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Abstract— Underground water pipes are important to any
country’s infrastructure. Overtime, the metallic pipes are prone
to corrosion, which can lead to water leakage and pipe bursts. In
order to prolong the service life of those assets, water utilities in
Australia apply protective pipe linings. Long-term monitoring
and timely intervention is crucial for maintaining those lining
assets. However, the water utilities do not possess a comprehen-
sive technology to achieve it. The main reasons for lacking such
technology are the unavailability of sensors and accurate robot
localization technologies. Feature based localization methods
such as SLAM has limited use as application of liners alters the
features and the environment. Encoder based localization is not
accurate enough to observe the evolution of defects over a long
period of time requiring unique defect correspondence. This
motivates us to explore accurate contact-less and wireless based
localization methods. We propose a cost-effective localization
method using UHF-RFID signals for robot localization inside
pipelines based on Gaussian process combined particle filter.
Experiments carried out in field extracted pipe samples from
Sydney water pipe network show that using the RSSI and
Phase data together in the measurement model with particle
filter algorithm improves the localization accuracy up to 15
centimeters precision.

Index Terms— infrastructure robotics, linings, localization,
particle filter, pipes, robotics for smart cities, RFID, robotic
inspections, UHF-RFID.

I. INTRODUCTION

Australia has more than 120,000 km of water mains. The
primary cause for pipe failure and water leakage is usually
metallic pipe corrosion. Depending on the size of the pipe,
average corroded pipe repair costs range from A$400 to
A$4000 per metre. Water utilities apply protective linings
as a deterrent to internal pipe corrosion in order to minimize
the impact of corrosion [1], [2].

Currently there are liner inspection technologies based
on laser profiling [3], [4], pulsed Eddy current sensing
[5], ground penetrating radars (GPR) [6] and ultrasound
sensing [7] have been attempted. As the pipes are in general
small in diameter, these technologies are deployed through
robotic platforms inside pipeline to inspect liner defects
and imperfections. However due to localization errors of
the robotic platforms, aligning these data after multiple
deployments to analyze the defect evolution and subsequent
intervening have become challenging. The most commonly
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Fig. 1: Robot with RFID unit mounted on top.

used localization methods for in-pipe robotic platforms are
wheel encoders or tether line encoders. The commonly
used Simultaneous Localization and Mapping (SLAM) like
localization techniques become obsolete due to the changing
environmental conditions such as application of liners creat-
ing a completely different environment (hence features) and
long term corrosion patches. When it comes to floating robots
or drones in operational pipes, contact based localization
methods become obsolete and therefore, a different and
more accurate contactless localization method in pipelines
is needed.

Currently there are many different wireless technologies
and algorithms being researched for localization in outdoor
and indoor environments [8], [9]. However there aren’t many
localization methods for underground pipelines. We have se-
lected the radio-frequency identification (RFID) localization
technology because it is more cost effective and it is being
used in liner embedded sensing technology to measure en-
vironmental conditions such as moisture and temperature in
water pipelines [10]–[13], it can also be used as an effective
contactless and wireless localization method. Further, it is
not dependent on the environmental changes of the pipe over
time. However, unlike outdoor RFID localization [14] which
gives a straight forward signal curve that only contains one
peak point [15] which is most likely location of the robot;
inside pipelines the signal strength curve will have multiple
peak points making the robot location uncertain. Further
commercial off-the-shelf (COTS) RFID readers provides
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vague and uncertain measurements which is only capable of
localizing the RFID tag with a square meter range accuracy
[16]. Therefore the RFID localization task inside pipelines
becomes unique.

In this paper, we proposed an improved localization
method for underground water pipelines using COTS RFID
components with particle filter algorithm [17], [18] that
employs both Received Signal Strength Indication (RSSI)
and Phase data in the measurement model to achieve higher
accuracy. We have conducted experiments with field ex-
tracted water pipelines from Sydney water network. We have
done experiments to identify the best locations to deploy
the RFID tags inside the pipe and the results show that our
proposed system has achieved a precision of 15 centimeters.

The rest of this article is structured as follows: Section
II describes the algorithms, hardware and software architec-
tures. The experimental results are presented in Section III
with discussions and finally, Section IV concludes the article
by summarizing the key outcomes and briefs the intended
future work.

II. METHODOLOGY

The initial experiments have shown in the open envi-
ronment RFID localization is somewhat straight forward
since the signal strength curve only contains one single
peak point which is relating to the most likely location
of the robot [15]. However inside a pipe environment the
signal strength curve have multiple peak points making the
robot location uncertain which makes the localization task
unique and difficult. Results in Fig. 6 Tag A inside the
pipe data and outside the pipe data comparison gives you
an indication as to how it behaves differently in the two
different environmental conditions.

We have introduced the particle filter for passive UHF
RFID localization and we have improved the performance
and accuracy of the localization by applying the Gaussian
process data modeling into the RFID RSSI data. We have
further improved the accuracy by embedding the Phase data
into the measurement model.

First we collect RFID RSSI data and Phase data from
the robot. The collected RSSI data shows a unique signal
pattern which can be modeled using a Gaussian process.
Therefore to filter the outliers, normalize the data and create
a measurement model we use the Gaussian data modeling
function.

Gausian Process regression modeling approach [19] is
used in this work to normalize the noisy data coming from
the robotic measurements. The model obtains the distance
travelled by the robot D and predicts the RSSI values (R).
This can be learned as a function f in the form of

R = f(D) + ξ (1)

where ξ is the uncertainty. Let [X,Y ] be the robotic mea-
surement inputs where X = [x1, x2, x3, ......, xm]T , xi =
[(D)i]T , and i(1 ≤ i ≤ m) is an integer and m is the number
of data pairs. Y = [y1, y2, y3, ......, ym]T is a vector having

corresponding targets where yi = Ri. [X∗, Y ∗] is the testing
data, where X∗ = [x∗1, x
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robotic data inputs and Y = [y∗1 , y

∗
2 , y
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T is a vector
having predicted outputs corresponding to X∗. Once f has
been learned using [X,Y ], f can be used to predict Y ∗ for
a given X∗ by using D∗ = f(ρ∗a) + ξ∗. A K(X,X) kernel
having ki,j = k(xi, xj) elements was selected to address
the non-linear regression problem through GP modeling. In
this work, we use the squared exponential kernel, which is
defined as in (2).

k(xi, xj) = α2exp

{
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}
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where the α and β are the hyper-parameters for the GP
model. The GP model was trained by minimizing the neg-
ative log marginal likelihood in (3) with respect to θ ={
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The predicted RSSI values (Y ∗) for the distance (X∗) will
be given by the mean of the posterior distribution (µ)∗ in
(5) and the associated uncertainty is given by the covariance
(
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)* in (6).
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From the collected data, unlike the RSSI data that shows
a unique signal pattern which can be mapped to a Gaussian
process function, the Phase data is somewhat noisy (Fig.
7), therefore we are generating different weight sets to give
high priority to the RSSI data and low priority to the Phase
data and finally combine to create an improved measurement
model. Then we map these data models with the odometry
data from the robot to output the final measurement model.

Let, R be the RSSI matrix model, P be the Phase matrix
model, W1 be the wights generated for the RSSI matrix
model and W2 be the weights generated for Phase matrix
model, that maps to O odometry matrix data model received
from the robot will denote the M measurement model.

M =

[
G(R)
P

]
×
[
W1 W2

]
7→

[
O
]

(7)

Once we have the final measurement model from the initial
robot deployment, Thereafter we can use this measurement
model against the particle filter algorithm [17], [18] to predict
the robot location. The highest prediction value will be the
most likely location of the robot.



Fig. 2: Software architecture.

A. Prototype development

1) Sensor suite: The sensor suite was built with commer-
cial off the shelf (COTS) RFID components. Thingmagic
M6e Micro-LTE UHF 2 port RFID reader module with the
embedded developer kit was used to implement the proposed
system as it was easy to customize and it was actively
supported by the open source Python MercuryAPI software
community. A single 915MHz General Purpose Panel RF
Antenna in 902MHz to 928MHz range with 5.5dBi gain was
used to support the module. Three different most commonly
available chip based RFID tag types (Fig. 5) were selected
and used to conduct experiments to evaluate and identify the
best suitable tag type for the proposed system to achieve
best results. Jetson Nano Developer kit board with Quad-
core ARM 1.43 GHz CPU, 4 GB 64-bit LPDDR4 RAM was
used as the central processing unit to run the implemented
system. The whole hardware system was assembled inside
an enclosure and mounted on top of a robotic platform
for deployment Fig. 1. A rotary encoder with 1024 pulses
per revolution was fixed to the robot wheels to collect the
odometry data from the robot for validations.

2) Software architecture: The software architecture (Fig.
2) has been implemented on top of Robotic Operating System
(ROS) framework. Since the RFID hardware module is
supported with a Python Mercury API library, the RFID
reader module has been implemented with Python. To gain
more flexibility and structure to the implementation the core
integration and algorithms were implemented as C++ compo-
nents. The robot wheel encoder electronics that receives the
initial odometry data to create measurement maps for the par-
ticle filter has been implemented using Arduino components.
Finally the estimated particle filter localization prediction
which is based on the previously trained measurement maps
are displayed on RVIZ like visualization systems. At the
initial deployment, robot collects the RFID and odometry
data to publish as ROS topics which will be used to generate
the measurements models. In the next deployments, when
the system doesn’t have the wheel odometry data, particle
filter can localize the robot using the RFID data and the
measurement model.

III. EXPERIMENTS & RESULTS

A. Electromagnetic Field Simulation

Fig. 4 shows the simulation results done from the CST
studio simulation software. The first simulation was done
in an open environment by designing a UHF RFID antenna
with matching hardware configurations in the real antenna
used to conduct practical experiments. As seen in the results
(Fig. 4a) the signal strength of the antenna distributed evenly
around the space as an expanding radial field that decays
along the distance. The next simulation was done by moving
the same antenna inside a metalic pipe environment. As
seen in the results (Fig. 4b) the signal gets reflected from
the pipe surface and travels further giving a ripple effect to
the signal strength. This indicates the signals travels further
inside a pipe environment and behaves differently making
the RFID localization task unique and challenging. After
observing these patterns practical experiments were done to
clarify these results.

B. RFID tags & location selection

Chip based RFID tags were chosen for the experiments
because they can be uniquely identified using the Electronic
Product Code (EPC) value and they can be further used to
store extra information. Mainly three different chip based
UHF RFID tags (Fig. 5) were used to find the best suitable
tag for improving the RFID localization results. The three
different tag types are: oil impregnated paper based substrate
with non coiled antenna (Fig. 5a), oil impregnated paper
based coiled antenna (Fig. 5b), strong metalic based substrate
with non coiled antenna (Fig. 5c).

Fig. 6 shows the results comparison for different tags (Fig.
5) tested to identify the best suitable tag for localization.
These tags were placed in the middle of the scanned length
and the robot traveled from one end to the other. As seen in
the results, it is clear that inside the pipe the signals travels
far and has a reflected ripple effect. Inside the pipe, the data
has more density than in the open space scan. Further, when
the antenna passes the tags, the signal strength and the data
density diminishes. It is observed that Tag A will perform
better as it has low noise in the signal and a clear reflection
pattern that will help better in the localization algorithms.

Fig. 7 shows the RSSI and Phase data comparisons from a
single tag. The RSSI data seems to have more unique signal
pattern than the phase data.

Next, the same experiment was conducted in two different
environments. Inside pipe environments and outside open
environment to compare the behavior of the sensors. The
tags were arranged inside a 6 meters long 600 millimeters in
diameter field extracted water pipe sample as shown in Fig. 3
and data has been collected using the robot. This experiment
was repeated by changing the RFID tag location inside the
pipe surface as top, side and bottom (Fig. 3d, 3c, 3b). Further
the tests are repeated by changing the distance (d) between
each RFID tags.

Fig. 8 shows the data collected by placing RFID tags in
different locations in the pipe. The three scans were done by



(a) RFID experiment setup inside pipeline.

(b) RFID tags placed on the bot-
tom of the pipe.

(c) RFID tags placed at the side
of the pipe.

(d) RFID tags placed at the top
of the pipe.

(e) RFID tags placed at an open
area.

Fig. 3: RFID test setups.

(a) RFID reader antenna far-field
simulation in open environment.

(b) RFID antenna far-field sim-
ulation inside the pipeline envi-
ronment.

Fig. 4: CST studio RFID simulation results.

placing the Tag type A in the middle of the pipe. First scan
shows when it placed in the bottom section of the pipe, next
at the side of the pipe and the last at the top crown of the
pipe. The observations show that side is the best location to
place the RFID tags.

C. Data modeling

The collected data was then mapped with the odometry
data from the robot to model the Gaussian process which
filters the outliers and gives a stable data model to train the
particle filter algorithm.

Fig. 9 shows the scan results of the 1 meter apart tag
distribution inside the water pipeline sample as in setup
displayed in Fig. 3a, 3c. The red fitted curve is the Gaussian

(a) Tag A. (b) Tag B. (c) Tag C.

Fig. 5: RFID tags.

process model which normalize the raw data to be used as
the measurement model to the particle filter.

D. System performance

Using these data models, the particle filter based localiza-
tion algorithm was tested in a ROS simulated environment
to evaluate different data collections and particle filter con-
figurations. The best results were achieved when the robot
travels at a maximum speed of 0.1 meters per second or less
where RFID reader detects tags at a maximum rate of 50 tag
readings per second.

We have evaluated the particle filter performance with
both RSSI data alone measurement model and with RSSI
and Phase data combined data model. Fig. 10, 11 shows the
performance evaluation of the particle filter for localization
prediction values. The result comparisons show a significant



Fig. 6: Different RFID tags comparison.

Fig. 7: RFID tag RSSI and Phase data.

improvement in the localization results when both RSSI and
Phase data used in the particle filter measurement model. The
proposed system has achieved a precision of 15 centimeter
accuracy in localization results.

Finally particle filter performance was evaluated with
different number of particle configurations as shown in Fig.
12. The legend indicates the number of particles for each
performance data curve. The results show that the maximum
accuracy has been captured at 300 particles. Increasing it
further (Fig. 12 p=400) reduces the performance of the
system and the error rate increases due to the prediction
algorithms takes too long to process and respond back.

IV. CONCLUSION AND FUTURE WORK

In this paper, we presented the developments of a robotic
system for localizing inside the pipeline based on UHF-RFID
signals. The robotic localization uses particle filter combined
with Gaussian process algorithm. By integrating both RSSI
and phase shift values into the particle filter model, the
localization results are further enhanced. The scheme can be
used for localization without the aid of any other odometry
hardware after creating the initial measurement model. The
system was validated in lab experiments and by deploying
it inside pipe samples extracted from Sydney water pipe
network. We have identified the best locations to deploy the
RFID tags inside the pipe and the results conclude that the



Fig. 8: RFID tag location comparison.

Fig. 9: RFID GP data modeling.
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Fig. 10: Particle filter performance evaluation with different
measurement models.
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Fig. 11: Error boundary representation of the particle filter
performance evaluation with different measurement models.

proposed system has a precision of 15 centimeter accuracy.
Further researches are planned in the following areas:

Testing the system performance with different environmental
conditions and improve the accuracy. Improve the robotic
platform to deploy the RFID tags inside pipelines. Test the
proposed system in underground water pipelines. Test the
proposed system with floating robots and drones. Improving
the proposed system to use multi antenna triangulation
mechanism which will enable to convert the current one
dimensional localization into three dimensional localization.
Improve the accuracy using combination of localization
algorithms and sensors.
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