynamic consistency à la subgame perfection. Among them, the one by Dutta and Var-

tiainen (2020), history-dependent rational-expectation farsighted stable set (HREFS), is

particularly relevant to the roommate problem, as it always exists in any finite game.

In Appendix G of the working paper version (Hirata et al., 2020), however, we pro-

vide a class of examples where the set of all individually rational matchings forms an

HREFS. At least without further refinements, thus, the HREFS may be too inclusive

and not necessarily useful in the context of the roommate problem.

5.3 P-stable Matching

Inarra et al. (2008) propose the following concept of P-stable matchings, which is

closely related to absorbing sets and stochastic stability in the roommate problem
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(Iñarra et al., 2013; Klaus et al., 2011):

Definition 3. Given a stable partition P = P(σ), a matching µ is said to be P-stable

if |P− Aµ| ≤ 1 for all P ∈P and µ(b) = b for all b 6∈ Aµ. �

Note that P-stable matchings differ in two respects from the SaRD matchings we

construct in this paper. First, a P-stable matching always matches as many adjacent

pairs as possible, whereas we do not in our construction. As a result, even when it is

SaRD up to some depth, its depth is generally greater than what we construct. Second,

it may not be regular, since it does not match any non-adjacent pair. By Proposition 1,

thus, it may not be SaRD up to any depth. However, we can always convert a P-stable

matching into a SaRD matching by eliminating mutually-acceptable pair of singles in

a particular way, and its depth can be characterized as follows:

Proposition 2. Suppose that #(N,�) = 2k + 1 for some k ∈ N. Then, for any P-stable

matching µ′, there exists a matching µ that is SaRD up to depth k and “includes” µ′ in the

sense that µ′(a) = b 6= a implies µ(a) = b for all a, b ∈ N.

Proof. See Appendix C. �

Combined with the results of Inarra et al. (2008, Thoerem 1) and Iñarra et al. (2013,

Theorem 1), this proposition implies that when #(N,�) = 2k + 1, the set of all SaRD

matchings up to depth k is reachable by random paths of myopic deviations. More

specifically, for any matching µ in (N,�) with #(N,�) = 2k + 1, there exist some

(D1, ν1), . . . , (Dn, νn) such that νn BDn νn−1 . . . ν1 BD1 µ and νn is SaRD up to depth k.23

It should be also noted, however, that the same is not always true for SaRD matchings

up to depth 3 when #(N,�) > 7, since the matchings we construct for depth 3 may

not include a P-stable matching. For instance, suppose that N = {a1, . . . , a9}, and

that for each i ∈ N, let �ai be such that ai+1 �ai ai−1 and all the other agents are

unacceptable, where the subscripts are in modulo 9. Fix a P-stable matching, say

23In the more general coalition formation game, Barberà and Gerber (2003, Theorem 2.1) show that
the set of durable coalition structures are reachable by myopic deviations. Since durability coincides
with SaRD up to a sufficiently large k, the above claim can be seen as a refinement of their theorem in
the special case of roommate problems.
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µ = {{a1, a2}, {a3, a4}, {a5, a6}, {a7, a8}, {a9}}, as the initial matching. Then after any

sequence (D1, ν1), . . . , (Dn, νn) of myopic deviations such that νn BDn . . . ν1 BD1 µ, the

resulting matching νn is one of the P-stable matchings, which are SaRD up to depth 4

but not depth 3.
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A Conditions for the Existence in Theorems 1–3

In this appendix, we identify a set of sufficient conditions for a regular matching to

be SaRD up to depth 3, which also suffice for depth 1 and 2 when #(N,�) is 3 and 5.

When we restricted deviations to be pairwise in Section 4, we have seen the following

five properties constitute such a set of conditions. They continue to be a part of the

conditions for the general case, although we will add one last property below.

Properties for a matching to be SaRD up to depth 3 (restated). Take a problem

(N,�), a party permutation σ, and a matching µ as given and fixed. Letting I◦µ =

{i ∈ N : π(i) �i µ(i)} and Aµ = {i ∈ N : i 6= µ(i) ∈ {σ(i), π(i)}}, the five properties

are given as follows:

1. For any a, b ∈ N, if a is superior for b and µ(b) = b, then µ(a) �a b.

2. For any b ∈ I◦µ, µ(π(b)) is inferior for π(b).
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3. For each even party P ∈P(σ), we have P ⊆ Aµ.

4. For each odd party P ∈P(σ) such that |P| ≤ 7, we have |P− Aµ| = 1.

5. For each odd party P ∈ P(σ) such that |P| > 7, the following is satisfied: For

any b ∈ P ∩ I◦µ such that µ (σ(b)) = σ2(b) and µ
(
σ3(b)

)
= σ4(b), we have both

σ5(b) ∈ I◦µ and σ6(b) 6∈ I◦µ. �

Remember that in Section 4, we divided the case depending on whether the pair

of deviators are adjacent or not. When the deviation is by a non-adjacent pair {a, b},

we ensured it is not robust up to depth 1, by forming the subsequent deviation by

{π(b), b}. To generalize this idea, we introduce the following definition.

Definition 4. Taking an arbitrary regular matching µ and a deviation (D, ν) from it as

given, we say that {a, b} ⊆ D is a convenient pair of deviators if all of the following hold:

{a, b} 6∈ P(σ), µ(a) 6= a, ν(a) = b, a is inferior for b, and ν(π(b)) is inferior for π(b).

�

When a deviation (D, ν) involves a convenient pair {a, b}, it is not robust up to

depth 1 as we state as a lemma below, because b and π(b) form a deviation from ν.

Note that when {a, b} is a convenient pair of deviators, they cannot be adjacent to each

other: The qualification of {a, b} 6∈P(σ) precludes the possibility of a = π(b) = σ(b).

Then, a cannot be inferior for b if a = σ(b) 6= π(b). Moreover, if a = π(b) 6= σ(b),

then, ν(π(b)) = b = σ(a) cannot be inferior for π(b) = a. The following lemma thus

generalizes Claim 1 in Section 4.2 in some sense. It should be noted, however, the

former holds solely by the definition of a convenient pair, whereas the latter assumes

Properties 1–2. Claim 1 essentially says that non-adjacency implies convenience (and

equivalently, non-convenience implies adjacency) when D = {a, b} and µ meets the

two properties.

Lemma 2. If a deviation (D, ν) from a regular matching µ contains a convenient pair {a, b}

of deviators, then it is not robust up to depth 1.

Proof. The proof is immediate and thus omitted. �
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The following lemma states that we can find a convenient pair of deviators unless

the deviation has a special structure. When the deviation is pairwise, the conclusion of

this lemma reduces to the deviators being adjacent to each other. Thus, it generalizes

the way we divided the pairwise deviations in Section 4.

Lemma 3. Suppose ν BD µ, where µ is a regular matching satisfying Properties 1–3, and

that no pair {a, b} ⊆ D is convenient. Then, DS = ν(DI) = π(DI), where DS := {i ∈ D :

ν(i) ∈ D is superior for i} and DI := D− DS.

Proof. See Section A.1 below. �

In general, a deviation may not contain a convenient pair even though all the

newly-matched pairs of deviators are non-adjacent. The following is an example of

such a deviation.

Example 7. Let N := {a1, . . . , a5, b1, . . . , b5} and σ : N → N be such that σ(ai) = ai+1

and σ(bi) = bi+1 for each i, where the subscripts are in modulo 5. Also define � as

follows: For each i ∈ {1, 2, 3}, �ai and �bi are such that ai+1 �ai ai−1 �ai ai and

bi+1 �bi bi−1 �bi bi. For the other four agents, the preferences are given by

�a4 : b5 �a4 a5 �a4 a3 �a4 a4, �a5 : a1 �a5 a4 �a5 b4 �a5 a5,

�b4 : a5 �b4 b5 �b4 b3 �b4 b4, and �b5 : b1 �b5 b4 �b5 a4 �b5 b5.

In any case, all the unlisted agents are unacceptable. Note that σ is the unique party

permutation for (N,�), and there are two non-adjacent mutually-acceptable pairs,

{a4, b5} and {b4, a5}. Now, consider the following two matchings,

µ :=
{
{a1, a2}, {a3, a4}, {a5}, {b1, b2}, {b3, b4}, {b5}

}
, and

ν :=
{
{a1, a2}, {a3}, {a4, b5}, {b1, b2}, {b3}, {b4, a5}

}
.

Notice that µ is a regular matching satisfying all the properties and that (D, ν) is a

deviation from µ with D = {a4, a5, b4, b5}. It is easy to see neither {a4, b5} nor {b4, a5}
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is convenient. The conclusion of Lemma 3, DS = ν(DI) = π(DI), holds with DS =

{a4, b4} and DI = {a5, b5}. �

Now, let us introduce our last property, which is unnecessary when the deviation

is pairwise as in Section 4. Its purpose is to preclude the possibility of four consecutive

agents being deviatiors. When no pair of deviators is convenient and four consecutive

agents are all deviators, by Lemma 3, there must exist b among the four such that

b, σ2(b) ∈ DI and π(b), σ(b) ∈ DS. The next property precludes the possibility of

b, σ2(b) ∈ DI , because DI is a subset of I◦µ by definitions.

Property 6. For any b ∈ I◦µ = {i ∈ N : π(i) �i µ(i)}, we have σ2(b) 6∈ I◦µ. �

The rest of this appendix establishes the following two propositions, which gener-

alize Claims 2–3 in Section 4.3. We present their proofs in A.2 and A.3, respectively,

after we prove Lemma 3 in A.1.

Proposition 3. Suppose that µ is a regular matching satisfying Properties 1–4. If #(N,�) is

no greater than 3, 5, and 7, respectively, no deviation from µ is robust up to depth 1, 2, and 3.

Proof. See Section A.2 below. �

Proposition 4. Suppose that µ is a regular matching satisfying Properties 1–6. Then, no

deviation from µ is robust up to depth 3.

Proof. See Section A.3 below. �

A.1 Proof of Lemma 3

Since each deviator should be matched to another at ν and no pair of agents are mu-

tually superior, we have ν(DS) ⊆ DI and hence |DS| ≤ |DI |. It thus suffices to es-

tablish DS ⊇ ν(DI) and DS ⊆ π(DI) for the following reason: Since ν is a bijection,

DS ⊇ ν(DI) is equivalent to ν(DS) ⊇ (ν ◦ ν)(DI) ≡ DI . Combined with ν(DS) ⊆ DI ,

it thus entails ν(DS) = DI . As ν(DS) = DI implies |DS| = |DI |, then, DS ⊆ π(DI)

implies DS = π(DI).
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First, to establish DS ⊆ π(DI), arbitrarily fix a0 ∈ DS. By the definition of DS,

b0 := ν(a0) is superior for a0 and is a member of DI . Property 1 implies µ(a0) 6= a0, and

hence, {a0, b0} satisfies all the requirements to be a convenient pair except ν
(
π(b0)

)
being inferior for π(b0).24 To meet the supposition of the lemma, thus, ν

(
π(b0)

)
must

be superior for π(b0). We then have π(b0) ∈ DS, because b0 ∈ DI implies b0 ∈ I◦µ and

hence, µ
(
π(b0)

)
is inferior for π(b0) by Property 2. Now recursively define (at, bt) :=(

π(bt−1), ν(at)
)

for each t ∈N. What we have shown from a0 ∈ DS is a1 ∈ DS, which

implies b1 ∈ DI . By repeatedly applying the arguments, we can obtain at ∈ DS and

bt ∈ DI for each t. Since the number of agents is finite, there must exist some T such

that aT = a0, or equivalently, a0 = π
(
bT−1). As bT−1 ∈ DI , it follows that a0 ∈ π(DI).

Since a0 is an arbitrary member of DS, we can conclude that DS ⊆ π(DI).

To show DS ⊇ ν(DI) and thereby complete the proof, next suppose towards a

contradiction that there are α, β ∈ DI such that ν(α) = β. Since the original matching

µ is assumed to be regular, at least one of µ(α) 6= α and µ(β) 6= β should hold; without

loss of generality, assume µ(α) 6= α. Note that {α, β} 6∈ P(σ), as otherwise Property

3 requires they be matched at µ. For {α, β} not to be a convenient pair of deviators,

then, π(β) must be matched to a superior partner. Then, π(β) must be a member of

DS, because β ∈ DI entails β ∈ I◦µ, and hence, µ (π(β)) should be inferior for π(β)

by Property 2. Now apply the arguments in the previous paragraph starting from

a0 = π(β): That is, at = (π ◦ ν)ta0 is a member of DS for each t, and aT = a0 for some

T. However, these imply that aT−1 ∈ DS and aT−1 = ν(β) = α, which contradicts to

the assumption of α ∈ DI . �

A.2 Proof of Proposition 3

Suppose that (D, ν) is a deviation from a regular matching µ satisfying Properties 1–4.

By Lemmas 2–3, we can restrict our attention to the case of DS = ν(DI) = π(DI),

where DS = {i ∈ D : ν(i) �i π(i)} and DI = D− DS. Recall also that DI ⊆ I◦µ = {j ∈

24Note that {a0, b0} cannot be a party; if {a0, b0} ∈ P(σ), they are mutually inferior to each other,
and hence, ν(a0) = b0 and a0 ∈ DS are incompatible.
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N : π(j) �j µ(j)} by definitions.

Now arbitrarily fix b ∈ DI ⊆ I◦µ and let a := ν(b). Since we consider the case of

DS = ν(DI), we have a ∈ DS, which means b is superior for a. Then µ(a) 6= a should

follow, as otherwise Property 1 would require µ(b) �b a. Note also that P(b) is odd,

as Property 3 requires that no even party should intersect with I◦µ. It suffices to show

that (D, ν) is not robust up to depth 1, 2, and 3, respectively if |P(b)| = 3, 5, and 7.

Suppose |P(b)| = 7 and hence, P(b) = {π(b), b, σ(b), . . . , σ5(b)}. Since b ∈ I◦µ im-

plies b 6∈ Aµ, Property 4 requires that three adjacent pairs, {σ(b), σ2(b)}, {σ3(b), σ4(b)},

and {σ5(b), π(b)} should be matched at µ. Since DI is a subset of I◦µ, b should be the

unique member of P(b) ∩ DI . Under the assumption of DS = π(DI), this in turn

implies P(b) ∩ DS = {π(b)}. Since σ5(b) 6= π(b) by the assumption of |P(b)| = 7,

σ5(b) cannot be a member of D and should be single at ν. By matching
{

σ4(b), σ5(b)
}

,{
σ2(b), σ3(b)

}
, and {b, σ(b)}, thus, we can construct ν1, ν2, and ν3 so that

ν3 B{b,σ(b)} ν2 B{σ2(b),σ3(b)} ν1 B{σ4(b),σ5(b)} ν.

Since a ≡ ν(b) ∈ D is single at ν3, the original deviation (D, ν) is not robust up to

depth 3. The cases for |P(b)| = 3 and 5 are similar and thus omitted. �

A.3 Proof of Proposition 4

Suppose that (D, ν) is a deviation from a regular matching µ satisfying Properties 1–6.

By Lemmas 2–3, we can restrict our attention to the case of DS = ν(DI) = π(DI),

where DS = {i ∈ D : ν(i) �i π(i)} and DI = D − DS. Recall that by definitions,

DI ⊆ I◦µ and any deviator should belong to a non-solitary odd party.25

To begin with, fix an agent b ∈ DI such that σ3(b) 6∈ DS. We should be able to

find such b for the following reason: Suppose that there is no such b. Since DS =

π(DI), then, σ4(b′) ∈ DI holds for all b′ ∈ DI . This, however, is a contradiction since

25Under the assumption of DS = π(DI), if a party intersects with D, then it should intersect with
both DI and DS, which are disjoint to each other by definitions. Thus, no solitary party can be a part of
D. Any even party is disjoint from D because it is so from DI by Property 3.
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P(b′) is odd for any b′ ∈ DI by Property 3.26 Taking b with σ3(b) 6∈ DS as given,

let a := ν(b) ∈ DS, m ∈ N be such that |P(b)| = 2m + 1, and cj := σj(b) for each

j ∈ {1, . . . , 2m}. Remember that a ∈ DS means b = ν(a) is superior for a and thus

implies µ(a) 6= a by Property 1. To establish the non-robustness of (D, ν) up to depth κ,

it suffices to construct a sequence of κ further deviations such that νκ BDκ · · · ν1 BD1 ν,

a 6∈ D1 ∪ · · · ∪ Dκ, and b ∈ Dκ.

If ν(c1) is inferior for c1, then (D, ν) is not robust up to depth 1 since we can con-

struct ν1 by immediately matching b and c1 so that ν1 B{b,c1} ν. For the rest of the

proof, thus, we investigate two cases assuming ν(c1) is superior for c1. Notice that in

any case, a 6∈ {c1, ν(c1)}.27

Case 1: ν(c1) 6= c2 is superior for c1. We first show c1 6∈ D as follows. Towards a

contradiction, suppose otherwise. Since ν(c1) is assumed to be superior, then, c1 ∈ DS

and hence, c2 ∈ DI by DS = π(DI). This, however, contradicts Property 6, because

b ∈ DI and c2 ≡ σ2(b) ∈ DI respectively imply b ∈ I◦µ and σ2(b) ∈ I◦µ. We should thus

have c1 6∈ D, which also necessitates ν(c1) = µ(c1) 6∈ D because ν(c1) 6= c1.

Next we define d := ν(c1) = µ(c1) and show that π(d) is matched to an inferior

partner or is single at ν. To begin, remember that c1 is inferior for d, as no pair is mu-

tually superior. Since d 6= c2 ≡ σ(c1) by assumption, it follows that d ∈ I◦µ. Property

2 then guarantees that µ(π(d)) is inferior for π(d). Moreover, π(d) is not a member

of DS; otherwise, d ∈ DI follows from DS = π(DI), but we have already confirmed

d ≡ ν(c1) 6∈ D. Therefore, π(d) ∈ D is possible only with π(d) ∈ DI . Consequently,

ν(π(d)) is inferior for π(d) no matter if π(d) ∈ D or not. Since {π(d), d} cannot be a

two-agent party, d is superior for π(d) by the definition of a party permutation.28 It

thus follows that π(d) prefers d to ν(π(d)).

Given the above observations, we can construct ν1 and ν2 by matching {π(d), d}
26Given P is an odd party, |P|mod 4 must be either 1 or 3. In either case, {σ4t(b) : t ∈ N} = P

holds for any b ∈ P. If b ∈ DI for some b ∈ P and b′ ∈ DI ⇒ σ4(b′) ∈ DI for all b′ ∈ P, thus,
P = {σ4t(b) : t ∈N} ⊆ DI should follow. This, however, contradicts DS = π(DI).

27First, a 6= c1 because b is assumed to be superior for a whereas b is inferior for c1 ≡ σ(b). Second,
a 6= c1 because a = ν(b) by assumption and b 6= c1 by definition.

28If {π(d), d} ∈ P(σ), Property 3 would require they be matched at µ; however, it would contradict
the definition that d := ν(c1) = µ(c1).
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and {b, c1}, respectively, so that ν2 B{b,c1} ν1 B{π(d),d} ν. Since a ≡ ν(b) is single at ν2,

the original deviation (D, ν) is not robust up to depth 2.

Case 2: ν(c1) = c2. Note that this case arises only when µ(c1) = c2, as Property 6

guarantees c2 6∈ I◦µ, which is equivalent to µ(c2) �c2 c1. Note further that |P(b)| ≥ 5 is

also necessary; if |P(b)| = 3, then c2 should be equal to π(b) ∈ DS, but this contradicts

ν(c2) = c1 being inferior for c2. Therefore, c3 ≡ σ3(b) 6= b in this case. Note that this

also entails a 6∈ {c3, ν(c3)}.29 If ν(c3) is inferior for c3, then ν is not robust up to depth

2, because we can construct ν1 and ν2 by respectively matching {c2, c3} and {b, c1}, so

that ν2 B{b,c1} ν1 B{c2,c3} ν.

For the rest of the proof, we consider the subcase where ν(c3) is superior for c3.

As we have chosen b so that c3 ≡ σ3(b) 6∈ DS, we should have c3 6∈ D and hence

ν(c3) = µ(c3). To simplify the notation, in what follows, let e denote ν(c3) = µ(c3).

Note that a 6∈ {c3, e}, since a ∈ D by assumption. First, suppose e 6= c4. Then, by the

same arguments as when we showed ν (π(d)) is inferior for π(d) in Case 1, ν (π(e))

must be inferior for π(e). Since this implies π(e) 6= a, we can then construct ν1, ν2, and

ν3, by respectively matching {π(e), e}, {c2, c3}, and {b, c1}, so that ν3 B{b,c1} ν2 B{c2,c3}

ν1 B{π(e),e} ν. That is, the original deviation (D, ν) is not robust up to depth 3.

To complete the proof, our last subcase to consider is e = c4. Remember that we

have shown P(b) ≥ 5. Then, e = c4 requires c4 6= π(b) and hence |P(b)| ≥ 7, since

c3, e 6∈ D as argued above while π(b) ∈ D by assumption. That is, we have c5 ≡

σ5(b) 6∈
{

b, σ(b), . . . , σ4(b)
}

. Now, we prove that ν(c5) cannot be superior for c5 for

the following reasons:

• If |P(b)| = 7, Property 4 requires µ should match three adjacent pairs, {c1, c2},

{c3, c4}, and {c5, c6}. Since DI ⊆ I◦µ and DS = π(DI), it follows that b and

c6 ≡ π(b) are the unique member of P ∩ DI and of P ∩ DS, respectively. That is,

c5 is not a deviator and is left, by c6 ≡ π(b), to be single at ν.

• If P(b) > 7, Property 5 requires c5 ∈ I◦µ and c6 6∈ I◦µ. For ν(c5) to be superior for

29First, a 6= c3 follows from the assumption of σ3(b) 6∈ DS. Second, a = ν(b) and b 6= c3 imply
a 6= ν(c3).
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c5, thus, c5 ∈ DS is necessary. Under the assumption of DS = π(DI), however,

this requires c6 ∈ DI , which is incompatible with c6 6∈ I◦µ.

Given ν(c5) 6= c4 is inferior for c5, we have a 6= c5. We can thus construct ν1, ν2, and

ν3, by matching {c4, c5}, {c2, c3}, and {b, c1}, respectively, so that ν3 B{b,c1} ν2 B{c2,c3}

ν1 B{c4,c5} ν. Since a ≡ ν(b) is single at ν3, the original deviation (D, ν) is not robust

up to depth 3. �

B Construction of a SaRD Matching for Theorems 1–3

This appendix presents an algorithm to compute, for any problem (N,�), a regular

matching that satisfies Properties 1–6. We first provide an overview of the algorithm

in B.1. We then fully specify the algorithm in B.2. Lastly, we establish in B.3 that its

outcome is always regular and satisfies all the properties (Proposition 5). Combined

with the results of Appendix A, this constitutes the proofs for Theorems 1–3. It should

also be noted that the outcome of our algorithm is always a stable matching whenever

there is any.

B.1 Overview of the Algorithm

In this subsection, we overview our algorithm and briefly explain how it ensures reg-

ularity and Properties 1–6. Our algorithm takes a problem (N,�) and a party per-

mutation σ as arbitrarily given, and it computes a matching µ as its output through

six phases. It matches pairs step by step, and it never resolves any pair it once has

matched. The algorithm contains some arbitrary choices of agents and pairs, and its

outcome generally varies with those choices. However, any outcome of the algorithm

meets our goals even if it is not unique.

In Phases 1–2 of the algorithm, we focus on even parties and “small” odd parties,

and we form as many adjacent pairs of agents (with respect to the given σ) as possible.

In Phase 1, we match every agent a in each even party to an agent adjacent to her, i.e.,

to either σ(a) or π(a). In Phase 2, we form |P|−1
2 adjacent pairs for each odd party
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P whose size |P| is less than or equal to seven, leaving exactly one arbitrary agent

unmatched. Remember that these are exactly what Properties 3–4 require. Phase 1

also ensures that at the final outcome µ, the even parties should be disjoint from I◦µ.

Thus, Properties 2 and 6 are vacuous for the agents in an even party. Further, if a

small odd party contains b ∈ I◦µ, she should be the one who is left unmatched in Phase

2; thus, π(b) and σ2(b) should be matched, respectively, to π2(b) and σ(b). That is,

Properties 2 and 6 will also hold for b ∈ I◦µ within the small odd parties.

In Phase 3, we match adjacent pairs in each odd party whose size is a multiple of

three. Specifically, we match n adjacent pairs for a party of 3n agents, by skipping

exactly one agent between any two adjacent pairs. Those parties can contain multiple

b ∈ I◦µ in the end, depending on the outcomes of the subsequent phases. Yet, it is

still true that if b is left unmatched at the end of this phase, π(b) and σ2(b) should be

matched, respectively, to π2(b) and σ(b). Thus, Properties 2 and 6 should be satisfied

for b ∈ I◦µ from a party of 3n agents. Property 5 is also vacuous for such parties, as this

phase does not consecutively match two adjacent pairs.

Phase 4 is the main innovation of this algorithm. Contrary to the previous phases,

here we match non-adjacent (and possibly across-party) pairs, as well as adjacent ones.

To begin, we arbitrarily order and label all the agents who are yet to be matched as

x1, . . . , xT. Each step t of this phase then proceeds roughly as follows: Let Yt be the set

of those who are still unmatched, are mutually acceptable with xt, and perceive xt as

superior.30 If xt is already matched during an earlier step or if Yt is empty, then we

proceed to the next step without matching any pair. Otherwise, we match xt to her

most preferred agent yt among Yt. When xt and yt are matched, we then check if we

can match any adjacent pairs in P(xt) and P(yt). If we can, we do so in a systematic

way. In particular, we “exhaust” adjacent pairs in the following sense: If an adjacent

pair in party P is formed at step t of this phase, then P contains no adjacent pair both

of whom remain unmatched after this step. Thus, no adjacent pair will be matched in

the same party afterwards.

30 More precisely, we exclude π(xt) and π2(xt) from Yt. Since xt is inferior for σ(xt) by definition,
none of Yt is adjacent to xt.
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Phase 4 is designed to simultaneously guarantee all of Properties 1, 2, 5, and 6 for

the relevant parties. First, the sequential matching of non-adjacent {xt, yt}’s ensures

that the final outcome µ meets Property 1. To see why, suppose that a is superior for

b, b is left unmatched at the final outcome µ, and that b is acceptable for a.31 Since the

first supposition implies π(a) �a b, µ(a) �a b would fail to hold only if π(a) �a µ(a).

(Note that µ(a) = π(a) = b is impossible by the second supposition.) Furthermore,

with the above suppositions, our algorithm ensures that π(a) �a µ(a) occurs only if

a = xt is matched to yt at some step t of Phase 4; if so, a should prefer µ(a) = yt to b

by construction, because b ∈ Yt.32

Second, the systematic matching of adjacent pairs guarantees Properties 2, 5, and 6

for the parties relevant in this phase, while we defer the details to the full description in

B.2. The reasons for Properties 2 and 6 are similar to those in the previous phases. The

key for Property 5 is how to match adjacent pairs “around” xt and yt. If xt is matched

to yt at some step t of this phase, then she belongs to I◦µ at the final outcome. We thus

need to ensure σ5(xt) ∈ I◦µ whenever µ (σ(xt)) = σ2(xt) and µ
(
σ3(xt)

)
= σ4(xt).

Actually, we match adjacent pairs so that the two equations never simultaneously hold

and thereby make the requirement vacuous. Similarly, we also make sure that π5(yt) 6∈

I◦µ whenever µ (π(yt)) = π2(yt) and µ
(
π3(yt)

)
= π4(yt) both hold. Consequently the

requirement for σ5(b) is satisfied when we substitute b = π5(yt) and σ5(b) = yt, even

though yt 6∈ I◦µ. Our construction also warrants the requirement for σ6(b) in Property

5.

In Phase 5, we consider the parties from which no agent has been matched by Phase

4, and we form adjacent pairs so as to meet Properties 2, 5, and 6. In particular, we

match them so that both (i) no more than two consecutive adjacent pairs are matched

and (ii) no pair of the remaining agents are adjacent. As we will establish as Lemma

4 below, an agent will necessarily be a member of I◦µ at the final outcome, if she is

unmatched at the end of this phase. Together with the patterns of adjacent pairs Phases

31If b is unacceptable for a, then µ(a) �a b follows from the individual rationality of the final outcome.
32Strictly speaking, we exclude π(a) and π2(a) from Yt as we mentioned in footnote 30. We thus need

to treat the case of b ∈ {π(a), π2(a)} separately.
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1–5 match, this feature ensures all the properties referring to I◦µ, Properties 2–6, at the

final outcome. It should also be noted that we need to run Phases 1–5 in this order so

as to obtain this feature.33

In Phase 6, lastly, we match those who are still unmatched so that no mutually-

acceptable pair of singles is left. As we have argued above, Property 1 is guaranteed

by Phase 4, and how we match (non-adjacent) pairs in this phase is irrelevant to Prop-

erties 2–6. Hence, our task in this phase is just to satisfy regularity, and we can exhaust

mutually-acceptable pairs in an arbitrary way.

B.2 Description of the Algorithm

Taking a problem (N,�) and a party permutation σ as given, construct a matching µ

as follows. To simplify the description, we write “define µ(a) := b,” when it should

read as “define µ(a) := b and µ(b) := a.” The whole procedure is divided into six

phases.

B.2.1 Phase 1 of the Algorithm

Let E be the family of even parties; i.e., E := {P ∈P(σ) : |P| is even}. For each P ∈ E ,

arbitrarily take a ∈ P and define µ
(
σ2j−2(a)

)
:= σ2j−1(a) for each j ∈

{
1, . . . , |P|2

}
as

illustrated in Figure 1 (a).

B.2.2 Phase 2 of the Algorithm

Let O≤7 be the family of non-solitary odd parties whose sizes are less than or equal

to seven; i.e., O≤7 := {P ∈P(σ) : |P| ∈ {3, 5, 7}}. For each P ∈ O≤7, arbitrarily take

a ∈ P and define µ
(
σ2j−2(a)

)
:= σ2j−1(a) for each j ∈

{
1, . . . , |P|−1

2

}
as illustrated in

Figure 1 (b). Note that µ
(

σ|P|−1(a)
)

is undefined.

33As seen more clearly below, Phases 1–3 and 5 might look similar in that all of them match adjacent
pairs only, whereas Phase 4 is quite different. It would thus be natural to ask what happens if we run
Phase 5 before Phase 4 and thereby fix all the adjacent pairs before entering the complicated phase. It
turns out, however, such an alternative algorithm does not work, mainly because it does not guarantee
the feature we highlight here.
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𝑎𝑎 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 𝑏𝑏6 𝑏𝑏7

𝜇𝜇

(a) Phase 1: P ∈ E

𝑎𝑎 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏5 𝑏𝑏6

𝜇𝜇

𝑏𝑏4

(b) Phase 2: P ∈ O≤7

𝑎𝑎 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 𝑏𝑏6 𝑏𝑏7 𝑏𝑏8

𝜇𝜇

(c) Phase 3: P ∈ O3×

Figure 1: Matching during Phases 1–3 of the Algorithm. For each j, bj represents σj(a).
Each arrow between two agents means they are matched, and the agents represented
by black circles are not matched in these phases.

B.2.3 Phase 3 of the Algorithm

Let O3× be the family of odd parties whose sizes are a multiple of three and greater

than three; i.e., O3× := {P ∈P(σ) : |P| = 3n for some odd n ≥ 3}. For each P ∈ O3×,

arbitrarily take a ∈ P and define µ
(
σ3j(a)

)
:= σ3j+1(a) for each j ∈

{
1, . . . , |P|3

}
as

illustrated in Figure 1 (c). Note that for each j, we leave µ
(
σ3j+2(a)

)
undefined.

B.2.4 Phase 4 of the Algorithm

Let U0 ⊆ N be the set of agents who are unmatched yet and U0 the family of parties

none from which is matched yet.34 Specifically, P ∈ U0 if and only if its cardinality is

odd, greater than seven, and not a multiple of three. In what follows, Ut and Ut will

be, respectively, the set of agents who are unmatched by step t of this phase and the

family of parties no agent from which is matched by step t.

Arbitrarily order the members of U0 as x1, . . . , xT, where T := |U0|, and iterate the

following step for t = 1, . . . , T.

34Remember that a ∈ U0 does not necessarily imply P(a) ∈ U0 since P(a) may be in O≤7 ∪O3×.
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Step t = 1, . . . , T of Phase 4:

If xt 6∈ Ut−1, proceed to step t + 1 with Ut = Ut−1 and Ut = Ut−1. Otherwise, define

Yt :=
{

y ∈ Ut−1 − {π(xt), π2(xt)} : xt is superior for y and y is acceptable for xt

}
.

If Yt is empty, then proceed to step t + 1 with Ut = Ut−1 and Ut = Ut−1.35 Otherwise,

let yt ∈ Yt denote the best agent for xt among those in Yt; that is, y ∈ Yt ⇒ yt �xt y.

Define µ(xt) := yt and Ut = Ut−1 − {P(xt), P(yt)}. If Ut = Ut−1, proceed to step

t + 1 with Ut = Ut−1 − {xt, yt}. Otherwise, we match adjacent pairs in P(xt) and/or

P(yt) as we specify below. Note that in either case, we “exhaust” adjacent pairs in the

relevant party; i.e., if both of an adjacent pair have been unmatched by the end of this

step t, then they belong to some P ∈ Ut.

Case 1: P(xt) = P(yt) ∈ Ut−1P(xt) = P(yt) ∈ Ut−1P(xt) = P(yt) ∈ Ut−1. In this case, there exist q, r ≤ |P(xt)| such that

σq+1(yt) = xt and σr+1(xt) = yt. It should also be noted that q ≥ 2 by the defini-

tion of Yt. Match adjacent pairs in P(xt) = P(yt) as follows:

• Matching among σ(yt), . . . , σq(yt):

If q = 2m for some m ∈ N, then µ
(
σ2j−1(yt)

)
:= σ2j(yt) for each j ∈ {1, . . . , m}.

If q = 2m + 1 for some m ∈ N, then µ
(
σ2j−1(yt)

)
:= σ2j(yt) for each j ∈

{1, . . . , m− 1}, and µ(
(
σ2m(yt)

)
:= σ2m+1(yt), leaving µ

(
σ2m−1(yt)

)
undefined.

Figure 2 (a)–(b) illustrate the matching in these cases.

• Matching among σ(xt), . . . , σr(xt):

If r = 3n or 3n + 1 for some n ∈ N, then, let µ
(

σ3j′−1(xt)
)

:= σ3j′(xt) for

each j′ ∈ {1, . . . , n}. Notice that µ
(
σ3n+1(xt)

)
is undefined when r = 3n + 1.

Similarly, we leave µ (σ(xt)) undefined if r = 1. If r = 3n + 2 for some n ∈

N∪ {0}, then, let µ
(

σ3j′−2(xt)
)

:= σ3j′−1(xt) for each j′ ∈ {1, . . . , n + 1}. Figure

2 (c)–(e) illustrate the matching in these cases.

35Remember that when {xt} ∈P(σ) is a solitary party, y is acceptable for xt if and only if y is superior
for xt. Since this implies xt is inferior for y by the definition of a party permutation, in such a case, Yt
must be empty.
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𝑦𝑦𝑡𝑡 𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5 𝑧𝑧6 𝑧𝑧7 𝑧𝑧8 𝑥𝑥𝑡𝑡

𝜇𝜇

(a) Case of q being even

𝑦𝑦𝑡𝑡 𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5 𝑧𝑧6 𝑧𝑧7 𝑧𝑧8 𝑧𝑧9 𝑥𝑥𝑡𝑡

𝜇𝜇

(b) Case of q being odd

𝑥𝑥𝑡𝑡 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑦𝑦𝑡𝑡

𝜇𝜇

(c) Case of r = 3n for some n ∈N

𝑥𝑥𝑡𝑡 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑦𝑦𝑡𝑡

𝜇𝜇

(d) Case of r = 3n + 1 for some n ∈N∪ {0}

𝑥𝑥𝑡𝑡 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑦𝑦𝑡𝑡

𝜇𝜇

(e) Case of r = 3n + 2 for some n ∈N∪ {0}

Figure 2: Matching in Case 1 of Phase 4. For each j, zj and wj denote σj(yt) and σj(xt),
respectively. Each arrow between two agents means they are matched, and the agents
represented by black circles are not matched in this step.
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𝑦𝑦𝑡𝑡 𝑧𝑧1 𝑧𝑧2 𝑧𝑧3 𝑧𝑧4 𝑧𝑧5 𝑧𝑧6 𝑧𝑧7 𝑧𝑧8

𝜇𝜇

𝑧𝑧9 𝑧𝑧10

(a) Matching of P(yt)

𝑥𝑥𝑡𝑡 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6

𝜇𝜇

𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10 𝑤𝑤11 𝑤𝑤12

(b) Matching of P(xt) with |P(xt)| = 3n + 1 for some n ∈N

𝑥𝑥𝑡𝑡 𝑤𝑤1 𝑤𝑤2 𝑤𝑤3 𝑤𝑤4 𝑤𝑤5 𝑤𝑤6 𝑤𝑤7 𝑤𝑤8 𝑤𝑤9 𝑤𝑤10

𝜇𝜇

(c) Matching of P(xt) with |P(xt)| = 3n + 2 for some n ∈N

Figure 3: Matching of the agents in P(xt), P(yt) ∈ Ut−1 in Case 2 of Phase 4. For each
j, zj and wj denote, respectively, σj(yt) and σj(xt). Each arrow between two agents
means they are matched, and the agents represented by black circles are not matched
in this step.

Let Ut := Ut−1 −Mt, where Mt is the set of agents matched in this step, including xt

and yt, and proceed to step t + 1.

Case 2: P(xt) 6= P(yt)P(xt) 6= P(yt)P(xt) 6= P(yt). In this case, match the members of P(xt) and P(yt), respec-

tively, if P(xt) ∈ Ut−1 and if P(yt) ∈ Ut−1 as follows:

• Matching among P(yt) ∈ Ut−1:

If P(yt) ∈ Ut−1, define µ
(
σ2j−1(yt)

)
:= σ2j(yt) for each j ∈

{
1, . . . , |P(yt)|−1

2

}
as

illustrated in Figure 3 (a).

• Matching among P(xt) ∈ Ut−1:

If P(xt) ∈ Ut−1, then |P(xt)| = 3n + 1 or 3n + 2 for some n ∈ N, as Ut−1 ⊂ U0

is disjoint from O3×. In the former case, define µ
(

σ3j′−1(xt)
)

:= σ3j′(xt) for

each j′ ∈ {1, . . . , n}. In the latter, let µ
(

σ3j′−2(xt)
)

:= σ3j′−1(xt) for each j′ ∈

{1, . . . , n} and µ
(
σ3n(xt)

)
:= σ3n+1(xt). Figures 3 (b)–(c) illustrate the matching

in these cases.
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𝑎𝑎 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 𝑏𝑏6 𝑏𝑏9 𝑏𝑏10 𝑏𝑏11 𝑏𝑏12𝑏𝑏7 𝑏𝑏8

𝜇𝜇

(a) P ∈ UT with |P| = 3n + 1 for some n ∈N

𝑎𝑎 𝑏𝑏1 𝑏𝑏2 𝑏𝑏3 𝑏𝑏4 𝑏𝑏5 𝑏𝑏6 𝑏𝑏9 𝑏𝑏10𝑏𝑏7 𝑏𝑏8

𝜇𝜇

(b) P ∈ UT with |P| = 3n + 2 for some n ∈N

Figure 4: Matching during Phase 5. For each j, bj denotes σj(a). Each arrow between
two agents means they are matched, and the agents represented by black circles are
not matched in this Phase.

Let Ut := Ut−1 −Mt, where Mt is the set of agents matched in this step, including xt

and yt, and proceed to step t + 1.

B.2.5 Phase 5 of the Algorithm

Remember that UT is the family of odd parties no member from which has been

matched yet. Recall also that that |P| is not a multiple of three for any P ∈ UT. For

each P ∈ UT, fix an arbitrary member a ∈ P and match adjacent pairs in the following

way, as illustrated in Figure 4:

• If |P| = 3n + 1 for some n ∈ N, then, define µ(a) := σ(a), µ
(
σ2(a)

)
:= σ3(a),

µ
(
σ5(a)

)
:= σ6(a), and µ

(
σ3j−2(a)

)
:= σ3j−1(a) for each j ∈ {3, . . . , n}.

• If |P| = 3n + 2 for some n ∈ N, then define µ(a) := σ(a), µ
(
σ2(a)

)
:= σ3(a),

and µ
(
σ3j−1(a)

)
:= σ3j(a) for each j ∈ {2, . . . , n}.

B.2.6 Phase 6 of the Algorithm

Let R0 be the set of those who still remain unmatched, and arbitrarily order its mem-

bers as r1, . . . , r|R0|. Iterate the following step for τ = 1, . . . , |R0| + 1. We will have

defined µ(a) for each a after these steps, and the algorithm is complete.
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• Step τ = 1, . . . , |R0| of Phase 6:

If rτ ∈ Rτ−1 and there exists some ri ∈ Rτ−1 who is mutually acceptable with rτ,

then define µ(rτ) := ri and proceed to step τ + 1 with Rτ := Rτ − {rτ, ri}.36

• Step |R0|+ 1 of Phase 6:

For any r ∈ R|R0|, i.e., for any agent not matched yet, define µ(r) := r.

B.3 Properties of the Algorithm

In this subsection, we formally establish the properties of the outcomes of the above

algorithm. To begin with, we prove the following lemma, which we highlighted in

B.1:

Lemma 4. Let R0 be the set of the agents who remain unmatched at the beginning of Phase

6. For any a, b ∈ R0 with a 6= b, either of the following statements holds: [1] they are not

mutually acceptable, and [2] they are inferior for each other.

Proof. Let a, b ∈ R0 with a 6= b. We then have a 6= π(b) because there is no adjacent

pair among R0. In addition, we also have a 6= π2(b), because as one can confirm from

Figures 1–4, it follows from b ∈ R0 that π2(b) is matched by the end of Phase 5.37

Towards a contradiction, suppose now that a and b are mutually acceptable and b is

superior for a. For b ∈ R0, there should exist step t of Phase 4 such that xt = b ∈ Ut−1.

Since a 6∈ {π(b), π2(b)}, our assumptions entail a ∈ Yt. However, this in turn implies

that xt = b should have been matched to yt during Phase 4, which contradicts the

original assumption of b ∈ R0. As a and b are symmetric, the proof is complete. �

Now we are ready to prove the following proposition. Together with the results in

Appendix A, it completes the proofs of Theorems 1–3.

Proposition 5. Let µ be an outcome of the algorithm we specify in B.2. For any problem

(N,�), then, µ is regular and satisfies Properties 1–6 (with respect to the party permutation σ

36In general multiple members of Rτ−1 may be mutually acceptable with rτ . Even if so, the choice of
ri can be arbitrary.

37More specifically, b ∈ R0 should be left unmatched when the algorithm matches adjacent pairs in
P(b) during one of Phases 2–5. That is, b should correspond to a black circle in some of those Figures.
It is then easy to check that π2(b) is always matched into an adjacent pair in any of those Figures.
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fixed at the beginning of the algorithm). Consequently, µ is stable whenever (N,�) possesses

a stable matching.38

Proof of Regularity. It is immediate to check that µ is individually rational as we only

match mutually-acceptable pairs during the algorithm. It leaves no mutually-acceptable

pairs of singles because of Phase 6. �

Proof of Property 1. We establish µ(a) �a b assuming that a is superior for b and µ(b) =

b. Note that b should be inferior for a, i.e., π(a) �a b, because no pair is mutually su-

perior. Suppose further that b is acceptable for a, as otherwise µ(a) �a b immediately

follows from individual rationality. Then, Lemma 4 necessitates a /∈ R0; i.e., a should

be matched to µ(a) 6= a by the end of Phase 5.

If a is a part of an adjacent pair at µ, it is easy to see µ(a) �a b: If µ(a) = π(a), then

µ(a) �a b holds, because µ(b) = b implies b 6= µ(a) = π(a), and π(a) �a b as noted

above. If µ(a) = σ(a) 6= π(a), then µ(a) �a b follows from σ(a) �a π(a), which is a

part of the definition of a party permutation.

What remains to check is the case where a is matched to µ(a) 6∈ {π(a), σ(a)} during

Phase 4. If a = yt is matched to xt in some step t during Phase 4, µ(a) = xt is superior

for a = yt and hence, µ(a) �a b holds. If a = xt is matched to yt in some step t during

Phase 4, our assumptions imply b ∈ Yt.39 It thus follows that µ(a) = yt �a b, because

yt is chosen to satisfy yt �a y for any y ∈ Yt − {yt}. �

Proof of Property 2. Suppose b ∈ I◦µ, which implies P(b) is non-solitary and odd. There

are two cases: (i) P(b) ∈ Ut−1 and b = xt is matched to yt at some step t of Phase 4

and (ii) b is left unmatched when one of Phases 2–5 matches adjacent pairs in P(b),

although b may be matched to µ(b) afterwards. In the first case, one can confirm,

with Figure 2 (a)–(b) and Figure 3 (b)–(c), that π(xt) is always matched to π2(xt). In

38Remember that when a stable matching exists (i.e., if #(N,�) ≤ 1), individual rationality and
Property 3 imply stability, as we illustrated in Section 2.2.

39In this case, b 6∈ {π(a), π2(a)} holds for the following reason: As we assume µ(b) = b, it suffices
to confirm that neither π(a) nor π2(a) is single at µ, which is clearly true if µ(π(a)) = π2(a). Given
a = xt is matched to yt during Phase 4, µ(π(a)) = π2(a) fails only if π(a) = xt′ is matched to yt′ in
an earlier step t′ < t. Moreover, for both a and π(a) to remain unmatched until step t′, we must have
P(a) ∈ Ut′−1 and hence, π2(a) should also be matched in step t′ (to π3(a)).
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the second case, b should correspond to some black circle in one of Figures 1–4. With

those Figures, one can verify that either [1] π(b) is matched to π2(b) or [2] π(b) = xt′

at some step t′ of Phase 4 and is matched to yt′ . In any case, µ(π(b)) is inferior for

π(b). �

Proof of Properties 3–4. These two properties are immediate from the constructions in

Phases 1–2. �

Proof of Property 5. We derive σ5(b) ∈ I◦µ and σ6(b) 6∈ I◦µ from b ∈ I◦µ, µ(σ(b)) = σ2(b),

µ
(
σ3(b)

)
= σ4(b), and |P(b)| = 2m + 1 with m > 3. Note that |P(b)| is not a multiple

of three, because otherwise all the adjacent pairs in P(b) are formed during Phase 3,

which never matches two consecutive adjacent pairs. Therefore, no agent in P(b) is

matched by the end of Phase 3, i.e., P(b) ∈ U0. We divide the case into two depending

on whether any agent in P(b) is matched during Phase 4.

First, suppose that t is the first step of Phase 4 such that agents in P(b) are matched.

Note that b = yt is impossible as µ(yt) = xt is superior for yt by definition. Further,

b = xt is also impossible, because µ(σ(xt)) = σ2(xt) and µ
(
σ3(xt)

)
= σ4(xt) never

simultaneously hold, as one can confirm with Figure 2 (c)–(e) and Figure 3 (b)–(c).

Thus, b must be left unmatched at this step t. More specifically, the only possibil-

ity consistent with µ(σ(b)) = σ2(b) and µ
(
σ3(b)

)
= σ4(b) is the case illustrated in

Figure 3 (c), where P(b) = P(xt) 6= P(yt), P(b) = 3n + 2 for some n, and σ5(b) = xt.40

In such a case, σ5(b) = xt is matched to yt, and σ6(b) = σ(xt) is matched to her

successor. These respectively imply σ5(b) ∈ I◦µ and σ6(b) 6∈ I◦µ, as desired.

Next, suppose that no agent from P(b) is matched during Phase 4, i.e., P(b) ∈ UT.

By Lemma 4, a member of P(b) also belongs to I◦µ if and only if she is not matched

into an adjacent pair during Phase 5. With Figure 4, it is then easy to confirm that

b ∈ I◦µ, µ(σ(b)) = σ2(b), and µ
(
σ3(b)

)
= σ4(b) jointly imply that σ5(b) ∈ I◦µ and

σ6(b) 6∈ I◦µ. �

40Since b ∈ I◦µ but b 6= xt, b should correspond to one of the black circles in Figures 2–3. Among them,
only b = w6 in Figure 3 (c) is consistent with the assumption of µ(σ(b)) = σ2(b) and µ

(
σ3(b)

)
= σ4(b).
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Proof of Property 6. Suppose b ∈ I◦µ. Remember that there are two possibilities: (i)

P(b) ∈ Ut−1 and b = xt is matched to yt at some step t of Phase 4 and (ii) b is left

unmatched when one of Phases 2–5 matches adjacent pairs in P(b), although b may

be matched to µ(b) afterwards. In both cases, one can confirm with Figures 1–4 that

σ2(b) is always matched to either σ(b) or σ3(b). Hence, σ2(b) never belongs to I◦µ. �

C Proof of Proposition 2

Suppose #(N,�) = 2k + 1 and fix an arbitrary P-stable matching µ′. Construct an-

other matching µ that includes µ′ by the following procedure:

• First, for each a such that µ′(a) 6= a, let µ(a) := µ′(a).

• Next, run Phase 4 of our algorithm in Appendix B with U0 := {a : µ′(a) = a}.

• Lastly, run Phase 6 of our algorithm in Appendix B.

Then, by similar arguments to those in Appendix A, one can confirm that µ is SaRD

up to depth k.41 �

D Generalization of Tan’s (1991) Theorems

Tan (1991) originally establishes his results under two additional assumptions we do

not impose in this paper: (i) the number of agents is even and (ii) the preferences

are symmetric in the sense that a �b b ⇔ b �a a for all a, b ∈ N. It is well known

as a folk knowledge that his results continue to hold without those assumptions, but

to the best of our knowledge, none in the literature has provided an explicit proof

for such extensions. For completeness of the paper and for possible future reference,

this appendix demonstrates why Tan’s (1991) results hold in the from we presented in

Section 2.2 without the additional assumptions.

Note that the condition for the existence of a stable matching is straightforward

once we generalize the existence of a party permutation and the uniqueness of odd

parties. When there is a party permutation without any non-solitary odd party, we can

41For details, refer to the working paper version (Hirata et al., 2020).
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construct a stable matching from a party permutation, by matching all the members of

even parties into adjacent pairs, as we demonstrated in Section 2.2. Conversely, when

a stable matching µ : N → N exists, σ = µ constitutes a party permutation such that

all odd parties (if any) are a singleton. Therefore, a stable matching exists if and only if

#(N,�) ≤ 1. In what follows, thus, we generalize the existence of a party permutation

and the uniqueness of odd parties to an arbitrarily given problem.

To begin with, consider a problem (N,�) such that N = {a1, . . . , a2n−1} while

� = (�a1 , . . . ,�a2n−1) is a symmetric preference profile. So as to apply Tan’s original

result, construct another problem (N′,�′) by adding a dummy agent as follows: N′ =

{a0, a1, . . . a2n−1} and �′ = (�′a0
,�′a1

. . . ,�′a2n−1
), where

• the dummy agent’s preference �′a0
is such that a0 �′a0

b for all b ∈ N, and

• for each a ∈ N, her preference �′a is such that b �′a a0 for all b ∈ N and that

c �′a d⇔ c �a d for all c, d ∈ N.

Note that |N′| = 2n is even and that �′ is symmetric since the original � is. By Tan

(1991, Theorem 3.3), therefore, a party permutation exists and odd parties are uniquely

identified at (N′,�′). To confirm that the same is true also at the original (N,�), we

establish a one-to-one correspondence between party permutations for (N,�) and for

(N′,�′). Notice that at any party permutation for (N′,�′), the dummy agent must

form a solitary party. Thus, if σ′ is a party permutation for (N′,�′), the restriction of

σ′ to N continues to meet all the requirements to be a party permutation for (N,�).

Conversely, when σ|N : N → N is a party permutation for (N,�), we can construct a

party permutation σ : N′ → N′ for (N′,�′) by extending σ|N with σ(a0) = a0. With

these observations, it is immediate to see that the existence of a party permutation and

the uniqueness of odd parties are inherited from (N′,�′) to (N,�).

Next suppose � = (�a)a∈N is asymmetric, while |N| is either even or odd. Let

�∗ = (�∗a)a∈N be a “symmetrization” of � such that

• b �∗a a⇔ [b �a a and a �b b] for any a, b ∈ N, and

• b �∗a c⇔ b �a c for any a, b, c ∈ N such that b, c �∗a a.42

42A symmetrization of� is not unique because the ranking among unacceptable agents is not pinned
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The first condition requires that a pair of agents are mutually acceptable at �∗ if and

only if they are at �. Combined with the second condition, it follows that a’s ranking

between b and c remains unchanged if both {a, b} and {a, c} are mutually acceptable.

Recall that we have already established that Tan’s theorem holds for (N,�∗). Hence,

it suffices to confirm that a permutation σ over N is a party permutation for (N,�) if

and only if it is so for (N,�∗). In doing so, we consider the two directions separately.

First, let σ∗ be a party permutation for the symmetrized (N,�∗) and π∗ its inverse.

By the definition of �∗, it follows from σ∗(a) �∗a a and σ∗(a) �∗a π(a) �∗a a, respec-

tively, that σ∗(a) �a a and σ∗(a) �a π(a) �a a. Hence, σ∗ is a semi-party permutation

for (N,�). Towards a contradiction, now suppose that a and b are superior to each

other with respect to �; that is, a �b π∗(b) and b �a π∗(a). Note that π∗(b) is accept-

able for b at �b, as she is so at �∗b . The supposition of a �b π∗(b) thus implies that a

is acceptable for b at �b. Combined with the symmetric arguments, a and b must be

mutually acceptable at �. Then, the suppositions of a �b π∗(b) and b �a π∗(a) imply

the same rankings continue to hold at �∗. This, however, contradicts the original as-

sumption that σ∗ is a party permutation with respect to �∗. Therefore, no such a and

b should exist, and σ∗ is a party permutation for (N,�).

Second, suppose that σ is a party permutation for the original problem (N,�).

Recall that the transformation from � to �∗ keep the set of mutually-acceptable pairs

unchanged. For any member a of a non-solitary party, hence, (a, σ(a)) and (a, π(a))

are a mutually acceptable pair not only with � but also with �∗. Therefore, σ(a) �∗a a

and σ(a) �∗a π(a) �∗a a follow, respectively, from σ(a) �a a and σ(a) �a π(a) �a a.

That is to say, σ is a semi-party permutation for (N,�∗). To complete the proof, let

a, b ∈ N be such that a �∗b π(b). Since b and π(b) are mutually acceptable with respect

to �, this necessitates a �b π(b). Then π(a) �a b follows from the assumption that

σ is a party permutation for (N,�). As a and π(a) are also mutually acceptable, this

entails π(a) �∗a b.

To summarize, we have demonstrated that a party permutation exists and the odd

down. However, the following argument is independent of the choice of �∗.
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parties are uniquely identified for any number of agents and any preference profiles,

as we stated in Section 2.2.
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